
Synopsys Confidential Information

Verification Continuum™

Synopsys
Synplify Pro for Microchip 
Attribute Reference Manual

October 2020



LO

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Attribute Reference
2 Synopsys Confidential Information October 2020

Copyright Notice and Proprietary Information
© 2020 Synopsys, Inc. All rights reserved. This software and documentation 
contain confidential and proprietary information that is the property of 
Synopsys, Inc. The software and documentation are furnished under a 
license agreement and may be used or copied only in accordance with the 
terms of the license agreement. No part of the software and documentation 
may be reproduced, transmitted, or translated, in any form or by any means, 
electronic, mechanical, manual, optical, or otherwise, without prior written 
permission of Synopsys, Inc., or as expressly provided by the license agree-
ment.

Free and Open-Source Licensing Notices
If applicable, Free and Open-Source Software (FOSS) licensing notices are 
available in the product installation.

Destination Control Statement
All technical data contained in this publication is subject to the export 
control laws of the United States of America. Disclosure to nationals of other 
countries contrary to United States law is prohibited. It is the reader’s 
responsibility to determine the applicable regulations and to comply with 
them.

Disclaimer
SYNOPSYS, INC., AND ITS LICENSORS MAKE NO WARRANTY OF ANY 
KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, 
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.



Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 3

Trademarks
Synopsys and certain Synopsys product names are trademarks of Synopsys, 
as set forth at
http://www.synopsys.com/Company/Pages/Trademarks.aspx.
All other product or company names may be trademarks of their respective 
owners.

Third-Party Links
Any links to third-party websites included in this document are for your 
convenience only. Synopsys does not endorse and is not responsible for such 
websites and their practices, including privacy practices, availability, and 
content. 

Synopsys, Inc.
690 East Middlefield Road
Mountain View, CA 94043
www.synopsys.com

October 2020

http://www.synopsys.com/Company/Pages/Trademarks.aspx


LO

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Attribute Reference
4 Synopsys Confidential Information October 2020



Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 5

Contents

Chapter 1: Introduction
How Attributes and Directives are Specified  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

The SCOPE Attributes Tab  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Summary of Attributes and Directives  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Summary of Global Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Chapter 2: Attributes and Directives
alsloc  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
alspin  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
alspreserve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
black_box_pad_pin  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
black_box_tri_pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
full_case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
loop_limit  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
parallel_case  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
pragma translate_off/pragma translate_on  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
syn_allow_retiming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
syn_black_box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
syn_direct_enable  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
syn_encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
syn_enum_encoding  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
syn_hier  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
syn_insert_buffer  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
syn_insert_pad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
syn_isclock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
syn_keep  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
syn_looplimit  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
syn_maxfan  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
syn_multstyle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
syn_netlist_hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
syn_no_compile_point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
syn_noarrayports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147



LO

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Attribute Reference
6 Synopsys Confidential Information October 2020

syn_noclockbuf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
syn_noprune . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
syn_pad_type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
syn_preserve  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
syn_probe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
syn_radhardlevel  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
syn_ramstyle  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
syn_reference_clock  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
syn_replicate  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
syn_resources  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
syn_romstyle  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
syn_safe_case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
syn_sharing  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
syn_shift_resetphase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
syn_smhigheffort  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
syn_srlstyle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
syn_state_machine  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
syn_useenables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
syn_tco<n> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
syn_tpd<n> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
syn_tristate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
syn_tsu<n> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
translate_off/translate_on . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283



Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 7

C H A P T E R  1

Introduction

This document is part of a set that includes reference and procedural 
information for the Synopsys® FPGA synthesis tools. 

This document describes the attributes and directives available in the tool. 
The attributes and directives let you direct the way a design is analyzed, 
optimized, and mapped during synthesis.

This chapter includes the following introductory information: 

• How Attributes and Directives are Specified, on page 8

• Summary of Attributes and Directives, on page 16



LO

 Introduction How Attributes and Directives are Specified

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Attribute Reference
8 Synopsys Confidential Information October 2020

How Attributes and Directives are Specified
By definition, attributes control mapping optimizations and directives control 
compiler optimizations. Because of this difference, directives must be entered 
directly in the HDL source code or through a compiler design constraint file. 
Attributes can be entered either in the source code, in the SCOPE Attributes 
tab, or manually in a constraint file. For detailed procedures on different 
ways to specify attributes and directives, see Specifying Attributes and Direc-
tives, on page 93 in the User Guide. 

Verilog files are case sensitive, so attributes and directives must be entered 
exactly as presented in the syntax descriptions. For more information about 
specifying attributes and directives using C-style and Verilog 2001 syntax, 
see Verilog Attribute and Directive Syntax, on page 129.

The SCOPE Attributes Tab
This section describes how to enter attributes using the SCOPE Attributes tab. 
To use the SCOPE spreadsheet, use this procedure:

1. Start with a compiled design, then open the SCOPE window. 

2. Scroll if needed and click the Attributes tab. 

3. Click in the Attribute cell and use the pull-down menus to enter the 
appropriate attributes and their values.

The Attributes panel includes the following columns. 

Column Description

Enabled (Required) Turn this on to enable the constraint. 

Object Type Specifies the type of object to which the attribute is 
assigned. Choose from the pull-down list, to filter the 
available choices in the Object field.

Object (Required) Specifies the object to which the attribute is 
attached. This field is synchronized with the Attribute field, 
so selecting an object here filters the available choices in 
the Attribute field. You can also drag and drop an object from 
the RTL or Technology view into this column. 



How Attributes and Directives are Specified  Introduction

Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 9

For more details on how to use the Attributes panel of the SCOPE spreadsheet, 
see Specifying Attributes Using the SCOPE Editor, on page 96 in the User 
Guide.

When you use the SCOPE spreadsheet to create and modify a constraint file, 
the proper define_attribute or define_global_attribute statement is automatically 
generated for the constraint file. The following shows the syntax for these 
statements as they appear in the constraint file.

define_attribute {object} attributeName {value}

define_global_attribute attributeName {value}

Attribute (Required) Specifies the attribute name. You can choose 
from a pull-down list that includes all available attributes 
for the specified technology. This field is synchronized with 
the Object field. If you select an object first, the attribute list 
is filtered. If you select an attribute first, the synthesis tool 
filters the available choices in the Object field. You must 
select an attribute before entering a value.

Value (Required) Specifies the attribute value. You must specify 
the attribute first. Clicking in the column displays the 
default value; a drop-down arrow lists available values 
where appropriate. 

Val Type Specifies the kind of value for the attribute. For example, 
string or boolean. 

Description Contains a one-line description of the attribute.

Comment Contains any comments you want to add about the 
attributes. 

object The design object, such as module, signal, input, instance, port, 
or wire name. The object naming syntax varies, depending on 
whether your source code is in Verilog or VHDL format. See 
syn_black_box, on page 63 for details about the syntax 
conventions. If you have mixed input files, use the object naming 
syntax appropriate for the format in which the object is defined. 
Global attributes, since they apply to an entire design, do not use 
an object argument.

attributeName The name of the synthesis attribute. This must be an attribute, 
not a directive, as directives are not supported in constraint files.

value String, integer, or boolean value.



LO

 Introduction How Attributes and Directives are Specified

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Attribute Reference
10 Synopsys Confidential Information October 2020

See Summary of Global Attributes, on page 17 for more details on specifying 
global attributes in the synthesis environment.

// Example -- Verilog compiled into default library

//Entry in .cdc file:
// define_directive {v:sub} {syn_black_box} {1}
module top (
input clock,
input reset,
input din,
input din1,
output dout );
sub UUT (clock, reset, din, din1, dout);
endmodule
module sub (
input clock,
input reset,
input din,
input din1,
output reg dout );
always@(posedge clock)
begin
if (reset == 1’b1)
dout = 0;
else
dout = din | din1;
end
endmodule 



How Attributes and Directives are Specified  Introduction

Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 11

// Example -- Verilog compiled into defined library

//Entry in .cdc file (compiles submodule into MyLib):
// define_directive {v:MyLib.sub} {syn_black_box} {1}
//top.v
module top (
input a,
input b,
output c,
output d );
sub inst1 (.a(a), .b(b), .c(c), .d(d) );
endmodule
//sub.v
module sub (
input a,
input b,
output c,
output d );
assign c = a & b;
assign d = top.a;
endmodule 

-- Example -- VHDL compiled into default library

--Entry in .cdc file:
-- define_directive {v:sub} {syn_black_box} {1}
--top.vhd
library ieee;
use ieee.std_logic_1164.all;



LO

 Introduction How Attributes and Directives are Specified

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Attribute Reference
12 Synopsys Confidential Information October 2020

entity top is
port (clk : in std_logic;
din : in std_logic_vector(3 downto 0);
din1 : in std_logic_vector(3 downto 0);
dout : out std_logic_vector(3 downto 0) );
end top;
architecture RTL of top is
component sub
port (clk : in std_logic;
din : in std_logic_vector(3 downto 0);
din1 : in std_logic_vector(3 downto 0);
dout : out std_logic_vector(3 downto 0) );
end component;
begin
UUT : sub port map (
clk => clk,
din => din,
din1 => din1,
dout => dout );
end RTL;
--sub.vhd
library ieee;
use ieee.std_logic_1164.all;
entity sub is
port (clk : in std_logic;
din : in std_logic_vector(3 downto 0);
din1 : in std_logic_vector(3 downto 0);



How Attributes and Directives are Specified  Introduction

Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 13

dout : out std_logic_vector(3 downto 0) );
end sub;
architecture RTL of sub is
begin
process (clk)
begin
if rising_edge(clk) then
dout <= din or din1;
end if;
end process;
end RTL;
 

-- Example -- VHDL compiled into defined library

--Entry in .cdc file (compiles submodule into MyLib):
-- define_directive {v:MyLib.sub(RTL_1)} {syn_black_box} {1}
--Top.vhd
library ieee;
use ieee.std_logic_1164.all;
library MyLib;
use MyLib.all;
entity top is
port (clk : in std_logic;
din : in std_logic;
dout : out std_logic );
end top;
architecture RTL of top is



LO

 Introduction How Attributes and Directives are Specified

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Attribute Reference
14 Synopsys Confidential Information October 2020

signal inter : std_logic;
component sub
port (clk : in std_logic;
din : in std_logic;
dout : out std_logic );
end component;
for UUT1 : sub
use entity work.sub(RTL_1)
port map ( clk => clk, din => din, dout => dout);
for UUT2 : sub
use entity work.sub(RTL_2)
port map ( clk => clk, din => din, dout => dout);
begin
UUT1 : entity MyLib.sub(RTL_1)
port map (
clk => clk,
din => din,
dout => inter );
UUT2 : sub
port map (
clk => clk,
din => inter,
dout => dout );
end RTL;
--sub.vhd
library ieee;
use ieee.std_logic_1164.all;



How Attributes and Directives are Specified  Introduction

Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 15

entity sub is
port (
clk : in std_logic;
din : in std_logic;
dout : out std_logic );
end sub;
architecture RTL_1 of sub is
begin
process (clk)
begin
if rising_edge(clk) then
dout <= din;
end if;
end process;
end RTL_1;
architecture RTL_2 of sub is
begin
process (clk)
begin
if rising_edge(clk) then
dout <= not din;
end if;
end process;
end RTL_2;
 



LO

 Introduction Summary of Attributes and Directives

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Attribute Reference
16 Synopsys Confidential Information October 2020

Summary of Attributes and Directives
The following sections summarize the synthesis attributes and directives:

• Chapter 2, Attributes and Directives

For detailed descriptions of individual attributes and directives, see the 
individual attributes and directives, which are listed in alphabetical order.



Summary of Global Attributes  Introduction

Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 17

Summary of Global Attributes
Design attributes in the synthesis environment can be defined either globally, 
(values are applied to all objects of the specified type in the design), or locally, 
values are applied only to the specified design object (module, view, port, 
instance, clock, and so on). When an attribute is set both globally and locally 
on a design object, the local specification overrides the global specification for 
the object.

In general, the syntax for specifying a global attribute in a constraint file is:

define_global_attribute attribute_name {value}

The table below contains a list of attributes that can be specified globally in 
the synthesis environment. For complete descriptions of any of the attributes 
listed below, see Chapter 2, Attributes and Directives.

Global Attribute Can Also Be Set On 
Design Objects

syn_allow_retiming x

syn_global_buffers x

syn_hier x

syn_multstyle x

syn_netlist_hierarchy 

syn_noarrayports 

syn_noclockbuf x

syn_ramstyle x

syn_replicate x

syn_romstyle x

syn_srlstyle x



LO

 Introduction Summary of Global Attributes

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Attribute Reference
18 Synopsys Confidential Information October 2020



Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 19

C H A P T E R  2

Attributes and Directives 

All attributes and directives supported for synthesis are listed in alphabetical 
order. Each command includes syntax, option and argument descriptions, 
and examples. You can apply attributes and directives globally or locally on a 
design object. 

For details, see the attributes listed in Alphabetical order in the following 
sections.



LO

 Attributes and Directives

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Attribute Reference
20 Synopsys Confidential Information October 2020



Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 21

alsloc
Attribute

Preserves relative placements of macros and IP blocks in the Microchip 
Designer place-and-route tool.

Description
Preserves relative placements of macros and IP blocks in the Microchip 
Designer place-and-route tool. The alsloc attribute has no effect on synthesis, 
but is passed directly to Microchip Designer.

The alsloc constrain is passed directly to the post synthesis EDN netlist as 
the following:

(property alsloc (string "R15C6"))

(property alsloc (string "R35C6"))

alsloc Syntax Specification

alsloc Value

Vendor Technology

Microchip All

Name Global Object Synthesis Tool

Alsloc No Macro or 
IP block

Synplify Pro

Value Default Description

location None Location of macro or IP block.



LO

 

© 2020 Synopsys, Inc.
22 October 2020

This table summarizes the syntax in different files:

SCOPE Example
Following is an example of setting alsloc on a macro (u1).

define_attribute {u1} alsloc {R15C6}

Verilog Example
module test(in1, in2, in3, clk, q);
input in1, in2, in3, clk;
output q;
wire out1 /* synthesis syn_keep = 1 */, out2;
and2a u1 (.A (in1), .B (in2), .Y (out1))

/* synthesis alsloc="R15C6" */;
assign out2 = out1 & in3;
df1 u2 (.D (out2), .CLK (clk), .Q (q))

/* synthesis alsloc="R35C6" */;
endmodule
module and2a(A, B, Y); // synthesis syn_black_box
input A, B;
output Y;
endmodule
module df1(D, CLK, Q); // synthesis syn_black_box
input D, CLK;
output Q;
endmodule

VHDL Example
library IEEE;
use IEEE.std_logic_1164.all;

entity test is 
port (in1, in2, in3, clk : in std_logic;

FDC define_attribute {object} alsloc {location} SCOPE Example

Verilog object /* synthesis alsloc = "location" */; Verilog Example

VHDL attribute alsloc of object : label is "location"; VHDL Example



 

Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 23

q : out std_logic);
end test;

architecture rtl of test is
signal out1, out2 : std_logic;
component AND2A
port (A, B : in std_logic;

Y : out std_logic);
end component;
component df1
port (D, CLK : in std_logic;

Q : out std_logic);
end component;
attribute syn_keep : boolean;
attribute syn_keep of out1 : signal is true;
attribute alsloc: string;
attribute alsloc of U1: label is "R15C6";
attribute alsloc of U2: label is "R35C6";
attribute syn_black_box : boolean;
attribute syn_black_box of AND2A, df1 : component is true;
begin
U1: AND2A port map (A => in1, B => in2, Y => out1);
out2 <= in3 and out1;
U2: df1 port map (D => out2, CLK => clk, Q => q);
end rtl;



LO

 

© 2020 Synopsys, Inc.
24 October 2020



Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 25

alspin 
Attribute

Assigns the scalar or bus ports of the design to Microchip I/O pin numbers.

Description
The alspin attribute assigns the scalar or bus ports of the design to Microchip 
I/O pin numbers (pad locations). Refer to the Microchip databook for valid 
pin numbers. If you use alspin for bus ports or for slices of bus ports, you 
must also use the syn_noarrayports attribute. See Specifying Locations for 
Microchip Bus Ports, on page 422 of the Reference for information on 
assigning pin numbers to buses and slices. 

The alspin pin location is passed as a property string to the output EDN 
netlist as the following:

(instance (rename dataoutZ0 "dataout") (viewRef netlist (cellRef df1 (libraryRef &54SXA)))
(property alspin (string "48"))

alspin Syntax Specification

alspin Value

Vendor Technology

Microchip All 

Name Global Object Synthesis Tool

 alspin No Synplify Pro

Value Default Description

pin_number None The Microchip I/O pin



LO

 

© 2020 Synopsys, Inc.
26 October 2020

This table summarizes the syntax in different files:

Constraint File Example
In the attribute syntax, port_name is the name of the port and pin_number is the 
Microchip I/O pin.

define_attribute {DATAOUT} alspin {48}

Verilog Example
Where object is the port and pin_number is the Microchip I/O pin. For example:

module comparator (datain, clk, dataout);
output reg dataout /* synthesis alspin="48" */;
input [7:0] datain;
input clk;

always@(posedge clk)
begin
dataout <=datain;

end
endmodule

VHDL Example
See VHDL Attribute and Directive Syntax, on page 403 for different ways to 
specify VHDL attributes and directives. 

Where object is the port, objectType is signal, and pin_number is the Microchip 
I/O pin. For example:

FDC define_attribute {port_name} alspin {pin_number} Constraint File 
Example

Verilog object /* synthesis alspin = "pin_number" */; Verilog Example

VHDL attribute alspin of object : objectType is 
"pin_number";

VHDL Example



 

Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 27

library ieee;
use ieee.std_logic_1164.all;
entity comparator is

port (datain : in std_logic_vector(7 downto 0);
clk : in std_logic;
dataout : out std_logic_vector(7 downto 0));

attribute alspin : string;
attribute alspin of dataout : signal is "48";
end;

architecture rtl of comparator is
begin

process(clk)
begin

if clk'event and clk = '1' then
dataout <=datain;

end if;
end process;

end rtl;



LO

 

© 2020 Synopsys, Inc.
28 October 2020



Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 29

alspreserve 
Attribute

Specifies a net that you do not want removed by the Microchip Designer 
place-and-route tool. 

Description
The alspreserve attribute specifies a net that you do not want removed 
(optimized away) by the Microchip Designer place-and-route tool. The alspre-
serve attribute has no effect on synthesis, but is passed directly to the Micro-
chip Designer place-and-route software. However, to prevent the net from 
being removed during the synthesis process, you must also use the syn_keep 
directive. 

The alspreserve attribute is passed to the output EDN netlist file as the 
following:

(net (rename and_outZ0Z3 "and_out3") (joined
(portRef b (instanceRef outZ0Z1))
(portRef y (instanceRef and_out3_1))
)
(property alspreserve (integer 1)))

alspreserve Syntax Specification

Vendor Technology

Microchip All

Name Global Object

 alspreserve No Net



LO

alspreserve

© 2020 Synopsys, Inc.
30 October 2020

alspreserve Value

This table summarizes the syntax in different files:

Constraint File Example
define_attribute {n:and_out3} alspreserve {1};
define_attribute {n:or_out1} alspreserve {1};

Verilog Example
module complex (in1, out1);
input [6:1] in1;
output out1;
wire out1;
wire or_out1 /* synthesis syn_keep=1 alspreserve=1 */;
wire and_out1;
wire and_out2;
wire and_out3 /* synthesis syn_keep=1 alspreserve=1 */;
assign and_out1 = in1[1] & in1[2];
assign and_out2 = in1[3] & in1[4];
assign and_out3 = in1[5] & in1[6];
assign or_out1 = and_out1 | and_out2;
assign out1 = or_out1 & and_out3;
endmodule

VHDL Example
See VHDL Attribute and Directive Syntax, on page 403 for different ways to 
specify VHDL attributes and directives. 

Value Default Description

object None Name of the net to preserve

FDC define_attribute {n:net_name} alspreserve {1} Constraint File 
Example

Verilog object /* synthesis alspreserve = 1 */; Verilog Example

VHDL attribute alspreserve of object : signal is true; VHDL Example



alspreserve

Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 31

library ieee;
use ieee.std_logic_1164.all;
library synplify;
use synplify.attributes.all;
entity complex is
port (input : in std_logic_vector (6 downto 1);

output : out std_logic);
end complex;
architecture RTL of complex is
signal and_out1 : std_logic;
signal and_out2 : std_logic;
signal and_out3 : std_logic;
signal or_out1 : std_logic;
attribute syn_keep of and_out3 : signal is true;
attribute syn_keep of or_out1 : signal is true;
attribute alspreserve of and_out3 : signal is true;
attribute alspreserve of or_out1 : signal is true;
begin

and_out1 <= input(1) and input(2);
and_out2 <= input(3) and input(4);
and_out3 <= input(5) and input(6);
or_out1 <= and_out1 or and_out2;
output <= or_out1 and and_out3;

end;



LO

alspreserve

© 2020 Synopsys, Inc.
32 October 2020



Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 33

black_box_pad_pin 
Directive

Specifies that the pins on a black box are I/O pads visible to the outside 
environment.

black_box_pad_pin Values

Description
Used with the syn_black_box directive and specifies that pins on black boxes 
are I/O pads visible to the outside environment. To specify more than one 
port as an I/O pad, list the ports inside double-quotes ("), separated by 
commas, and without enclosed spaces. 

To instantiate an I/O from your programmable logic vendor, you usually do 
not need to define a black box or this directive. The synthesis tool provides 
predefined black boxes for vendor I/Os. For more information, refer to your 
vendor section under FPGA and CPLD Support.

The black_box_pad_pin directive is one of several directives that you can use 
with the syn_black_box directive to define timing for a black box. See 
syn_black_box, on page 63 for a list of the associated directives.

black_box_pad_pin Values Syntax
The following support applies for the black_box_pad_pin attribute.

Value Description

portName Specifies ports on the black box that are I/O pads.

Global Support Object

No Verilog module or VHDL architecture declared for a black box



LO

 

© 2020 Synopsys, Inc.
34 October 2020

This table summarizes the syntax in different files:

Where 

• object is a module or architecture declaration of a black box.

• portList is a spaceless, comma-separated list of the names of the ports on 
black boxes that are I/O pads. 

• objectType is a string in VHDL code.

Verilog Example
This example shows how to specify this attribute in the following Verilog code 
segment:

module BBDLHS(D,E,GIN,GOUT,PAD,Q)
/* synthesis syn_black_box black_box_pad_pin="GIN[2:0],Q” */;

VHDL Example
This example shows how to specify this attribute in the following VHDL code:

library AI;
use ieee.std_logic_1164.all;

Entity top is
generic (width : integer := 4);

port (in1,in2 : in std_logic_vector(width downto 0);
clk : in std_logic;
q : out std_logic_vector (width downto 0)
);

end top;

architecture top1_arch of top is
component test is

generic (width1 : integer := 2);
port (in1,in2 : in std_logic_vector(width1 downto 0);
clk : in std_logic;
q : out std_logic_vector (width1 downto 0)

Verilog object /* synthesis black_box_pad_pin = portList */; Verilog Example

VHDL attribute black_box_pad_pin of object: objectType is 
portList;

VHDL Example



 

Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 35

);
end component;

attribute syn_black_box : boolean;
attribute black_box_pad_pin : string;
attribute syn_black_box of test : component is true;
attribute black_box_pad_pin of test : component is 

"in1(4:0), in2[4:0], q(4:0)";

begin
test123 : test generic map (width) port map (in1,in2,clk,q);

end top1_arch;

Effect of Using black_box_pad_pin
The following example shows the effect of applying the attribute.

Before using black_box_pad_pin



LO

 

© 2020 Synopsys, Inc.
36 October 2020

After using black_box_pad_pin



 

Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 37



LO

 

© 2020 Synopsys, Inc.
38 October 2020



Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 39

black_box_tri_pins 
Directive

Specifies that an output port on a black box component is a tristate.

black_box_tri_pins Values

Description
Used with the syn_black_box directive and specifies that an output port on a 
black box component is a tristate. This directive eliminates multiple driver 
errors when the output of a black box has more than one driver. To specify 
more than one tristate port, list the ports inside double-quotes ("), separated 
by commas (,), and without enclosed spaces. 

The black_box_tri_pins directive is one of several directives that you can use 
with the syn_black_box directive to define timing for a black box. See 
syn_black_box, on page 63 for a list of the associated directives.

black_box_tri_pins Values Syntax
The following support applies for the black_box_tri_pins attribute.

Value Description

portName Specifies an output port on the black box that is a 
tristate.

Global Support Object

No Verilog module or VHDL architecture declared for a black box



LO

 

© 2020 Synopsys, Inc.
40 October 2020

This table summarizes the syntax in different files:

Where 

• object is a module or architecture declaration of a black box.

• portList is a spaceless, comma-separated list of the tristate output port 
names. 

• objectType is a string in VHDL code.

Verilog Example
Here is an example with a single port name:

module BBDLHS(D,E,GIN,GOUT,PAD,Q)
/* synthesis syn_black_box black_box_tri_pins="PAD" */;

Here is an example with a list of multiple pins:

module bb1(D,E,tri1,tri2,tri3,Q)
/* synthesis syn_black_box black_box_tri_pins="tri1,tri2,tri3" */;

For a bus, you specify the port name followed by all the bits on the bus: 

module bb1(D,bus1,E,GIN,GOUT,Q)
/* synthesis syn_black_box black_box_tri_pins="bus1[7:0]" */;

VHDL Example
library ieee;
use ieee.std_logic_1164.all;
package my_components is
component BBDLHS

port (D: in std_logic;
E: in std_logic;
GIN : in std_logic;
GOUT : in std_logic;
PAD : inout std_logic;
Q: out std_logic);

Verilog object /* synthesis black_box_tri_pins = portList */; Verilog Example

VHDL attribute black_box_tri_pins of object: objectType is 
portList;

VHDL Example



 

Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 41

end component;

attribute syn_black_box : boolean;
attribute syn_black_box of BBDLHS : component is true;
attribute black_box_tri_pins : string;
attribute black_box_tri_pins of BBDLHS : component is "PAD";
end package my_components;

Multiple pins on the same component can be specified as a list:

attribute black_box_tri_pins of bb1 : component is
"tri,tri2,tri3";

To apply this directive to a port that is a bus, specify all the bits on the bus:

attribute black_box_tri_pins of bb1 : component is "bus1[7:0]";



LO

 

© 2020 Synopsys, Inc.
42 October 2020



Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 43

full_case 
Directive

For Verilog designs only. Indicates that all possible values have been given, 
and that no additional hardware is needed to preserve signal values.

full_case Values

Description
For Verilog designs only. When used with a case, casex, or casez statement, 
this directive indicates that all possible values have been given, and that no 
additional hardware is needed to preserve signal values. 

full_case Values Syntax

This table summarizes the syntax in the following file type:

Verilog Examples
The following casez statement creates a 4-input multiplexer with a 
pre-decoded select bus (a decoded select bus has exactly one bit enabled at a 
time):

Value Description

1
(Default)

All possible values have been given and no additional hardware is 
needed to preserve signal values.

Verilog object /* synthesis full_case */; Verilog Examples



LO

 

© 2020 Synopsys, Inc.
44 October 2020

This code does not specify what to do if the select bus has all zeros. If the select 
bus is being driven from outside the current module, the current module has 
no information about the legal values of select, and the synthesis tool must 
preserve the value of the output out when all bits of select are zero. Preserving 
the value of out requires the tool to add extraneous level-sensitive latches if out 
is not assigned elsewhere through every path of the always block. A warning 
message like the following is issued:

"Latch generated from always block for signal out, probably missing 
assignment in branch of if or case." 

If you add the full_case directive, it instructs the synthesis tool not to preserve 
the value of out when all bits of select are zero.

module muxnew3 (out, a, b, c, d, select);
output out;
input a, b, c, d;
input [3:0] select;
reg out;

always @(select or a or b or c or d)



 

Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 45

begin
casez (select) /* synthesis full_case */

4'b???1: out = a;
4'b??1?: out = b;
4'b?1??: out = c;
4'b1???: out = d;

endcase
end
endmodule

If the select bus is decoded in the same module as the case statement, the 
synthesis tool automatically determines that all possible values are specified, 
so the full_case directive is unnecessary.

Assigned Default and full_case
As an alternative to full_case, you can assign a default in the case statement. 
The default is assigned a value of 'bx (a 'bx in an assignment is treated as a 
“don't care”). The software assigns the default at each pass through the casez 
statement in which the select bus does not match one of the explicitly given 
values; this ensures that the value of out is not preserved and no extraneous 
level-sensitive latches are generated.

The following code shows a default assignment in Verilog:

module muxnew2 (out, a, b, c, d, select);
output out;
input a, b, c, d;
input [3:0] select;
reg out;
always @(select or a or b or c or d)
begin

casez (select)
4'b???1: out = a;
4'b??1?: out = b;
4'b?1??: out = c;
4'b1???: out = d;
default: out = 'bx;

endcase
end
endmodule



LO

 

© 2020 Synopsys, Inc.
46 October 2020

Both techniques help keep the code concise because you do not need to 
declare all the conditions of the statement. The following table compares 
them:

Default Assignment full_case

Stays within Verilog to get the 
desired hardware

Must use a synthesis directive to get the 
desired hardware

Helps simulation debugging because 
you can easily find that the invalid 
select is assigned a 'bx

Can cause mismatches between pre- and 
post-synthesis simulation because the 
simulator does not use full_case



Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 47

loop_limit 
Directive
Verilog

Specifies a loop iteration limit for a for loop in a Verilog design when the loop 
index is a variable, not a constant.

loop_limit Values

Description
Verilog designs only. 

Specifies a loop iteration limit for a for loop on a per-loop basis when the loop 
index is a variable, not a constant. The compiler uses the default iteration 
limit of 1999 when the exit or terminating condition does not compute a 
constant value, or to avoid infinite loops. The default limit ensures the effec-
tive use of runtime and memory resources. 

If your design requires a variable loop index or if the number of loops is 
greater than the default limit, use the loop_limit directive to specify a new limit 
for the compiler. If you do not, you get a compiler error. You must hard code 
the limit at the beginning of the loop statement. The limit cannot be an 
expression. The higher the value you set, the longer the runtime. 

Alternatively, you can use the set_option looplimit command (Loop Limit GUI 
option) to set a global loop limit that overrides the default of 2000 loops in the 
RTL. To use the Loop Limit option on the Verilog tab of the Implementation 
Options panel, see Verilog Panel, on page 363 in the Command Reference.

Value Description

1 - 1999 Overrides the default loop limit of 2000 in the RTL.



LO

 

© 2020 Synopsys, Inc.
48 October 2020

Note: VHDL applications use the syn_looplimit directive (see 
syn_looplimit, on page 121).

loop_limit Values Syntax
The following support applies for the loop_limit directive.

This table summarizes the syntax in the following file:

Global Support Object

Yes Specifies the beginning of the loop statement.

Verilog /* synthesis loop_limit integer */ loopStatement Verilog Example



 

Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 49

Verilog Example
The following is an example where the loop limit is set to 2000:

module test(din,dout,clk);
input[1999 : 0] din;
input clk;
output[1999 : 0] dout;
reg[1999 : 0] dout;
integer i;
always @(posedge clk)
begin

/* synthesis loop_limit 2000 */
for(i=0;i<=1999;i=i+1)
begin

dout[i] <= din[i];
end

end
endmodule

Effect of Using loop_limit 

Before using loop_limit

If the code has more than 2000 loops and the attribute is not set, the tool will 
produce an error. 

@E:CS162 : loop_limit.v(10) | Loop iteration limit 2000 exceeded - 
add '// synthesis loop_limit 4000' before the loop construct

After using loop_limit

Code with more than 2000 loops will not produce the loop_limit error. 



LO

 

© 2020 Synopsys, Inc.
50 October 2020



Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 51

parallel_case 
Directive

For Verilog designs only. Forces a parallel-multiplexed structure rather than 
a priority-encoded structure. 

Description
case statements are defined to work in priority order, executing (only) the first 
statement with a tag that matches the select value. The parallel_case directive 
forces a parallel-multiplexed structure rather than a priority-encoded struc-
ture.

If the select bus is driven from outside the current module, the current 
module has no information about the legal values of select, and the software 
must create a chain of disabling logic so that a match on a statement tag 
disables all following statements. 

However, if you know the legal values of select, you can eliminate extra 
priority-encoding logic with the parallel_case directive. In the following 
example, the only legal values of select are 4'b1000, 4'b0100, 4'b0010, and 
4'b0001, and only one of the tags can be matched at a time. Specify the paral-
lel_case directive so that tag-matching logic can be parallel and independent, 
instead of chained.

parallel_case Syntax
The following support applies for the parallel_case directive.

This table summarizes the syntax in the following file type:

Global Support Object

No A case, casex, or casez statement declaration



LO

 

© 2020 Synopsys, Inc.
52 October 2020

Verilog Example
You specify the directive as a comment immediately following the select value 
of the case statement.

module muxnew4 (out, a, b, c, d, select);
output out;
input a, b, c, d;
input [3:0] select;
reg out;

always @(select or a or b or c or d)
begin

casez (select) /* synthesis parallel_case */
4'b???1: out = a;
4'b??1?: out = b;
4'b?1??: out = c;
4'b1???: out = d;
default: out = 'bx;

endcase
end
endmodule

If the select bus is decoded within the same module as the case statement, the 
parallelism of the tag matching is determined automatically, and the parallel_-
case directive is unnecessary.

Verilog object /* synthesis parallel_case */ Verilog Example



 

Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 53

Effect of Using parallel_case



LO

 

© 2020 Synopsys, Inc.
54 October 2020



Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 55

pragma translate_off/pragma translate_on 
Directive

Allows you to synthesize designs originally written for use with other 
synthesis tools without needing to modify source code. All source code that is 
between these two directives is ignored during synthesis. 

Description
Another use of these directives is to prevent the synthesis of stimulus source 
code that only has meaning for logic simulation. You can use pragma trans-
late_off/translate_on to skip over simulation-specific lines of code that are not 
synthesizable.

When you use pragma translate_off in a module, synthesis of all source code 
that follows is halted until pragma translate_on is encountered. Every pragma 
translate_off must have a corresponding pragma translate_on. These directives 
cannot be nested, therefore, the pragma translate_off directive can only be 
followed by a pragma translate_on directive. 

Note: See also, translate_off/translate_on, on page 283. These direc-
tives are implemented the same in the source code.

This table summarizes the syntax in the following file type:

Verilog /* pragma translate_off */
/* pragma translate_on */
/*synthesis translate_off */
/*synthesis translate_on */

Verilog Example

VHDL --pragma translate_off 
--pragma translate_on
--synthesis translate_off 
--synthesis translate_on 

VHDL Example



LO

pragma translate_off/pragma translate_on

© 2020 Synopsys, Inc.
56 October 2020

Verilog Example
module test(input a, b, output dout, Nout);
assign dout = a + b;

//Anything between pragma translate_off/translate_on is ignored by
the synthesis tool hence only 

//the adder circuit above is implemented, not the multiplier
circuit below:

/* synthesis translate_off */ assign Nout = a * b;
/* synthesis translate_on */
endmodule

VHDL Example
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity test is
port (

a :   in std_logic_vector(1 downto 0);
b :   in std_logic_vector(1 downto 0);
dout :   out std_logic_vector(1 downto 0);
Nout :   out std_logic_vector(3 downto 0)
);

end;

architecture rtl of test is 
begin

dout <= a + b;

--Anything between pragma translate_off/translate_on is ignored by 
the synthesis tool hence only 
--the adder circuit above is implemented not the multiplier circuit 
below:

--pragma translate_off
Nout <= a * b;

--pragma translate_on
end;



pragma translate_off/pragma translate_on

Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 57

Effect of Using pragma translate_off/pragma translate_on
Before applying the attribute:

After applying the attribute:



LO

pragma translate_off/pragma translate_on

© 2020 Synopsys, Inc.
58 October 2020



Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 59

syn_allow_retiming 
Attribute

Determines if registers can be moved across combinational logic to improve 
performance.

syn_allow_retiming values

Description
The syn_allow_retiming attribute determines if registers can be moved across 
combinational logic to improve performance. 

The attribute can be applied either globally or to specific registers. Typically, 
you enable the global Retiming option in the UI (or the set_option -retiming 1 
switch in Tcl) and use the syn_allow_retiming attribute to disable retiming for 
specific objects that you do not want moved.

syn_allow_retiming Syntax

You can specify the attribute in the following files: 

Vendor Technology Synthesis Tool

Microchip  PolarFire, RTG4 Synplify Pro

1 | true Allows registers to be moved during retiming.

0 | false Does not allow retimed registers to be moved. 

Global Object

Yes Register



LO

 

© 2020 Synopsys, Inc.
60 October 2020

FDC Example
define_attribute {register} syn_allow_retiming {1|0}

define_global_attribute syn_allow_retiming {1|0}

Verilog Example
object /* synthesis syn_allow_retiming = 0 | 1 */;

Here is an example of applying it to a register:

module parity_check (clk,data,count_one); 
input clk; 
input [20:0]data ; 
output reg [3:0]count_one /* synthesis syn_allow_retiming=1*/; 
integer i; 
reg parity= 1'b1; 
always @(posedge clk) 
begin 

for (i=0; i<21; i=i+1) 
if (data[i] == parity) 

count_one<=count_one+1; 

end 
endmodule

FDC define_attribute {register} syn_allow_retiming {1|0}
define_global_attribute syn_allow_retiming {1|0}

FDC 
Example

Verilog object /* synthesis syn_allow_retiming = 0 | 1 */; Verilog 
Example

VHDL attribute syn_allow_retiming of object : objectType is true | false; VHDL 
Example



 

Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 61

VHDL Example
attribute syn_allow_retiming of object : objectType is true | false;

The data type is Boolean. Here is an example of applying it to a register:

LIBRARY IEEE; 
USE     IEEE.STD_LOGIC_1164.ALL; 
USE     IEEE.std_logic_unsigned.ALL; 
ENTITY ones_cnt IS 

PORT (vin  : IN  STD_LOGIC_VECTOR (7 DOWNTO 0);
vout : OUT STD_LOGIC_VECTOR (3 DOWNTO 0); 
clk  : IN STD_LOGIC); 

END ones_cnt; 
ARCHITECTURE lan OF ones_cnt IS 
signal vout_reg : STD_LOGIC_VECTOR (3 DOWNTO 0); 
attribute syn_allow_retiming : boolean; 
attribute syn_allow_retiming of vout_reg : signal is true;   
BEGIN 

gen_vout: PROCESS(clk,vin) 
VARIABLE count : STD_LOGIC_VECTOR(vout'RANGE); 

BEGIN 
if rising_edge(clk) then 
count := (OTHERS => '0'); 
FOR I IN vin'RANGE LOOP 

count := count + vin(i); 
END LOOP; 
vout_reg <= count; 

end if; 
vout <= vout_reg; 
END PROCESS gen_vout; 
END lan;

See VHDL Attribute and Directive Syntax, on page 403 for different ways to 
specify VHDL attributes and directives. 

Effect of using syn_allow_retiming
Before applying syn_allow_retiming.

Verilog output reg [3:0]count_one /* synthesis syn_allow_retiming=0*/;

VHDL attribute syn_allow_retiming of vout_reg : signal is false;



LO

 

© 2020 Synopsys, Inc.
62 October 2020

The critical path and the worst slack for this scenario are given below along 
with the original count_one [3] register (before being retimed) as found in the 
design.

After applying syn_allow_retiming.

The critical path and the worst slack for this scenario are shown along with 
the four '*_ret' retimed registers.

Verilog output reg [3:0]count_one /* synthesis syn_allow_retiming=1*/; 

VHDL attribute syn_allow_retiming of vout_reg : signal is true;



Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 63

syn_black_box
Directive

Defines a module or component as a black box.

syn_black_box Value 

Description
Specifies that a module or component is a black box for synthesis. A black 
box module has only its interface defined for synthesis; its contents are not 
accessible and cannot be optimized during synthesis. A module can be a 
black box whether or not it is empty. 

Typically, you set syn_black_box on objects like the ones listed below. You do 
not need to define a black box for such an object if the synthesis tool includes 
a predefined black box for it. 

• Vendor primitives and macros (including I/Os). 

• User-designed macros whose functionality is defined in a schematic 
editor, IP, or another input source where the place-and-route tool 
merges design netlists from different sources.

In certain cases, the tool does not honor a syn_black_box directive:

• In mixed language designs where a black box is defined in one language 
at the top level but where there is an existing description for it in 
another language, the tool can replace the declared black box with the 
description from the other language.

Value Default Description

moduleName N/A Defines an object as a black box.



LO

 

© 2020 Synopsys, Inc.
64 October 2020

• If your project includes black box descriptions in srs or edf formats, the 
tool uses these black box descriptions even if you have specified 
syn_black_box at the top level.

To override this and ensure that the attribute is honored, use these methods:

• Set a syn_black_box directive on the module or entity in the HDL file that 
contains the description, not at the top level. The contents will be 
black-boxed. 

•  in the User GuideIf you want to define a black box when you have an 
srs or edf description for it, remove the description from the project. 

Once you define a black box with syn_black_box, you use other source code 
directives to define timing for the black box. You must add the directives to 
the source code because the timing models are specific to individual 
instances. There are no corresponding Tcl directives you can add to a 
constraint file.

Black-box Source Code Directives

Use the following directives with syn_black_box to characterize black-box 
timing:

If the black-box timing constraints are not defined, the tool times paths 
to/from the black box with the system clock.

Black Box Pin Definitions

You define the pins on a black box with these directives in the source code:

syn_isclock Specifies a clock port on a black box. 

syn_tpd<n> Sets timing propagation for combinational delay through the 
black box. 

syn_tsu<n> Defines timing setup delay required for input pins relative to 
the clock. 

syn_tco<n> Defines the timing clock to output delay through the black 
box. 



 

Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 65

For more information on black boxes, see Instantiating Black Boxes in 
Verilog, on page 120, and Instantiating Black Boxes in VHDL, on page 401.

syn_black_box Syntax Specification

Verilog Example
module top(clk, in1, in2, out1, out2);
input clk;
input [1:0]in1; 
input [1:0]in2;
output [1:0]out1;
output [1:0]out2;
add           U1 (clk, in1, in2, out1);
black_box_add U2 (in1, in2, out2); 
endmodule
module add (clk, in1, in2, out1);
input clk;
input  [1:0]in1;
input  [1:0]in2;
output [1:0]out1;
reg [1:0]out1;
always@(posedge clk)

begin
out1 <= in1 + in2;

end
endmodule

black_box_pad_pin Indicates that a black box is an I/O pad for the rest of the 
design. 

black_box_tri_pins Indicates tristates on black boxes. 

Verilog object /* synthesis syn_black_box */; Verilog 
Example

VHDL attribute syn_black_box of object : objectType is true; VHDL 
Example



LO

 

© 2020 Synopsys, Inc.
66 October 2020

module black_box_add(A, B, C)/* synthesis syn_black_box */;
input [1:0]A;
input [1:0]B;
output [1:0]C;
assign C = A + B;
endmodule



 

Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 67

VHDL Example
library ieee; 
use ieee.std_logic_1164.all; 
use ieee.std_logic_unsigned.all; 
entity add is 

port(
in1 : in std_logic_vector(1 downto 0); 
in2 : in std_logic_vector(1 downto 0); 
clk : in std_logic; 
out1 : out std_logic_vector(1 downto 0)); 

end; 
architecture rtl of add is 
begin 
process(clk) 
begin 

if(clk'event and clk='1') then 
out1 <= (in1 + in2); 

end if; 
end process; 
end; 
library ieee; 
use ieee.std_logic_1164.all; 
use ieee.std_logic_unsigned.all; 
entity black_box_add is 

port(
A : in std_logic_vector(1 downto 0); 
B : in std_logic_vector(1 downto 0); 
C : out std_logic_vector(1 downto 0)); 

end;     
architecture rtl of black_box_add is
attribute syn_black_box : boolean; 
attribute syn_black_box of rtl: architecture is true; 
begin 
C <= A + B; 
end; 
library ieee; 
use ieee.std_logic_1164.all; 
use ieee.std_logic_unsigned.all; 



LO

 

© 2020 Synopsys, Inc.
68 October 2020

entity top is 
port(

in1 : in std_logic_vector(1 downto 0); 
in2 : in std_logic_vector(1 downto 0); 
clk : in std_logic; 
out1 : out std_logic_vector(1 downto 0); 
out2 : out std_logic_vector(1 downto 0)); 

end; 
architecture rtl of top is
component add is 

port( 
in1 : in std_logic_vector(1 downto 0); 
in2 : in std_logic_vector(1 downto 0); 
clk : in std_logic; 
out1 : out std_logic_vector(1 downto 0)); 

end component; 
component black_box_add 

port(
A : in std_logic_vector(1 downto 0); 
B : in std_logic_vector(1 downto 0); 
C : out std_logic_vector(1 downto 0)); 

end component;     
begin 
U1: add port map(in1, in2, clk, out1); 
U2: black_box_add port map(in1, in2, out2);
end;

Effect of Using syn_black_box
When the syn_black_box attribute is not set on the black_box_add module, its 
content are accessible, as shown in the example below: 

module black_box_add(input [1:0]A, [1:0]B, output [1:0]C);



 

Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 69

After applying syn_black_box, the contents of the black box are no longer 
visible: 

module black_box_add(input [1:0]A, [1:0]B, output [1:0]C)/* 
synthesis syn_black_box */;



LO

 

© 2020 Synopsys, Inc.
70 October 2020



Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 71

syn_direct_enable 
Attribute, Directive

Controls the assignment of a clock enable net to the dedicated enable pin of a 
storage element (flip-flop).

syn_direct_enable values

Description
The syn_direct_enable attribute controls the assignment of a clock enable net to 
the dedicated enable pin of a storage element (flip-flop). Using this attribute, 
you can direct the mapper to use a particular net as the only clock enable 
when the design has multiple clock-enable candidates. 

As a directive, you use syn_direct_enable to infer flip-flops with clock enables. 
To do so, enter syn_direct_enable as a directive in source code, not the SCOPE 
spreadsheet.

Technology Default Value Global Object

Microchip: PolarFire, RTG4   and 
newer families

None No Net

1 | true Enables nets to be assigned to the clock enable pin. 

0 | false Does not assign nets to the clock enable pin. 



LO

 

© 2020 Synopsys, Inc.
72 October 2020

syn_direct_enable Syntax

FDC Example

Verilog Example
module direct_enable(q1, d1, clk, e1, e2, e3); 
parameter size=5; 
input [size-1:0] d1; 
input clk; 
input e1,e2; 
input e3 /* synthesis syn_direct_enable = 1 */; 
output reg [size-1:0] q1; 
(posedge clk) 

if (e1&e2&e3) 
q1 = d1; 

endmodule

FDC define_attribute {object} syn_direct_enable {1} FDC Example

Verilog object /* synthesis syn_direct_enable = 1 */; Verilog Example

VHDL attribute syn_direct_enable of object : objectType is 
true;

VHDL Example



 

Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 73

VHDL Example
library ieee; 
use ieee.std_logic_1164.all; 
entity direct_enable is 

port (
d1 : in  std_logic_vector(4 downto 0); 
e1,e2,e3,clk : in  std_logic; 
q1 : out std_logic_vector(4 downto 0)); 

attribute syn_direct_enable: boolean; 
attribute syn_direct_enable of e3: signal is true; 
end; 
architecture d_e of direct_enable is 
begin 

process (clk) begin 
if (clk = '1' and clk'event) then 

if (e1='1' and e2='1' and e3='1') then 
q1<=d1; 

end if; 
end if; 

end process; 
end architecture;

See VHDL Attribute and Directive Syntax, on page 403 for different ways to 
specify VHDL attributes and directives. 



LO

 

© 2020 Synopsys, Inc.
74 October 2020

Effect of Using syn_direct_enable
Before applying syn_direct_enable:

Verilog input e3 /* synthesis syn_direct_enable = 0 */; 
VHDL attribute syn_direct_enable of e3: signal is false;



 

Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 75

After applying syn_direct_enable:

Verilog input e3 /* synthesis syn_direct_enable = 1 */; 
VHDL attribute syn_direct_enable of e3: signal is true;



LO

 

© 2020 Synopsys, Inc.
76 October 2020



Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 77

syn_encoding 
Attribute

Overrides the default FSM Compiler encoding for a state machine and applies 
the specified encoding. 

syn_encoding Values
The default is that the tool automatically picks an encoding style that results 
in the best performance. To ensure that a particular encoding style is used, 
explicitly specify that style, using the values below: 

Vendor Devices

Microchip SmartFusion2, newer devices

Value Description

onehot Only two bits of the state register change (one goes to 0, one goes to 1) 
and only one of the state registers is hot (driven by 1) at a time. For 
example: 
0001, 0010, 0100, 1000
Because onehot is not a simple encoding (more than one bit can be set), 
the value must be decoded to determine the state. This encoding style 
can be slower than a gray style if you have a large output decoder 
following a state machine.

gray More than one of the state registers can be hot. The synthesis tool 
attempts to have only one bit of the state registers change at a time, but 
it can allow more than one bit to change, depending upon certain 
conditions for optimization. For example: 
000, 001, 011, 010, 110
Because gray is not a simple encoding (more than one bit can be set), 
the value must be decoded to determine the state. This encoding style 
can be faster than a onehot style if you have a large output decoder 
following a state machine.



LO

 

© 2020 Synopsys, Inc.
78 October 2020

You can specify multiple values. This snippet uses safe,gray. The encoding 
style for register OUT is set to gray, but if the state machine reaches an invalid 
state the synthesis tool will reset the values to a valid state.

module prep3 (CLK, RST, IN, OUT);
input CLK, RST;
input [7:0] IN;
output [7:0] OUT;
reg [7:0] OUT;
reg [7:0] current_state /* synthesis syn_encoding="safe,gray" */;

sequential More than one bit of the state register can be hot. The synthesis tool 
makes no attempt at limiting the number of bits that can change at a 
time. For example: 
000, 001, 010, 011, 100
This is one of the smallest encoding styles, so it is often used when area 
is a concern. Because more than one bit can be set (1), the value must 
be decoded to determine the state. This encoding style can be faster 
than a onehot style if you have a large output decoder following a state 
machine.

safe safe – This implements the state machine in the default encoding and 
adds reset logic to force the state machine to a known state if it reaches 
an invalid state.
This value can be used in combination with any of the other encoding 
styles described above. You specify safe before the encoding style. The 
safe value is only valid for a state register, in conjunction with an 
encoding style specification.
• For example, if the default encoding is onehot and the state machine 

reaches a state where all the bits are 0, which is an invalid state, the 
safe value ensures that the state machine is reset to a valid state. 

• If recovery from an invalid state is a concern, it may be appropriate to 
use this encoding style, in conjunction with onehot, sequential or gray, 
in order to force the state machine to reset. When you specify safe, the 
state machine can be reset from an unknown state to its reset state.

• If an FSM with asynchronous reset is specified with the value safe and 
you do not want the additional recovery logic (flip-flop on the inactive 
clock edge) inserted for this FSM, then use the syn_shift_resetphase 
attribute to remove it. See syn_shift_resetphase, on page 235 for 
details.

original This respects the encoding you set, but the software still does state 
machine and reachability analysis.

Value Description



 

Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 79

// Other code

Description
This attribute takes effect only when FSM Compiler is enabled. It overrides 
the default FSM Compiler encoding for a state machine. For the specified 
encoding to take effect, the design must contain state machines that have 
been inferred by the FSM Compiler. Setting this attribute when syn_state_ma-
chine is set to 0 will not have any effect. 

The default encoding style automatically assigns encoding based on the 
number of states in the state machine. Use the syn_encoding attribute when 
you want to override these defaults. You can also use syn_encoding when you 
want to disable the FSM Compiler globally but there are a select number of 
state registers in your design that you want extracted. In this case, use this 
attribute with the syn_state_machine directive on for just those specific regis-
ters. 

The encoding specified by this attribute applies to the final mapped netlist. 
For other kinds of enumerated encoding, use syn_enum_encoding. See 
syn_enum_encoding, on page 87 and Comparison of syn_encoding and 
syn_enum_encoding, on page 88 for more information. 

Encoding Style Implementation
The encoding style is implemented during the mapping phase. A message 
appears when the synthesis tool extracts a state machine, for example:

@N: CL201 : "c:\design\..."|Trying to extract state machine for 
register current_state 

The log file reports the encoding styles used for the state machines in your 
design. In the Synplify Pro tool, this information is also available in the FSM 
Viewer. 

See also the following: 

• For information on enabling state machine optimization for individual 
modules, see syn_state_machine, on page 249.

• For VHDL designs, see Comparison of syn_encoding and syn_enum_en-
coding, on page 88 for comparative usage information. 



LO

 

© 2020 Synopsys, Inc.
80 October 2020

Syntax Specification

This table shows how to specify the attribute in different files: 

If you specify the syn_encoding attribute in Verilog or VHDL, all instances of 
that FSM use the same syn_encoding value. To have unique syn_encoding values 
for each FSM instance, use different entities or modules, or specify the syn_en-
coding attribute in a constraint file. 

SCOPE Example

The object must be an instance prefixed with i:, as in i:instance. The instance 
must be a sequential instance with a view name of statemachine. 

Although you cannot set this attribute globally, you can define a SCOPE 
collection and then apply the attribute to the collection. For example:

define_scope_collection sm {find -hier -inst * -filter
@inst_of==statemachine}

define_attribute {$sm} {syn_encoding} {safe}

Verilog Example
The object can be a register definition signals that hold the state values of 
state machines. 

Global Object

No Instance, register

FDC define_attribute {object} syn_encoding {value} SCOPE Example

Verilog Object /* synthesis syn_encoding = "value" */; Verilog Example

VHDL attribute syn_encoding of object: objectType is "value"; VHDL Example



 

Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 81

module fsm (clk, reset, x1, outp); 
input        clk, reset, x1; 
output       outp; 
reg          outp; 
reg    [1:0] state /* synthesis syn_encoding = "onehot" */; 
parameter s1 = 2'b00; parameter s2 = 2'b01; 
parameter s3 = 2'b10; parameter s4 = 2'b11; 
always @(posedge clk or posedge reset) 
begin 

if (reset) 
state <= s1; 

else begin 
case (state) 
s1: if (x1 == 1'b1) 

state <= s2; 
else 

state <= s3; s2: state <= s4; 
s3: state <= s4; 
s4: state <= s1; 
endcase 

end 
end 
always @(state) begin 

case (state) 
s1: outp = 1'b1; 
s2: outp = 1'b1; 
s3: outp = 1'b0; 
s4: outp = 1'b0; 

endcase 
end 

endmodule

VHDL Example
library ieee; 
use ieee.std_logic_1164.all; 
use ieee.numeric_std.all; 
entity fsm is 

port (x1  : in std_logic; 
reset : in std_logic; 
clk : in std_logic; 
outp : out std_logic); 

end fsm; 



LO

 

© 2020 Synopsys, Inc.
82 October 2020

architecture rtl of fsm is 
signal state : std_logic_vector(1 downto 0); 
constant s1 : std_logic_vector := "00"; 
constant s2 : std_logic_vector := "01"; 
constant s3 : std_logic_vector := "10"; 
constant s4 : std_logic_vector := "11"; 
attribute syn_encoding : string; 
attribute syn_encoding of state : signal is "onehot"; 
begin 
process (clk,reset) 

begin 
if (clk'event and clk = '1') then 

if (reset = '1') then 
state <= s1 ; 

else
case state is 

when s1 => 
if x1 = '1' then 

state <= s2; 
else 

state <= s3; 
end if; 
when s2 => 

state <= s4; 
when s3 => 

state <= s4; 
when s4 => 

state <= s1; 
end case; 

end if; 
end if; 

end process;
process (state) 
begin 

case state is 
when s1 => 

outp <= '1'; 
when s2 => 

outp <= '1'; 
when s3 => 

outp <= '0';



 

Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 83

when s4 => 
outp <= '0'; 

end case; 
end process; 
end rtl;

See VHDL Attribute and Directive Syntax, on page 403 for different ways to 
specify VHDL attributes and directives. 

Effect of Using syn_encoding
The following figure shows the default implementation of a state machine, 
with these encoding details reported:

Encoding state machine state [3:0] (netlist: statemachine)
original code -> new code

00 -> 00
01 -> 01
10 -> 10
11 -> 11



LO

 

© 2020 Synopsys, Inc.
84 October 2020

The next figure shows the state machine when the syn_encoding attribute is 
set to onehot, and the accompanying changes in the code: 

Verilog
VHDL

reg [1:0] state /* synthesis syn_encoding = “onehot”*/;
attribute syn_encoding of state : signal is “onehot”;

Encoding state machine state [3:0] (netlist: statemachine)
00 -> 0001
01 -> 0010
10 -> 0100
11 -> 1000



 

Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 85

The next figure shows the state machine when the syn_encoding attribute is 
set to gray:

Verilog
VHDL

reg [1:0] state /* synthesis syn_encoding = “gray”*/;
attribute syn_encoding of state : signal is “gray”;

Encoding state machine state [3:0] (netlist: statemachine)
00 -> 00
00 -> 01
10 -> 11
11 -> 10



LO

 

© 2020 Synopsys, Inc.
86 October 2020



Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 87

syn_enum_encoding 
Directive

For VHDL designs. Defines how enumerated data types are implemented. The 
type of implementation affects the performance and device utilization.

syn_enum_encoding Values

Description
If FSM Compiler is enabled, this directive has no effect on the encoding styles 
of extracted state machines; the tool uses the values specified in the syn_en-
coding attribute instead. 

However, if you have enumerated data types and you turn off the FSM 
Compiler so that no state machines are extracted, the syn_enum_encoding style 
is implemented in the final circuit. See Comparison of syn_encoding and 

Value Description

default Automatically assigns an encoding style that results in the best 
performance.

sequential More than one bit of the state register can change at a time, but 
because more than one bit can be hot, the value must be decoded to 
determine the state. For example: 000, 001, 010, 011, 100.

onehot Only two bits of the state register change (one goes to 0; one goes 
to 1) and only one of the state registers is hot (driven by a 1) at a 
time. For example: 0000, 0001, 0010, 0100, 1000.

gray Only one bit of the state register changes at a time, but because 
more than one bit can be hot, the value must be decoded to 
determine the state. For example: 000, 001, 011, 010, 110.

string This can be any value you define. For example: 001, 010, 101. 
See Example of syn_enum_encoding for User-Defined 
Encoding, on page 89. 



LO

 

© 2020 Synopsys, Inc.
88 October 2020

syn_enum_encoding, on page 88 for more information. For step-by-step 
details about setting coding styles with this attribute see Defining State 
Machines in VHDL, on page 392 of the User Guide. 

A message appears in the log file when you use the syn_enum_encoding direc-
tive; for example:

CD231: Using onehot encoding for type mytype (red="10000000")
When using an application such as an equivalence checker, the encoding 
value automatically reverts to the sequential standard interpretation for the 
enumerations. Using a value other than sequential cannot guarantee that the 
application will use the same value. A message (CD233) is written to the log 
file as notification of the value change.

Comparison of syn_encoding and syn_enum_encoding

syn_enum_encoding, enum_encoding, and syn_encoding
Custom attributes are attributes that are not defined in the IEEE specifica-
tions, but which you or a tool vendor define for your own use. They provide a 
convenient back door in VHDL, and are used to better control the synthesis 
and simulation process. 

• enum_encoding

enum_encoding is a custom attributes that is widely used to allow specific 
binary encodings to be attached to enumerated type objects. The 
enum_encoding attribute is declared as follows:

syn_encoding syn_enum_encoding

Attribute Directive

Set on a state machine to specify a 
particular encoding

Set on VHDL enumerated data types only. 
If you use syn_encoding instead, you get a 
warning message (CD721). 

Affects how the mapper implements 
state machines in the final netlist

Affects how the compiler interprets 
associated enumerated data types in 
VHDL; it is not automatically propagated to 
the implementation of the state machine.

Requires FSM Compiler to be enabled Requires FSM Compiler to be disabled for 
the syn_enum_encoding value to be 
implemented in the final circuit. 



 

Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 89

attribute enum_encoding: string;
This can be either written directly in your VHDL design description, or 
provided by the tool vendor in a package. Once the attribute has been 
declared and given a name, it can be referenced as needed in the design 
description:

type statevalue is (INIT, IDLE, READ, WRITE, ERROR);
attribute enum_encoding of statevalue: type is 

"000 001 011 010 110";
When this is processed by a tool that supports the enum_encoding attri-
bute, it uses the information about the statevalue encoding. Tools that do 
not recognize the enum_encoding attribute ignore the encoding.

• syn_enum_encoding and enum_encoding

The syn_enum_encoding directive is the Synopsys equivalent of enum_en-
coding. Although it is recommended that you use syn_enum_encoding, the 
Synopsys FPGA tools recognize enum_encoding and treat it just like 
syn_enum_encoding. The tool uses the specified encoding when the FSM 
compiler is disabled, and ignores the value when the FSM Compiler is 
enabled. 

If you have both syn_enum_encoding and enum_encoding defined, the value 
of syn_enum_encoding prevails. 

• syn_encoding and enum_encoding

The Synopsys syn_encoding attribute specifies an implementation for a 
state machine. The tool uses this setting over the default if the FSM 
compiler is enabled. If enum_encoding and syn_encoding are both defined 
and the FSM compiler is enabled, the tool uses the value of syn_encoding. 

Example of syn_enum_encoding for User-Defined Encoding
library ieee;
use ieee.std_logic_1164.all;
entity shift_enum is

port (clk, rst : bit;
O : out std_logic_vector(2 downto 0));

end shift_enum;



LO

 

© 2020 Synopsys, Inc.
90 October 2020

architecture behave of shift_enum is
type state_type is (S0, S1, S2);
attribute syn_enum_encoding: string;
attribute syn_enum_encoding of state_type : type is "001 010 101";
signal machine : state_type;
begin

process (clk, rst)
begin

if rst = ’1’ then
machine <= S0;

elsif clk = ’1’ and clk’event then
case machine is

when S0 => machine <= S1;
when S1 => machine <= S2;
when S2 => machine <= S0; 

end case;
end if;

end process;
with machine select 

O <= "001" when S0,
"010" when S1,
"101" when S2;

end behave;

syn_enum_encoding Values Syntax
The following support applies for the syn_enum_encoding directive.

This table summarizes the syntax in the following file type:

Effect of Encoding Styles
The following figure provides an example of two versions of a design: one with 
the default encoding style, the other with the syn_enum_encoding directive 
overriding the default enumerated data types that define a set of eight colors.

Global Support Object

No/Yes Enumerated data type.

VHDL attribute syn_enum_encoding of object : objectType is 
"value";

VHDL Example



 

Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 91

In this example, using the default value for syn_enum_encoding, onehot is 
assigned because there are eight states in this design. The onehot style imple-
ments the output color as 8 bits wide and creates decode logic to convert the 
input sel to the output. Using sequential for syn_enum_encoding, the logic is 
reduced to a buffer. The size of output color is 3 bits.

See the following section for the source code used to generate the schematics 
above.

VHDL Example
See VHDL Attribute and Directive Syntax, on page 403 for different ways to 
specify VHDL attributes and directives. 

Here is the code used to generate the second schematic in the previous figure. 
(The first schematic will be generated instead, if ”sequential” is replaced by 
”onehot” as the syn_enum_encoding value.)



LO

 

© 2020 Synopsys, Inc.
92 October 2020

package testpkg is
type mytype is (red, yellow, blue, green, white, 

violet, indigo, orange);
attribute syn_enum_encoding : string;
attribute syn_enum_encoding of mytype : type is "sequential";
end package testpkg;
library IEEE;
use IEEE.std_logic_1164.all;
use work.testpkg.all;
entity decoder is

port (sel : in std_logic_vector(2 downto 0);
color : out mytype);

end decoder;
architecture rtl of decoder is
begin

process(sel)
begin

case sel is
when "000" => color <= red;
when "001" => color <= yellow;
when "010" => color <= blue;
when "011" => color <= green;
when "100" => color <= white;
when "101" => color <= violet;
when "110" => color <= indigo;
when others => color <= orange;

end case;
end process;

end rtl;



Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 93

syn_hier 
Attribute/Directive

Controls the amount of hierarchical transformation across boundaries on 
module or component instances during optimization. 

syn_hier Values

Vendor Devices

Microchip newer families

Default Global Object

Soft No View

Value Description

soft 
(default) 

The synthesis tool determines the best optimization across hierarchical 
boundaries. This attribute affects only the design unit in which it is 
specified.

firm Preserves the interface of the design unit. However, when there is cell 
packing across the boundary, it changes the interface and does not 
guarantee the exact RTL interface. This attribute affects only the 
design unit in which it is specified. 

hard Preserves the interface of the design unit and prevents most 
optimizations across the hierarchy. However, the boundary 
optimization for constant propagation is performed. Additionally, if all 
the clock logic is contained within the hard hierarchy, gated clock 
conversion can occur. This attribute affects only the specified design 
units. 



LO

 

© 2020 Synopsys, Inc.
94 October 2020

Description
During synthesis, the tool dissolves as much hierarchy as possible to allow 
efficient logic optimization across hierarchical boundaries while maintaining 
optimal run times. The tool then rebuilds the hierarchy as close as possible to 
the original source to preserve the topology of the design. 

Use the syn_hier attribute to address specific needs to maintain the original 
design hierarchy during optimization. This attribute gives you manual control 
over flattening/preserving instances, modules, or architectures in the design. 

It is advised that you avoid using syn_hier="fixed" with tri-states.

fixed Preserves the interface of the design unit with no exceptions. Fixed 
prevents all optimizations performed across hierarchical boundaries 
and retains the port interfaces as well.
For more information, see Using syn_hier fixed, on page 96.

remove Removes the level of hierarchy for the design unit in which it is 
specified. The hierarchy at lower levels is unaffected. This only affects 
synthesis optimization. The hierarchy is reconstructed in the netlist 
and Technology view schematics.

macro Preserves the interface and contents of the design with no exceptions. 
This value can only be set on structural netlists. (In the constraint file, 
or using the SCOPE editor, set syn_hier to macro on the view (the v: 
object type).

flatten Flattens the hierarchy of all levels below, but not the one where it is 
specified. This only affects synthesis optimization. The hierarchy is 
reconstructed in the netlist and Technology view schematics. To create 
a completely flattened netlist, use the syn_netlist_hierarchy attribute 
(syn_netlist_hierarchy, on page 135), set to false.
You can use flatten in combination with other syn_hier values; the effects 
are described in Using syn_hier flatten with Other Values, on 
page 102. 
If you apply syn_hier to a compile point, flatten is the only valid attribute 
value. All other values only apply to the current level of hierarchy. The 
compile point hierarchy is determined by the type of compile point 
specified, so a syn_hier value other than flatten is redundant and is 
ignored. 



 

Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 95

Syntax Specification

SCOPE Example

define_attribute {v:work.alu} {syn_hier} {hard}

Example of Applying syn_hier Attribute Globally

The syn_hier attribute is not supported globally. However, you can apply this 
attribute globally on design hierarchies using Tcl collection commands.

To do this, create a global collection of the design views in the FDC constraint 
file. Then, apply the attribute to the collection as shown below:

define_scope_collection  all_views {find {v:*}}
define_attribute {$all_views} {syn_hier} {hard}

syn_hier in the SCOPE Window
If you use the SCOPE window to specify the syn_hier attribute, do not drag and 
drop the object into the SCOPE spreadsheet. Instead, first select syn_hier in 
the Attribute column, and then use the pull-down menu in the Object column to 
select the object. This is because you must set the attribute on a view (v:). If 
you drag and drop an object, you might not get a view object. Selecting the 
attribute first ensures that only the appropriate objects are listed in the Object 
column. 

FDC file define_attribute {object} syn_hier {value} 

Verilog object /* synthesis syn_hier = "value" */;

VHDL attribute syn_hier of object : architecture is "value";



LO

 

© 2020 Synopsys, Inc.
96 October 2020

Using syn_hier fixed
When you use the fixed value with syn_hier, hierarchical boundaries are 
preserved with no exceptions. For example, optimizations such as constant 
propagation and gated or generated clock conversions are not performed 
across these boundaries. 

Note: It is recommended that you do not use syn_hier with the fixed 
value on modules that have ports driven by tri-state gates. For 
details, see When Using Tri-states, on page 96.

When Using Tri-states

It is advised that you avoid using syn_hier="fixed" with tri-states. However, if 
you do, here is how the software handles the following conditions:

• Tri-states driving output ports

If a module with syn_hier="fixed" includes tri-state gates that drive a 
primary output port, then the synthesis software retains a tri-state 
buffer so that the P&R tool can pack the tri-state into an output port.

• Tri-states driving internal logic

If a module with syn_hier="fixed" includes tri-state gates that drive internal 
logic, then the synthesis software converts the tri-state gate to a MUX 
and optimizes within the module accordingly.

In the following code example, myreg has syn_hier set to fixed.

module top(
clk1,en1, data1, 
q1, q2
);

input clk1, en1;
input data1;
output q1, q2;
wire cwire, rwire;
wire clk_gt;
assign clk_gt = en1 & clk1;



 

Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 97

// Register module 
myreg U_reg (

.datain(data1),

.rst(1'b1),

.clk(clk_gt),

.en(1'b0),

.dout(rwire),

.cout(cwire)
);

assign q1 = rwire;
assign q2 = cwire;
endmodule
module myreg (

datain,
rst,
clk,
en,
dout,
cout
) /* synthesis syn_hier = "fixed" */;

input clk, rst, datain, en;
output dout;
output cout;
reg dreg;
assign cout = en & datain;
always @(posedge clk or posedge rst)

begin
if (rst)

dreg <= 'b0;
else

dreg <= datain;
end

assign dout = dreg;
endmodule

The HDL Analyst views show that myreg preserves its hierarchical boundaries 
without exceptions and prevents constant propagation and gated clock 
conversions optimizations.



LO

 

© 2020 Synopsys, Inc.
98 October 2020

Effect of Using syn_hier
The following VHDL and Verilog examples show the effects of using the fixed 
and macro values with the syn_hier attribute.



 

Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 99

VHDL Example 1
library ieee;
use ieee.std_logic_1164.all; 
entity top is 
port (data1: in std_logic; 

clk1: in std_logic; 
en1: in std_logic; 
q1: out std_logic; 
q2: out std_logic); 

end; 
architecture rtl of top is 
signal cwire, rwire: std_logic; 
signal clk_gt: std_logic; 
component dff is 

port (datain: in std_logic; 
rst: in std_logic; 
clk: in std_logic; 
en: in std_logic; 
dout: out std_logic; 
cout: out std_logic); 

end component; 
begin 
U1 : dff port map(datain => data1, rst => '1', clk => 

clk_gt, en => '0', dout => rwire, cout => cwire); 
q1 <= rwire; 
q2 <= cwire; 
clk_gt <= en1 and clk1; 
end; 
library ieee; 
use ieee.std_logic_1164.all; 
entity dff is 

port (datain: in std_logic; 
rst: in std_logic; 
clk: in std_logic; 
en: in std_logic; 
dout: out std_logic; 
cout: out std_logic); 

end; 
architecture rtl of dff is 
signal dreg: std_logic; 
attribute syn_hier : string; 
attribute syn_hier of rtl: architecture is "fixed"; 
begin 



LO

 

© 2020 Synopsys, Inc.
100 October 2020

process (clk, rst) 
begin 
if (rst = '1') then 

dreg<= '0'; 
elsif (clk'event and clk ='1') then 

dreg<= datain; 
end if; 
dout <= dreg; 
end process; 
end;

After applying attribute with the value fixed:

Verilog Example 2
module inc(a_in, a_out) /* synthesis syn_hier = "macro" */;
input [3:0] a_in; 
output [3:0] a_out; 
endmodule 
module reg4(clk, rst, d, q); 
input [3:0] d; 
input clk, rst; 
output [3:0] q; 
reg [3:0] q; 
always @(posedge clk or posedge rst) 

Verilog Module myreg(datain,rst,clk,en,dout,cout)/*synthesis syn_hier="fixed"*/;
VHDL attribute syn_hier : string; 

attribute syn_hier of rtl: architecture is "fixed"; 



 

Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 101

if(rst) 
q <= 0; 
else 
q <= d; 
endmodule 
module top(clk, rst, q); 
input clk, rst; 
output [3:0] q; 
wire [3:0] a_in; 
inc i1(q, a_in); 
reg4 r1(clk, rst, a_in, q); 
endmodule

After applying attribute with value macro:

Verilog module inc(a_in, a_out) /* synthesis syn_hier = "macro" */;
VHDL attribute syn_hier : string; 

attribute syn_hier of rtl: architecture is "macro"; 



LO

 

© 2020 Synopsys, Inc.
102 October 2020

Using syn_hier flatten with Other Values
You can combine flatten with other syn_hier values as shown below:

If you use flatten in combination with another option, the tool flattens as 
directed until encountering another syn_hier attribute at a lower level. The 
lower level syn_hier attribute then takes precedence over the higher level one.

These example demonstrate the use of the flatten and remove values to flatten 
the current level of the hierarchy and all levels below it (unless you have 
defined another syn_hier attribute at a lower level).

flatten,soft Same as flatten.

flatten,firm Flattens all lower levels of the design but preserves the interface of 
the design unit in which it is specified. This option also allows 
optimization of cell packing across the boundary. 

flatten,remove Flattens all lower levels of the design, including the one on which it 
is specified. 

Verilog module top1 (Q, CLK, RST, LD, CE, D)
/* synthesis syn_hier = "flatten,remove" */;

// Other code

VHDL architecture struct of cpu is

attribute syn_hier : string;
attribute syn_hier of struct: architecture is "flatten,remove";

-- Other code



Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 103

syn_insert_buffer 
Attribute

Inserts a technology-specific clock buffer. 

syn_insert_buffer Values

Description
Use this attribute to insert a clock buffer. You can also use it on a non-clock 
high fanout net, such as reset or common enable that needs global routing, to 
insert a global buffer for that port. The synthesis tool inserts a 
technology-specific clock buffer. The object you attach the attribute to also 
varies with the vendor. 

Vendor Technologies

Microchip IGLOO2
SmartFusion2 and newer families

Vendor Value Description Technology

Microchip CLKBUF Pads: 
CLKBUF

SmartFusion2, 
IGLOO2

CLKBIBUF Pads: 
CLKBIBUF 

SmartFusion2, 
IGLOO2 only

CLKINT Nets: 
CLKINT

SmartFusion2, 
IGLOO2 only

RCLKINT Nets: 
RCLKINT 

SmartFusion2, 
IGLOO2 only



LO

 

© 2020 Synopsys, Inc.
104 October 2020

syn_insert_buffer Syntax Specification 
You cannot specify this attribute as a global value. 

FDC Example

Verilog Examples
Refer to the following syn_insert_buffer Verilog examples supported for various 
vendors.

Microchip syn_insert_buffer Verilog Example

In the following example, the attribute is attached to LDPRE, SEL, RST, 
LDCOMP, and CLK.

module prep2_2 (DATA0, DATA1, DATA2, LDPRE, SEL, RST, CLK, LDCOMP);
output [7:0] DATA0;
input [7:0] DATA1, DATA2;
input LDPRE, SEL, RST, CLK 

/* synthesis syn_insert_buffer = "GL25" */, LDCOMP;
wire [7:0] DATA0_internal;
prep2_1 inst1 (CLK, RST, SEL, LDCOMP, LDPRE, DATA1, DATA2,

DATA0_internal);
prep2_1 inst2 (CLK, RST, SEL, LDCOMP, LDPRE, DATA0_internal,

DATA2, DATA0);
endmodule

Vendor Object Description

Microchip Instance Inserts the specified clock buffer. 

FDC define_attribute object syn_insert_buffer value FDC Example

Verilog object /* synthesis syn_insert_buffer = “value” */; Verilog Examples

VHDL attribute syn_insert_buffer of object : objectType is “value”;



 

Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 105

module prep2_1 (CLK, RST, SEL, LDCOMP, LDPRE, DATA1, DATA2, DATA0);
input CLK, RST, SEL, LDCOMP, LDPRE;
input [7:0] DATA1, DATA2;
output [7:0] DATA0;
reg [7:0] DATA0;
reg [7:0] highreg_output, lowreg_output; // internal registers
wire compare_output = (DATA0 == lowreg_output); // comparator
wire [7:0] mux_output = SEL ? DATA1 : highreg_output; 
// mux registers 
always @ (posedge CLK or posedge RST)
begin

if (RST) begin
highreg_output = 0;
lowreg_output = 0;

end else begin
if (LDPRE)

highreg_output = DATA2;
if (LDCOMP)

lowreg_output = DATA2;
end

end

// counter
always @(posedge CLK or posedge RST)
begin

if (RST)
DATA0 = 0;

else if (compare_output) // load
DATA0 = mux_output;

else
DATA0 = DATA0 + 1;

end
endmodule



LO

 

© 2020 Synopsys, Inc.
106 October 2020



Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 107

syn_insert_pad 
Attribute

Removes an existing I/O buffer from a port or net when I/O buffer insertion 
is enabled.

syn_insert_pad Values 

Description 
The syn_insert_pad attribute is used when the Disable I/O Insertion option is not 
enabled (when buffers are automatically inserted) to allow users to selectively 
remove an individual buffer from a port or net or to replace a previously 
removed buffer.

• Setting the attribute to 0 on a port or net removes the I/O buffer (or 
prevents an I/O buffer from being automatically inserted).

• Setting the attribute to 1 on a port or net replaces a previously removed 
I/O buffer.

The syn_insert_pad attribute can only be applied through a constraint file.

Vendor Technology 

Microchip SmartFusion2, IGLOO2 and newer families

Value Description Default Global Object

0 Removes an IBUF/OBUF from a port or net None No Port, net

1 Replaces a previously removed IBUF/OBUF 
on a port or net.

None No Port, net



LO

 

© 2020 Synopsys, Inc.
108 October 2020

syn_insert_pad Syntax

SCOPE Example
The following figure shows the attribute applied to the RST port using the 
SCOPE window: 

Effect of Using syn_insert_pad
Original design before applying syn_insert_pad (or after applying syn_insert_pad 
with a value of 1 to replace a previously removed buffer). 

FDC define_attribute {object} syn_insert_pad {1|0} SCOPE Example



 

Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 109

Technology view after applying syn_insert_pad with a value of 0 to remove the 
original buffer from the RST input.



LO

 

© 2020 Synopsys, Inc.
110 October 2020



Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 111

syn_isclock 
Directive

Specifies an input port on a black box as a clock.

syn_isclock Values

Description
Used with the syn_black_box directive and specifies an input port on a black 
box as a clock. Use the syn_isclock directive to specify that an input port on a 
black box is a clock, even though its name does not correspond to one of the 
recognized names. Using this directive connects it to a clock buffer if appro-
priate. The data type is Boolean. 

The syn_isclock directive is one of several directives that you can use with the 
syn_black_box directive to define timing for a black box. See syn_black_box, on 
page 63 for a list of the associated directives.

syn_isclock Values Syntax

Value Description Object

1 | true Specifies input port is a clock. Input port on a black box

0 | false Specifies input port is not a clock. Input port on a black box

Verilog object /* synthesis syn_isclock = 1 */;

VHDL attribute syn_isclock of object: objectType is true;



LO

 

© 2020 Synopsys, Inc.
112 October 2020

Verilog Example
module test (myclk, a, b, tout,) /* synthesis syn_black_box */;
input myclk /* synthesis syn_isclock = 1 */;
input a, b;
output tout;
endmodule
//Top Level
module top (input clk, input a, b, output fout);
test U1 (clk, a, b, fout);
endmodule

VHDL Example
See VHDL Attribute and Directive Syntax, on page 403 for different ways to 
specify VHDL attributes and directives. 

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
entity test is
generic (size: integer := 8);
port (tout :   out std_logic_vector (size- 1 downto 0);

a :   in std_logic_vector (size- 1 downto 0);
b :   in std_logic_vector (size- 1 downto 0);

myclk : in std_logic);
attribute syn_isclock : boolean;
attribute syn_isclock of myclk: signal is true;
end;

architecture rtl of test is 
attribute syn_black_box : boolean; 
attribute syn_black_box of rtl: architecture is true; 
begin
end;
-- TOP Level--
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
entity top is
generic (size: integer := 8);
port (fout :   out std_logic_vector (size- 1 downto 0);

a :   in std_logic_vector (size- 1 downto 0);
b :   in std_logic_vector (size- 1 downto 0);
clk : in std_logic



 

Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 113

);
end;

architecture rtl of top is 
component test
generic (size: integer := 8);
port (tout :   out std_logic_vector (size- 1 downto 0);

a :   in std_logic_vector (size- 1 downto 0);
b :   in std_logic_vector (size- 1 downto 0);

myclk : in std_logic
);

end component;

begin
U1 : test port map (fout, a, b, clk);
end;

Effect of Using syn_isclock
This figure shows the HDL Analyst Technology view before using syn_isclock:



LO

 

© 2020 Synopsys, Inc.
114 October 2020

This figure shows the HDL Analyst Technology view after using syn_isclock:



Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 115

syn_keep 
Directive 

Preserves the specified net and keeps it intact during optimization and 
synthesis. 

syn_keep Values 

Description
With this directive, the tool preserves the net without optimizing it away by 
placing a temporary keep buffer primitive on the net as a placeholder. You can 
view this buffer in the schematic views (see Effect of Using syn_keep, on 
page 119 for an example). The buffer is not part of the final netlist, so no 
extra logic is generated. There are various situations where this directive is 
useful:

• To preserve a net that would otherwise be removed as a result of optimi-
zation. You might want to preserve the net for simulation results or to 
obtain a different synthesis implementation. 

• To prevent duplicate cells from being merged during optimization. You 
apply the directive to the nets connected to the input of the cells you 
want to preserve. 

Vendor Technology Global Object

All All No Net

Value Description

0 | false
(Default)

Allows nets to be optimized away. 

1 | true Preserves the specified net and keeps it intact during optimization 
and synthesis.



LO

 

© 2020 Synopsys, Inc.
116 October 2020

• As a placeholder to apply the -through option of the set_multicycle_path or 
set_false_path timing constraint. This allows you to specify a unique path 
as a multiple-cycle or false path. Apply the constraint to the keep buffer. 

• To prevent the absorption of a register into a macro. If you apply 
syn_keep to a reg or signal that will become a sequential object, the tool 
keeps the register and does not absorb it into a macro. 

 syn_keep with Multiple Nets in Verilog
In the following statement, syn_keep only applies to the last variable in the 
wire declaration, which is net c:

wire a,b,c /* synthesis syn_keep=1 */;
To apply syn_keep to all the nets, use one of the following methods:

• Declare each individual net separately as shown below.

wire a /* synthesis syn_keep=1 */;
wire b /* synthesis syn_keep=1 */;
wire c /* synthesis syn_keep=1 */; 

• Use Verilog 2001 parenthetical comments, to declare the syn_keep direc-
tive as a single line statement.

(* syn_keep=1 *) wire a,b,c;
For more information, see Attribute Examples Using Verilog 2001 Paren-
thetical Comments, on page 131.

syn_keep and SystemVerilog Data Types
The syn_keep directive can be used for SystemVerilog data types, like logic, 
wire, or bit to preserve a net with the specified SystemVerilog data type. An 
example is provided below:

module test (input din1, din2, din3, input clk, output reg dout);

User defined data type
typedef logic signals;

struct {
signals A_1;
signals B_1;
} foo;



 

Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 117

logic temp /* synthesis syn_keep = 1 */;
wire add;
assign add = din1 + din2;
assign temp= add /* synthesis syn_keep = 1 */;
always@(posedge clk)

begin
dout <= temp;

end
endmodule

The following table shows examples of supported SystemVerilog data type 
assignments allowed with the syn_keep directive:

For information about supported SystemVerilog data types, see Data Types, 
on page 141.

Comparison of syn_keep, syn_preserve, and syn_noprune
Although these directives all work to preserve logic from optimization, 
syn_keep, syn_preserve, and syn_noprune work on different objects: 

See Preserving Objects from Being Optimized Away, on page 413 in the User 
Guide for more information. 

logic logic temp /* synthesis syn_keep = 1 */;
wire wire temp /* synthesis syn_keep = 1 */;
bit bit temp /* synthesis syn_keep = 1 */;

syn_keep Only works on nets and combinational logic. It ensures that the wire 
is kept during synthesis, and that no optimizations cross the wire. 
This directive is usually used to prevent unwanted optimizations and 
to ensure that manually created replications are preserved. When 
applied to a register, the register is preserved and not absorbed into 
a macro. 

syn_preserve Ensures that registers are not optimized away.

syn_noprune Ensures that a black box is not optimized away when its outputs are 
unused (i.e., when its outputs do not drive any logic).



LO

 

© 2020 Synopsys, Inc.
118 October 2020

syn_keep Syntax

Verilog Example
object /* synthesis syn_keep = 1 */;

object is a wire or reg declaration for combinational logic. Make sure that there 
is a space between the object name and the beginning of the comment slash 
(/). 

Here is the source code used to produce the results shown in Effect of Using 
syn_keep, on page 119.

module example2(out1, out2, clk, in1, in2);
output out1, out2;
input clk;
input in1, in2;
wire and_out;
wire keep1 /* synthesis syn_keep=1 */;
wire keep2 /* synthesis syn_keep=1 */;
reg out1, out2;
assign and_out=in1&in2;
assign keep1=and_out;
assign keep2=and_out;
always @(posedge clk)begin;

out1<=keep1;
out2<=keep2;

end
endmodule

VHDL Example
attribute syn_keep of object : objectType is true;

object is a single or multiple-bit signal. 

Here is the source code used to produce the schematics shown in Effect of 
Using syn_keep, on page 119.

Verilog object /* synthesis syn_keep = 1 */; Verilog Example

VHDL attribute syn_keep : boolean
attribute syn_keep of object : objectType is true;

VHDL Example



 

Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 119

entity example2 is
port (in1, in2 : in bit; 

clk : in bit;
out1, out2 : out bit);

end example2;
architecture rt1 of example2 is
attribute syn_keep : boolean;
signal and_out, keep1, keep2: bit;
attribute syn_keep of keep1, keep2 : signal is true;
begin
and_out <= in1 and in2;
keep1 <= and_out;
keep2 <= and_out;

process(clk)
begin

if (clk'event and clk = '1') then
out1 <= keep1;
out2 <= keep2;

end if;
end process;

end rt1;

Effect of Using syn_keep
When you use syn_keep on duplicate logic, the tool retains it instead of 
optimizing it away. The following figure shows the Technology view for two 
versions of a design. 

In the first, syn_keep is set on the nets connected to the inputs of the registers 
out1 and out2, to prevent sharing. The second figure shows the same design 
without syn_keep. Setting syn_keep on the input wires for the registers ensures 
that the design has duplicate registered outputs for out1 and out2. If you do 
not apply syn_keep to keep1 and keep2, the software optimizes out1 and out2, 
and only has one register.



LO

 

© 2020 Synopsys, Inc.
120 October 2020



Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 121

syn_looplimit
Directive

VHDL

Specifies a loop iteration limit for while loops in the design.

Description
VHDL only. For Verilog applications use the loop_limit directive (see loop_limit, 
on page 47).

The syn_looplimit directive specifies a loop iteration limit for a while loop on a 
per-loop basis, when the loop index is a variable, not a constant. If your 
design requires a variable loop index, use the syn_looplimit directive to specify a 
limit for the compiler. If you do not, you can get a “while loop not terminating” 
compiler error. 

The limit cannot be an expression.

Alternatively, you can use the set_option looplimit command (Loop Limit GUI 
option) to set a global loop limit that overrides the default of 2000 loops. To 
use the Loop Limit option on the VHDL tab of the Implementation Options 
panel, see VHDL Panel, on page 358 in the Command Reference.

syn_looplimit Summary

syn_looplimit Syntax

Technology Global Object

All Yes Architecture

VHDL attribute syn_looplimit : integer;
attribute syn_looplimit of labelName : label is value;

VHDL Example



LO

 

© 2020 Synopsys, Inc.
122 October 2020

VHDL Example
library ieee;
use ieee.std_logic_1164.all;
use IEEE.numeric_std.all;
entity test is
port (

clk  : in  std_logic;
d_in : in  std_logic_vector(2999 downto 0);
d_out: out std_logic_vector(2999 downto 0)
);

end test;
architecture beh of test is
attribute syn_looplimit : integer; 
attribute syn_looplimit of loopabc: label is 3000;
begin 

process (clk)
variable i, k: integer := 0;
begin
if (clk'event and clk = '1') then

k:=0;
loopabc: while (k<2999) loop

k:= k+ 1;
d_out(k) <= d_in(k); 

end loop loopabc;
d_out(0) <= d_in(0);

end if;
end process;

end beh;



Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 123

syn_maxfan 
Attribute

Overrides the default (global) fanout guide for an individual input port, net, or 
register output. 

syn_maxfan Value

Description
syn_maxfan overrides the global fanout for an individual input port, net, or 
register output. You set the default Fanout Guide for a design through the 
Device panel on the Implementation Options dialog box or with the -fanout_limit 
command. Use the syn_maxfan attribute to specify a different (local) value for 
individual I/Os.

Generally, syn_maxfan and the default fanout guide are suggested guidelines 
only, but in certain cases they function as hard limits. 

• When they are guidelines, the synthesis tool takes them into account, 
but does not always respect them absolutely. The synthesis tool does 
not respect the syn_maxfan limit if the limit imposes constraints that 
interfere with optimization. 

• The attribute value functions as a hard limit when it is attached to nets, 
ports, primitive instances, and registers in the designs. See Setting 
Fanout Limits, on page 418 of the User Guide for details. 

You can apply the syn_maxfan attribute to the following objects: 

Vendor Technology Default 

Microchip All None

value Integer for the maximum fanout



LO

 

© 2020 Synopsys, Inc.
124 October 2020

• Registers or instances. 

• Ports or nets. If you apply the attribute to a net, the synthesis tool 
creates a KEEPBUF component and attaches the attribute to it to prevent 
the net itself from being optimized away during synthesis. 

The syn_maxfan attribute is often used along with the syn_noclockbuf attribute 
on an input port that you do not want buffered. There are a limited number of 
clock buffers in a design, so if you want to save these special clock buffer 
resources for other clock inputs, put the syn_noclockbuf attribute on the clock 
signal. If timing for that clock signal is not critical, you can turn off buffering 
completely to save area. To turn off buffering, set the maximum fanout to a 
very high number; for example, 1000. Note, do not use the syn_maxfan attri-
bute with the fast synthesis option.

Similarly, you use syn_maxfan with the syn_replicate attribute in certain 
technologies to control replication. 

syn_maxfan Syntax

FDC Example
define_attribute {object} syn_maxfan {integer}

Global Object Type

No Registers, instances, ports, nets

FDC define_attribute {object} syn_maxfan {integer} FDC Example

Verilog object /* synthesis syn_maxfan = "value" */; Verilog Example

VHDL attribute syn_maxfan of object : objectType is "value"; VHDL Example



 

Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 125

Verilog Example
object /* synthesis syn_maxfan = "value" */;

For example:

module syn_maxfan (clk,rst,a,b,c,y); 
input clk,rst; 
input [7:0] a,b; 
output reg [7:0] c,y; 

reg d/* synthesis syn_maxfan=3 */; 

always @ (posedge clk) 
begin 

if(rst) 
d <= 0; 

else 
d <= ~d; 

end 

always @ (posedge d)
c <= a&b;

always @ (posedge clk) 
begin

if(d)
y<=0;

else
y <= a&b; 

end
endmodule



LO

 

© 2020 Synopsys, Inc.
126 October 2020

VHDL Example
attribute syn_maxfan of object : objectType is "value";

See VHDL Attribute and Directive Syntax, on page 403 for different ways to 
specify VHDL attributes and directives. 

library ieee; 
use ieee.std_logic_1164.all; 
use ieee.numeric_std.all; 
entity test is
generic (n : integer := 10;

m : integer := 7
);

port (a : in std_logic_vector(7 downto 0); 
b : in std_logic_vector(7 downto 0); 
rst : in std_logic; 
clk : in std_logic; 
c : out std_logic_vector(7 downto 0)); 

end test; 
architecture rtl of test is 
signal d : std_logic; 
attribute syn_maxfan : integer; 
attribute syn_maxfan of d : signal is (n-m); 
begin 
process (clk) 

begin 
if (clk'event and clk = '1') then 

if (rst = '1') then 
d <= '0'; 
else 
d <= not d; 
end if; 

end if; 
end process; 
process (clk) 

begin 



 

Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 127

if (clk'event and clk = '1') then
if (d = '1') then
c <= a and b; 
end if;
end if;
end process; 

end rtl;

Effect of Using syn_maxfan
Before applying syn_maxfan:



LO

 

© 2020 Synopsys, Inc.
128 October 2020

After applying the attribute syn_maxfan, the register d is replicated three times 
(shown in red) because its actual fanout is 8, but we have restricted it to 3.

Verilog reg d/* synthesis syn_maxfan=3 */;

VHDL attribute syn_maxfan of d : signal is 3;



Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 129

syn_multstyle
Attribute

Determines how multipliers are implemented.

syn_multstyle Values

This table lists the valid values:

Description
This attribute specifies whether the multipliers are implemented as dedicated 
hardware blocks or as logic. The implementation varies with the technology, 
as shown in the preceding table. 

Vendor Device Values

Microchip SmartFusion2
IGLOO2
newer families

dsp | logic 

Value Description Default

block_mult  
Implements the multipliers as dedicated hardware blocks

X

logic Implements the multipliers as logic. -

dsp Microchip
Implements the multipliers as DSP blocks. 

X

Microchip • dsp
Uses dedicated hardware DSP blocks. This is the default. 

• logic
Uses logic instead of dedicated resources. 



LO

 

© 2020 Synopsys, Inc.
130 October 2020

syn_multstyle Syntax

The following shows the attribute syntax when specified in different files: 

See VHDL Attribute and Directive Syntax, on page 403 for different ways to 
specify VHDL attributes and directives. 

SCOPE Example
This SCOPE example specifies that the multipliers be globally implemented 
as logic:

This example specifies that multipliers be implemented as logic.

define_attribute {temp[15:0]} syn_multstyle {logic}

Global Attribute Object

Yes Module or instance

FDC define_attribute {instance} syn_multstyle {block_mult | logic | 
dsp}
Global attribute: 
define_global_attribute syn_multstyle {block_mult | logic | dsp}

SCOPE Example

Verilog input net /* synthesis syn_multstyle = “block_mult | logic | dsp” 
*/;

Verilog Example

VHDL attribute syn_multstyle of instance : signal is “block_mult | logic | 
dsp”;

VHDL Example



 

Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 131

Verilog Example
module mult(a,b,c,r,en);
input [7:0] a,b;
output [15:0] r;
input [15:0] c;
input en;
wire [15:0] temp /* synthesis syn_multstyle="logic" */;
assign temp = a*b;
assign r = en ? temp: c; 
endmodule

VHDL Example
library ieee;
use ieee.std_logic_1164.all;
USE ieee.numeric_std.all;
entity mult is

port (clk : in std_logic;
a : in std_logic_vector(7 downto 0);
b : in std_logic_vector(7 downto 0);
c : out std_logic_vector(15 downto 0)) 

end mults;
architecture rtl of mult is
signal mult_i : std_logic_vector(15 downto 0);
attribute syn_multstyle : string;
attribute syn_multstyle of mult_i : signal is "logic";
begin
mult_i <= std_logic_vector(unsigned(a)*unsigned(b));

process(clk)
begin

if (clk'event and clk = '1') then
c <= mult_i;

end if;
end process;

end rtl;

Effect of Using syn_multstyle in a Microchip Design
In a Microchip design, you can specify that the multipliers be implemented as 
logic or as dedicated DSP blocks. The following figure shows a multiplier 
implemented as DSP: 



LO

 

© 2020 Synopsys, Inc.
132 October 2020

Verilog
VHDL

wire [15:0] temp /* synthesis syn_multstyle = “dsp”*/;
attribute syn_multstyle of mult_i : signal is “dsp”;



 

Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 133

The following figure shows the same Microchip design with the multiplier imple-
mented as logic when the attribute is set to logic:

Verilog
VHDL

wire [15:0] temp /* synthesis syn_multstyle = “logic”*/;
attribute syn_multstyle of mult_i : signal is “logic”;



LO

 

© 2020 Synopsys, Inc.
134 October 2020



Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 135

syn_netlist_hierarchy
Attribute

Determines if the generated netlist is to be hierarchical or flat.

syn_netlist_hierarchy Values

Description
A global attribute that controls the generation of hierarchy in the output 
netlist when assigned to the top-level module in your design. The default 
(1/true) allows hierarchy generation, and setting the attribute to 0/false 
flattens the hierarchy and produces a completely flattened output netlist.

Syntax Specification

Vendor Technology

Microchip newer families

Value Description Default

1/true Allows hierarchy generation Default

0/false Flattens hierarchy in the netlist

Global Object

Yes Module/Architecture



LO

 

© 2020 Synopsys, Inc.
136 October 2020

SCOPE Example

FDC define_global_attribute syn_netlist_hierarchy {0|1} SCOPE 
Example

Verilog object /* synthesis syn_netlist_hierarchy = 0|1 */; Verilog 
Example

VHDL attribute syn_netlist_hierarchy of object : objectType is true|false; VHDL 
Example



 

Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 137

Verilog Example
module fu_add(input a,b,cin,output su,cy); 
assign su = a ^ b ^ cin; 
assign cy = (a & b) | ((a^b) & cin); 
endmodule 4
module rca_adder#(parameter width =4)

(input[width-1:0]A,B,input CIN, 
 output[width-1:0]SU,output COUT); 

wire[width-2:0]CY; 
fu_add FA0(.su(SU[0]),.cy(CY[0]),.cin(CIN),.a(A[0]),.b(B[0])); 
fu_add FA1(.su(SU[1]),.cy(CY[1]),.cin(CY[0]),.a(A[1]),.b(B[1]));
fu_add FA2(.su(SU[2]),.cy(CY[2]),.cin(CY[1]),.a(A[2]),.b(B[2])); 
fu_add FA3(.su(SU[3]),.cy(COUT),.cin(CY[2]),.a(A[3]),.b(B[3])); 
endmodule
module rp_top#(parameter width =16)

(input[width-1:0]A1,B1,input CIN1, 
 output[width- 1:0]SUM,output COUT1) /*synthesis

syn_netlist_hierarchy=0*/; 
wire[2:0]CY1;
rca_adder RA0 (.SU(SUM[3:0]),.COUT(CY1[0]),.CIN(CIN1),

.A(A1[3:0]),.B(B1[3:0])); 
rca_adder RA1(.SU(SUM[7:4]),.COUT(CY1[1]),.CIN(CY1[0]),

.A(A1[7:4]),.B(B1[7]));
rca_adder RA2 (.SU(SUM[11:8]),.COUT(CY1[2]),.CIN(CY1[1]),

.A(A1[11:8]),.B(B1[11:8])); 
rca_adder RA3(.SU(SUM[15:12]),.COUT(COUT1),.CIN(CY1[2]),

.A(A1[15:12]),.B(B1[15:12])); 
endmodule



LO

 

© 2020 Synopsys, Inc.
138 October 2020

VHDL Example
library ieee; 
use ieee.std_logic_1164.all; 
entity FULLADDER is 

port (a, b, c : in std_logic; 
sum, carry: out std_logic); 

end FULLADDER; 
architecture fulladder_behav of FULLADDER is 
begin 

sum <= (a xor b) xor c ; 
carry <= (a and b) or (c and (a xor b)); 

end fulladder_behav; 
library ieee; 
use ieee.std_logic_1164.all; 
entity FOURBITADD is 

port (a, b : in std_logic_vector(3 downto 0); 
Cin  : in std_logic;
sum  : out std_logic_vector (3 downto 0); 
Cout, V : out std_logic); 

end FOURBITADD; 

architecture fouradder_structure of FOURBITADD is 
signal c: std_logic_vector (4 downto 1); 
component FULLADDER 

port (a, b, c: in std_logic; 
sum, carry: out std_logic); 

end component; 
begin 

FA0: FULLADDER 
port map (a(0), b(0), Cin, sum(0), c(1)); 

FA1: FULLADDER 
port map (a(1), b(1), C(1), sum(1), c(2)); 

FA2: FULLADDER 
port map (a(2), b(2), C(2), sum(2), c(3)); 

FA3: FULLADDER 
port map (a(3), b(3), C(3), sum(3), c(4)); 

V <= c(3) xor c(4); 
Cout <= c(4); 

end fouradder_structure;



 

Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 139

library ieee; 
use ieee.std_logic_1164.all; 
entity BITADD is 

port (A, B: in std_logic_vector(15 downto 0); 
Cin : in std_logic; 
SUM : out std_logic_vector (15 downto 0); 
COUT: out std_logic); 

end BITADD; 
architecture adder_structure of BITADD is 
attribute syn_netlist_hierarchy : boolean;
attribute syn_netlist_hierarchy of adder_structure: 

architecture is false;
signal C: std_logic_vector (4 downto 1); 
component FOURBITADD 

port (a, b: in std_logic_vector(3 downto 0); 
Cin : in std_logic; 
sum : out std_logic_vector (3 downto 0); 
Cout, V: out std_logic); 

end component; 
begin 

F1: FOURBITADD 
port map (A(3 downto 0),B(3 downto 0),

 Cin, SUM(3 downto 0),C(1));
F2: FOURBITADD 

port map (A(7 downto 4),B(7 downto 4),
 C(1), SUM(7 downto 4),C(2)); 

F3: FOURBITADD 
port map (A(11 downto 8),B(11 downto 8),

 C(2), SUM(11 downto 8),C(3));  
F4: FOURBITADD 

port map (A(15 downto 12),B(15 downto 12),
 C(3), SUM(15 downto 12),C(4));

COUT <= c(4); 
end adder_structure;



LO

 

© 2020 Synopsys, Inc.
140 October 2020

Effect of Using syn_netlist_hierarchy
Without applying the attribute (default is to allow hierarchy generation) or 
setting the attribute to 1/true creates a hierarchical netlist.

Verilog output[width-1:0]SUM,output COUT1) 
/*synthesis syn_netlist_hierarchy=1*/;

VHDL attribute syn_netlist_hierarchy of adder_structure : 
architecture is true;



 

Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 141

Applying the attribute with a value of 0/false creates a flattened netlist.

syn_hier flatten and syn_netlist_hierarchy
The syn_hier=flatten attribute and the syn_netlist_hierarchy=false attributes both 
flatten hierarchy, but work slightly differently. Use the syn_netlist_hierarchy 
attribute if you want a completely flattened netlist (this attribute flattens all 
levels of hierarchy). When you set syn_hier=flatten, you flatten the hierarchical 
levels below the component on which it is set, but you do not flatten the 
current hierarchical level where it is set. Refer to syn_hier, on page 93 for 
information about this attribute. 

Verilog output[width-1:0]SUM,output COUT1) 
/*synthesis syn_netlist_hierarchy=0*/;

VHDL attribute syn_netlist_hierarchy of adder_structure : 
architecture is false;



LO

 

© 2020 Synopsys, Inc.
142 October 2020



Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 143

syn_no_compile_point 
Attribute

Use this attribute with the Automatic Compile Point (ACP) feature. The 
software automatically identifies modules as compile points in the design 
based on its size, number of I/Os, and hierarchical levels. However, if you do 
not want the software to create a compile point for a particular view or 
module, then apply this attribute.

syn_no_compile_point Values

Description
Use this attribute when the Auto Compile Point option is enabled. The software 
automatically identifies modules as compile points in the design based on its 
size, number of I/Os, and hierarchical levels. For details about this feature, 
see the The Automatic Compile Point Flow, on page 456.

However, if you do not want the software to create a compile point for a 
particular view or module, then apply this attribute. This design view or 
module is ignored by the Automatic Compile Point software, ensuring that a 
compile point is not generated for it during synthesis. You must explicitly set 
this attribute to 1 or true. When you specify syn_no_compile_point on a module, 
be aware that this does not prevent ACP from identifying compile points for 
other modules instantiated within that module.

Global Support Default Object

No 0 | false  Module or architecture



LO

 

© 2020 Synopsys, Inc.
144 October 2020

syn_no_compile_point Syntax
The following table summarizes the syntax in different files. 

Where: 

• object must be a view with the syntax v:moduleName

• value must be 1 or true

define_attribute {v:fifo} syn_no_compile_point {1}
You cannot apply this attribute globally.

FDC Example

define_attribute {v:work.prgm_cntr} {syn_no_compile_point} {1}

Verilog Example
The following Verilog code segment contains the module, mult, which should 
not be treated as a compile point during the ACP synthesis flow.

module add(input clk, input [4:0]a,[4:0]b, output reg [4:0]dout);
always@(posedge clk)
begin

dout <= a + b;
end
endmodule

FDC define_attribute {v:moduleName} syn_no_compile_point {0 | 1} FDC Example

Verilog object /* synthesis syn_no_compile_point = 0 | 1*/; Verilog Example

VHDL attribute syn_no_compile_point : boolean; 
attribute syn_no_compile_point of object : objectType is false | 
true;

VHDL Example



 

Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 145

module mult(input clk, input [4:0]a, [4:0]b, 
output reg [9:0]dout)/* synthesis syn_no_compile_point="1" */;

always@(posedge clk)
begin

dout <= a * b;
end
endmodule

VHDL Example
The following VHDL code segment contains the architecture, mult, which 
should not be treated as a compile point during the ACP synthesis flow.

--Multiplier Module
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity mult is
generic (size: integer :=5);
port (f_out :   out std_logic_vector(9 downto 0);

a :   in std_logic_vector (size- 1 downto 0);
b :   in std_logic_vector (size- 1 downto 0);
clk : in std_logic
);

end;

architecture rtl of mult is 
attribute syn_no_compile_point: boolean;
attribute syn_no_compile_point of rtl: architecture is true;

begin
process (clk)
begin 

if (clk'event and clk = '1') then
f_out <= a * b;

end if;
end process;

end;
--Add Module
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;



LO

 

© 2020 Synopsys, Inc.
146 October 2020

entity add is
generic (size: integer :=5);
port (f_out :  out std_logic_vector(4 downto 0);

a :   in std_logic_vector (size- 1 downto 0);
b :   in std_logic_vector (size- 1 downto 0);
clk : in std_logic
 );

end;

architecture rtl of add is 
begin

process (clk)
begin 

if (clk'event and clk = '1') then
f_out <= a + b;

end if;
end process;

end;

Effect of Using syn_no_compile_point
This attribute can be used when the Auto Compile Point option is turned on or if 
it is set in the project (prj) file as:

set_option -automatic_compile_point 1

The Automatic Compile Point (ACP) flow is applied globally and creates 
compile points automatically for large modules of a design. If you do not want 
this to occur for individual modules in the design, then you must set the 
syn_no_compile_point attribute to 1. This turns off the effects of automatically 
creating a compile point for the specified modules, which prevents extensive 
optimizations within the design units.

The effects of ACP synthesis for the Verilog/VHDL code segments above can 
be shown in the Technology view, where a module displayed with the color 
green (for example, v:add) is a compile point and a module displayed with the 
color yellow (for example, v:mult) is not considered a compile point and was 
specified with syn_no_compile_point=1. 



Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 147

syn_noarrayports 
Attribute

Specifies signals as scalar in the output file.

syn_noarrayports Values

Description
Use this attribute to specify that the ports of a design unit be treated as 
individual signals (scalars), not as buses (arrays) in the output file.

Syntax Specification

SCOPE Example

Vendor Devices

Microchip newer devices

Default Global Object

0 Yes Module/Architecture

SCOPE define_global_attribute syn_noarrayports {0|1}

Verilog object /* synthesis syn_noarrayports =  0 | 1;

VHDL attribute syn_noarrayports of object : objectType is true | false;



LO

 

© 2020 Synopsys, Inc.
148 October 2020

Verilog Example
module adder8(cout,sum,a,b,cin) 

/* synthesis syn_noarrayports = "1" */; 
input[7:0] a,b; 
input cin; 
output reg[7:0] sum; 
output reg cout; 
always@(*) 
begin 
{cout,sum}=a+b+cin; 
end 
endmodule

VHDL Example
library ieee; 
use ieee.std_logic_1164.all; 
use ieee.std_logic_arith.all; 
use ieee.std_logic_unsigned.all; 

entity ADDER is 
generic(n: natural :=8); 
port( A:    in std_logic_vector(n-1 downto 0); 

B:    in std_logic_vector(n-1 downto 0); 
carry:    out std_logic; 
sum:    out std_logic_vector(n-1 downto 0) 

); 
end ADDER; 

architecture adder_struct of ADDER is 
attribute syn_noarrayports : boolean;
attribute syn_noarrayports of adder_struct : architecture is true;
signal result: std_logic_vector(n downto 0); 
begin 

result <= ('0' & A)+('0' & B); 
sum <= result(n-1 downto 0); 
carry <= result(n); 

end adder_struct;



 

Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 149

Effect of Using syn_noarrayports
This example shows the netlist before applying the attribute:

Verilog module adder8(cout,sum,a,b,cin)/* synthesis syn_noarrayport="0" */ 

VHDL attribute syn_noarrayports : boolean;
attribute syn_noarrayports of adder_struct : architecture is false;

(library work 
    (edifLevel 0) 
    (technology (numberDefinition)) 
    (cell ADDER (cellType GENERIC) 
       (view behv (viewType NETLIST) 
         (interface 
           (port (array (rename A "A(7:0)") 8) (direction INPUT)) 
           (port (array (rename B "B(7:0)") 8) (direction INPUT)) 
           (port (array (rename sum "sum(7:0)") 8) (direction OUTPUT)) 
           (port carry (direction OUTPUT)) 
         ) 



LO

 

© 2020 Synopsys, Inc.
150 October 2020

This example shows the netlist after applying the attribute:

Verilog module adder8(cout,sum,a,b,cin)/* synthesis syn_noarrayport="1" */ 

VHDL attribute syn_noarrayports : boolean;
attribute syn_noarrayports of adder_struct : architecture is true;

 (library work 
    (edifLevel 0) 
    (technology (numberDefinition)) 
    (cell ADDER (cellType GENERIC) 
       (view behv (viewType NETLIST) 
         (interface 
           (port (rename A_0 "A(0)") (direction INPUT)) 
           (port (rename A_1 "A(1)") (direction INPUT)) 
           (port (rename A_2 "A(2)") (direction INPUT)) 
           (port (rename A_3 "A(3)") (direction INPUT)) 
           (port (rename A_4 "A(4)") (direction INPUT)) 
           (port (rename A_5 "A(5)") (direction INPUT)) 
           (port (rename A_6 "A(6)") (direction INPUT)) 
           (port (rename A_7 "A(7)") (direction INPUT)) 
           (port (rename B_0 "B(0)") (direction INPUT)) 
           (port (rename B_1 "B(1)") (direction INPUT)) 
           (port (rename B_2 "B(2)") (direction INPUT)) 
           (port (rename B_3 "B(3)") (direction INPUT)) 
           (port (rename B_4 "B(4)") (direction INPUT)) 
           (port (rename B_5 "B(5)") (direction INPUT)) 
           (port (rename B_6 "B(6)") (direction INPUT)) 
           (port (rename B_7 "B(7)") (direction INPUT)) 
           (port carry (direction OUTPUT)) 
           (port (rename sum_0 "sum(0)") (direction OUTPUT)) 
           (port (rename sum_1 "sum(1)") (direction OUTPUT)) 
           (port (rename sum_2 "sum(2)") (direction OUTPUT)) 
           (port (rename sum_3 "sum(3)") (direction OUTPUT)) 
           (port (rename sum_4 "sum(4)") (direction OUTPUT)) 
           (port (rename sum_5 "sum(5)") (direction OUTPUT)) 
           (port (rename sum_6 "sum(6)") (direction OUTPUT)) 
           (port (rename sum_7 "sum(7)") (direction OUTPUT)) 
         )



Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 151

syn_noclockbuf 
Attribute 

Turns off automatic clock buffer usage.

syn_noclockbuf Values

Description
The synthesis tool uses clock buffer resources, if they exist in the target 
module, and puts them on the highest fanout clock nets. You can turn off 
automatic clock buffer usage by using the syn_noclockbuf attribute. For 
example, you can put a clock buffer on a lower fanout clock that has a higher 
frequency and a tighter timing constraint.

You can turn off automatic clock buffering for nets or specific input ports. Set 
the Boolean value to 1 or true to turn off automatic clock buffering.

You can attach this attribute to a port or net in any hard architecture or 
module whose hierarchy will not be dissolved during optimization. 

Vendor Technology

Microchip all

Value Description

0/false
(Default)

Turns on clock buffering.

1/true Turns off clock buffering.



LO

 

© 2020 Synopsys, Inc.
152 October 2020

Constraint File Syntax and Example

define_attribute {clock_port} syn_noclockbuf {0|1}

define_global_attribute syn_noclockbuf {0|1}

For example:

define_attribute {clk} syn_noclockbuf {1}
define_global_attribute syn_noclockbuf {1}

FDC Example
The syn_noclockbuf attribute can be applied in the SCOPE window as shown:

Verilog Syntax and Examples
object /* synthesis syn_noclockbuf = 1 |  0 */;

module ckbufg (d,clk,rst,set,q); 
input d,rst,set; 
input clk   /*synthesis syn_noclockbuf=1*/; 
output reg q; 
always@(posedge clk) 
begin 
if(rst)
q<=0; 
else if(set) 
q<=1; 
else 
q<=d; 
end 
endmodule

Global Support Object

Yes module/architecture



 

Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 153

VHDL Syntax and Examples
attribute syn_noclockbuf of object : objectType is true | false;

library IEEE; 
use IEEE.std_logic_1164.all; 
entity d_ff_srss is 
port (d,clk,reset,set : in STD_LOGIC; 

q : out STD_LOGIC); 
attribute syn_noclockbuf: Boolean; 
attribute syn_noclockbuf of clk : signal is false;
end d_ff_srss; 
architecture d_ff_srss of d_ff_srss is 
begin 
process(clk) 
begin 
if clk'event and clk='1' then 
if reset='1' then 
q <= '0'; 
elsif set='1' then 
q <= '1'; 
else 
q <= d; 
end if; 
end if; 
end process; 
end d_ff_srss;

Effect of Using syn_noclockbuf
The following graphic shows a design without the syn_noclockbuf attribute.



LO

 

© 2020 Synopsys, Inc.
154 October 2020

The following graphic shows a design with the syn_noclockbuf attribute.

Verilog input clk   /*synthesis syn_noclockbuf=0*/;
VHDL attribute syn_noclockbuf: Boolean; 

attribute syn_noclockbuf of clk : signal is false;



 

Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 155

Global Support
When syn_noclockbuf attribute is applied globally, global buffers are inferred 
by default. If the syn_noclockbuf attribute value is set to 1, global buffers are 
not inferred.

Verilog input clk   /*synthesis syn_noclockbuf=1*/;
VHDL attribute syn_noclockbuf: Boolean; 

attribute syn_noclockbuf of clk : signal is true;



LO

 

© 2020 Synopsys, Inc.
156 October 2020

HDL module 
ckbufg(d1,d2,d3,d4,clk1,clk2,clk3,clk4,rst,set,q1,q2,q3,q4)/*synthesis 
syn_noclockbuf=1*/;

FDC define_global_attribute  {syn_noclockbuf} {1}



Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 157

syn_noprune 
Directive

Prevents optimizations for instances and black-box modules (including 
technology-specific primitives) with unused output ports. 

syn_noprune Values 

Description
Use this directive to prevent the removal of instances, black-box modules, 
and technology-specific primitives with unused output ports during optimiza-
tion. 

By default, the synthesis tool removes any module that does not drive logic as 
part of the synthesis optimization process. If you want to keep such an 
instance in the design, use the syn_noprune directive on the instance or 
module, along with syn_hier set to hard. 

Vendor Technology Global Object

All All No Verilog module/instance 
VHDL architecture/component

Value Description

0 | false
(Default)

Allows instances and black-box modules with unused output ports 
to be optimized away. 

1 | true Prevents optimizations for instances and black-box modules with 
unused output ports. 



LO

 

© 2020 Synopsys, Inc.
158 October 2020

The syn_noprune directive can prevent a hierarchy from being dissolved or 
flattened. To ensure that a design with multiple hierarchies is preserved, 
apply this directive on the leaf hierarchy, which is the lower-most hierar-
chical level. This is especially important when hierarchies cannot be accessed 
or edited.

For further information about this and other directives used for preserving 
logic, see Comparison of syn_keep, syn_preserve, and syn_noprune, on 
page 117, and Preserving Objects from Being Optimized Away, on page 413 in 
the User Guide. 

syn_noprune Syntax

Verilog Examples
This section contains code snippets and examples. 

Verilog Example 1: Module Declaration 

// Verilog Example 1 -- Module Declaration

//Top module
module top (input int a, b, output int c);
assign c=b;
sub i1 (a);
endmodule
//Intermediate sub level which does not specify syn_noprune
module sub (input int a);
leaf i2 (a,);
endmodule
//Leaf level with syn_noprune directive

Verilog object /* synthesis syn_noprune = 1 */; Verilog Examples

VHDL attribute syn_noprune : boolean
attribute syn_noprune of object : objectType is true;

VHDL Examples



 

Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 159

module leaf (input int a, output int b)
/* synthesis syn_noprune=1*/;

assign b = a;
endmodule 

syn_noprune can be applied in two places: on the module declaration or in the 
top-level instantiation. The most common place to use syn_noprune is in the 
declaration of the module. By placing it here, all instances of the module are 
protected.

module top (a,b,c,d,x,y); /* synthesis syn_noprune=1 */;

// Other code

The results for this example are shown in Effect of Using syn_noprune: 
Example 1, on page 167. 

Verilog Black Box Declaration

Here is a snippet showing syn_noprune used on black box instances. If your 
design uses multiple instances with a single module declaration, the synthesis 
comment must be placed before the comma (,) following the port list for each 
of the instances.

my_design my_design1(out,in,clk_in) /* synthesis syn_noprune=1 */;
my_design my_design2(out,in,clk_in) /* synthesis syn_noprune=1 */;

In this example, only the instance my_design2 will be removed if the output 
port is not mapped.

Verilog Example 2: Hierarchical Design 

// Verilog Example 2: Hierarchical Design

//Leaf level module
module sub1 (data, rst, dout);
parameter width = 1;
input [width :0] data;
input rst;



LO

 

© 2020 Synopsys, Inc.
160 October 2020

output [width : 0] dout;
assign dout = rst?1’b0:data;
endmodule
//Intermediate Top level with 3 instances of sub1
module top (data1,data2,data3, rst, dout1);
parameter width1 = 2;
parameter width2 = 3;
parameter width3 = 4;
input [width1 :0] data1;
input [width2 :0] data2;
input [width3 :0] data3;
input rst;
output [width1 : 0] dout1;
sub1 #(width1) inst1 (data1,rst,dout1);
sub1 #(width2) inst2 (data2,rst,) /* synthesis syn_noprune=1 */;
sub1 #(width3) inst3 (data3,rst,);
endmodule
//Top level
module top1 (data1,data2,data3, rst, dout1);
parameter width1 = 2;
parameter width2 = 3;
parameter width3 = 4;
input [width1 :0] data1;
input [width2 :0] data2;
input [width3 :0] data3;
input rst;
output [width1 : 0] dout1;



 

Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 161

top #(width1, width2, width3) top (data1,data2,data3, rst, dout1);
endmodule 

In this example, syn_noprune is applied on the leaf-level module sub1. Although 
syn_noprune has not been applied to the intermediate level hierarchy, the 
directive is specified on an instance of module sub1 that includes inst1, inst2, 
and inst3. The software propagates this directive upwards in the hierarchy 
chain. See Effect of Using syn_noprune: Example 2, on page 168.

VHDL Examples
This section contains code snippets and examples.

Architecture Declaration

The syn_noprune directive is normally associated with the names of architec-
tures. Once it is associated, any component instantiation of the architecture 
(design unit) is protected from being deleted.

library ieee;
architecture mydesign of rtl is

attribute syn_noprune : boolean;
attribute syn_noprune of mydesign : architecture is true;

-- Other code

VHDL Example 3: Component Declaration

-- VHDL Example 3: Component Declaration

library ieee;
use ieee.std_logic_1164.all;
entity sub is
port (a, b, c, d : in std_logic;
x,y : out std_logic);
end sub;



LO

 

© 2020 Synopsys, Inc.
162 October 2020

architecture behave of sub is
attribute syn_hier : string;
attribute syn_hier of behave : architecture is “hard”;
begin
x <= a and b;
y <= c and d;
end behave;

--Top level
library ieee;
use ieee.std_logic_1164.all;
entity top is
port (a1, b1 : in std_logic;
c1,d1,clk : in std_logic;
y1 :out std_logic);
end;
architecture behave of top is
component sub
port (a, b, c, d : in std_logic;
x,y : out std_logic);
end component;

attribute syn_noprune : boolean;
attribute syn_noprune of sub : component is true;

signal x2,y2,x3,y3 : std_logic;



 

Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 163

begin
u1: sub port map(a1, b1, c1, d1, x2, y2); 
u2: sub port map(a1, b1, c1, d1, x3, y3);

process begin
wait until (clk = ‘1’) and clk’event;
y1 <= a1;
end process;

end; 
The results for this example are shown in Effect of Using syn_noprune: 
Example 3, on page 170.

VHDL Example: Component Instance Declaration

-- VHDL Example: Component Instance Declaration

library ieee;
use ieee.std_logic_1164.all;
entity sub is
port (a, b, c, d : in std_logic;
x,y : out std_logic);
end sub;
architecture behave of sub is
attribute syn_hier : string;
attribute syn_hier of behave : architecture is “hard”;
begin
x <= a and b;
y <= c and d;



LO

 

© 2020 Synopsys, Inc.
164 October 2020

end behave;
--Top level
library ieee;
use ieee.std_logic_1164.all;
entity top is
port (a1, b1 : in std_logic;
c1,d1,clk : in std_logic;
y1 :out std_logic);
end;
architecture behave of top is
component sub
port (a, b, c, d : in std_logic;
x,y : out std_logic);
end component;
signal x2,y2,x3,y3 : std_logic;
attribute syn_noprune : boolean;
attribute syn_noprune of u1 : label is true;
begin
u1: sub port map(a1, b1, c1, d1, x2, y2); 

--Instance with syn_noprune directive
u2: sub port map(a1, b1, c1, d1, x3, y3);
process begin
wait until (clk = ‘1’) and clk’event;
y1 <= a1;
end process;

end; 



 

Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 165

The syn_noprune directive works the same on component instances as with a 
component declaration. 

VHDL Example 4: Black Box

-- VHDL Example 4: Black Box 

--Top level
library ieee;
use ieee.std_logic_1164.all;
entity top is
port (a1, b1 : in std_logic;
c1,d1,clk : in std_logic;
y1 :out std_logic);
end;
architecture behave of top is
component sub
port (a, b, c, d : in std_logic;
x,y : out std_logic);
end component;
attribute syn_noprune : boolean;
attribute syn_noprune of sub : component is true;

signal x2,y2,x3,y3 : std_logic;
begin
u1: sub port map(a1, b1, c1, d1, x2, y2); 
u2: sub port map(a1, b1, c1, d1, x3, y3);

process begin



LO

 

© 2020 Synopsys, Inc.
166 October 2020

wait until (clk = ‘1’) and clk’event;
y1 <= a1;
end process;

end; 
The results for this example are shown in Effect of Using syn_noprune: 
Example 4, on page 171. 

Mixed Language Example
The syn_noprune directive can be specified on a module or architecture in a 
mixed Verilog and VHDL design.

Example 5: Mixed Language Design

The syn_noprune directive is specified on module sub in the top-level Verilog 
file. 

module top (input a1,b1,c1,d1,
input a2,b2,c2,d2,
output x,y
);

sub inst1 (a1,b1,c1,d1,,)/*synthesis syn_noprune=1*/;
sub inst2 (a2,b2,c2,d2,x,y);

endmodule
The architecture sub is defined in the following VHDL library file.

library ieee;
use ieee.std_logic_1164.all;
entity sub is
port (a, b, c, d : in std_logic;
x,y : out std_logic);
end sub;

architecture behave of sub is
attribute syn_hier : string;



 

Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 167

attribute syn_hier of behave : architecture is "hard";
begin
x <= a and b;
y <= c and d;
end behave;

The results for this example are shown in Effect of Using syn_noprune in a 
Mixed Language Design, on page 172.

Effect of Using syn_noprune: Example 1
The following RTL view shows that the design hierarchy is preserved when 
the syn_noprune directive is applied on the module leaf. Otherwise, the design 
hierarchies are dissolved.



LO

 

© 2020 Synopsys, Inc.
168 October 2020

Effect of Using syn_noprune: Example 2
In this example, the software preserves the lower-most leaf hierarchy inst2 
and the hierarchy above it. When syn_noprune is not applied, inst2 is not 
preserved.



 

Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 169

In this example, the software propagates the syn_noprune directive downwards 
in the hierarchy chain.

//Top module
module top (input int a, b, output int c);
assign c=b;
sub i1 (a);
endmodule

//Hier1
module sub (input int a);
interm1 i2 (a);
endmodule



LO

 

© 2020 Synopsys, Inc.
170 October 2020

//Hier2
module interm1 (input int a) /* synthesis syn_noprune=1*/;
interm2 i3 (a);
endmodule

//Hier3
module interm2 (input int a);
leaf i4 (a);
endmodule

Effect of Using syn_noprune: Example 3
The following RTL views show that the design hierarchy is preserved when 
the syn_noprune directive is applied for the component sub. 



 

Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 171

Effect of Using syn_noprune: Example 4
The following RTL views show that the instance and black box module are not 
optimized away when syn_noprune is applied. 



LO

 

© 2020 Synopsys, Inc.
172 October 2020

Effect of Using syn_noprune in a Mixed Language Design
The following RTL view shows that the design hierarchy is preserved when 
the syn_noprune directive is applied on sub. 



 

Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 173



LO

 

© 2020 Synopsys, Inc.
174 October 2020



Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 175

syn_pad_type 
Attribute

Specifies an I/O buffer standard.

syn_pad_type Values

Description
Specifies an I/O buffer standard. Refer to Industry I/O Standards, on 
page 242 and to the vendor-specific documentation for a list of I/O buffer 
standards available for the selected device family. 

syn_pad_type Syntax

Vendor Technology

Microchip newer families

Value Description

{buffer}_{standard}
For example: IBUF_LVCMOS_18

Specifies the port I/O standard.

Default Global Attribute Object

Not Applicable No Port



LO

 

© 2020 Synopsys, Inc.
176 October 2020

FDC Example

Constraint File Examples

FDC define_io_standard -default portType {port} -delay_type 
portType syn_pad_type {io_standard}
For example: define_io_standard {p} -delay_type 
output syn_pad_type {LVCMOS_18}

FDC Example

Verilog object /* synthesis syn_pad_type = io_standard */ Verilog Example

VHDL attribute syn_pad_type of object : objectType is 
io_standard; 

VHDL Example

-default_portType PortType can be input, output, or bidir. Setting 
default_input, default_output, or default_bidir causes all 
ports of that type to have the same I/0 standard 
applied to them.

-delay_type portType PortType can be input, output, or bidir.

syn_pad_type {io_standard} Specifies I/O standard (see following table).

To set ... Use this syntax ...

The default for all input 
ports to the AGP1X pad 
type

define_io_standard -default_input -delay_type 
input syn_pad_type {AGP1X}

All output ports to the 
GTL pad type

define_io_standard -default_output -delay_type 
output syn_pad_type {GTL}

All bidirectional ports to 
the CTT pad type

define_io_standard -default_bidir -delay_type 
bidir syn_pad_type {CTT}



 

Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 177

The following are examples of pad types set on individual ports. You cannot 
assign pad types to bit slices.

define_io_standard {in1} -delay_type input 
syn_pad_type {LVCMOS_15}

define_io_standard {out21} -delay_type output 
syn_pad_type {LVCMOS_33}

define_io_standard {bidirbit} -delay_type bidir 
syn_pad_type {LVTTL_33}

Verilog Example
module top (clk,A,B,PC,P); 

input clk; 
input A ;
input B,PC; 
output reg P/* synthesis syn_pad_type = "OBUF_LVCMOS_18" */;

reg a_d,b_d; 
reg m; 

always @(posedge clk) 
begin 

a_d <= A; 
b_d <= B; 
m   <= a_d + b_d; 
P   <= m + PC; 

end 

endmodule

VHDL Example
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

library synplify;
use synplify.attributes.all;

entity top is 
port (clk : in std_logic; 
A : in std_logic_vector(1 downto 0); 



LO

 

© 2020 Synopsys, Inc.
178 October 2020

B : in std_logic_vector(1 downto 0); 
PC : in std_logic_vector(1 downto 0); 
P : out std_logic_vector(1 downto 0)); 

attribute syn_pad_type : string;
attribute syn_pad_type of P : signal is "OBUF_LVCMOS_18";
end top; 

architecture rtl of top is 
signal m : std_logic_vector(1 downto 0); 

begin 
process(clk) 

begin 
if (clk'event and clk = '1') then 

m <= A + B; 
P <= m + PC; 

end if; 
end process; 

end rtl;



 

Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 179

Effect of Using syn_pad_type
The following figure shows the netlist output after the attribute is applied:

Verilog output reg P /*synthesis syn_pad_type = "OBUF_LVCMOS_18"*/;
VHDL attribute syn_pad_type of P : signal is "OBUF_LVCMOS_18";



LO

 

© 2020 Synopsys, Inc.
180 October 2020



Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 181

syn_preserve 
Directive

Prevents sequential optimizations such as constant propagation, inverter 
push-through, and FSM extraction. 

syn_preserve Values

Description
The syn_preserve directive controls whether objects are optimized away. Use 
syn_preserve to retain registers for simulation, or to preserve the logic of regis-
ters driven by a constant 1 or 0. You can set syn_preserve on individual regis-
ters or on the module/architecture so that the directive is applied to all regis-
ters in the module. 

For example, assume that the input of a flip-flop is always driven to the same 
value, such as logic 1. By default, the synthesis tool ties that signal to VCC 
and removes the flip-flop. Using syn_preserve on the registered signal prevents 
the removal of the flip-flop. This is useful when you are not finished with the 
design but want to do a preliminary run to find the area utilization.

Technology Global Object

All Yes Register definition signal, module (Verilog)
Output port or internal signal that holds the value of the 
register or architecture (VHDL)

Value Description

1 | true Preserves register logic.

0 | false (Default) Optimizes registers as needed. 



LO

 

© 2020 Synopsys, Inc.
182 October 2020

Another use for this attribute is to preserve a particular state machine. When 
the FSM compiler is enabled, it performs various state-machine optimiza-
tions. Use syn_preserve to retain a particular state machine and prevent it 
from being optimized away.

When registers are removed during synthesis, the tool issues a warning 
message in the log file. For example: 

@W:...Register bit out2 is always 0, optimizing ...
The syn_preserve directive is similar to syn_keep and syn_noprune, in that it 
preserves logic. For more information, see Comparison of syn_keep, syn_pre-
serve, and syn_noprune, on page 117, and Preserving Objects from Being 
Optimized Away, on page 413 in the User Guide. 

syn_preserve Syntax

Verilog Example
In the following example, syn_preserve is applied to all registers in the module 
to prevent them from being optimized away. For the results, see Effect of 
using syn_preserve, on page 184. 

module mod_preserve (out1,out2,clk,in1,in2)
/* synthesis syn_preserve=1 */;

output out1, out2;
input clk;
input in1, in2;
reg out1;
reg out2;
reg reg1;
reg reg2;
always@ (posedge clk)begin
reg1 <= in1 &in2;
reg2 <= in1&in2;
out1 <= !reg1;
out2 <= !reg1 & reg2;
end
endmodule

Verilog object /* synthesis syn_preserve = 0 |1 */ Verilog Example

VHDL attribute syn_preserve of object : objectType is true | false; VHDL Examples



 

Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 183

This is an example of setting syn_preserve on a state register: 

reg [3:0] curstate /* synthesis syn_preserve = 1 */;

VHDL Examples
This section contains some VHDL code examples: 

Example 1

library ieee, synplify;
use ieee.std_logic_1164.all;
entity simpledff is

port (q : out std_logic_vector(7 downto 0);
d : in std_logic_vector(7 downto 0);
clk : in std_logic);

-- Turn on flip-flop preservation for the q output
attribute syn_preserve : boolean;
attribute syn_preserve of q : signal is true;
end simpledff;
architecture behavior of simpledff is
begin

process(clk)
begin

if rising_edge(clk) then
-- Notice the continual assignment of "11111111" to q.

q <= (others => '1');
end if;

end process;
end behavior;

Example 2

In this example, syn_preserve is used on the signal curstate that is later used in 
a state machine to hold the value of the state register.

architecture behavior of mux is
begin
signal curstate : state_type;
attribute syn_preserve of curstate : signal is true;

-- Other code



LO

 

© 2020 Synopsys, Inc.
184 October 2020

Example 3

The results for the following example are shown in Effect of using syn_pre-
serve, on page 184. 

library ieee;
use ieee.std_logic_1164.all;
entity mod_preserve is

port (out1 : out std_logic;
out2 : out std_logic;
in1,in2,clk : in std_logic);

end mod_preserve;
architecture behave of mod_preserve is
attribute syn_preserve : boolean;
attribute syn_preserve of behave: architecture is true;
signal reg1 : std_logic;
signal reg2 : std_logic;
begin 

process 
begin

wait until clk'event and clk = '1';
reg1 <= in1 and in2;
reg2 <= in1 and in2;
out1 <= not (reg1);
out2 <= (not (reg1) and reg2);

end process;
end behave;

Effect of using syn_preserve
The following figure shows reg1 and out2 are preserved during optimization 
with syn_preserve. 

When syn_preserve is not set, reg1 and reg2 are shared because they are driven 
by the same source. out2 gets the result of the AND of reg2 and NOT reg1. This 
is equivalent to the AND of reg1 and NOT reg1, which is a 0. As this is a 
constant, the tool removes out2 and the output out2 is always 0. 

Verilog mod_preserve /* synthesis syn_preserve = 1 */

VHDL attribute syn_preserve of behave : architecture is true; 



 

Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 185



LO

 

© 2020 Synopsys, Inc.
186 October 2020



Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 187

syn_probe
Attribute 

Inserts probe points for testing and debugging the internal signals of a 
design.

syn_probe Values

Description
syn_probe works as a debugging aid, inserting probe points for testing and 
debugging the internal signals of a design. The probes appear as ports at the 
top level. When you use this attribute, the tool also applies syn_keep to the 
net. 

You can specify values to name probe ports and assign pins to named ports 
for selected technologies. Pin-locking properties of probed nets will be trans-
ferred to the probe port and pad. If empty square brackets [] are used, probe 
names will be automatically indexed, according to the index of the bus being 
probed. 

The table below shows how to apply syn_probe values to nets, buses, and bus 
slices. It indicates what port names will appear at the top level. When the 
syn_probe value is 0, probe generation is disabled; when syn_probe is 1, the 
probe port name is derived from the net name. 

Value Description

1/true Inserts a probe, and automatically derives a name for the probe port 
from the net name.

0/false Disables probe generation. 

portName Inserts a probe and generates a port with the specified name. If you 
include empty square brackets, [ ], the probe names are automatically 
indexed to the net name. 



LO

 

© 2020 Synopsys, Inc.
188 October 2020

syn_probe Syntax

The following table shows the syntax used to define this attribute in different 
files: 

Net Name syn_probe Value Probe Port Comments

n:ctrl 1 ctrl_probe_1 Probe port name generated by the 
synthesis tool.

n:ctr test_pt test_pt For string values on a net, the port 
name is identical to the syn_probe 
value.

n:aluout[2] test_pt test_pt For string values on a bus slice, the 
port name is identical to the 
syn_probe value.

n:aluout[2] test_pt[ ] test_pt[2] The empty square brackets [ ] 
indicate that port names will be 
indexed to net names.

n:aluout[2:0] test_pt[ ] test_pt[2]
test_pt[1]
test_pt[0]

The empty square brackets [ ] 
indicate that port names will be 
indexed to net names.

n:aluout[2:0] test_pt test_pt, 
test_pt_0, 
test_pt_1

If a syn_probe value without 
brackets is applied to a bus, the 
port names are adjusted.

Global Object Default 

No Net None

FDC define_attribute {n:netName} syn_probe {probePortname|1|0} FDC Example

Verilog object /* synthesis syn_probe = "string" | 1 | 0 */; Verilog Example

VHDL attribute syn_probe of object : signal is "string" | 1 | 0; VHDL Example



 

Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 189

FDC Example
The following examples insert a probe signal into a net and assign pin 
locations to the ports.

define_attribute {n:inst2.DATA0_*[7]} syn_probe {test_pt[]}
define_attribute {n:inst2.DATA0_*[7]} syn_loc 

{14,12,11,5,21,18,16,15}

Verilog Example
The following example inserts probes on bus alu_tmp [7:0] and assigns pin 
locations to each of the ports inserted for the probes. 

module alu(out1, opcode, clk, a, b, sel);
output [7:0] out1;
input [2:0] opcode;
input [7:0] a, b;
input clk, sel;
reg [7:0] alu_tmp /* synthesis syn_probe="alu1_probe[]"

syn_loc="A5,A6,A7,A8,A10,A11,A13,A14" */;
reg [7:0] out1;
// Other code
always @(opcode or a or b or sel)
begin

case (opcode)
3'b000:alu_tmp <= a+b;
3'b000:alu_tmp <= a-b;
3'b000:alu_tmp <= a^b;
3'b000:alu_tmp <= sel ? a:b;
default:alu_tmp <= a|b;

endcase
end
always @(posedge clk)
out1 <= alu_tmp;
endmodule



LO

 

© 2020 Synopsys, Inc.
190 October 2020

VHDL Example
The following example inserts probes on bus alu_tmp(7 downto 0) and assigns 
pin locations to each of the ports inserted for the probes.

library ieee; 
use ieee.std_logic_1164.all; 
entity alu is 
port (a : in std_logic_vector(7 downto 0); 

b : in std_logic_vector(7 downto 0); 
opcode : in std_logic_vector(2 downto 0); 

clk : in std_logic; 
out1 : out std_logic_vector(7 downto 0)); 

end alu; 
architecture rtl of alu is 
signal alu_tmp : std_logic_vector (7 downto 0);

attribute syn_probe : string; 
attribute syn_probe of alu_tmp : signal is "test_pt"; 
attribute syn_loc : string; 
attribute syn_loc of alu_tmp : signal is 

"A5,A6,A7,A8,A10,A11,A13,A14"; 

begin 
process (clk) 

begin 
if (clk'event and clk = '1') then 
out1 <= alu_tmp; 
end if; 

end process; 
process (opcode,a,b) 

begin 
case opcode is 
when "000"   =>  alu_tmp <= a and b; 
when "001"   =>  alu_tmp <= a or b; 
when "010"   =>  alu_tmp <= a xor b; 
when "011"   =>  alu_tmp <= a nand b; 
when others  =>  alu_tmp <= a nor b; 

end case; 
end process; 

end rtl; 



 

Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 191

Effect of Using syn_probe
Before applying syn_probe:

After applying syn_probe with 1:

Verilog reg [7:0] alu_tmp /* synthesis syn_probe="0"*/

VHDL attribute syn_probe of alu_tmp : signal is "0";

Verilog reg [7:0] alu_tmp /* synthesis syn_probe="1"*/

VHDL attribute syn_probe of alu_tmp : signal is "1";



LO

 

© 2020 Synopsys, Inc.
192 October 2020

After applying syn_probe with test_pt:

Verilog reg [7:0] alu_tmp /* synthesis syn_probe="test_pt"*/

VHDL attribute syn_probe of alu_tmp : signal is "test_pt";



 

Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 193

After applying syn_probe with test_pt[]:

Verilog reg [7:0] alu_tmp /* synthesis syn_probe="test_pt[]"*/

VHDL attribute syn_probe of alu_tmp : signal is "test_pt[]";



LO

 

© 2020 Synopsys, Inc.
194 October 2020



Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 195

syn_radhardlevel 
Attribute

Implements designs with high reliability, using radiation-resistant 
techniques. 

Description
This attribute enables triple modular redundancy (TMR) for local TMR.

Some high reliability techniques are not available or appropriate for all Micro-
chip families. Use a design technique that is valid for the project. Contact 
Microchip technical support for details.

You can apply syn_radhardlevel globally to the top-level module/architecture or 
on an individual register output signal (or inferred register in VHDL), and the 
tool uses the attribute value in conjunction with the Microchip macro files 
supplied with the software. For more details about using this attribute, see 
Specifying syn_radhardlevel in the Source Code, on page 543 and Working 
with Microchip Radhard Designs, on page 542.

Vendor Technologies Tool

Microchip IGLOO2, RTG4, SmartFusion2, PolarFire Synplify Pro



LO

syn_radhardlevel

© 2020 Synopsys, Inc.
196 October 2020

syn_radhardlevel Values
The syn_radhardlevel attribute can use the following options:

syn_radhardlevel Syntax

The following table summarizes the syntax in different files:

FDC File Example

define_attribute {i:dataout[3:0]} syn_radhardlevel {tmr}

none Microchip
Default
Uses standard design techniques, and does not insert any 
triple register logic.

tmr SmartFusion2, RTG4, IGLOO2, PolarFire
Uses triple module redundancy or triple voting to 
implement registers. Each register is implemented by three 
flip-flops or latches that “vote” to determine the state of the 
register. This option can potentially affect area and timing 
QoR because of the additional logic inserted, so be sure to 
check your area and timing goals when you use this option. 

Name Global Attribute Object

syn_radhardlevel No Module, architecture, register
Verilog: output signal
VHDL: architecture, signal

FDC define_attribute {object} syn_radhardlevel {none|tmr} FDC File Example

Verilog object /* synthesis syn_radhardlevel = none|tmr */ Verilog Example

VHDL attribute syn_rardhardlevel : boolean; 
attribute syn_radhardlevel of object : object type is 
none|tmr;

VHDL Example



syn_radhardlevel

Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 197

Verilog Example

//Top level
module top (clk, dataout, a, b);
input clk;
input a;
input b;
output [3:0] dataout;
M1 inst_M1 (a1, M3_out1, clk, rst, M1_out);
// Other code
//Sub modules subjected to DTMR
module M1 (a1, a2, clk, rst, q) 

/* synthesis syn_radhardlevel="tmr" */;
input clk;
input signed [15:0] a1,a2; 
input clk, rst; 
output signed [31:0] q; 
// Other code

VHDL Example

See VHDL Attribute and Directive Syntax, on page 403 for alternate methods 
for specifying VHDL attributes and directives.

library synplify;
architecture top of top is
attribute syn_radhardlevel : string;
attribute syn_radhardlevel of top: architecture is "tmr";

-- Other code



LO

syn_radhardlevel

© 2020 Synopsys, Inc.
198 October 2020



Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 199

syn_ramstyle 
Attribute 

Specifies the implementation for an inferred RAM. 

syn_ramstyle Values

The values for syn_ramstyle vary with the target technology. The following table 
lists all the valid syn_ramstyle values, some of which apply only to certain 
technologies. For details about using syn_ramstyle, see RAM Attributes, on 
page 184 in the User Guide. 

Vendor Devices

Microchip newer devices 
RTG4 devices

Default Global Attribute Object

block_ram Yes View, module, entity, RAM instance

block_ram Specifies that the inferred RAM be mapped to the 
appropriate device-specific memory. It uses the dedicated 
memory resources in the FPGA. 
By default, the software uses deep block RAM configurations 
instead of wide configurations to get better timing results. 
Using deeper RAMs reduces the output data delay timing by 
reducing the MUX logic at the output of the RAMs. By 
default the software does not use the parity bit for data with 
this option. 
Alternatively, you can specify a ramType value. See RAM 
Type Values and Implementations, on page 201 for details 
of how memory is implemented for different devices.



LO

 

© 2020 Synopsys, Inc.
200 October 2020

no_rw_check By default, the synthesis tool inserts bypass logic around 
the inferred RAM to avoid simulation mismatches caused by 
indeterminate output values when reads and writes are 
made to the same address. When this option is specified, the 
synthesis tool does not insert glue logic around the RAM. 
You can use this option on its own or in conjunction with a 
RAM type value such as M512, or with the power value for 
supported technologies. You cannot use it with the rw_check 
option, as the two are mutually exclusive. 
There are other read-write check controls. See Read-Write 
Address Checks, on page 202 for details about the 
differences. 

no_rw_check_diff_clk When enabled, the synthesis tool prevents the insertion 
bypass logic around the RAM. If you know your design has 
RAM that has a read clock and a write clock that are 
asynchronous, use no_rw_check_diff_clk to prevent the 
insertion of bypass logic. If this option is enabled, you 
should not set the asynchronous clock groups in your FDC 
file. For example, if you set the following, do not use this 
option:
create_clock  {p:clkr} -period {10}
create_clock  {p:clkw} -period {20}
set_clock_groups -derive -asynchronous -name 
{async_clkgroup} -group { {c:clkw} }
Note: The no_rw_check, rw_check, and no_rw_check_diff_clk 
options for the syn_ramstyle attribute are mutually exclusive 
and must not be used together. Whenever synthesis conflicts 
exist, the software uses the following order of precedence: 
first the syn_ramstyle attribute, the syn_rw_conflict attribute, 
and then the Automatic Read/Write check Insertion for RAM option 
on the Implementation Option panel.

ramType Specifies a device-specific RAM implementation. Valid values 
vary from vendor to vendor as they are based on device 
architecture: 
• Microchip: lsram, uram
See RAM Type Values and Implementations, on page 201 
for details of how memory is implemented for different 
devices. 

registers Specifies that an inferred RAM be mapped to registers 
(flip-flops and logic), not technology-specific RAM resources. 



 

Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 201

RAM Type Values and Implementations

The table lists RAM implementation information, including vendor-specific 
ramType values. 

rw_check When enabled, the synthesis tool inserts bypass logic 
around the RAM to prevent a simulation mismatch between 
the RTL and post-synthesis simulations. 
You can use this option on its own or in conjunction with a 
RAM type value such as M512, or with the power value for 
supported technologies. You cannot use it with the 
no_rw_check option, as the two are mutually exclusive. 
Do not enable this option for RAMs with asynchronous 
read/write clocks. If rw_check is enabled on block RAM with 
an asynchronous read clock (rclk) and write clock (wclk), 
the tool inserts extra logic and a timing path between wclk 
and rclk. If the clocks are asynchronous to each other, this 
path can produce glitches on hardware.
There are other read-write check controls. See Read-Write 
Address Checks, on page 202 for details about the 
differences.

Vendor Values Implementation Technology

Microchip Default: block_ram

registers Registers

block_ram Device-specific RAMs 

block_ram, 
no_rw_check/ 
rw_check 

RAMs without/with glue 
logic

Default: Registers

lsram RAM1K18, RAM1K18_RT RTG4, IGLOO2, 
SmartFusion2 families

uram RAM64X18, RAM64X18_RT

registers Registers

no_rw_check/ 
rw_check 

RAMs without/with glue 
logic

 set RAM1K18_RT, 
RAM64X18_RT

RTG4 family



LO

 

© 2020 Synopsys, Inc.
202 October 2020

Description
The syn_ramstyle attribute specifies the implementation to use for an inferred 
RAM. You can apply the attribute globally, to a module, or a RAM instance. 
You can also use syn_ramstyle to prevent the inference of a RAM, by setting it 
to registers. If your RAM resources are limited, you can map additional RAMs 
to registers instead of RAM resources using this setting. 

The syn_ramstyle values vary with the technology. 

Read-Write Address Checks

When reads and writes are made to the same address, the output could be 
indeterminate, and this can cause simulation mismatches. By default, the 
synthesis tool inserts bypass logic around an inferred RAM to avoid these 
mismatches. The synthesis tool offers multiple ways to specify how to handle 
read-write address checking:

If there is a conflict, the software uses the following order of precedence: 

• syn_ramstyle attribute settings 

• Read Write Check on RAM option on the Device panel of the Implementation 
Options dialog box.

Read Write Control Use when ...

syn_ramstyle You know your design does not read and write to the same 
address simultaneously and you want to specify the RAM 
implementation. The attribute has two mutually-exclusive 
read-write check options: 
• Use no_rw_check to eliminate bypass logic. If you enable 

global RAM inference with the Read Write Check on RAM 
option, you can use no_rw_check to selectively disable 
glue logic insertion for individual RAMs. 

• Use rw_check to insert bypass logic. If you disable global 
RAM inference with the Read Write Check on RAM option, 
you can use rw_check to selectively enable glue logic 
insertion for individual RAMs. 

Read Write Check on RAM You want to globally enable or disable glue logic insertion 
for all the RAMs in the design. 



 

Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 203

syn_ramstyle Syntax 

FDC Example

If you edit a constraint file to apply syn_ramstyle, be sure to include the range 
of the signal with the signal name. For example:

define_attribute {mem[7:0]} syn_ramstyle {registers};
define_attribute {mem[7:0]} syn_ramstyle {block_ram};

Verilog Example
module RAMB4_S4 (data_out, ADDR, data_in, EN, CLK, WE, RST); 
output[3:0] data_out; 
input [7:0] ADDR; 
input [3:0] data_in; 
input EN, CLK, WE, RST; 
reg [3:0] mem [255:0] /* synthesis syn_ramstyle="select_ram" */; 
reg [3:0] data_out; 
always@(posedge CLK) 

if(EN) 
if(RST == 1)

data_out <= 0; 
else 
begin 

if(WE == 1)
data_out <= data_in; 

else 
data_out <= mem[ADDR]; 

end 

FDC define_attribute {signalname [bitRange]} -syn_ramstyle value
define_global_attribute syn_ramstyle value

FDC Example

Verilog object /* synthesis syn_ramstyle = value */ Verilog Example

VHDL attribute syn_ramstyle of object : objectType is value ; VHDL Example



LO

 

© 2020 Synopsys, Inc.
204 October 2020

always @(posedge CLK) 
if (EN && WE) mem[ADDR] = data_in; 
endmodule

VHDL Example
library ieee; 
use ieee.std_logic_1164.all; 
USE ieee.numeric_std.ALL; 
library synplify; 
entity RAMB4_S4 is 

port (ADDR: in std_logic_vector(7 downto 0); 
data_in : in std_logic_vector(3 downto 0); 
WE : in std_logic; 
CLK : in std_logic; 
RST : in std_logic; 
EN : in std_logic; 
data_out : out std_logic_vector(3 downto 0)); 

end RAMB4_S4; 
architecture rtl of RAMB4_S4 is 
type mem_type is array (255 downto 0) of std_logic_vector (3 downto 0);
signal mem : mem_type; 
-- mem is the signal that defines the RAM 
attribute syn_ramstyle : string; 
attribute syn_ramstyle of mem : signal is "select_ram"; 
begin

process (CLK) 
begin 
IF (CLK'event AND CLK = '1') THEN 

IF (EN = '1') THEN 
IF (RST = '1') THEN 

data_out <= "0000"; 
ELSE 

IF (WE = '1') THEN 
data_out <= data_in; 

ELSE 
data_out <= mem(to_integer(unsigned(ADDR))); 

END IF; 
END IF; 

END IF; 
END IF; 
end process; 



 

Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 205

process (CLK) 
begin 
IF (CLK'event AND CLK = '1') THEN 

IF (EN = '1' AND WE = '1') THEN 
mem(to_integer(unsigned(ADDR))) <= data_in; 

END IF; 
END IF; 
end process; 
end rtl;

Registers Example

Verilog reg [3:0] mem [255:0] /* synthesis syn_ramstyle="registers" */;

VHDL attribute syn_ramstyle of mem : signal is "registers";



LO

 

© 2020 Synopsys, Inc.
206 October 2020



Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 207

syn_reference_clock 
Attribute

Specifies a clock frequency other than the one implied by the signal on the 
clock pin of the register. 

Description
syn_reference_clock is a way to change clock frequencies other than using the 
signal on the clock pin. For example, when flip-flops have an enable with a 
regular pattern, such as every second clock cycle, use syn_reference_clock to 
have timing analysis treat the flip-flops as if they were connected to a clock at 
half the frequency.

To use syn_reference_clock, define a new clock, then apply its name to the 
registers you want to change.

FDC Example
define_attribute {register} syn_reference_clock {clockName}

For example:

define_attribute {myreg[31:0]} syn_reference_clock {sloClock}
You can also use syn_reference_clock to constrain multiple-cycle paths through 
the enable signal. Assign the find command to a collection (clock_enable_col), 
then refer to the collection when applying the syn_reference_clock constraint. 

Vendor Technology Default Value Global Object

Microchip SmartFusion2 - - Register

FDC define_attribute {register} syn_reference_clock 
{clockName}

FDC 
Example



LO

 

© 2020 Synopsys, Inc.
208 October 2020

The following example shows how you can apply the constraint to all registers 
with the enable signal en40:

define_scope_collection clock_enable_col {find -seq * -filter 
(@clock_enable==en40)}

define_attribute {$clock_enable_col} syn_reference_clock {clk2}

Note: You apply syn_reference_clock only in a constraint file; you cannot 
use it in source code.

Effect of using syn_reference_clock
The following figure shows the report before applying the attribute:

This is the report after applying the attribute:



Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 209

syn_replicate 
Attribute

Controls replication of registers during optimization.

syn_replicate values

Description
The synthesis tool automatically replicates registers while optimizing the 
design and fixing fanouts, packing I/Os, or improving the quality of results. 

If area is a concern, you can use this attribute to disable replication either 
globally or on a per-register basis. When you disable replication globally, it 
disables I/O packing and other QoR optimizations. When it is disabled, the 
synthesis tool uses only buffering to meet maximum fanout guidelines. 

To disable I/O packing on specific registers, set the attribute to 0. Similarly, 
you can use it on a register between clock boundaries to prevent replication. 
Take an example where the tool replicates a register that is clocked by clk1 
but whose fanin cone is driven by clk2, even though clk2 is an unrelated clock 
in another clock group. By setting the attribute for the register to 0, you can 
disable this replication. 

Vendor Technologies

Microchip

Value Default Global Object Description

0 No Yes Register Disables duplication of registers

1 Yes Yes Register Allows duplication of registers



LO

 

© 2020 Synopsys, Inc.
210 October 2020

syn_replicate Syntax Specification

FDC Example

Verilog Example
module norep (Reset, Clk, Drive, OK, ADPad, IPad, ADOut);
input Reset, Clk, Drive, OK;
input [6:0] ADOut;
inout [6:0] ADPad;
output [6:0] IPad;
reg [6:0] IPad;
reg DriveA /* synthesis syn_replicate = 0 */;
assign ADPad = DriveA ? ADOut : 32'bz;
always @(posedge Clk or negedge Reset)

if (!Reset)
begin

DriveA <= 0;
IPad   <= 0;

end
else

begin
DriveA <= Drive & OK;
IPad   <= ADPad;

end
endmodule

FDC define_global_attribute syn_replicate {0 | 1}; FDC Example

Verilog object /* synthesis syn_replicate = 1 |  0 */; Verilog Example

VHDL attribute syn_replicate : boolean;
attribute syn_replicate of object : signal is true|false;

VHDL Example



 

Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 211

VHDL Example
library IEEE;
use ieee.std_logic_1164.all;
entity norep is 

port (Reset : in std_logic;
Clk : in std_logic;
Drive : in std_logic;
OK : in std_logic;
ADPad : inout std_logic_vector (6 downto 0);
IPad : out std_logic_vector (6 downto 0);
ADOut : in std_logic_vector (6 downto 0) );

end norep;
architecture archnorep of norep is
signal DriveA : std_logic;
attribute syn_replicate : boolean;
attribute syn_replicate of DriveA : signal is false;
begin
ADPad <= ADOut when DriveA='1' else (others => 'Z');

process (Clk, Reset)
begin

if Reset='0' then
DriveA <= '0';
IPad <= (others => '0');

elsif rising_edge(clk) then
DriveA <= Drive and OK;
IPad <= ADPad;

end if;
end process;

end archnorep;

Effect of Using syn_replicate
The following example shows a design without the syn_replicate attribute: 

Verilog reg DriveA /*synthesis syn_replicate=1*/

VHDL attribute syn_replicate : boolean;
attribute syn_replicate of DriveA : signal is true;



LO

 

© 2020 Synopsys, Inc.
212 October 2020

When you apply syn_replicate, the registers are not duplicated: 

Verilog reg DriveA /*synthesis syn_replicate=0*/

VHDL attribute syn_replicate : boolean;
attribute syn_replicate of DriveA : signal is false;



 

Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 213



LO

 

© 2020 Synopsys, Inc.
214 October 2020



Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 215

syn_resources 
Attribute

Specifies the resources used inside a black box.

syn_resources Values

The value for this attribute can be specified with any combination of the 
following:

The value listed in the area usage report is the larger of the luts or regs value. 

Vendor-specific usage model includes the following support:

• The Microchip families only support resource values of blockrams and 
corecells.

Vendor Technology

Microchip

Global Support Object

No  Module or architecture

Value Description

blockrams=integer Number of RAM resources

corecells=integer Microchip families only
Number of core cells



LO

 

© 2020 Synopsys, Inc.
216 October 2020

Description
Specifies the resources used inside a black box. This attribute is applied to 
Verilog black-box modules and VHDL architectures or component definitions. 

syn_resources Syntax
The following table summarizes the syntax in different files.

FDC Example

You can apply the attribute to more than one kind of resource at a time by 
separating assignments with a comma (,). For example:

define_attribute {v:bb} syn_resources {corecells=300, blockrams=5}
define_attribute {v:bb} syn_resources {luts=500, blockrams=10}

Example - Verilog syn_resources (Microchip)

// Example: Verilog syn_resources (Microchip)

module bb (o,i) /* synthesis syn_black_box syn_resources =

FDC define_attribute {v:moduleName} syn_resources 
blockrams=integer | 

FDC Example

Microchip only
define_attribute {v:moduleName} syn_resources 
{corecells=integer | blockrams=integer}

Verilog object /* synthesis syn_resources = value */; Example - 
Verilog 
syn_resources 
(Microchip)

VHDL attribute syn_resources : string; 
attribute syn_resources of object : objectType is value;

Example - 
VHDL 
syn_resources 
(Microchip)



 

Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 217

“corecells=300, blockrams=10” */;
input i;
output o;
endmodule
module top_bb (o,i);
input i;
output o;
bb u1 (o,i);
endmodule 

In Verilog, you can only attach this attribute to a module. Here is the 
example:

Example - VHDL syn_resources (Microchip) 

-- Example: VHDL syn_resources (Microchip)

library ieee;
use ieee.std_logic_1164.all;

entity top is
port (o : out std_logic;

  i : in std_logic
  );
  

end top;

architecture top_rtl of top is

component bb



LO

 

© 2020 Synopsys, Inc.
218 October 2020

  port (o : out std_logic;
                i : in std_logic);

end component;

begin
U1: bb port map(o, i);
end top_rtl;

--black box entity
library ieee;
use ieee.std_logic_1164.all;

entity bb is
port (o : out std_logic;

  i : in std_logic
  );
  

end bb;

architecture rtl of bb is

attribute syn_resources : string;
attribute syn_resources of rtl: architecture is “corecells=300, 
blockrams=10”;

begin



 

Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 219

end rtl; 
In VHDL, this attribute can be placed on either an architecture or a compo-
nent declaration. 

Effect of Using syn_resources (Microchip)
You can check the Resource Utilization report in the log file to verify how 
resources are actually mapped.



LO

 

© 2020 Synopsys, Inc.
220 October 2020



Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 221

syn_romstyle 
Attribute

This attribute determines how ROM architectures are implemented.

syn_romstyle Values

Description
By applying the syn_romstyle attribute to the signal output value, you can 
control whether the ROM structure is implemented as discrete logic or RAM 
blocks. By default, small ROMs (less than twelve bits) are implemented as 
logic, and large ROMs (twelve or more bits) are implemented as RAM.

You can infer ROM architectures using a case statement in your code. For the 
synthesis tool to implement a ROM, at least half of the available addresses in 
the case statement must be assigned a value. For example, consider a ROM 
with six address bits (64 unique addresses). The case statement for this ROM 
must specify values for at least 32 of the available addresses.

syn_romstyle Values Syntax
The following support applies for the syn_romstyle attribute.

Vendor Technology

Microchip PolarFire

Value Description

logic ROM is inferred as registers or LUTs.

URAM|lsram ROM is inferred as RAM1K20 or RAM64x12. 
Asynchronous ROM is mapped to RAM64x12 even if lsram 
attribute is applied.



LO

syn_romstyle

© 2020 Synopsys, Inc.
222 October 2020

This table summarizes the syntax in different files:

SCOPE Example

Verilog Example
The following Verilog code example applies the syn_romstyle value of block_rom.

module test (clock,addr,dataout) /* synthesis syn_romstyle = 
"lsram" */;
input clock;
input [4:0] addr;
output [7:0] dataout;
reg [7:0] dataout;
reg [4:0] addr_reg;
always @(posedge clock)
begin
addr_reg<=addr;
case (addr_reg)
5'b00000: dataout <= 8'b10000011;
5'b00001: dataout <= 8'b00000101;
5'b00010: dataout <= 8'b00001001;
5'b00011: dataout <= 8'b00001101;
5'b00100: dataout <= 8'b00010001;

Default Global Support Object

logic Yes v: module or entity

FDC define_attribute {object} syn_romstyle 
{logic|uram|lsram}
define_global_attribute syn_romstyle 
{logic|uram|lsram}

SCOPE Example

Verilog object /* synthesis syn_romstyle = "logic | uram | 
lsram" */ ; 

Verilog Example

VHDL attribute syn_romstyle : string;
attribute syn_romstyle of object : signal is "logic | 
uram | lsram"; 

VHDL Example



syn_romstyle

Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 223

5'b00101: dataout <= 8'b00011001;
5'b00110: dataout <= 8'b00100001;
5'b00111: dataout <= 8'b10110100;
5'b01000: dataout <= 8'b11000000;
5'b01000: dataout <= 8'b00011011;
5'b01001: dataout <= 8'b10110001;
5'b01010: dataout <= 8'b00110101;
5'b01011: dataout <= 8'b01110010;
5'b01100: dataout <= 8'b11100011;
5'b01101: dataout <= 8'b00111111;
5'b01110: dataout <= 8'b01010101;
5'b01111: dataout <= 8'b00110100;
5'b10000: dataout <= 8'b10110000;
5'b10000: dataout <= 8'b11111011;
5'b10001: dataout <= 8'b00010001;
5'b10010: dataout <= 8'b10110011;
5'b10011: dataout <= 8'b00101011;
5'b10100: dataout <= 8'b11101110;
5'b10101: dataout <= 8'b01110111;
5'b10110: dataout <= 8'b01110101;
5'b10111: dataout <= 8'b01000011;
5'b11000: dataout <= 8'b01011100;
5'b11000: dataout <= 8'b11101011;
5'b11001: dataout <= 8'b00010100;
5'b11010: dataout <= 8'b00110011;
5'b11011: dataout <= 8'b00100101;
5'b11100: dataout <= 8'b01001110;
5'b11101: dataout <= 8'b01110100;
5'b11110: dataout <= 8'b11100101;
5'b11111: dataout <= 8'b01111110;
default: dataout <= 8'b00000000;
endcase
end

VHDL Example
The following VHDL code example applies the syn_romstyle value of block_rom.

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
entity single_port_rom is
generic
(
DATA_WIDTH : natural := 8;
ADDR_WIDTH : natural := 8



LO

syn_romstyle

© 2020 Synopsys, Inc.
224 October 2020

);
port
(
clk : in std_logic;
addr : in natural range 0 to 2**ADDR_WIDTH - 1;
q : out std_logic_vector((DATA_WIDTH -1) downto 0)
);
attribute syn_romstyle : string;
attribute syn_romstyle of q : signal is "uram";
end entity;
architecture rtl of single_port_rom is
subtype word_t is std_logic_vector((DATA_WIDTH-1) downto 0);
type memory_t is array(2**ADDR_WIDTH-1 downto 0) of word_t;
function init_rom
return memory_t is
variable tmp : memory_t := (others => (others => '0'));
begin
for addr_pos in 0 to 2**ADDR_WIDTH - 1 loop
tmp(addr_pos) := std_logic_vector(to_unsigned
(addr_pos, DATA_WIDTH));
end loop;
return tmp;
end init_rom;
signal rom : memory_t := init_rom;
begin
process(clk)
begin
if(rising_edge(clk)) then
q <= rom(addr);
end if;
end process;
end rtl;



Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 225

syn_safe_case 
Directive

This directive enables/disables the safe case option. 

syn_safe_case Values

Description
This directive enables/disables the safe case option. When enabled, the high 
reliability safe case option turns off sequential optimizations for counters, 
FSM, and sequential logic to increase the reliability of the circuit. If you set 
this directive on a module or architecture, the module or architecture is 
treated as safe and all case statements within it are implemented as safe. 

Note: The syn_safe_case directive can perform operations on FSMs and 
pmuxes to preserve default states and inject fault recovery logic 
to the default case. Using this directive might produce different 
results than the Preserve and Decode Unreachable States option.

For more information, see Specifying Safe FSMs, on page 545.

Vendor Technologies

Microchip SmartFusion2, IGLOO2 families

Value Description Default Global

false | 0 Turns off the safe case option. false | 0 No

true | 1 Turns on the safe case option.



LO

 

© 2020 Synopsys, Inc.
226 October 2020

syn_safe_case Syntax

Verilog Example
For example:

module top (input a, output b) /* synthesis syn_safe_case =1 */

VHDL Example
For example:

library ieee;
use ieee.std_logic_1164.all;

entity test is
port (a input std_logic;

b: out std_logic);
end test;

architecture rtl of test is
attribute syn_safe_case: boolean;
attribute syn_safe_case of rtl : architecture is "TRUE";

Effect of Using syn_safe_case
This example shows the others clause optimized away; then synthesized for 
SEU detection and mitigation when the syn_safe_case directive is enabled.

Verilog module /* syn_safe_case = "1 | 0" */; Verilog Example

VHDL attribute syn_safe_case : boolean;
attribute syn_safe_case of architectureName: architecture 
is "true | false";

VHDL Example



 

Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 227



LO

 

© 2020 Synopsys, Inc.
228 October 2020



Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 229

syn_sharing 
Directive

Enables or disables the sharing of operator resources during the compilation 
stage of synthesis. 

syn_sharing Values
1 | 

Description
The syn_sharing directive controls resource sharing during the compilation 
stage of synthesis. This is a compiler-specific optimization that does not affect 
the mapper; this means that the mapper might still perform resource sharing 
optimizations to improve timing, even if syn_sharing is disabled. 

You can also specify global resource sharing with the Resource Sharing option 
in the Project view, from the Project->Implementation Options->Options panel, or 
with the set_option -resource_sharing Tcl command. 

If you disable resource sharing globally, you can use the syn_sharing directive 
to turn on resource sharing for specific modules or architectures. See Sharing 
Resources, on page 422 in the User Guide for a detailed procedure. 

Technology Default Value Global Object

All On Yes Component, module

Value Description

0 | off Does not share resources during the compilation stage of synthesis. 

1 | on 
(Default)

Optimizes the design to perform resource sharing during the 
compilation stage of synthesis. 



LO

 

© 2020 Synopsys, Inc.
230 October 2020

syn_sharing Syntax

Verilog Example
module add (a, b, x, y, out1, out2, sel, en, clk)

/* synthesis syn_sharing=0 */;
input a, b, x, y, sel, en, clk;
output out1, out2;
wire tmp1, tmp2;
assign tmp1 = a * b;
assign tmp2 = x * y;
reg out1, out2;
always@(posedge clk)

if (en)
begin

out1 <= sel ?  tmp1: tmp2;
end

else
begin

out2 <= sel ? tmp1: tmp2;
end

endmodule

Verilog object /* synthesis syn_sharing=”on | off” */; Verilog Example

VHDL attribute syn_sharing of object : objectType is “on | off”; VHDL Example



 

Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 231

VHDL Example
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
entity add is

port (a, b : in std_logic_vector(1 downto 0);
x, y : in std_logic_vector(1 downto 0);
clk, sel, en: in std_logic;
out1 : out std_logic_vector(3 downto 0);
out2 : out std_logic_vector(3 downto 0));

end add;
architecture rtl of add is
attribute syn_sharing : string;
attribute syn_sharing of rtl : architecture is "on";
signal tmp1, tmp2: std_logic_vector(3 downto 0);
begin

tmp1 <= a * b;
tmp2 <= x * y;

process(clk) begin
if clk'event and clk='1' then

if (en='1') then
if (sel='1') then

out1 <= tmp1;
else 

out1 <= tmp2;
end if;

else
if (sel='1') then

out2 <= tmp1;
else

out2 <= tmp2;
end if;

end if;
end if;

end process;
end rtl;



LO

 

© 2020 Synopsys, Inc.
232 October 2020

Effect of Using syn_sharing
The following example shows the default setting, where resource sharing in 
the compiler is on:

Verilog module add /* synthesis syn_sharing = “on” */; 
VHDL attribute syn_sharing of add : architecture is “on”;



 

Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 233

The next figure shows the same design when resource sharing is off, and two 
adders are inferred:

Verilog module add /* synthesis syn_sharing = “off” */; 
VHDL attribute syn_sharing of add : component is “off”;



LO

 

© 2020 Synopsys, Inc.
234 October 2020



Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 235

syn_shift_resetphase
Attribute

Allows you to remove the flip-flop on the inactive clock edge, built by the reset 
recovery logic for an FSM when a single event upset (SEU) fault occurs.

syn_shift_resetphase Values

Description
When a single event upset (SEU) fault occurs, the FSM can transition to an 
unreachable state. The syn_encoding attribute with a value of safe provides a 
mechanism to build additional logic for recovery to the specified reset state. 
For an FSM with asynchronous reset, the software inserts an additional 
flip-flop to the recovery logic path on the opposite edge of the design clock, 
isolating the reset. You can use the syn_shift_resetphase attribute to remove 
this additional flip-flop on the inactive clock edge, if necessary. 

For more information about the syn_encoding attribute, see syn_encoding, on 
page 77.

Vendor Technology

Microchip SmartFusion2, IGLOO2

Value Description

1
(Default)

The flip-flop on the inactive clock edge is present.

0 Removes the flip-flop on the inactive clock edge. 



LO

 

© 2020 Synopsys, Inc.
236 October 2020

syn_shift_resetphase Syntax

The following table summarizes the syntax in different files:

SCOPE Example

The Tcl equivalent is shown below:

define_attribute {i:present_state[11:0]}{syn_shift_resetphase}{0}

Verilog Example
Apply the syn_shift_resetphase attribute on the top module or state register as 
shown in the Verilog code segment below.

module test (clk, rst, in, out) 
/* synthesis syn_shift_resetphase = 0 */;

...

reg [3:0] present_state 
/* synthesis syn_shift_resetphase = 0 */, next_state;

...

endmodule

Global Support Object

Yes FSM instance

FDC define_attribute object {syn_shift_resetphase} {1|0|}
define_global_attribute {syn_shift_resetphase} {1|0}

SCOPE 
Example

Verilog object /* synthesis syn_shift_resetphase = ”1 | 0” */; Verilog Example

VHDL attribute syn_shift_resetphase of state : signal is “true | false”; VHDL Example



 

Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 237

VHDL Example
Here is a VHDL code segment showing how to use the syn_shift_resetphase 
attribute.

entity fsm is

...

end fsm;

architecture rtl of fsm is
signal present_state : std_logic_vector(3 downto 0);

-- Specifying on the architecture

attribute syn_shift_resetphase : boolean;
attribute syn_shift_resetphase of rtl : architecture is false;

-- Specifying on the state signal

attribute syn_shift_resetphase : boolean;
attribute syn_shift_resetphase of present_state : signal is false;
begin

...

end rtl;

Effect of Using syn_shift_resetphase
Safe encoding is implemented for the following state machine.

This example shows Technology view results before the syn_shift_resetphase 
attribute is applied.



LO

 

© 2020 Synopsys, Inc.
238 October 2020

This example shows Technology view results after the syn_shift_resetphase 
attribute is applied.



Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 239

syn_smhigheffort 
Attribute

Uses higher threshold effort when the tool extracts a state-machine on 
individual state registers. 

syn_smhigheffort Values

Description
Increases effort to extract a state-machine on individual state registers by 
using a higher threshold. Use this attribute when state machine extraction is 
enabled, but they are not automatically extracted. To increase effort to 
extract some state machines, use this attribute with a value of 1 with higher 
threshold. The compiler devotes more effort to attempt state machine 
extraction but this also increases runtime. By default, syn_smhigheffort is set 
with a value of 0. This attribute can be used when a state machine extraction 
is enabled but it is not automatically extracted.

syn_smhigheffort Syntax

Technology Default Value Global Object

All Default is 0 | false Yes Component, module

Value Description

0 | false Does not increase effort to extract the state machines.

1 | true Allows increase in effort to extract the state machines.

Verilog object /* synthesis syn_smhigheffort = ”0 | 1” */;

VHDL attribute syn_smhigheffort of <object_name>: signal is 
“false | true”;



LO

 

© 2020 Synopsys, Inc.
240 October 2020

For Verilog: 

• object is a state register. 

• Data type is Boolean: 0 does not extract an FSM, 1 extracts an FSM.

reg [7:0] current_state /* synthesis syn_smhigheffort=1 */;
For VHDL: 

• state is a signal that holds the value of the state machine.

• Data type is Boolean: false does not extract an FSM, true extracts an 
FSM.

attribute syn_smhigheffort of current_state: signal is true; 
module FSM1 (clk, in1, rst, out1);
input clk, rst, in1;
output [2:0] out1;
`define s0 3'b000
`define s1 3'b001
`define s2 3'b010
`define s3 3'bxxx
reg [2:0] out1;
reg [2:0] state /* synthesis syn_smhigheffort = 1 */;
reg [2:0] next_state;
always @(posedge clk or posedge rst)
if (rst) state <= `s0;
else state <= next_state;

// Combined Next State and Output Logic
always @(state or in1)
case (state)
`s0 : begin
out1 <= 3'b000;
if (in1) next_state <= `s1;
else next_state <= `s0;
end
`s1 : begin
out1 <= 3'b001;
if (in1) next_state <= `s2;
else next_state <= `s1;
end
`s2 : begin
out1 <= 3'b010;

../examples/attr_direct/syn_state_machine/syn_state_machine_verilog.html
../examples/attr_direct/syn_state_machine/syn_state_machine_vhdl.html


 

Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 241

if (in1) next_state <= `s3;
else next_state <= `s2;
end
default : begin
out1 <= 3'bxxx;
next_state <= `s0;
end
endcase
endmodule

This is the Verilog source code used for the example in the following figure.

library ieee;
use ieee.std_logic_1164.all;
entity FSM1 is
    port (clk,rst,in1 : in std_logic;
            out1 : out std_logic_vector (2 downto 0));
end FSM1;
architecture behave of FSM1 is
type state_values is (s0, s1, s2,s3);
signal state, next_state: state_values;
attribute syn_smhigheffort : boolean;
attribute syn_smhigheffort of state : signal is false;
begin
    process (clk, rst)
    begin
        if rst = '1' then
            state <= s0;
        elsif rising_edge(clk) then
            state <= next_state;
        end if;
    end process;
    process (state, in1) begin
        case state is
            when s0 =>
                out1 <= "000";
                if in1 = '1' then next_state <= s1;
                    else next_state <= s0;
                end if;
            when s1 =>
                out1 <= "001";
                if in1 = '1' then next_state <= s2;
                    else next_state <= s1;
                end if;



LO

 

© 2020 Synopsys, Inc.
242 October 2020

            when s2 =>
                out1 <= "010";
                if in1 = '1' then next_state <= s3;
                    else next_state <= s2;
                end if;
            when others =>        
                out1 <= "XXX"; next_state <= s0; 
        end case;
    end process;
end behave; 

This is the VHDL source code used for the example in the following figure.

Effect of Using syn_smhigheffort
The following figure shows an example of two implementations of a state 
machine: one with the syn_smhigheffort attribute enabled, the other with the 
attribute disabled.



 

Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 243

See also: 

• syn_state_machine, on page 249 for information on enabling/disabling 
state-machine optimization on individual state registers.



LO

 

© 2020 Synopsys, Inc.
244 October 2020



Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 245

syn_srlstyle 
Attribute

Determines how to implement the sequential shift components.

syn_srlstyle Values

Description
The tool infers sequential shift components based on threshold limits. The 
syn_srlstyle attribute can be used to override the default behavior of seqshift 
implementation depending on how you set the values.

The syn_srlstyle attribute can be set globally, either on a module or a register 
instance. The global attribute can be overridden by the attribute set on the 
module or instances.

Vendor Technology

Microchip PolarFire

Technology Value Implements ...

Microchip

PolarFire registers Infers seqshift register components as registers.

uram Infers seqshift register components as RAM64X12.



LO

 

© 2020 Synopsys, Inc.
246 October 2020

syn_srlstyle Syntax

SCOPE Example

 This Tcl command applies to all devices:

define_attribute {i:regBank[15:0]} syn_srlstyle {registers}

HDL Example
In the HDL file, you must apply the syn_srlstyle attribute on the final stage of 
the shift register. In the following example, apply the syn_srlstyle attribute on 
register pll_status_ck245_s. The constraint is not honored if it is placed on other 
registers in the shifting chain.

library ieee;
use ieee.std_logic_1164.all;
entity test is

port (pll_status, lbdr_clk : in std_logic;
pll_status_ck245_s: out std_logic);

attribute syn_srlstyle : string;
attribute syn_srlstyle of pll_status_ck245_s : signal is 
"registers";
end test;
architecture behave of test is
signal pll_status_ck245_r : std_logic;
signal pll_status_ck245_r1 : std_logic;

SCOPE define_attribute {object} syn_srlstyle {register | URAM}
define_global_attribute syn_srlstyle {register | logic_ram | 
URAM | block_ram | distributed}}

SCOPE Example

Verilog object  /* synthesis syn_srlstyle = "register | URAM}" */; See 
Vendor-specific 
Verilog Examples

VHDL attribute syn_srlstyle: string;
attribute syn_srlstyle of object : signal is "register| URAM |}";

See 
Vendor-specific 
VHDL Examples



 

Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 247

begin
resynchro_ck245_reg: process(lbdr_clk)
BEGIN
if_clk: IF lbdr_clk'EVENT AND lbdr_clk = '1' THEN

pll_status_ck245_r <= pll_status;
pll_status_ck245_r1 <= pll_status_ck245_r;
pll_status_ck245_s <= pll_status_ck245_r1;

END IF if_clk;
END PROCESS resynchro_ck245_reg;
end behave;

 Effect of Using syn_srlstyle in Microchip Designs
Microchip devices support URAM inferencing with sequential shift registers. 
By default, seqshift is implemented using registers. You can override this 
default behavior using the uram option of the syn_srlstyle attribute. 

The attribute can be applied on the top-level module or seqshift instances in 
the RTL. If the attribute is applied 

• On the top-level module, then the tool infers URAM for the seqshift in the 
design using the threshold values:

Depth >= 4 and Depth * Width > 36

• On the seqshift instance, then the tool infers URAM regardless of the 
threshold values.

For this example, the software infers a seqshift primitive.

module p_seqshift(clk, we, din, dout);
parameter SRL_WIDTH = 7;
parameter SRL_DEPTH = 37;
input clk, we;
input [SRL_WIDTH-1:0] din;
output [SRL_WIDTH-1:0] dout;
reg [SRL_WIDTH-1:0] 

regBank[SRL_DEPTH-1:0]/*synthesis syn_srlstyle = "uram"*/;
integer i;



LO

 

© 2020 Synopsys, Inc.
248 October 2020

always @(posedge clk) begin
if (we) begin
for (i=SRL_DEPTH-1; i>0; i=i-1) begin

regBank[i] <= regBank[i-1];
end
regBank[0] <= din;

end
end
assign dout = regBank[SRL_DEPTH-1];
endmodule



Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 249

syn_state_machine 
Directive

Enables/disables state-machine optimization on individual state registers in 
the design. 

syn_state_machine Values

Description
Enables/disables state-machine optimization on individual state registers in 
the design. When you disable the FSM Compiler, state machines are not 
automatically extracted. To extract some state machines, use this directive 
with a value of 1 on just those individual state-registers to be extracted. 
Conversely, when the FSM Compiler is enabled and there are state machines 
in your design that you do not want extracted, use syn_state_machine with a 
value of 0 to override extraction on just those individual state registers.

Also, when the FSM Compiler is enabled, all state machines are usually 
detected during synthesis. However, on occasion there are cases in which 
certain state machines are not detected. You can use this directive to declare 
those undetected registers as state machines. 

Technology Default Value Global Object

All Default is determined by the global 
FSM Compiler option.
set_option -symbolic_fsm_compiler 1

Yes Component, module

Value Description

0 | false Does not extract state machines automatically.

1 | true Automatically extracts state machines.



LO

 

© 2020 Synopsys, Inc.
250 October 2020

syn_state_machine Syntax

For Verilog: 

• object is a state register. 

• Data type is Boolean: 0 does not extract an FSM, 1 extracts an FSM.

reg [7:0] current_state /* synthesis syn_state_machine=1 */;
For VHDL: 

• state is a signal that holds the value of the state machine.

• Data type is Boolean: false does not extract an FSM, true extracts an 
FSM.

attribute syn_state_machine of current_state: signal is true; 

Example - Verilog syn_state_machine 

// Example: Verilog syn_state_machine

module FSM1 (clk, in1, rst, out1);
input clk, rst, in1;
output [2:0] out1;
`define s0 3’b000
`define s1 3’b001
`define s2 3’b010
`define s3 3’bxxx
reg [2:0] out1;
reg [2:0] state /* synthesis syn_state_machine = 1 */;
reg [2:0] next_state;

Verilog object /* synthesis syn_state_machine = ”0 | 1” */; Example - Verilog 
syn_state_machine

VHDL attribute syn_state_machine of state : signal is “false | true”; Example - VHDL 
syn_state_machine



 

Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 251

always @(posedge clk or posedge rst)
if (rst) state <= `s0;
else state <= next_state;

// Combined Next State and Output Logic
always @(state or in1)
case (state)
`s0 : begin
out1 <= 3’b000;
if (in1) next_state <= `s1;
else next_state <= `s0;
end
`s1 : begin
out1 <= 3’b001;
if (in1) next_state <= `s2;
else next_state <= `s1;
end
`s2 : begin
out1 <= 3’b010;
if (in1) next_state <= `s3;
else next_state <= `s2;
end
default : begin
out1 <= 3’bxxx;
next_state <= `s0;
end
endcase



LO

 

© 2020 Synopsys, Inc.
252 October 2020

endmodule 
This is the Verilog source code used for the example in the following figure.

Example - VHDL syn_state_machine 

-- Example: VHDL syn_state_machine

library ieee;
use ieee.std_logic_1164.all;
entity FSM1 is

port (clk,rst,in1 : in std_logic;
out1 : out std_logic_vector (2 downto 0));

end FSM1;
architecture behave of FSM1 is
type state_values is (s0, s1, s2,s3);
signal state, next_state: state_values;
attribute syn_state_machine : boolean;
attribute syn_state_machine of state : signal is false;
begin

process (clk, rst)
begin

if rst = ‘1’ then
state <= s0;

elsif rising_edge(clk) then
state <= next_state;

end if;
end process;
process (state, in1) begin



 

Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 253

case state is
when s0 =>

out1 <= “000”;
if in1 = ‘1’ then next_state <= s1;

else next_state <= s0;
end if;

when s1 =>
out1 <= “001”;
if in1 = ‘1’ then next_state <= s2;

else next_state <= s1;
end if;

when s2 =>
out1 <= “010”;
if in1 = ‘1’ then next_state <= s3;

else next_state <= s2;
end if;

when others =>
out1 <= “XXX”; next_state <= s0; 

end case;
end process;

end behave; 
This is the VHDL source code used for the example in the following figure.

Effect of Using syn_state_machine
The following figure shows an example of two implementations of a state 
machine: one with the syn_state_machine directive enabled, the other with the 
directive disabled.



LO

 

© 2020 Synopsys, Inc.
254 October 2020

See the following HDL syntax and example sections for the source code used 
to generate the schematics above. See also: 

• syn_encoding, on page 77 for information on overriding default encoding 
styles for state machines.

• For VHDL designs, syn_encoding, on page 77 for usage information 
about these two directives. 



Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 255

syn_useenables 
Attribute

Controls the use of clock-enable registers within a design. 

syn_useenables Values

Description
By default, the synthesis tool uses registers with clock enable pins where 
applicable. Setting the syn_useenables attribute to 0 on a register creates 
external clock-enable logic to allow the tool to infer a register that does not 
require a clock-enable. 

By eliminating the need for a clock-enable, designs can be mapped into less 
complex registers that can be more easily packed into RAMs or DSPs. The 
trade-off is that while conserving complex registers, the additional external 
clock-enable logic can increase the overall logic-unit count.

Vendor Technology

Microchip  SmartFusion2, IGLOO2, RTG4, PolarFire

Default Global Object Type

1/true No Register

Value Description

1/true Infers registers with clock-enable pins

0/false Uses external logic to generate the clock-enable 
function for the register



LO

 

© 2020 Synopsys, Inc.
256 October 2020

Syntax Specification

SCOPE Example

Verilog Example
module useenables(d,clk,q,en); 
input [1:0] d; 
input en,clk; 
output [1:0] q; 
reg [1:0] q /* synthesis syn_useenables = 0 */; 
always @(posedge clk) 

if (en) 
q<=d; 

endmodule

FDC define attribute {register|signal} syn_useenables {0|1} SCOPE 
Example

Verilog object /* synthesis syn_useenables = "0|1" */; Verilog 
Example

VHDL attribute syn_useenables of object : objectType is "true|false"; VHDL 
Example



 

Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 257

VHDL Example
library ieee; 
use ieee.std_logic_1164.all; 
entity syn_useenables is 

port (d : in std_logic_vector(1 downto 0); 
en,clk : in std_logic; 
q : out std_logic_vector(1 downto 0) ); 

attribute syn_useenables: boolean; 
attribute syn_useenables of q: signal is false; 
end; 
architecture syn_ue of syn_useenables is 
begin 

process (clk) begin 
if (clk = '1' and clk'event) then 

if (en='1') then 
q <= d;     

end if;        
end if;    

end process;  
end architecture;



LO

 

© 2020 Synopsys, Inc.
258 October 2020

Effect of Using syn_useenables
Without applying the attribute (default is to use registers with clock-enable 
pins) or setting the attribute to 1/true uses registers with clock-enable pins 
(FDEs in the below schematic).



 

Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 259

Applying the attribute with a value of 0/false uses registers without 
clock-enable pins (FDEs in the below schematic) and creates external 
clock-enable logic.



LO

 

© 2020 Synopsys, Inc.
260 October 2020



Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 261

syn_tco<n> 
Directive

Supplies the clock to output timing-delay through a black box.

Description
Used with the syn_black_box directive; supplies the clock to output 
timing-delay through a black box. 

The syn_tco<n> directive is one of several directives that you can use with the 
syn_black_box directive to define timing for a black box. See syn_black_box, on 
page 63 for a list of the associated directives.

syn_tco<n> Syntax

The syn_tco<n> directive can be entered as an attribute using the Attributes 
panel of the SCOPE editor. The information in the Object, Attribute, and Value 
fields must be manually entered. This is the constraint file syntax for the 
directive:

define_attribute {v:blackboxModule} syn_tcon {[!]clock->bundle=value}

For details about the syntax, see the following table:

Verilog object /* syn_tcon = " [!]clock -> bundle = value" */;

VHDL attribute syn_tcon of object : objectType is " [!]clock -> bundle = value";

v: Constraint file syntax that indicates the directive is attached to 
the view. 

blackboxModule The symbol name of the black-box.

n A numerical suffix that lets you specify different clock to output 
timing delays for multiple signals/bundles. 



LO

 

© 2020 Synopsys, Inc.
262 October 2020

Constraint file example:

define_attribute {v:work.test} {syn_tsu4} {clk->tout=1.0}

Verilog Example
object /* syn_tcon = " [!]clock -> bundle = value" */;

See syn_tco<n> Syntax, on page 261 for syntax explanations. The following 
example defines syn_tco<n> and other black-box constraints:

module test(myclk, a, b, tout,) 
/*synthesis syn_black_box syn_tco1="clk->tout=1.0"

syn_tpd1="b->tout=8.0" syn_tsu1="a->myclk=2.0" */;
input myclk;
input a, b;
output tout;
endmodule
//Top Level
module top (input clk, input a, b, output fout);
test U1 (clk, a, b, fout);
endmodule

VHDL Example
In VHDL, there are ten predefined instances of each of these directives in the 
synplify library: syn_tco1, syn_tco2, syn_tco3, … syn_tco10. If you are entering the 
timing directives in the source code and you require more than 10 different 
timing delay values for any one of the directives, declare the additional direc-
tives with an integer greater than 10. For example:

! The optional exclamation mark indicates that the clock is active 
on its falling (negative) edge.

clock The name of the clock signal.

bundle A bundle is a collection of buses and scalar signals. The objects 
of a bundle must be separated by commas with no intervening 
spaces. A valid bundle is A,B,C, which lists three signals. To 
assign values to bundles, use the following syntax:

[!]clock->bundle=value
The values are in ns.

value Clock to output delay value in ns.



 

Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 263

attribute syn_tco11 : string;
attribute syn_tco12 : string;

See syn_tco<n> Syntax, on page 261 for other syntax explanations. 

See VHDL Attribute and Directive Syntax, on page 403 for alternate methods 
for specifying VHDL attributes and directives. 

The following example defines syn_tco<n> and other black-box constraints:

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
entity test is
generic (size: integer := 8);
port (tout :   out std_logic_vector (size- 1 downto 0);

a :   in std_logic_vector (size- 1 downto 0);
b :   in std_logic_vector (size- 1 downto 0);   

myclk : in std_logic);
attribute syn_isclock : boolean;
attribute syn_isclock of myclk: signal is true;
end;

architecture rtl of test is
attribute syn_black_box : boolean; 
attribute syn_black_box of rtl: architecture is true; 
begin
end;

-- TOP Level--
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
entity top is
generic (size: integer: = 8);
port (fout :   out std_logic_vector(size- 1 downto 0);

a :   in std_logic_vector (size- 1 downto 0);
b :   in std_logic_vector (size- 1 downto 0);   

clk : in std_logic
);

end;

architecture rtl of top is 
component test
generic (size: integer := 8);
port (tout :   out std_logic_vector(size- 1 downto 0);



LO

 

© 2020 Synopsys, Inc.
264 October 2020

a :   in std_logic_vector (size- 1 downto 0);
b :   in std_logic_vector (size- 1 downto 0);   

myclk : in std_logic
);

end component;

attribute syn_tco1 : string;
attribute syn_tco1 of test : component is

"clk->tout = 1.0";
attribute syn_tpd1 : string;
attribute syn_tpd1 of test : component is

"b->tout= 2.0";
attribute syn_tsu1 : string;
attribute syn_tsu1 of test : component is

"a-> myclk = 1.2";
begin
U1 : test port map(fout, a, b, clk);
end;

Effect of using syn_tco
This figure shows the HDL Analyst Technology view before using syn_tco:



 

Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 265

This figure shows the HDL Analyst Technology view after using syn_tco:



LO

 

© 2020 Synopsys, Inc.
266 October 2020



Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 267

syn_tpd<n> 
Directive

Supplies information on timing propagation for combinational delays through 
a black box.

Description
Used with the syn_black_box directive; supplies information on timing propa-
gation for combinational delay through a black box. 

The syn_tpd<n> directive is one of several directives that you can use with the 
syn_black_box directive to define timing for a black box. See syn_black_box, on 
page 63 for a list of the associated directives.

syn_tpd<n> Syntax

You can enter the syn_tpd<n> directive as an attribute using the Attributes panel 
of the SCOPE editor. The information in the Object, Attribute, and Value fields 
must be manually entered. This is the constraint file syntax:

define_attribute {v:blackboxModule} syn_tpdn {bundle->bundle=value}

For details about the syntax, see the following table:

Verilog object /* syn_tpdn = "bundle -> bundle = value" */;

VHDL attribute syn_tpdn of object : objectType is "bundle -> bundle = value";

v: Constraint file syntax that indicates the directive is attached 
to the view. 

blackboxModule The symbol name of the black box.



LO

 

© 2020 Synopsys, Inc.
268 October 2020

Constraint file example:

define_attribute {v:MEM} syn_tpd1 {MEM_RD->DATA_OUT[63:0]=20}

Verilog Example
See syn_tpd<n> Syntax, on page 267 for an explanation of the syntax. This is 
an example of syn_tpd<n> along with some of the other black-box timing 
constraints:

module test(myclk, a, b, tout,) 
/*synthesis syn_black_box syn_tco1="clk->tout=1.0"

syn_tpd1="b->tout=8.0" syn_tsu1="a->myclk=2.0" */;
input myclk;
input  a, b;
output tout;
endmodule
//Top Level
module top(input clk, input a, b, output fout);
test U1 (clk, a, b, fout);
endmodule

n A numerical suffix that lets you specify different input to 
output timing delays for multiple signals/bundles. 

bundle A bundle is a collection of buses and scalar signals. The 
objects of a bundle must be separated by commas with no 
intervening spaces. A valid bundle is A,B,C, which lists three 
signals.

"bundle->bundle=value"
The values are in ns.

value Input to output delay value in ns.



 

Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 269

VHDL Example
In VHDL, there are 10 predefined instances of each of these directives in the 
synplify library, for example: syn_tpd1, syn_tpd2, syn_tpd3, … syn_tpd10. If you are 
entering the timing directives in the source code and you require more than 
10 different timing delay values for any one of the directives, declare the 
additional directives with an integer greater than 10. For example:

attribute syn_tpd11 : string;
attribute syn_tpd11 of bitreg : component is

"di0,di1 -> do0,do1 = 2.0";
attribute syn_tpd12 : string;
attribute syn_tpd12 of bitreg : component is

"di2,di3 -> do2,do3 = 1.8";
See syn_tpd<n> Syntax, on page 267 for an explanation of the syntax. 

See VHDL Attribute and Directive Syntax, on page 403 for different ways to 
specify VHDL attributes and directives. 

The following is an example of assigning syn_tpd<n> along with some of the 
black-box constraints.

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity test is
generic (size: integer := 8);
port (tout :   out std_logic_vector(size- 1 downto 0);

a :   in std_logic_vector (size- 1 downto 0);
b :   in std_logic_vector (size- 1 downto 0); 

myclk : in std_logic);
attribute syn_isclock : boolean;
attribute syn_isclock of myclk: signal is true;
end;

architecture rtl of test is
attribute syn_black_box : boolean; 
attribute syn_black_box of rtl: architecture is true;
begin
end;



LO

 

© 2020 Synopsys, Inc.
270 October 2020

-- TOP Level--
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
entity top is
generic (size: integer := 8);
port (fout :   out std_logic_vector(size- 1 downto 0);

a :   in std_logic_vector (size- 1 downto 0);
  b :   in std_logic_vector (size- 1 downto 0);  
  clk : in std_logic
  );

end;
architecture rtl of top is 
component test
generic (size: integer := 8);
port (tout :   out std_logic_vector(size- 1 downto 0);

a :   in std_logic_vector (size- 1 downto 0);
  b :   in std_logic_vector (size- 1 downto 0);   
  myclk : in std_logic
  );

end component;

attribute syn_tco1 : string;
attribute syn_tco1 of test : component is

"clk->tout = 1.0";
attribute syn_tpd1 : string;
attribute syn_tpd1 of test : component is

"b->tout= 2.0";
attribute syn_tsu1 : string;
attribute syn_tsu1 of test : component is

"a-> myclk = 1.2";
begin
U1 : test port map(fout, a, b, clk);
end;



 

Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 271

Effect of using syn_tpd
This figure shows the HDL Analyst Technology view before using syn_tpd:



LO

 

© 2020 Synopsys, Inc.
272 October 2020

After using syn_tpd

This figure shows the HDL Analyst Technology view after using syn_tpd:



Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 273

syn_tristate 
Directive

Specifies that an output port on a black box is a tristate. 

syn_tristate Values

Description
You can use this directive to specify that an output port on a module defined 
as a black box is a tristate. This directive eliminates multiple driver errors if 
the output of a black box has more than one driver. A multiple driver error is 
issued unless you use this directive to specify that the outputs are tristate.

syn_tristate Syntax

Verilog Example
module test(myclk, a, b, tout) /* synthesis syn_black_box */;
input myclk;
input  a, b;
output tout/* synthesis syn_tristate = 1 */;
endmodule

//Top Level

Value Default

0 Yes

1

Verilog object /* synthesis syn_tristate =  1 */;

VHDL attribute syn_tristate : boolean;
attribute syn_tristate of tout: signal is true;



LO

 

© 2020 Synopsys, Inc.
274 October 2020

module top(input [1:0]en, input clk, input a, b, output reg fout);
wire tmp;
assign tmp = en[0] ? (a & b) : 1'bz;
assign tmp = en[1] ? (a | b) : 1'bz;
always@(posedge clk)
begin
fout <= tmp;
end
test U1 (clk, a, b, tmp);
endmodule

VHDL Example
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity test is 
port (tout :   out std_logic;

a :   in std_logic;
b :   in std_logic; 

myclk : in std_logic);

attribute syn_tristate : boolean;
attribute syn_tristate of tout: signal is true;
end;

architecture rtl of test is
attribute syn_black_box : boolean; 
attribute syn_black_box of rtl: architecture is true; 
begin
end;
-- TOP Level--
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
entity top is
port (fout :   out std_logic;

a :   in std_logic;
b :   in std_logic; 
en: in std_logic_vector(1 downto 0);
clk : in std_logic
);

end;



 

Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 275

architecture rtl of top is 
signal tmp : std_logic;
component test
port (tout :   out std_logic;

a :   in std_logic;
b :   in std_logic;     

myclk : in std_logic
);

end component;

begin
tmp <=  (a and b)when en(0) = '1' else 'Z';
tmp <=  (a or b) when en(1) = '1' else 'Z';
process (clk)
begin

if (clk = '1' and clk'event) then
fout <= tmp;

end if;
end process;

U1 : test port map(fout, a, b, clk);
end;



LO

 

© 2020 Synopsys, Inc.
276 October 2020



Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 277

syn_tsu<n> 
Directive

Sets information on timing setup delay required for input pins in a black box.

Description
Used with the syn_black_box directive; supplies information on timing setup 
delay required for input pins (relative to the clock) in the black box.

The syn_tsu<n> directive is one of several directives that you can use with the 
syn_black_box directive to define timing for a black box. See syn_black_box, on 
page 63 for a list of the associated directives.

syn_tsu<n> Syntax

The syn_tsu<n> directive can be entered as an attribute using the Attributes 
panel of the SCOPE editor. The information in the Object, Attribute, and Value 
fields must be manually entered. The constraint file syntax for the directive 
is:

define_attribute {v:blackboxModule} syn_tsun {bundle->[!]clock=value}

For details about the syntax, see the following table:

Verilog object /* syn_tsun = "bundle -> [!]clock = value" */;

VHDL attribute syn_tsun of object : objectType is "bundle -> [!]clock = value";

v: Constraint file syntax that indicates the directive is attached to 
the view. 

blackboxModule The symbol name of the black box.

n A numerical suffix that lets you specify different clock to output 
timing delays for multiple signals/bundles. 



LO

 

© 2020 Synopsys, Inc.
278 October 2020

Constraint file example:

define_attribute {v:RTRV_MOD} syn_tsu4 {RTRV_DATA[63:0]->!CLK=20}

Verilog Example
For syntax explanations, see syn_tsu<n> Syntax, on page 277. 

This is an example that defines syn_tsu<n> along with some of the other 
black-box constraints:

module test(myclk, a, b, tout,) /*synthesis syn_black_box 
syn_tco1="clk->tout=1.0" syn_tpd1="b->tout=8.0" 
syn_tsu1="a->myclk=2.0" */;
input myclk;
input  a, b;
output tout;
endmodule
//Top Level
module top (input clk, input a, b, output fout);
test U1 (clk, a, b, fout);
endmodule

VHDL Examples
In VHDL, there are 10 predefined instances of each of these directives in the 
synplify library, for example: syn_tsu1, syn_tsu2, syn_tsu3, … syn_tsu10. If you are 
entering the timing directives in the source code and you require more than 
10 different timing delay values for any one of the directives, declare the 
additional directives with an integer greater than 10:

bundle A collection of buses and scalar signals. The objects of a bundle 
must be separated by commas with no intervening spaces. A 
valid bundle is A,B,C, which lists three signals. The values are in 
ns. This is the syntax to define a bundle:

bundle->[!]clock=value

! The optional exclamation mark indicates that the clock is active 
on its falling (negative) edge.

clock The name of the clock signal.

value Input to clock setup delay value in ns.



 

Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 279

attribute syn_tsu11 : string;
attribute syn_tsu11 of bitreg : component is

"di0,di1 -> clk = 2.0";
attribute syn_tsu12 : string;
attribute syn_tsu12 of bitreg : component is

"di2,di3 -> clk = 1.8";
For other syntax explanations, see syn_tsu<n> Syntax, on page 277. 

See VHDL Attribute and Directive Syntax, on page 403 for different ways to 
specify VHDL attributes and directives.

The following is an example of assigning syn_tsu<n> along with some of the 
other black-box constraints:

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity test is
generic (size: integer := 8);
port (tout :   out std_logic_vector(size- 1 downto 0);

a :   in std_logic_vector (size- 1 downto 0);
b :   in std_logic_vector (size- 1 downto 0); 

myclk : in std_logic);

attribute syn_isclock : boolean;
attribute syn_isclock of myclk: signal is true;
end;

architecture rtl of test is
attribute syn_black_box : boolean; 
attribute syn_black_box of rtl: architecture is true; 
begin
end;
-- TOP Level--
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity top is
generic (size: integer := 8);
port (fout :   out std_logic_vector (size- 1 downto 0);

a :   in std_logic_vector (size- 1 downto 0);
b :   in std_logic_vector (size- 1 downto 0); 
clk : in std_logic



LO

 

© 2020 Synopsys, Inc.
280 October 2020

);
end;

architecture rtl of top is 
component test
generic (size: integer := 8);
port (tout :   out std_logic_vector(size- 1 downto 0);

a :   in std_logic_vector (size- 1 downto 0);
b :   in std_logic_vector (size- 1 downto 0); 

myclk : in std_logic
);

end component;

attribute syn_tco1 : string;
attribute syn_tco1 of test : component is

"clk->tout = 1.0";
attribute syn_tpd1 : string;
attribute syn_tpd1 of test : component is

"b->tout= 2.0";
attribute syn_tsu1 : string;
attribute syn_tsu1 of test : component is

"a-> myclk = 1.2";
begin
U1 : test port map (fout, a, b, clk);
end;



 

Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 281

Effect of using syn_tsu
This figure shows the HDL Analyst Technology view before using syn_tsu:



LO

 

© 2020 Synopsys, Inc.
282 October 2020

This figure shows the HDL Analyst Technology view after using syn_tsu:



Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 283

translate_off/translate_on 
Directive

Synthesizes designs originally written for use with other synthesis tools 
without needing to modify source code. 

Description
Allows you to synthesize designs originally written for use with other 
synthesis tools without needing to modify source code. All source code that is 
between these two directives is ignored during synthesis. 

Another use of these directives is to prevent the synthesis of stimulus source 
code that only has meaning for logic simulation. You can use trans-
late_off/translate_on to skip over simulation-specific lines of code that are not 
synthesizable.

When you use translate_off in a module, synthesis of all source code that 
follows is halted until translate_on is encountered. Every translate_off must have 
a corresponding translate_on. These directives cannot be nested, therefore, the 
translate_off directive can only be followed by a translate_on directive. 

See also, pragma translate_off/pragma translate_on, on page 55. These direc-
tives are implemented the same in the source code.

translate_off/translate_on Syntax

Verilog /* synthesis translate_off */
/* synthesis translate_on */

VHDL synthesis translate_off
synthesis translate_on



LO

 

© 2020 Synopsys, Inc.
284 October 2020

Verilog Example
module test(input a, b, output dout, Nout);
assign dout = a + b;
//Anything between pragma translate_off/translate_on is ignored by

the synthesis tool hence only 
//the adder circuit above is implemented not the multiplier circuit

below:
/* synthesis translate_off */
assign Nout = a * b;
/* synthesis translate_on */
endmodule

For SystemVerilog designs, you can alternatively use the synthesis_off/synthe-
sis_on directives. The directives function the same as the translate_off/trans-
late_on directives to ignore all source code contained between the two direc-
tives during synthesis.

For Verilog designs, you can use the synthesis macro with the Verilog ‘ifdef 
directive instead of the translate on/off directives. See synthesis Macro, on 
page 124 for information.

VHDL Example
For VHDL designs, you can alternatively use the synthesis_off/synthesis_on 
directives. Select Project->Implementation Options->VHDL and enable the Synthesis 
On/Off Implemented as Translate On/Off option. This directs the compiler to treat 
the synthesis_off/on directives like translate_off/on and ignore any code between 
these directives. 

See VHDL Attribute and Directive Syntax, on page 403 for different ways to 
specify VHDL attributes and directives. 

library ieee;
use ieee.std_logic_MicrochipMicrochip64.all;
use ieee.std_logic_unsigned.all;



 

Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 285

entity test is
port 

a :   in std_logic_vector(Microchip downto 0);
b :   in std_logic_vector(Microchip downto 0);
dout :   out std_logic_vector(Microchip downto 0);
Nout :   out std_logic_vector(3 downto 0)
);

end;
architecture rtl of test is 
begin

dout <= a + b;

--Anything between synthesis translate_off/translate_on is ignored 
by the synthesis tool hence only 

--the adder circuit above is implemented not the multiplier circuit
below:

--synthesis translate_off
Nout <= a * b;

--synthesis translate_on
end;

Effects of Using translate_off/translate_on
Here is the RTL view before applying the attribute.



LO

 

© 2020 Synopsys, Inc.
286 October 2020

This is the RTL view after applying the attribute.



Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 287

Index

A
alsloc 21
alspin 25
alspreserve 29
attributes

custom 88
global attribute summary 17
specifying in the SCOPE spreadsheet 8
specifying, overview of methods 8

Attributes panel, SCOPE spreadsheet 8

B
black box directives

black_box_pad_pin 33
black_box_tri_pins 39
syn_black_box 63
syn_isclock 111
syn_resources 216
syn_tco 261
syn_tpd 267
syn_tristate 273
syn_tsu 277

black boxes
directives. See black box directives
source code directives 64
timing directives 267

black_box_pad_pin directive 33
black_box_tri_pins directive 39
buffers

clock. See clock buffers

C
case statement

default 45
clock buffers

assigning resources 151
clock enables

inferring with syn_direct_enable 71
net assignment 71

clocks
on black boxes 111

code
ignoring with pragma translate 

off/on 55
compiler

loop iteration, loop_limit 47
loop iteration, syn_looplimit 121

custom attributes 88

D
define_attribute

syntax 9
define_false_path

using with syn_keep 116
define_global_attribute

summary 17
syntax 9

define_multicycle_path
using with syn_keep 116

E
edif file

scalar and array ports 147
syn_noarrayports attribute 147

enumerated types
syn_enum_encoding directive 87

F
fanout limits

overriding default 123
syn_maxfan attribute 123

FSMs
syn_encoding attribute 77

full_case directive 43



Index

Synplify Pro for Microchip Edition Attribute Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 288

G
global attributes summary 17

H
hierarchy

flattening with syn_hier 93

I
I/O buffers

inserting 107
specifying I/O standards 175

I/O packing
disabling with syn_replicate 209

instances
preserving with syn_noprune 157

L
loop_limit directive 47

M
Microsemi

alsloc attribute 21
alspin attribute 25
alspreserve attribute 29
assigning I/O ports 25
preserving relative placement 21

multicycle paths
syn_reference_clock 207

N
nets

preserving with syn_keep 115

P
pad locations

See also pin locations
parallel_case directive 51
pin locations

Microsemi 25
pragma translate_off directive 55
pragma translate_on directive 55

priority encoding 51
probes

inserting 187

R
RAMs

implementation styles 199
technology support 201

registers
preserving with syn_preserve 181

relative location
alsloc (Microsemi) 21

replication
disabling 209

resource sharing
syn_sharing directive 229

retiming
syn_allow_retiming attribute 59

S
SCOPE spreadsheet

Attributes panel 8
sequential optimization, preventing with 

syn_preserve 181
simulation mismatches

full_case directive 46
state machines

enumerated types 87
extracting 239, 249

syn_allow_retiming attribute 59
syn_black_box directive 63
syn_direct_enable attribute 71
syn_encoding

compared with syn_enum_encoding 
directive 88

using with enum_encoding 89
syn_encoding attribute 77
syn_enum_encoding

using with enum_encoding 89
syn_enum_encoding directive 87

compared with syn_encoding 
attribute 88

syn_hier attribute 93
syn_insert_buffer attribute 103



Index

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Attribute Reference
289 Synopsys Confidential Information October 2020

syn_insert_pad attribute 107
syn_isclock directive 111
syn_keep

compared with syn_preserve and 
syn_noprune directives 117

syn_keep directive 115
syn_looplimit directive 121
syn_maxfan attribute 123
syn_multstyle attribute 129
syn_netlist_hierarchy attribute 135
syn_no_compile_point attribute 143
syn_noarrayports attribute 147
syn_noclockbuf attribute 151

using with fanout guides 124
syn_noprune directive 157
syn_pad_type attribute 175
syn_preserve

compared with syn_keep and 
syn_noprune 182

syn_preserve directive 181
syn_probe attribute 187
syn_ramstyle attribute 199
syn_reference_clock attribute 207
syn_replicate

using with fanout guides 124
syn_replicate attribute 209
syn_resources attribute 215
syn_romstyle attribute 221
syn_safe_case directive 225
syn_sharing directive 229
syn_shift_resetphase 235
syn_smhigheffort attribute 239
syn_srlstyle attribute 245
syn_state_machine attribute 239
syn_state_machine directive 249
syn_tco directive 261
syn_tpd directive 267

black-box timing 267, 277
syn_tristate directive 273
syn_tsu directive 277

black-box timing 277

syn_useenables attribute 255
synthesis_off directive 284
synthesis_on directive 284
SystemVerilog

ignoring code with 
synthesis_off/on 284

T
timing

syn_tco directive 261
syn_tpd directive 267
syn_tsu directive 277

translate_off directive 283
translate_on directive 283
tristates

black_box_tri_pins directive 39
syn_tristate directive 273

V
Verilog

ignoring code with translate off/on 283
syn_keep on multiple nets 116

W
wires, preserving with syn_keep 

directive 115



LO

Index

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Attribute Reference
290 Synopsys Confidential Information October 2020


	Synplify Pro for Microchip Attribute Reference Manual
	Copyright Notice and Proprietary Information
	Free and Open-Source Licensing Notices
	Destination Control Statement
	Disclaimer
	Trademarks
	Third-Party Links
	Contents


	Introduction
	How Attributes and Directives are Specified
	The SCOPE Attributes Tab

	Summary of Attributes and Directives
	Summary of Global Attributes

	Attributes and Directives
	alsloc
	alspin
	alspreserve
	black_box_pad_pin
	black_box_tri_pins
	full_case
	loop_limit
	parallel_case
	pragma translate_off/pragma translate_on
	syn_allow_retiming
	syn_black_box
	syn_direct_enable
	syn_encoding
	syn_enum_encoding
	syn_hier
	syn_insert_buffer
	syn_insert_pad
	syn_isclock
	syn_keep
	syn_looplimit
	syn_maxfan
	syn_multstyle
	syn_netlist_hierarchy
	syn_no_compile_point
	syn_noarrayports
	syn_noclockbuf
	syn_noprune
	syn_pad_type
	syn_preserve
	syn_probe
	syn_radhardlevel
	syn_ramstyle
	syn_reference_clock
	syn_replicate
	syn_resources
	syn_romstyle
	syn_safe_case
	syn_sharing
	syn_shift_resetphase
	syn_smhigheffort
	syn_srlstyle
	syn_state_machine
	syn_useenables
	syn_tco<n>
	syn_tpd<n>
	syn_tristate
	syn_tsu<n>
	translate_off/translate_on
	Index

	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	P
	R
	S
	T
	V
	W


