
Synopsys Confidential Information

Verification Continuum™

Synopsys
Synplify Pro for Microchip
Language Support Reference
Manual

October 2020

LO

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Reference
2 Synopsys Confidential Information October 2020

Copyright Notice and Proprietary Information
© 2020 Synopsys, Inc. All rights reserved. This software and documentation
contain confidential and proprietary information that is the property of
Synopsys, Inc. The software and documentation are furnished under a
license agreement and may be used or copied only in accordance with the
terms of the license agreement. No part of the software and documentation
may be reproduced, transmitted, or translated, in any form or by any means,
electronic, mechanical, manual, optical, or otherwise, without prior written
permission of Synopsys, Inc., or as expressly provided by the license agree-
ment.

Free and Open-Source Licensing Notices
If applicable, Free and Open-Source Software (FOSS) licensing notices are
available in the product installation.

Destination Control Statement
All technical data contained in this publication is subject to the export
control laws of the United States of America. Disclosure to nationals of other
countries contrary to United States law is prohibited. It is the reader’s
responsibility to determine the applicable regulations and to comply with
them.

Disclaimer
SYNOPSYS, INC., AND ITS LICENSORS MAKE NO WARRANTY OF ANY
KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 3

Trademarks
Synopsys and certain Synopsys product names are trademarks of Synopsys,
as set forth at
http://www.synopsys.com/Company/Pages/Trademarks.aspx.
All other product or company names may be trademarks of their respective
owners.

Third-Party Links
Any links to third-party websites included in this document are for your
convenience only. Synopsys does not endorse and is not responsible for such
websites and their practices, including privacy practices, availability, and
content.

Synopsys, Inc.
690 East Middlefield Road
Mountain View, CA 94043
www.synopsys.com

October 2020

http://www.synopsys.com/Company/Pages/Trademarks.aspx

LO

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Reference
4 Synopsys Confidential Information October 2020

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 5

Contents

Chapter 1: Verilog Language Support
Support for Verilog Language Constructs . 14

Data Types . 16
Built-in Gate Primitives . 17
Port Definitions . 18
Statements . 18
Blocks . 20
Compiler Directives . 22
Operators . 25
Procedural Assignments . 30

Verilog 2001 Support . 33
Combined Data, Port Types (ANSI C-style Modules) . 34
Comma-separated Sensitivity List . 35
Wildcards (*) in Sensitivity List . 35
Signed Signals . 36
Inline Parameter Assignment by Name . 36
Constant Function . 37
Localparam . 38
Configuration Blocks . 38
Localparams . 52
$signed and $unsigned Built-in Functions . 52
$clog2 Constant Math Function . 52
Generate Statement . 56
Automatic Task Declaration . 57
Multidimensional Arrays . 58
Variable Partial Select . 59
Cross-Module Referencing . 60
ifndef and elsif Compiler Directives . 76

Verilog Synthesis Guidelines . 77
General Synthesis Guidelines . 77
Library Support in Verilog . 78
Constant Function Syntax Restrictions . 82

LO

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Ref-
erence

Multi-dimensional Array Syntax Restrictions . 82
Signed Multipliers in Verilog . 84
Verilog Language Guidelines: always Blocks . 85
Initial Values in Verilog . 86
Cross-language Parameter Passing in Mixed HDL . 88
Library Directory Specification for the Verilog Compiler 89

Verilog Module Template . 90
Scalable Modules . 91

Creating a Scalable Module . 91
Using Scalable Modules . 92
Using Hierarchical defparam . 94

Combinational Logic . 97
Combinational Logic Examples . 97
always Blocks for Combinational Logic . 98
Continuous Assignments for Combinational Logic . 100
Signed Multipliers . 101

Sequential Logic . 102
Sequential Logic Examples . 102
Flip-flops Using always Blocks . 103
Level-sensitive Latches . 104
Sets and Resets . 106
SRL Inference . 111

Verilog State Machines . 112
State Machine Guidelines . 112
State Values . 116
Asynchronous State Machines . 117

Instantiating Black Boxes in Verilog . 120

PREP Verilog Benchmarks . 121

Hierarchical or Structural Verilog Designs . 122
Using Hierarchical Verilog Designs . 122
Creating a Hierarchical Verilog Design . 122
Include Files . 124
synthesis Macro . 124
text Macro . 125

Verilog Attribute and Directive Syntax . 129
Attribute Examples Using Verilog 2001 Parenthetical Comments 131

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 7

Chapter 2: SystemVerilog Language Support
Feature Summary . 134

SystemVerilog Limitations . 137

Unsized Literals . 141

Data Types . 141
Typedefs . 142
Enumerated Types . 144
Struct Construct . 151
Union Construct . 153
Static Casting . 158

Arrays . 162
Arrays . 162
Arrays of Structures . 167
Array Querying Functions . 173

Data Declarations . 173
Constants . 174
Variables . 174
Nets . 174
Implicit Nets . 175
Data Types in Parameters . 176
Type Parameters . 180

Operators and Expressions . 185
Operators . 185
Aggregate Expressions . 186
Streaming Operator . 196
Set Membership Operator . 200
Set Membership Case Inside Operator . 202
Type Operator . 206
$typeof Operator . 208

Procedural Statements and Control Flow . 211
Do-While Loops . 211
For Loops . 214
Foreach Loops . 216
Unnamed Blocks . 218
Block Name on end Keyword . 219
Unique and Priority Modifiers . 220

Processes . 222
always_comb . 222
always_latch . 225

LO

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Ref-
erence

always_ff . 226

Tasks and Functions . 228
Implicit Statement Group . 228
Formal Arguments . 228
endtask/endfunction Names . 231

Hierarchy . 232
Compilation Units . 232
Packages . 239
Port Connection Constructs . 248
Extern Module . 250

Interface . 253
Interface Construct . 253
Modports . 259
Modport Limitations and Non-Supported Features . 261

System Tasks and System Functions . 262
$bits System Function . 262
$countbits System Function . 265
$countones System Function . 266
$onehot and $onehot0 System Functions . 266
Array Querying Functions . 268

Generate Statement . 272
Conditional Generate Constructs . 278

Assertions . 281
Keyword Support . 283

Chapter 3: VHDL Language Support
Language Constructs . 286

Supported VHDL Language Constructs . 286
Unsupported VHDL Language Constructs . 287
Partially-supported VHDL Language Constructs . 288
Ignored VHDL Language Constructs . 288

VHDL Language Constructs . 288
Data Types . 289
Physical Types . 292
Arrays . 292
Declaring and Assigning Objects in VHDL . 293
Ranges . 294
Dynamic Range Assignments . 294

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 9

Null Ranges . 298
Signals and Ports . 299
Variables . 301
VHDL Constants . 302
Aliases . 302
Libraries and Packages . 303
Literals . 307
Operators . 309
Large Time Resolution . 311
VHDL Process . 313
Common Sequential Statements . 315
Concurrent Signal Assignments . 323
Resource Sharing . 327
Combinational Logic . 327
Sequential Logic . 327
Component Instantiation in VHDL . 328
VHDL Selected Name Support . 330
User-defined Function Support . 333
Demand Loading . 335

VHDL Implicit Data-type Defaults . 336

VHDL Synthesis Guidelines . 341
General Synthesis Guidelines . 341
VHDL Language Guidelines . 342
Model Template . 343
Constraint Files for VHDL Designs . 344
Creating Flip-flops and Registers Using VHDL Processes 344
Clock Edges . 346
Defining an Event Outside a Process . 347
Using a WAIT Statement Inside a Process . 348
Level-sensitive Latches Using Concurrent Signal Assignments 349
Level-sensitive Latches Using VHDL Processes . 350
Signed mod Support for Constant Operands . 353

Sets and Resets . 355
Asynchronous Sets and Resets . 355
Synchronous Sets and Resets . 356

VHDL State Machines . 359
State Machine Guidelines . 359
Using Enumerated Types for State Values . 363
Simulation Tips When Using Enumerated Types . 364
Asynchronous State Machines in VHDL . 365

LO

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Ref-
erence

Hierarchical Design Creation in VHDL . 367

Configuration Specification and Declaration . 371
Configuration Specification . 371
Configuration Declaration . 374
VHDL Configuration Statement Enhancement . 381

Scalable Designs . 395
Creating a Scalable Design Using Unconstrained Vector Ports 395
Creating a Scalable Design Using VHDL Generics . 396
Using a Scalable Architecture with VHDL Generics . 397
Creating a Scalable Design Using Generate Statements 399

Instantiating Black Boxes in VHDL . 401
Black-Box Timing Constraints . 402

VHDL Attribute and Directive Syntax . 403
VHDL Synthesis Examples . 405

Combinational Logic Examples . 405
Sequential Logic Examples . 406

PREP VHDL Benchmarks . 407

Chapter 4: VHDL 2008 Language Support
Operators and Expressions . 410

Logical Reduction Operators . 410
Condition Operator . 412
Matching Relational Operators . 414
Bit-string Literals . 414
Array Aggregates . 416

Unconstrained Data Types . 418

Unconstrained Record Elements . 420
Predefined Functions . 421

Generic Types . 422
Packages . 423

New Packages . 424
Modified Packages . 424
Supported Package Functions . 424
Unsupported Packages/Functions . 425
Using the Packages . 425

Generics in Packages . 426

Context Declarations . 428

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 11

Case-generate Statements . 429
Matching case and select Statements . 432

Else/elsif Clauses . 434

Sequential Signal Assignments . 437
Using When-Else and With-Select Assignments . 437
Using Output Ports in a Sensitivity List . 439

Syntax Conventions . 439
All Keyword . 439
Comment Delimiters . 440
Extended Character Set . 440

LO

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Ref-
erence

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 13

C H A P T E R 1

Verilog Language Support

This chapter discusses Verilog support for the Synopsys tools. SystemVerilog
support is described separately, in Chapter 2, SystemVerilog Language
Support. This chapter includes the following topics:

• Support for Verilog Language Constructs, on page 14

• Verilog 2001 Support, on page 33

• Verilog Synthesis Guidelines, on page 77

• Verilog Module Template, on page 90

• Scalable Modules, on page 91

• Built-in Gate Primitives, on page 17

• Combinational Logic, on page 97

• Sequential Logic, on page 102

• Verilog State Machines, on page 112

• Instantiating Black Boxes in Verilog, on page 120

• PREP Verilog Benchmarks, on page 121

• Hierarchical or Structural Verilog Designs, on page 122

• Verilog Attribute and Directive Syntax, on page 129

LO

 Verilog Language Support Support for Verilog Language Constructs

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

Support for Verilog Language Constructs
This section describes support for various Verilog language constructs:

• Supported and Unsupported Verilog Constructs, on page 14

• Ignored Verilog Language Constructs, on page 15

Supported and Unsupported Verilog Constructs
The following table lists the supported and unsupported Verilog constructs. If
the tool encounters an unsupported construct, it generates an error message
and stops.

Supported Verilog Constructs Unsupported Verilog Constructs

Net types:
wire, tri, tri0, tri1, wand, wor

Net types:
trireg, triand, trior, charge strength

Register types:
• reg, integer, time (64-bit reg)
• arrays of reg

Register types:
real

Gate primitive, module, and macromodule
instantiations, and built-in switch
primitives - pmos, cmos

Built-in unidirectional and
bidirectional switches, and
pull-up/pull-down

inputs, outputs, and inouts to a module UDPs and specify blocks

All operators
+, -, *, /, %, **, <, >, <=, >=, ==, !=, ===, !==,
==?, !=?, &&, ||, !, ~, &, ~&, |, ~|, ^~, ~^, ^, <<,
>>, ?:, { }, {{ }}
(See Operators, on page 25 for additional
details.)
Net names:
hierarchical net names

Net names:
release net names (for simulation only)

Procedural statements:
assign, if-else-if, case, casex, casez, for, repeat,
while, forever, begin, end, fork, join, disable

Procedural statements:
deassign, wait

Support for Verilog Language Constructs Verilog Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 15

Ignored Verilog Language Constructs
When it encounters certain Verilog constructs, the tool ignores them and
continues the synthesis run. The following constructs are ignored:

• delay, delay control, and drive strength

• scalared, vectored

• initial block

• Compiler directives (except for `begin_keywords, `celldefine, `define, `ifdef,
`ifndef, `else, `elsif, `endcelldefine, `endif, `end_keywords, `include, `line, and
`undef, which are supported)

• Calls to system tasks and system functions (they are only for simulation)

Procedural assignments:
• always blocks, user tasks, user functions

(See always Blocks for Combinational
Logic, on page 98)

• Blocking assignments =
• Non-blocking assignments <=
Do not use = with <= for the same register.
Use parameter override: # and defparam
(down one level of hierarchy only).

• Named events and event triggers

Continuous assignments

Compiler directives:
`begin_keywords, `celldefine, `define,
`endcelldefine, `endif, `end_keywords, `ifdef,
`ifndef, `else, `elsif, `include, `line, `undef

Miscellaneous:
• Parameter ranges
• Local declarations to begin-end block
• Variable indexing of bit vectors on the left

and right sides of assignments

LO

 Verilog Language Support Support for Verilog Language Constructs

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

Data Types
Verilog data types can be categorized into the following general types:

• Net Data Types, on page 16

• Register Data Types, on page 16

• Miscellaneous Data Types, on page 17

Net Data Types
Net data types are used to model physical connections. The following net
types are supported:

While the Verilog compiler allows the use of tri0 and tri1 nets, these nets are
treated as wire net types during synthesis, and any variable declared as a tri0
or tri1 net type behaves as a wire net type. A warning is issued in the log file
alerting you that a tri0 or tri1 variable is being treated as a wire net type and
that a simulation mismatch is possible.

Register Data Types
The supported register data types are outlined in the following table:

wire Connects elements; used with nets driven by a single gate or
continuous assignment

tri Connects elements; used when a net includes more than one
driver

tri0 Models resistive pulldown device (its value is 0 when no driver is
present)

tri1 Models resistive pullup device (its value is 1 when no driver is
present)

reg A 1-bit wide data type; when more than one bit is required, a
range declaration is included

integer A 32-bit wide data type that cannot include a range declaration

time A 64-bit wide data type that stores simulation time as an unsigned
number; a range declaration is not allowed

Support for Verilog Language Constructs Verilog Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 17

Miscellaneous Data Types
The following data types are also supported:

Built-in Gate Primitives
You can create hardware by directly instantiating built-in gates into your
design (in addition to instantiating your own modules). The built-in Verilog
gates are called primitives.

Syntax
gateTypeKeyword [instanceName] (portList) ;

The gate type keywords for simple and tristate gates are listed in the following
tables. The instanceName is a unique instance name and is optional. The signal
names in the portList can be given in any order with the restriction that all
outputs must precede any inputs. For tristate gates, outputs come first, then
inputs, and then enable. The following tables list the supported keywords.

parameter Specifies a constant value for a variable (see Creating a Scalable
Module, on page 91)

localparam A local constant parameter (see Localparams, on page 52)

genvar A Verilog 2001 temporary variable used for index control within a
generate loop (see Generate Statement, on page 56)

Keyword (Simple Gates) Definition

buf buffer

not inverter

and and gate

nand nand gate

or or gate

nor nor gate

xor exclusive or gate

xnor exclusive nor gate

LO

 Verilog Language Support Support for Verilog Language Constructs

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

Port Definitions
Port signals are defined as input, output, or bidirectional and are referred to
as the port list for the module. The three signal declarations are input, output,
and inout as described in the following table.

Statements
Statement types include loop statements, case statements, and conditional
statements as described in the ensuing subsections.

loop Statements
Loop statements are used to modify blocks of procedural statements. The
loop statements include for, repeat, while, and forever as described in the
following table:

Keyword (Tristate Gates) Definition

bufif1 tristate buffer with logic one enable

bufif0 tristate buffer with logic zero enable

notif1 tristate inverter with logic one enable

notif0 tristate inverter with logic zero enable

input An input signal to the module

output An output signal from the module

inout A bidirectional signal to/from the module

for Continues to execute a given statement until the expression
becomes true; the first assignment is executed initially and then
the expression is evaluated repeatedly

repeat Executes a given statement a fixed number of times; the number
of executions is defined by the expression following the repeat
keyword.

while Executes a given statement until the expression becomes true

Support for Verilog Language Constructs Verilog Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 19

case Statements
Case statements select one statement from a list of statements based on the
value of the case expression. A case statement is introduced with a case,
casex, or casez keyword and is terminated with an endcase statement. A case
statement can include a default condition that is taken when none of the case
select expressions is valid.

Conditional Statements
Conditional statements are used to determine which statement is to be
executed based on a conditional expression. The conditional statements
include if, else, and else if. The simplified syntax for these conditional state-
ments is either:

if (conditionalExpression)
statement1;

else
statement2;

or

forever Continuously repeats the ensuing statement

case allow branching on multiple conditional expressions based on case
statement matching

casex allows branching of multiple conditional expression matching
where any 'x' (unknown) or 'z' value appearing in the case
expression is treated as a don't care

casez allows branching of multiple conditional expression matching
where any 'z' (high impedance) value appearing in the case
expression is treated as a don't care

endcase terminates a case, casex, or casez statement

default assigns a case expression to a default condition when there are no
other matching conditions

LO

 Verilog Language Support Support for Verilog Language Constructs

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

if (conditionalExpression)
statement1;

else if (conditionalExpression);
statement2;

else
statement3;

The if statement can be used in one of two ways:

• as a single “if-else” statement shown in the first simplified syntax

• as a multiple “if-else-if” statement shown in the second simplified syntax

In the first syntax, when conditionalExpression evaluates true, statement1 is
executed, and when conditionalExpression evaluates false, statement2 is
executed.

In the second syntax, when conditionalExpression evaluates true, statement1
is executed as in the first syntax example. However, when conditionalExpres-
sion evaluates false, the second conditional expression (else if) is evaluated
and, depending on the result, either statement2 or statement3 is executed.

Blocks
Blocks delimit a set of statements. The block is typically introduced by a
keyword that identifies the start of the block, and is terminated by an end
keyword that identifies the end of the block.

module/endmodule Block
The module/endmodule block is the basic compilation unit in Verilog.
Modules are introduced with the module (or macromodule) keyword and are
terminated by the endmodule keyword. For more information, see Verilog
Module Template, on page 90. The following example shows the basic module
syntax.

module add (out, in1, in2);output out;
input in1, in2;
assign out = in1 & in2;
endmodule

Support for Verilog Language Constructs Verilog Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 21

begin/end Block
A begin/end block provides a method of grouping multiple statements into a
always block. The statements within this block are executed in the order
listed. When a timing control statement is included within the block, execu-
tion of the next statement is delayed until after the timing delay. The
following example illustrates a begin/end block:

module tmp (in1, in2, out1, out2);
input in1, in2;
output out1, out2;
reg out1, out2;
always@(in1, in2)
begin

out1 =(in1 & in2);
out2 =(in1 | in2);

end
endmodule

fork/join Block
A fork/join block provides a method of grouping multiple statements into a an
always block. The statements within this block are executed simultaneously.
With parallel blocks, because all statements are executed at the same time,
mutually dependent statements are not allowed. The following example illus-
trates a fork/join block:

module tmp (in1, in2, out1, out2);
input in1, in2;
output out1, out2;
reg out1, out2;
always@(in1, in2)
fork

out1 =(in1 & in2);
out2 =(in1 | in2);

join
endmodule fork, join

LO

 Verilog Language Support Support for Verilog Language Constructs

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

generate/endgenerate Block
A generate block is created using one of the generate-loop, generate-condi-
tional, or generate-case format. The block is introduced with the keyword
generate and terminated with the keyword endgenerate. For more information,
see Generate Statement, on page 56.

Compiler Directives
Compiler directives control compilation within an EDA environment. These
directives are prefixed with an accent grave (‘) or “tick mark.” Compiler direc-
tives are not Verilog statements and, as such, do not require the semicolon
terminator. A compiler directive remains active until it is modified or disabled
by another directive. The following table lists the supported compiler direc-
tives:

`begin_keywords Specifies a pair of directives `begin_keywords and `end_keywords to
identify keywords reserved within a block of source code, based
on a specific version of IEEE Std 1364 or IEEE Std 1800. See
`begin_keywords and `end_keywords, on page 23 for details.

`celldefine Identifies the source code limited by `cellname and `endcelldefine as
a cell.

`define Creates a macro for text substitution

`else Indicates an alternative to the previous `ifdef or `ifndef condition

`elsif Indicates an alternative to the previous `ifdef or `ifndef condition

`endcelldefine Identifies the source code limited by `cellname and `endcelldefine as
a cell.

`endif Indicates the end of an `ifdef or `ifndef conditional procedural
statement

`end_keywords Specifies a pair of directives `begin_keywords and `end_keywords to
identify keywords reserved within a block of source code, based
on a specific version of IEEE Std 1364 or IEEE Std 1800. See
`begin_keywords and `end_keywords, on page 23 for details.

`ifdef Executes a conditional procedural statement based on a defined
macro

`ifndef Executes a conditional procedural statement in the absence of a
text macro

Support for Verilog Language Constructs Verilog Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 23

`begin_keywords and `end_keywords
The syntax for the 'begin_keywords and 'end_keywords directives is as follows:

keywords_directive ::= `begin_keywords "version_specifier"
version_specifier ::=
| 1800-2012
| 1800-2009
| 1800-2005
| 1364-2005
| 1364-2001
| 1364-2001 -noconfig
| 1364-1995
endkeywords_directive ::= `end_keywords

Functional requirements for these directives include the following support:

• The `begin_keywords and `end_keywords directives can be specified outside
a design element, such as a module, interface, configuration, or
package.

• Source file boundaries can be extended from the start of the `begin_key-
words until the matching `end_keywords directive is met or to the end of
the compilation unit.

• The `begin_keywords and `end_keywords directive pairs can be nested.

• Different version specifiers can be set as follows:

– When version_specifier=1364-1995, compiler uses Verilog V95
standard

– When version_specifier=1364-2***, compiler uses Verilog V2001
standard

– When version_specifier=1800-****, compiler uses Verilog SYSV
standard

`include File inclusion; the contents of the referenced file are inserted at
the location of the `include directive.

`line Maintains the reference to the line numbers for the original
source or include file. See `line Compiler Directive, on page 24
for details.

`undef Removes the definition of a previously defined text macro

LO

 Verilog Language Support Support for Verilog Language Constructs

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

Example

`begin_keywords "1364-2001"
// Use IEEE Std 1364-2001 Verilog keywords

module m2 (...);
reg [63:0] logic; // OK: "logic" is not a keyword in 1364-2001

...

endmodule
`end_keywords

`line Compiler Directive
The compiler may need to keep track of the Verilog/SystemVerilog source or
include files and the line numbers in these files, because the original files can
lose this information when other processes modify them. The compiler
maintains the current line and file name to generate debug messages in the
log file. The `line directive is used to reset the current line number and file
name to a different line number and file name relative to the current file.
Typically, this is added by machine-generated code or when source code is
displayed for debugging.

The syntax used for the `line directive is shown below:

`line number "fileName" level

Where:

• number - A positive integer that specifies the new line number that
points to the specified file.

• fileName - File name string that can be specified with a full or relative
path name.

• level - This parameter can be specified with the values 0, 1, or 2:

– 0 - Any line of the original source or include file

– 1 - First line of the original source or include file

– 2 - First line after the original source or include file exited

Support for Verilog Language Constructs Verilog Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 25

Example

Here is an example of how the `line compiler directive is used with the original
test.v file:

`line 1 "test.v" 0
input a;

test.v

1 module test(a,b,c);
2 input a,b;
3 output c;
4 assign c = a & b;
5 endmodule

The 'line compiler directives added by machine-generated Verilog code indicate
their original file numbers, which are useful for debugging. For example:

`line 2 "test.v" 0
input a;
`line 2 "test.v" 0
input b;
`line 3 "test.v" 0
output c;
`line 4 "test.v" 0
assign c = a & b;

Operators

Arithmetic Operators
Arithmetic operators can be used with all data types.

Symbol Usage Function

+ a + b a plus b

- a - b a minus b

* a * b a multiplied by b

LO

 Verilog Language Support Support for Verilog Language Constructs

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

The / and % operators are supported for compile-time constants and constant
powers of two. For the modulus operator (%), the result takes the sign of the
first operand.

The exponential operation for a**b is supported, where:

Exponential operation includes the following limitations:

• The exponent cannot be a negative number when the base operand is a
dynamic value.

• The following conditions generate an error:

– Operand a is a dynamic variable and operand b is a negative
constant.

– Operands a and b are dynamic variables.

– Operand a is a constant power of 2 and negative (for example,
-2, -4, -6 ...) and operand b is a dynamic signal (signed/unsigned).

– Operand a is a constant non power of 2 and positive/negative (for
example, 1/-1, 3/-3, 5/-5 ...) and operand b is a dynamic signal
(signed/unsigned).

For the two previous conditions, the compiler only supports operand
a as a power of 2 positive integer (for example, 2, 4, 6 ...) and operand b
as a dynamic signal (signed/unsigned).

/ a / b a divided by b

% a % b a modulo b

** a **b a to the power of b

Operand Can be a ...

a • Constant (positive/negative)
• Dynamic variable (signed/unsigned)

b • Constant (positive/negative)
• Dynamic variable (positive/negative integer)

Support for Verilog Language Constructs Verilog Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 27

Relational Operators
Relational operators compare expressions. The value returned by a relational
operator is 1 if the expression evaluates true or 0 if the expression evaluates
false.

Equality Operators
The equality operators compare expressions. When a comparison fails, the
result is 0, otherwise it is 1. When both operands of a logical equality (==) or
logical inequality (!=) contain an unknown value (x) or high-impedance (z)
value, the result of the comparison is unknown (x); otherwise the result is
either true or false.

When an operands of case equality (===) or case inequality (!==) contains an
unknown value (x) or high-impedance (z) value, the result is calculated
bit-by-bit.

When an equality (==) or inequality (!=) operator includes unknown bits (for
example, A==4'b10x1 or A!=4'b111z), the Synopsys Verilog compiler assumes
that the output is always False. This assumption contradicts the LRM which
states that the output should be x (unknown) and can result in a possible
simulation mismatch

Symbol Usage Function

< a < b a is less than b

> a > b a is greater than b

<= a <= b a is less than or equal to b

=> a => b a equal to or greater than b

Symbol Usage Function

== m == n m is equal to n

!= m != n m is not equal to n

=== m === n m is identical to n

!== m !== n m is not identical to n

LO

 Verilog Language Support Support for Verilog Language Constructs

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

Wildcard Equality Operators
The wildcard equality operators (==? and !=?) compare expressions and
perform bit-wise comparisons between the two operands. When the right-side
operand contains an unknown value (x) or high-impedance (z) value for a
given bit position, the compiler treats them as wildcards. The wildcard bit can
match any value (0, 1, x, or z) that corresponds to the bit of the left-side
operand to which it is being compared. All the other bits are compared for
logical equality or inequality operations.

For the wildcard operation below:

sig1 ==? 3`b10x

The compiler implements the following behavior:

sig1 == 3`b100 | | sig1 == 3`b101

Note that the Synopsys Verilog compiler does not support wildcard equality
operators with two variable operands.

Logical Operators
Logical operators connect expressions. The result a logical operation is 0 if
false, 1 if true, or x (unknown) if ambiguous. The negation operator (!)
changes a nonzero or true value of the operand to 0 or a zero or false value to
1; an ambiguous value results in x (unknown) value.

Bitwise Operators
Bitwise operators are described in the following table:

Symbol Usage Function

&& a && b a and b

|| a || b a or b

! !a not a

Support for Verilog Language Constructs Verilog Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 29

Unary Reduction Operators
Unary reduction operators are described in the following table:

Miscellaneous Operators
Miscellaneous operators are described in the following table:

Symbol Usage Function

~ ~m Invert each bit

& m & n AND each bit

| m | n OR each bit

^ m ^ n Exclusive OR each bit

~^, ^~ m ~^ n
m ^~ n

Exclusive NOR each bit

Symbol Usage Function

& &m AND all bits

~& ~&m NAND all bits

| |m OR all bits

~| ~|m NOR all bits

^ ^m Exclusive OR all bits

^~, ~^ ~^m
^~m

Exclusive NOR all bits

Symbol Usage Function

? : sel? m:n If sel is true, select m

{ } {m,n} Concatenate m to n

{ { } } {n{m}} Replicate m n times

LO

 Verilog Language Support Support for Verilog Language Constructs

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

Procedural Assignments
The Verilog procedure may be an always or initial statement, task, or function.
Assignment statements for procedural assignments always appear within the
procedures and can execute concurrently with other procedures.

// Example 1: Without Bind

module myip (input int bufin, output int bufout,debug_port
/*other ports*/);
int REG1 = 32’hABADFACE;
int REG2 = 32’hDEAFFACE;
int REG3 = 32’hABCDEF01;
/*...

* There can be lot of other logic that might be updating the
* above register values;
* */

assign bufout = bufin;
endmodule

module top (input int bufin, output int bufout,debug_port
/*other ports*/);

myip i_mi (bufin,bufout,debug_port);
endmodule

Support for Verilog Language Constructs Verilog Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 31

// Example 2: With Bind

module debug_buf(input int bufin, output int bufout);
assign bufout = bufin;

endmodule

bind myip debug_buf i_debug_buf(REG1,debug_port);

// Example 1: Without Force

module dff(input[3:0] din, output logic[3:0] dout,
input clk, rst);

always_ff @(posedge clk, posedge rst)
if (rst)

dout <= ‘0;
else

dout <= din;
endmodule

module top(input[3:0] din,din1, output logic[3:0]
dout,dout1,input clk,rst);

dff i0 (.din(din), .dout(dout), .clk(clk), .rst(rst));
dff i1 (.din(din1), .dout(dout1), .clk(clk), .rst(rst));

endmodule

LO

 Verilog Language Support Support for Verilog Language Constructs

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

// Example 2: With Force

module top_modified(input[3:0] din,din1, output logic[3:0]
dout,dout1,input clk,rst);

top i_top (.*);
initial
begin

force i_top.i1.din = i_top.din;
end

endmodule

Verilog 2001 Support Verilog Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 33

Verilog 2001 Support
You can choose the Verilog standard to use for a design or given files within a
design: Verilog ‘95 or Verilog 2001. See File Options Popup Menu Command,
on page 473 and Setting Verilog and VHDL Options, on page 87 of the User
Guide. The tool supports the following Verilog 2001 features:

Feature Description

Combined Data, Port Types
(ANSI C-style Modules)

Module data and port type declarations can be
combined for conciseness.

Comma-separated Sensitivity
List

Commas are allowed as separators in sensitivity
lists (as in other Verilog lists).

Wildcards (*) in Sensitivity List Use @* or @(*) to include all signals in a
procedural block to eliminate mismatches
between HDL and post-synthesis simulation.

Signed Signals Data types net and reg, module ports, integers of
different bases and signals can all be signed.
Signed signals can be assigned and compared.
Signed operations can be performed for vectors
of any length.

Inline Parameter Assignment by
Name

Assigns values to parameters by name, inline.

Constant Function Builds complex values at elaboration time.

Configuration Blocks Specifies a set of rules that defines the source
description applied to an instance or module.

Localparams A constant that cannot be redefined or modified.

$signed and $unsigned Built-in
Functions

Built-in Verilog 2001 function that converts
types between signed and unsigned.

$clog2 Constant Math Function Returns the value of the log base-2 for the
argument passed.

Generate Statement Creates multiple instances of an object in a
module. You can use generate with loops and
conditional statements.

Automatic Task Declaration Dynamic allocation and release of storage for
tasks.

LO

 Verilog Language Support Verilog 2001 Support

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

Combined Data, Port Types (ANSI C-style Modules)
In Verilog 2001, you can combine module data and port type declarations to
be concise, as shown below:

Multidimensional Arrays Groups elements of the declared element type
into multi-dimensional objects.

Variable Partial Select Supports indexed part select expressions (+:
and -:), which use a variable range to provide
access to a word or part of a word.

Cross-Module Referencing Accesses elements across modules.

ifndef and elsif Compiler
Directives

'ifndef and 'elsif compiler directive support.

Verilog ‘95

module adder_16 (sum, cout, cin, a, b);
output [15:0] sum;
output cout;
input [15:0] a, b;
input cin;
reg [15:0] sum;
reg cout;
wire [15:0] a, b;
wire cin;
Verilog 2001

module adder_16(output reg [15:0] sum, output reg cout,
input wire cin, input wire [15:0] a, b);

Feature Description

Verilog 2001 Support Verilog Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 35

Comma-separated Sensitivity List
In Verilog 2001, you can use commas as separators in sensitivity lists (as in
other Verilog lists).

Wildcards (*) in Sensitivity List
In Verilog 2001, you can use @* or @(*) to include all signals in a procedural
block, eliminating mismatches between HDL and post-synthesis simulation.

Verilog ‘95

always @(a or b or cin)
sum = a - b - cin;

always @(posedge clock or negedge reset)
if (!reset)
q <= 0;

else
q <= d;

Verilog 2001

always @(a, b or cin)
sum = a - b - cin;

always @(posedge clock, negedge reset)
if (!reset)
q <= 0;

else
q <= d;

Verilog ‘95

always @(a or b or cin)
sum = a - b - cin;

Verilog 2001

// Style 1:
always @(*)

sum = a - b - cin;
// Style 2:
always @*

sum = a - b - cin;

LO

 Verilog Language Support Verilog 2001 Support

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

Signed Signals
In Verilog 2001, data types net and reg, module ports, integers of different bases
and signals can all be signed. You can assign and compare signed signals,
and perform signed operations for vectors of any length.

Declaration

module adder (output reg signed [31:0] sum,
wire signed input [31:0] a, b;

Assignment

wire signed [3:0] a = 4’sb1001;

Comparison

wire signed [1:0] sel;
parameter p0 = 2’sb00, p1 = 2’sb01, p2 = 2’sb10, p3 = 2’sb11;
case sel

p0: ...
p1: ...
p2: ...
p3: ...

endcase

Inline Parameter Assignment by Name
In Verilog 2001, you can assign values to parameters by name, inline:

module top(/* port list of top-level signals */);
dff #(.param1(10),.param2(5)) inst_dff(q, d, clk);

endmodule
where:

module dff #(parameter param1=1, param2=2) (q, d, clk);
input d, clk;
output q;

...
endmodule

Verilog 2001 Support Verilog Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 37

Constant Function
In Verilog 2001, you can use constant functions to build complex values at
elaboration time.

Example - Constant function

// Example - Constant function
module ram
// Verilog 2001 ANSI parameter declaration syntax

#(parameter depth= 129,
parameter width=16)

// Verilog 2001 ANSI port declaration syntax
(input clk, we,

// Calculate addr width using Verilog 2001 constant function
input [clogb2(depth)-1:0] addr,
input [width-1:0] di,
output reg [width-1:0] do);

function integer clogb2;
input [31:0] value;

for (clogb2=0; value>0; clogb2=clogb2+1)
value = value>>1;

endfunction
reg [width-1:0] mem[depth-1:0];
always @(posedge clk) begin

if (we)
begin

mem[addr]<= di;
do<= di;

LO

 Verilog Language Support Verilog 2001 Support

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

end
else

do<= mem[addr];
end

endmodule

Localparam
In Verilog 2001, localparam (constants that cannot be redefined or modified)
follow the same parameter rules in regard to size and sign. Unlike parameter,
localparam cannot be overridden by a defparam from another module.

Example:

parameter ONE = 1
localparam TWO=2*ONE
localparam [3:0] THREE=TWO+1;
localparam signed [31:0] FOUR=2*TWO;

Configuration Blocks
Verilog configuration blocks define a set of rules that explicitly specify the
exact source description to be used for each instance in a design. A configu-
ration block is defined outside the module and multiple configuration blocks
are supported.

Syntax
config configName;

design libraryIdentifier.moduleName;
default liblist listofLibraries;
configurationRule;

endconfig

Design Statement
The design statement specifies the library and module for which the configu-
ration rule is to defined.

Verilog 2001 Support Verilog Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 39

design libraryIdentifier.moduleName;
libraryIdentifier :- Library Name
moduleName :- Module Name

Default Statement
The default liblist statement lists the library from which the definition of the
module and sub-modules can be selected. A use clause cannot be used in this
statement.

default liblist listof_Libraries;
listofLibraries :- List of Libraries

Configuration Rule Statement
In this section, rules are defined for different instances or cells in the design.
The rules are defined using instance or cell clauses.

• instance clause - specifies the particular source description for a given
instance in the design.

• cell clause - specifies the source description to be picked for a particular
cell/module in a given design.

A configuration rule can be defined as any of the following:

• instance clause with liblist

instance moduleName.instance liblist listofLibraries;
• instance clause with use clause

instance moduleName.instance use libraryIdentifier.[cellName |
configName];

• cell clause with liblist

cell cellName liblist listofLibraries;
• cell clause with use clause

cell cellName use libraryIdentifier.[cellName | configName];

LO

 Verilog Language Support Verilog 2001 Support

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

Configuration Block Examples
The following examples illustrate Verilog 2001 configuration blocks.

Example - Configuration with instance clause
The following example has different definitions for the leaf module compiled
into the multlib and xorlib libraries; configuration rules are defined specifically
for instance u2 in the top module to have the definition of leaf module as XOR
(by default the leaf definition is multiplier). This example uses an instance
clause with liblist to define the configuration rule.

//********Leaf module with the Multiplication definition
// Multiplication definition is compiled to the library "multlib"
// Command to be added in the design file to compile a
// specific HDL to a specific library is
// add_file -verilog -lib multlib "leaf_mult.v"
module leaf
(
//Input Port

input [7:0] d1,
input [7:0] d2,

//Output Port
output reg [15:0] dout

);
always@*

dout = d1 * d2;
endmodule //EndModule
//********Leaf module with the XOR definition
// XOR definition is compiled to the library "xorlib"
// Command to be added in the design file to compile a
// specific HDL to a specific library is
// add_file -verilog -lib xorlib "leaf_xor.v"
module leaf
(
//Input Port

input [7:0] d1,
input [7:0] d2,

//Output Port
output reg[15:0] dout

);

Verilog 2001 Support Verilog Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 41

always@(*)
dout = d1 ^ d2;

endmodule //EndModule
//********Top module definition
// Top module definition is compiled to the library "TOPLIB"
// Command to be added in the design file to compile a
// specific HDL to a specific library is
// add_file -verilog -lib TOPLIB "top.v"
module top
(
//Input Port

input [7:0] d1,
input [7:0] d2,
input [7:0] d3,
input [7:0] d4,

//Output Port
output [15:0] dout1,
output [15:0] dout2

);
leaf
u1
(

.d1(d1),

.d2(d2),

.dout(dout1)
);
leaf
u2
(

.d1(d3),

.d2(d4),

.dout(dout2)
);
endmodule //End Module
//********Configuration Definition
// Configuration definition is compiled to the library "TOPLIB"
// Command to be added in the design file to compile a
// specific HDL to a specific library is
// add_file -verilog -lib TOPLIB "cfg.v"

LO

 Verilog Language Support Verilog 2001 Support

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

config cfg;
design TOPLIB.top;
default liblist multlib xorlib TOPLIB; //By default the leaf

// definition is Multiplication definition
instance top.u2 liblist xorlib; //For instance u2 the default

// definition is overridden and the "leaf" definition is
// picked from "xorlib" which is XOR.

endconfig //EndConfiguration
Basically, configuration blocks can be represented by the top-level design
with hierarchy shown as follows:

Example - Configuration with cell clause
In the following example, different definitions of the leaf module are compiled
into the multlib and xorlib libraries; a configuration rule is defined for cell leaf
that picks the definition of the cell from the multlib library. This example uses
a cell clause with a use clause to define the configuration rule.

//********Configuration Definition
// Configuration definition is compiled to the library "TOPLIB"
// Command to be added in the design file to compile a
// specific HDL to a specific library is
// add_file -verilog -lib TOPLIB "cfg.v"

Verilog 2001 Support Verilog Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 43

config cfg;
design TOPLIB.top;
default liblist xorlib multlib TOPLIB; //By default the leaf

// definition uses the XOR definition
cell leaf use multlib.leaf;

//Definition of the instances u1 and u2
// will be Multiplier which is picked from "multlib"

endconfig //EndConfiguration
Example - Hierarchical reference of the module inside the configuration
Similar to the previous example, different definitions of leaf are compiled into
the multlib, addlib, and xorlib libraries; suppose the adder and submodule
definitions are also included in the code. The configuration rule is defined for
instance u2 that is referenced in the hierarchy as the lowest instance module
using an instance clause.

//********Leaf module with the ADDER definition
// ADDER definition is compiled to the library "addlib"
// Command to be added in the design file to compile a
// specific HDL to a specific library is
// add_file -verilog -lib addlib "leaf_add.v"
module leaf
(
//Input Port

input [7:0] d1,
input [7:0] d2,

//Output Port
output [15:0] dout

);
assign dout = d1 + d2;
endmodule
//********Submodule definition
// Submodule definition is compiled to the library "SUBLIB"
// Command to be added in the design file to compile a
// specific HDL to a specific library is
// add_file -verilog -lib SUBLIB "sub.v"
module sub
(
//Input Port

input [7:0] d1,
input [7:0] d2,

LO

 Verilog Language Support Verilog 2001 Support

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

input [7:0] d3,
input [7:0] d4,

//Output Port
output [15:0] dout1,
output [15:0] dout2

);
leaf
u1
(

.d1(d1),

.d2(d2),

.dout(dout1)
);
leaf
u2
(

.d1(d3),

.d2(d4),

.dout(dout2)
);
endmodule //End Module

The configuration is defined as follows:

//********Configuration Definition
// Configuration definition is compiled to the library "TOPLIB"
// Command to be added in the design file to compile a
// specific HDL to a specific library is
// add_file -verilog -lib TOPLIB "cfg.v"
config cfg;

design TOPLIB.top;
default liblist addlib multlib xorlib TOPLIB SUBLIB; //By
default,

//the leaf definition uses the ADDER definition
instance top.u1.u2 liblist xorlib multlib; //For instances u2 is

//referred hierarchy to lowest instances and the default
definition

//is overridden by XOR definition for this instanceendconfig
//EndConfiguration

Verilog 2001 Support Verilog Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 45

Multiple Configuration Blocks
When using multiple configurations, if a configuration for the top level exists,
the configuration is implemented; lower level configurations do not apply
unless the top-level configuration includes an instance clause that maps an
instance to another configuration.

The following code examples define how multiple configuration blocks can be
configured. The top-level design file includes the configuration shown below:

###
#design files
add_file -verilog -lib work123 "top.v"
add_file -verilog -lib work123 "sub1_1.v"
add_file -verilog -lib lib2 "sub1_2.v"
add_file -verilog -lib lib3 "sub2_1.v"
add_file -verilog -lib work123 "sub2_2.v"
add_file -verilog -lib lib5 "sub3_1.v"
add_file -verilog -lib work123 "sub3_2.v"
add_file -verilog -lib lib7 "sub4_2.v"
add_file -verilog -lib work123 "sub4_1.v"
add_file -verilog "cfg1.v"
add_file -verilog -lib cfg1 "cfg2.v"
add_file -verilog -lib cfg2 "cfg3.v"
###

Example Top Module - Multiple Configurations

// Example Top Module -- Multiple Configurations

module top (input [31:0] in1,input [31:0] in2, output [31:0] out1,
output [31:0] out2, output [31:0] out3, output [31:0] out4);

sub1 inst1 (in1,in2,out1,out2);

sub3 inst3 (in1,in2,out3,out4);

endmodule

LO

 Verilog Language Support Verilog 2001 Support

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

Example Submodule 1_1 - Multiple Configurations

// Example Submodule 1_1 -- Multiple Configurations

module sub1 (input [31:0] in1,input [31:0] in2, output [31:0] out1,
output [31:0] out2);
sub2 inst2 (in1,in2,out1,out2);
endmodule

Example Submodule 1_2 - Multiple Configurations

// Example Submodule 1_2 -- Multiple Configurations

module sub1 (input [31:0] in1,input [31:0] in2, output [31:0]
out1,output [31:0] out2);
sub2 inst2 (in1,in2,out1,out2);
endmodule

Example Submodule 2_1 - Multiple Configurations

// Submodule 2_1 -- Multiple Configurations

module sub2 (input [31:0] in1,input [31:0] in2, output [31:0] out1,
output [31:0] out2);
assign out1 = in1 & in2;
assign out2 = in1 | in2;
endmodule

Example Submodule 2_2 - Multiple Configurations

// Example 2_2 -- Multiple Configurations

module sub2 (input [31:0] in1,input [31:0] in2, output [31:0]
out1,output [31:0] out2);

Verilog 2001 Support Verilog Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 47

assign out1 = in1 ;
assign out2 = in2 ;
endmodule

Example Submodule 3_1 - Multiple Configurations

// Example 3_1 -- Multiple Configurations

module sub3 (input [31:0] in1,input [31:0] in2, output [31:0] out1,
output [31:0] abc);
sub4 inst4 (in1,in2,out1,abc);
endmodule

Example Submodule 3_2 - Multiple Configurations

// Example Submodule 3_2 -- Multiple Configurations

module sub3 (input [31:0] in1,input [31:0] in2, output [31:0] out1,
output [31:0] xyz);
sub4 inst4 (in1,in2,out1,xyz);
endmodule

Example Submodule 4_1 - Multiple Configurations

// Examples Submodules 4_1 -- Multiple Configurations

module sub4 (input [31:0] in1,input [31:0] in2, output [31:0] out1,
output [31:0] out2);
assign out1 = in1 & in2;
assign out2 = in1 | in2;
endmodule

LO

 Verilog Language Support Verilog 2001 Support

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

Example Submodule 4_2 - Multiple Configurations

// Example Submodule 4_2 -- Multiple Configurations

module sub4 (input [31:0] in1,input [31:0] in2, output [31:0]
out1,output [31:0] out2);
assign out1 = ~in1;
assign out2 = ~in2;
endmodule

Example Configuration 1 - Multiple Configurations

// Example Configuration 1 -- Multiple Configurations

config cfg1;

design work123.top;
default liblist work123;

instance top.inst1 use cfg1.cfg:config;
instance top.inst3 use cfg2.cfg:config;

endconfig

Example Configuration 2 - Multiple Configurations

// Configuration 2 -- Multiple Configurations

config cfg;

design work123.sub1;

Verilog 2001 Support Verilog Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 49

default liblist lib3;

cell sub2 liblist work123 lib3;

endconfig

Example Configuration - Multiple Configurations

// Example Configuration 3 -- Multiple Configurations

config cfg;

design work123.sub3;

default liblist lib88;

instance sub3.inst4 liblist lib6 lib7;

endconfig

Configuration with Generate Statements
An instance or cell clause can be defined within a generate statement. A
configuration rule specifies how this instance or cell is to be configured;
where the generated instance or cell for the submodule is compiled into the
work1 library and the top module is compiled into the work2 library. See the
example below:

LO

 Verilog Language Support Verilog 2001 Support

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

Example 1A - Submodule Definition

// Config Generate Example with sub

`define REGR_MODULE_DEFINE(x) `ifdef SYNTHESIS x `else x``_rtl
`endif
module `REGR_MODULE_DEFINE(sub) (
input [3:0] in1,
input clk,
output reg [3:0] out1);

reg [3:0] temp;
reg [3:0] temp1;

always @ (posedge clk)
begin
temp1 <= in1;
temp <= {in1[0],in1[3],in1[2],in1[1]};
out1 <= temp&temp1;
end

endmodule

Example 1B - Top-Level Module Definition

// Config Generate Example with top

`define REGR_MODULE_DEFINE(x) `ifdef SYNTHESIS x `else x``_rtl
`endif
module `REGR_MODULE_DEFINE(top) (

Verilog 2001 Support Verilog Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 51

input [3:0] in1,in2,
input clk,
output [3:0] out1
);
generate
begin:blk1
`REGR_MODULE_DEFINE(sub) inst (in1,clk,out1);
assign out2 = in2;
assign inst.temp1 = in2;
end:blk1
endgenerate

endmodule

Example 1C - Configuration Definition

For example, you can use either definition of the configuration as shown
below.

//********Configuration Definition
// Configuration definition is compiled to the library "work"
// Command to be added in the design file to compile a
// specific HDL to a specific library is
// add_file -verilog -lib work "config.v"
config cfg1;
design work2.top;
instance top.blk1.inst liblist work1;
endconfig
OR

config cfg1;
design work2.top;
cell sub use work1.sub;
endconfig

LO

 Verilog Language Support Verilog 2001 Support

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

Configuration Block Limitations
Configuration blocks do not support the following:

• Nested configuration

• A use clause with the cell name or library name omitted

• Mixed HDL configuration

• Multiple top levels in the design clause

• Parameter override for the configuration

Localparams
In Verilog 2001, localparams (constants that cannot be redefined or modified)
follow the same parameter rules in regard to size and sign.

Example:

parameter ONE = 1
localparam TWO=2*ONE
localparam [3:0] THREE=TWO+1;
localparam signed [31:0] FOUR=2*TWO;

$signed and $unsigned Built-in Functions
In Verilog 2001, the built-in Verilog 2001 functions can be used to convert
types between signed and unsigned.

c = $signed (s); /* Assign signed valued of s to c. */
d = $unsigned (s); /* Assign unsigned valued of s to d. */

$clog2 Constant Math Function
Verilog-2005 includes the $clog2 constant math function which returns the
value of the log base-2 for the argument passed. This system function can be
used to compute the minimum address width necessary to address a memory
of a given size or the minimum vector width necessary to represent a given
number of states.

Verilog 2001 Support Verilog Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 53

Syntax
$clog2(argument)

In the above syntax, argument is an integer or vector.

Example 1 - Constant Math Function Counter

// Example - Constant math function counter
module top
#(parameter COUNT = 256)
//Input
(input clk,

input rst,
//Output
//Function used to compute width based on COUNT value of counter:

output [$clog2(COUNT)-1:0] dout);
reg[$clog2(COUNT)-1:0]count;
always@(posedge clk)
begin

if(rst)
count = ‘b0;

else
count = count + 1’b1;

end
assign dout = count;
endmodule

LO

 Verilog Language Support Verilog 2001 Support

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

module top
#(parameter COUNT = 256)
//Input
(input clk,

input rst,
//Output
//Function used to compute width based on COUNT value of counter:

output [$clog2(COUNT)-1:0] dout);
reg[$clog2(COUNT)-1:0]count;
always@(posedge clk)
begin

if(rst)
count = 'b0;

else
count = count + 1'b1;

end
assign dout = count;
endmodule

Example 2 - Constant Math Function RAM

// Example - Constant math function RAM
module top

(parameter DEPTH = 256,

parameter WIDTH = 16)
(
//Input

input clk,
input we,
input rst,

//Function used to compute width of address based on depth of RAM:
input [$clog2(DEPTH)-1:0] addr,
input [WIDTH-1:0] din,

//Output

Verilog 2001 Support Verilog Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 55

output reg[WIDTH-1:0] dout);
reg[WIDTH-1:0] mem[(DEPTH-1):0];
always @ (posedge clk)

if (rst == 1)
dout = 0;

else
dout = mem[addr];

always @(posedge clk)
if (we) mem[addr] = din;

endmodule
module top

(parameter DEPTH = 256,

parameter WIDTH = 16)
(
//Input

input clk,
input we,
input rst,

//Function used to compute width of address based on depth of RAM:
input [$clog2(DEPTH)-1:0] addr,
input [WIDTH-1:0] din,

//Output
output reg[WIDTH-1:0] dout);

reg[WIDTH-1:0] mem[(DEPTH-1):0];
always @ (posedge clk)

if (rst == 1)
dout = 0;

else
dout = mem[addr];

always @(posedge clk)
if (we) mem[addr] = din;

endmodule

LO

 Verilog Language Support Verilog 2001 Support

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

Generate Statement
The newer Verilog 2005 generate statement is now supported in Verilog 2001.
The defparam, parameter, and function and task declarations within generate state-
ments are supported. In addition, the naming scheme for registers and
instances is enhanced to include closer correlation to specified generate
symbolic hierarchies. Generated data types have unique identifier names and
can be referenced hierarchically. Generate statements are created using one of
the following three methods: generate-loop, generate-conditional, or
generate-case.

// for loop
generate
begin:G1

genvar i;
for (i=0; i<=7; i=i+1)
begin :inst

adder8 add (sum [8*i+7 : 8*i], c0[i+1],
a[8*i+7 : 8*i], b[8*i+7 : 8*i], c0[i]);

end
end
endgenerate
// if-else
generate

if (adder_width < 8)
ripple_carry # (adder_width) u1 (a, b, sum);

else
carry_look_ahead # (adder_width) u1 (a, b, sum);

endgenerate
// case
parameter WIDTH=1;
generate

case (WIDTH)
1: adder1 x1 (c0, sum, a, b, ci);
2: adder2 x1 (c0, sum, a, b, ci);
default: adder # width (c0, sum, a, b, ci);

endcase
endgenerate

Verilog 2001 Support Verilog Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 57

Automatic Task Declaration
In Verilog 2001, tasks can be declared as automatic to dynamically allocate
new storage each time the task is called and then automatically release the
storage when the task exits. Because there is no retention of tasks from one
call to another as in the case of static tasks, the potential conflict of two
concurrent calls to the same task interfering with each other is avoided.
Automatic tasks make it possible to use recursive tasks.

This is the syntax for declaring an automatic task:

task automatic taskName (argument [, argument , ...]);

Arguments to automatic tasks can include any language-defined data type
(reg, wire, integer, logic, bit, int, longint, or shortint) or a user-defined datatype
(typedef, struct, or enum). Multidimensional array arguments are not supported.

Automatic tasks can be synthesized but, like loop constructs, the tool must
be able to statically determine how many levels of recursive calls are to be
made. Automatic (recursive) tasks are used to calculate the factorial of a
given number.

Example

module automatic_task (input byte in1,
output bit [8:0] dout);

parameter FACT_OP = 3;
bit [8:0] dout_tmp;
task automatic factorial (input byte operand,

output bit [8:0] out1);
integer nFuncCall = 0;
begin

if (operand == 0)
begin

out1 = 1;
end
else
begin

nFuncCall++;
factorial ((operand-1), out1);
out1 = out1 * operand;

end
end
endtask

LO

 Verilog Language Support Verilog 2001 Support

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

always_comb
factorial (FACT_OP,dout_tmp);
assign dout = dout_tmp + in1;
endmodule

Multidimensional Arrays
In Verilog 2001, arrays are declared by specifying the element address ranges
after the declared identifiers. Use a constant expression, when specifying the
indices for the array. The constant expression value can be a positive integer,
negative integer, or zero. Refer to the following examples.

These examples apply to register types too:

reg [3:0] mem[7:0]; // A regular memory of 8 words with 4
//bits/word.

reg [3:0] mem[7:0][3:0]; // A memory of memories.
There is a Verilog restriction which prohibits bit access into memory words.
Verilog 2001 removes all such restrictions. This applies equally to wires
types. For example:

wire[3:0] my_wire[3:0];
assign y = my_wire[2][1]; // refers to bit 1 of 2nd word (word

//does not imply storage here) of my_wire.

2-dimensional wire object my_wire is an eight-bit-wide vector with indices from 5 to 0.
wire [7:0] my_wire [5:0];

3-dimensional wire object my_wire is an eight-bit-wide vector with indices from 5 to 0
whose indices are from 3 down to 0.
wire [7:0] my_wire [5:0] [3:0];

3-dimensional wire object my_wire is an eight-bit-wide vector (-4 to 3) with indices
from -3 to 1 whose indices are from 3 down to 0.
wire [-4:3] my_wire [-3:1] [3:0];

Verilog 2001 Support Verilog Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 59

Variable Partial Select
In Verilog 2001, indexed partial select expressions (+: and -:), which use a
variable range to provide access to a word or part of a word, are supported.
The software extracts the size of the operators at compile time, but the index
expression range can remain dynamic. You can use the partial select opera-
tors to index any non-scalar variable.

The syntax to use these operators is described below.

vectorName [baseExpression +: widthExpression]
vectorName [baseExpression -: widthExpression]

This is an example using partial select expressions:

module part_select_support (down_vect, up_vect, out1, out2, out3);
output [7:0] out1;
output [1:0] out2;
output [7:0] out3;
input [31:0] down_vect;
input [0:31] up_vect;
wire [31:0] down_vect;
wire [0:31] up_vect;
wire [7:0] out1;
wire [1:0] out2;
wire [7:0] out3;
wire [5:0] index1;
assign index1 = 1;

vectorName Name of vector. Direction in the declaration affects the
selection of bits

baseExpression Indicates the starting point for the array. Can be any legal
Verilog expression.

+: The +: expression selects bits starting at the
baseExpression while adding the widthExpression.
Indicates an upward slicing.

-: The -: expression selects bits starting at the
baseExpression while subtracting the widthExpression.
Indicates a downward slicing.

widthExpression Indicates the width of the slice. It must evaluate to a
constant at compile time. If it does not, you get a syntax
error.

LO

 Verilog Language Support Verilog 2001 Support

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

assign out1 = down_vect[index1+:8]; // resolves to [8:1]
assign out2 = down_vect[index1-:8]; // should resolve to [1:0],

// but resolves to constant 2'b00 instead
assign out3 = up_vect[index1+:8]; // resolves to [1:8]
endmodule

For the Verilog code above, the following description explains how to validate
partial select assignments to out2:

• The compiler first determines how to slice down_vect.

– down_vect is an array of [31:0]

– assign out2 = down_vect [1 -: 8] will slice down_vect starting at value 1
down to -6 as [1 : -6], which includes [1, 0, -1, -2, -3, -4, -5, -6]

• Then, the compiler assigns the respective bits to the outputs.

– out2 [0] = down_vect [-6]
out2 [1] = down_vect [-5]

– Negative ranges cannot be specified, so out2 is tied to “00”.

– Therefore, change the following expression in the code to:
assign out2 = down_vect [1 -: 2], which resolves to down_vect [1,0]

Cross-Module Referencing
Cross-module referencing (XMR) is a method of accessing an element across
modules in Verilog and SystemVerilog. Verilog supports accessing elements
across different scopes using the hierarchical reference (.) operator.
Cross-module referencing can also be done on the variable of any of the data
types available in SystemVerilog.

Cross-module referencing support includes:

• Downward Cross-Module Referencing

• Upward Cross-Module Referencing

• Cross-Module Referencing of Generate Blocks

• Cross-Module Referencing Generate Block Examples

• Cross-Module Referencing Limitations

Verilog 2001 Support Verilog Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 61

Downward Cross-Module Referencing
In downward cross-module referencing, you reference elements of lower-level
modules in the higher-level modules through instantiated names. This is the
syntax for a downward cross-module reference:

port/variable = inst1.inst2.value; // XMR Read

inst1.inst2.port/variable = value; // XMR Write

In this syntax, inst1 is the name of an instance instantiated in the top module
and inst2 is the name of an instance instantiated in inst1. Value can be a
constant, parameter, or variable. Port/variable is defined/declared once in
the current module.

Example - Downward Read Cross-Module Reference

// Example: Downward Read Cross-Module Reference
module top
(input a,

input b,
output c,
output d

);
sub inst1 (.a(a), .b(b), .c(c));
assign d = inst1.a;
endmodule
module sub
(input a,

input b,
output c

);
assign c = a & b;
endmodule

LO

 Verilog Language Support Verilog 2001 Support

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

module top (
input a,
input b,
output c,
output d);

sub inst1 (.a(a),.b(b), .c(c));
assign d = inst1.a;
endmodule
module sub (

input a,
input b,
output c);

assign c = a & b;
endmodule

Example - Downward Write Cross-Module Reference

module top
(input a,

input b,
output c,
output d

);
sub inst1 (.a(a), .b(b), .c(c), .d(d));
assign top.inst1.d = a;
endmodule
module sub
(input a,

input b,
output c,
output d

);

assign c = a & b;
endmodule

Verilog 2001 Support Verilog Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 63

Upward Cross-Module Referencing
In upward cross-module referencing, a lower-level module references items in
a higher-level module in the hierarchy through the name of the top module.

This is the syntax for an upward reference from a lower module:

port/variable = top.inst1.inst2.value; // XMR Read

top.inst1.inst2.port/variable = value; // XMR Write

The starting reference is the top-level module. In this syntax, top is the name
of the top-level module, inst1 is the name of an instance instantiated in top
module and inst2 is the name of an instance instantiated in inst1. Value can
be a constant, parameter, or variable. Port/variable is the one
defined/declared in the current module.

Example - Upward Read Cross-Module Reference

// Example: Upward Read Cross-Module Reference
module top
(input a,

input b,
output c,
output d

);
sub inst1 (.a(a), .b(b), .c(c), .d(d));
endmodule
module sub
(input a,

input b,
output c,
output d

);
assign c = a & b;

LO

 Verilog Language Support Verilog 2001 Support

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

assign d = top.a;
endmodule
module top (

input a,
input b,
output c,
output d);

sub inst1 (.a(a), .b(b), .c(c), .d(d));
endmodule
module sub (

input a,
input b,
output c,
output d);

assign c = a & b;
assign d = top.a;
endmodule

Cross-Module Referencing of Generate Blocks
For cross-module referencing of generate blocks, signals can be referenced
into, within, and from generate blocks to elements outside its boundary.
Support includes:

• Upward read or write cross-module referencing into, within, and from
generate blocks.

• Downward read or write cross-module referencing into, within, and from
generate blocks.

• Cross-module referencing supports different types of generate blocks,
such as, generate blocks using a for/if/case statement.

• Cross-module referencing into or from a generate block of any hierarchy.

Cross-Module Referencing Generate Block Examples
Cross-module referencing of generate blocks are supported for modules
shown in the following examples.

Example 1A - XMR of a Generate Block

Verilog 2001 Support Verilog Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 65

// Example 1A: XMR of a Generate Block

// Top module
module top (

input [3:0] in1,in2,
input clk,
output [3:0] out1,out2
);

generate
begin:blk1
sub inst (in1,clk,out1);
end:blk1
endgenerate

//XMR write
assign top.blk1.inst.temp1 = in2;

//XMR read
assign out2 = top.blk1.inst.temp;

endmodule

This code example implements cross-module referencing of the generate
block in the top-level module.

LO

 Verilog Language Support Verilog 2001 Support

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

Example 1B - XMR of a Generate Block

// Example 1B: XMR of a Generate Block

// Sub module
module sub (

input [3:0] in1,
input clk,
output reg [3:0] out1
);

reg [3:0] temp;
reg [3:0] temp1;

always @ (posedge clk)
begin

temp <= {in1[0],in1[3],in1[2],in1[1]};
out1 <= temp&temp1;

end

endmodule

Here is the code example of the sub-module, for which write and read
cross-module referencing occurs from the top-level module above.

Verilog 2001 Support Verilog Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 67

Example 2A– XMR of Generate Block with an if Statement

// Example 2A: XMR of a Generate Block with an if Statement

// Top module
module top (

input [3:0] in1, in2,
input clk,
output [3:0] out1, out2
);

parameter [2:0] sel = 3’b101;

generate
begin:blk1
if(sel[2]) begin: if_blk1

sub inst (in1,clk,out1);
//XMR read
assign out2 = inst.temp;

//XMR write
assign inst.temp1 = in2;

end:if_blk1
else begin: else_blk1

sub inst1 (in1,clk,out1);
end:else_blk1

LO

 Verilog Language Support Verilog 2001 Support

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

end:blk1

endgenerate

endmodule

This code example implements cross-module referencing of the generate
block using an if statement in the top-level design.

Example 2B– XMR of Generate Block with an if Statement

// Example 2B: XMR of a Generate Block with an if Statement

// Sub module
module sub (

input [3:0] in1,
input clk,
output reg [3:0] out1
);

reg [3:0] temp;
reg [3:0] temp1;

always @ (posedge clk)
begin

temp <= {in1[0],in1[3],in1[2],in1[1]};
out1 <= temp&temp1;

end

Verilog 2001 Support Verilog Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 69

endmodule

Here is the code example of the sub-module that is referenced from the
top-level generate block.

Example 3A: XMR of Generate Block with a for Statement

// Example 3A: XMR of a Generate Block with a for Statement

// Top module
module top (

input [7:0] in1,
input [3:0] in2,
input clk,
output [7:0] out1,
output [3:0] out2
);

parameter [2:0] sel = 3’b101;

genvar i;
generate
begin:blk1

for (i=0;i<2;i++)
begin:loop1

sub inst1 (in1[i*4+3:i*4],clk,out1[i*4+3:i*4]);

LO

 Verilog Language Support Verilog 2001 Support

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

end
end:blk1
endgenerate

//XMR read
assign out2 = top.blk1.loop1[0].inst1.temp;

//XMR write
assign top.blk1.loop1[0].inst1.temp1 = in2;
assign top.blk1.loop1[1].inst1.temp1 = in2;

endmodule
This code example implements cross-module referencing of the generate
block using a for statement in the top-level design.

Example 3B: XMR of Generate Block with a for Statement

// Example 3B: XMR of a Generate Block with a for Statement

// Sub module
module sub (

input [3:0] in1,
input clk,
output reg [3:0] out1
);

reg [3:0] temp;

Verilog 2001 Support Verilog Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 71

reg [3:0] temp1;

always @ (posedge clk)
begin

temp <= {in1[0],in1[3],in1[2],in1[1]};
out1 <= temp&temp1;

end

endmodule

Here is the code example of the sub-module that is referenced from the
top-level generate block.

Example 4A: XMR of Generate Block with case Statements

// Example 4A: XMR Generate Blocks with case Statements
// Sub module 2
module sub2 (
 input [3:0] in1,
 input clk,
 output reg [3:0] out1
);

reg [3:0] temp;
reg [3:0] temp1;

always @ (posedge clk)
begin
 temp <= {in1[1],in1[3],in1[0],in1[2]};

LO

 Verilog Language Support Verilog 2001 Support

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

 out1 <= temp&temp1;
end

endmodule

// Top module
module top (
 input [3:0] in1, in2,
 input clk,
 output [3:0] out1, out2
);

parameter [1:0] sel1 = 2’b01;
parameter [1:0] sel2 = 2’b11;

generate
begin:g_blk1

case (sel1)
 0 : begin:blk0
 sub1 inst0 (in1,clk,out1);
 end

 1 : begin:blk1
 sub1 inst1 (in1,clk,out1);
 end

Verilog 2001 Support Verilog Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 73

 2 : begin:blk2
 sub1 inst2 (in1,clk,out1);
 end

 3 : begin:blk3
 sub1 inst3 (in1,clk,out1);
 end
endcase

//XMR read
assign top.g_blk2.blk3.inst3.temp1 = top.g_blk1.blk1.inst1.temp;

//XMR write
assign top.g_blk1.blk1.inst1.temp1 = top.g_blk2.blk3.inst3.temp;

end:g_blk1
endgenerate

generate
begin:g_blk2

case (sel2)
 0 : begin:blk0
 sub2 inst0 (in2,clk,out2);

LO

 Verilog Language Support Verilog 2001 Support

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

 end

 1 : begin:blk1
 sub2 inst1 (in2,clk,out2);
 end

 2 : begin:blk2
 sub2 inst2 (in2,clk,out2);
 end

 3 : begin:blk3
 sub2 inst3 (in2,clk,out2);
 end
endcase
end:g_blk2
endgenerate

endmodule
This code example implements cross-module referencing of the generate
block using case statements in the top-level design.

Example 4B: XMR of Generate Block with case Statements

// Example 4B: XMR Generate Blocks with case Statements
// Sub module 1
module sub1 (
 input [3:0] in1,
 input clk,
 output reg [3:0] out1

Verilog 2001 Support Verilog Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 75

);

reg [3:0] temp;
reg [3:0] temp1;

always @ (posedge clk)
begin
 temp <= {in1[0],in1[3],in1[2],in1[1]};
 out1 <= temp&temp1;
end

endmodule
Here is the code example of the sub-module that is referenced from the
top-level generate block.

Cross-Module Referencing Limitations
The following limitations currently exist with cross-module referencing:

• Cross-module referencing through an array of instances is not
supported.

• In upward cross-module referencing, the reference must be an absolute
path (an absolute path is always from the top-level module).

• Functions and tasks cannot be accessed through cross-module refer-
ence notation.

• You can only use cross-module referencing with Verilog/SystemVerilog
elements. You cannot access VHDL elements with hierarchical refer-
ences.

• To access VHDL hierarchical references, it is recommended that you do
this using the hypersource/connect mechanism. For details, see Using
Hyper Source, on page 499.

LO

 Verilog Language Support Verilog 2001 Support

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

ifndef and elsif Compiler Directives
Verilog 2001 supports the `ifndef and `elsif compiler directives. Note that the
`ifndef directive is the opposite of `ifdef.

module top (output out);
`ifndef a

assign out = 1'b01;
`elsif b

assign out = 1'b10;
`else

assign out = 1'b00;
`endif

endmodule

Verilog Synthesis Guidelines Verilog Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 77

Verilog Synthesis Guidelines
This section provides guidelines for synthesis using Verilog and covers the
following topics:

• General Synthesis Guidelines, on page 77

• Library Support in Verilog, on page 78

• Constant Function Syntax Restrictions, on page 82

• Multi-dimensional Array Syntax Restrictions, on page 82

• Signed Multipliers in Verilog, on page 84

• Verilog Language Guidelines: always Blocks, on page 85

• Initial Values in Verilog, on page 86

• Cross-language Parameter Passing in Mixed HDL, on page 88

• Library Directory Specification for the Verilog Compiler, on page 89

General Synthesis Guidelines
Some general guidelines are presented here to help you synthesize your
Verilog design. See Verilog Module Template, on page 90 for additional infor-
mation.

• Top-level module - The tool picks the last module compiled that is not
referenced in another module as the top-level module. Module selection
can be overridden from the Verilog panel of the Implementation Options
dialog box.

• Simulate your design before synthesis to expose logic errors. Logic
errors that you do not catch are passed through the tool, and the
synthesized results will contain the same logic errors.

• Simulate your design after placement and routing - Have the
place-and-route tool generate a post placement and routing
(timing-accurate) simulation netlist, and do a final simulation before
programming your devices.

• Avoid asynchronous state machines - To use the tool for asynchronous
state machines, make a netlist of technology primitives from your target
library.

LO

 Verilog Language Support Verilog Synthesis Guidelines

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

• Level-sensitive latches - For modeling level-sensitive latches, use contin-
uous assignment statements.

Library Support in Verilog
Verilog libraries are used to compile design units; this is similar to VHDL
libraries. Use the libraries in Verilog to support mixed-HDL designs, where
the VHDL design includes instances of a Verilog module that is compiled into
a specific library. Library support in Verilog can be used with Verilog 2001
and SystemVerilog designs.

Compiling Design Units into Libraries
By default, the Verilog source files are compiled into the work library. You can
compile these Verilog source files into any user-defined library.

To compile a Verilog file into a user-defined library:

1. Select the file in the Project view.

The library name appears next to the filename; it directly follows the
filename.

2. Right-click and select File Options from the popup menu. Specify the
name for your library in the Library Names field. You can:

– Compile multiple files into the same library.

– Also compile the same file into multiple libraries.

Verilog Synthesis Guidelines Verilog Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 79

Searching for Verilog Design Units in Mixed-HDL Designs
When a VHDL file references a Verilog design unit, the compiler first searches
the corresponding library for which the VHDL file was compiled. If the Verilog
design unit is not found in the user-defined library for which the VHDL file
was compiled, the compiler searches the work library and then all the other
Verilog libraries.

Therefore, to use a specific Verilog design unit in the VHDL file, compile the
Verilog file into the same user-defined library for which the corresponding
VHDL file was compiled. You cannot use the VHDL library clause for Verilog
libraries.

Specifying the Verilog Top-level Module
To set the Verilog top-level module for a user-defined library, use
libraryName.moduleName in the Top Level Module field on the Verilog tab of the
Implementation Options dialog box. You can also specify the following equivalent
Tcl command:

set_option -top_module "signed.top"

LO

 Verilog Language Support Verilog Synthesis Guidelines

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

Limitations
The following functions are not supported:

• Direct Entity Instantiation

• Configuration for Verilog Instances

Example 1: Specifying Verilog Top-level Module—Compiled to the
Non-work Library

//top_unsigned.v compiled into a user defined library - "unsigned"
//add_file -verilog -lib unsigned "./top_unsigned.v"
module top (input unsigned [7:0] a, b,
output unsigned [15:0] result);
assign result = a * b;
endmodule
//top_signed.v compiled into a user defined library - "signed"
//add_file -verilog -lib signed "./top_signed.v"
module top (input signed [7:0] a, b,
output signed [15:0] result);
assign result = a * b;
endmodule

To set the top-level module from the signed library:

• Specify the prefix library name for the module in the Top Level Module
option in the Verilog panel of the Implementation Options dialog box.

Verilog Synthesis Guidelines Verilog Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 81

• set_option -top_module "signed.top"

Example 2: Referencing Verilog Module from VHDL
This example includes two versions of the Verilog sub module that are
compiled into the signed_lib and unsigned_lib libraries. The compiler uses the
sub module from unsigned_lib when the top.vhd is compiled into unsigned_lib.

//Sub module sub in sub_unsigned is compiled into unsigned_lib
//add_file -verilog -lib unsigned_lib "./sub_unsigned.v"
module sub (input unsigned [7:0] a, b,
output unsigned [15:0] result);
assign result = a * b;
endmodule
//Sub module sub in sub_signed is compiled into signed_lib
//add_file -verilog -lib signed_lib "./sub_signed.v"
module sub (input signed [7:0] a, b,
output signed [15:0] result);
assign result = a * b;
endmodule
//VHDL Top module top is compiled into unsigned_lib library
// add_file -vhdl -lib unsigned_lib "./top.vhd"
LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
ENTITY top IS
GENERIC(
size_t : integer := 8
);

PORT(a_top : IN std_logic_vector(size_t-1 DOWNTO 0);
b_top : IN std_logic_vector(size_t-1 DOWNTO 0);
result_top : OUT std_logic_vector(2*size_t-1 DOWNTO 0)

);
END top;

ARCHITECTURE RTL OF top IS
component sub

PORT (a : IN std_logic_vector(7 DOWNTO 0);
b : IN std_logic_vector(7 DOWNTO 0);
result : OUT std_logic_vector(15 DOWNTO 0));

END component;
BEGIN
U1 : sub

PORT MAP (

LO

 Verilog Language Support Verilog Synthesis Guidelines

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

a => a_top,
b => b_top,

result => result_top
);
END ARCHITECTURE RTL;

Constant Function Syntax Restrictions
For Verilog 2001, the syntax for constant functions is identical to the existing
function definitions in Verilog. Restrictions on constant functions are as
follows:

• No hierarchal references are allowed

• Any function calls inside constant functions must be constant functions

• System tasks inside constant functions are ignored

• System functions inside constant functions are illegal

• Any parameter references inside a constant function should be visible

• All identifiers, except arguments and parameters, should be local to the
constant function

• Constant functions are illegal inside the scope of a generate statement

Multi-dimensional Array Syntax Restrictions
For Verilog 2001, the following examples show multi-dimensional array
syntax restrictions.

reg [3:0] arrayb [7:0][0:255];
arrayb[1] = 0;
// Illegal Syntax - Attempt to write to elements [1][0]..[1][255]
arrayb[1][12:31] = 0;
// Illegal Syntax - Attempt to write to elements [1][12]..[1][31]
arrayb[1][0] = 0;
// Okay. Assigns 32’b0 to the word referenced by indices [1][0]
Arrayb[22][8] = 0;
// Semantic Error, There is no word 8 in 2nd dimension.

Verilog Synthesis Guidelines Verilog Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 83

When using multi-dimension arrays, the association is always from
right-to-left while the declarations are left-to-right.

Example 1

module test (input a,b, output z, input clk, in1, in2);
reg tmp [0:1][1:0];

always @(posedge clk)
begin
 tmp[1][0] <= a ^ b;
 tmp[1][1] <= a & b;
 tmp[0][0] <= a | b;
 tmp[0][1] <= a &~ b;
end
assign z = tmp[in1][in2];

endmodule

Example 2

module bb(input [2:0] in, output [2:0] out)
/* synthesis syn_black_box */;

endmodule
module top(input [2:0] in, input [2:1] d1, output [2:0] out);
wire [2:0] w1[2:1];
wire [2:0] w2[2:1];
generate
begin : ABCD

genvar i;
for(i=1; i < 3; i = i+1)
begin : CDEF

assign w1[i] = in;
bb my_bb(w1[i], w2[i]);

end
end
endgenerate
assign out = w2[d1];

endmodule

LO

 Verilog Language Support Verilog Synthesis Guidelines

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

Signed Multipliers in Verilog
This section applies only to those using Verilog compilers earlier than version
2001.

The software contains an updated signed multiplier module generator. A
signed multiplier is used in Verilog whenever you multiply signed numbers.
Because earlier versions of Verilog compilers do not support signed data
types, an example is provided on how to write a signed multiplier in your
Verilog design:

module smul4(a, b, clk, result);
input [3:0]a;
input [3:0]b;
input clk;
output [7:0]result;
wire [3:0] inputa_signbits, inputb_signbits;
reg [3:0]inputa;
reg [3:0]inputb;
reg [7:0]out, result;
assign inputa_signbits = {4{inputa[3]}};
assign inputb_signbits = {4{inputb[3]}};
always @(inputa or inputb or inputa_signbits or inputb_signbits)
begin

out = {inputa_signbits,inputa} * {inputb_signbits,inputb};
end
always @(posedge clk)
begin

inputa = a;
inputb = b;
result = out;

end

endmodule

Verilog Synthesis Guidelines Verilog Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 85

Verilog Language Guidelines: always Blocks
An always block can have more than one event control argument, provided
they are all edge-triggered events or all signals; these two kinds of arguments
cannot be mixed in the same always block.

Examples
// OK: Both arguments are edge-triggered events
always @(posedge clk or posedge rst)
// OK: Both arguments are signals
always @(A or B)
// No good: One edge-triggered event, one signal
always @(posedge clk or rst)

An always block represents either sequential logic or combinational logic. The
one exception is that you can have an always block that specifies level-sensi-
tive latches and combinational logic. Avoid this style, however, because it is
error prone and can lead to unwanted level-sensitive latches.

An event expression with posedge/negedge keywords implies edge-triggered
sequential logic; and without posedge/negedge keywords implies combina-
tional logic, a level-sensitive latch, or both.

Each sequential always block is triggered from exactly one clock (and optional
sets and resets).

You must declare every signal assigned a value inside an always block as a reg
or integer. An integer is a 32-bit quantity by default, and is used with the
Verilog operators to do two's complement arithmetic.

Syntax:
integer [msb : lsb] identifier;

Avoid combinational loops in always blocks. Make sure all signals assigned in
a combinational always block are explicitly assigned values every time the
always block executes, otherwise the tool needs to insert level-sensitive latches
in the design to hold the last value for the paths that do not assign values.
This is a common source of errors, so the tool issues a warning message that
latches are being inserted into your design.

LO

 Verilog Language Support Verilog Synthesis Guidelines

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

You will get an error message if you have combinational loops in your design
that are not recognized as level-sensitive latches by the tool (for example if
you have an asynchronous state machine).

It is illegal to have a given bit of the same reg or integer variable assigned in
more than one always block.

Assigning a `bx to a signal is interpreted as a “don't care” (there is no `bx value
in hardware); the tool then creates the hardware with the most efficient
design.

Initial Values in Verilog
In Verilog, you can now store and pass initial values that the software
previously ignored. Initial values specified in Verilog only affect the compiler
output. This ensures that the synthesis results match the simulation results.
For initial values for RAM, see Initial Values for RAMs, on page 229.

Initial Values for Registers
The compiler reads the procedural assign statements with initial values. It
then stores the values, propagates them to inferred logic, and passes them
down stream. The initial values only affect the output of the compiler; initial
value properties are not forward-annotated to the final netlist.

If synthesis removes an unassigned register that has an initial value, the
initialization values are still propagated forward. If bits of a register are
unassigned, the compiler removes the unassigned bits and propagates the
initial value.

To illustrate, assume register one does not receive any input (an initial value
is not specified). If the register is not initialized, it is subsequently removed
during the optimization process. However, if the register is initialized to a
value of 1 as in the example below, the compiler keeps the register during
synthesis.

module test (
input clk,
input [7:0] a,
output [7:0] z);

reg [7:0] z_reg = 8'hf0;
reg one = 1'd1;

Verilog Synthesis Guidelines Verilog Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 87

always@(posedge clk)
z_reg <= a + one;
assign z = z_reg;

endmodule
The following figures show the HDL Analyst views.

RTL View

LO

 Verilog Language Support Verilog Synthesis Guidelines

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

Cross-language Parameter Passing in Mixed HDL
The compiler supports the passing of parameters for integers, natural
numbers, real numbers, and strings from Verilog to VHDL. The compiler also
supports the passing of these same generics from VHDL to Verilog.

Technology View

Verilog Synthesis Guidelines Verilog Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 89

Library Directory Specification for the Verilog Compiler
Currently, if a module is instantiated in a module top without a module
definition, the Verilog compiler errors out. Verilog simulators provide a
command line switch (-y libraryDirectory) to specify a set of library directories
which the compiler searches.

Library directories are specified in the Library Directories section in the Verilog
panel of the Implementations Options dialog box.

Example:
If the design has one Verilog file specified

module foo(input a, b, output z);
foobar u1 (a, b, z);
endmodule

Then, if foobar.v exists in one of the specified directories, it is loaded into the
compiler.

LO

 Verilog Language Support Verilog Module Template

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

Verilog Module Template
Hardware designs can include combinational logic, sequential logic, state
machines, and memory. These elements are described in the Verilog module.
You also can create hardware by directly instantiating built-in gates into your
design (in addition to instantiating your own modules).

Within a Verilog module you can describe hardware with one or more contin-
uous assignments, always blocks, module instantiations, and gate instantia-
tions. The order of these statements within the module is irrelevant, and all
execute concurrently. The following is the Verilog module template:

module <top_module_name>(<port_list>);
/* Port declarations. followed by wire,

reg, integer, task and function declarations */

/* Describe hardware with one or more continuous assignments,
always blocks, module instantiations and gate instantiations */

// Continuous assignment
wire <result_signal_name>;
assign <result_signal_name> = <expression>;
// always block
always @(<event_expression>)
begin

// Procedural assignments
// if statements
// case, casex, and casez statements
// while, repeat and for loops
// user task and user function calls

end
// Module instantiation
<module_name> <instance_name> (<port_list>);
// Instantiation of built-in gate primitive
gate_type_keyword (<port_list>);
endmodule

The statements between the begin and end statements in an always block
execute sequentially from top to bottom. If you have a fork-join statement in an
always block, the statements within the fork-join execute concurrently.

Scalable Modules Verilog Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 91

A disable statement can be included to terminate an active procedure within a
module. As shown in the example, including a disable statement in the
begin/end block prevents the out2 =(in1 | in2) expression from being executed.

always@(in1, in2)
begin : comb1

out1 =(in1 & in2);
disable comb1;

out2 =(in1 | in2);
endendmodule

You can add comments in Verilog by preceding your comment text with // (two
forward slashes). Any text from the slashes to the end of the line is treated as
a comment, and is ignored by the tool. To create a block comment, start the
comment with /* (forward slash followed by asterisk) and end the comment
with */ (asterisk followed by forward slash). A block comment can span any
number of lines but cannot be nested inside another block comment.

Scalable Modules
This section describes creating and using scalable Verilog modules. The
topics include:

• Creating a Scalable Module, on page 91

• Using Scalable Modules, on page 92

• Using Hierarchical defparam, on page 94

Creating a Scalable Module
You can create a Verilog module that is scalable, so that it can be stretched or
shrunk to handle a user-specified number of bits in the port list buses.

Declare parameters with default parameter values. The parameters can be
used to represent bus sizes inside a module.

Syntax
parameter parameterName = value;

LO

 Verilog Language Support Scalable Modules

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

You can define more than one parameter per declaration by using
comma-separated parameterName = value pairs.

Example
parameter size = 1;
parameter word_size = 16, byte_size = 8;

Using Scalable Modules
To use scalable modules, instantiate the scalable module and then override
the default parameter value with the defparam keyword. Give the instance
name of the module you are overriding, the parameter name, and the new
value.

Syntax
defparam instanceName .parameterName = newValue;

Example
big_register my_register (q, data, clk, rst);
defparam my_register.size = 64;

Combine the instantiation and the override in one statement. Use a # (hash
mark) immediately after the module name in the instantiation, and give the
new parameter value. To override more than one parameter value, use a
comma-separated list of new values.

Syntax
moduleName # (newValuesList) instanceName (portList);

Example
big_register #(64) my_register (q, data, clk, rst);

Scalable Modules Verilog Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 93

Creating a Scalable Adder
module adder(cout, sum, a, b, cin);

/* Declare a parameter, and give a default value */
parameter size = 1;
output cout;

/* Notice that sum, a, and b use the value of the size parameter */
output [size-1:0] sum;
input [size-1:0] a, b;
input cin;
assign {cout, sum} = a - b - cin;
endmodule

Scaling by Overriding a Parameter Value with defparam
You can instantiate a Verilog module for the VHDL entity adder and override
its size parameter using the following statement highlighted in the Verilog
code:

module adder8(cout, sum, a, b, cin);
output cout;
output [7:0] sum;
input [7:0] a, b;
input cin;
adder my_adder (cout, sum, a, b, cin);

// Creates my_adder as an eight bit adder
defparam my_adder.size = 8;
endmodule

Scaling by Overriding the Parameter Value with #
module adder16(cout, sum, a, b, cin);
output cout;

You can define a parameter at this level of hierarchy and pass that value
down to a lower-level instance. In this example, a parameter called my_size is
declared. You can declare a parameter with the same name as the lower level
name (size) because this level of hierarchy has a different name range than
the lower level and there is no conflict - but there is no correspondence
between the two names either, so you must explicitly pass the parameter
value down through the hierarchy.

LO

 Verilog Language Support Scalable Modules

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

parameter my_size = 16; // I want a 16-bit adder
output [my_size-1:0] sum;
input [my_size-1:0] a, b;
input cin;
/* my_size overrides size inside instance my_adder of adder */
// Creates my_adder as a 16-bit adder
adder #(my_size) my_adder (cout, sum, a, b, cin);
endmodule

Using Hierarchical defparam
The defparam statement is used to specify constant expressions. For example,
the defparam statement can be used to define the width of variables or specify
time delays. The compiler supports defparam to override parameter values for
modules at the current level or multiple levels of hierarchy.

Syntax
defparam hierarchicalPath = constantExpression

For example: defparam i1.i2.i3.parameter = constant

Example: Hierarchical defparam

// Example: Hierarchical defparam

//Leaf level module
module leaf (data, clk, dout);
parameter width = 2;
input [width-1:0] data;
input clk;
output [width-1:0] dout;

assign dout = (width==14) ? 2’b01 : 2’b11;
endmodule

Scalable Modules Verilog Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 95

//Sub Module
module sub (data, clk, dout);
parameter width2= 22;
input [width2-1:0] data;
input clk;
output [width2-1:0] dout;

leaf leaf1 (data,clk,dout);
endmodule
//Top module
module top (data, clk, dout);
parameter width2= 22;
input [width2-1:0] data;
input clk;
output [width2-1:0] dout;

sub sub1 (data,clk,dout);

//Overriding parameter using hierarchical defparam
defparam sub1.leaf1.width=14;
endmodule

For the leaf module, the RTL view below shows that the input and output data
widths are [0:14] in the HDL Analyst tool.

LO

 Verilog Language Support Scalable Modules

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

Combinational Logic Verilog Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 97

Combinational Logic
Combinational logic is hardware with output values based on some function
of the current input values. There is no clock, and no saved states. Most
hardware is a mixture of combinational and sequential logic.

You create combinational logic with an always block and/or continuous
assignments.

Combinational Logic Examples
The following combinational logic synthesis examples are included in the
installDirectory/examples/verilog/common_rtl/combinat directory:

• Adders

• ALU

• Bus Sorter

• 3-to-8 Decoder

• 8-to-3 Priority Encoders

• Comparator

• Multiplexers (concurrent signal assignments, case statements, or
if-then-else statements can be used to create multiplexers; the tool
automatically creates parallel multiplexers when the conditions in the
branches are mutually exclusive)

• Parity Generator

• Tristate Drivers

LO

 Verilog Language Support Combinational Logic

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

always Blocks for Combinational Logic
Use the Verilog always blocks to model combinational logic as shown in the
following template.

always @(event_expression)
begin

// Procedural assignment statements,
// if, case, casex, and casez statements
// while, repeat, and for loops
// task and function calls

end
When modeling combinational logic with always blocks, keep the following in
mind:

• The always block must have exactly one event control (@(event_ expres-
sion)) in it, located immediately after the always keyword.

• List all signals feeding into the combinational logic in the event expres-
sion. This includes all signals that affect signals that are assigned inside
the always block. List all signals on the right side of an assignment inside
an always block. The tool assumes that the sensitivity list is complete,
and generates the desired hardware. However, it will issue a warning
message if any signals on the right side of an assignment inside an
always block are not listed, because your pre- and post-synthesis simula-
tion results might not match.

• You must explicitly declare as reg or integer all signals you assign in the
always block.

Note: Make sure all signals assigned in a combinational always block
are explicitly assigned values each time the always block executes.
Otherwise, the tool must insert level-sensitive latches in your
design to hold the last value for the paths that do not assign
values. This will occur, for instance, if there are combinational
loops in your design. This often represents a coding error. The
software issues a warning message that latches are being
inserted into your design because of combinational loops. You
will get an error message if you have combinational loops in your
design that are not recognized as level-sensitive latches by the
tool.

Combinational Logic Verilog Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 99

Event Expression
Every always block must have one event control (@(event_expression)), that
specifies the signal transitions that trigger the always block to execute. This is
analogous to specifying the inputs to logic on a schematic by drawing wires to
gate inputs. If there is more than one signal, separate the names with the or
keyword.

Syntax

always @ (signal1 or signal2 ...)

Example

/* The first line of an always block for a multiplexer that
triggers when 'a', 'b' or 'sel' changes */

always @(a or b or sel)
Locate the event control immediately after the always keyword. Do not use the
posedge or negedge keywords in the event expression; they imply edge-sensi-
tive sequential logic.

Example: Multiplexer

See also Comma-separated Sensitivity List, on page 35.

module mux (out, a, b, sel);
output out;
input a, b, sel;
reg out;
always @(a or b or sel)
begin

if (sel)
out = a;

else
out = b;

end
endmodule

LO

 Verilog Language Support Combinational Logic

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

Continuous Assignments for Combinational Logic
Use continuous assignments to model combinational logic. To create a
continuous assignment:

1. Declare the assigned signal as a wire using the syntax:

wire [msb : lsb] result_signal;

2. Specify your assignment with the assign keyword, and give the
expression (value) to assign.

assign result_signal = expression;

or ...

Combine the wire declaration and assignment into one statement:

wire [msb : lsb] result_signal = expression;

Each time a signal on the right side of the equal sign (=) changes value, the
expression re-evaluates, and the result is assigned to the signal on the left
side of the equal sign. You can use any of the built-in operators to create the
expression.

The bus range [msb : lsb] is only necessary if your signal is a bus (more than
one bit wide).

All outputs and inouts to modules default to wires; therefore the wire declara-
tion is redundant for outputs and inouts and assign result_signal = expression is
sufficient.

Example: Bit-wise AND
module bitand (out, a, b);
output [3:0] out;
input [3:0] a, b;
/* This wire declaration is not required because "out" is an

output in the port list */
wire [3:0] out;
assign out = a & b;
endmodule

Combinational Logic Verilog Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 101

Example: 8-bit Adder
module adder_8 (cout, sum, a, b, cin);
output cout;
output [7:0] sum;
input cin;
input [7:0] a, b;
assign {cout, sum} = a - b - cin;
endmodule

Signed Multipliers
A signed multiplier is inferred whenever you multiply signed numbers in
Verilog 2001 or VHDL. However, Verilog 95 does not support signed data
types. If your Verilog code does not use the Verilog 2001 standard, you can
implement a signed multiplier in the following way:

module smul4(a, b, clk, result);
input [3:0]a;
input [3:0]b;
input clk;
output [7:0]result;
reg [3:0]inputa;
reg [3:0]inputb;
reg [7:0]out, result;
always @(inputa or inputb)
begin

out = {{4{inputa[3]}},inputa} * {{4{inputb[3]}},inputb};
end
always @(posedge clk)
begin

inputa = a;
inputb = b;
result = out;

end
endmodule

LO

 Verilog Language Support Sequential Logic

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

Sequential Logic
Sequential logic is hardware that has an internal state or memory. The state
elements are either flip-flops that update on the active edge of a clock signal
or level-sensitive latches that update during the active level of a clock signal.

Because of the internal state, the output values might depend not only on the
current input values, but also on input values at previous times. A state
machine is sequential logic where the updated state values depend on the
previous state values. There are standard ways of modeling state machines in
Verilog. Most hardware is a mixture of combinational and sequential logic.

You create sequential logic with always blocks and/or continuous assign-
ments.

Sequential Logic Examples
The following sequential logic synthesis examples are included in the installDi-
rectory/examples/verilog/common_rtl/sequentl directory:

• Flip-flops and level-sensitive latches

• Counters (up, down, and up/down)

• Register file

• Shift registers

• State machines

For additional information on synthesizing flip-flops and latches, see these
topics:

• Flip-flops Using always Blocks, on page 103

• Level-sensitive Latches, on page 104

• Sets and Resets, on page 106

• SRL Inference, on page 111

Sequential Logic Verilog Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 103

Flip-flops Using always Blocks
To create flip-flops/registers, assign values to the signals in an always block,
and specify the active clock edge in the event expression.

always Block Template
always @(event_expression)
begin

// Procedural statements
end

The always block must have one event control (@(event_expression)) immedi-
ately after the always keyword that specifies the clock signal transitions that
trigger the always block to execute.

Syntax

always @ (edgeKeyword clockName)

where edgeKeyword is posedge (for positive-edge triggered) or negedge (for
negative-edge triggered).

Example

always @(posedge clk)

Assignments to Signals in always Blocks
When assigning signals in an always block:

• Explicitly declare, as a reg or integer, any signal you assign inside an
always block.

• Any signal assigned within an edge-triggered always block will be imple-
mented as a register; for instance, signal q in the following example.

Example

module dff_or (q, a, b, clk);
output q;
input a, b, clk;
reg q; // Declared as reg, since assigned in always block

LO

 Verilog Language Support Sequential Logic

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

always @(posedge clk)
begin

q <= a | b;
end
endmodule

In this example, the result of a | b connects to the data input of a flip-flop, and
the q signal connects to the q output of the flip-flop.

Level-sensitive Latches
The preferred method of modeling level-sensitive latches in Verilog is to use
continuous assignment statements.

Example

module latchor1 (q, a, b, clk);
output q;
input a, b, clk;
assign q = clk ? (a | b) : q;
endmodule

Whenever clk, a, or b change, the expression on the right side re-evaluates. If
your clk becomes true (active, logic 1), a|b is assigned to the q output. When
the clk changes and becomes false (deactivated), q is assigned to q (holds the
last value of q). If a or b changes and clk is already active, the new value a|b
is assigned to q.

Although it is simpler to specify level-sensitive latches using continuous
assignment statements, you can create level-sensitive latches from always
blocks. Use an always block and follow these guidelines for event expression
and assignments.

always Block Template
always@(event_expression)
begin // Procedural statements
end

Whenever the assignment to a signal is incompletely defined, the event
expression specifies the clock signal and the signals that feed into the data
input of the level-sensitive latch.

Sequential Logic Verilog Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 105

Syntax

always @ (clockName or signal1 or signal2 ...)

Example

always @(clk or data)
begin

if (clk)
q <= data;

end
The always block must have exactly one event control (@(event_expression)) in
it, and must be located immediately after the always keyword.

Assignments to Signals in always Blocks
You must explicitly declare as reg or integer any signal you assign inside an
always block.

Any incompletely-defined signal that is assigned within a level-triggered
always block will be implemented as a latch.

Whenever level-sensitive latches are generated from an always block, the tool
issues a warning message, so that you can verify if a given level-sensitive
latch is really what you intended. (If you model a level-sensitive latch using
continuous assignment then no warning message is issued.)

Example: Creating Level-sensitive Latches You Want

module latchor2 (q, a, b, clk);
output q;
input a, b, clk;
reg q;
always @(clk or a or b)
begin

if (clk)
q <= a | b;

end
endmodule

If clk, a, or b change, and clk is a logic 1, then set q equal to a|b.

LO

 Verilog Language Support Sequential Logic

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

What to do when clk is a logic zero is not specified (there is no else in the if
statement), so when clk is a logic 0, the last value assigned is maintained
(there is an implicit q=q). The tool correctly recognizes this as a level-sensitive
latch, and creates a level-sensitive latch in your design. The tool issues a
warning message when you compile this module (after examination, you may
choose to ignore this message).

Example: Creating Unwanted Level-sensitive Latches

module mux4to1 (out, a, b, c, d, sel);
output out;
input a, b, c, d;
input [1:0] sel;
reg out;
always @(sel or a or b or c or d)
begin

case (sel)
2'd0: out = a;
2'd1: out = b;
2'd3: out = d;

endcase
end
endmodule

In the above example, the sel case value 2'd2 was intentionally omitted.
Accordingly, out is not updated when the select line has the value 2'd2, and a
level-sensitive latch must be added to hold the last value of out under this
condition. The tool issues a warning message when you compile this module,
and there can be mismatches between HDL simulation and post-synthesis
simulation. You can avoid generating level-sensitive latches by adding the
missing case in the case statement; using a “default” case in the case state-
ment; or using the Verilog full_case directive.

Sets and Resets
A set signal is an input to a flip-flop that, when activated, sets the state of the
flip-flop to a logic one. Asynchronous sets take place independent of the
clock, whereas synchronous sets only occur on an active clock edge.

Sequential Logic Verilog Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 107

A reset signal is an input to a flip-flop that, when activated, sets the state of
the flip-flop to a logic zero. Asynchronous resets take place independent of
the clock, whereas synchronous resets take place only at an active clock
edge.

Asynchronous Sets and Resets
Asynchronous sets and resets are independent of the clock. When active,
they set flip-flop outputs to one or zero (respectively), without requiring an
active clock edge. Therefore, list them in the event control of the always block,
so that they trigger the always block to execute, and so that you can take the
appropriate action when they become active.

Event Control Syntax

always @ (edgeKeyword clockSignal or edgeKeyword resetSignal or
edgeKeyword setSignal)

EdgeKeyword is posedge for active-high set or reset (or positive-edge triggered
clock) or negedge for active-low set or reset (or negative-edge triggered clock).

You can list the signals in any order.

Example: Event Control

// Asynchronous, active-high set (rising-edge clock)
always @(posedge clk or posedge set)

// Asynchronous, active-low reset (rising-edge clock)
always @(posedge clk or negedge reset)

// Asynchronous, active-low set and active-high reset
// (rising-edge clock)
always @(posedge clk or negedge set or posedge reset)

Example: always Block Template with Asynch, Active-high reset, set

always @(posedge clk or posedge set or posedge reset)
begin

if (reset) begin

/* Set the outputs to zero */

LO

 Verilog Language Support Sequential Logic

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

end else if (set) begin

/* Set the outputs to one */

end else begin

/* Clocked logic */
end

end

Example: flip-flop with Asynchronous, Active-high reset and set

module dff1 (q, qb, d, clk, set, reset);
input d, clk, set, reset;
output q, qb;
// Declare q and qb as reg because assigned inside always
reg q, qb;
always @(posedge clk or posedge set or posedge reset)
begin

if (reset) begin
q <= 0;
qb <= 1;

end else if (set) begin
q <= 1;
qb <= 0;

end else begin
q <= d;
qb <= ~d;

end
end
endmodule

For simple, single variable flip-flops, the following template can be used.

always @(posedge clk or posedge set or posedge reset)
q = reset ? 1'b0 : set ? 1'b1 : d;

Synchronous Sets and Resets
Synchronous sets and resets set flip-flop outputs to logic 1 or 0 (respectively)
on an active clock edge.

Sequential Logic Verilog Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 109

Do not list the set and reset signal names in the event expression of an always
block so they do not trigger the always block to execute upon changing.
Instead, trigger the always block on the active clock edge, and check the reset
and set inside the always block first.

RTL View Primitives

The Verilog compiler can detect and extract the following flip-flops with
synchronous sets and resets and display them in the schematic view:

• sdffr - flip-flop with synchronous reset

• sdffs - flip-flop with synchronous set

• sdffrs - flip-flop with both synchronous set and reset

• sdffpat - vectored flip-flop with synchronous set/reset pattern

• sdffre - enabled flip-flop with synchronous reset

• sdffse - enabled flip-flop with synchronous set

• sdffpate - enabled, vectored flip-flop with synchronous set/reset pattern

You can check the name (type) of any primitive by placing the mouse pointer
over it in the schematic view: a tooltip displays the name. The following figure
shows flip-flops with synchronous sets and resets.

LO

 Verilog Language Support Sequential Logic

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

Event Control Syntax

always @ (edgeKeyword clockName)

In the syntax line, edgeKeyword is posedge for a positive-edge triggered clock or
negedge for a negative-edge triggered clock.

Example: Event Control

// Positive edge triggered
always @(posedge clk)

// Negative edge triggered
always @(negedge clk)

Example: always Block Template with Synchronous, Active-high reset, set

always @(posedge clk)
begin

if (reset) begin
/* Set the outputs to zero */

end else if (set) begin
/* Set the outputs to one */

end else begin
/* Clocked logic */

end
end

Example: D Flip-flop with Synchronous, Active-high set, reset

module dff2 (q, qb, d, clk, set, reset);
input d, clk, set, reset;
output q, qb;
reg q, qb;
always @(posedge clk)
begin

if (reset) begin
q <= 0;
qb <= 1;

end else if (set) begin
q <= 1;
qb <= 0;

end else begin

Sequential Logic Verilog Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 111

q <= d;
qb <= ~d;

end
end
endmodule

SRL Inference
Sequential elements can be mapped into SRLs using an initialization assign-
ment in the Verilog code. You can now infer SRLs with initialization values.
Enable the System Verilog option on the Verilog tab of the Implementation Options
dialog box before you run synthesis.

This is an example of a SRL with no resets. It has four 4-bit wide registers
and a 4-bit wide read address. Registers shift when the write enable is 1.

module test_srl(clk, enable, dataIn, result, addr);
input clk, enable;
input [3:0] dataIn;
input [3:0] addr;
output [3:0] result;
reg [3:0] regBank[3:0]='{4'h0,4'h1,4'h2,4'h3};
integer i;
always @(posedge clk) begin

if (enable == 1) begin
for (i=3; i>0; i=i-1) begin

regBank[i] <= regBank[i-1];
end

regBank[0] <= dataIn;
end

end
assign result = regBank[addr];
endmodule

LO

 Verilog Language Support Verilog State Machines

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

Verilog State Machines
This section describes Verilog state machines: guidelines for using them,
defining state values, and dealing with asynchrony. The topics include:

• State Machine Guidelines, on page 112

• State Values, on page 116

• Asynchronous State Machines, on page 117

State Machine Guidelines
A finite state machine (FSM) is hardware that advances from state to state at
a clock edge.

The tool works best with synchronous state machines. You typically write a
fully synchronous design and avoid asynchronous paths such as paths
through the asynchronous reset of a register. See Asynchronous State
Machines, on page 117, for information about asynchronous state machines.

• The state machine must have a synchronous or asynchronous reset, to
be inferred. State machines must have an asynchronous or synchro-
nous reset to set the hardware to a valid state after power-up, and to
reset your hardware during operation (asynchronous resets are avail-
able freely in most FPGA architectures).

• You can define state machines using multiple event controls in an always
block only if the event control expressions are identical (for example,
@(posedge clk)). These state machines are known as implicit state
machines. However it is better to use the explicit style described here
and shown in Example - FSM Coding Style, on page 113.

• Separate the sequential from the combinational always block statements.
Besides making it easier to read, it makes what is being registered very
obvious. It also gives better control over the type of register element
used.

• Represent states with defined labels or enumerated types.

• Use a case statement in an always block to check the current state at the
clock edge, advance to the next state, then set the output values. You
can use if statements in an always block, but stay with case statements,
for consistency.

Verilog State Machines Verilog Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 113

• Always use a default assignment as the last assignment in your case
statement and set the state variable to 'bx. See Example: default Assign-
ment, on page 115.

• Set encoding style with the syn_encoding directive. This attribute
overrides the default encoding assigned during compilation. For a list of
default and other encodings, see syn_encoding Values, on page 77 or
Specifying FSMs with Attributes and Directives, on page 393 in the User
Guide. When you specify a particular encoding style with syn_encoding,
that value is used during the mapping stage to determine encoding
style.

object /*synthesis syn_encoding="sequential"*/;

See syn_encoding, on page 77, for details about the syntax and values.

One-hot implementations are not always the best choice for state
machines, even in FPGAs and CPLDs. For example, one-hot state
machines might result in larger implementations, which can cause
fitting problems. An example of an FPGA where one-hot implementation
can be detrimental is a state machine that drives a large decoder, gener-
ating many output signals. In a 16-state state machine, for instance, the
output decoder logic might reference sixteen signals in a one-hot imple-
mentation, but only four signals in a sequential representation.

Example - FSM Coding Style

// Example - FSM coding style
module FSM1 (clk, rst, enable, data_in, data_out, state0, state1,
 state2);
input clk, rst, enable;
input [2:0] data_in;
output data_out, state0, state1, state2;
/* Defined state labels; this style preferred over `defines*/
parameter deflt=2’bxx;
parameter idle=2’b00;
parameter read=2’b01;
parameter write=2’b10;

LO

 Verilog Language Support Verilog State Machines

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

reg data_out, state0, state1, state2;
reg [1:0] state, next_state;
/* always block with sequential logic*/
always @(posedge clk or negedge rst)
 if (!rst) state <= idle;
 else state <= next_state;
/* always block with combinational logic*/
always @(state or enable or data_in) begin
 /* Default values for FSM outputs*/
 state0 <= 1’b0;
 state1 <= 1’b0;
 state2 <= 1’b0;
 data_out <= 1’b0;
 case (state)
 idle : if (enable) begin
 state0 <= 1’b1;
 data_out <= data_in[0];
 next_state <= read;
 end
 else begin
 next_state <= idle;
 end
 read : if (enable) begin
 state1 <= 1’b1;
 data_out <= data_in[1];
 next_state <= write;
 end

Verilog State Machines Verilog Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 115

 else begin
 next_state <= read;
 end
 write : if (enable) begin
 state2 <= 1’b1;
 data_out <= data_in[2];
 next_state <= idle;
 end
 else begin
 next_state <= write;
 end
 /* Default assignment for simulation */
 default : next_state <= deflt;
 endcase
end
endmodule

Example: default Assignment
default: state = 'bx;

Assigning 'bx to the state variable (a “don't care” for synthesis) tells the tool
that you have specified all the used states in your case statement. Any
remaining states are not used, and the tool can remove unnecessary
decoding and gates associated with the unused states. You do not have to
add any special, non-Verilog directives.

If you set the state to a used state for the default case (for example, default state
= state1), the tool generates the same logic as if you assign 'bx, but there will be
pre- and post-synthesis simulation mismatches until you reset the state
machine. These mismatches occur because all inputs are unknown at start
up on the simulator. You therefore go immediately into the default case,
which sets the state variable to state1. When you power up the hardware, it

LO

 Verilog Language Support Verilog State Machines

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

can be in a used state, such as state2, and then advance to a state other than
state1. Post-synthesis simulation behaves more like hardware with respect to
initialization.

State Values
In Verilog, you must give explicit state values for states. You do this using
parameter or `define statements. It is recommended that you use parameter, for
the following reasons:

• The `define is applied globally whereas parameter definitions are local.
With global `define definitions, you cannot reuse common state names
that you might want to use in multiple designs, like RESET, IDLE, READY,
READ, WRITE, ERROR and DONE. Local definitions make it easier to reuse
certain state names in multiple FSM designs. If you work around this
restriction by using `undef and then redefining them with `define in the
new FSM modules, it makes it difficult to probe the internal values of
FSM state buses from a testbench and compare them to state names.

• The tool only displays state names in the FSM Viewer if they are defined
using parameter.

Example 1: Using Parameters for State Values
parameter state1 = 2'h1, state2 = 2'h2;
...
current_state = state2; // Setting current state to 2'h2

Example 2: Using `define for State Values
`define state1 2'h1
`define state2 2'h2
...
current_state = `state2; // Setting current state to 2'h2

Verilog State Machines Verilog Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 117

Asynchronous State Machines
Avoid defining asynchronous state machines in Verilog. An asynchronous
state machine has states, but no clearly defined clock, and has combina-
tional loops.

Do not use the tool to design asynchronous state machines; the software
might remove your hazard-suppressing logic when it performs logic optimiza-
tion, causing your asynchronous state machines to work incorrectly.

The tool displays a “Found combinational loop” warning message for an
asynchronous state machine when it detects combinational loops in contin-
uous assignment statements, always blocks, and built-in gate-primitive logic.

To create asynchronous state machines, do one of the following:

• To use Verilog, make a netlist of technology primitives from your target
library. Any instantiated technology primitives are left in the netlist, and
not removed during optimization.

• Use a schematic editor (and not Verilog) for the asynchronous state
machine part of your design.

The following asynchronous state machine examples generate warning
messages.

Example - Asynchronous FSM with Continuous Assignment

// Example - Asynch FSM with continuous assignment
module async1 (out, g, d);
output out;
input g, d;
assign out = g & d | !g & out | d &out;
endmodule

LO

 Verilog Language Support Verilog State Machines

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

Example - Asynchronous FSM with an always Block

// Example - Asynch FSM with always block
module async2 (out, g, d);
output out;
input g, d;
reg out;
always @(g or d or out)
begin
 out = g & d | !g & out | d & out;
end
endmodule

Example - READ Address Registered

// Example - RAM registered read address
module ram_test(q, a, d, we, clk);
output [7:0] q;
input [7:0] d;
input [6:0] a;
input clk, we;
reg [6:0] read_add;
reg [7:0] mem [127:0];
always @(posedge clk) begin
 if(we)
 mem[a] <= d;
 read_add <= a;
 end

Verilog State Machines Verilog Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 119

assign q = mem[read_add];
endmodule

Example - Data Output Registered

// Example - RAM with registered output
module ram_test(q, a, d, we, clk);
output [7:0] q;
input [7:0] d;
input [6:0] a;
input clk, we;
reg [7:0] q;
reg [7:0] mem [127:0];
always @(posedge clk) begin
 q <= mem [a];
 if(we)
 mem[a] <= d;
 end
endmodule

LO

 Verilog Language Support Instantiating Black Boxes in Verilog

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

Instantiating Black Boxes in Verilog
Black boxes are modules with just the interface specified; internal informa-
tion is ignored by the software. Black boxes can be used to directly instan-
tiate:

• Technology-vendor primitives and macros (including I/Os).

• User-designed macros whose functionality was defined in a schematic
editor, or another input source. (When the place-and-route tool can
merge design netlists from different sources.)

Black boxes are specified with the syn_black_box directive. If the macro is an
I/O, use black_box_pad_pin=1 on the external pad pin. The input, output, and
delay through a black box are specified with special black box timing direc-
tives (see syn_black_box, on page 63).

For most of the technology-vendor architectures, macro libraries are provided
(in installDirectory/lib/technology/family.v) that predefine the black boxes for their
primitives and macros (including I/Os).

Verilog simulators require a functional description of the internals of a black
box. To ensure that the functional description is ignored and treated as a
black box, use the translate_off and translate_on directives. See trans-
late_off/translate_on, on page 283 for information on the translate_off and trans-
late_on directives.

If the black box has tristate outputs, you must define these outputs with a
black_box_tri_pins directive (see black_box_tri_pins, on page 39).

For information on how to instantiate black boxes and technology-vendor
I/Os, see Defining Black Boxes for Synthesis, on page 382 of the User Guide.

PREP Verilog Benchmarks Verilog Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 121

PREP Verilog Benchmarks
PREP (Programmable Electronics Performance) Corporation distributes
benchmark results that show how FPGA vendors compare with each other in
terms of device performance and area. The following PREP benchmarks are
included in the installDirectory/examples/verilog/common_rtl/prep:

• PREP Benchmark 1, Data Path (prep1.v)

• PREP Benchmark 2, Timer/Counter (prep2.v)

• PREP Benchmark 3, Small State Machine (prep3.v)

• PREP Benchmark 4, Large State Machine (prep4.v)

• PREP Benchmark 5, Arithmetic Circuit (prep5.v)

• PREP Benchmark 6, 16-Bit Accumulator (prep6.v)

• PREP Benchmark 7, 16-Bit Counter (prep7.v)

• PREP Benchmark 8, 16-Bit Pre-scaled Counter (prep8.v)

• PREP Benchmark 9, Memory Map (prep9.v)

The source code for the benchmarks can be used for design examples for
synthesis or for doing your own FPGA vendor comparisons.

LO

 Verilog Language Support Hierarchical or Structural Verilog Designs

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

Hierarchical or Structural Verilog Designs
This section describes the creation and use of hierarchical Verilog designs:

• Using Hierarchical Verilog Designs, on page 122

• Creating a Hierarchical Verilog Design, on page 122

• Include Files, on page 124

• synthesis Macro, on page 124

• text Macro, on page 125

Using Hierarchical Verilog Designs
The software accepts and processes hierarchical Verilog designs. You create
hierarchy by instantiating a module or a built-in gate primitive within
another module.

The signals connect across the hierarchical boundaries through the port list,
and can either be listed by position (the same order that you declare them in
the lower-level module), or by name (where you specify the name of the
lower-level signals to connect to). Connecting by name minimizes errors, and
can be especially advantageous when the instantiated module has many
ports.

Creating a Hierarchical Verilog Design
To create a hierarchical design:

1. Create modules.

2. Instantiate the modules within other modules. (When you instantiate
modules inside of others, the ones that you have instantiated are
sometimes called “lower-level modules” to distinguish them from the
“top-level” module that is not inside of another module.)

3. Connect signals in the port list together across the hierarchy either “by
position” or “by name” (see the examples, below).

Hierarchical or Structural Verilog Designs Verilog Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 123

Example: Creating Modules (Interfaces Shown)
module mux(out, a, b, sel); // mux
output [7:0] out;
input [7:0] a, b;
input sel;

// mux functionality

endmodule
module reg8(q, data, clk, rst); // Eight-bit register
output [7:0] q;
input [7:0] data;
input clk, rst;
// Eight-bit register functionality
endmodule
module rotate(q, data, clk, r_l, rst); // Rotates bits or loads
output [7:0] q;
input [7:0] data;
input clk, r_l, rst;
// When r_l is high, it rotates; if low, it loads data
// Rotate functionality
endmodule

Example: Top-level Module with Ports Connected by Position
module top1(q, a, b, sel, r_l, clk, rst);
output [7:0] q;
input [7:0] a, b;
input sel, r_l, clk, rst;
wire [7:0] mux_out, reg_out;
// The order of the listed signals here will match
// the order of the signals in the mux module declaration.
mux mux_1 (mux_out, a, b, sel);
reg8 reg8_1 (reg_out, mux_out, clk, rst);
rotate rotate_1 (q, reg_out, clk, r_l, rst);
endmodule

LO

 Verilog Language Support Hierarchical or Structural Verilog Designs

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

Example: Top-level Module with Ports Connected by Name
module top2(q, a, b, sel, r_l, clk, rst);
output [7:0] q;
input [7:0] a, b;
input sel, r_l, clk, rst;
wire [7:0] mux_out, reg_out;
/* The syntax to connect a signal "by name" is:
.<lower_level_signal_name>(<local_signal_name>)
*/
mux mux_1 (.out(mux_out), .a(a), .b(b), .sel(sel));

/* Ports connected "by name" can be in any order */
reg8 reg8_1 (.clk(clk), .data(mux_out), .q(reg_out), .rst(rst));
rotate rotate_1 (.q(q), .data(reg_out), .clk(clk),

.r_l(r_l), .rst(rst));
endmodule

Include Files
The `include compiler directive can be used to insert the entire contents of a
source file within another source file during compilation. The result appears
as though the contents of the included source file replaces the `include
compiler directive.

The included file is compiled with the same options (i.e., Verilog standard or
defines) as the file in which it is included. Suppose that the file a.h has option
set to vlog_std v95 and is included within top.v, where vlog_std sysv has been
added from the Tcl command line. For this example, the compiler uses the
sysv option since the command line has higher precedence than the set_option.

synthesis Macro
Use this text macro along with the Verilog `ifdef compiler directive to condi-
tionally exclude part of your Verilog code from being synthesized. The most
common use of the synthesis macro is to avoid synthesizing stimulus that only
has meaning for logic simulation.

The synthesis (or SYNTHESIS; either all upper case or all lower case is accepted)
macro is defined so that when the statement `ifdef synthesis is true, the state-
ments in the `ifdef branch are compiled, and the stimulus statements in the
`else branch are ignored.

Hierarchical or Structural Verilog Designs Verilog Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 125

Note: Because Verilog simulators do not recognize a synthesis macro,
the compiler for your simulator will use the stimulus in the `else
branch.

In the following example, the AND gate in the `ifdef branch is inserted during
synthesis when the compiler recognizes the synthesis macro and takes the
assign c = a & b branch. Conversely, during simulation, the OR gate is inserted
when the simulator ignores the synthesis macro and takes the assign c = a | b
branch.

Note: A macro in Verilog has a non-zero value only if it is defined.

module top (a,b,c);
input a,b;
output c;

`ifdef SYNTHESIS
assign c = a & b;

`else
assign c = a | b;

`endif
endmodule

text Macro
The directive define creates a macro for text substitution. The compiler substi-
tutes the text of the macro for the string macroName. A text macro is defined
using arguments that can be customized for each individual use.

The syntax for a text macro definition is as follows.

textMacroDefinition ::= define textMacroName macroText

textMacroName ::= textMacroIdentifier[(formalArgumentList)]

formalArgumentList ::= formalArgumentIdentifier {, formalArgumentIdentifier}

When formal arguments are used to define a text macro, the scope of the
formal argument is extended to the end of the macro text. You can use a
formal argument in the same manner as an identifier.

LO

 Verilog Language Support Hierarchical or Structural Verilog Designs

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

A text macro with one or more arguments is expanded by replacing each
formal argument with the actual argument expression.

Example 1
`define MIN(p1, p2) (p1)<(p2)?(p1):(p2)
module example1(i1, i2, o);
input i1, i2;
output o;
reg o;
always @(i1, i2) begin
o = `MIN(i1, i2);
end
endmodule

Example 2
`define SQR_OF_MAX(a1, a2) (`MAX(a1, a2))*(`MAX(a1, a2))
`define MAX(p1, p2) (p1)<(p2)?(p1):(p2)
module example2(i1, i2, o);
input i1, i2;
output o;
reg o;
always @(i1, i2) begin
o = `SQR_OF_MAX(i1, i2);
end
endmodule

Example 3

Include File ppm_top_ports_def.inc

//ppm_top_ports_def.inc

// Single source definition for module ports and signals
// of PPM TOP.
// Input
`DEF_DOT `DEF_IN([7:0]) in_test1 `DEF_PORT(in_test1) `DEF_END
`DEF_DOT `DEF_IN([7:0]) in_test2 `DEF_PORT(in_test2) `DEF_END

// In/Out

Hierarchical or Structural Verilog Designs Verilog Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 127

// `DEF_DOT `DEF_INOUT([7:0]) io_bus1 `DEF_PORT(io_bus1) `DEF_END

// Output
`DEF_DOT `DEF_OUT([7:0]) out_test2 `DEF_PORT(out_test2)
// No DEF_END here...

`undef DEF_IN
`undef DEF_INOUT
`undef DEF_OUT
`undef DEF_END
`undef DEF_DOT
`undef DEF_PORT

Verilog File top.v

// top.v

`define INC_TYPE 1
module ppm_top(
 `ifdef INC_TYPE
// Inc file Port def...

`define DEF_IN(arg1) /* arg1 */
`define DEF_INOUT(arg1) /* arg1 */
`define DEF_OUT(arg1) /* arg1 */
`define DEF_END,
`define DEF_DOT /* nothing */
`define DEF_PORT(arg1) /* arg1 */

`include "ppm_top_ports_def.inc"
`else
// Non-Inc file Port def, above defines should expand to
// what is below...

/* nothing */ /* [7:0] */ in_test1 /* in_test1 */,
/* nothing */ /* [7:0] */ in_test2 /* in_test2 */,

// In/Out
//`DEF_DOT `DEF_INOUT([7:0]) io_bus1 `DEF_PORT(io_bus1)

`DEF_END

// Output
/* nothing */ /* [7:0] */ out_test2 /* out_test2 */

// No DEF_END here...
 `endif
);

`ifdef INC_TYPE

LO

 Verilog Language Support Hierarchical or Structural Verilog Designs

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

// Inc file Signal type def...
`define DEF_IN(arg1) input arg1
`define DEF_INOUT(arg1) inout arg1
`define DEF_OUT(arg1) output arg1
`define DEF_END;
`define DEF_DOT /* nothing */
`define DEF_PORT(arg1) /* arg1 */

`include "ppm_top_ports_def.inc"
`else
// Non-Inc file Signal type def, defines should expand to
// what is below...

/* nothing */ input [7:0] in_test1 /* in_test1 */;
/* nothing */ input [7:0] in_test2 /* in_test2 */;

// In/Out
//`DEF_DOT `DEF_INOUT([7:0]) io_bus1 `DEF_PORT(io_bus1)`DEF_END

// Output
/* nothing */ output [7:0] out_test2 /* out_test2) */

// No DEF_END here...
`endif

 ; /* Because of the 'No DEF_END here...' in line of the include
file. */

assign out_test2 = (in_test1 & in_test2);

endmodule

Verilog Attribute and Directive Syntax Verilog Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 129

Verilog Attribute and Directive Syntax
Verilog attributes and directives allow you to associate information with your
design to control the way it is analyzed, compiled, and mapped.

• Attributes direct the way your design is optimized and mapped during
synthesis.

• Directives control the way your design is analyzed prior to mapping.
They must therefore be included directly in your source code; they
cannot be specified in a constraint file like attributes.

Verilog does not have predefined attributes or directives for synthesis. To
define directives or attributes in Verilog, attach them to the appropriate
objects in the source code as comments. You can use either of the following
comment styles:

• Regular line comments

• Block or C-style comments

Each specification begins with the keyword synthesis. The directive or attribute
value is either a string, placed within double quotes, or a Boolean integer (0
or 1). Directives, attributes, and their values are-case sensitive and are
usually in lower case.

Attribute Syntax and Examples using Verilog Line Comments
Here is the syntax using a regular Verilog comment:

// synthesis directive | attribute [= "value"]

This example shows how to use the syn_hier attribute:

// synthesis syn_hier = "firm"
This example shows the parallel_case directive:

// synthesis parallel_case
This directive forces a multiplexed structure in Verilog designs. It is implicitly
true whenever you use it, which is why there is no associated value.

LO

 Verilog Language Support Verilog Attribute and Directive Syntax

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

Attribute Syntax and Examples Using Verilog C-Style Comments
Here is the syntax for specifying attributes and directives with the C-style
block comment:

/* synthesis directive | attribute [= "value"] */

This example shows the syn_hier attribute specified with a C-style comment:

/* synthesis syn_hier = "firm" */
The following are some other rules for using C-style comments to define attri-
butes:

• If you use C-style comments, you must place the comment after the
object declaration and before the semicolon of the statement. For
example:

module bl_box(out, in) /* synthesis syn_black_box */;
• To specify more than one directive or attribute for a given design object,

place them within the same comment, separated by a space. Do not use
commas as separators. Here is an example where the syn_preserve and
syn_state_machine directives are specified in a single comment:

module radhard_dffrs(q,d,c,s,r)
/* synthesis syn_preserve=1 syn_state_machine=0 */;

• To make source code more readable, you can split long block comment
lines by inserting a backslash character (\) followed immediately by a
newline character (carriage return). A line split this way is still read as a
single line; the backslash causes the newline following it to be ignored.
You can split a comment line this way any number of times. However,
note these exceptions:

– The first split cannot occur before the first attribute or directive
specification.

– A given attribute or directive specification cannot be split before its
equal sign (=).

Take this block comment specification for example:

/* synthesis syn_probe=1 xc_loc="P20,P21,P22,P23,P24,P25,P26,P27" */;
You cannot split the line before you specify the first attribute, syn_probe.
You cannot split the line before either of the equal signs (syn_probe= or

Verilog Attribute and Directive Syntax Verilog Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 131

xc_loc=). You can split it anywhere within the string value
"P20,P21,P22,P23,P24,P25,P26,P27".

Attribute Examples Using Verilog 2001 Parenthetical Comments

Here is the syntax for specifying attributes and directives as Verilog 2001
parenthetical comments:

(* directive |attribute [= "value"] *)

Verilog 2001 parenthetical comments can be applied to:

• individual objects

• multiple objects

• individual objects within a module definition

The following example shows two syn_keep attributes specified as parenthet-
ical comments:

module example1(out1, out2, clk, in1, in2);
output out1, out2;
input clk;
input in1, in2;
wire and_out;
(* syn_keep=1 *) wire keep1;
(* syn_keep=1 *) wire keep2;
reg out1, out2;
assign and_out=in1&in2;
assign keep1=and_out;
assign keep2=and_out;
always @(posedge clk)begin;

out1<=keep1;
out2<=keep2;

end
endmodule

For the above example, a single parenthetical comment could be added
directly to the reg statement to apply the syn_keep attribute to both out1 and
out2:

(* syn_keep=1 *) reg out1, out2;

LO

 Verilog Language Support Verilog Attribute and Directive Syntax

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

The following rules apply when using parenthetical comments to define attri-
butes:

• Always place the comment before the design object (and terminating
semicolon). For example:

(* syn_black_box *) module bl_box(out, in);
• To specify more than one directive or attribute for a given object, place

the attributes within the same parenthetical comment, separated by a
space (do not use commas as separators). The following example shows
the syn_preserve and syn_state_machine directives applied in a single
parenthetical comment:

(* syn_preserve=1 syn_state_machine=0 *)
module radhard_dffrs(q,d,c,s,r);

• Parenthetical comments can be applied to individual objects within a
module definition. For example,

module example2 (out1, (*syn_preserve=1*) out2, clk, in1, in2);
applies a syn_preserve attribute to out2, and

module example2 ((*syn_preserve=1*) out1,
(*syn_preserve=1*) out2, clk, in1, in2);

applies a syn_preserve attribute to both out1 and out2

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 133

C H A P T E R 2

SystemVerilog Language Support

This chapter describes support for the SystemVerilog standard for the
Synopsys tools. For information on the Verilog standard, see
Chapter 1, Verilog Language Support. SystemVerilog support includes:

• Feature Summary, on page 134

• Unsized Literals, on page 141

• Data Types, on page 141

• Arrays, on page 162

• Data Declarations, on page 173

• Operators and Expressions, on page 185

• Procedural Statements and Control Flow, on page 211

• Processes, on page 222

• Tasks and Functions, on page 228

• Hierarchy, on page 232

• Interface, on page 253

• System Tasks and System Functions, on page 262

• Generate Statement, on page 272

• Assertions, on page 281

• Keyword Support, on page 283

LO

 SystemVerilog Language Support Feature Summary

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

Feature Summary
SystemVerilog is a IEEE (P1800) standard with extensions to the IEEE
Std.1800-2009 SystemVerilog standard. The extensions integrate features
from C, C++, VHDL, OVA, and PSL. The following table summarizes the
SystemVerilog features currently supported in the Synopsys FPGA Verilog
compilers. See SystemVerilog Limitations, on page 137 for a list of limita-
tions.

Feature Brief Description

Unsized Literals Specification of unsized literals as
single-bit values without a base
specifier.

Data Types
• Typedefs
• Enumerated Types
• Struct Construct
• Union Construct
• Static Casting

Data types that are a hybrid of both
Verilog and C including:
• User-defined types that allow you to

create new type definitions from
existing types

• Variables and nets defined with a
specific set of named values

• Structure data type to represent
collections of variables referenced as
a single name

• Data type collections sharing the
same memory location

• Conversion of one data type to
another data type.

Arrays
• Arrays
• Arrays of Structures

Packed, unpacked, and
multi-dimensional arrays of structures.

Data Declarations
• Constants
• Variables
• Nets
• Implicit Nets
• Data Types in Parameters
• Type Parameters

Data declarations including constant,
variable, net, and parameter data
types.

Feature Summary SystemVerilog Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 135

Operators and Expressions
• Operators
• Aggregate Expressions
• Streaming Operator
• Set Membership Operator
• Set Membership Case Inside Operator
• Type Operator

C assignment operators and special
bit-wise assignment operators.

Procedural Statements and Control Flow
• Do-While Loops
• For Loops
• Unnamed Blocks
• Block Name on end Keyword
• Unique and Priority Modifiers

Procedural statements including
variable declarations and block
functions.

Processes
• always_comb
• always_latch
• always_ff

Specialized procedural blocks that
reduce ambiguity and indicate the
intent.

Tasks and Functions
• Implicit Statement Group
• Formal Arguments
• endtask/endfunction Names

Information on implicit grouping for
multiple statements, passing formal
arguments, and naming end
statements for functions and tasks.

Hierarchy
• Compilation Units
• Packages
• Port Connection Constructs
• Extern Module

Permits sharing of language-defined
data types, user-defined types,
parameters, constants, function
definitions, and task definitions among
one or more compilation units,
modules, or interfaces (pkgs)

Interface
• Interface Construct
• Modports

Interface data type to represent port
lists and port connection lists as single
name.

System Tasks and System Functions
• $bits System Function
• Array Querying Functions

Queries to return the number of bits
required to hold an expression as a bit
stream or array.

Feature Brief Description

LO

 SystemVerilog Language Support Feature Summary

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

Generate Statement: Conditional
Generate Constructs

Generate-loop, generate-conditional, or
generate-case statements with
defparams, parameters, and function
and task declarations.
Conditional if-generate and
case-generate constructs

Assertions SystemVerilog assertion support.

Keyword Support Supported and unsupported keywords.

Feature Brief Description

Feature Summary SystemVerilog Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 137

SystemVerilog Limitations
The following SystemVerilog limitations are present in the release.

Feature Limitations

Data Types
• Enumerated Types

• Union Construct

• Enumerated type methods do not
support name() and cross-module
referencing.

• Union constructs do not support
unpacked union, tagged packed
union, and tagged unpacked union.

Operators and Expressions
• Type Operator • When the $typeof operator uses an

expression as its argument, the
expression cannot contain any
hierarchical references or reference
elements of dynamic objects.

• The $typeof operator is not supported
on complex expressions.

Hierarchy
• Compilation Units

• Packages

• Extern Module

• Compilation unit elements can only
be accessed or read, and cannot
appear between module and
endmodule statements.

• The variables declared in packages
can only be accessed or read;
package variables cannot be written
between a module statement and its
end module statement

• An extern module declaration is not
supported within a module.

LO

 SystemVerilog Language Support Feature Summary

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

Interface
• Access of array type elements outside of the interface are not supported.

For example:

interface ff_if (input logic din, input [7:0] DHAin1,
input [7:0] DHAin2, output logic dout);

logic [1:0] [1:0] [1:0] DHAout_intf;
always_comb
DHAout_intf = DHAin1 + DHAin2;

Interface
• Interface Construct
• Modports

• An array of interfaces cannot be used
as a module port. See Interface, on
page 253.

• An interface cannot have a
multi-dimensional port.

• Access of array type elements outside
of the interface are not supported.
See Compilation Units, on page 232.

• For restrictions using
interface/modport structures, see
Modport Limitations and
Non-Supported Features, on
page 261.

System Tasks and System Functions
• $bits System Function • Passing an interface member as an

argument to the $bits function is not
supported

• $bits cannot be used within a module
instantiation

• $bits is not supported with
params/localparams

Generate Statement: Conditional
Generate Constructs

The generate statement does not
support the following functions:
• Defparam support for generate

instances
• Hierarchical access for interface
• Hierarchical access of function/task

defined within a generate block

Feature Limitations

Feature Summary SystemVerilog Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 139

modport write (input din, output dout);
endinterface: ff_if
ff_if ff_if_top(.*);
DHAout = ff_if_top.DHAout_intf;

• Modport definitions within a Generate block are not supported. For
example:

interface myintf_if (input logic [7:0] a , input logic [7:0] b,
output logic [7:0] out1, output logic [7:0] out2);

generate
begin: x
genvar i;

for (i = 0;i <= 7;i=i+1)
begin : u

modport myinst(input .ma(a[i]), input .mb(b[i]),
output .mout1(out1[i]), output .mout2(out2[i]));

end
end

endgenerate
endinterface

LO

 SystemVerilog Language Support Feature Summary

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

Compilation Unit and Package
• Write access to the variable defined in package/compilation unit is not

supported. For example:

package MyPack;
typedef struct packed {

int r;
longint g;
byte b;

} MyStruct;
MyStruct StructMyStruct;
endpackage: MyPack
import MyPack::*;
module top (...
...
always@(posedge clk)
StructMyStruct <= '{default:254};

Unsized Literals SystemVerilog Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 141

Unsized Literals
SystemVerilog allows you to specify unsized literals without a base specifier
(auto-fill literals) as single-bit values with a preceding apostrophe ('). All bits
of the unsized value are set to the value of the specified bit.

'0, '1, 'X, 'x, 'Z, 'z // sets all bits to this value
In other words, this feature allows you to fill a register, wire, or any other data
types with 0, 1, X, or Z in simple format.

Data Types
SystemVerilog makes a clear distinction between an object and its data type.
A data type is a set of values, or a set of operations that can be performed on
those values. Data types can be used to declare data objects.

SystemVerilog offers the following data types, which represent a hybrid of
both Verilog and C:

Data types are characterized as either of the following:

• 4-state (4-valued) data types that can hold 1, 0, X, and Z values

Verilog Example SystemVerilog equivalent

a = 4'b1111; a = '1;

Data Type Description

shortint 2-state, SystemVerilog data type, 16-bit signed integer

int 2-state, SystemVerilog data type, 32-bit signed integer

longint 2-state, SystemVerilog data type, 64-bit signed integer

byte 2-state, SystemVerilog data type, 8-bit signed integer or
ASCII character

bit 2-state, SystemVerilog data type, user-defined vector size

logic 4-state, SystemVerilog data type, user-defined vector size

LO

 SystemVerilog Language Support Data Types

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

• 2-state (2-valued) data types that can hold 1 and 0 values

The following apply when using data types:

• The data types byte, shortint, int, integer and longint default to signed; data
types bit, reg, and logic default to unsigned, as do arrays of these types.

• The signed keyword is part of Verilog. The unsigned keyword can be used
to change the default behavior of signed data types.

• The Verilog compiler does not generate an error even if a 2-state data
type is assigned X or Z. It treats it as a “don't care” and issues a warning.

• The syn_keep directive provides limited support with SystemVerilog data
types such as logic, wire, and bit.

Typedefs
You can create your own names for type definitions that you use frequently in
your code. SystemVerilog adds the ability to define new net and variable
user-defined names for existing types using the typedef keyword.

Example - Simple typedef Variable Assignment

// Example - Simple typedef Variable Assignment
module src (in1,in2,out1,out2);
input in1,in2;
output reg out1,out2;
typedef int foo;
foo a,b;

assign a = in1; assign b = in2;
always@(a,b)
 begin
 out1 = a;
 out2 = b;

Data Types SystemVerilog Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 143

 end
endmodule

Example - Using Multiple typedef Assignments

// Example - Using Multiple typedef Assignments
module src (in1,in2,in3,in4,out1,out2,out3);
input [3:0] in1,in2;
input in3,in4;
output reg [3:0] out1;output reg out2,out3;
typedef bit signed [3:0] foo1;
typedef byte signed foo2;
typedef int foo3;
struct {
 foo1 a;
 foo2 b;
 foo3 c;
 } foo;

always@(in1,in2,in3,in4)
 begin
 foo.a = in1 & in2;
 foo.b = in3 | in4;
 foo.c = in3 ^ in4;
 end

always@(foo.a,foo.b,foo.c)
 begin

LO

 SystemVerilog Language Support Data Types

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

 out1 = foo.a;
 out2 = foo.b;
 out3 = foo.c;
 end
endmodule

Enumerated Types
The tools support SystemVerilog enumerated types in accordance with SV
LRM section: 6.19.

The enumerated types feature allows variables and nets to be defined with a
specific set of named values. This capability is particularly useful in
state-machine implementation where the states of the state machine can be
verbally represented.

Data Types
Enumerated types have a base data type which, by default, is int (a 2-state,
32-bit value). By default, the first label in the enumerated list has a logic
value of 0, and each subsequent label is incremented by one.

For example, a variable that has three legal states:

enum {WAITE, LOAD, READY} state;
The first label in the enumerated list has a logic value of 0 and each subse-
quent label is incremented by one. In the example above, State is an int type
and WAITE, LOAD And READY have 32-bit int values. WAITE is 0, LOAD is 1, and
READY is 2.

For this example, an explicit base type of logic is specified that allows the
enumerated types of state to more specifically model hardware:

enum logic [2:0] {WAITE=3’b001, LOAD=3’b010,READY=3’b100} state;

Specifying Ranges
SystemVerilog enumerated types also allow you to specify ranges that are
automatically elaborated. Types can be specified as outlined in the following
table.

Data Types SystemVerilog Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 145

The following example declares enumerated variable vr, which creates the
enumerated named constants register0 and register1, which are assigned the
values 1 and 2, respectively. Next, it creates the enumerated named constants
register2, register3, and register4 and assigns them the values 10, 11, and 12.

enum {register[2] = 1, register[2:4] = 10} vr;

State-Machine Example
The following is an example state-machine design in SystemVerilog.

Example - State-machine Design

// Example - State-machine Design
module enum_type_check (clk, rst, same, statemachine1_is_five,
 statemachine2_is_six, statemachine1, statemachine2, both);
input clk, rst;
output reg same, statemachine1_is_five, statemachine2_is_six;
output int statemachine1, statemachine2, both;

Syntax Description

name Associates the next consecutive number with the specified name.

name = C Associates the constant C to the specified name.

name[N] Generates N named constants in this sequence: name0, name1,...,
nameN-1. N must be a positive integral number.

name[N] = C Optionally assigns a constant to the generated named constants to
associate that constant with the first generated named constant.
Subsequent generated named constants are associated with
consecutive values. N must be a positive integral number.

name[N:M] Creates a sequence of named constants, starting with nameN and
incrementing or decrementing until it reaches named constant
nameM. N and M are non-negative integral numbers.

name[N:M] = C Optionally assigns a constant to the generated named constants to
associate that constant with the first generated named constants.
Subsequent generated named constants are associated
consecutive values. N and M must be positive integral numbers.

LO

 SystemVerilog Language Support Data Types

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

enum {a[0:3] = 4} my,my1;

always@(posedge clk or posedge rst)
begin
if (rst)
 begin
 my <= a0;
 end
else
 case(my)
 a0 :begin
 my <= a1;
 end
 a1 :begin
 my <= a2;
 end
 a2 :begin
 my <= a3;
 end
 a3 :begin
 my <= a0;
 end
 endcase
end

always@(posedge clk or posedge rst)
begin

Data Types SystemVerilog Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 147

if (rst)
 begin
 my1 <= a0;
 end
else
 case(my1)
 a0 :begin
 my1 <= a3;
 end
 a1 :begin
 my1 <= a0;
 end
 a2 :begin
 my1 <= a1;
 end
 a3 :begin
 my1 <= a2;
 end
 endcase
end

always@(posedge clk)
begin
statemachine1 <= my;
statemachine2 <= my1;
both <= my + my1;
if (my == my1)

LO

 SystemVerilog Language Support Data Types

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

 same <= 1’b1;
else
 same <= 0;
if (my == 5)
 statemachine1_is_five <= 1’b1;
else
 statemachine1_is_five <= 1’b0;
if (my1 == 6)
 statemachine2_is_six <= 1’b1;
else
 statemachine2_is_six <= 1’b0;
end
endmodule

Type Casting Using Enumerated Types
By using enumerated types, you can define a type. For example:

typedef enum {red,green,blue,yellow,white,black} Colors;
The above definition assigns a unique number to each of the color identifiers
and creates the new data type Colors. This new type can then be used to
create variables of that type.

Valid assignment would be:

Colors c;
C = green;

Enumerated Types in Expressions
Elements of enumerated types can be used in numerical expressions. The
value used in the expression is the value specified with the numerical value.
For example:

Data Types SystemVerilog Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 149

typedef enum {red,green,blue,yellow,white,black} Colors;
integer a,b;
a = blue *3 // 6 is assigned to a
b = yellow + green; // 4 is assigned to b

Enumerated Type Methods
SystemVerilog provides a set of specialized methods to iterate values of
enumerated types. The enumerated type method can be used to conveniently
code logic such as a state machine. Apply the enumerated type methods on
the specified enumerated type variable, using any of the methods below:

• first - Returns the first member of the enumeration.

enum first();
• last - Returns the last member of the enumeration.

enum last();
• next - Returns the next nth enumeration value starting from the current

value of the specified variable.

enum next();
• prev - Returns the previous nth enumeration value starting from the

current value of the specified variable.

enum prev();
• num - Returns the number of elements for the specified enumerations.

int num();

Note: Only the prev and next constructs support argument values.

The following code example shows that enumeration methods can be used to
traverse the FSM, instead of having to explicitly specify the enumeration.

LO

 SystemVerilog Language Support Data Types

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

Example - Enumerated Type Method

// Example -- Enumerated Type Methods

module enum_methods (clk, rst ,out);
input clk,rst;
output logic [2:0] out;

enum bit [3:0] {s0,s1,s2,s3,s4} machine;

always@(posedge clk or posedge rst)
begin
if (rst)
begin
machine <= s1;
out <= 3’b000;
end
else
case(machine)
s0 :begin
machine <= machine.next();
out <= 3’b101;
end
s1 :begin
machine <= machine.next(2);
out <= 3’b010;
end
s2 :begin

Data Types SystemVerilog Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 151

machine <= machine.last();
out <= 3’b011;
end
s3 :begin
machine <= machine.prev();
out <= 3’b111;
end
s4 :begin
machine <= machine.first();
out <= 3’b001;
end
endcase
end

endmodule

Enumerated Type Limitations

The compiler does not support enumerated type methods with:

• Enumeration type method of name()

• Cross-module referencing (XMR)

Struct Construct
SystemVerilog adds several enhancements to Verilog for representing large
amounts of data. In SystemVerilog, the Verilog array constructs are extended
both in how data can be represented and for operations on arrays. A struc-
ture data type has been defined as a means to represent collections of data
types. These data types can be either standard data types (such as int, logic, or
bit) or, they can be user-defined types (using SystemVerilog typedef). Struc-
tures allow multiple signals, of various data types, to be bundled together and
referenced by a single name.

LO

 SystemVerilog Language Support Data Types

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

Structures are defined under section 4.11 of IEEE Std 1800-2005 (IEEE
Standard for SystemVerilog).

In the example structure floating_pt_num below, both characteristic and
mantissa are 32-bit values of type bit.

struct {
bit [31:0] characteristic;
bit [31:0] mantissa;

} floating_pt_num;
Alternately, the structure could be written as:

typedef struct {
bit [31:0] characteristic;
bit [31:0] mantissa;

} flpt;
flpt floating_pt_num;

In the above sequence, a type flpt is defined using typedef which is then used to
declare the variable floating_pt_num.

Assigning a value to one or more fields of a structure is straight-forward.

floating_pt_num.characteristic = 32'h1234_5678;
floating_pt_num.mantissa = 32'h0000_0010;

As mentioned, a structure can be defined with fields that are themselves
other structures.

typedef struct {
flpt x;
flpt y;

} coordinate;

Packed Struct
Various other unique features of SystemVerilog data types can also be
applied to structures. By default, the members of a structure are unpacked,
which allows the Synopsys tools to store structure members as independent
objects. It is also possible to pack a structure in memory without gaps
between its bit fields. This capability can be useful for fast access of data
during simulation and possibly result in a smaller footprint of your simula-
tion binary.

Data Types SystemVerilog Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 153

To pack a structure in memory, use the packed keyword in the definition of
the structure:

typedef struct packed {
bit [31:0] characteristic;
bit [31:0] mantissa;

} flpt;
An advantage of using packed structures is that one or more bits from such a
structure can be selected as if the structure was a packed array. For
instance, flpt[47:32] in the above declaration is the same as character-
istic[15:0].

Struct members are selected using the.name syntax as shown in the following
two code segments.

// segment 1
typedef struct {

bit [7:0] opcode;
bit [23:0] addr;

} instruction; // named structure type
instruction IR; // define variable
IR.opcode = 1; //set field in IR.
// segment 2
struct {

int x,y;
} p;
p.x = 1;

Union Construct
A union is a collection of different data types similar to a structure with the
exception that members of the union share the same memory location. At any
given time, you can write to any one member of the union which can then be
read by the same member or a different member of that union.

Union is broadly classified as:

• Packed Union

• Unpacked Union

Currently, only packed unions are supported.

LO

 SystemVerilog Language Support Data Types

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

Packed Union
A packed union can only have members that are of the packed type (packed
structure, packed array of logic, bit, int, etc.). All members of a packed union
must be of equal size.

Syntax

Union packed
{

member1;
member2;

} unionName;

Unpacked Union
The members of an unpacked union can include both packed and unpacked
types (packed/unpacked structures, arrays of packed/unpacked logic, bit,
int, etc.) with no restrictions as to the size of the union members.

Syntax

Union
{

member1;
member2;

} unionName;

Example 1 - Basic Packed Union (logical operation)

// Example - Basic Packed Union (logical operation)
typedef int unsigned UnsignInt_dt;
typedef union packed
{

int u1;
UnsignInt_dt u2;

}union_dt; //Union data type

Data Types SystemVerilog Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 155

module top
(input union_dt d1,

input union_dt d2,
output union_dt q1,
output union_dt q2
);
assign q1.u1 = d1.u1 ^ d2.u1;
assign q2.u2 = d1.u2 | d2.u1;
endmodule

Example 2 - Basic Packed Union (arithmetic operation)

// Example - Basic Packed Union (arithmetic operation)
typedef union packed
{

logic [3:0][0:3]u1;
shortint u2;
bit signed [1:2][8:1]u3;

}union_dt; // Union data type

module top
(input union_dt d1,
 input union_dt d2,
 output union_dt q1,
 output union_dt q2
);

LO

 SystemVerilog Language Support Data Types

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

assign q1.u2 = d1.u1 + d2.u2;
assign q2.u1 = d1.u2 - d1.u1[2][1];
endmodule

Example 3 - Nested Packed Union

// Example - Nested Packed Union
typedef union packed
{

byte u1;
bit[1:0][4:1]u2;
union packed
{

logic[8:1]nu1;
byte unsigned nu2;

}NstUnion; //Nested Union
}NstUnion_dt;

module top
(input NstUnion_dt d1,
 input NstUnion_dt d2,
 output NstUnion_dt q1,
 output NstUnion_dt q2
);

assign q1 = d1.NstUnion.nu1 & d2.u2[1];
assign q2.u1 = d2.NstUnion.nu2 |~ d1.u1;
endmodule

Data Types SystemVerilog Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 157

Example 4 - Array of packed Union

// Example - Array of Packed Union
typedef int int_dt;
typedef union packed
{

int_dt u1;
bit [0:3][1:8]u2;

}union_dt;
module top

(input union_dt [1:0] d1, //Array of union
 input union_dt [1:0] d2, //Array of union
 output union_dt q1,
 output union_dt q2
);

assign q1.u1 = d1[1].u1 ^ d2[0].u1;
assign q2.u2 = ~(d1[0].u2 | d2[1].u1);
endmodule

Union Construct Limitations
The SystemVerilog compiler does not support the following union constructs:

• unpacked union

• tagged packed union

• tagged unpacked union

Currently, support is limited to packed unions, arrays of packed unions, and
nested packed unions.

LO

 SystemVerilog Language Support Data Types

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

Static Casting
Static casting allows one data type to be converted to another data type. The
static casting operator is used to change the data type, the size, or the sign:

• Type casting - a predefined data type is used as a castingType to change
the data type.

• Size casting - a positive decimal number is used as a castingType to
change the number of data bits.

• Sign casting - signed/unsigned are used to change the sign of data type.

• Bit-stream casting - type casting that is applied to unpacked arrays and
structs. During bit-stream casting, both the left and right sides of the
equation must be the same size. Arithmetic operations cannot be
combined with static casting operations as is in the case of singular data
types.

Syntax
castingType'(castingExpression)

Example - Type Casting of Singular Data Types

// Example - Type Casting of Singular Data Types
typedef logic [31:0] unsigned_32bits;
typedef logic [15:0] unsigned_16bits;
module top (
//Inputs
input integer Integer,
input shortint Shortint,
//Outputs
output longint arith
);
//Arithmetic operation

Data Types SystemVerilog Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 159

assign arith = unsigned_32bits’(Integer) *
unsigned_16bits’(Shortint) ;
endmodule

Example - Type Casting of Aggregate Data Types

// Example - Type Casting of Aggregate Data Types
//Data type
typedef logic Logic_3D_dt [15:0][1:0][1:0];
typedef logic Logic_1D_dt [64:1];
module top (
//Inputs
input Logic_3D_dt Logic_3D,
//Outputs
output longint arith
);
//Constant delcaration
const Logic_1D_dt Logic_1DConst = ‘{default:1’b1};
//Arithmetic Operation
assign arith = longint’(Logic_3D) + longint’(Logic_1DConst);
endmodule

Example - Bit-stream Casting

// Example - Bit-stream Casting
typedef struct {
bit start_bit = 0;
byte data_bits;
bit stop_bit = 1; }

LO

 SystemVerilog Language Support Data Types

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

uart_format_dt;
typedef logic tx_format_dt[9:0] ;
module top (
//Inputs
input byte data,
//Outputs
output tx_format_dt tx_data
);
uart_format_dt uart_data;
assign uart_data.data_bits = data;
assign tx_data = tx_format_dt’(uart_data);
endmodule

Example - Size Casting

// Example - Size Casting
module top (
//Inputs
input longint Longint,
input byte Byte,
//Outputs
output shortint arith1
);
//Arithmetic operation
assign arith1 = 10’(Byte + Longint);
endmodule

Example - Sign Casting

// Example - Sign Casting

Data Types SystemVerilog Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 161

module top (
//Inputs
input integer Integer,
input shortint Shortint,
//Outputs
output longint arith
);
//Arithmetic operation
assign arith = unsigned’(Integer) * unsigned’(Shortint);
endmodule

LO

 SystemVerilog Language Support Arrays

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

Arrays
Topics in this section include:

• Arrays, on page 162

• Arrays of Structures, on page 167

Arrays
SystemVerilog uses the term packed array to refer to the dimensions declared
before the object name (same as Verilog vector width). The term unpacked
array refers to the dimensions declared after the object name (same as
Verilog array dimensions). For example:

reg [7:0] foo1; //packed array
reg foo2 [7:0]; //unpacked array

A packed array is guaranteed to be represented as a contiguous set of bits
and, therefore, can be conveniently accessed as array elements. While
unpacked is not guaranteed to work so, but in terms of hardware, both would
be treated or bit-blasted into a single dimension.

module test1 (input [3:0] data, output [3:0] dout);
//example on packed array four-bit wide.

assign dout = data;
endmodule
module test2 (input data [3:0], output dout [3:0]);
//unpacked array of 1 bit by 4 depth;
assign dout = data;
endmodule

Multi-dimensional packed arrays unify and extend Verilog's notion of regis-
ters and memories:

reg [1:0][2:0] my_var[32];
Classical Verilog permitted only one dimension to be declared to the left of the
variable name. SystemVerilog permits any number of such packed dimen-
sions. A variable of packed array type maps 1:1 onto an integer arithmetic
quantity. In the example above, each element of my_var can be used in expres-

Arrays SystemVerilog Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 163

sions as a six-bit integer. The dimensions to the right of the name (32 in this
case) are referred to as unpacked dimensions. As in Verilog-2001, any
number of unpacked dimensions is permitted.

The general rule for multi-dimensional packed array is as follows:

reg/wire [matrixn:0] … [matrix1:0][depth:0][width:0] temp;

The general rule for multi-dimensional unpacked array is as follows:

reg/wire temp1 [matrixn:0]… [matrix1:0][depth:0]; //single bit wide
reg/wire [widthm:0] temp2 [matrixn:0]… [matrix1:0][depth:0];

// widthm bit wide

The general rule for multi-dimensional array, mix of packed/unpacked, is as
follows:

reg/wire [widthm:0] temp3 [matrix:0]… [depth:0];
reg/wire [depth:0][width:0] temp4 [matrixm:0]… [matrix1:0]

For example, in a multi-dimensional declaration, the dimensions declared
following the type and before the name vary more rapidly than the dimen-
sions following the name.

Multi-dimensional arrays can be used as ports of the module.

The following items are now supported for multi-dimensional arrays:

• Assignment of a whole multi-dimensional array to another.

• Access (reading) of an entire multi-dimensional array.

• Assignment of an index (representing a complete dimension) of a
multi-dimensional array to another.

• Access (reading) of an index of a multi-dimensional array.

• Assignment of a slice of a multi-dimensional array.

• Access of a slice of a multi-dimensional array.

• Access of a variable part-select of a multi-dimensional array.

In addition, wire declarations are supported for any packed or unpacked data
type. This support includes multi-dimensional enum and struct data types in
input port declarations (see Nets, on page 174 for more information).

LO

 SystemVerilog Language Support Arrays

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

Packed arrays are supported with the access/store mechanisms listed above.
Packed arrays can also be used as ports and arguments to functions and tasks.
The standard multi-dimensional access of packed arrays is supported.

Unpacked array support is the same as packed array supported stated in
items one through seven above.

Example - Multi-dimensional Packed Array with Whole Assignment

// Example - Multi-dimensional Packed Array with Whole Assignment
module test (
input [1:0] [1:0] sel,
input [1:0] [1:0] data1,
input [1:0] [1:0] data2,
input [1:0] [1:0] data3,
output reg [1:0] [1:0] out1,
output reg [1:0] [1:0] out2,
output reg [1:0] [1:0] out3);

always @(sel,data1,data2)
 begin
 out1 = (sel[1]==11)? data1 : {11,11};
 out2 = (sel[1]==2’b11)? data2 : {11,10};
 out3 = data3;
 end
endmodule

Example - Multi-dimensional Packed Array with Partial Assignment

// Example - Multi-dimensional Packed Array with Partial
Assignment

Arrays SystemVerilog Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 165

module test (
input [7:0] datain,
input [1:0][2:0][3:0] datain2,
output [1:0][1:0][1:0] array_out,
output [23:0] array_out2,
output [3:0] array_out2_first_element,
 array_out2_second_element, array_out2_zero_element,
output [1:0] array_out2_first_element_partial_slice);
assign array_out = datain;
assign array_out2 = datain2;
assign array_out2_zero_element = datain2[1][0];
assign array_out2_first_element = datain2[1][1];
assign array_out2_second_element = datain2[1][2];
assign array_out2_first_element_partial_slice =
 datain2[0][0][3-:2];
endmodule

Example - Multi-dimensional Packed Array with Arithmetic Ops

// Example - Multi-dimensional Packed Array with Arithmetic Ops
module test (
input signed [1:0][2:0] a, b,
output signed [1:0] [2:0] c, c_bar, c_mult, c_div, c_per,
output signed [1:0][2:0] d, d_bar, d_mult, d_div, d_per,
output signed e, e_bar, e_mult, e_div, e_per);
assign c = a + b;
assign d = a[1] + b[1];
assign e = a[1][2] + a[1][1] + a[1][0] + b[1][2] + b[1][1]

LO

 SystemVerilog Language Support Arrays

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

+ b[1][0];
assign c_bar = a - b;
assign d_bar = a[1] - b[1];
assign e_bar = a[1][2] - a[1][1] - a[1][0] - b[1][2]

- b[1][1] - b[1][0];
assign c_mult = a * b;
assign d_mult = a[1] * b[1];
assign e_mult = a[1][2] * a[1][1] * a[1][0] * b[1][2] *

b[1][1] * b[1][0];
assign c_div = a / b;
assign d_div = a[1] / b[1];
assign e_div = a[1][2] / b[1][1];
assign c_per = a % b;
assign d_per = a[1] % b[1];
assign e_per = a[1][2] % b[1][1];
endmodule

Example - Packed/Unpacked Array with Partial Assignment

// Example - Packed/Unpacked Array with Partial Assignment
module test (
input [1:0] sel [1:0],
input [63:0] data [3:0],
input [63:0] data2 [3:0],
output reg [15:0] out1 [3:0],
output reg [15:0] out2 [3:0]);

always @(sel, data)

Arrays SystemVerilog Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 167

 begin
 out1 = (sel[1]==2’b00)? data[3][63-:16] :
 ((sel[1]==2’b01)? data[2][47-:16] :
 ((sel[0]==2’b10)? data[1][(63-32)-:16] :
 data[0][(63-48)-:16]));
 out2[3][15-:16] = data2[3][63-:16];
 out2[2][15-:16] = data2[3][47-:16];
 out2[1][15-:16] = data2[3][(63-32)-:16];
 out2[0][15-:8] = data2[3][(63-48)-:8];
 end
endmodule

Arrays of Structures
SystemVerilog supports multi-dimensional arrays of structures which can be
used in many applications to manipulate complex data structures. A
multi-dimensional array of structure is a structured array of more than one
dimension. The structure can be either packed or unpacked and the array of
this structure can be either packed or unpacked or a combination of packed
and unpacked. As a result, there are many combinations that define a
multi-dimensional array of structure.

A multi-dimensional array of structure can be declared as either anonymous
type (inline) or by using a typedef (user-defined data type).

Some applications where multi-dimensional arrays of structures can be used
are where multi-channeled interfaces are required such as packet processing,
dot-product of floating point numbers, or image processing.

LO

 SystemVerilog Language Support Arrays

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

Example - Multi-dimensional Array of Packed and Unpacked Structures
Using typedef

// Example - Multi-dimensional Array of Packed and Unpacked
Structures Using typedef
typedef struct {
byte r;
byte g;
byte b;
} [2:0] struct_im_t [0:1];
module mda_str (
input struct_im_t a,
input struct_im_t b,
output struct_im_t c,
input [7:0] alpha,
input [7:0] beta
);
typedef struct {
shortint r;
shortint g;
shortint b;
} [2:0] struct_im_r_t [0:1];
struct_im_r_t temp;
integer i,j;

always_comb
begin
 for(i=0;i<2;i=i+1)
 for(j=0;j<3;j=j+1)

Arrays SystemVerilog Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 169

 begin
 temp[i][j].r = a[i][j].r * alpha + b[i][j].r * beta;
 temp[i][j].g = a[i][j].g * alpha + b[i][j].g * beta;
 temp[i][j].b = a[i][j].b * alpha + b[i][j].b * beta;
 c[i][j].r = temp[i][j].r[15:8];
 c[i][j].g = temp[i][j].g[15:8];
 c[i][j].b = temp[i][j].b[15:8];
 end
end
endmodule

Example - Multi-dimensional Array of UnPacked Structures Using typedef

// Example - Multi-dimensional Array of Unpacked Structures Using
typedef
typedef struct {
byte r;
byte g;
byte b;
} struct_im_t [2:0][1:0];
module mda_str (
input struct_im_t a,
input struct_im_t b,
output struct_im_t c,
input [7:0] alpha,
input [7:0] beta
);
typedef struct {
shortint r;

LO

 SystemVerilog Language Support Arrays

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

shortint g;
shortint b;
} struct_im_r_t [2:0][1:0];
struct_im_r_t temp;
integer i,j;

always_comb
begin
 for(i=0;i<3;i=i+1)
 for(j=0;j<2;j=j+1)
 begin
 temp[i][j].r = a[i][j].r * alpha + b[i][j].r * beta;
 temp[i][j].g = a[i][j].g * alpha + b[i][j].g * beta;
 temp[i][j].b = a[i][j].b * alpha + b[i][j].b * beta;
 c[i][j].r = temp[i][j].r[15:8];
 c[i][j].g = temp[i][j].g[15:8];
 c[i][j].b = temp[i][j].b[15:8];
 end
end
endmodule

Arrays SystemVerilog Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 171

Example - Multi-dimensional Array of Packed Structures Using Anonymous
Type

// Example - Multi-dimensional Array of Packed Structures Using
Anonymous Type
module mda_str (
input struct packed {
logic [47:0] dest_addr;
logic [47:0] src_addr;
logic [7:0] type_len;
logic [63:0] data;
logic [2:0] crc;
} [1:0][3:0] str_pkt_in,
input sel1,
input [1:0] sel2,
output struct packed {
logic [47:0] dest_addr;
logic [47:0] src_addr;
logic [7:0] type_len;
logic [63:0] data;
logic [2:0] crc;
} str_pkt_out
);
always_comb
begin
str_pkt_out = str_pkt_in[sel1][sel2];
end
endmodule

LO

 SystemVerilog Language Support Arrays

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

Example - Multi-dimensional Array of Packed Structures Using typedef

// Example - Multi-dimensional Array of Packed Structures Using
typedef
typedef struct packed {
logic [47:0] dest_addr;
logic [47:0] src_addr;
logic [7:0] type_len;
logic [63:0] data;
logic [3:0] crc;
} [1:0][1:0] str_pkt_mp_t;
typedef struct packed {
logic [47:0] dest_addr;
logic [47:0] src_addr;
logic [7:0] type_len;
logic [63:0] data;
logic [3:0] crc;
} str_pkt_t;
module mda_str (
input str_pkt_mp_t pkt_mp_in,
input sel1,
input sel2,
output str_pkt_t pkt_out
);
always_comb
begin
 pkt_out = pkt_mp_in[sel1][sel2];
end

Data Declarations SystemVerilog Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 173

endmodule

Array Querying Functions
SystemVerilog provides system functions that return information about a
particular dimension of an array. For information on this function, see Array
Querying Functions, on page 268.

Data Declarations
There are several data declarations in SystemVerilog: literals, parameters,
constants, variables, nets, and attributes. The following are described here:

• Constants, on page 174

• Variables, on page 174

• Nets, on page 174

• Implicit Nets, on page 175

• Data Types in Parameters, on page 176

• Type Parameters, on page 180

LO

 SystemVerilog Language Support Data Declarations

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

Constants
Constants are named data variables, which never change. A typical example
for declaring a constant is as follows:

const a = 10;
const logic [3:0] load = 4'b1111;
const reg [7:0] load1 = 8'h0f, dataone = '1;

The Verilog compiler generates an error if constant is assigned a value.

const shortint a = 10;
assign a = '1; // This is illegal

Variables
Variables can be declared two ways:

Method 2 uses the keyword var to preface the variable. In this type of declara-
tion, a data type is optional. If the data type is not specified, logic is inferred.

Typical module declaration:

module test01 (input var shortint datain1,datain2,
output var logic [15:0] dataout1,dataout2);

A variable can be initialized as follows:

var a = 1'b1;

Nets
Nets are typically declared using the wire keyword. Any 4-state data type can
be used to declare a net. When using wire with struct and union constructs,
each member of the construct must be a 4-state data type.

Method 1 Method 2

shortint a, b;
logic [1:0] c, d;

var logic [15:0] a;
var a,b; // equivalent var logic a, b
var [1:0] c, d; // equivalent var logic [1:0] c, d
input var shortint datain1,datain2;
output var logic [15:0] dataout1,dataout2;

Data Declarations SystemVerilog Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 175

Syntax
wire 4stateDataType identifierName;

Example - Logic Type Defined as a Wire Type

module top (
input wire logic [1:0] din1,din2, // logic defined as wire
output logic [1:0] dout);
assign dout = din1 + din2;

endmodule

Example - struct Defined as a Wire Type

typedef struct {logic [4:1] a;
} MyStruct;
module top (

input wire MyStruct [1:0] din [1:0] [1:0], // structure
// defined as wire

output wire MyStruct [1:0] dout [1:0] [1:0]); // structure
// defined as wire

assign dout = din;
endmodule

Restrictions

Using wire with a 2-state data type (for example, int or bit) results in the
following error message:

CG1205 | Net data types must be 4-state values

A lexical restriction also applies to a net or port declaration in that the net
type keyword wire cannot be followed by reg.

Implicit Nets
When a net is not explicitly declared, you can apply an implicit net of default
net type. If an identifier is used in a continuous assignment statement that
has not been declared previously, then an implicit scalar net is defined with
the default net type.

LO

 SystemVerilog Language Support Data Declarations

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

Example -- Implicit Net of Default Net Type

In this example, temp has not been declared and is used in a continuous
assignment statement where it is defined as wire [10:0] temp:

module test (
input clk,
input [10:0] d,
output reg [10:0] x
);

//wire [10:0] temp;
assign temp = d; //d is an input of 11 bits
always @ (posedge clk)
begin

x <= temp;
end
endmodule

The implicit net declaration can only be referenced in the scope to which it
belongs. If it is referenced from outside this scope, then the net is either
illegal or implicitly declared for a different net.

Data Types in Parameters
In SystemVerilog with different data types being introduced, the parameter
can be of any data type (i.e., language-defined data type, user-defined data
type, and packed/unpacked arrays and structures). By default, parameter is
the int data type.

Syntax
parameter dataType varaibleName = value

In the above syntax, dataType is a language-defined data type, user-defined
data type, or a packed/unpacked structure or array.

Data Declarations SystemVerilog Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 177

Example - Parameter is of Type longint

// Example: Parameter of Type longint
module sub
#(parameter longint ParamLongint = 64’d25)
 (input clk,
 input rst,
 input longint d1 ,
 output longint q1);

always_ff@(posedge clk)
begin
if(rst)
 begin
 q1 <= ParamLongint;
 end
else
 begin
 q1 <= d1;
 end
end
endmodule

Example - Parameter is of Type enum

// Example: Parameter of Type enum
typedef enum {s1,s2,s3=24,s4=15,s5} enum_dt;
module sub
#(parameter enum_dt ParamEnum = s4)

LO

 SystemVerilog Language Support Data Declarations

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

 (input clk,
 input rst,
 input enum_dt d1,
 output enum_dt q1);

always_ff@(posedge clk)
begin
if(rst)
 begin
 q1 <= ParamEnum;
 end
else
 begin
 q1 <= d1;
 end
end
endmodule

Example - Parameter is of Type structure

// Example: Parameter of Type structure
typedef byte unsigned Byte_dt;
typedef struct packed
 {shortint R;
 logic signed [4:3] G;
 bit [15:0] B;
 Byte_dt Y;

Data Declarations SystemVerilog Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 179

 }Struct_dt;

module sub
#(parameter Struct_dt ParamStruct =’{16’d128,2’d2,12’d24,8’d123})
 (
 //Input
 input clk,
 input rst,
 input Struct_dt d1,
 //Output
 output Struct_dt q1);

always_ff@(posedge clk or posedge rst)
begin
if(rst)
 begin
 q1 <= ParamStruct;
 end
else
 begin
 q1 <= d1 ;
 end
end
endmodule

LO

 SystemVerilog Language Support Data Declarations

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

Example - Parameter is of Type longint Unpacked Array

// Example: Parameter of Type longint Unpacked Array
module sub
#(parameter longint ParamMyLongint [0:1] =’{64’d1124,64’d1785})
 (input clk,
 input rst,
 input longint d1 [0:1],
 output longint q1 [0:1]);

always_ff@(posedge clk)
begin
if(rst)
 begin
 q1 <= ParamMyLongint;
 end
else
 begin
 q1 <= d1;
 end
end
endmodule

Type Parameters
SystemVerilog includes the ability for a parameter to also specify a data type.
This capability allows modules or instances to have data whose type is set for
each instance - these type parameters can have different values for each of
their instances.

Data Declarations SystemVerilog Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 181

Note: Overriding a type parameter with a defparam statement is illegal.

Syntax
parameter type typeIdentifierName = dataType;

localparam type typeIdentifierName = dataType;

In the above syntax, dataType is either a language-defined data type or a
user-defined data type.

Example - Type Parameter of Language-Defined Data Type

//Compilation Unit
module top
#(

parameter type PTYPE = shortint,
parameter type PTYPE1 = logic[3:2][4:1] //parameter is of

//2D logic type
)
(
//Input Ports

input PTYPE din1_def,
input PTYPE1 din1_oride,

//Output Ports
output PTYPE dout1_def,
output PTYPE1 dout1_oride

);
sub u1_def //Default data type
(

.din1(din1_def),

.dout1(dout1_def)
);

LO

 SystemVerilog Language Support Data Declarations

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

sub #
(

.PTYPE(PTYPE1) //Parameter type is override by 2D Logic
)
u2_oride
(

.din1(din1_oride),

.dout1(dout1_oride)
);
endmodule
//Sub Module
module sub
#(

parameter type PTYPE = shortint //parameter is of shortint type
)
(
//Input Ports

input PTYPE din1,
//Output Ports

output PTYPE dout1
);
always_comb
begin

dout1 = din1;
end
endmodule

Example - Type Parameter of User-Defined Data Type

//Compilation Unit
typedef logic [0:7]Logic_1DUnpack[2:1];
typedef struct{

byte R;
int B;
logic[0:7]G;

} Struct_dt;
module top
#(

parameter type PTYPE = Logic_1DUnpack,
parameter type PTYPE1 = Struct_dt

)
(

Data Declarations SystemVerilog Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 183

//Input Ports
input PTYPE1 din1_oride,

//Output Ports
output PTYPE1 dout1_oride

);
sub #
(

.PTYPE(PTYPE1) //Parameter type is override by a structure type
)
u2_oride
(

.din1(din1_oride),

.dout1(dout1_oride)
);
endmodule
//Sub Module
module sub
#(

parameter type PTYPE = Logic_1DUnpack // Parameter 1D
// logic Unpacked data type

)
(
//Input Ports

input PTYPE din1,
//Output Ports

output PTYPE dout1
);
always_comb
begin

dout1.R = din1.R;
dout1.B = din1.B;
dout1.G = din1.G;

end
endmodule

Example - Type Local Parameter

//Compilation Unit
module sub
#(
parameter type PTYPE1 = shortint, //Parameter is of shortint type
parameter type PTYPE2 = longint //Parameter is of longint type
)

LO

 SystemVerilog Language Support Data Declarations

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

(//Input Ports
input PTYPE1 din1,

//Output Ports
output PTYPE2 dout1

);
//Localparam type definition
localparam type SHORTINT_LPARAM = PTYPE1;
SHORTINT_LPARAM sig1;
assign sig1 = din1;
assign dout1 = din1 * sig1;
endmodule

Operators and Expressions SystemVerilog Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 185

Operators and Expressions
Topics in this section include:

• Operators, on page 185

• Aggregate Expressions, on page 186

• Streaming Operator, on page 196

• Set Membership Operator, on page 200

• Set Membership Case Inside Operator, on page 202

• Type Operator, on page 206

Operators
SystemVerilog includes the C assignment operators and special bit-wise
assignment operators:

+=, -=, *=, /=, %=, &=, |=, ^=, <<=, >>=, <<<=, >>>=

An assignment operator is semantically equivalent to a blocking assignment
with the exception that the expression is only evaluated once.

Operator Example Same as

A += 2; A = A + 2;
B -= B; B = B - A;
C *= B; C = C * B;
D /= C; D = D / C;
E %= D; E = E % D;
F &= E; F = F & E;
G |= F; G = G | F;
H ^= G; H = H ^ G;
I <<= H; I = I << H;

LO

 SystemVerilog Language Support Operators and Expressions

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

Increment and Decrement Operators

In addition, SystemVerilog also has the increment/decrement operators i++,
i--, ++i, and --i.

In the following code segment, out1 gets r1 and out2 gets the twice-decre-
mented value of out1:

always @(*)
begin

out1 = r1--;
out2 = --r1;

end

Aggregate Expressions
Aggregate expressions (aggregate pattern assignments) are primarily used to
initialize and assign default values to unpacked arrays and structures.

Syntax
SystemVerilog aggregate expressions are constructed from braces; an
apostrophe prefixes the opening (left) brace.

'{listofValues}

J >>= I; J = J >> I;
K <<<=J; K = K <<< J;
L >>>=K; L = L >>> K;

Operator Example Same as

A++; A = A + 1;

A--; A = A - 1;

++A; Increment first and then use A

--A; Decrement first and then use A

Operator Example Same as

Operators and Expressions SystemVerilog Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 187

In the syntax, listofValues is a comma-separated list. SystemVerilog also
provides a mechanism to initialize all of the elements of an unpacked array by
specifying a default value within the braces using the following syntax:

'{ default: value }
'{ data type:value }
'{ index:value }

The aggregate (pattern) assignment can be used to initialize any of the
following.

• a 2-dimensional unpacked array under a reset condition (see Initializing
Unpacked Array Under Reset Condition example).

• all the elements of a 2-dimensional unpacked array to a default value
using the default keyword under a reset condition (see Initializing
Unpacked Array to Default Value example).

• a specific data type using the keyword for type instead of default (see
Initializing Specific Data Type example).

• unpacked elements of ports that can be passed to a submodule during
instantiations (see Aggregate on Port example). For example:

sub u1(.temp('{'0,'1,'1,0})

Example - Aggregate on Ports

Currently, you must enable the Beta Features for Verilog on the Verilog tab of the
Implementation Options panel to use this feature. Otherwise, the compiler
generates an error message.

Example: Aggregate on Ports (Submodule)

// Example -- Aggregate on Ports (Submodule)

module sub
#(
parameter logic signed [8:1] ParamMyLogic = 8’d12,
parameter logic signed [1:8] ParamMyLogic_Neg = -8’d11
)

LO

 SystemVerilog Language Support Operators and Expressions

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

(
input clk,
input rst,
input logic signed d1[3:0],
input logic signed d2[3:0],
output logic signed q1[3:0],
output logic signed q2[3:0],
inout temp[1:0]
);
assign temp[1]=d2[0];

always_ff@(posedge clk or posedge rst)
begin

if(rst)
begin

q1 <= ‘{default:0};
q2 <= ‘{default:0};

end
else

begin
q1 <= {d1[3:1],temp[1]};
q2 <= {d2[3:1],temp[1]};

end
end

endmodule

Operators and Expressions SystemVerilog Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 189

Example: Aggregate on Ports (Top-Level Module)

// Example -- Aggregate on Ports with Top-Level Module

`include “sub.v”

module top
(
input clk,
input rst,
input logic signed d1 [3:0],
input logic signed d2 [3:0],
output logic signed q1 [3:0],
output logic signed q2[3:0]

);

wire temp2[1:0];

//Named mapping
sub
#(.ParamMyLogic(255),.ParamMyLogic_Neg(-1))
 u2

(.clk(clk),.rst(rst),.d1(‘{d1[3],d1[2],d1[1],d1[0]}),.d2(‘{d2[3],d
2[2],d2[1],d2[0]}),.q1(q1),.q2(q2),.temp(temp2)); //unpacked
elements of port d1 & d2 are passed as aggregates to the sub
module.

endmodule

LO

 SystemVerilog Language Support Operators and Expressions

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

Aggregate (pattern) assignment can also be specified in a package (see Aggre-
gate Assignment in Package example) and in a compilation unit (see Aggre-
gate Assignment in Compilation Unit example).

Example - Initializing Unpacked Array Under Reset Condition

// Example - Initializing Unpacked Array Under Reset Condition
parameter WIDTH = 2;
typedef reg [WIDTH-1:0] [WIDTH-1:0] MyReg;
module top (
 input logic Clk,
 input logic Rst,
 input MyReg DinMyReg,
 output MyReg DoutMyReg);
MyReg RegMyReg;

always@(posedge Clk, posedge Rst) begin
 if(Rst) begin
 RegMyReg <= ‘{2’d0, 2’d0};
 DoutMyReg <= ‘{2’d0, 2’d0};
 end
 else begin
 RegMyReg <= DinMyReg;
 DoutMyReg <= RegMyReg;
 end
end
endmodule

Operators and Expressions SystemVerilog Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 191

Example - Initializing Unpacked Array to Default Value

// Example - Initializing Unpacked Array to Default Value
parameter WIDTH = 2;
typedef reg [WIDTH-1:0] [WIDTH-1:0] MyReg;
module top (
 input logic Clk,
 input logic Rst,
 input MyReg DinMyReg,
 output MyReg DoutMyReg);
MyReg RegMyReg;

always@(posedge Clk, posedge Rst) begin
 if(Rst) begin
 RegMyReg <= ‘{default:0};
 DoutMyReg <= ‘{default:0};
 end
 else begin
 RegMyReg <= DinMyReg;
 DoutMyReg <= RegMyReg;
 end
end
endmodule

LO

 SystemVerilog Language Support Operators and Expressions

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

Example - Initializing Specific Data Type

// Example - Initializing Specific Data Type
parameter WIDTH = 2;
typedef struct packed {
 byte r;
 byte g;
 byte b; }
MyStruct [WIDTH-1:0];
module top (
 input logic Clk,
 input logic Rst,
 input MyStruct DinMyStruct,
 output MyStruct DoutMyStruct);
MyStruct StructMyStruct;

always@(posedge Clk, posedge Rst) begin
 if(Rst) begin
 StructMyStruct <= ‘{byte:0,byte:0};
 DoutMyStruct <= ‘{byte:0,byte:0};
 end
 else begin
 StructMyStruct <= DinMyStruct;
 DoutMyStruct <= StructMyStruct;
 end
end
endmodule

Operators and Expressions SystemVerilog Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 193

Example - Aggregate Assignment in Package

// Example - Aggregate Assignment in Package
package MyPkg;
parameter WIDTH = 2;
 typedef struct packed {
 int r;
 longint g;
 byte b;
 int rr;
 longint gg;
 byte bb;
 } MyStruct [WIDTH-1:0];
const MyStruct VarMyStruct = ‘{int:1,longint:10,byte:8’h0B} ;
const MyStruct ConstMyStruct =
 ‘{int:1,longint:$bits(VarMyStruct[0].r),byte:8’hAB} ;
endpackage : MyPkg
import MyPkg::*;

module top (
 input logic Clk,
 input logic Rst,
 input MyStruct DinMyStruct,
 output MyStruct DoutMyStruct);
MyStruct StructMyStruct;

always@(posedge Clk, posedge Rst) begin
 if(Rst) begin

LO

 SystemVerilog Language Support Operators and Expressions

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

 StructMyStruct <= VarMyStruct;
 DoutMyStruct <= ConstMyStruct;
 end
 else begin
 StructMyStruct <= DinMyStruct;
 DoutMyStruct <= StructMyStruct;
 end
end
endmodule

Example - Aggregate Assignment in Compilation Unit

// Example - Aggregate Assignment in Compilation Unit
// Start of compilation unit
parameter WIDTH = 2;
 typedef struct packed {
 int r;
 longint g;
 byte b;
 int rr;
 longint gg;
 byte bb;
 } MyStruct [WIDTH-1:0];
const MyStruct VarMyStruct = ‘{int:1,longint:10,byte:8’h0B} ;
const MyStruct ConstMyStruct =
 ‘{int:1,longint:$bits(VarMyStruct[0].r),byte:8’hAB} ;

module top (

Operators and Expressions SystemVerilog Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 195

 input logic Clk,
 input logic Rst,
 input MyStruct DinMyStruct,
 output MyStruct DoutMyStruct);
MyStruct StructMyStruct;

always@(posedge Clk, posedge Rst)
begin
 if(Rst) begin
 StructMyStruct <= VarMyStruct;
 DoutMyStruct <= ConstMyStruct;
 end
 else begin
 StructMyStruct <= DinMyStruct;
 DoutMyStruct <= StructMyStruct;
 end
end
endmodule

LO

 SystemVerilog Language Support Operators and Expressions

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

Streaming Operator
The streaming operator (>> or <<) packs the bit-stream type to a particular
sequence of bits in a user-specified order. Bit-stream types can be any
integral, packed or unpacked type or structure. The streaming operator can
be used on either the left or right side of the expression.

The streaming operator determines the order of bits in the output data
stream:

• The left-to-right operator (>>) arranges the output data bits in the same
order as the input bit stream

• The right-to-left operator (<<) arranges the output data bits in reverse
order from the input bit stream

Syntax
streamingExpression ::= {streamOperator [sliceSize] streamConcatenation}

streamOperator ::= >> | <<

sliceSize ::= dataType | constantExpression

streamConcatenation ::= streamExpression {, streamExpression}}

streamExpression ::= arrayRangeExpression

When an optional sliceSize value is included, the stream is broken up into the
slice-size segments prior to performing the specified streaming operation. By
default, the sliceSize value is 1.

Usage
The streaming operator is used to:

• Reverse the entire data stream

• Bit-stream from one data type to other

When the slice size is larger than the data stream, the stream is left-justified
and zero-filled on the right. If the data stream is larger than the left side
variable, an error is reported.

Operators and Expressions SystemVerilog Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 197

Example - Packed type inputs/outputs with RHS operator

// Example: Packed type inputs/outputs with RHS operator
module streaming
(
input longint a,
output longint str_rev,
output longint str
);

assign str_rev = {<< {a}};
assign str = {>> {a}};

endmodule

Example - Unpacked type inputs/outputs with RHS operator

// Example: Unpacked type inputs/outputs with RHS operator
typedef logic [5:0]my_dt [1:0];

module streaming
(
input logic [5:0] a[1:0], //same layout - size same as the output
input logic [3:0] b[2:0], //different layout - same size as output
input logic [2:0]c[1:0], //different layout and size
output my_dt str_rev1,
output my_dt str_rev_difflay,
output my_dt str_rev_less
);

LO

 SystemVerilog Language Support Operators and Expressions

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

assign str_rev1 = {<<{a}};
assign str_rev_difflay = {<< {b}};
assign str_rev_less = {<< {c,2’b11}};

endmodule

Example - Packed type inputs/outputs with LHS operator

// Example: Packed type inputs/outputs with LHS operator
module streaming
(
input byte a,
output byte str_rev,
output byte str
);

assign {>>{str}} = a;
assign {<<{str_rev}} = a;

endmodule

Example - Slice-size streaming with RHS operator

// Example: Slice-size streaming with RHS operator
typedef shortint shortint_dt [2:1];
typedef byte byte_dt [1:2][3:2];
typedef struct {

logic [3:0] a [2:1];
byte b;

Operators and Expressions SystemVerilog Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 199

shortint c[4:2]; }
struct_dt;
module streaming (

input shortint_dt a,
input byte_dt b,
output struct_dt c_pack,
output struct_dt c_unpack);

assign c_pack = {<< 5 {a}};
assign c_unpack = {<< 2 {b}};
endmodule

Example - Slice-size streaming with LHS slice operation

// Example: Slice-size streaming with LHS slice operation
module streaming
(
input logic a[1:8],
output logic signed [1:4] str_rev[1:2],
output logic signed [1:4] str[1:2]
);

assign {>>4{str}} = a;
assign {<<4{str_rev}} = a;

endmodule

LO

 SystemVerilog Language Support Operators and Expressions

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

Set Membership Operator
The set membership operator, also referred to as the inside operator, returns
the value TRUE when the expression value (i.e., the LHS of the operator) is
present in the value list of the RHS operator. If the expression value is not
present in the RHS operator, returns FALSE.

Syntax
(expressionValue) inside {listofValues}

expressionValue ::= singularExpression

listofValues ::= rangeofValues, expressions, arrayofAggregateTypes

Example - Inside operator with dynamically changing input at LHS operator

// Example - Inside operator with dynamic input at LHS operator
module top
(
//Input
input byte din,
//Output
output logic dout
);

assign dout = din inside {8’d2, -8’d3, 8’d5};
endmodule

Operators and Expressions SystemVerilog Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 201

Example - Inside operator with expression at LHS operator

// Example - Inside operator with expression at LHS operator
module top
(
//Input
input byte din1,
input byte din2,
//Output
output logic dout
);

assign dout = (din1 | din2) inside {14,17,2,20};
endmodule

Example - Inside operator with dynamically changing input at LHS and
RHS operators

// Example - Inside operator with dynamic input at LHS and RHS
operators
module top
(
//Input
input byte din1,
input byte din2,
//Output
output logic dout
);
assign dout = (din1) inside {din2,105,-121,-116};
endmodule

LO

 SystemVerilog Language Support Operators and Expressions

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

Example - Inside operator with array of parameter at LHS operator

// Example - Inside operator with array of parameter at LHS
operator
module top
(
//Input
input byte din1,
//Output
output logic dout
);

parameter byte param1[1:0] = ‘{8’d12,8’d111};
assign dout = (din1) inside {param1,121,-16};
endmodule

Set Membership Case Inside Operator
With the case inside operator, a case expression is compared to each case item.
Also, when using this operator, the case items can include an open range.
The comparison returns TRUE when the case expression matches a case
item, otherwise it returns FALSE.

Syntax
[unique|priority] case (caseExpression) inside

(caseItem) : statement;
(caseItem) : statement;

.

.

.
[default : statement;]

endcase

In the above syntax, caseItem can be:

Operators and Expressions SystemVerilog Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 203

• a list of constants

• an open range

• a combination of a list of constants and an open range

The case inside operator supports the following optional modifiers:

• unique - each caseItem is unique and there are no overlapping caseItems.
If there is an overlapping caseItem, a warning is issued.

• priority - the case statement is prioritized and all possible legal cases are
covered by the case statement. If the caseExpression fails to match any
of the caseItems, a warning is issued.

Example - Case Inside

module top# (
parameter byte p1[2:1][4:1] = '{'{0,2,4,6},'{1,3,5,7}})

//Input
(input logic[4:1]sel,a,b,
//Output

output logic[3:1] q);
always_comb begin

case (sel) inside
8,p1[1],10,12,14:q <= a;
p1[2],9,11,13,15:q <= b;

endcase
end
endmodule

Example - Unique Case Inside

module top# (
parameter byte p1[2:1][4:1] = '{'{15,14,13,12},'{0,1,2,3}})

//Input
(input logic[4:1]sel1,sel2,

input byte a,b,
//Output

output byte q);

LO

 SystemVerilog Language Support Operators and Expressions

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

generate begin
always@(*) begin

unique case (sel1^sel2) inside
p1 : q = a+b;
[4:7],13,14,15 : q = a ^ b;
[9:12],8 : q = a*b;

endcase
end

end
endgenerate
endmodule

Example - Priority Case Inside

typedef enum logic[4:1] {s[0:15]} EnumDt;
module top (

input logic reset,
input logic clock,
input logic x,
input logic[2:1] y,
output logic[3:1] op);

EnumDt state;
always@(posedge reset or posedge clock)
begin

if (reset == 1'b1)
begin

op <= 3'b000;
state <= s0;

end
else
begin

priority case (state) inside
[s0:s2],s12 : begin

if (x == 1'b0 && y == 1'b0)
begin

state <= s3;
op <= 3'b001;

end
else
begin

state <= s2;
op <= 3'b000;

end
end

Operators and Expressions SystemVerilog Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 205

[s3:s5] : begin
if(x == 1'b1 && y== 1'b0)
begin

state <= s7;
op <= 3'b010;

end
else
begin

state <= s9;
op <= 3'b110;

end
end
[s6:s8],s13 : begin

if(x == 1'b0 && y== 1'b1)
begin

state <= s11;
op <= 3'b011;

end
else if (x == 1'b0 && y == 1'b1)
begin

state <= s4;
op <= 3'b010;

end
end
[s9:s11] : begin

if(x == 1'b1 && y== 1'b1)
begin

state <= s5;
op <= 3'b100;

end
else if (x == 1'b0 && y == 1'b1)
begin

state <= s0;
op <= 3'b111;

end
end
default : begin

state <= s1;
op <= 3'b111;

end
endcase

end
end
endmodule

LO

 SystemVerilog Language Support Operators and Expressions

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

Type Operator
SystemVerilog provides a type operator as a way of referencing the data type of
a variable or an expression.

Syntax
type(dataType | expression)

dataType - a user-defined data type or language-defined data type

expression - any expression, variable, or port

An expression inside the type operator results in a self-determined type of
expression; the expression is not evaluated. Also the expression cannot
contain any hierarchical references.

Data Declaration
The type operator can be used while declaring signals, variables, or ports of a
module/interface or a member of that interface.

Example - Using Type Operator to Declare Input/Output Ports

typedef logic signed[4:1]logicdt;
// Module top
module top(

input type(logicdt) d1,
output type(logicdt) dout1);

type(logicdt) sig;
var type(logicdt) sig1;
assign sig = d1;
assign sig1= d1+1'b1;
assign dout1= sig + sig1;
endmodule

Data Type Declaration
Defining of the user-defined data type can have the type operator, wherein a
variable or another user-defined data type can be directly referenced while
defining a data type using the type operator. The data type can be defined in
the compilation unit, package, or inside the module or interface.

Operators and Expressions SystemVerilog Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 207

Example - Using Type Operator to Declare Unpacked Data Type

typedef logic[4:1] logicdt;
typedef type(logicdt)Unpackdt[2:1];
module top(

input Unpackdt d1,
output Unpackdt dout1);

assign dout1[2] = d1[2];
assign dout1[1] = d1[1];
endmodule

Type Casting
The type operator can be used to directly reference the data type of a variable
or port, or can be user-defined and used in type casting to convert either
signed to unsigned or unsigned to signed.

Example - Using Type Operator to Reference Data Type

typedef logic [20:0]dt;
//Module top
module top (

input byte d1,d2,
output int unsigned dout1);

assign dout1 = type(dt)'(d1 * d2);
endmodule

Defining Type Parameter/Local Parameter
The type operator can be used when defining a Type parameter to define the
data type. The definition can be overridden based on user requirements.

Example - Using Type Operator to Declare Parameter Type Value

// Module top
module top(

input byte a1,
input byte a2,
output shortint dout1);

LO

 SystemVerilog Language Support Operators and Expressions

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

parameter type dtype = type(a1);
dtype sig1;
assign sig1 = a1;
assign dout1 = ~sig1;
endmodule

Comparison and Case Comparison
The type operator can be used to compare two types when evaluating a condi-
tion or a case statement.

Example - Using Type Operator in a Comparison

// Module top
module top (

input byte d1,
input shortint d2,
output shortint dout1);

always_comb begin
if(type(d1) == type(d2))

dout1 = d1;
else

dout1 = d2;
end
endmodule

Limitations
The type operator is not supported on complex expressions (for example
type(d1*d2)).

$typeof Operator
Verilog (IEEE Std 1800-2012) LRM no longer supports the $typeof operator.
However, the tools can support the $typeof operator in accordance with
SystemVerilog (IEEE Std 1800-2012) LRM section: 6.23. SystemVerilog
provides the $typeof system function used to assign or override a type param-
eter or as a comparison with another $typeof operator, which is evaluated
during elaboration.

Operators and Expressions SystemVerilog Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 209

Syntax
typeofFunction ::=

$typeof (dataType) - A user-defined data type or language-defined data type

$typeof (expression) - Any expression, variable, or port

For example:

bit [12:0] A_bus;
parameter type bus_t = $typeof(A_bus);

Example: $type Operator

// Example -- typeof Operator

module top #(parameter type mtype = logic signed [7:0]) (input
mtype din,output mtype dout);//input & output ports are defined as
type mtype

parameter type mtype1 = $typeof(din);//parameter mtype1 is created
after $typeof operator is applied to input port din

mtype1 sig1;//sig1 signal is created which is of type mtype1

always_comb
begin
for(int i=0;i<=7;i++)
begin
sig1[i] = din[i];
end

end

LO

 SystemVerilog Language Support Operators and Expressions

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

assign dout = sig1;

endmodule

For this test case:

• Parameter mtype is defined as logic signed [7:0].

• Input and output ports (din and dout) are defined as type mtype.

• Parameter mtype1 is created after the $typeof operator is applied to input
port din.

• As a result, sig1 is also defined with parameter mtype1.

$typeof Operator Limitations
The compiler does not support the following $typeof conditions:

• When the $typeof operator uses an expression as its argument, the
expression cannot contain any hierarchical references or reference
elements of dynamic objects.

• The $typeof operator is not supported on complex expressions. For
example:

$typeof (d1 + 4'h4 - 2'b01)

Procedural Statements and Control Flow SystemVerilog Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 211

Procedural Statements and Control Flow
Topics in this section include

• Do-While Loops

• For Loops, on page 214

• Foreach Loops, on page 216

• Unnamed Blocks, on page 218

• Block Name on end Keyword, on page 219

• Unique and Priority Modifiers, on page 220

Do-While Loops
The while statement executes a loop for as long as the loop-control test is true.
The control value is tested at the beginning of each pass through the loop.
However, a while loop does not execute at all if the test on the control value is
false the first time the loop is encountered. This top-testing behavior can
require extra coding prior to beginning the while loop, to ensure that any
output variables of the loop are consistent.

SystemVerilog enhances the for loop and adds a do-while loop, the same as in
C. The control on the do-while loop is tested at the end of each pass through
the loop (instead of at the beginning). This implies that each time the loop is
encountered in the execution flow, the loop statements are executed at least
once.

Because the statements within a do-while loop are going to execute at least
once, all the logic for setting the outputs of the loop can be placed inside the
loop. This bottom-testing behavior can simplify the coding of while loops,
making the code more concise and more intuitive.

Example - Simple Do-while Loop

// Example - Simple do-while Loop
module src (in1,in2,out);
input [7:0] in1,in2;
output reg [7:0] out;

LO

 SystemVerilog Language Support Procedural Statements and Control Flow

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

integer i;

always @ (in1,in2)
begin
 i = 0;
 do
 begin
 out[i] = in1[i] + in2[i];
 i = i+1;
 end
 while (i < 8);
end
endmodule

Example - Do-while with If Else Statement

// Example - Do-while with if-else Statement
module src (out, a, b, c, d, sel);
output [3:0] out;
input [3:0] a, b, c, d;
input [3:0] sel;
reg [3:0] out;
integer i;

always @ (a or b or c or d or sel)
 begin
 i=0;
 out = 4’b0000;

Procedural Statements and Control Flow SystemVerilog Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 213

 do
 begin
 if(sel == 4’b0001) out[i] = a[i];
 else if(sel == 4’b0010) out[i] = b[i];
 else if(sel == 4’b0100) out[i] = c[i];
 else if(sel == 4’b1000) out[i] = d[i];
 else out = ‘bx;
 i= i+1;
 end
 while (i < 4);
 end
endmodule

Example - Do-while with Case Statement

// Example - Do-while with case Statement
module src (out, a, b, c, d, sel);
output [3:0] out;
input [3:0] a, b, c, d;
input [3:0] sel;
reg [3:0] out;
integer i;

always @ (a or b or c or d or sel)
 begin
 i=0;
 out = 3’b000;
 do

LO

 SystemVerilog Language Support Procedural Statements and Control Flow

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

 begin
 case (sel)
 4’b0001: out[i] = a[i];
 4’b0010: out[i] = b[i];
 4’b0100: out[i] = c[i];
 4’b1000: out[i] = d[i];
 default: out = ‘bx;
 endcase
 i= i+1;
 end
 while (i < 4);
 end
endmodule

For Loops
SystemVerilog simplifies declaring local variables for use in for loops. The
declaration of the for loop variable can be made within the for loop. This elimi-
nates the need to define several variables at the module level, or to define
local variables within named begin…end blocks as shown in the following
example.

Procedural Statements and Control Flow SystemVerilog Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 215

Example - Simple for Loop

// Example - Simple for Loop
module simpleloop (output reg [7:0]y, input [7:0]i, input clock);
always@(posedge clock)
begin : loop
 for (int count=0; count < 8; count=count+1) // SV code
 y[count]=i[count];
end
endmodule

A variable defined as in the example above, is local to the loop. References to
the variable name within the loop see the local variable, however, reference to
the same variable outside the loop encounters an error. This type of variable
is created and initialized when the for loop is invoked, and destroyed when the
loop exits.

SystemVerilog also enhances for loops by allowing more than one initial
assignment statement. Multiple initial or step assignments are separated by
commas as shown in the following example.

Example - For Loop with Two Variables

// Example - For Loop with Two Variables
module twovarinloop (in1, in2, out1, out2);
parameter p1 = 3;
input [3:0] in1;
input [3:0] in2;
output [3:0] out1;
output [3:0] out2;
reg [3:0] out1;
reg [3:0] out2;

LO

 SystemVerilog Language Support Procedural Statements and Control Flow

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

always @*
 begin
 for (int i = 0, int j = 0; i <= p1; i++)
 begin
 out1[i] = in1[i];
 out2[j] = in2[j];
 j++;
 end
 end
endmodule

Foreach Loops
SystemVerilog allows foreach loops to iterate through array elements. The
foreach loop automatically declares its loop control variables, determines the
starting and ending indices of the array, and determines the direction of
indexing (count up). The arguments specified with the foreach loop identifies
the designation for the type of array (fixed-size or associative). It is followed by
a list of loop variables enclosed in square brackets; where each loop variable
in the square bracket corresponds to one dimension of the array.

Example - Foreach Loop Example

// Example - Foreach Loop
module test (clk, rst,in1, in2, out1);
input clk,rst;
input [3:0]in1;
input [3:0]in2;

output [3:0]out1;

Procedural Statements and Control Flow SystemVerilog Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 217

reg [3:0]out1;
reg [3:0]in1_reg;
reg [3:0]in2_reg;

int i;
always @(posedge clk or posedge rst)
begin
 if (rst)
 begin
 foreach (in1_reg[i])
 begin
 in1_reg[i] <= 1’b0;
 end
 foreach (in2_reg[i])
 begin
 in2_reg[i] <= 1’b0;
 end
 foreach (out1[i])
 begin
 out1[i] <= 1’b0;
 end
 end
 else
 begin
 in1_reg <= in1;
 in2_reg <= in2;

LO

 SystemVerilog Language Support Procedural Statements and Control Flow

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

 foreach (out1[i])
 begin
 out1[i] <= in1_reg[i] & in2_reg[i];
 end
 end
end

endmodule

Unnamed Blocks
SystemVerilog allows local variables to be declared in unnamed blocks.

Example - Local Variable in Unnamed Block

// Example - Local Variable in Unnamed Block
module test(in1,out1);
input [2:0] in1;
output [2:0] out1;
integer i;
wire [2:0] count;
reg [2:0] temp;
assign count = in1;

always @ (count)
begin // unnamed block
 integer i; //local variable
 for (i=0; i < 3; i = i+1)
 begin : foo

Procedural Statements and Control Flow SystemVerilog Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 219

 temp = count + 1;
 end
end
assign out1 = temp;
endmodule

Block Name on end Keyword
SystemVerilog allows a block name to be defined after the end keyword when
the name matches the one defined on the corresponding begin keyword. This
means, you can name the start and end of a begin statement for a block. The
additional name does not affect the block semantics, but does serve to
enhance code readability by documenting the statement group that is being
completed.

Example - Including Block Name with end Keyword

// Example - Including Block Name with end Keyword
module src (in1,in2,out1,out2);
input in1,in2;
output reg out1,out2;
reg a,b;
always@(in1,in2)
 begin : foo_in
 a = in1 & in2;
 b = in2 | in1;
 end : foo_in
always@(a,b)
 begin : foo_value
 out1 = a;
 out2 = b;

LO

 SystemVerilog Language Support Procedural Statements and Control Flow

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

 end : foo_value
endmodule

Unique and Priority Modifiers
SystemVerilog adds unique and priority modifiers to use in case statements. The
Verilog full_case and parallel_case statements are located inside of comments
and are ignored by the Verilog simulator. For synthesis, full_case and
parallel_case directives instruct the tool to take certain actions or perform
certain optimizations that are unknown to the simulator.

To prevent discrepancies when using full_case and parallel_case directives and
to ensure that the simulator has the same understanding of them as the
synthesis tool, use the priority or unique modifier in the case statement. The
priority and unique keywords are recognized by all tools, including the Verilog
simulators, allowing all tools to have the same information about the design.

The following table shows how to substitute the SystemVerilog unique and
priority modifiers for Verilog full_case and parallel_case directives for synthesis.

Verilog using full_case, parallel_case SystemVerilog using unique/priority
case modifiers

case (...)
...
endcase

case (...)
...
endcase

case (...) //full_case
...
endcase

priority case (...)
...
endcase

case (...) //parallel_case
...
endcase

unique case (...)
...
default : ...
endcase

case (...) //full_case
parallel_case
...
endcase

unique case (...)
...
endcase

Procedural Statements and Control Flow SystemVerilog Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 221

Example - Unique Case

// Example - Unique case
module src (out, a, b, c, d, sel);
output out;
input a, b, c, d;
input [3:0] sel;
reg out;

always @ (a,b,c,d,sel)
 begin
 unique case (sel)
 4’b0001: out = c;
 4’b0010: out = b;
 4’b0100: out = d;
 4’b1000: out = a;
 endcase
 end
endmodule

Example - Priority Case

// Example - Priority case
module src (out, a, b, c, d, sel);
output out;
input a, b, c, d;
input [3:0] sel;reg out;

always @ (a,b,c,d,sel)

LO

 SystemVerilog Language Support Processes

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

 begin
 priority case (sel)
 4’b0000: out = c;
 4’b0001: out = b;
 4’b0100: out = d;
 4’b1000: out = a;
 endcase
 end
endmodule

Processes
In Verilog, an “if” statement with a missing “else” condition infers an uninten-
tional latch element, for which the Synopsys compiler currently generates a
warning. Many commercially available compilers do not generate any
warning, causing a serious mismatch between intention and inference.
SystemVerilog adds three specialized procedural blocks that reduce
ambiguity and clearly indicate the intent:

• always_comb, on page 222

• always_latch, on page 225

• always_ff, on page 226

Use them instead of the Verilog general purpose always procedural block to
indicate design intent and aid in the inference of identical logic across
synthesis, simulation, and verification tools.

always_comb
The SystemVerilog always_comb process block models combinational logic,
and the logic inferred from the always_comb process must be combinational
logic. The Synopsys compiler warns you if the behavior does not represent
combinational logic.

Processes SystemVerilog Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 223

The semantics of an always_comb block are different from a normal always
block in these ways:

• It is illegal to declare a sensitivity list in tandem with an always_comb
block.

• An always_comb statement cannot contain any block, timing, or event
controls and fork, join, or wait statements.

Note the following about the always_comb block:

• There is an inferred sensitivity list that includes all the variables from
the RHS of all assignments within the always_comb block and variables
used to control or select assignments See Examples of Sensitivity to LHS
and RHS of Assignments, on page 224.

• The variables on the LHS of the expression should not be written by any
other processes.

• The always_comb block is guaranteed to be triggered once at time zero
after the initial block is executed.

• always_comb is sensitive to changes within the contents of a function and
not just the function arguments, unlike the always@(*) construct of
Verilog 2001.

Example - always_comb Block

// Example - always_comb Block
module test01 (a, b, out1);
input a,b;
output out1;
reg out1;
always_comb
begin
 out1 = a & b;
end
endmodule

LO

 SystemVerilog Language Support Processes

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

Invalid Use of always_comb Block
The following code segments show use of the construct that are NOT VALID.

always_comb @(a or b) //Wrong. Sensitivity list is inferred not
//declared

begin
foo;

end

always_comb
begin

@clk out <=in; //Wrong to use trigger within this always block
end

always_comb
begin

fork //Wrong to use fork-join within this always block
out <=in;
join

end

always_comb
begin

if(en)mem[waddr]<=data; //Wrong to use trigger conditions
//within this block

end

Examples of Sensitivity to LHS and RHS of Assignments
In the following code segment, sensitivity only to the LHS of assignments
causes problems.

always @(y)
if (sel)

y= a1;
else

y= a0;
In the following code segment, sensitivity only to the RHS of assignments
causes problems.

Processes SystemVerilog Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 225

always @(a0, a1)
if (sel)

y= a1;
else

y= a0;
In the following code segment, sensitivity to the RHS of assignments and
variables used in control logic for assignments produces correct results.

always @(a0, a1, sel)
if (sel)

y= a1;
else

y= a0;

always_latch
The SystemVerilog always_latch process models latched logic, and the logic
inferred from the always_latch process must only be latches (of any kind). The
Synopsys compiler warns you if the behavior does not follow the intent.

Note the following:

• It is illegal for always_latch statements to contain a sensitivity list, any
block, timing, or event controls, and fork, join, or wait statements.

• The sensitivity list of an always_latch process is automatically inferred by
the compiler and the inferring rules are similar to the always_comb
process (see always_comb, on page 222).

Example - always_latch Block

// Example - always_latch Block
module Test01 (a,b,clk,out1);
input a,b,clk;
output out1;
reg out1;

always_latch
begin

LO

 SystemVerilog Language Support Processes

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

 if(clk)
 begin
 out1 <= a & b;
 end
end
endmodule

Invalid Use of always_latch Block
The following code segments show use of the construct that are NOT VALID.

always_latch
begin

if(en)
treg<=1;

else
treg<=0; //Wrong to use fully specified if statement

end

always_latch
begin

@(clk)out <=in; //Wrong to use trigger events within this
//always block

end

always_ff
The SystemVerilog always_ff process block models sequential logic that is
triggered by clocks. The compiler warns you if the behavior does not repre-
sent the intent. The always_ff process has the following restrictions:

• An always_ff block must contain only one event control and no blocking
timing controls.

• Variables on the left side of assignments within an always_ff block must
not be written to by any other process.

Processes SystemVerilog Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 227

Example - always_ff Block

// Example - always_ff Block
module Test01 (a,b,clk,out1);
input a,b,clk;
output out1;
reg out1;
always_ff@(posedge clk)
 out1 <= a & b;
endmodule

Invalid Use of always_ff Block
The following code segments show use of the construct that are NOT VALID.

always_ff @(posedge clk or negedge rst)
begin

if(rst)
treg<=in; //Illegal; wrong polarity for rst in the

//sensitivity list and the if statement
end
always_ff
begin

@(posedgerst)treg<=0;
@(posedgeclk)treg<=in; //Illegal; two event controls

end

always_ff @(posedge clk or posedge rst)
begin

treg<=0; //Illegal; not clear which trigger is to be
// considered clk or rst

end

LO

 SystemVerilog Language Support Tasks and Functions

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

Tasks and Functions
Support for task and function calls includes the following:

• Implicit Statement Group

• Formal Arguments, on page 228

• endtask/endfunction Names, on page 231

Implicit Statement Group
Multiple statements in the task or function definition do not need to be placed
within a begin…end block. Multiple statements are implicitly grouped,
executed sequentially as if they are enclosed in a begin…end block.

/* Statement grouping */
function int incr2(int a);

incr2 = a + 1;
incr2 = incr2 + 1;

endfunction

Formal Arguments
This section includes information on passing formal arguments when calling
functions or tasks. Topics include:

• Passing Arguments by Name

• Default Direction and Type

• Default Values

Passing Arguments by Name
When a task or function is called, SystemVerilog allows for argument values to
be passed to the task/function using formal argument names; order of the
formal arguments is not important. As in instantiations in Verilog, named
argument values can be passed in any order, and are explicitly passed
through to the specified formal argument. The syntax for the named
argument passing is the same as Verilog’s syntax for named port connections
to a module instance. For example:

Tasks and Functions SystemVerilog Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 229

/* General functions */
function [1:0] inc(input [1:0] a);

inc = a + 1;
endfunction
function [1:0] sel(input [1:0] a, b, input s);

sel = s ? a : b;
endfunction
/* Tests named connections on function calls */
assign z0 = inc(.a(a));
assign z2 = sel(.b(b),.s(s),.a(a));

Default Direction and Type
In SystemVerilog, input is the default direction for the task/function declaration.
Until a formal argument direction is declared, all arguments are assumed to
be inputs. Once a direction is declared, subsequent arguments will be the
declared direction, the same as in Verilog.

The default data type for task/function arguments is logic, unless explicitly
declared as another variable type. (In Verilog, each formal argument of a
task/function is assumed to be reg). For example:

/* Tests default direction of argument */
function int incr1(int a);

incr1 = a + 1;
endfunction

In this case, the direction for a is input even though this is not explicitly
defined.

Default Values
SystemVerilog allows an optional default value to be defined for each formal
argument of a task or function. The default value is specified using a syntax
similar to setting the initial value of a variable. For example:

function int testa (int a = 0, int b, int c = 1);
testa = a + b + c;

endfunction
task testb (int a = 0, int b, int c = 1, output int d);

d = a + b + c;
endtask

LO

 SystemVerilog Language Support Tasks and Functions

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

When a task/function is called, it is not necessary to pass a value to the
arguments that have default argument values. If nothing is passed to the
task/function for that argument position, the default value is used. Specifying
default argument values allows a task/function definition to be used in multiple
ways. Verilog requires that a task/function call have the exact same number of
argument expressions as the number of formal arguments. SystemVerilog
allows the task/function call to have fewer argument expressions than the
number of formal arguments. A task/function call must pass a value to an
argument, if the formal definition of the argument does not have a default
value. Consider the following examples:

/* functions With positional associations and missing arguments */
assign a = testa(,5); /* Same as testa(0,5,1) */
assign b = testa(2,5); /* Same as testa(2,5,1) */
assign c = testa(,5,); /* Same as testa(0,5,1) */
assign d = testa(,5,7); /* Same as testa(0,5,7) */
assign e = testa(1,5,2); /* Same as testa(1,5,2) */
/* functions With named associations and missing arguments */
assign k = testa(.b(5)); /* Same as testa(0,5,1) */
assign l = testa(.a(2),.b(5)); /* Same as testa(2,5,1) */
assign m = testa(.b(5)); /* Same as testa(0,5,1) */
assign n = testa(.b(5),.c(7)); /* Same as testa(0,5,7) */
assign o = testa(.a(1),.b(5),.c(2)); /* Same as testa(1,5,2) */

In general, tasks are not supported outside the scope of a procedural block
(even in previous versions). This is primarily due to the difference between
tasks and function.

Here are some task examples using default values:

always @(*)
begin
/* tasks With named associations and missing arguments */
testb(.b(5),.d(f)); /* Same as testb(0,5,1) */
testb(.a(2),.b(5),.d(g)); /* Same as testb(2,5,1) */
testb(.b(5),.d(h)); /* Same as testb(0,5,1) */
testb(.b(5),.c(7),.d(i)); /* Same as testb(0,5,7) */
testb(.a(1),.b(5),.c(2),.d(j)); /* Same as testb(1,5,2) */
/* tasks With positional associations and missing arguments */
testb(,5,,p); /* Same as testb(0,5,1) */
testb(2,5,,q); /* Same as testb(2,5,1) */
testb(,5,,r); /* Same as testb(0,5,1) */
testb(,5,7,s); /* Same as testb(0,5,7) */
testb(1,5,2,t); /* Same as testb(1,5,2) */

Tasks and Functions SystemVerilog Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 231

endtask/endfunction Names
SystemVerilog allows a name to be specified with the endtask or endfunction
keyword. The syntax is:

endtask : taskName

endfunction : functionName

The space before and after the colon is optional. The name specified must be
the same as the name of the corresponding task or function as shown in the
following example.

/* Function w/ statement grouping, also has an endfunction label */
function int incr3(int a);

incr3 = a + 1;
incr3 = incr3 + 1;
incr3 = incr3 + 1;

endfunction : incr3
/* Test with a task - also has an endtask label */
task task1;
input [1:0] in1,in2,in3,in4;
output [1:0] out1,out2;

out1 = in1 | in2;
out2 = in3 & in4;

endtask : task1
/* Test with a task - some default values */
task task2(
input [1:0] in1=2'b01,in2= 2'b10,in3 = 2'b11,in4 = 2'b11,
output [1:0] out1 = 2'b10,out2);

out2 = in3 & in4;
endtask : task2
/* Tests default values for arguments */
function int dflt0(input int a = 0, b = 1);

dflt0 = a + b;
endfunction
/* Call to function with default direction */
assign z1 = incr1(3);
assign z3 = incr2(3);
assign z4 = incr3(3);
assign z9 = dflt0();
assign z10 = dflt0(.a(7), .b());

LO

 SystemVerilog Language Support Hierarchy

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

always @(*)
begin

task1(.in1(in1), .out2(z6), .in2(in2), .out1(z5),
.in3(in3), .in4(in4));

task1(in5, in6, in7, in8, z7, z8);
task2(in5, in6, in7, in8, z11, z12);
task2(in5, in6, , , z13, z14);
task2(.out1(z15), .in1(in5), .in2(in6), .out2(z16),

.in3(in7), .in4(in8));
task2(.out2(z18), .in2(in6), .in1(in5), .in3(),

.out1(z17), .in4());
end

Hierarchy
Topics in this section include:

• Compilation Units, below

• Packages, on page 239

• Port Connection Constructs, on page 248

• Extern Module, on page 250

Compilation Units
Compilation units allow declarations to be made outside of a package,
module, or interface boundary. These units are visible to all modules that are
compiled at the same time.

A compilation unit’s scope exists only for the source files that are compiled at
the same time; each time a source file is compiled, a compilation unit scope is
created that is unique to only that compilation.

Syntax
//$unit definitions

declarations;

//End of $unit

Hierarchy SystemVerilog Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 233

module ();
. . .
. . .
. . .
endmodule

In the above syntax, declarations can be variables, nets, constants,
user-defined data types, tasks, or functions

Usage
Compilation units can be used to declare variables and nets, constants,
user-defined data types, tasks, and functions as noted in the following
examples.

A variable can be defined within a module as well as within a compilation
unit. To reference the variable from the compilation unit, use the
$unit::variableName syntax. To resolve the scope of a declaration, local declara-
tions must be searched first followed by the declarations in the compilation
unit scope.

Example - Compilation Unit Variable Declaration

// Example - Compilation Unit Variable Declaration
//$unit begins
logic foo_logic = 1’b1;
//$unit ends
module test (
input logic data1,
input clk,
output logic out1);

always @(posedge clk)
begin
 out1 <= data1 ^ foo_logic;
end

LO

 SystemVerilog Language Support Hierarchy

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

endmodule

Example - Compilation Unit Net Declaration

// Example - Compilation Unit Net Declarations
//$unit
wire foo = 1’b1;
//End of $unit
module test (
input data,
output dout);
assign dout = data * foo;
endmodule

Example - Compilation Unit Constant Declaration

// Example - Compilation Unit Constant Declaration
//$unit begin
const bit foo_bit = “11”;
const byte foo_byte = 8’b00101011;
//$unit ends
module test (clk, data1, data2, out1, out2);
input clk;
input bit data1;
input byte data2;
output bit out1;
output byte out2;

always @(posedge clk)
begin

Hierarchy SystemVerilog Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 235

 out1 <= data1 | foo_bit;
 out2 <= data2 & foo_byte;
end
endmodule

Example - Compilation Unit User-defined Datatype Declaration

// Example - Compilation Unit User-defined Datatype Declaration
//$unit begins
typedef struct packed {
int a;
int b;} my_struct;
//End of $unit
module test (p,q,r);
input my_struct p;
input my_struct q;
output int r;
assign r = p.a * q.b;
endmodule

Example - Compilation Unit Task Declaration

// Example - Compilation Unit Task Declaration
parameter FACT_OP = 2;
task automatic factorial(input integer operand,
 output [1:0] out1);
integer nFuncCall = 0;
begin
 if (operand == 0)
 begin

LO

 SystemVerilog Language Support Hierarchy

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

 out1 = 1;
 end
 else
 begin
 nFuncCall++;
 factorial((operand-1), out1);
 out1 = out1 * operand;
 end
end
endtask

module src (input [1:0] a, input [1:0] b, output logic [2:0] out);
logic [1:0] out_tmp;
always_comb
factorial(FACT_OP,out_tmp);
assign out = a + b + out_tmp;
endmodule

Example - Compilation Unit Function Declaration

// Example - Compilation Unit Function Declaration
parameter fact = 2;
function automatic [63:0] factorial;
input [31:0] n;
 if (n==1)
 return (1);
 else
 return (n * factorial(n-1));

Hierarchy SystemVerilog Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 237

endfunction

module src (input [1:0] a, input [1:0] b, output logic [2:0] out);
always_comb
begin
 out = a + b + factorial(fact);
end
endmodule

Example - Compilation Unit Access

// Example - Compilation Unit Access
//$unit_4_state begin
logic foo_logic = 1’b1;
//$unit_4_state ends
module test (
input logic data1,
input clk,
output logic out1,out1_local);
//local variables
logic foo_logic = 1’b0;
///////
always @(posedge clk)
begin
 out1 <= data1 ^ $unit::foo_logic; //Referencing
 //the compilation unit value.
 out1_local <= data1 ^ foo_logic; //Referencing the
 //local variable.

LO

 SystemVerilog Language Support Hierarchy

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

end
endmodule

Example - Compilation Unit Scope Resolution

// Example - Compilation Unit Scope Resolution
//$unit begins
parameter width = 4;
//$unit ends
module test (data,clk,dout);
parameter width = 8; // local parameter
input logic [width-1:0] data;
input clk;
output logic [width-1:0] dout;

always @(posedge clk)
begin
 dout <= data;
end
endmodule

To use the compilation unit for modules defined in multiple files, enable the
Multiple File Compilation Unit check box on the Verilog tab of the Implementation
Options dialog box as shown below.

Hierarchy SystemVerilog Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 239

You can also enable this compiler directive by including the following Tcl
command in your design file:

set_option -multi_file_compilation_unit 1

Compilation Unit Limitations
Compilation unit elements can only be accessed or read, and cannot appear
between module and endmodule statements.

Packages
Packages permit the sharing of language-defined data types, typedef
user-defined types, parameters, constants, function definitions, and task
definitions among one or more compilation units, modules, or interfaces. The
concept of packages is leveraged from the VHDL language.

Syntax
SystemVerilog packages are defined between the keywords package and
endpackage.

package packageIdentifier;

packageItems

endpackage : packageIdentifier

LO

 SystemVerilog Language Support Hierarchy

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

PackageItems include user-defined data types, parameter declarations,
constant declarations, task declarations, function declarations, and import
statements from other packages. To resolve the scope of any declaration, the
local declarations are always searched before declarations in packages.

Referencing Package Items
As noted in the following examples, package items can be referenced by:

• Direct reference using a scope resolution operator (::). The scope resolu-
tion operator allows referencing a package by the package name and
then selecting a specific package item.

• Importing specific package items using an import statement to import
specific package items into a module.

• Importing package items using a wildcard (*) instead of naming a
specific package item.

Example - Direct Reference Using Scope Resolution Operator (::)

// Example - Direct Reference Using Scope Resolution Operator (::)
package mypack;
logic foo_logic = 1’b1;
endpackage
module test (
input logic data1,
input clk,
output logic out1);

always @(posedge clk)
begin
 out1 <= data1 ^ mypack::foo_logic;
end
endmodule

Hierarchy SystemVerilog Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 241

Example - Importing Specific Package Items

// Example - Importing Specific Package Items
package mypack;
logic foo_logic = 1’b1;
endpackage
module test (
input logic data1,
input clk,
output logic out1);
import mypack::foo_logic;

always @(posedge clk)
begin
 out1 <= data1 ^ foo_logic;
end
endmodule

Example - Wildcard (*) Import Package Items

// Example - Wildcard (*) Import Package Items
package mypack;
logic foo_logic = 1’b1;
endpackage
module test (
input logic data1,
input clk,
output logic out1);
import mypack::*;

LO

 SystemVerilog Language Support Hierarchy

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

always @(posedge clk)
begin
 out1 <= data1 ^ foo_logic;
end
endmodule

Example - User-defined Data Types (typedef)

// Example - User-defined Data Types (typedef)
package mypack;
typedef struct packed {
 int a;
 } my_struct;
endpackage
import mypack::my_struct;

module test (inp1,inp2,out);
input my_struct inp1;
input my_struct inp2;
output int out;
assign out = inp1.a * inp2.a;
endmodule

Example - Parameter Declarations

// Example - Parameter Declarations
package mypack;
parameter a_width = 4;
parameter b_width = 4;

Hierarchy SystemVerilog Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 243

localparam product_width = a_width+b_width;
endpackage
import mypack::*;

module test (
input [a_width-1:0] a,
input [b_width-1:0] b,
output [product_width-1:0] c);
assign c = a * b;
endmodule

Example - Constant Declarations

// Example - Constant Declarations
package my_pack;
const logic foo_logic = 1’b1;
endpackage
import my_pack::*;

module test (
input logic inp,
input clk,
output logic out);

always @(posedge clk)
begin
 out <= inp ^ foo_logic;
end

LO

 SystemVerilog Language Support Hierarchy

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

endmodule

Example - Task Declarations

// Example - Task Declarations
package mypack;
parameter FACT_OP = 2;
 task automatic factorial(input integer operand,
 output [1:0] out1);
 integer nFuncCall = 0;
 begin
 if (operand == 0)
 begin
 out1 = 1;
 end
 else
 begin
 nFuncCall++;
 factorial((operand-1), out1);
 out1 = out1 * operand;
 end
 end
 endtask
endpackage
import mypack::*;

module src (input [1:0] a, input [1:0] b,
 output logic [2:0] out);

Hierarchy SystemVerilog Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 245

logic [1:0] out_tmp;

always_comb
factorial(FACT_OP,out_tmp);
assign out = a + b + out_tmp;
endmodule

Example - Function Declarations

// Example - Function Declarations
package automatic_func;
parameter fact = 2;
function automatic [63:0] factorial;
input [31:0] n;
if (n==1)
 return (1);
else
 return (n * factorial(n-1));
endfunction
endpackage

import automatic_func::*;
module src (input [1:0] a, input [1:0] b,
 output logic [2:0] out);
always_comb
begin
 out = a + b + factorial(fact);
end

LO

 SystemVerilog Language Support Hierarchy

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

endmodule

Example - import Statements from Other Packages

// Example - Import Statements from Other Packages
package param;
parameter fact = 2;
endpackage
package automatic_func;
import param::*;
function automatic [63:0] factorial;
input [31:0] n;
 if (n==1)
 return (1);
 else
 return (n * factorial(n-1));
endfunction
endpackage

import automatic_func::*;
import param::*;
module src (input [1:0] a, input [1:0] b,
 output logic [2:0] out);
always_comb
begin
 out = a + b + factorial(fact);
end
endmodule

Hierarchy SystemVerilog Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 247

Example - Scope Resolution

// Example - Scope Resolution
//local parameter overrides package parameter value (dout <=
data[7:0];)
package mypack;
parameter width = 4;
endpackage

import mypack::*;
module test (data,clk,dout);
parameter width = 8; // local parameter
input logic [width-1:0] data;
input clk;
output logic [width-1:0] dout;

always @(posedge clk)
begin
 dout <= data;
end
endmodule

Package Limitations
The variables declared in packages can only be accessed or read; package
variables cannot be written between a module statement and its end module
statement.

LO

 SystemVerilog Language Support Hierarchy

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

Port Connection Constructs
Instantiating modules with a large number of ports is unnecessarily verbose
and error-prone in Verilog. The SystemVerilog .name and “.*” constructs
extend the 1364 Verilog feature of allowing named port connections on
instantiations, to implicitly instantiate ports.

.name Connection
The SystemVerilog .name connection is semantically equivalent to a Verilog
named port connection of type .port_identifier(name). Use the .name construct
when the name and size of an instance port are the same as those on the
module. This construct eliminates the requirement to list a port name twice
when both the port name and signal name are the same and their sizes are
the same as shown below:

module myand(input [2:0] in1, in2, output [2:0] out);
...
endmodule

module foo (….ports….)
wire [2:0] in1, out;
wire [7:0] tmp;
wire [7:0] in2 = tmp;
myand mand1(.in1, .out, .in2(tmp[2:0])); // valid

Note: SystemVerilog .name connection is currently not supported for
mixed-language designs.

Restrictions to the .name feature are the same as the restrictions for named
associations in Verilog. In addition, the following restrictions apply:

• Named associations and positional associations cannot be mixed:

myand mand2(.in1, out, tmp[2:0]);
• Sizes must match in mixed named and positional associations. The

example below is not valid because of the size mismatch on in2.

myand mand3(.in1, .out, .in2);
• The identifier referred by the .name must not create an implicit declara-

tion, regardless of the compiler directive ‘default_nettype.

Hierarchy SystemVerilog Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 249

• You cannot use the .name connection to create an implicit cast.

• Currently, the .name port connection is not supported for mixed HDL
source code.

.* Connection
The SystemVerilog “.*” connection is semantically identical to the default
.name connection for every port in the instantiated module. Use this connec-
tion to implicitly instantiate ports when the instance port names and sizes
match the connecting module’s variable port names and sizes. The implicit .*
port connection syntax connects all other ports on the instantiated module.
Using the .* connection facilitates the easy instantiation of modules with a
large number of ports and wrappers around IP blocks.

The ".*" connection can be freely mixed with .name and .port_identifier(name)
type connections. However, it is illegal to have more than one ".*" expression
per instantiation.

The use of ".*" facilitates easy instantiation of modules with a large number of
ports and wrappers around IP blocks as shown in the code segment below:

module myand(input [2:0] in1, in2, output [2:0] out);
...
endmodule
module foo (….ports….)
wire [2:0] in1, in2, out;
wire [7:0] tmp;
myand and1(.*); // Correct usage, connect in1, in2, out
myand and2(.in1, .*) // Correct usage, connect in2 and out
myand and3(.in1(tmp[2:0]), .*); // Correct Usage, connect

// in2 and out
myand and5(.in1, .in2, .out, .*); //Correct Usage, ignore the .*

Note: SystemVerilog “.*” connection is currently not supported for
mixed-language designs.

Restrictions to the .* feature are the same as the restrictions for the .name
feature. See .name Connection, on page 248. In addition, the following restric-
tions apply:

LO

 SystemVerilog Language Support Hierarchy

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

• Named associations and positional associations cannot be mixed. For
example

myand and4(in1, .*);
is illegal (named and positional connections cannot be mixed)

• Named associations where there is a mismatch of variable sizes or
names generate an error.

• You can only use the .* once per instantiation, although you can mix the
.* connection with .name and .port_identifier(name) type connections.

• If you use a .* construction but all remaining ports are explicitly
connected, the compiler ignores the .* construct.

• Currently, the .* port connection is not supported for mixed HDL source
code.

Extern Module
SystemVerilog simplifies the compilation process by allowing you to specify a
prototype of the module being instantiated. The prototype is defined using the
extern keyword, followed by the declaration of the module and its ports. Either
the Verilog-1995 or the Verilog-2001 style of module declaration can be used
for the prototype.

The extern module declaration can be made in any module, at any level of the
design hierarchy. The declaration is only visible within the scope in which it
is defined. Support is limited to declaring extern module outside the module.

Syntax
extern module moduleName (direction port1, direction portVector port2,

direction port3);

Example 1 - Extern Module Instantiation

// Example - Extern Module Instantiation
extern module top (input logic clock, load,

input reset, input logic [3:0] d,
output logic [3:0] cnt);

Hierarchy SystemVerilog Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 251

module top (.*);
always @(posedge clock or posedge reset)

begin
if (reset)

cnt <= 0;
else if (load)

cnt <= d;
else cnt <= cnt + 1;
end

endmodule

Example 2 - Extern Module Reference

// Example - Extern Module Reference
extern module counter (clock, load, reset, d, cnt);
module top (clock, load, reset, d, cnt);
input logic clock, load;
input reset;
input logic [3:0] d;
output logic [3:0] cnt;
counter cnt1 (.clock(clock), .load(load), .reset(reset),

.d(d), .cnt(cnt));
endmodule
module counter (clock, load, reset, d, cnt);
input logic clock, load;
input reset;
input logic [3:0] d;
output logic [3:0] cnt;

LO

 SystemVerilog Language Support Hierarchy

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

always @(posedge clock or posedge reset)
begin

if (reset)
cnt <= 0;

else if (load)
cnt <= d;

else cnt <= cnt + 1;
end
endmodule

Extern Module Limitations
An extern module declaration is not supported within a module.

Interface SystemVerilog Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 253

Interface
Topics in this section include:

• Interface Construct

• Modports, on page 259

• Modport Limitations and Non-Supported Features, on page 261

Interface Construct
SystemVerilog includes enhancements to Verilog for representing port lists
and port connection lists characterized by name repetition with a single name
to reduce code size and simplify maintenance. The interface and modport struc-
tures in SystemVerilog perform this function. The interface construct includes
all of the characteristics of a module with the exception of module instantia-
tion; support for interface definitions is the same as the current support for
module definitions. Interfaces can be instantiated and connected to client
modules using generates.

Interface Definition: Internal Logic and Hierarchical Structure
Per the SystemVerilog standard, an interface definition can contain any logic
that a module can contain with the exception that interfaces cannot contain
module instantiations. An interface definition can contain instantiations of
other interfaces. Like modules, interface port declaration lists can include
interface-type ports. Synthesis support for interface logic is the same as the
current support for modules.

Port Declarations and Port Connections for Interfaces
Per the SystemVerilog standard, interface port declaration and port connec-
tion syntax/semantics are identical to those of modules.

Interface Member Types
The following interface member types are visible to interface clients:

• 4-State var types: reg, logic, integer

• 2-State var types: bit, byte, shortint, int, longint

LO

 SystemVerilog Language Support Interface

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

• Net types: wire, wire-OR, and wire-AND

• Scalars and 1-dimensional packed arrays of above types

• Multi-dimensional packed and unpacked arrays of above types

• SystemVerilog struct types

Interface Member Access
The members of an interface instance can be accessed using the syntax:

interfaceRef .interfaceMemberName

In the above syntax, interfaceRef is either:

• the name of an interface-type port of the module/interface containing
the member access

• the name of an interface instance that is instantiated directly within the
module/interface containing the member access.

Note that reference to interface members using full hierarchical naming is not
supported and that only the limited form described above for instances at the
current level of hierarchy is supported.

Access to an interface instance by clients at lower levels of the design
hierarchy is achieved by connecting the interface instance to a compatible
interface-type port of a client instance and connecting this port to other
compatible interface-type ports down the hierarchy as required. This
chaining of interface ports can be done to an arbitrary depth. Interface
instances can be accessed only by clients residing at the same or lower levels
of the design hierarchy.

Interface-Type Ports
Interface-type ports are supported as described in the SystemVerilog
standard, and generic interface ports are supported. A modport qualifier can
appear in either a port declaration or a port connection as described in the
SystemVerilog standard. Interface-type ports:

• can appear in either module or interface port declarations

• can be used to access individual interface items using “.” syntax:

interfacePortname.interfaceMemberName

Interface SystemVerilog Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 255

• can be connected directly to compatible interface ports of module/inter-
face instances

Interface/Module Hierarchy
Interfaces can be instantiated within either module or interface definitions.
See Interface Member Access, on page 254 for additional details on hierar-
chical interface port connections.

Interface Functions and Tasks
Import-only functions and tasks (using import keyword in modport) are
supported.

Element Access Outside the Interface
Interface can have a collection of variables or nets, and this collection can be
of a language-defined data type, user-defined data type, or array of language
and user-defined data type. All of these variables can be accessed outside the
interface.

The following example illustrates accessing a 2-dimensional structure type
defined within the interface that is being accessed from another module.

Example - Accessing a 2-dimensional Structure

typedef struct
{

byte st1;
}Struct1D_Dt[1:0][1:0];
//Interface Definition
interface intf(

input bit clk,
input bit rst

);
Struct1D_Dt i1; //2D - Structure type
modport MP(input i1,input clk,input rst); //Modport Definition

endinterface

LO

 SystemVerilog Language Support Interface

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

//Sub1 Module definition
module sub1(

intf INTF1, //Interface
input int d1

);
assign INTF1.i1[1][1].st1 = d1[7:0];
assign INTF1.i1[1][0].st1 = d1[15:8];
assign INTF1.i1[0][1].st1 = d1[23:16];
assign INTF1.i1[0][0].st1 = d1[31:24];

endmodule
//Sub2 Module definition
module sub2(

intf.MP IntfMp, //Modport Interface
output byte dout[3:0]

);
always_ff@(posedge IntfMp.clk)
begin

if(IntfMp.rst)
begin

dout <= '{default:'1};
end
else begin

dout[3] <= IntfMp.i1[1][1].st1;
dout[2] <= IntfMp.i1[1][0].st1;
dout[1] <= IntfMp.i1[0][1].st1;
dout[0] <= IntfMp.i1[0][0].st1;

end
end
endmodule
//Top Module definition
module top(

input bit clk,
input bit rst,
input int d1,
output byte dout[3:0]

);
intf intu1(.clk(clk),.rst(rst));
sub1 sub1u1(.INTF1(intu1),.d1(d1));
sub2 sub2u1(.IntfMp(intu1.MP),.dout(dout));
endmodule

Interface SystemVerilog Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 257

Nested Interface
With the nested interface feature, nesting of interface is possible by either
instantiating one interface in another or by using one interface as a port in
another interface. Generic interface is not supported for nested interface;
array of interface when using interface as a port also is not supported.

The following example illustrates the use of a nested interface. In the
example, one interface is instantiated within another interface and this
top-level interface is used in the modules.

Example - Nested Interface

//intf1 Interface definition
interface intf1;

byte i11;
byte i12;

endinterface
//IntfTop Top Interface definition
interface IntfTop;

intf1 intf1_u1(); //Interface instantiated
shortint i21;

endinterface
//Sub1 Module definition
module sub1(

input byte d1,
input byte d2,
IntfTop intfN1

);
assign intfN1.intf1_u1.i11 = d1; //Nested interface being accessed
assign intfN1.intf1_u1.i12 = d2; //Nested interface being accessed
endmodule
//Sub2 Module definition
module sub2(

IntfTop intfN2
);
assign intfN2.i21 = intfN2.intf1_u1.i11 + intfN2.intf1_u1.i12;
//Nested

//interface being accessed
endmodule

LO

 SystemVerilog Language Support Interface

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

//Sub3 Module definition
module sub3(

IntfTop intfN3,
output shortint dout

);
assign dout = intfN3.i21;
endmodule
//Top Module definition
module top(

input byte d1,
input byte d2,
output shortint dout

);
IntfTop IntfTopU1();

sub1 sub1U1(.d1(d1),.d2(d2),.intfN1(IntfTopU1));
sub2 sub2U1(.intfN2(IntfTopU1));
sub3 sub3U1(.intfN3(IntfTopU1),.dout(dout));

endmodule

Arrays of Interface Instances
In Verilog, multiple instances of the same module can be created using the
array of instances concept. This same concept is extended for the interface
construct in SystemVerilog to allow multiple instances of the same interface
to be created during component instantiation or during port declaration.
These arrays of interface instances and slices of interface instance arrays can
be passed as connections to arrays of module instances across modules.

The following example illustrates the use of array of interface instance both
during component instantiation and during port declaration.

Example - Array of Interface During Port Declaration

//intf Interface Definition
interface intf;

byte i1;
endinterface
//Sub1 Module definition
module sub1(

intf IntfArr1 [3:0], //Array of interface during port
declaration

input byte d1[3:0]
);

Interface SystemVerilog Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 259

assign IntfArr1[0].i1 = d1[0];
assign IntfArr1[1].i1 = d1[1];
assign IntfArr1[2].i1 = d1[2];
assign IntfArr1[3].i1 = d1[3];
endmodule
//Sub2 Module definition
module sub2(

intf IntfArr2[3:0], //Array of interface during port
declaration

output byte dout[3:0]
);
assign dout[0] = IntfArr2[0].i1;
assign dout[1] = IntfArr2[1].i1;
assign dout[2] = IntfArr2[2].i1;
assign dout[3] = IntfArr2[3].i1;
endmodule
//Top module definition
module top(

input byte d1[3:0],
output byte dout[3:0]

);
intf intfu1[3:0](); //Array of interface instances

sub1 sub1u1(intfu1,d1);
sub2 sub2u1(intfu1,dout);

endmodule

Modports
Modport expressions are supported, and modport selection can be done in
either the port declaration of a client module or in the port connection of a
client module instance.

If a modport is associated with an interface port or instance through a client
module, the module can only access the interface members enumerated in
the modport. However, per the SystemVerilog standard, a client module is not
constrained to use a modport, in which case it can access any interface
members.

LO

 SystemVerilog Language Support Interface

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

Modport Keywords
The input, output, inout, and import access modes are parsed without errors. The
signal direction for input, output, and inout is ignored during synthesis, and the
correct signal polarity is inferred from how the interface signal is used within
the client module. The signal polarity keywords are ignored because the
precise semantics are currently not well-defined in the SystemVerilog
standard, and simulator support has yet to be standardized.

Example - Instantiating an interface Construct

// Example - Instantiating an interface Construct
// The following example defines, accesses, and instantiates an
interface construct.
interface intf(input a, input b); //define the interface
logic a1, b1;
assign a1 = a;
assign b1 = b;
modport write (input a1, input b1); //define the modport
endinterface

module leaf(intf.write foo, output logic q); //access the intf
interface
assign q = foo.a1 + foo.b1;
endmodule

module top(input a, input b, output q);
intf inst_intf (a,b); //instantiate the intf interface
leaf leaf_inst (inst_intf.write,q);
endmodule

Interface SystemVerilog Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 261

Modport Limitations and Non-Supported Features
The following restrictions apply when using interface/modport structures:

• Declaring interface within another interface is not supported.

• Do not code RAM HDL within a SystemVerilog interface definition, since
this can prevent extraction of the RAM primitive. However, the RAM can
be defined within a module.

• Direction information in modports has no effect on synthesis.

• Exported (export keyword) interface functions and tasks are not
supported.

• Virtual interfaces are not supported.

• Full hierarchical naming of interface members is not supported.

• Modports defined within generate statements are not supported.

LO

 SystemVerilog Language Support System Tasks and System Functions

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

System Tasks and System Functions
Topics in this section include:

• $bits System Function, on page 262

• $countbits System Function, on page 265

• $countones System Function, on page 266

• $onehot and $onehot0 System Functions, on page 266

• Array Querying Functions, on page 268

$bits System Function
SystemVerilog supports a $bits system function which returns the number of
bits required to hold an expression as a bit stream. The syntax is:

$bits(datatype)

$bits(expression)

In the above syntax, datatype can be any language-defined data type (reg,
wire, integer, logic, bit, int, longint, or shortint) or user-defined datatype (typedef,
struct, or enum) and expression can be any value including packed and
unpacked arrays.

The $bits system function is synthesizable and can be used with any of the
following applications:

• Port Declaration

• Variable Declaration

• Constant Definition

• Function Definition

System tasks and system functions are described in Section 22 of IEEE Std
1800-2005 (IEEE Standard for SystemVerilog); $bits is described in Section
22.3.

System Tasks and System Functions SystemVerilog Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 263

Example - $bits System Function

// Example - $bits System Function
module top (input logic Clk,
 input logic Rst,
 input logic [7:0] LogicIn,
 output logic [$bits(LogicIn)-1:0] LogicOut,
 output logic [7:0] LogicConstSize);
logic [7:0] logic_const = 8’d0;

always@(posedge Clk, posedge Rst) begin
 if(Rst) begin
 LogicConstSize <= ‘d0;
 LogicOut <= logic_const;
 end
 else begin
 LogicConstSize <= $bits(logic_const);
 LogicOut <= $bits(LogicIn)-1 ^ LogicIn;
 end
end
endmodule

Example - $bits System Function within a Function

// Example - $bits System Function within a Function
module top (input logic Clk,
 input logic Rst,
 input logic [7:0] LogicIn,
 output logic [$bits(LogicIn)-1:0] LogicOut,

LO

 SystemVerilog Language Support System Tasks and System Functions

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

 output logic [7:0] LogicSize);
function logic [$bits(LogicIn)-1:0]
 incr_logic (logic [7:0] a);
incr_logic = a + 1;
endfunction

always@(posedge Clk, posedge Rst) begin
 if(Rst) begin
 LogicSize <= ‘d0;
 LogicOut <= ‘d0;
 end
 else begin
 LogicSize <= $bits(LogicIn);
 LogicOut <= incr_logic(LogicIn);
 end
end
endmodule

$bit System Function Limitations
The $bits system function is not supported under the following conditions:

• Passing an interface member as an argument to the $bits function is not
supported. In the example

parameter logic[2:0] din = $bits(ff_if_0.din);
interface instance ff_if_0.din is one of the ports of the modport. To avoid the
limitation, use the actual value as the argument in place of the interface
member.

• $bits cannot be used within a module instantiation:

System Tasks and System Functions SystemVerilog Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 265

module Top
(output foo);
Intf intf();
Foo #(.PARAM($bits(intf.i))) Foo (.foo);

endmodule : Top
• $bits is not supported with params/localparams:

localparam int WIDTH = $bits(ramif.port0_out);

$countbits System Function
SystemVerilog supports a $countbits system function which counts the
number of bits that have a specified value in a bus. The syntax is:

$countbits (expression, control_bit {, control_bit})

In the above syntax, expression can be a constant or a variable and control_bit
can be 0, 1, X, or Z. It returns a value equal to the number of bits in expres-
sion whose values match one of the control_bit values.

Syntax Examples

Example
module test (

input [3:0] in1,
output [31:0] out1,out2
);

assign out1 = $countbits(in1,'1); // 1 counter
assign out2 = $countbits(in1,'0); // 0 counter
endmodule

$countbits (expression, '1) Returns the number of bits in expression having
value 1.

$countbits (expression, '1, '0) Returns the number of bits in expression having
values 1 or 0.

$countbits (expression, 'Z) When control_bit is set to X or Z, only constants
may be used (for example, parameters or
localparams). If they are used with a variable, the
return value will always be 0.

LO

 SystemVerilog Language Support System Tasks and System Functions

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

$countones System Function
SystemVerilog function support includes the $countones system function. This
function checks for specific characteristics on a particular signal and return
a single-bit value.

$countones returns true when the number of ones in a given expression
matches a predefined value.

Syntax Example
$countones (expression)

Example - Ones Count
In the following example, a 4-bit count is checked for two and only two bits
set to 1 which, when present, returns true.

module top(
input clk,
input rst,
input byte d1,
output byte dout

);
logic[3:0] count;
always_ff@(posedge clk)begin

if(rst)
count <= '0;

else
count <= count + 1'b1;

end
assign dout = $countones(count) == 3'd2 ? d1 : ~d1;
endmodule

$onehot and $onehot0 System Functions
SystemVerilog function support includes the $onehot and $onehot0 system
functions. These functions check for specific characteristics on a particular
signal and return a single-bit value.

$onehot returns true when only one bit of the expression is true.

System Tasks and System Functions SystemVerilog Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 267

$onehot0 returns true when no more than one bit of the expression is high
(either one bit high or no bits are high).

Syntax Example
$onehot (expression)

$onehot0 (expression)

Example 1 - System Function within if Statement
The following example shows a $onehot/$onehot0 function used inside an if
statement and ternary operator.

module top
(
//Input
input byte d1,
input byte d2,
input shortint d3,
//Output
output byte dout1,
output byte dout2
);

byte sig1;
assign sig1 = d1 + d2;

//Use of $onehot
always_comb begin

if($onehot(sig1))
dout1 = d3[7:0];

else
dout1 = d3[15:8];

end

byte sig2;
assign sig2 = d1 ^ d2;
//Use of $onehot0
assign dout2 = $onehot0(sig2)? d3[7:0] : d3[15:8];
endmodule

LO

 SystemVerilog Language Support System Tasks and System Functions

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

Example 2 - System Function with Expression
The following example includes an expression, which is evaluated to a
single-bit value, as an argument to a system function.

module top
(
//Input
input byte d1,
input byte d2,
input shortint d3,
//Output
output byte dout1,
output byte dout2
);

//Use of $onehot with Expression inside onehot function
always@*
begin

if($onehot((d1 == d2) ? d1[3:0] : d1[7:4]))
dout1 = d3[7:0];

else
dout1 = d3[15:8];

end

//Use of $onehot0 with AND operation inside onehot function
assign dout2 = $onehot0(d1 & d2)? d3[7:0] : d3[15:8];
endmodule

Array Querying Functions
SystemVerilog provides system functions that return information about a
particular dimension of an array.

Syntax
arrayQuery (arrayIdentifier[,dimensionExpression]);
arrayQuery (dataTypeName[,dimensionExpression]);
$dimensions | $unpacked_dimensions (arrayIdentifier | dataTypeName)

In the above syntax, arrayQuery is one of the following array querying
functions:

• $left - returns the left bound (MSB) of the dimension.

System Tasks and System Functions SystemVerilog Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 269

• $right - returns the right bound (LSB) of the dimension.

• $low - returns the lowest value of the left and right bound dimension.

• $high - returns the highest value of the left and right bound dimension.

• $size - returns the number of elements in a given dimension.

• $increment - returns a value "1" when the left bound is greater than or
equal to the right bound, else it returns a value "-1".

In the third syntax example, $dimensions returns the total number of packed
and unpacked dimensions in a given array, and $unpacked_dimensions returns
the total number of unpacked dimensions in a given array. The variable
dimensionExpression, by default, is "1". The order of dimension expression
increases from left to right for both unpacked and packed dimensions,
starting with the unpacked dimension for a given array.

Example 1 - Array Querying Function $left and $right Used on Packed
2D-data Type

// Example - Array Querying Function $left and $right Used on
Packed 2D-data Type
module top
(
//Input
input logic[1:0][3:1]d1,
//Output
output byte q1_left,
output byte q1_right,
output byte q1_leftdimension
);
assign q1_left = $left(d1);
assign q1_right = $right(d1);
assign q1_leftdimension =$left(d1,2); // Dimension expression

// returns value of the second dimension[3:1]

LO

 SystemVerilog Language Support System Tasks and System Functions

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

endmodule

Example 2 - Array Querying Function $low and $high Used on Unpacked
3D-data Type

// Example - Array Querying Function $low and $high Used on
Unpacked 3D-data Type
module top
(
//Input
input logic d1[2:1][1:5][4:8],
//Output
output byte q1_low,
output byte q1_high,
output byte q1_lowdimension
);
assign q1_low = $low(d1);
assign q1_high = $high(d1);
assign q1_lowdimension = $low(d1,3); // Dimension expression

// returns value for the third dimension (i.e.,[4:8])
endmodule

Example 3 - Array Querying Function $size and $increment Used on a
Mixed Array

// Example - Array Querying Function $size and $increment Used on a
Mixed Array
module top
(
//Input
input byte d1[4:1],

System Tasks and System Functions SystemVerilog Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 271

//Output
output byte q1_size,
output byte q1_increment);
assign q1_size = $size(d1);
assign q1_increment = $increment(d1);
endmodule

Example 4 - Array Querying Function $dimensions and
$unpacked_dimensions Used on a Mixed Array

// Example - Array Querying Function $dimensions and
$unpacked_dimensions Used on a Mixed Array
module top
(
//Input
input bit [1:2][4:1]d1[3:2][4:1],
//Output
output byte q1_dimensions,
output byte q1_unpacked_dimensions);
assign q1_dimensions = $dimensions(d1);
assign q1_unpacked_dimensions = $unpacked_dimensions(d1);
endmodule

Example 5 - Array Querying Function with Data Type as Input

// Example - Array Querying Function with Data Type as Input
//Data type
typedef bit [1:2][4:1]bit_dt[3:2][4:1];
module top
(
//Output

LO

 SystemVerilog Language Support Generate Statement

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

output byte q1_left,
output byte q1_low);
assign q1_left = $left(bit_dt);
assign q1_low = $low(bit_dt);
endmodule

Generate Statement
The tools support the Verilog 2005 generate statement, which conforms to the
Verilog 2005 LRM. The defparam, parameter, and function and task declarations
within generate statements are supported. The naming scheme for registers
and instances is also enhanced to include closer correlation to specified
generate symbolic hierarchies. Generated data types have unique identifier
names and can be referenced hierarchically. Generate statements are created
using one of the following three methods: generate-loop, generate-conditional,
or generate-case.

Note: The generate statement is a Verilog 2005 feature; to use this state-
ment with the tool, you must enable SystemVerilog for your
design.

Example 1 - Shift Register Using generate-for

// Example: Shift Register Using generate-for
module sh_r #(

parameter width = 8,
pipe_num = 3)

(input clk,
 input[width-1:0]din,
 output[width-1:0] dout);

genvar i;

Generate Statement SystemVerilog Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 273

generate
for(i=0;i<pipe_num;i=i+1)
begin:u
reg [width-1:0] sh_r;

if(i==0)
begin

always @ (posedge clk)
sh_r <= din;

end
else
begin

always @ (posedge clk)
sh_r <= u[i-1].sh_r;

end
end

endgenerate
assign dout = u[pipe_num-1].sh_r;
endmodule

Example 2 - Accessing Variables Declared in a generate-if

// Example: Accessing Variables Declared in a generate-if
module test #(

parameter width = 8,
sel = 0)

(input [width-1:0] a,
 input [width-1:0] b,
 input clk,

LO

 SystemVerilog Language Support Generate Statement

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

 output [(2*width)-1:0] c,
 output bit_acc,
 output [width-3:0] prt_sel);

genvar i;
reg [width-1:0] t_r;

generate
if(sel == 0)
begin:u

wire [width-1:0] c;
wire [width-1:0] t;
assign {c,t} = {~t_r,a|b};

end
else
begin:u

wire [width-1:0] c;
wire [width-1:0] t;
assign {c,t} = {~t_r,a^b};

end
endgenerate
always @ (posedge clk)
begin

t_r <= u.t;
end

assign c = u.c;
assign bit_acc = u.t[0];

assign prt_sel = u.t[width-1:2];
endmodule

Generate Statement SystemVerilog Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 275

Example 3 - Accessing Variables Declared in a generate-case

//TECHPUBS Example: Accessing Variables Declared in a
generate-case
module test #(

parameter mod_sel = 1,
mod_sel2 = 3)

(input [7:0] a1,
 input [7:0] b1,
 output [7:0] c1,
 input [1:0][3:1] a2,
 input [1:0][3:1] b2,
 output [1:0][3:1] c2);

typedef logic [7:0] my_logic1_t;
typedef logic [1:0][3:1] my_logic2_t;
generate
case(mod_sel)

0:
begin:u1

my_logic1_t c1;
assign c1 = a1 + b1;

end
1:
begin:u1

my_logic2_t c2;
assign c2 = a2 + b2;

end
default:

LO

 SystemVerilog Language Support Generate Statement

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

begin:def
my_logic1_t c1;
assign c1 = a1 + b1;

end
endcase
endgenerate
generate
case(mod_sel2)

0:
begin:u2

my_logic1_t c1;
assign c1 = a1 + b1;

end
1:
begin:u2

my_logic2_t c2;
assign c2 = a2 + b2;

end
default:
begin:def2

my_logic1_t c1;
assign c1 = a1 * b1;

end
endcase
endgenerate
assign c2 = u1.c2;
assign c1 = def2.c1;

Generate Statement SystemVerilog Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 277

endmodule

Limitations
The following generate statement functions are not currently supported:

• Defparam support for generate instances

• Hierarchical access of function/task/parameter defined within a generate
block

Note: Whenever the generate statement contains symbolic hierarchies
separated by a hierarchy separator (.), the instance name
includes the (\) character before this hierarchy separator (.).

LO

 SystemVerilog Language Support Generate Statement

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

Conditional Generate Constructs
The if-generate and case-generate conditional generate constructs allow the
selection of, at most, one generate block from a set of alternative generate
blocks based on constant expressions evaluated during elaboration. The
generate and endgenerate keywords are optional.

Generate blocks in conditional generate constructs can be either named or
unnamed and can consist of only a single item. It is not necessary to enclose
the blocks with begin and end keywords; the block is still a generate block
and, like all generate blocks, comprises a separate scope and a new level of
hierarchy when it is instantiated. The if-generate and case-generate constructs
can be combined to form a complex generate scheme.

Note: Conditional generate constructs are a Verilog 2005 feature; to
use these constructs with the tool, you must enable SystemVer-
ilog for your design.

Example 1 - Conditional Generate: if-generate

// test.v
module test
(parameter width = 8,

 sel = 2)
(input clk,
 input [width-1:0] din,
 output [width-1:0] dout1,
 output [width-1:0] dout2);

if(sel == 1)
begin:sh
reg [width-1:0] sh_r;
always_ff @ (posedge clk)

sh_r <= din;
end

else
begin:sh

reg [width-1:0] sh_r1;
reg [width-1:0] sh_r2;

Generate Statement SystemVerilog Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 279

always_ff @ (posedge clk)
begin

sh_r1 <= din;
sh_r2 <= sh_r1;

end
end
assign dout1 = sh.sh_r1;
assign dout2 = sh.sh_r2;
endmodule

Example 2 - Conditional Generate: case-generate

// top.v
module top
(parameter mod_sel = 3,

 mod_sel2 = 3,
 width1 = 8,
 width2 = 16)
(input [width1-1:0] a1,
 input [width1-1:0] b1,
 output [width1-1:0] c1,
 input [width2-1:0] a2,
 input [width2-1:0] b2,
 output [width2-1:0] c2);

case(mod_sel)
0:

begin:u1
my_or u1(.a(a1),.b(b1),.c(c1));

end
1:

begin:u1
my_and u2(.a(a2),.b(b2),.c(c2));

end
default:

begin:u1
my_or u1(.a(a1),.b(b1),.c(c1));

end
endcase

LO

 SystemVerilog Language Support Generate Statement

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

case(mod_sel2)
0:

begin:u3
my_or u3(.a(a1),.b(b1),.c(c1));

end
1:

begin:u4
my_and u4(.a(a2),.b(b2),.c(c2));

end
default:

begin:def
my_and u2(.a(a2),.b(b2),.c(c2));

end
endcase
endmodule
// my_and.v
module my_and
(parameter width2 = 16)

(input [width2-1:0] a,
 input [width2-1:0] b,
 output [width2-1:0] c
);

assign c = a & b;
endmodule
// my_or.v
module my_or
(parameter width = 8)

(input [width-1:0] a,
 input [width-1:0] b,
 output [width-1:0] c);

assign c = a | b;
endmodule

Assertions SystemVerilog Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 281

Assertions
The parsing of SystemVerilog Assertions (SVA) is supported as outlined in the
following table.

Assertion Construct Support Level Comment

Immediate assertions Supported

Concurrent
assertions

Partially Supported,
Ignored

Multiclock properties are not
supported.

Boolean expressions Partially Supported,
Ignored

In the boolean expressions, $rose
function having a clocking event is
not supported.

Sequence Supported, ignored

Declaring sequences Partially Supported,
Ignored

Sequence with ports declared in
global space is not supported.

Sequence operations Partially Supported,
Ignored

All variations of first_match, within
and intersect in a sequence is not
supported.

Manipulating data in
a sequence

Partially Supported,
Ignored

More than one assignment in the
parenthesis is not supported.

Calling subroutines
on sequence match

Partially Supported,
Ignored

Calling of more than one tasks is not
supported.

System functions Partially Supported System functions $onehot, $onehot1,
$countones and $countbits supported;
$isunknown not supported

Declaring properties Partially Supported,
Ignored

Declaring of properties in a package
and properties with ports declared in
global space are not supported.

Multiclock support Partially Supported,
Ignored

Expect statement Not Supported

Final blocks Partially Supported,
Ignored

Property blocks Supported, Ignored

LO

 SystemVerilog Language Support Assertions

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

The support levels for these assertions are described in the following table.

Checker Partially Supported,
Ignored

Default clocking and
default disable iff

Supported, Ignored

Let statement Partially Supported,
Ignored

Program Partially Supported,
Ignored

Supported All constructs are supported and synthesis is successful

Partially Supported,
Ignored

Few construct types are not supported and skipped during
synthesis.

Supported, Ignored All constructs are supported but skipped during synthesis

Partially Supported Few construct types are not supported and synthesis results
in error

Not Supported All constructs are not supported and synthesis results in
error

Assertion Construct Support Level Comment

Keyword Support SystemVerilog Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 283

Keyword Support
This table lists supported SystemVerilog keywords for the tool:

always_comb always_ff always_latch assert*

assume* automatic bind* bit

break byte checker* clocking*

const continue cover* do

endchecker* endclocking* endinterface endproperty*

endsequence* enum expect* extern

final* function global* import

inside int interface intersect*

let* logic longint modport

packed package parameter priority

property* restrict* return sequence*

shortint struct task throughout*

timeprecision* timeunit* typedef union

unique void within*

* Reserved keywords for SystemVerilog assertion parsing; cannot be used as
identifiers or object names

LO

 SystemVerilog Language Support Keyword Support

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 285

C H A P T E R 3

VHDL Language Support

This chapter discusses how you can use the VHDL language to create HDL
source code for the Synopsys tools:

• Language Constructs, on page 286

• VHDL Language Constructs, on page 288

• VHDL Implicit Data-type Defaults, on page 336

• VHDL Synthesis Guidelines, on page 341

• Sets and Resets, on page 355

• VHDL State Machines, on page 359

• Hierarchical Design Creation in VHDL, on page 367

• Configuration Specification and Declaration, on page 371

• Scalable Designs, on page 395

• Instantiating Black Boxes in VHDL, on page 401

• VHDL Attribute and Directive Syntax, on page 403

• VHDL Synthesis Examples, on page 405

• PREP VHDL Benchmarks, on page 407

LO

 VHDL Language Support Language Constructs

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

Language Constructs
This section generally describes how the tool pertains to the different VHDL
language constructs. The topics include:

• Supported VHDL Language Constructs, on page 286

• Unsupported VHDL Language Constructs, on page 287

• Partially-supported VHDL Language Constructs, on page 288

• Ignored VHDL Language Constructs, on page 288

Supported VHDL Language Constructs
The following is a compact list of language constructs that are supported.

• Entity, architecture, and package design units

• Function and procedure subprograms

• All IEEE library packages, including:

– std_logic_1164
– std_logic_unsigned
– std_logic_signed

– std_logic_arith
– numeric_std and numeric_bit
– standard library package (std)

• In, out, inout, buffer, linkage ports

• Signals, constants, and variables

• Aliases

• Integer, physical, and enumeration data types; subtypes of these

• Arrays of scalars and records

• Record data types

• File types

• All operators (-, -, *, /, **, mod, rem, abs, not, =, /=, <, <=, >, >=, and, or, nand,
nor, xor, xnor, sll, srl, sla, sra, rol, ror, &)

Language Constructs VHDL Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 287

Note: With the ** operator, arguments are compiler constants. When
the left operand is 2, the right operand can be a variable.

• Sequential statements: signal and variable assignment, wait, if, case, loop,
for, while, return, null, function, and procedure call

• Concurrent statements: signal assignment, process, block, generate (for
and if), component instantiation, function, and procedure call

• Component declarations and four methods of component instantiations

• Configuration specification and declaration

• Generics; attributes; overloading

• Next and exit looping control constructs

• Predefined attributes: t'base, t'left, t'right, t'high, t'low, t'succ, t'pred, t'val, t'pos,
t'leftof, t'rightof, integer'image, a'left, a'right, a'high, a'low, a'range, a'reverse_range,
a'length, a'ascending, s'stable, s'event

• Unconstrained ports in entities

• Global signals declared in packages

Unsupported VHDL Language Constructs
If any of these constructs are found, an error message is reported and the
synthesis run is canceled.

• Register and bus kind signals

• Guarded blocks

• Expanded (hierarchical) names

• User-defined resolution functions. The tool only supports the resolution
functions for std_logic and std_logic_vector.

• Slices with range indices that do not evaluate to constants

LO

 VHDL Language Support VHDL Language Constructs

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

Partially-supported VHDL Language Constructs
When one of the following constructs is encountered, compilation continues,
but will subsequently error out if logic must be generated for the construct.

• real data types (real data expressions are supported in VHDL-2008 IEEE
float_pkg.vhd) - real data types are supported as constant declarations or
as constants used in expressions as long as no floating point logic must
be generated

• access types - limited support for file I/O

• null arrays - null arrays are allowed as operands in concatenation
expressions

Ignored VHDL Language Constructs
The compiler ignores the following constructs in your design. If found, the
tool parses and ignores the construct (provided that no logic is required to be
synthesized) and continues with the synthesis run.

• disconnect

• report

• initial values on inout ports

• assert on ports and signals

• after

VHDL Language Constructs
This section describes the synthesis language support that the tool provides
for each VHDL construct. The language information is taken from the most
recent VHDL Language Reference Manual (Revision ANSI/IEEE Std
1076-1993). The section names match those from the LRM, for easy refer-
ence.

• Data Types

• Declaring and Assigning Objects in VHDL

VHDL Language Constructs VHDL Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 289

• Dynamic Range Assignments

• Signals and Ports

• Variables

• VHDL Constants

• Libraries and Packages

• Operators

• VHDL Process

• Common Sequential Statements

• Concurrent Signal Assignments

• Resource Sharing

• Combinational Logic

• Sequential Logic

• Component Instantiation in VHDL

• VHDL Selected Name Support

• User-defined Function Support

• Demand Loading

Data Types

Predefined Enumeration Types
Enumeration types have a fixed set of unique values. The two predefined data
types - bit and Boolean, as well as the std_logic type defined in the std_log-
ic_1164 package are the types that represent hardware values. You can
declare signals and variables (and constants) that are vectors (arrays) of these
types by using the types bit_vector, and std_logic_vector. You typically use
std_logic and std_logic_vector, because they are highly flexible for synthesis and
simulation.

LO

 VHDL Language Support VHDL Language Constructs

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

User-defined Enumeration Types
You can create your own enumerated types. This is common for state
machines because it allows you to work with named values rather than
individual bits or bit vectors.

Syntax

type type_name is (value_list);

std_logic Values Treated by the tool as ...

'U' (uninitialized) don't care

'X' (forcing unknown) don't care

'0' (forcing logic 0) logic 0

'1' (forcing logic 1) logic 1

'Z' (high impedance) high impedance

'W' (weak unknown) don't care

'L' (weak logic 0) logic 0

'H' (weak logic 1) logic 1

'-' (don't care) don't care

bit Values Treated by the tool as ...

'0' logic 0

'1' logic 1

boolean Values Treated by the tool as ...

false logic 0

true logic 1

VHDL Language Constructs VHDL Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 291

Examples

type states is (state0, state1, state2, state3);
type traffic_light_state is (red, yellow, green);

Integers
An integer is a predefined VHDL type that has 32 bits. When you declare an
object as an integer, restrict the range of values to those you are using. This
results in a minimum number of bits for the implementation and on ports.

Data Types for Signed and Unsigned Arithmetic
For signed arithmetic, you have the following choices:

• Use the std_logic_vector data type defined in the std_logic_1164 package,
and the package std_logic_signed.

• Use the signed data type, and signed arithmetic defined in the package
std_logic_arith.

• Use an integer subrange (for example: signal mysig: integer range -8 to 7). If
the range includes negative numbers, the tool uses a two’s-complement
bit vector of minimum width to represent it (four bits in this example).
Using integers limits you to a 32-bit range of values, and is typically only
used to represent small buses. Integers are most commonly used for
indexes.

• Use the signed data type from the numeric_std or numeric_bit packages.

For unsigned arithmetic, you have the following choices:

• Use the std_logic_vector data type defined in the std_logic_1164 package and
the package std_logic_unsigned.

• Use the unsigned data type and unsigned arithmetic defined in the
package std_logic_arith.

• Use an integer subrange (for example: signal mysig: integer range 0 to 15). If
the integers are restricted to positive values, the tool uses an unsigned
bit vector of minimum width to represent it (four bits in this example).
Using integers limits you to a 32-bit range of values, and is typically only
used to represent small buses (integers are most commonly used for
indexes).

• Use the unsigned data type from the numeric_std or numeric_bit packages.

LO

 VHDL Language Support VHDL Language Constructs

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

Physical Types
A physical type is a numeric type for representing a physical quantity such as
time. The declaration of a physical type includes the specification of a base
unit and possibly a number of secondary units that are multiples of the base
unit. The syntax for declaring physical types is:

type physical_type is range_constraint
units

base_unit;
unit_definitions;
...

end units

The following example illustrates a physical-type definition:

type time is range -2_147_483_647 to 2_147_483_647
units

fs;
ps = 1000 fs;
ns = 1000 ps;
us = 1000 ns;
ms = 1000 us;
sec = 1000 ms;
min = 60 sec;

end units;

Arrays
An array is a composite object made up of elements that are of the same
subtype.

type typeName is array (range) of elementType

type typeName is array (type range <>) of elementType

Each of the elements within the array is indexed by one or more indices
belonging to specified discrete types. The number of indices is the number of
dimensions (that is, a one-dimensional array has one index, a two-dimen-
sional array has two indices, etc.). The order of indices is significant and
follows the order of dimensions in the type declaration.

VHDL Language Constructs VHDL Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 293

An array can be either constrained or unconstrained. An array is said to be
constrained if the size of the array is constrained. The size of the array can be
constrained using a discrete type mark or a range. In both cases, the number
of the elements in the array is known during the compilation.

An array is said to be unconstrained if its size is unconstrained. The size of
an unconstrained array is declared in the form of the name of the discrete
type with an unconstrained range. The number of elements of an uncon-
strained array type is unknown. The size of a particular object is specified
only when it is declared.

The standard package contains declarations of two one-dimensional uncon-
strained predefined array types: string and bit_vector. Elements of the string type
are of the type character and are indexed by positive values, and the elements
of the bit_vector type are of the type bit and are indexed by natural values.

Declaring and Assigning Objects in VHDL
VHDL objects (object classes) include signals (and ports), variables, and
constants. The tool does not support the file object class.

Naming Objects
VHDL is case insensitive. A VHDL name (identifier) must start with a letter
and can be followed by any number of letters, numbers, or underscores ('_').
Underscores cannot be the first or last character in a name and cannot be
used twice in a row. No special characters such as '$', '?', '*', '-', or '!', can be
used as part of a VHDL identifier.

Syntax
object_class object_name : data_type [:= initial_value];

In the above syntax:

• object_class is a signal, variable, or constant.

• object_name is the name (the identifier) of the object.

• data_type can be any predefined data type (such as bit or std_logic_vector) or
user-defined data type.

LO

 VHDL Language Support VHDL Language Constructs

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

Assignment Operators
<= Signal assignment operator.

:= Variable assignment and initial value operator.

Ranges
A range specifies a subset of values of a scalar type.

range leftBound to rightBound

range leftBound downto rightBound

range <>

A range can be either ascending or descending. A range is called ascending
when it is specified with the keyword to as the direction and the left bound
value is smaller than the right bound (otherwise the range is null). A range is
called descending when the range is specified with the keyword downto as the
direction and the left bound is greater than the right bound (otherwise the
range is null). A range can be null range if the set contains no values.

Dynamic Range Assignments
The tools support VHDL assignments with dynamic ranges, which are
defined as follows:

A(b downto c) <= D(e downto f);

A and D are constrained variables or signals, and b, c, e, and f are constants
(generics) or variables. Dynamic range assignments can be used for RHS,
LHS, or both.

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
entity test is

port (data_out: out std_logic_vector(63 downto 0);
data_in: in std_logic_vector(63 downto 0);
selector: in NATURAL range 0 to 7);

end test;

VHDL Language Constructs VHDL Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 295

architecture rtl of test is
begin

data_out((selector*8)+7 downto (selector*8))
<= data_in((selector*8)+7 downto (selector*8));

end rtl;

Dynamic Slicing Support
Dynamic slicing can be applied for the following conditions:

• Comparison statements

• Concatenations

Example 1: Comparison of Dynamic Slices Within an if Statement

-- Example - if statement
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
entity top is
port(clk : in std_logic;--clock_pos--
 reset :in std_logic;--reset_pos--
 i1: in std_logic_vector(0 downto 0);
 i2: in std_logic_Vector(0 downto 0);
 avec: in std_logic_vector(1 downto 0);
 bvec: in std_logic_vector(1 downto 0);
 out1: out std_logic
);
end entity top;
architecture zarch of top is
signal temp1 ,temp2 : integer range 0 to 1;

LO

 VHDL Language Support VHDL Language Constructs

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

begin
temp1 <= to_integer(unsigned(i1));
temp2 <= to_integer(unsigned(i2));
process(clk,reset)
 begin

if(reset = ‘1’) then
out1 <= ‘0’;
elsif(clk = ‘1’ and clk’event) then

if(avec(temp1 downto temp2) = bvec(temp1 downto temp2))
then

out1 <= ‘1’;
else

out1 <= ‘0’;
end if;

 end if;
end process;
end architecture zarch;

This code example shows dynamic slices compared in an if statement.

VHDL Language Constructs VHDL Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 297

Example 2: Dynamic Slices with Concatenation Statements

-- Example - Concatenation
library ieee; use ieee.std_logic_1164.all;

entity top is
generic (SIZE: integer :=16);
port(clk : in std_logic;

reset : in std_logic;
 i1: in integer range 0 to SIZE-1;
 i2: in integer range 0 to SIZE-1;
 i3: in integer range 0 to SIZE-1;
 i4: in integer range 0 to SIZE-1;
 i5: in integer range 0 to SIZE-1;
 i6: in integer range 0 to SIZE-1;
 avec: in std_logic_vector(0 to SIZE-1);
 bvec: in std_logic_vector(0 to SIZE-1);
 cvec: in std_logic_vector(0 to SIZE-1);
 outvec: out std_logic_vector(0 to SIZE-1)
);

end entity top;

architecture zarch of top is
begin
 process(clk,reset)
 begin

if(reset=’1’) then

LO

 VHDL Language Support VHDL Language Constructs

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

outvec <= (others=>’0’);
elsif (clk = ‘1’ and clk’event) then

 outvec <= avec(i1 to i2) & bvec(i3 to i4) & cvec(i5 to i6);
end if;

 end process;

end architecture zarch;

For this example, dynamic slice operands are supported in a concatenation
statement. The operands must be signals/variables/ports or slices/indices of
signals/variables/ports.

Dynamic Range Assignment Limitations
Currently, the following limitations apply to dynamic range assignments:

• There is no support for selected signal assignment; i.e., with expression
Select.

• Only comparisons with if statements are supported; no other compar-
ison statements can be used.

Null Ranges
A null range is a range that specifies an empty subset of values. A range
specified as m to n is a null range when m is greater than n, and a range
specified as n downto m is a null range when n is less than m.

Support for null ranges allows ports with negative ranges to be compiled
successfully. During compilation, any port declared with a null range and its
related logic are removed by the compiler.

In the following example, port a_in1 (-1 to 0) is a null range and is subsequently
removed by the compiler.

-- top.vhd
library ieee;
use ieee.std_logic_1164.all;

VHDL Language Constructs VHDL Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 299

entity top is
generic (width : integer := 0);

port (a_in1 : in std_logic_vector(width -1 downto 0);
b_in1 : in std_logic_vector(3 downto 0);
c_out1 : out std_logic_vector(3 downto 0));

end top;
architecture struct of top is
component sub is

port (a_in1 : in std_logic_vector(width -1 downto 0);
b_in1 : in std_logic_vector(3 downto 0);
c_out1 : out std_logic_vector(3 downto 0));

end component;
begin

UUT : sub port map (a_in1 => a_in1, b_in1 => b_in1,
c_out1 => c_out1);

end struct;
-- sub.vhd
library ieee;
use ieee.std_logic_1164.all;
entity sub is
generic (width : integer := 0);

port (a_in1 : in std_logic_vector(width -1 downto 0);
b_in1 : in std_logic_vector(3 downto 0);
c_out1 : out std_logic_vector(3 downto 0));

end sub;
architecture rtl of sub is
begin

c_out1 <= not (b_in1 & a_in1);
end rtl;

Signals and Ports
In VHDL, the port list of the entity lists the I/O signals for the design using
the syntax:

port (port_declaration);

where port_declaration is any of the following:

portSignalName : in portSignalType := initialValue

portSignalName : out portSignalType := initialValue

LO

 VHDL Language Support VHDL Language Constructs

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

portSignalName : inout portSignalType := initialValue

portSignalName : buffer portSignalType := initialValue

portSignalName : linkage portSignalType := initialValue

Ports of mode in can be read from, but not assigned (written) to. Ports of mode
out can be assigned to, but not read from. Ports of mode inout are bidirectional
and can be read from and assigned to. Ports of mode buffer are like inout ports,
but can have only one associated internal driver. With ports of mode linkage,
the value of the port can be read or updated, but only by appearing as an
actual corresponding to an interface object of mode linkage.

Internal signals are declared in the architecture declarative area and can be
read from or assigned to anywhere within the architecture.

Examples
signal my_sig1 : std_logic; -- Holds a single std_logic bit
begin -- An architecture statement area
my_sig1 <= '1'; -- Assign a constant value '1'
-- My_sig2 is a 4-bit integer

signal my_sig2 : integer range 0 to 15;
begin -- An architecture statement area
my_sig2 <= 12;
-- My_sig_vec1 holds 8 bits of std_logic, indexed from 0 to 7

signal my_sig_vec1 : std_logic_vector (0 to 7);
begin -- An architecture statement area

-- Simple signal assignment with a literal value
my_sig_vec1 <= "01001000";
-- 16 bits of std_logic, indexed from 15 down to 0

signal my_sig_vec2 : std_logic_vector (15 downto 0);
begin -- An architecture statement area

-- Simple signal assignment with a vector value
my_sig_vec2 <= "0111110010000101";
-- Assigning with a hex value FFFF
my_sig_vec2 <= X"FFFF";
-- Use package Std_Logic_Signed

signal my_sig_vec3 : signed (3 downto 0);
begin -- An architecture statement area

VHDL Language Constructs VHDL Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 301

-- Assigning a signed value, negative 7
my_sig_vec3 <= "1111";
-- Use package Std_Logic_Unsigned

signal my_sig_vec4 : unsigned (3 downto 0);
begin -- An architecture statement area

-- Assigning an unsigned value of 15
my_sig_vec4 <= "1111";
-- Declare an enumerated type, a signal of that type, and
-- then make an valid assignment to the signal

type states is (state0, state1, state2, state3);
signal current_state : states;

begin -- An architecture statement area
current_state <= state2;
-- Declare an array type, a signal of that type, and
-- then make a valid assignment to the signal

type array_type is array (1 downto 0) of
std_logic_vector (7 downto 0);

signal my_sig: array_type;
begin -- An architecture statement area
my_sig <= ("10101010","01010101");

Variables
VHDL variables are declared within a process or subprogram and then used
internally. Generally, variables are not visible outside the process or subpro-
gram where they are declared unless passed as a parameter to another
subprogram.

Example
process (clk) -- What follows is the process declaration area

variable my_var1 : std_logic := '0'; -- Initial value '0'
begin -- What follows is the process statement area

my_var1 := '1';
end process;

LO

 VHDL Language Support VHDL Language Constructs

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

Example
process (clk, reset)
-- Set the initial value of the variable to hex FF

variable my_var2 : std_logic_vector (1 to 8) := X"FF";
begin
-- my_var2 is assigned the octal value 44

my_var2 := O"44";
end process;

VHDL Constants
VHDL constants are declared in any declarative region and can be used
within that region. The value of a constant cannot be changed.

Example
package my_constants is

constant num_bits : integer := 8;

-- Other package declarations

end my_constants;

Aliases
An alias declares an alternative name for any existing object which can be a
signal, variable, constant, or file.

alias aliasName : aliasType is objectName;

Aliases can also be used for non-objects, virtually everything that has been
previously declared with the exception of labels, loop parameters, and
generate parameters. An alias does not define a new object; it is just a specific
name assigned to some existing object.

Aliases are typically used to assign specific names to vector slices to improve
readability of the specification. When an alias denotes a slice of an object and
no subtype indication is given, the subtype of the object is viewed as if it was
of the subtype specified by the slice.alias alias_name : alias_type is
object_name;

VHDL Language Constructs VHDL Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 303

Libraries and Packages
When you want to synthesize a design in VHDL, include the HDL files in the
source files list of your tool. Often your VHDL design will have more than one
source file. List all the source files in the order you want them compiled; the
files at the top of the list are compiled first.

Compiling Design Units into Libraries
All design units in VHDL, including your entities and packages are compiled
into libraries. A library is a special directory of entities, architectures and/or
packages. You compile source files into libraries by adding them to the source
file list. In VHDL, the library you are compiling has the default name work. All
entities and packages in your source files are automatically compiled into
work. You can keep source files anywhere on your disk, even though you add
them to libraries. You can have as many libraries as are needed.

1. To add a file to a library, select the file in the Project view.

The library structure is maintained in the Project view. The name of the
library where a file belongs appears on the same line as the filename,
and directly in front of it.

2. Choose Project -> Set Library from the menu bar, then type the library
name. You can add any number of files to a library.

3. If you want to use a design unit that you compiled into a library (one
that is no longer in the default work library), you must use a library clause
in the VHDL source code to reference it.

For example, if you add a source file for the entity ram16x8 to library
my_rams, and instantiate the 16x8 RAM in the design called top_level, you
must add library my_rams; just before defining top_level.

Predefined Packages
The tool supports the two standard libraries, std and ieee, that contain
packages containing commonly used definitions of data types, functions, and
procedures. These libraries and their packages are built in to the tool, so you
do not compile them. The predefined packages are described in the following
table.

LO

 VHDL Language Support VHDL Language Constructs

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

The tool also has vendor-specific built-in macro libraries for components like
gates, counters, flip-flops, and I/Os. The libraries are located in installDirec-
tory/lib/vendorName. Use the built-in macro libraries to instantiate vendor
macros directly into the VHDL designs and forward-annotate them to the
output netlist. Refer to the appropriate vendor support chapter for more infor-
mation.

Additionally, the tool library contains an attributes package of built-in
attributes and timing constraints (installDirectory/lib/vhd/synattr.vhd) that you
can use with VHDL designs. The package includes declarations for timing
constraints (including black-box timing constraints), vendor-specific
attributes and synthesis attributes. To access these built-in attributes, add
the following two lines to the beginning of each of the VHDL design units that
uses them:

library synplify;
use synplify.attributes.all;

Library Package Description

std standard Defines the basic VHDL types
including bit and bit_vector

ieee std_logic_1164 Defines the 9-value std_logic and
std_logic_vector types

ieee numeric_bit Defines numeric types and arithmetic
functions. The base type is BIT.

ieee numeric_std Defines arithmetic operations on types
defined in std_logic_1164

ieee std_logic_arith Defines the signed and unsigned
types, and arithmetic operations for
the signed and unsigned types

ieee std_logic_signed Defines signed arithmetic for std_logic
and std_logic_vector

ieee std_logic_unsigned Defines unsigned arithmetic for
std_logic and std_logic_vector

VHDL Language Constructs VHDL Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 305

If you want the addition operator (+) to take two std_ulogic or std_ulogic_vector as
inputs, you need the function defined in the std_logic_arith package (the
cdn_arith.vhd file in installDirectory/lib/vhd/). Add this file to the design. To
successfully compile, the VHDL file that uses the addition operator on these
input types must have include the following statement:

use work.std_logic_arith.all;

Accessing Packages
To gain access to a package include a library clause in your VHDL source code
to specify the library the package is contained in, and a use clause to specify
the name of the package. The library and use clauses must be included
immediately before the design unit (entity or architecture) that uses the
package definitions.

Syntax

library library_name;
use library_name .package_name.all;

To access the data types, functions and procedures declared in std_logic_1164,
std_logic_arith, std_logic_signed, or std_logic_unsigned, you need a library ieee clause
and a use clause for each of the packages you want to use.

Example

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_signed.all;

-- Other code

Library and Package Rules
To access the standard package, no library or use clause is required. The
standard package is predefined (built-in) in VHDL, and contains the basic
data types of bit, bit_vector, Boolean, integer, real, character, string, and others along
with the operators and functions that work on them.

If you create your own package and compile it into the work library to access
its definitions, you still need a use clause before the entity using them, but
not a library clause (because work is the default library.)

LO

 VHDL Language Support VHDL Language Constructs

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

To access packages other than those in work and std, you must provide a library
and use clause for each package as shown in the following example of
creating a resource library.

-- Compile this in library mylib
library ieee;
use ieee.std_logic_1164.all;
package my_constants is
constant max: std_logic_vector(3 downto 0):= "1111";

.

.

.
end package;
-- Compile this in library work
library ieee, mylib;
use ieee.std_logic_1164.all;
use mylib.my_constants.all;
entity compare is

port (a: in std_logic_vector(3 downto 0);
z: out std_logic);

end compare;
architecture rtl of compare is
begin

z <= '1' when (a = max) else '0';
end rtl;

The rising_edge and falling_edge functions are defined in the std_logic_1164
package. If you use these functions, your clock signal must be declared as
type std_logic.

Instantiating Components in a Design
No library or use clause is required to instantiate components (entities and
their associated architectures) compiled in the default work library. The files
containing the components must be listed in the source files list before any
files that instantiate them.

To instantiate components from the built-in technology-vendor macro
libraries, you must include the appropriate use and library clauses in your
source code. Refer to the section for your vendor for more information.

VHDL Language Constructs VHDL Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 307

To create a separate resource library to hold your components, put all the
entities and architectures in one source file, and assign that source file to the
library components in the design. To access the components from your source
code, put the clause library components; before the designs that instantiate
them. There is no need for a use clause. The design file must include both the
files that create the package components and the source file that accesses
them.

Package Definitions
A package is a unit that groups various declarations to be shared among
several designs. Packages are stored in libraries for greater convenience. A
package consists of package declaration as shown in the following syntax:

package packageName is

package_declarations

end package packageName;

The purpose of a package is to declare shareable types, subtypes, constants,
signals, files, aliases, component attributes, and groups. Once a package is
defined, it can be used in multiple independent designs. Items declared in a
package declaration are visible in other design units if the use clause is
applied.

Literals
There are five classes of literals: numeric literals, enumeration literals, string
literals, bit-string literals, and the literal null.

Numeric Literals
The class of numeric literals includes abstract literals (which include integer
literals and real literals) and physical literals. A real literal includes a decimal
point, while an integer literal does not. When a real or integer literal is written
in the conventional decimal notation, it is called a decimal literal.

When a number is written in exponential form, the letter E of the exponent
can be written either in lowercase or in uppercase. If the exponential form is
used for an integer number, then a zero exponent is allowed.

LO

 VHDL Language Support VHDL Language Constructs

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

Abstract literals can be written in the form of based literals. In such cases,
the base is specified explicitly (in decimal literals, the base is implicitly ten).
The base in a based literal must be at least two and no more than sixteen.
The base is specified in decimal notation.

The digits used in based literals can be any decimal digits (0...9) or a letter
(either in upper or lower case). The meaning of based notation is as in
decimal literals, with the exception of base.

A physical literal consists of an abstract numeric literal followed by an identi-
fier that denotes the unit of the given physical quantity.

Enumeration literals
The enumeration literals are literals of enumeration types, used in type decla-
ration and in expressions that evaluate to a value of an enumeration type.
This class of literals includes identifiers and character literals. Reserved
words cannot be used in identifiers, unless they are a part of extended identi-
fiers that start and end with a backslash.

String Literals
String literals are made up of a sequence of graphic characters (letters, digits,
and special characters) enclosed between double quotation marks. This class
of literals is usually used for warnings or reports that are displayed during
simulation.

Bit-String Literals
Bit-string literals represent values of string literals that denote sequences of
extended digits, the range of which depends on the specified base.

The base specifier determines the base of the digits: the letter B denotes
binary digits (0 or 1), letter O denotes octal digits (0 to 7), and letter X denotes
hexadecimal (digits 0 to 9 and letters A to F, case insensitive). Underlines can
be used to increase readability and have no impact on the value.

All values specified as bit-string literals are converted into binary representa-
tion without underlines. Binary strings remain unchanged (only underlines
are removed), each octal digit is converted into three bits and each hexadec-
imal character is converted into four bits.

VHDL Language Constructs VHDL Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 309

Operators
The tool supports the creation of expressions using all predefined VHDL
operators:

Arithmetic Operator Description

- Addition

- Subtraction

* Multiplication

/ Division

** Exponentiation (supported for compile-time constants and
when left operand is 2; right operand can be a variable)

abs Absolute value

mod Modulus

rem Remainder

Relational Operator Description

= Equal (if either operand has a bit with an 'X' or 'Z' value, the
result is 'X')

/= Not equal (if either operand has a bit with an 'X' or 'Z' value,
the result is 'X')

< Less than (if, because of unknown bits in the operands, the
relation is ambiguous, then the result is the unknown value
'X')

<= Less than or equal to (if, because of unknown bits in the
operands, the relation is ambiguous, then the result is the
unknown value 'X')

> Greater than (if, because of unknown bits in the operands,
the relation is ambiguous, then the result is the unknown
value 'X')

>= Greater than or equal to (if, because of unknown bits in the
operands, the relation is ambiguous, then the result is the
unknown value 'X')

LO

 VHDL Language Support VHDL Language Constructs

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

Note: Initially, X's are treated as “don’t-cares”, but they are eventually
converted to 0's or 1's in a way that minimizes hardware.

Logical Operator Description

and and

or or

nand nand

nor nor

xor xor

xnor xnor

not not (takes only one operand)

Shift Operator Description

sll Shift left logical - logically shifted left by R index positions

srl Shift right logical - logically shifted right by R index positions

sla Shift left arithmetic - arithmetically shifted left by R index positions

sra Shift right arithmetic - arithmetically shifted right by R index
positions

rol Rotate left logical - rotated left by R index positions

ror Rotate right logical - rotated right by R index positions

Miscellaneous Operator Description

- Identity

- Negation

& Concatenation

VHDL Language Constructs VHDL Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 311

Large Time Resolution
The support of predefined physical time types includes the expanded range
from -2147483647 to +2147483647 with units ranging from femtoseconds,
and secondary units ranging up to an hour. Predefined physical time types
allow selection of a wide number range representative of time type.

Example 1 - Using Large Time Values in Comparisons

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
use ieee.std_logic_unsigned.all;
entity test is

generic (INTERVAL1 : time := 1000 fs;
INTERVAL2 : time := 1 ps;
INTERVAL3 : time := 1000 ps;
INTERVAL4 : time := 1 ns

);
port (a : in std_logic_vector(3 downto 0);

b : in std_logic_vector(3 downto 0);
c : out std_logic_vector(3 downto 0);
d : out std_logic_vector(3 downto 0)

);
end test;
architecture RTL of test is
begin

c <= (a and b) when (INTERVAL1 = INTERVAL2) else
(a or b);

d <= (a xor b) when (INTERVAL3 /= INTERVAL4) else
(a nand b);

end RTL;

Example 2 - Using Large Time Values in Constant Calculations

library ieee;
use ieee.std_logic_1164.all;

entity test is
generic (Interval : time := 20 ns;

CLK_PERIOD : time := 8 ns);
port (en : in std_logic;

LO

 VHDL Language Support VHDL Language Constructs

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

a : in std_logic_vector(10 downto 0);
b : in std_logic_vector(10 downto 0);
a_in : in std_logic_vector(7 downto 0);
b_in : in std_logic_vector(7 downto 0);
dummyOut : out std_logic_vector(7 downto 0);
out1 : out std_logic_vector(10 downto 0));

end entity;
architecture behv of test is

constant my_time : positive := (Interval / 2 ns);
constant CLK_PERIOD_PS : real := real(CLK_PERIOD / 1 ns);
constant RESULT : positive := integer(CLK_PERIOD_PS);
signal dummy : std_logic_vector (RESULT-1 downto 0);
signal temp : std_logic_vector (my_time downto 0);

begin
process (a, b)
begin

temp <= a and b;
out1 <= temp;

end process;
dummy <= (others => '0') when en = '1' else

(a_in or b_in);
dummyOut <= dummy;
end behv;

Example 3 - Using Large Time Values in Generic Calculations

library IEEE;
use IEEE.std_logic_1164.all;
library unisim;
use unisim.vcomponents.all;
entity test is

generic (clk_period : time := 6 ns);
port (rst_in : in std_logic;

in1 : in std_logic;
CLK_PAD : in std_logic;
RST_DLL : in std_logic;
dout : out std_logic;
CLK_out : out std_logic;
LOCKED : out std_logic);

end test;
architecture STRUCT of test is

signal CLK, CLK_int, CLK_dcm : std_logic;
signal clk_dv : std_logic;
constant clk_prd : real := real(clk_period / 2.0 ns);

begin

VHDL Language Constructs VHDL Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 313

U1 : IBUFG port map (I => CLK_PAD, O => CLK_int);
U2 : DCM generic map
(CLKDV_DIVIDE => clk_prd)

port map (CLKFB => CLK,
CLKIN => CLK_int,
CLKDV => clk_dv,
DSSEN => '0',
PSCLK => '0',
PSEN => '0',
PSINCDEC => '0',
RST => RST_DLL,
CLK0 => CLK_dcm,
LOCKED => LOCKED);

U3 : BUFG port map (I => CLK_dcm, O => CLK);
CLK_out <= CLK;

process (clk_dv , rst_in, in1)
begin

if (rst_in = '1') then
dout <= '0';

elsif (clk_dv'event and clk_dv = '1') then
dout <= in1;

end if;
end process;

end architecture STRUCT;

VHDL Process
The VHDL keyword process introduces a block of logic that is triggered to
execute when one or more signals change value. Use processes to model
combinational and sequential logic.

process Template to Model Combinational Logic
<optional_label> : process (<sensitivity_list>)

-- Declare local variables, data types,
-- and other local declarations here

begin
-- Sequential statements go here, including:

LO

 VHDL Language Support VHDL Language Constructs

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

-- signal and variable assignments
-- if and case statements
-- while and for loops
-- function and procedure calls

end process <optional_label>;

Sensitivity List
The sensitivity list specifies the signal transitions that trigger the process to
execute. This is analogous to specifying the inputs to logic on a schematic by
drawing wires to gate inputs. If there is more than one signal, separate the
names with commas.

A warning is issued when a signal is not in the sensitivity list but is used in
the process, or when the signal is in the sensitivity list but not used by the
process.

Syntax
process (signal1, signal2, ..);

A process can have only one sensitivity list, located immediately after the
keyword process, or one or more wait statements. If there are one or more wait
statements, one of these wait statements must be either the first or last state-
ment in the process.

List all signals feeding into the combinational logic (all signals that affect
signals assigned inside the process) in the sensitivity list. If you forget to list
all signals, the tool generates the desired hardware, and reports a warning
message that you are not triggering the process every time the hardware is
changing its outputs, and therefore your pre- and post-synthesis simulation
results might not match.

Any signals assigned in the process must either be outputs specified in the
port list of the entity or declared as signals in the architecture declarative
area. Any variables assigned in the process are local and must be declared in
the process declarative area.

Note: Make sure all signals assigned in a combinational process are
explicitly assigned values each time the process executes. Other-
wise, the synthesis tool must insert level-sensitive latches in your
design, in order to hold the last value for the paths that don't
assign values (if, for example, you have combinational loops in

VHDL Language Constructs VHDL Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 315

your design). This usually represents coding error, so synthesis
issues a warning message that level-sensitive latches are being
inserted into the design because of combinational loops. You will
get an error message if you have combinational loops in your
design that are not recognized as level-sensitive latches.

Common Sequential Statements
This section describes common sequential statements.

Procedures
A procedure is a form of a subprogram that contains local declarations and a
sequence of statements. A procedure can be called from any place within the
architecture. The procedure definition consists of two parts:

• the procedure declaration, which contains the procedure name and the
parameter list required when the procedure is called; the procedure
declaration consists of the procedure name and the formal parameter
list. In the procedure specification, the identifier and optional formal
parameter list follow the reserved word procedure.

• the procedure body, which consists of the local declarations and state-
ments required to execute the procedure; the procedure body defines the
procedure's algorithm composed of sequential statements. When the
procedure is called, execution of the sequence of statements declared
within the procedure body begins. The procedure body consists of the
subprogram declarative part following the reserved word is with the
subprogram statement part placed between the reserved words begin
and end.

The basic syntax for a procedure is:

procedure procedureName (formalParameterList)

procedure procedureName (formalParameterList) is
procedureDeclarations

begin
sequential statements

end procedure procedureName;

LO

 VHDL Language Support VHDL Language Constructs

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

if-then-else Statement

Syntax

if condition1 then
sequential_statement(s)

[elsif condition2 then
sequential_statement(s)]

[else
sequential_statement(s)]

end if;

The else and elsif clauses are optional.

Example

library ieee;
use ieee.std_logic_1164.all;
entity mux is

port (output_signal : out std_logic;
a, b, sel : in std_logic);

end mux;
architecture if_mux of mux is
begin

process (sel, a, b)
begin

if sel = '1' then
output_signal <= a;

elsif sel = '0' then
output_signal <= b;

else
output_signal <= 'X';

end if;
end process ;

end if_mux;

VHDL Language Constructs VHDL Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 317

case Statement

Syntax

case expression is
when choice1 => sequential_statement(s)
when choice2 => sequential _statement(s)

-- Other case choices

when choiceN => sequential_statement(s)
end case;

Note: VHDL requires that the expression match one of the given
choices. To create a default, have the final choice be when others =>
sequential_statement(s) or null. (Null means not to do anything.)

Example

library ieee;
use ieee.std_logic_1164.all;
entity mux is

port (output_signal : out std_logic;
a, b, sel : in std_logic);

end mux;
architecture case_mux of mux is
begin

process (sel, a, b)
begin

case sel is
when '1' =>

output_signal <= a;
when '0' =>

output_signal <= b;
when others =>

output_signal <= 'X';
end case;

end process;
end case_mux;

LO

 VHDL Language Support VHDL Language Constructs

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

Note: To test the condition of matching a bit vector, such as "0-11",
that contains one or more don’t-care bits, do not use the equality
relational operator (=). Instead, use the std_match function (in the
ieee.numeric_std package), which succeeds (evaluates to true) when-
ever all of the explicit constant bits (0 or 1) of the vector are
matched, regardless of the values of the bits in the don’t-care (-)
positions. For example, use the condition std_match(a, "0-11")
to test for a vector with the first bit unset (0) and the third and
fourth bits set (1).

Loop Statement
Loop statements are used to repeatedly execute a sequence of sequential
statements. The basic syntax for a loop is:

[loop_label :]iteration_scheme loop
sequential statements

[next [label] [when condition];
[exit [label] [when condition];

end loop [loop_label];

Loop labels are optional, but can be useful when writing nested loops. The
next and exit statements are sequential statements that can only be used
within a loop:

• The next statement terminates the remainder of the current loop itera-
tion and causes execution to proceed to the next loop iteration.

• The exit statement terminates the loop and omits the remainder of the
statements. Execution continues with the next statement after the loop
is exited.

There are three loop iteration types:

• basic loop

• while … loop

• for … loop

VHDL Language Constructs VHDL Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 319

Basic Loop Statement

The basic loop has no iteration scheme and is executed continuously until it
encounters an exit or next statement. The basic loop must include at least one
wait statement. As an example, assume a 4-bit counter that counts from 0 to
15. When it reaches 15, it begins over from 0. A wait statement is used to
cause the loop to execute every time the clock transitions from 0 to 1.

While-Loop Statement

The while … loop evaluates a true-false condition. When the condition is true,
the loop repeats, otherwise the loop is skipped and execution halted. The
syntax for the while… loop is:

[loop_label :] while condition loop
sequential statements

[next [label] [when condition];
[exit [label] [when condition];

end loop [loop_label];

The condition of the loop is tested prior to each iteration (including the first
iteration). If the result is false, the loop is terminated.

For-Loop Statement

The for ... loop uses an integer iteration scheme to determine the number of
iterations. The syntax is:

[loop_label :] for identifier in range loop
sequential statements

[next [label] [when condition];
[exit [label] [when condition];

end loop [loop_label];

The identifier is automatically declared by the loop itself and does not need to
be declared separately. The value of identifier can only be read within the loop
and is not accessible outside the loop; its value cannot be assigned or
changed in contrast to the while ... loop that can accept variables that are
modified inside the loop.

LO

 VHDL Language Support VHDL Language Constructs

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

The range is a computable integer range in one of the following forms, in
which integer_expression must evaluate to an integer:

integer_expression to integer_expression

integer_expression downto integer_expression

The for statement also supports loop bounds where one or both of the loops
are non-constant values.

Example: VHDL for Loop With Non-Constant Bounds

-- Example - for loop
library ieee; use ieee.std_logic_1164.all;

entity top is
port(
 reset : std_logic;--reset_pos--
 clk : std_logic;--clock_pos--
 zlimStart: in positive range 7 downto 1;
 zlimEnd: in integer range 7 downto 0;
 invec: in bit_vector(7 downto 0);
 outvec: out bit_vector(7 downto 0);
 zout: out integer range 0 to 15
);

end entity top;

architecture zarch of top is
begin
 process(clk,reset)
 variable cnt: integer := 0;

VHDL Language Constructs VHDL Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 321

 variable zvec: bit_vector(0 to 3);
 begin
 if(reset= ‘1’) then

outvec <= (others => ‘0’);
elsif (clk’event and clk=’1’) then

 cnt := 0;
 for I in zlimStart downto zlimEnd loop
 outvec(I) <= invec(I);

 cnt := cnt + 1;
 end loop;
 zout <= cnt;
 end if;
 end process;

end architecture zarch;

Next and Exit Statements

The next statement causes execution to jump to the next iteration of a loop
statement and then proceed with the next iteration. The next statement
syntax is:

next [label] [when condition];

The when keyword is optional and executes the next statement when its
condition evaluates to the Boolean value TRUE.

The exit statement omits the remaining statements, terminating the loop
entirely and continuing with the next statement after the exited loop. The exit
statement syntax is::

exit [label] [when condition];

LO

 VHDL Language Support VHDL Language Constructs

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

The when keyword is optional and executes the next statement when its
condition evaluates to the Boolean value TRUE.

Return Statement
The return statement ends the execution of a subprogram (procedure or
function) in which it appears and causes an unconditional jump to the end of
a subprogram.

return expression;

A return statement can only be used within a procedure or function body.
When a return statement appears within nested subprograms, the return
applies to the innermost subprogram (i.e., the jump is performed to the next
end procedure or end function clause).

Assertion Statement
An assertion statement checks if a given condition is true and, if not,
performs some action.

assert condition
report string
severity severityLevel;

The condition specified in an assert statement must evaluate to a boolean
value (true or false). If it is false, it is said that an assertion violation has
occurred. The expression specified in the report clause is the message of
predefined type string to be reported when the assertion violation occurs.

If the severity clause is present, it must specify an expression of predefined
type severity level which determines the severity level of the assertion viola-
tion. The severity-level type is specified in the standard package and includes
the following values: NOTE, WARNING, ERROR, and FAILURE. If the severity clause
is omitted, it is implicitly assumed to be ERROR.

When an assertion violation occurs, the report is issued and displayed on the
screen. The severity level defines the degree to which the violation of the
assertion affects operation of the corresponding process:

• NOTE - used to pass informative messages

• WARNING - used in unusual conditions in which the operation can be
continued, but with unpredictable results

VHDL Language Constructs VHDL Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 323

• ERROR - used when the assertion violation makes continuation of the
operation not feasible

• FAILURE - used when the assertion violation is a fatal error and the
operation must be immediately terminated

Block Statement
A block statement groups concurrent statements with an architecture to
improve readability of the specification.

block_label : block
declarations

begin
concurrent statements

end block block_label;

Each block is assigned a label placed just before the block reserved word. This
same label can be optionally repeated at the end of the block immediately
following the end block reserved words.

A block statement can be preceded by two optional parts: a header and a
declarative part. The declarative part introduces any of the declarations
possible for an architecture including declarations of subprograms, types,
subtypes, constants, signals, shared variables, files, aliases, components,
attributes, configurations, use clauses and groups. These declarations are
local to the block and are not visible outside of the block.

A block header can also include port and generic declarations (similar to an
entity), as well as port and generic map declarations. The purpose of port
map and generic map statements is to map signals and other objects
declared outside of the block into the ports and generic parameters that have
been declared within the block.

The statements part may contain any concurrent constructs allowed in an
architecture. In particular, other block statements can be used here. This
way, a kind of hierarchical structure can be introduced into a single architec-
ture body (for additional information, see Configuration Declaration, on
page 374.

Concurrent Signal Assignments
There are three types of concurrent signal assignments in VHDL.

LO

 VHDL Language Support VHDL Language Constructs

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

• Simple

• Selected (with-select-when)

• Conditional (when-else)

Use the concurrent signal assignment to model combinational logic. Put the
concurrent signal assignment in the architecture body. You can have any
number of statements to describe your hardware implementation. Because
all statements are concurrently active, the order you place them in the archi-
tecture body is not significant.

Re-evaluation of Signal Assignments
Every time any signal on the right side of the assignment operator (<=)
changes value (including signals used in the expressions, values, choices, or
conditions), the assignment statement is re-evaluated, and the result is
assigned to the signal on the left side of the assignment operator. You can use
any of the predefined operators to create the assigned value.

Simple Signal Assignments

Syntax

signal <= expression;

Example

architecture simple_example of simple is
begin

c <= a nand b;
end simple_example;

VHDL Language Constructs VHDL Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 325

Selected Signal Assignments

Syntax

with expression select
signal <= value1 when choice1,

value2 when choice2,
.
.
.
valueN when choiceN;

Example

library ieee;
use ieee.std_logic_1164.all;
entity mux is

port (output_signal : out std_logic;
a, b, sel : in std_logic);

end mux;
architecture with_select_when of mux is
begin

with_sel_select
output_signal <= a when '1',

b when '0',
'X' when others;

end with_select_when;

Conditional Signal Assignments

Syntax

signal <= value1 when condition1 else
value2 when condition2 else
valueN-1 when conditionN-1 else
valueN;

Example

library ieee;
use ieee.std_logic_1164.all;

LO

 VHDL Language Support VHDL Language Constructs

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

entity mux is
port (output_signal: out std_logic;

a, b, sel: in std_logic);
end mux;
architecture when_else_mux of mux is
begin
output_signal <= a when sel = '1' else

b when sel = '0' else
'X';

end when_else_mux;

VHDL Language Constructs VHDL Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 327

Note: To test the condition of matching a bit vector, such as "0-11",
that contains one or more don’t-care bits, do not use the equality
relational operator (=). Instead, use the std_match function (in the
ieee.numeric_std package), which succeeds (evaluates to true) when-
ever all of the explicit constant bits (0 or 1) of the vector are
matched, regardless of the values of the bits in the don’t-care (-)
positions. For example, use the condition std_match(a, "0-11")
to test for a vector with the first bit unset (0) and the third and
fourth bits set (1).

Resource Sharing
When you have mutually exclusive operators in a case statement, the tool
shares resources for the operators in the case statements. For example,
automatic sharing of operator resources includes adders, subtractors, incre-
mentors, decrementors, and multipliers.

Combinational Logic
Combinational logic is hardware with output values based on some function
of the current input values. There is no clock and no saved states. Most
hardware is a mixture of combinational and sequential logic.

Create combinational logic with concurrent signal assignments and/or
processes.

Sequential Logic
Sequential logic is hardware that has an internal state or memory. The state
elements are either flip-flops that update on the active edge of a clock signal,
or level-sensitive latches, that update during the active level of a clock signal.

Because of the internal state, the output values might depend not only on the
current input values, but also on input values at previous times. State
machines are made of sequential logic where the updated state values
depend on the previous state values. There are standard ways of modeling
state machines in VHDL. Most hardware is a mixture of combinational and
sequential logic.

LO

 VHDL Language Support VHDL Language Constructs

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

Create sequential logic with processes and/or concurrent signal assign-
ments.

Component Instantiation in VHDL
A structural description of a design is made up of component instantiations
that describe the subsystems of the design and their signal interconnects.
The tool supports four major methods of component instantiation:

• Simple component instantiation (described below)

• Selected component instantiation

• Direct entity instantiation

• Configurations described in Configuration Specification, on page 371

Simple Component Instantiation
In this method, a component is first declared either in the declaration region
of the architecture, or in a package of (typically) component declarations, and
then instantiated in the statement region of the architecture. By default, the
synthesis process binds a named entity (and architecture) in the working
library to all component instances that specify a component declaration with
the same name.

Syntax

label : [component] declaration_name
[generic map (actual_generic1, actual_generic2, ...)]
[port map (port1, port2, ...)];

The use of the reserved word component is optional in component instantia-
tions.

VHDL Language Constructs VHDL Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 329

Example: VHDL 1987

architecture struct of hier_add is
component add

generic (size : natural);
port (a : in bit_vector(3 downto 0);

b : in bit_vector(3 downto 0);
result : out bit_vector(3 downto 0));

end component;
begin
-- Simple component instantiation
add1: add

generic map(size => 4)
port map(a => ain,

b => bin,
result => q);

-- Other code

Example: VHDL 1993

architecture struct of hier_add is
component add

generic (size : natural);
port (a : in bit_vector(3 downto 0);

b : in bit_vector(3 downto 0);
result : out bit_vector(3 downto 0));

end component;
begin
-- Simple component instantiation
add1: component add -- Component keyword new in 1993

generic map(size => 4)
port map(a => ain,

b => bin,
 result => q);

-- Other code

Note: If no entity is found in the working library named the same as the
declared component, all instances of the declared component are
mapped to a black box and the error message “Unbound compo-
nent mapped to black box” is issued.

LO

 VHDL Language Support VHDL Language Constructs

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

VHDL Selected Name Support
Selected Name Support (SNS) is provided in VHDL for constants, operators,
and functions in library packages. SNS eliminates ambiguity in a design
referencing elements with the same names, but that have unique function-
ality when the design uses the elements with the same name defined in
multiple packages. By specifying the library, package, and specific element
(constant, operator, or function), SNS designates the specific constant,
operator, or function used. This section discusses all facets of SNS. Complete
VHDL examples are included to assist you in understanding how to use SNS
effectively.

Constants
SNS lets you designate the constant to use from multiple library packages. To
incorporate a constant into a design, specify the library, package, and
constant. Using this feature eliminates ambiguity when multiple library
packages have identical names for constants and are used in an entity-archi-
tecture pair.

The following example has two library packages available to the design
constants. Each library package has a constant defined by the name C1 and
each has a different value. SNS is used to specify the constant (see
work.PACKAGE.C1 in the constants example below).

-- CONSTANTS PACKAGE1
library IEEE;
use IEEE.std_logic_1164.all;
package PACKAGE1 is

constant Cl: std_logic_vector := "10001010";
end PACKAGE1;
-- CONSTANTS PACKAGE2
library IEEE;
use IEEE.std_logic_1164.all;
package PACKAGE2 is

constant C1: std_logic_vector := "10110110";
end PACKAGE2;
-- CONSTANTS EXAMPLE
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_unsigned.all;

VHDL Language Constructs VHDL Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 331

entity CONSTANTS is
generic (num_bits : integer := 8);

port (a,b: in std_logic_vector (num_bits -1 downto 0);
out1, out2: out std_logic_vector (num_bits -1 downto 0)
);

end CONSTANTS;
architecture RTL of CONSTANTS is
begin

out1 <= a - work.PACKAGE1.Cl; -Example of specifying SNS
out2 <= b - work.PACKAGE2.C1; -Example of specifying SNS

end RTL;
In the above design, outputs out1 and out2 use two C1 constants from two
different packages. Although each output uses a constant named C1, the
constants are not equivalent. For out1, the constant C1 is from PACKAGE1. For
out2, the constant C1 is from PACKAGE2. For example:

out1 <= a - work.PACKAGE1.Cl; is equivalent to out1 <= a - "10001010";
whereas:

out2 <= b - work.PACKAGE2.Cl; is equivalent to out2 <= b - "10110110";
The constants have different values in different packages. SNS specifies the
package and eliminates ambiguity within the design.

Functions and Operators
Functions and operators in VHDL library packages customarily have overlap-
ping naming conventions. For example, the add operator in the IEEE
standard library exists in both the std_logic_signed and std_logic_unsigned
packages. Depending upon the add operator used, different values result.
Defining only one of the IEEE library packages is a straightforward solution
to eliminate ambiguity, but applying this solution is not always possible. A
design requiring both std_logic_signed and std_logic_unsigned package elements
must use SNS to eliminate ambiguity.

Functions

In the following example, multiple IEEE packages are declared in a 256x8
RAM design. Both std_logic_signed and std_logic_unsigned packages are included.
In the RAM definition, the signal address_in is converted from type std_log-
ic_vector to type integer using the CONV_INTEGER function, but which

LO

 VHDL Language Support VHDL Language Constructs

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

CONV_INTEGER function will be called? SNS determines the function to use.
The RAM definition clearly declares the std_logic_unsigned package as the
source for the CONV_INTEGER function.

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_signed.all;
use IEEE.numeric_std.all;
entity FUNCTIONS is

port (address : in std_logic_vector(7 downto 0);
data_in : in std_logic_vector(7 downto 0);
data_out : out std_logic_vector(7 downto 0);
we : in std_logic;
clk : in std_logic);

end FUNCTIONS;
architecture RTL of FUNCTIONS is
type mem_type is array (255 downto 0) of

std_logic_vector (7 downto 0);
signal mem: mem_type;
signal address_in: std_logic_vector(7 downto 0);
begin
data_out <= mem(IEEE.std_logic_unsigned.CONV_INTEGER(address_in));

process (clk)
begin

if rising_edge(clk) then
if (we = '1') then

mem(IEEE.std_logic_unsigned.CONV_INTEGER(address_in))
<= data_in;

end if;
address_in <= address;
end if;

end process;
end RTL;

Operators

In this example, comparator functions from the IEEE std_logic_signed and
std_logic_unsigned library packages are used. Depending upon the comparator
called, a signed or an unsigned comparison results. In the assigned outputs
below, the op1 and op2 functions show the valid SNS syntax for operator
implementation.

VHDL Language Constructs VHDL Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 333

library IEEE;
use IEEE.std_logic_1164.std_logic_vector;
use IEEE.std_logic_signed.">";
use IEEE.std_logic_unsigned.">";
entity OPERATORS is

port (in1 :std_logic_vector(1 to 4);
in2 :std_logic_vector(1 to 4);
in3 :std_logic_vector(1 to 4);
in4 :std_logic_vector(1 to 4);
op1,op2 :out boolean);

end OPERATORS;
architecture RTL of OPERATORS is
begin

process(in1,in2,in3,in4)
begin

--Example of specifying SNS
op1 <= IEEE.std_logic_signed.">"(in1,in2);

--Example of specifying SNS
op2 <= IEEE.std_logic_unsigned.">"(in3,in4);

end process;
end RTL;

User-defined Function Support
SNS is not limited to predefined standard IEEE packages and packages
supported by the tool; SNS also supports user-defined packages. You can
create library packages that access constants, operators, and functions in the
same manner as the packages supported by IEEE or synthesis.

The following example incorporates two user-defined packages in the design.
Each package includes a function named func. In PACKAGE1, func is an XOR
gate, whereas in PACKAGE2, func is an AND gate. Depending on the package
called, func results in either an XOR or an AND gate. The function call uses
SNS to distinguish the function that is called.

LO

 VHDL Language Support VHDL Language Constructs

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

-- USER DEFINED PACKAGE1
library IEEE;
use IEEE.std_logic_1164.all;
package PACKAGE1 is

function func(a,b: in std_logic) return std_logic;
end PACKAGE1;
package body PACKAGE1 is

function func(a,b: in std_logic) return std_logic is
begin

return(a xor b);
end func;
end PACKAGE1;
-- USER DEFINED PACKAGE2
library IEEE;
use IEEE.std_logic_1164.all;
package PACKAGE2 is

function func(a,b: in std_logic) return std_logic;
end PACKAGE2;
package body PACKAGE2 is

function func(a,b: in std_logic) return std_logic is
begin

return(a and b);
end func;
end PACKAGE2;
-- USER DEFINED FUNCTION EXAMPLE
library IEEE;
use IEEE.std_logic_1164.all;
entity USER_DEFINED_FUNCTION is

port (in0: in std_logic;
in1: in std_logic;
out0: out std_logic;
out1: out std_logic);

end USER_DEFINED_FUNCTION;
architecture RTL of USER_DEFINED_FUNCTION is
begin

out0 <= work.PACKAGE1.func(in0, in1);
out1 <= work.PACKAGE2.func(in0, in1);

end RTL;

VHDL Language Constructs VHDL Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 335

Demand Loading
In the previous section, the user-defined function example successfully uses
SNS to determine the func function to implement. However, neither PACKAGE1
nor PACKAGE2 was declared as a use package clause (for example,
work.PACKAGE1.all;). How could func have been executed without a use package
declaration? A feature of SNS is demand loading: this loads the necessary
package without explicit use declarations. Demand loading lets you create
designs using SNS without use package declarations, which supports all
necessary constants, operators, and functions.

LO

 VHDL Language Support VHDL Implicit Data-type Defaults

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

VHDL Implicit Data-type Defaults
Type default propagation avoids potential simulation mismatches that are the
result of differences in behavior with how initial values for registers are
treated in the synthesis tools and how they are treated in the simulation
tools.

With implicit data-type defaults, when there is no explicit initial-value decla-
ration for a signal being registered, the VHDL compiler passes an init value
through a syn_init property to the mapper, and the mapper then propagates
the value to the respective register. Compiler requirements are based on
specific data types. These requirements can be broadly grouped based on the
different data types available in the VHDL language.

Implicit data-type defaults are enabled on the VHDL panel of the Implementation
Options dialog box or through a -supporttypedflt argument to a set_option
command.

To illustrate the use of implicit data-type defaults, consider the following
example.

library ieee;
use ieee.std_logic_1164.all;
entity top is

port (clk:in std_logic;
a : in integer range 1 to 8;
b : out integer range 1 to 8;
d : out positive range 1 to 7);

end entity top;

VHDL Implicit Data-type Defaults VHDL Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 337

architecture rtl of top is
signal a1,a2 : integer range 1 to 8;
signal a3,a4 : positive range 1 to 7;
begin
a1 <= a;
a3 <= a;
b <= a2;
d <= a4;

process(clk)
begin

if (rising_edge(clk))then
a2 <= a1;
a4 <= a3;

end if;
end process;

end rtl;
In the above example, two signals (a2 and a4) with different type default
values are registered. Without implicit data-type defaults, if the values of the
signals being registered are not the same, the compiler merges the redundant
logic into a single register as shown in the figure below.

Enabling implicit data-type defaults prevents certain compiler and mapper
optimizations to preserve both registers as shown in the following figure.

LO

 VHDL Language Support VHDL Implicit Data-type Defaults

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

Example - Impact on Integer Ranges

The default value for the integer type when a range is specified is the
minimum value of the range specified, and size is the upper limit of that
range. With implicit data-type defaults, the compiler is required to propagate
the minimum value of the range as the init value to the mapper. Consider the
following example:

library ieee;
use ieee.std_logic_1164.all;
entity top is

port (clk,set:in std_logic;
a : in integer range -6 to 8;
b : out integer range -6 to 8);

end entity top;
architecture rtl of top is
signal a1,a2: integer range -6 to 8;
begin
a1 <= a;

process(clk,set)
begin

if (rising_edge(clk))then
if set = '1' then

a2 <= a;
else

VHDL Implicit Data-type Defaults VHDL Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 339

a2 <= a1;
end if;

end if;
end process;

b <= a2;
end rtl;

In the example,

signal a1, a2: integer range -6 to 8;
the default value is -6 (FA in 2’s complement) and the range is -6 to 8. With a
total of 15 values, the size of the range can be represented in four bits.

Example - Impact on RAM Inferencing

When inferencing a RAM with implicit data-type defaults, the compiler propa-
gates the type default values as init values for each RAM location. The
mapper must check if the block RAMs of the selected technology support
initial values and then determine if the compiler-propagated init values are to
be considered. If the mapper chooses to ignore the init values, a warning is
issued stating that the init values are being ignored. Consider the following
VHDL design:

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;
entity top is

port (clk : in std_logic;
addr : in std_logic_vector (6 downto 0);
din : in positive;
wen : in std_logic;
dout : out positive);

end top;
architecture behavioral of top is
-- RAM
type tram is array(0 to 127) of positive;
signal ram : tram ;
begin
-- Contents of RAM has initial value = 1

process (clk)
begin

if clk'event and clk = '1' then

LO

 VHDL Language Support VHDL Implicit Data-type Defaults

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

if wen = '1' then
ram(conv_integer(addr)) <= din_sig;

end if;
dout <= ram(conv_integer(addr));
end if;

end process;
end behavioral;

In the above example:

• The type of signal a1 is bit_vector

• The default value for type integer is 1 when no range is specified

Accordingly, a value of x00000001 is propagated by the compiler to the mapper
with a syn_init property.

VHDL Synthesis Guidelines VHDL Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 341

VHDL Synthesis Guidelines
This section provides guidelines for synthesis using VHDL. The following
topics are covered:

• General Synthesis Guidelines, on page 341

• VHDL Language Guidelines, on page 342

• Model Template, on page 343

• Constraint Files for VHDL Designs, on page 344

• Creating Flip-flops and Registers Using VHDL Processes, on page 344

• Clock Edges, on page 346

• Defining an Event Outside a Process, on page 347

• Using a WAIT Statement Inside a Process, on page 348

• Level-sensitive Latches Using Concurrent Signal Assignments, on
page 349

• Level-sensitive Latches Using VHDL Processes, on page 350

• Signed mod Support for Constant Operands, on page 353

General Synthesis Guidelines
Some general guidelines are presented here to help you synthesize your
VHDL design.

• Top-level entity and architecture. The tool chooses the top-level entity
and architecture - the last architecture for the last entity in the last file
compiled. Entity selection can be overridden from the VHDL panel of the
Implementation Options dialog box. Files are compiled in the order they
appear - from top to bottom in the design source files list.

• Simulate your design before synthesis because it exposes logic errors.
Logic errors that are not caught are passed through the tool, and the
synthesized results will contain the same logic errors.

LO

 VHDL Language Support VHDL Synthesis Guidelines

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

• Simulate your design after placement and routing. Have the
place-and-route tool generate a post placement and routing
(timing-accurate) simulation netlist, and do a final simulation before
programming your devices.

• Avoid asynchronous state machines. To use the tool for asynchronous
state machines, make a netlist of technology primitives from your target
library.

• For modeling level-sensitive latches, it is simplest to use concurrent
signal assignments.

VHDL Language Guidelines
This section discusses VHDL language guidelines.

Processes
• A process must have either a sensitivity list or one wait statement.

• Each sequential process can be triggered from exactly one clock and
only one edge of clock (and optional sets and resets).

• Avoid combinational loops in processes. Make sure all signals assigned
in a combinational process are explicitly assigned values every time the
process executes; otherwise, the tool needs to insert level-sensitive
latches in your design to hold the last value for the paths that do not
assign values. This might represent a mistake on your part, so synthesis
issues a warning message that level-sensitive latches are being inserted
into your design. You will get an warning message if you have combina-
tional loops in your design that are not recognized as level-sensitive
latches (for example, if you have an asynchronous state machine).

Assignments
• Assigning an 'X' or '-' to a signal is interpreted as a “don't care”, so the

tool creates the hardware that is the most efficient design.

Data Types
• Integers are 32-bit quantities. If you declare a port as an integer data

type, specify a range (for example, my_input: in integer range 0 to 7). Other-
wise, your synthesis result file will contain a 32-bit port.

VHDL Synthesis Guidelines VHDL Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 343

• Enumeration types are represented as a vector of bits. The encoding can
be sequential, gray, or one hot. You can manually choose the encoding
for ports with an enumeration type.

Model Template
You can place any number of concurrent statements (signal assignments,
processes, component instantiations, and generate statements) in your archi-
tecture body as shown in the following example. The order of these state-
ments within the architecture is not significant, as all can execute concur-
rently.

• The statements between the begin and the end in a process execute
sequentially, in the order you type them from top to bottom.

• You can add comments in VHDL by proceeding your comment text with
two dashes “--”. Any text from the dashes to the end of the line is treated
as a comment, and ignored by the tool.

-- List libraries/packages that contain definitions you use
library <library_name>;
use <library_name>.<package_name>.all;
-- The entity describes the interface for your design.
entity <entity_name> is

generic (<define_interface_constants_here>);
port (<port_list_information_goes_here>);

end <entity_name>;
-- The architecture describes the functionality (implementation)
-- of your design
architecture <architecture_name> of <entity_name> is

-- Architecture declaration region.
-- Declare internal signals, data types, and subprograms here

-- If you will create hierarchy by instantiating a
-- component (which is just another architecture), then
-- declare its interface here with a component declaration;
component <entity_name_instantiated_below>

port (<port_list_information_as_defined_in_the_entity>);
end component;

LO

 VHDL Language Support VHDL Synthesis Guidelines

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

begin -- Architecture body, describes functionality

-- Use concurrent statements here to describe the functionality
-- of your design. The most common concurrent statements are the
-- concurrent signal assignment, process, and component
-- instantiation.

-- Concurrent signal assignment (simple form):
<result_signal_name> <= <expression>;
-- Process:
process <sensitivity list>)
-- Declare local variables, data types,
-- and other local declarations here
begin
-- Sequential statements go here, including:

-- signal and variable assignments
-- if and case statements
-- while and for loops
-- function and procedure calls

end process;
-- Component instantiation
<instance_name> : <entity_name>

generic map (<override values here>)
port map (<port list>);

end <architecture_name>;

Constraint Files for VHDL Designs
In previous versions of the software, all object names output by the compiler
were converted to lower case. This means that any constraints files created by
dragging from the schematic view or through the constraints file GUI
contained object names using only lower case. Case is preserved on design
object names. If you use mixed-case names in your VHDL source, for
constraints to be applied correctly, you must manually update any older
constraint files or re-create constraints in the constraint editor.

Creating Flip-flops and Registers Using VHDL Processes
It is easy to create flip-flops and registers using a process in your
VHDL design.

VHDL Synthesis Guidelines VHDL Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 345

process Template
process (<sensitivity list>)
begin

<sequential statement(s)>
end;

To create a flip-flop:

1. List your clock signal in the sensitivity list. Recall that if the value of any
signal listed in the sensitivity list changes, the process is triggered, and
executes. For example,

process (clk)
2. Check for rising_edge or falling_edge as the first statement inside the

process. For example,

process (clk)
begin

if rising_edge(clk) then
<sequential statement(s)>

or

process (clk)
begin

if falling_edge(clk) then
<sequential statement(s)>

Alternatively, you could use an if clk'event and clk = '1' then statement to test
for a rising edge (or if clk'event and clk = '0' then for a falling edge). Although
these statements work, for clarity and consistency, use the rising_edge
and falling_edge functions from the VHDL 1993 standard.

3. Set your flip-flop output to a value, with no delay, if the clock edge
occurred. For example, q <= d;.

Complete Example
library ieee;
use ieee.std_logic_1164.all;
entity dff_or is

port (a, b, clk: in std_logic;
q: out std_logic);

end dff_or;

LO

 VHDL Language Support VHDL Synthesis Guidelines

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

architecture sensitivity_list of dff_or is
begin

process (clk) -- Clock name is in sensitivity list
begin

if rising_edge(clk) then
q <= a or b;

end if;
end process;

end sensitivity_list;
In this example, if clk has an event on it, the process is triggered and starts
executing. The first statement (the if statement) then checks to see if a rising
edge has occurred for clk. If the if statement evaluates to true, there was a
rising edge on clk and the q output is set to the value of a or b. If the clk
changes from 1 to 0, the process is triggered and the if statement executes,
but it evaluates to false and the q output is not updated. This is the function-
ality of a flip-flop, and synthesis correctly recognizes it as such and connects
the result of the a or b expression to the data input of a D-type flip-flop and
the q signal to the q output of the flip-flop.

Note: The signals you set inside the process will drive the data inputs
of D-type flip-flops.

Clock Edges
There are many ways to correctly represent clock edges within a process
including those shown here.

The typical rising clock edge representation is:

rising_edge(clk)

VHDL Synthesis Guidelines VHDL Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 347

Other supported rising clock edge representations are:

clk = '1' and clk'event
clk'last_value = '0' and clk'event
clk'event and clk /= '0'

The typical falling clock edge representation is:

falling_edge(clk)
Other supported falling clock edge representations are:

clk = '0' and clk'event
clk'last_value = '1' and clk'event
clk'event and clk /= '1'

Incorrect or Unsupported Representations for Clock Edges
Rising clock edge:

clk = '1'
clk and clk'event -- Because clk is not a Boolean

Falling clock edge:

clk = '0'
not clk and clk'event -- Because clk is not a Boolean

Defining an Event Outside a Process
The 'event attribute can be used outside of a process block. For example, the
process block

process (clk,d)
begin

if (clk='1' and clk'event) then
q <= d;

end if;
end process;

can be replaced by including the following line outside of the process state-
ment:

q <= d when (clk='1' and clk'event);

LO

 VHDL Language Support VHDL Synthesis Guidelines

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

Using a WAIT Statement Inside a Process
The tool supports a wait statement inside a process to create flip-flops, instead
of using a sensitivity list.

Example
library ieee;
use ieee.std_logic_1164.all;
entity dff_or is

port (a, b, clk: in std_logic;
q: out std_logic);

end dff_or;
architecture wait_statement of dff_or is
begin

process -- Notice the absence of a sensitivity list.
begin

-- The process waits here until the condition becomes true
wait until rising_edge(clk);

q <= a or b;
end process;

end wait_statement;

Rules for Using wait Statements Inside a Process
• It is illegal in VHDL to have a process with a wait statement and a sensi-

tivity list.

• The wait statement must either be the first or the last statement of the
process.

Clock Edge Representation in wait Statements
The typical rising clock edge representation is:

wait until rising_edge(clk);
Other supported rising clock edge representations are:

wait until clk = '1' and clk'event
wait until clk'last_value = '0' and clk'event
wait until clk'event and clk /= '0'

VHDL Synthesis Guidelines VHDL Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 349

The typical falling clock edge representation is:

wait until falling_edge(clk)
Other supported falling clock edge representations are:

wait until clk = '0' and clk'event
wait until clk'last_value = '1' and clk'event
wait until clk'event and clk /= '1'

Level-sensitive Latches Using Concurrent Signal Assignments
To model level-sensitive latches in VHDL, use a concurrent signal assignment
statement with the conditional signal assignment form (also known as
when-else).

Syntax
signal <= value1 when condition1 else
value2 when condition2 else
valueN-1 when conditionN-1 else
valueN;

Example
In VHDL, you are not allowed to read the value of ports of mode out inside of
an architecture that it was declared for. Ports of mode buffer can be read from
and written to, but must have no more than one driver for the port in the
architecture. In the following port statement example, q is defined as mode
buffer.

library ieee;
use ieee.std_logic_1164.all;
entity latchor1 is

port (a, b, clk : in std_logic;
-- q has mode buffer so it can be read inside architecture

q: buffer std_logic);
end latchor1;
architecture behave of latchor1 is
begin

q <= a or b when clk = '1' else q;
end behave;

LO

 VHDL Language Support VHDL Synthesis Guidelines

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

Whenever clk, a, or b changes, the expression on the right side re-evaluates. If
clk becomes true (active, logic 1), the value of a or b is assigned to the q
output. When the clk changes and becomes false (deactivated), q is assigned
to q (holds the last value of q). If a or b changes, and clk is already active, the
new value of a or b is assigned to q.

Level-sensitive Latches Using VHDL Processes
Although it is simpler to specify level-sensitive latches using concurrent
signal assignment statements, you can create level-sensitive latches with
VHDL processes. Follow the guidelines given here for the sensitivity list and
assignments.

process Template
process (<sensitivity list>)
begin

<sequential statement(s)>
end process;

Sensitivity List
The sensitivity list specifies the clock signal, and the signals that feed into the
data input of the level-sensitive latch. The sensitivity list must be located
immediately after the process keyword.

Syntax

process (clock_name, signal1, signal2, ...)

Example

process (clk, data)

VHDL Synthesis Guidelines VHDL Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 351

process Template for a Level-sensitive Latch

process (<clock, data_signals ...> ...)
begin

if (<clock> = <active_value>)
<signals> <= <expression involving data signals>;

end if;
end process ;

All data signals assigned in this manner become logic into data inputs of
level-sensitive latches.

Whenever level-sensitive latches are generated from a process, the tool issues
a warning message so that you can verify if level-sensitive latches are really
what you intended. Often a thorough simulation of your architecture will
reveal mistakes in coding style that can cause the creation of level-sensitive
latches during synthesis.

Example: Creating Level-sensitive Latches that You Want

library ieee;
use ieee.std_logic_1164.all;
entity latchor2 is

port (a, b, clk : in std_logic;
q: out std_logic);

end latchor2;
architecture behave of latchor2 is
begin

process (clk, a, b)
begin

if clk = '1' then
q <= a or b;

end if;
end process;

end behave;
If there is an event (change in value) on either clk, a or b, and clk is a logic 1,
set q to a or b.

What to do when clk is a logic 0 is not specified (there is no else), so when clk is
a logic zero, the last value assigned is maintained (there is an implicit q=q).
The tool correctly recognizes this as a level-sensitive latch, and creates a

LO

 VHDL Language Support VHDL Synthesis Guidelines

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

level-sensitive latch in your design. It will issue a warning message when you
compile this architecture, but after examination, this warning message can
safely be ignored.

Example: Creating Unwanted Level-sensitive Latches

This design demonstrates the level-sensitive latch warning caused by a
missed assignment in the when two => case. The message generated is:

"Latch generated from process for signal odd, probably caused by a
missing assignment in an if or case statement".

This information will help you find a functional error even before simulation.

library ieee;
use ieee.std_logic_1164.all;
entity mistake is

port (inp: in std_logic_vector (1 downto 0);
outp: out std_logic_vector (3 downto 0);
even, odd: out std_logic);

end mistake;
architecture behave of mistake is

constant zero: std_logic_vector (1 downto 0):= "00";
constant one: std_logic_vector (1 downto 0):= "01";
constant two: std_logic_vector (1 downto 0):= "10";
constant three: std_logic_vector (1 downto 0):= "11";

begin
process (inp)
begin

case inp is
when zero =>

outp <= "0001";
even <= '1';
odd <= '0';

when one =>
outp <= "0010";
even <= '0';
odd <= '1';

when two =>
outp <= "0100";
even <= '1';

-- Notice that assignment to odd is mistakenly commented out next.

VHDL Synthesis Guidelines VHDL Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 353

-- odd <= '0';
when three =>

outp <= "1000";
even <= '0';
odd <= '1';

end case;
end process;

end behave;

Signed mod Support for Constant Operands
The tool supports signed mod for constant operands. Additionally, division
operators (/, rem, mod), where the operands are compile-time constants and
greater than 32 bits, are supported.

Example of using signed mod operator with constant operands

LIBRARY ieee; USE ieee.std_logic_1164.ALL;
LIBRARY ieee; USE ieee.numeric_std.all;
ENTITY divmod IS
 PORT (tstvec: out signed(7 DOWNTO 0));
END divmod;
ARCHITECTURE structure OF divmod IS

CONSTANT NOMINATOR : signed(7 DOWNTO 0) := "10000001";
CONSTANT DENOMINATOR : signed(7 DOWNTO 0) := "00000011";
CONSTANT RESULT : signed(7 DOWNTO 0) := NOMINATOR mod

DENOMINATOR;
BEGIN

tstvec <= result;
END ARCHITECTURE structure;

Example of a signed division with a constant right operand.

LIBRARY ieee; USE ieee.std_logic_1164.ALL;
LIBRARY ieee; USE ieee.numeric_std.all;
ENTITY divmod IS
 PORT (tstvec: out signed(7 DOWNTO 0));
END divmod;

LO

 VHDL Language Support VHDL Synthesis Guidelines

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

ARCHITECTURE structure OF divmod IS
CONSTANT NOMINATOR : signed(7 DOWNTO 0) := "11111001";
CONSTANT DENOMINATOR : signed(7 DOWNTO 0) := "00000011";
CONSTANT RESULT : signed(7 DOWNTO 0) := NOMINATOR /

DENOMINATOR;
BEGIN

tstvec <= result;
END ARCHITECTURE structure;

An example where the operands are greater than 32 bits

LIBRARY ieee; USE ieee.std_logic_1164.ALL;
LIBRARY ieee; USE ieee.numeric_std.all;
ENTITY divmod IS
 PORT (tstvec: out unsigned(33 DOWNTO 0));
END divmod;
ARCHITECTURE structure OF divmod IS

CONSTANT NOMINATOR : unsigned(33 DOWNTO 0) :=
"1000000000000000000000000000000000";
CONSTANT DENOMINATOR : unsigned(32 DOWNTO 0) :=
"000000000000000000000000000000011";
CONSTANT RESULT : unsigned(33 DOWNTO 0) := NOMINATOR /

DENOMINATOR;
BEGIN

tstvec <= result;
END ARCHITECTURE structure;

Sets and Resets VHDL Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 355

Sets and Resets
This section describes VHDL sets and resets, both asynchronous and
synchronous. A set signal is an input to a flip-flop that, when activated, sets
the state of the flip-flop to a logic one. A reset signal is an input to a flip-flop
that, when activated, sets the state of the flip-flop to a logic zero.

The topics include:

• Asynchronous Sets and Resets, on page 355

• Synchronous Sets and Resets, on page 356

Asynchronous Sets and Resets
By definition, asynchronous sets and resets are independent of the clock and
do not require an active clock edge. Therefore, you must include the set and
reset signals in the sensitivity list of your process so they trigger the process
to execute.

Sensitivity List
The sensitivity list is a list of signals (including ports) that, when there is an
event (change in value), triggers the process to execute.

Syntax

process (clk_name, set_signal_name, reset_signal_name)

The signals are listed in any order, separated by commas.

Example: process Template with Asynchronous, Active-high reset, set

process (clk, reset, set)
begin

if reset = '1' then
-- Reset the outputs to zero.

elsif set = '1' then

LO

 VHDL Language Support Sets and Resets

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

-- Set the outputs to one.
elsif rising_edge(clk) then -- Rising clock edge clock

-- Clocked logic goes here.
end if;

end process;

Example: D Flip-flop with Asynchronous, Active-high reset, set

library ieee;
use ieee.std_logic_1164.all;
entity dff1 is

port (data, clk, reset, set : in std_logic;
qrs: out std_logic);

end dff1;
architecture async_set_reset of dff1 is
begin

setreset: process(clk, reset, set)
begin

if reset = '1' then
qrs <= '0';

elsif set = '1' then
qrs <= '1';

elsif rising_edge(clk) then
qrs <= data;

end if;
end process setreset;

end async_set_reset;

Synchronous Sets and Resets
Synchronous sets and resets set flip-flop outputs to logic '1' or '0' respectively
on an active clock edge.

Do not list the set and reset signal names in the sensitivity list of a process so
they will not trigger the process to execute upon changing. Instead, trigger
the process when the clock signal changes, and check the reset and set as
the first statements.

RTL View Primitives
The VHDL compiler can detect and extract the following flip-flops with
synchronous sets and resets and display them in the schematic view:

Sets and Resets VHDL Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 357

• sdffr - f lip-flop with synchronous reset

• sdffs - flip-flop with synchronous set

• sdffrs - flip-flop with both synchronous set and reset

• sdffpat - vectored flip-flop with synchronous set/reset pattern

• sdffre - enabled flip-flop with synchronous reset

• sdffse - enabled flip-flop with synchronous set

• sdffpate - enabled, vectored flip-flop with synchronous set/reset pattern

You can check the name (type) of any primitive by placing the mouse pointer
over it in the schematic view: a tooltip displays the name.

Sensitivity List
The sensitivity list is a list of signals (including ports) that, when there is an
event (change in value), triggers the process to execute.

Syntax

process (clk_signal_name)

LO

 VHDL Language Support Sets and Resets

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

Example: process Template with Synchronous, Active-high reset, set

process(clk)
begin

if rising_edge(clk) then
if reset = '1' then

-- Set the outputs to '0'.
elsif set = '1' then

-- Set the outputs to '1'.
else

-- Clocked logic goes here.
end if;

end if;
end process;

Example: D Flip-flop with Synchronous, Active-high reset, set

library ieee;
use ieee.std_logic_1164.all;
entity dff2 is

port (data, clk, reset, set : in std_logic;
qrs: out std_logic);

end dff2;
architecture sync_set_reset of dff2 is
begin

setreset: process (clk)
begin

if rising_edge(clk) then
if reset = '1' then

qrs <= '0';
elsif set = '1' then

qrs <= '1';
else

qrs <= data;
end if;

end if;
end process setreset;

end sync_set_reset;

VHDL State Machines VHDL Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 359

VHDL State Machines
This section describes VHDL state machines: guidelines for using them,
defining state values with enumerated types, and dealing with asynchrony.
The topics include:

• State Machine Guidelines

• Using Enumerated Types for State Values, on page 363

• Simulation Tips When Using Enumerated Types, on page 364

• Asynchronous State Machines in VHDL, on page 365

State Machine Guidelines
A finite state machine (FSM) is hardware that advances from state to state at
a clock edge.

The tool works best with synchronous state machines. You typically write a
fully synchronous design, avoiding asynchronous paths such as paths
through the asynchronous reset of a register. See Asynchronous State
Machines in VHDL, on page 365 for information about asynchronous state
machines.

The following are guidelines for coding FSMs:

• The state machine must have a synchronous or asynchronous reset, to
be inferred. State machines must have an asynchronous or synchronous
reset to set the hardware to a valid state after power-up, and to reset
your hardware during operation (asynchronous resets are available
freely in most FPGA architectures).

• The tool does not infer implicit state machines that are created using
multiple wait statements in a process.

• Separate the sequential process statements from the combinational ones.
Besides making it easier to read, it makes what is being registered very
obvious. It also gives better control over the type of register element
used.

• Represent states with defined labels or enumerated types.

• Use a case statement in a process to check the current state at the clock
edge, advance to the next state, and set the output values. You can also
use if-then-else statements.

LO

 VHDL Language Support VHDL State Machines

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

• Assign default values to outputs derived from the FSM before the case
statement. This helps prevent the generation of unwanted latches and
makes it easier to read because there is less clutter from rarely used
signals.

• If you do not have case statements for all possible combinations of the
selector, use a when others assignment as the last assignment in your
case statement and set the state vector to some valid state. If your state
vector is not an enumerated type, set the value to X. Assign the state to
X in the default clause of the case statement, to avoid mismatches
between pre- and post-synthesis simulations. See Example: Default
Assignment, on page 363.

• If a state machine defined in the code feeds sequential elements in a
different clock domain, some encoding values can cause metastability.
By default, the tool chooses the optimal encoding value based on the
number of states in the state machine. This can introduce additional
decode logic that could cause metastability when it feeds sequential
elements in a different clock domain. To prevent this instability, use
syn_encoding = "original" to guide synthesis for these cases.

• Override the default encoding style with the syn_encoding attribute. For a
list of default and other encodings, see syn_encoding Values, on page 77
or Specifying FSMs with Attributes and Directives, on page 393 in the
User Guide. When you specify a particular encoding style with syn_en-
coding, that value is used during the mapping stage to determine
encoding style.

attribute syn_encoding : string;
attribute syn_encoding of <typename> : type is "sequential";

See the Attribute Reference manual, for details about the syntax and
values.

One-hot implementations are not always the best choice for state
machines, even in FPGAs and CPLDs. For example, one-hot state
machines might result in higher speeds in CPLDs, but could cause
fitting problems because of the larger number of global signals. An
example of an FPGA with ineffective one-hot implementation is a state
machine that drives a large decoder, generating many output signals. In
a 16-state state machine, for example, the output decoder logic might
reference sixteen signals in a one-hot implementation, but only four
signals in an encoded representation.

VHDL State Machines VHDL Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 361

In general, do not use the directive syn_enum_encoding to set the encoding
style. Use syn_encoding instead. The value of syn_enum_encoding is used by
the compiler to interpret the enumerated data types but is ignored by
the mapper when the state machine is actually implemented.

The directive syn_enum_encoding affects the final circuit only when you
have turned off the FSM Compiler. Therefore, if you are not using FSM
Compiler or the syn_state_machine attribute, which use syn_encoding, you
can use syn_enum_encoding to set the encoding style. See the Attribute
Reference manual, for details about the syntax and values.

• Implement user-defined enumeration encoding, beyond the one-hot, gray,
and sequential styles. Use the directive syn_enum_encoding to set the state
encoding. See Example: FSM User-Defined Encoding, on page 362.

Example: FSM Coding Style
architecture behave of test is

type state_value is (deflt, idle, read, write);
signal state, next_state: state_value;

begin
-- Figure out the next state

process (clk, rst)
begin

if rst = '0' then
state <= idle;

elsif rising_edge(clk) then
state <= next_state;

end if;
end process;
process (state, enable, data_in)
begin

data_out <= '0';
-- Catch missing assignments to next_state
next_state <= idle;
state0 <= '0';
state1 <= '0';
state2 <= '0';
case state is

when idle =>
if enable = '1' then

state0 <= '1';data_out <= data_in(0);
next_state <= read;

else next_state <= idle;
end if;

LO

 VHDL Language Support VHDL State Machines

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

when read =>
if enable = '1' then

state1 <= '1'; data_out <= data_in(1);
next_state <= write;

else next_state <= read;
end if;

when deflt =>
if enable = '1' then

state2 <= '1';data_out <= data_in(2);
next_state <= idle;

else next_state <= write;
end if;

when others => next_state <= deflt;
end case;

end process;
end behave;

Example: FSM User-Defined Encoding
library ieee;
use ieee.std_logic_1164.all;
entity shift_enum is

port (clk, rst : bit;
O : out std_logic_vector(2 downto 0));

end shift_enum;
architecture behave of shift_enum is
type state_type is (S0, S1, S2);
attribute syn_enum_encoding: string;
attribute syn_enum_encoding of state_type : type is "001 010 101";
signal machine : state_type;
begin

process (clk, rst)
begin

if rst = '1' then
machine <= S0;

elsif clk = '1' and clk'event then
case machine is

when S0 => machine <= S1;
when S1 => machine <= S2;
when S2 => machine <= S0;

end case;
end if;

end process;

VHDL State Machines VHDL Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 363

with machine select
O <= "001" when S0,
"010" when S1,
"101" when S2;

end behave;

Example: Default Assignment
The second others keyword in the following example pads (covers) all the bits.
In this way, you need not remember the exact number of X’s needed for the
state variable or output signal.

when others =>
state := (others => 'X');

Assigning X to the state variable (a “don’t care” for synthesis) tells the tool
that you have specified all the used states in your case statement, and any
unnecessary decoding and gates related to other cases can therefore be
removed. You do not have to add any special, non-VHDL directives.

If you set the state to a used state for the when others case (for example: when
others => state <= delft), the tool generates the same logic as if you assign X, but
there will be pre- and post-synthesis simulation mismatches until you reset
the state machine. These mismatches occur because all inputs are unknown
at start up on the simulator. You therefore go immediately into the when others
case, which sets the state variable to state1. When you power up the
hardware, it can be in a used state, such as state2, and then advance to a
state other than state1. Post-synthesis simulation behaves more like hardware
with respect to initialization.

Using Enumerated Types for State Values
Generally, you represent states in VHDL with a user-defined enumerated
type.

Syntax
type type_name is (state1_name, state2_name, ... , stateN_name);

LO

 VHDL Language Support VHDL State Machines

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

Example
type states is (st1, st2, st3, st4, st5, st6, st7, st8);
begin
-- The statement region of a process or subprogram.
next_state := st2;
-- Setting the next state to st2

Simulation Tips When Using Enumerated Types
You want initialization in simulation to mimic the behavior of hardware when
it powers up. Therefore, do not initialize your state machine to a known state
during simulation, because the hardware will not be in a known state when it
powers up.

Creating an Extra Initialization State
If you use an enumerated type for your state vector, create an extra initializa-
tion state in your type definition (for example, stateX), and place it first in the
list, as shown in the example below.

type state is (stateX, state1, state2, state3, state4);
In VHDL, the default initial value for an enumerated type is the leftmost value
in the type definition (in this example, stateX). When you begin the simulation,
you will be in this initial (simulation only) state.

Detecting Reset Problems
In your state machine case statement, create an entry for staying in stateX
when you get in stateX. For example:

when stateX => next_state := stateX;
Look for your design entering stateX. This means that your design is not reset-
ting properly.

Note: The tool does not create hardware to represent this initialization
state (stateX). It is removed during optimization.

VHDL State Machines VHDL Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 365

Detecting Forgotten Assignment to the Next State
Assign your next state value to stateX immediately before your state machine
case statement.

Example

next_state := stateX;
case (current_state) is
...

when state3 =>
if (foo = '1') then

next_state := state2;
end if;

...
end case;

Asynchronous State Machines in VHDL
Avoid defining asynchronous state machines in VHDL. An asynchronous
state machine has states, but no clearly defined clock, and has combina-
tional loops. However, if you must use asynchronous state machines, you
can do one of the following:

• Create a netlist of the technology primitives from the target library for
your technology vendor. Any instantiated primitives that are left in the
netlist are not removed during optimization.

• Use a schematic editor for the asynchronous state machine part of your
design.

Do not use the tool to design asynchronous state machines; the tool might
remove your hazard-suppressing logic when it performs logic optimization,
causing your asynchronous state machine to work incorrectly.

The tool displays a “found combinational loop” warning message for an
asynchronous FSM when it detects combinational loops in continuous
assignment statements, processes and built-in gate-primitive logic.

LO

 VHDL Language Support VHDL State Machines

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

Asynchronous State Machines that Generate Error Messages
In this example, both async1 and async2 will generate combinational loop
errors, because of the recursive definition for output.

library ieee;
use ieee.std_logic_1164.all;

entity async is
-- output is a buffer mode so that it can be read

port (output : buffer std_logic;
g, d : in std_logic);

end async;
-- Asynchronous FSM from concurrent assignment statement
architecture async1 of async is
begin

-- Combinational loop error, due to recursive output definition.
output <= (((((g and d) or (not g)) and output) or d) and

output);
end async1;
-- Asynchronous FSM created within a process
architecture async2 of async is
begin

process(g, d, output)
begin

-- Combinational loop error, due to recursive output definition.
output <= (((((g and d) or (not g)) and output) or d) and
output);

end process;
end async2;

Hierarchical Design Creation in VHDL VHDL Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 367

Hierarchical Design Creation in VHDL
Creating hierarchy is similar to creating a schematic. You place available
parts from a library onto a schematic sheet and connect them.

To create a hierarchical design in VHDL, you instantiate one design unit
inside of another. In VHDL, the design units you instantiate are called
components. Before you can instantiate a component, you must declare it
(step 2, below).

The basic steps for creating a hierarchical VHDL design are:

1. Write the design units (entities and architectures) for the parts you wish
to instantiate.

2. Declare the components (entity interfaces) you will instantiate.

3. Instantiate the components, and connect (map) the signals (including
top-level ports) to the formal ports of the components to wire them up.

Step 1 - Write Entities and Architectures
Write entities and architectures for the design units to instantiate.

library ieee;
use ieee.std_logic_1164.all;
entity muxhier is

port (outvec: out std_logic_vector (7 downto 0);
a_vec, b_vec: in std_logic_vector (7 downto 0);
sel: in std_logic);

end muxhier;
architecture mux_design of muxhier is
begin
-- <mux functionality>
end mux_design;

LO

 VHDL Language Support Hierarchical Design Creation in VHDL

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

library ieee;
use ieee.std_logic_1164.all;
entity reg8 is

port (q: buffer std_logic_vector (7 downto 0);
data: in std_logic_vector (7 downto 0);
clk, rst: in std_logic);

end reg8;
architecture reg8_design of reg8 is -- 8-bit register
begin
-- <8-bit register functionality>
end reg8_design;
library ieee;
use ieee.std_logic_1164.all;
entity rotate is

port (q: buffer std_logic_vector (7 downto 0);
data: in std_logic_vector (7 downto 0);
clk, rst, r_l: in std_logic);

end rotate;
architecture rotate_design of rotate is
begin
-- Rotates bits or loads
-- When r_l is high, it rotates; if low, it loads data
-- <Rotation functionality>
end rotate_design;

Step 2 - Declare the Components
Components are declared in the declarative region of the architecture with a
component declaration statement.

The component declaration syntax is:

component entity_name
port (port_list);

end component;

The entity_name and port_list of the component must match exactly that of the
entity you will be instantiating.

Hierarchical Design Creation in VHDL VHDL Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 369

Example

architecture structural of top_level_design is
-- Component declarations are placed here in the
-- declarative region of the architecture.

component muxhier -- Component declaration for mux
port (outvec: out std_logic_vector (7 downto 0);

a_vec, b_vec: in std_logic_vector (7 downto 0);
sel: in std_logic);

end component;
component reg8 -- Component declaration for reg8

port (q: out std_logic_vector (7 downto 0);
 data: in std_logic_vector (7 downto 0);
 clk, rst: in std_logic);

end component;
component rotate -- Component declaration for rotate

port (q: buffer std_logic_vector (7 downto 0);
data: in std_logic_vector (7 downto 0);
clk, rst, r_l: in std_logic);

end component;
begin
-- The structural description goes here.
end structural;

Step 3 - Instantiate the Components
Use the following syntax to instantiate your components:

unique_instance_name : component_name
[generic map (override_generic_values)]

port map (port_connections);

You can connect signals either with positional mapping (the same order
declared in the entity) or with named mapping (where you specify the names
of the lower-level signals to connect). Connecting by name minimizes errors,
and especially advantageous when the component has many ports. To use
configuration specification and declaration, refer to Configuration Specifica-
tion and Declaration, on page 371.

LO

 VHDL Language Support Hierarchical Design Creation in VHDL

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

Example

library ieee;
use ieee.std_logic_1164.all;
entity top_level is

port (q: buffer std_logic_vector (7 downto 0);
 a, b: in std_logic_vector (7 downto 0);
 sel, r_l, clk, rst: in std_logic);

end top_level;
architecture structural of top_level is
-- The component declarations shown in Step 2 go here.
-- Declare the internal signals here
signal mux_out, reg_out: std_logic_vector (7 downto 0);
begin
-- The structural description goes here.
-- Instantiate a mux, name it inst1, and wire it up.
-- Map (connect) the ports of the mux using positional association.
inst1: muxhier port map (mux_out, a, b, sel);
-- Instantiate a rotate, name it inst2, and map its ports.
inst2: rotate port map (q, reg_out, clk, r_l, rst);
-- Instantiate a reg8, name it inst3, and wire it up.
-- reg8 is connected with named association.
-- The port connections can be given in any order.
-- Notice that the actual (local) signal names are on
-- the right of the '=>' mapping operators, and the
-- formal signal names from the component
-- declaration are on the left.
inst3: reg8 port map (

clk => clk,
data => mux_out,
q => reg_out,
rst => rst);

end structural;

Configuration Specification and Declaration VHDL Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 371

Configuration Specification and Declaration
A configuration declaration or specification can be used to define binding
information of component instantiations to design entities (entity-architec-
ture pairs) in a hierarchical design. After the structure of one level of a design
has been fully described using components and component instantiations, a
designer must describe the hierarchical implementation of each component.

A configuration declaration or specification can also be used to define binding
information of design entities (entity-architecture pairs) that are compiled in
different libraries.

This section discusses usage models of the configuration declaration state-
ment supported by the tool. The following topics are covered:

• Configuration Specification, on page 371

• Configuration Declaration, on page 374

• VHDL Configuration Statement Enhancement, on page 381

Component declarations and component specifications are not required for a
component instantiation where the component name is the same as the
entity name. In this case, the entity and its last architecture denote the
default binding. In direct-entity instantiations, the binding information is
available as the entity is specified, and the architecture is optionally specified.
Configuration declaration and/or configuration specification are required
when the component name does not match the entity name. If configurations
are not used in this case, VHDL simulators give error messages, and the tool
creates a black box and continues synthesis.

Configuration Specification
A configuration specification associates binding information with component
labels that represent instances of a given component declaration. A configu-
ration specification is used to bind a component instance to a design entity,
and to specify the mapping between the local generics and ports of the
component instance and the formal generics and ports of the entity. Option-
ally, a configuration specification can bind an entity to one of its architec-
tures. The tool supports a subset of configuration specification commonly
used in HDL synthesis; this section discusses that support.

LO

 VHDL Language Support Configuration Specification and Declaration

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

The following Backus-Naur Form (BNF) grammar is supported (VHDL-93
LRM pp.73-79):

configuration_specification ::=

 for component_specification binding_indication;

component_specification ::=

instantiation_list : component_name

instantiation_list ::=

instantiation_label {, instantiation_label } | others | all

binding_indication ::= [use entity_aspect]
[generic_map_aspect]
[port_map_aspect]

entity_aspect ::=

entity entity_name [(architecture_identifier)] |
configuration configuration_name

for others: AND_GATE use entity work.AND_GATE(structure);
for all: XOR_GATE use entity work.XOR_GATE;

Example: Configuration Specification
In the following example, two architectures (RTL and structural) are defined
for an adder. There are two instantiations of an adder in design top. A config-
uration statement defines the adder architecture to use for each instantia-
tion.

library IEEE;
use IEEE.std_logic_1164.all;

Configuration Specification and Declaration VHDL Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 373

entity adder is
port (a : in std_logic;

b : in std_logic;
cin : in std_logic;

 s : out std_logic;
cout : out std_logic);

end adder;
library IEEE;
use IEEE.std_logic_unsigned.all;
architecture rtl of adder is
signal tmp : std_logic_vector(1 downto 0);
begin

tmp <= ('0' & a) - b - cin;
s <= tmp(0);
cout <= tmp(1);

end rtl;
architecture structural of adder is
begin

s <= a xor b xor cin;
cout <= ((not a) and b and cin) or (a and (not b) and cin)

or (a and b and (not cin)) or (a and b and cin);
end structural;
library IEEE;
use IEEE.std_logic_1164.all;
entity top is

port (a : in std_logic_vector(1 downto 0);
b : in std_logic_vector(1 downto 0);
c : in std_logic;
cout : out std_logic;
sum : out std_logic_vector(1 downto 0));

end top;
architecture top_a of top is
component myadder

port (a : in std_logic;
b : in std_logic;
cin : in std_logic;
s : out std_logic;
cout : out std_logic);

end component;

LO

 VHDL Language Support Configuration Specification and Declaration

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

signal carry : std_logic;
for s1 : myadder use entity work.adder(structural);
for r1 : myadder use entity work.adder(rtl);
begin

s1 : myadder port map (a(0), b(0), c, sum(0), carry);
r1 : myadder port map (a(1), b(1), carry, sum(1), cout);

end top_a;

Results

Unsupported Constructs for Configuration Specification
The following configuration specification construct is not supported by the
tool. An appropriate message is issued in the log file when this construct is
used.

• The VHDL-93 LRM defines entity_aspect in the binding indication as:

entity_aspect ::=

entity entity_name [(architecture_identifier)] |
configuration configuration_name | open

The tool supports entity_name and configuration_name in the entity_aspect of
a binding indication. The tool does not yet support the open construct.

Configuration Declaration
Configuration declaration specifies binding information of component instan-
tiations to design entities (entity-architecture pairs) in a hierarchical design.
Configuration declaration can bind component instantiations in an architec-

Configuration Specification and Declaration VHDL Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 375

ture, in either a block statement, a for…generate statement, or an if…generate
statement. It is also possible to bind different entity-architecture pairs to
different indices of a for... generate statement.

The tool supports a subset of configuration declaration commonly used in
HDL synthesis. The following Backus-Naur Form (BNF) grammar is
supported (VHDL-93 LRM pp.11-17):

configuration_declaration ::=

configuration identifier of entity_name is

block_configuration

end [configuration] [configuration_simple_name];

block_configuration ::=

for block_specification

{configuration_item}

end for;

block_specification ::=

achitecture_name | block_statement_label |
generate_statement_label [(index_specification)]

index_specification ::=

discrete_range | static_expression

configuration_item ::=

block_configuration | component_configuration

LO

 VHDL Language Support Configuration Specification and Declaration

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

component_configuration ::=

for component_specification
[binding_indication;]
[block_configuration]

end for;

The BNF grammar for component_specification and binding_indication is described
in Configuration Specification, on page 371.

Configuration Declaration within a Hierarchy
The following example shows a configuration declaration describing the
binding in a 3-level hierarchy, for…generate statement labeled label1, within
block statement blk1 in architecture arch_gen3. Each architecture implementa-
tion of an instance of my_and1 is determined in the configuration declaration
and depends on the index value of the instance in the for…generate statement.

entity and1 is
port(a,b: in bit ; o: out bit);

end;
architecture and_arch1 of and1 is
begin

o <= a and b;
end;
architecture and_arch2 of and1 is
begin

o <= a and b;
end;
architecture and_arch3 of and1 is
begin

o <= a and b;
end;
library WORK; use WORK.all;
entity gen3_config is

port(a,b: in bit_vector(0 to 7);
 res: out bit_vector(0 to 7));

end;

Configuration Specification and Declaration VHDL Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 377

library WORK; use WORK.all;
architecture arch_gen3 of gen3_config is
component my_and1 port(a,b: in bit; o: out bit); end component;
begin

label1: for i in 0 to 7 generate
blk1: block
begin

a1: my_and1 port map(a(i),b(i),res(i));
end block;

end generate;
end;
library work;
configuration config_gen3_config of gen3_config is

for arch_gen3 -- ARCHITECTURE block_configuration "for
-- block_specification"

for label1 (0 to 3) --GENERATE block_config "for
-- block_specification"
for blk1 -- BLOCK block_configuration "for
-- block_specification"
-- {configuration_item}

for a1 : my_and1 -- component_configuration
-- Component_specification "for idList : compName"

use entity work.and1(and_arch1); --
binding_indication

end for; -- a1 component_configuration
end for; -- blk1 BLOCK block_configuration

end for; -- label1 GENERATE block_configuration
for label1 (4) -- GENERATE block_configuration "for

-- block_specification"
for blk1

for a1 : my_and1
use entity work.and1(and_arch3);

end for;
end for;

end for;
for label1 (5 to 7)

for blk1
for a1 : my_and1

use entity work.and1(and_arch2);
end for;

end for;
end for;

end for; -- ARCHITECTURE block_configuration
end config_gen3_config;

LO

 VHDL Language Support Configuration Specification and Declaration

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

Selection with Configuration Declaration
In the following example, two architectures (RTL and structural) are defined
for an adder. There are two instantiations of an adder in design top. A config-
uration declaration defines the adder architecture to use for each instantia-
tion. This example is similar to the configuration specification example.

library IEEE;
use IEEE.std_logic_1164.all;
entity adder is

port (a : in std_logic;
b : in std_logic;
cin : in std_logic;
s : out std_logic;
cout : out std_logic);

end adder;
library IEEE;
use IEEE.std_logic_unsigned.all;
architecture rtl of adder is
signal tmp : std_logic_vector(1 downto 0);
begin

tmp <= ('0' & a) - b - cin;
s <= tmp(0);
cout <= tmp(1);

end rtl;
architecture structural of adder is
begin

s <= a xor b xor cin;
cout <= ((not a) and b and cin) or (a and (not b) and cin) or

(a and b and (not cin)) or (a and b and cin);
end structural;
library IEEE;
use IEEE.std_logic_1164.all;
entity top is

port (a : in std_logic_vector(1 downto 0);
b : in std_logic_vector(1 downto 0);
c : in std_logic;
cout : out std_logic;
sum : out std_logic_vector(1 downto 0));

end top;

Configuration Specification and Declaration VHDL Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 379

architecture top_a of top is
component myadder

port (a : in std_logic;
b : in std_logic;
cin : in std_logic;
s : out std_logic;
cout : out std_logic);

end component;
signal carry : std_logic;
begin

s1 : myadder port map (a(0), b(0), c, sum(0), carry);
r1 : myadder port map (a(1), b(1), carry, sum(1), cout);

end top_a;
library work;
configuration config_top of top is -- configuration_declaration

for top_a -- block_configuration "for block_specification"
-- component_configuration

for s1: myadder -- component_specification
use entity work.adder (structural); -- binding_indication

end for; -- component_configuration
-- component_configuration

for r1: myadder -- component_specification
use entity work.adder (rtl); -- binding_indication

end for; -- component_configuration
end for; -- block_configuration

end config_top;

Results

LO

 VHDL Language Support Configuration Specification and Declaration

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

Direct Instantiation of Entities Using Configuration
In this method, a configured entity (i.e., an entity with a configuration decla-
ration) is directly instantiated by writing a component instantiation state-
ment that directly names the configuration.

Syntax

label : configuration configurationName
[generic map (actualGeneric1, actualGeneric2, ...)]
[port map (port1, port2, ...)];

Unsupported Constructs for Configuration Declaration
The following are the configuration declaration constructs that are not
supported by the tool. Appropriate messages are displayed in the log file if
these constructs are used.

1. The VHDL-93 LRM defines the configuration declaration as:

configuration_declaration ::=

configuration identifier of entity_name is
configuration_declarative_part
block_configuration

end [configuration] [configuration_simple_name];

configuration_declarative_part ::= {configuration_declarative_item}

configuration_declarative_item ::=

use_clause | attribute_specification | group_declaration

The tool does not support the configuration_declarative_part. It parses the
use_clause and attribute_specification without any warning message. The
group_declaration is not supported and an error message is issued.

2. VHDL-93 LRM defines entity aspect in the binding indication as:

entity_aspect ::=

entity entity_name [(architecture_identifier)] |
configuration configuration_name | open

block_configuration ::=

Configuration Specification and Declaration VHDL Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 381

for block_specification
{use_clause}
{configuration_item}

end for;

The tool does not support use_clause in block_configuration. This construct
is parsed and ignored.

VHDL Configuration Statement Enhancement
This section highlights the VHDL configuration statement support and
handling component declarations with corresponding entity descriptions.
Topics include:

• Generic mapping, on page 381

• Port Mapping, on page 382

• Mapping Multiple Entity Names to the Same Component, on page 383

• Generics Assigned to Configurations, on page 384

• Arithmetic Operators and Functions in Generic Maps, on page 389

• Ports in Component Declarations, on page 390

Generic mapping
Generics and ports can have different names and sizes at the entity and
component levels. You use the configuration statement to bind them together
with a configuration specification or a configuration declaration. The binding
priority follows this order:

• Configuration specification

• Component specification

• Component declaration

library ieee;
use ieee.std_logic_1164.all;

LO

 VHDL Language Support Configuration Specification and Declaration

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

entity test is
generic (range1 : integer := 11);

port (a, a1 : in std_logic_vector(range1 - 1 downto 0);
b, b1 : in std_logic_vector(range1 - 1 downto 0);
c, c1 : out std_logic_vector(range1 - 1 downto 0));

end test;
architecture test_a of test is
component submodule1 is
generic (size : integer := 6);

port (a : in std_logic_vector(size -1 downto 0);
b : in std_logic_vector(size -1 downto 0);
c : out std_logic_vector(size -1 downto 0));

end component;
for all : submodule1
use entity work.sub1(rtl)
generic map (size => range1);
begin

UUT1 : submodule1 generic map (size => 4)
port map (a => a,b => b,c => c);

end test_a;
If you define the following generic map for sub1, it takes priority:

entity sub1 is
generic(size: integer:=1);

port (a: in std_logic_vector(size -1 downto 0);
b : in std_logic_vector(size -1 downto 0);
c : out std_logic_vector(size -1 downto 0);

end sub1;

Port Mapping
See Generic mapping, on page 381 for information about using the configura-
tion statement and binding priority.

library ieee;
use ieee.std_logic_1164.all;
entity test is
generic (range1 : integer := 1);

port (ta, ta1 : in std_logic_vector(range1 - 1 downto 0);
tb, tb1 : in std_logic_vector(range1 - 1 downto 0);
tc, tc1 : out std_logic_vector(range1 - 1 downto 0));

end test;

Configuration Specification and Declaration VHDL Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 383

architecture test_a of test is
component submodule1
generic (my_size1 : integer := 6; my_size2 : integer := 6);

port (d : in std_logic_vector(my_size1 -1 downto 0);
e : in std_logic_vector(my_size1 -1 downto 0);
f : out std_logic_vector(my_size2 -1 downto 0));

end component;
for UUT1 : submodule1
use entity work1.sub1(rtl)
generic map (size1 => my_size1, size2 => my_size2)
port map (a => d, b => e, c => f);

begin
UUT1 : submodule1 generic map (my_size1 => 1, my_size2 => 1)
port map (d => ta, e => tb,f => tc);
end test_a;

If you define the following port map for sub1, it overrides the previous
definition:

entity sub1 is
generic(size1: integer:=6; size2:integer:=6);
port (a: in std_logic_vector (size1 -1 downto 0);

b : in std_logic_vector (size1 -1 downto 0);
c : out std_logic_vector (size2 -1 downto 0);

end sub1:

Mapping Multiple Entity Names to the Same Component
When a single component has multiple entities, you can use the configuration
statement and the for label clause to bind them. The following is an example:

entity test is
generic (range1 : integer := 1);

port (ta, ta1 : in std_logic_vector(range1 - 1 downto 0);
tb, tb1 : in std_logic_vector(range1 - 1 downto 0);
tc, tc1 : out std_logic_vector(range1 - 1 downto 0));

end test;
architecture test_a of test is
component submodule
generic (my_size1 : integer := 6; my_size2 : integer := 6);

port (d,e : in std_logic_vector(my_size1 -1 downto 0);
f : out std_logic_vector(my_size2 -1 downto 0));

end component;

LO

 VHDL Language Support Configuration Specification and Declaration

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

begin
UUT1 : submodule generic map (1, 1)

port map (d => ta, e => tb, f => tc);
UUT2 : submodule generic map (1, 1) port map

(d => ta1, e => tb1, f => tc1)
end test_a;
configuration my_config of test is
for test_a

for UUT1 : submodule
use entity work.sub1(rtl)
generic map (my_size1, my_size2)
port map (d, e, f);

end for;
for others : submodule

use entity work.sub2(rtl)
generic map (my_size1, my_size2)
port map (d, e, f);

end for;
end for;
end my_config;

You can map multiple entities to the same component, as shown here:

entity sub1 is
generic(size1: integer:=6; size2:integer:=6);
port (a: in std_logic_vector (size1 -1 downto 0);

b : in std_logic_vector (size1 -1 downto 0);
c : out std_logic_vector (size2 -1 downto 0);

end sub1:
entity sub2 is
generic(width1: integer; width2:integer);
port (a1: in std_logic_vector(width1 -1 downto 0);

b1 : in std_logic_vector (width1 -1 downto 0);
c1 : out std_logic_vector (width2 -1 downto 0);

end sub1:

Generics Assigned to Configurations
Generics can be assigned to configurations instead of entities.

Entities can contain more generics than their associated component declara-
tions. Any additional generics on the entities must have default values to be
able to synthesize.

Configuration Specification and Declaration VHDL Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 385

Entities can also contain fewer generics than their associated component
declarations. The extra generics on the component have no affect on the
implementation of the entity.

Following are some examples.

Example1

Configuration conf_module1 contains a generic map on configuration conf_c.
The component declaration for submodule1 does not have the generic use_extra-
SYN_ff, however, the entity has it.

library ieee;
use IEEE.std_logic_1164.all;
entity submodule1 is
generic (width : integer := 16;
use_extraSYN_ff : boolean := false);

port (clk : in std_logic;
b : in std_logic_vector(width - 1 downto 0);
c : out std_logic_vector(width - 1 downto 0));

end submodule1;
architecture rtl of submodule1 is
signal d : std_logic_vector(width - 1 downto 0);
begin
no_resynch : if use_extraSYN_ff = false generate

d <= b;
end generate no_resynch;
resynch : if use_extraSYN_ff = true generate

process (clk)
begin

if falling_edge(clk) then
d <= b;

end if;
end process;

end generate resynch;
process (clk)
begin

if rising_edge(clk) then
c <= d;

end if;
end process;

end rtl;

LO

 VHDL Language Support Configuration Specification and Declaration

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

configuration conf_c of submodule1 is
for rtl
end for;

end configuration conf_c;
library ieee;
use ieee.std_logic_1164.all;
entity module1 is
generic (width: integer := 16);

port (clk : in std_logic;
b : in std_logic_vector(width - 1 downto 0);
c : out std_logic_vector(width - 1 downto 0));

end module1;
architecture rtl of module1 is
component submodule1
generic (width: integer := 8);

port (clk : in std_logic;
b : in std_logic_vector(width - 1 downto 0);
c : out std_logic_vector(width - 1 downto 0));

end component;
begin
UUT2 : submodule1 port map (clk => clk,

b => b,
c => c);

end rtl;
library ieee;
configuration conf_module1 of module1 is

for rtl
for UUT2 : submodule1

use configuration conf_c generic map(width => 16,
use_extraSYN_ff => true);

end for;
end for;

end configuration conf_module1;

Configuration Specification and Declaration VHDL Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 387

Example2

The component declaration for mod1 has the generic size, which is not in the
entity. A component declaration can have more generics than the entity,
however, extra component generics have no affect on the entity’s implementa-
tion.

library ieee;
use ieee.std_logic_1164.all;
entity module1 is
generic (width: integer := 16;
use_extraSYN_ff : boolean := false);

port (clk : in std_logic;
b : in std_logic_vector (width - 1 downto 0);
c : out std_logic_vector(width - 1 downto 0));

end module1;
architecture rtl of module1 is
signal d : std_logic_vector(width - 1 downto 0);
begin

no_resynch : if use_extraSYN_ff = false generate
d <= b;

end generate no_resynch;
resynch : if use_extraSYN_ff = true generate -- insert pipeline

-- registers
process (clk)
begin

if falling_edge(clk) then
d <= b;

end if;
end process;

end generate resynch;
process (clk)
begin

if rising_edge(clk) then
c <= d;

end if;
end process;

end rtl;
configuration module1_c of module1 is

for rtl
end for;

end module1_c;

LO

 VHDL Language Support Configuration Specification and Declaration

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

library ieee;
use ieee.std_logic_1164.all;
entity test is

port (clk : in std_logic;
tb : in std_logic_vector(7 downto 0);
tc : out std_logic_vector(7 downto 0));

end test;
architecture test_a of test is
component mod1
generic (width: integer := 16;
use_extraSYN_ff: boolean := false;
size : integer := 8);

port (clk : in std_logic;
b : in std_logic_vector(width - 1 downto 0);
c : out std_logic_vector(width - 1 downto 0));

end component;
begin
UUT1 : mod1 generic map (width => 18)

port map (clk => clk,
b => tb,
c => tc);

end test_a;
Configuration test_c of test is
for test_a

for UUT1 : mod1
use configuration module1_c
generic map (width => 8, use_extraSYN_ff => true);

end for;
end for;
end test_c;

Configuration Specification and Declaration VHDL Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 389

Arithmetic Operators and Functions in Generic Maps
Arithmetic operators and functions can be used in generic maps. Following is
an example.

Example

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
entity sub is
generic (width : integer:= 16);

port (clk : in std_logic;
a : in std_logic_vector (width - 1 downto 0);
y : out std_logic_vector (width - 1 downto 0));

end sub;
architecture rtl1 of sub is
begin

process (clk, a)
begin

if (clk = '1' and clk'event) then
y <= a;

end if;
end process;

end rtl1;
architecture rtl2 of sub is
begin y <= a;
end rtl2;
configuration sub_c of sub is
for rtl1 end for;
end sub_c;
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;

LO

 VHDL Language Support Configuration Specification and Declaration

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

entity test is
generic (mcu_depth : integer:=1;
mcu_width : integer:=16);

port (clk : in std_logic;
a : in std_logic_vector

((mcu_depth*mcu_width)-1 downto 0);
y : out std_logic_vector

((mcu_depth*mcu_width)-1downto 0));
end test;
architecture RTL of test is
constant CWIDTH : integer := 2;
constant size : unsigned := "100";
component sub generic (width : integer);

port (clk : in std_logic;
a : in std_logic_vector (CWIDTH - 1 downto 0);
y : out std_logic_vector (CWIDTH - 1 downto 0));

end component;
begin i_sub : sub
generic map (width => CWIDTH) port map (clk => clk,

a => a,
y => y);

end RTL;
library ieee;
use ieee.std_logic_arith.all;
configuration test_c of test is

for RTL
for i_sub : sub use

configuration sub_c
generic map(width => (CWIDTH ** (conv_integer (size))));

end for;
end for;

end test_c;

Ports in Component Declarations
Entities can contain more or fewer ports than their associated component
declarations. Following are some examples.

Example 1

library ieee;
use ieee.std_logic_1164.all;

Configuration Specification and Declaration VHDL Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 391

entity module1 is
generic (width: integer := 16; use_extraSYN_ff : boolean := false);

port (clk : in std_logic;
b : in std_logic_vector (width - 1 downto 0);
a : out integer range 0 to 15; --extra output port

on entity
e : out integer range 0 to 15; -- extra output port

on entity
c : out std_logic_vector(width - 1 downto 0));

end module1;
architecture rtl of module1 is
signal d : std_logic_vector(width - 1 downto 0);
begin
e <= width;
a <= width;
no_resynch : if use_extraSYN_ff = false generate

d <= b;
end generate no_resynch;
resynch : if use_extraSYN_ff = true generate

process (clk)
begin

if falling_edge(clk) then
d <= b;

end if;
end process;

end generate resynch;
process (clk)
begin

if rising_edge(clk) then
c <= d;

end if;
end process;

end rtl;
configuration module1_c of module1 is
for rtl
end for;
end module1_c;

LO

 VHDL Language Support Configuration Specification and Declaration

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

library ieee;
use ieee.std_logic_1164.all;
entity test is

port (clk : in std_logic;
tb : in std_logic_vector(7 downto 0);
tc : out std_logic_vector(7 downto 0));

end test;
architecture test_a of test is
component mod1
generic (width: integer := 16);

port (clk : in std_logic;
b : in std_logic_vector(width - 1 downto 0);
c : out std_logic_vector(width - 1 downto 0));

end component;
begin
UUT1 : mod1 generic map (width => 18)
port map (clk => clk,

b => tb,
c => tc);

end test_a;
Configuration test_c of test is
for test_a

for UUT1 : mod1
use configuration module1_c
generic map (width => 8, use_extraSYN_ff => true);

end for;
end for;
end test_c;

Configuration Specification and Declaration VHDL Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 393

In the figure above, the entity module1 has extra ports a and e that are not
defined in the corresponding component declaration mod1. The additional
ports are not connected during synthesis.

Example 2

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
ENTITY sub1 IS
GENERIC(
size1 : integer := 11;
size2 : integer := 12);

PORT (r : IN std_logic_vector(size1 -1 DOWNTO 0);
s : IN std_logic_vector(size1 -1 DOWNTO 0);
t : OUT std_logic_vector(size2 -1 DOWNTO 0));

END sub1;
ARCHITECTURE rtl OF sub1 IS
BEGIN

t <= r AND s;
END ARCHITECTURE rtl;
LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
ENTITY test IS
GENERIC (range1 : integer := 12);

PORT (ta0 : IN std_logic_vector(range1 - 1 DOWNTO 0);
tb0 : IN std_logic_vector(range1 - 1 DOWNTO 0);
tc0 : OUT std_logic_vector(range1 - 1 DOWNTO 0));

END test;
ARCHITECTURE test_a OF test IS
COMPONENT submodule
GENERIC (
my_size1 : integer := 4;
my_size2 : integer := 5);

PORT (d : IN std_logic_vector(my_size1 -1 DOWNTO 0);
e : IN std_logic_vector(my_size1 -1 DOWNTO 0);
ext_1 : OUT std_logic_vector(my_size1 -1 DOWNTO 0);
ext_2 : OUT std_logic_vector(my_size1 -1 DOWNTO 0);
f : OUT std_logic_vector(my_size2 -1 DOWNTO 0));

END COMPONENT;

LO

 VHDL Language Support Configuration Specification and Declaration

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

BEGIN
UUT1 : submodule
GENERIC MAP (
my_size1 => range1,
my_size2 => range1)

PORT MAP (ext_1 => open,
ext_2 => open,
d => ta0,
e => tb0,
f => tc0);

END test_a;
CONFIGURATION my_config OF test IS

FOR test_a
FOR UUT1 : submodule
USE ENTITY work.sub1(rtl)
GENERIC MAP (

size1 => my_size1,
size2 => my_size2)

PORT MAP (r => d,
s => e,
t => f);

END FOR;
END FOR; -- test_a

END my_config;

In the figure above, the component declaration has more ports (ext_1 ext_2)
than entity sub1. The component is synthesized based on the number of ports
on the entity.

Scalable Designs VHDL Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 395

Scalable Designs
This section describes creating and using scalable VHDL designs. You can
create a VHDL design that is scalable, meaning that it can handle a
user-specified number of bits or components.

• Creating a Scalable Design Using Unconstrained Vector Ports, on
page 395

• Creating a Scalable Design Using VHDL Generics, on page 396

• Using a Scalable Architecture with VHDL Generics, on page 397

• Creating a Scalable Design Using Generate Statements, on page 399

Creating a Scalable Design Using Unconstrained Vector Ports
Do not size (constrain) the ports until you need them. This first example is
coding the adder using the - operator, and gives much better synthesized
results than the second and third scalable design examples, which code the
adders as random logic.

Example
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
entity addn is
-- Notice that a, b, and result ports are not constrained.
-- In VHDL, they automatically size to whatever is connected
-- to them.

port (result : out std_logic_vector;
cout : out std_logic;
a, b : in std_logic_vector;
cin : in std_logic);

end addn;
architecture stretch of addn is

signal tmp : std_logic_vector (a'length downto 0);
begin
-- The next line works because "-" sizes to the largest operand
-- (also, you need only pad one argument).
tmp <= ('0' & a) - b - cin;

LO

 VHDL Language Support Scalable Designs

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

result <= tmp(a'length - 1 downto 0);
cout <= tmp(a'length);
assert result'length = a'length;
assert result'length = b'length;
end stretch;
-- Top level design
-- Here is where you specify the size for a, b,
-- and result. It is illegal to leave your top
-- level design ports unconstrained.

library ieee;
use ieee.std_logic_1164.all;
entity addntest is

port (result : out std_logic_vector (7 downto 0);
cout : out std_logic;
a, b : in std_logic_vector (7 downto 0);
cin : in std_logic);

end addntest;
architecture top of addntest is
component addn

port (result : std_logic_vector;
cout : std_logic;
a, b : std_logic_vector;
cin : std_logic);

end component;
begin
test : addn port map (result => result,

cout => cout,
a => a,
b => b,
cin => cin);

end;

Creating a Scalable Design Using VHDL Generics
Create a VHDL generic with default value. The generic is used to represent bus
sizes inside a architecture, or a number of components. You can define more
than one generic per declaration by separating the generic definitions with
semicolons (;).

Scalable Designs VHDL Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 397

Syntax
generic (generic_1_name : type [:= default_value]);

Examples
generic (num : integer := 8) ;
generic (top : integer := 16; num_bits : integer := 32);

Using a Scalable Architecture with VHDL Generics
Instantiate the scalable architecture, and override the default generic value
with the generic map statement.

Syntax
generic map (list_of_overriding_values)

Examples

Generic map construct

generic map (16)
-- These values will get mapped in order given.
generic map (8, 16)

Creating a scalable adder

library ieee;
use ieee.std_logic_1164.all;
entity adder is

generic(num_bits : integer := 4); -- Default adder
-- size is 4 bits

port (a : in std_logic_vector (num_bits downto 1);
b : in std_logic_vector (num_bits downto 1);
cin : in std_logic;
sum : out std_logic_vector (num_bits downto 1);
cout : out std_logic);

end adder;

LO

 VHDL Language Support Scalable Designs

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

architecture behave of adder is
begin

process (a, b, cin)
variable vsum : std_logic_vector (num_bits downto 1);
variable carry : std_logic;
begin
carry := cin;

for i in 1 to num_bits loop
vsum(i) := (a(i) xor b(i)) xor carry;
carry := (a(i) and b(i)) or (carry and (a(i) or b(i)));

end loop;
sum <= vsum;
cout <= carry;
end process;

end behave;

Scaling the Adder by Overriding the generic Statement

library ieee;
use ieee.std_logic_1164.all;
entity adder16 is

port (a : in std_logic_vector (16 downto 1);
b : in std_logic_vector (16 downto 1);
cin : in std_logic;
sum : out std_logic_vector (16 downto 1);
cout : out std_logic);

end adder16;
architecture behave of adder16 is
-- The component declaration goes here.
-- This allows you to instantiate the adder.
component adder
-- The default adder size is 4 bits.
generic(num_bits : integer := 4);

port (a : in std_logic_vector ;
b : in std_logic_vector;
cin : in std_logic;
sum : out std_logic_vector;
cout : out std_logic);

end component;

Scalable Designs VHDL Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 399

begin
my_adder : adder

generic map (16) -- Use a 16 bit adder
port map(a, b, cin, sum, cout);

end behave;

Creating a Scalable Design Using Generate Statements
A VHDL generate statement allows you to repeat logic blocks in your design
without having to write the code to instantiate each one individually.

Creating a 1-bit Adder
library ieee;
use ieee.std_logic_1164.all;
entity adder is

port (a, b, cin : in std_logic;
sum, cout : out std_logic);

end adder;
architecture behave of adder is
begin

sum <= (a xor b) xor cin;
cout <= (a and b) or (cin and a) or (cin and b);

end behave;

Instantiating the 1-bit Adder Many Times with a Generate Statement
library ieee;
use ieee.std_logic_1164.all;
entity addern is
generic(n : integer := 8);

port (a, b : in std_logic_vector (n downto 1);
cin : in std_logic;
sum : out std_logic_vector (n downto 1);
cout : out std_logic);

end addern;

LO

 VHDL Language Support Scalable Designs

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

architecture structural of addern is
-- The adder component declaration goes here.
component adder

port (a, b, cin : in std_logic;
sum, cout : out std_logic);

end component;
signal carry : std_logic_vector (0 to n);
begin
-- Generate instances of the single-bit adder n times.
-- You need not declare the index 'i' because
-- indices are implicitly declared for all FOR
-- generate statements.

gen: for i in 1 to n generate
add: adder port map(

a => a(i),
b => b(i),
cin => carry(i - 1),
sum => sum(i),
cout => carry(i));

end generate;
carry(0) <= cin;
cout <= carry(n);
end structural;

Instantiating Black Boxes in VHDL VHDL Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 401

Instantiating Black Boxes in VHDL
Black boxes are design units with just the interface specified; internal infor-
mation is ignored by the tool. Black boxes can be used to directly instantiate:

• Technology-vendor primitives and macros (including I/Os).

• User-defined macros whose functionality was defined in a schematic
editor, or another input source (when the place-and-route tool can
merge design netlists from different sources).

Black boxes are specified with the syn_black_box synthesis directive, in
conjunction with other directives. If the black box is a technology-vendor I/O
pad, use the black_box_pad_pin directive instead.

Here is a list of the directives that you can use to specify modules as black
boxes, and to define design objects on the black box for consideration during
synthesis:

• syn_black_box

• black_box_pad_pin

• black_box_tri_pins

• syn_isclock

• syn_tco<n>

• syn_tpd<n>

• syn_tsu<n>

For descriptions of the black-box attributes and directives, see the Attribute
Reference manual.

For information on how to instantiate black boxes and technology-vendor
I/Os, see Defining Black Boxes for Synthesis, on page 382 of the User Guide.

LO

 VHDL Language Support Instantiating Black Boxes in VHDL

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

Black-Box Timing Constraints
You can provide timing information for your individual black box instances.
The following are the three predefined timing constraints available for black
boxes.

• syn_tpd<n> - Timing propagation for combinational delay through the
black box.

• syn_tsu<n> - Timing setup delay required for input pins (relative to the
clock).

• syn_tco<n> - Timing clock to output delay through the black box.

Here, n is an integer from 1 through 10, inclusive. See syn_black_box, on
page 63, for details about constraint syntax.

VHDL Attribute and Directive Syntax VHDL Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 403

VHDL Attribute and Directive Syntax
Synthesis attributes and directives can be defined in the VHDL source code
to control the way the design is analyzed, compiled, and mapped. Attributes
direct the way your design is optimized and mapped during synthesis. Direc-
tives control the way your design is analyzed prior to compilation. Because of
this distinction, directives must be included in your VHDL source code while
attributes can be specified either in the source code or in a constraint file.

The directives and attributes are predefined in the attributes package in the
synthesis library for the tool. This library package contains the built-in attri-
butes, along with declarations for timing constraints (including black-box
timing constraints) and vendor-specific attributes. The file is located here:

installDirectory/lib/vhd/synattr.vhd

There are two ways to specify VHDL attributes and directives:

• Using the attributes Package, on page 403

• Declaring Attributes, on page 404

You can either use the attributes package or redeclare the types of directives
and attributes each time you use them. You typically use the attributes
package.

Using the attributes Package
This is the most typical way to specify the attributes, because you only need
to specify the package once. You specify the attributes package, using the
following code:

library synplify;
use synplify.attributes.all;
-- design_unit_declarations
attribute productname_attribute of object : object_type is value;

The following is an example using syn_noclockbuf from the attributes package:

library synplify;
use synplify.attributes.all;

LO

 VHDL Language Support VHDL Attribute and Directive Syntax

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

entity simpledff is
port (q : out bit_vector(7 downto 0);

d : in bit_vector(7 downto 0);
clk : in bit);

// No explicit type declaration is necessary
attribute syn_noclockbuf of clk : signal is true;
-- Other code

Declaring Attributes
The alternative method is to declare the attributes to explicitly define them.
You must do this each time you use an attribute. Here is the syntax for
declaring directives and attributes in your code, without referencing the attri-
butes package:

-- design_unit_declarations
attribute attribute_name : data_type ;
attribute attribute_name of object : object_type is value;

Here is an example using the syn_noclockbuf attribute:

entity simpledff is
port (q : out bit_vector(7 downto 0);

d : in bit_vector(7 downto 0);
clk : in bit);

// Explicit type declaration
attribute syn_noclockbuf : boolean;
attribute syn_noclockbuf of clk : signal is true;

-- Other code

Case Sensitivity
Although VHDL is case-insensitive, directives, attributes, and their values are
case sensitive and must be declared in the code using the correct case. This
rule applies especially for port names in directives.

For example, if a port in VHDL is defined as GIN, the following code does not
work:

attribute black_box_tri_pin : string;
attribute black_box_tri_pin of BBDLHS : component is "gin";

VHDL Synthesis Examples VHDL Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 405

The following code is correct because the case of the port name is correct:

attribute black_box_tri_pin : string;
attribute black_box_tri_pin of BBDLHS : component is "GIN";

VHDL Synthesis Examples
This section describes the VHDL examples that are provided with the tool.
The topics include:

• Combinational Logic Examples, on page 405

• Sequential Logic Examples, on page 406

Combinational Logic Examples
The following combinational logic synthesis examples are included in the
installDirectory/examples/vhdl/common_rtl/combinat directory:

• Adders

• ALU

• Bus Sorter (illustrates using procedures in VHDL)

• 3-to-8 Decoders

• 8-to-3 Priority Encoders

• Comparator

• Interrupt Handler (coded with an if-then-else statement for the desired
priority encoding)

• Multiplexers (concurrent signal assignments, case statements, or
if-then-else statements can be used to create multiplexers; the tool
automatically creates parallel multiplexers when the conditions in the
branches are mutually exclusive)

• Parity Generator

• Tristate Drivers

LO

 VHDL Language Support VHDL Synthesis Examples

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

Sequential Logic Examples
The following sequential logic synthesis examples are included in the installDi-
rectory/examples/vhdl/common_rtl/sequentl directory:

• Flip-flops and level-sensitive latches

• Counters (up, down, and up/down)

• Register file

• Shift register

• State machines

For additional information on synthesizing flip-flops and latches, see:

• Creating Flip-flops and Registers Using VHDL Processes, on page 344

• Level-sensitive Latches Using Concurrent Signal Assignments, on
page 349

• Level-sensitive Latches Using VHDL Processes, on page 350

• Asynchronous Sets and Resets, on page 355

• Synchronous Sets and Resets, on page 356

PREP VHDL Benchmarks VHDL Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 407

PREP VHDL Benchmarks
PREP (Programmable Electronics Performance) Corporation distributes
benchmark results that show how FPGA vendors compare with each other in
terms of device performance and area.

The following PREP benchmarks are included in the installDirec-
tory/examples/vhdl/common_rtl/prep directory:

• PREP Benchmark 1, Data Path (prep1.vhd)

• PREP Benchmark 2, Timer/Counter (prep2.vhd)

• PREP Benchmark 3, Small State Machine (prep3.vhd)

• PREP Benchmark 4, Large State Machine (prep4.vhd)

• PREP Benchmark 5, Arithmetic Circuit (prep5.vhd)

• PREP Benchmark 6, 16-Bit Accumulator (prep6.vhd)

• PREP Benchmark 7, 16-Bit Counter (prep7.vhd)

• PREP Benchmark 8, 16-Bit Pre-scaled Counter (prep8.vhd)

• PREP Benchmark 9, Memory Map (prep9.vhd)

The source code for the benchmarks can be used for design examples for
synthesis or for doing your own FPGA vendor comparisons.

LO

 VHDL Language Support PREP VHDL Benchmarks

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 409

C H A P T E R 4

VHDL 2008 Language Support

This chapter describes support for the VHDL 2008 standard for the Synopsys
tools. For information on the VHDL standard, see Chapter 3, VHDL Language
Support and the IEEE 1076™-2008 standard. The following sections describe
the current level of VHDL 2008 support.

• Operators and Expressions, on page 410

• Unconstrained Data Types, on page 418

• Unconstrained Record Elements, on page 420

• Predefined Functions, on page 421

• Packages, on page 423

• Generics in Packages, on page 426

• Context Declarations, on page 428

• Case-generate Statements, on page 429

• Else/elsif Clauses, on page 434

• Sequential Signal Assignments, on page 437

• Syntax Conventions, on page 439

LO

 VHDL 2008 Language Support Operators and Expressions

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

Operators and Expressions
VHDL 2008 includes support for the following operators:

• Logical Reduction operators - the logic operators: and, or, nand, nor, xor,
and xnor can now be used as unary operators

• Condition operator (??) - converts a bit or std_ulogic value to a boolean
value

• Matching Relational operators (?=, ?/=, ?<, ?<=, ?>, ?>=) - similar to the
normal relational operators, but return bit or std_ulogic values in place of
Boolean values

• Bit-string literals - bit-string characters other than 0 and 1 and string
formats including signed/unsigned and string length

• Aggregates (aggregate pattern assignments) are used to group values in
an array or structured expression.

Logical Reduction Operators
The logical operators and, or, nand, nor, xor, and xnor can be used as unary
operators.

Example - Logical Operators

-- Example 1: Logical Operators
entity reductionOpTest is
port (
invec: in bit_vector(2 downto 0);
nandout, xorout, xnorout, norout, orout, andout: out bit
);
end reductionOpTest;

architecture rtlArch of reductionOpTest is
begin

Operators and Expressions VHDL 2008 Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 411

nandout <= nand invec;
xorout <= xor invec;
xnorout <= xnor invec;
norout <= nor invec;
orout <= or invec;
andout <= and invec;
end rtlArch;

LO

 VHDL 2008 Language Support Operators and Expressions

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

Condition Operator
The condition operator (??) converts a bit or std_ulogic value to a boolean value.
The operator is implicitly applied in a condition where the expression would
normally be interpreted as a boolean value as shown in the if statement in the
two examples below.

Example - VHDL 2008 Style Conditional Operator

-- Example 1: VHDL 2008 Style Conditional Operator
entity condOpTest is
port (
sel, in1, in2: in bit;
res: out bit
);
end condOpTest;
architecture rtlArch of condOpTest is
begin
process(in1,in2,sel)
begin
if sel then
res <= in2;
else
res <= in1;
end if;
end process;
end rtlArch;

Operators and Expressions VHDL 2008 Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 413

Example - VHDL 1993 Style Conditional Operator

-- Example 2: VHDL 1993 Style Conditional Operator
entity condOpTest is
port (
sel, in1, in2: in bit;
res: out bit
);
end condOpTest;
architecture rtlArch of condOpTest is
begin
process(in1,in2,sel)
begin
if sel = ‘1’ then
res <= in2;
else
res <= in1;
end if;
end process;
end rtlArch;

In the VHDL 2008 example, the statement

if sel then
is equivalent to:

if (?? sel) then
The implicit use of the ?? operator occurs in the following conditional expres-
sions:

• after if or elsif in an if statement

• after if in an if-generate statement

LO

 VHDL 2008 Language Support Operators and Expressions

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

• after until in a wait statement

• after while in a while loop

• after when in a conditional signal statement

• after assert in an assertion statement

• after when in a next statement or an exit statement

Matching Relational Operators
The matching relational operators return a bit or std_ulogic result in place of a
Boolean.

Example - Relational Operators

-- Example: Relational Operator
entity relOpTest is
port (
in1, in2: in bit;
res_eq, res_lteq: out bit
);
end relOpTest;
architecture rtlArch of relOpTest is
begin
res_eq <= in1 ?= in2;
res_lteq <= in1 ?<= in2;
end rtlArch;

Bit-string Literals
Bit-string literal support in VHDL 2008 includes:

• Support for characters other than 0 and 1 in the bit string, such as X or
Z.

Operators and Expressions VHDL 2008 Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 415

For example:

X"Z45X" is equivalent to "ZZZZ01000101XXXX"
B"0001-" is equivalent to "0001-"
O"75X" is equivalent to "111101XXX"

• Optional support for a length specifier that determines the length of the
string to be assigned.

Syntax: [length] baseSpecifier "bitStringvalue"

For example:

12X"45" is equivalent to "000001000101"
5O"17" is equivalent to "01111"

• Optional support for a signed (S) or unsigned (U) qualifier that deter-
mines how the bit-string value is expanded/truncated when a length
specifier is used.

Syntax: [length] S|U baseSpecifier "bitStringvalue"

For example:

12UB"101" is equivalent to "000000000101"
12SB"101" is equivalent to "111111111101"
12UX"96" is equivalent to "000010010110"
12SX"96" is equivalent to "111110010110"

• Additional support for a base specifier for decimal numbers (D). The
number of characters in the bit string can be determined by using the
expression (log2n)+1; where n is the decimal integer.

Syntax: [length] D "bitStringvalue"

For example:

D"10" is equivalent to "1010"
10D"35" is equivalent to "0000100011"

For complete descriptions of bit-string literal requirements, see the VHDL
2008 LRM.

LO

 VHDL 2008 Language Support Operators and Expressions

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

Array Aggregates
Aggregates (aggregate pattern assignments) are used to group values in an
array or structured expression. Earlier versions of VHDL required that an
array aggregate be comprised of only individual elements. VHDL 2008
extends the rules, allowing aggregates to use a mixture of individual elements
and slices of the array.

Example 1: LHS Slices in an Array Aggregate

-- Example: LHS slices in an array aggregate
library ieee;
use ieee.std_logic_1164.all;
entity top is
port

in1: in std_logic_vector(7 downto 0);
out1: out std_logic;
out2: out std_logic_vector(4 downto 0);
out3: out std_logic_vector(1 downto 0)

);
end entity;
architecture structural of top is
begin

(out1, out2, out3) <= in1;
end architecture structural;

This example of an array aggregate contains LHS slices of the array.

Operators and Expressions VHDL 2008 Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 417

Example 2: RHS Slices in an Array Aggregate

-- Example: RHS slices in an array aggregate
library ieee;
use ieee.std_logic_1164.all;
entity top is
port

clk,reset: in std_logic;
out1: out std_logic_vector(7 downto 0);
in1: in std_logic;
in2: in std_logic_vector(4 downto 0);
in3: in std_logic_vector(1 downto 0)

);
end entity;
architecture structural of top is
begin
process(clk,reset)
begin
if(reset=’1’)then

out1 <= (7 downto 6 => “10” , 5 => ‘0’ , others => ‘1’);
elsif(clk’event and clk=’1’)then

out1 <= (in1, in2,in3);
end if;
end process;
end architecture structural;

This example of an array aggregate contains RHS slices of the array.

LO

 VHDL 2008 Language Support Unconstrained Data Types

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

Unconstrained Data Types
VHDL 2008 allows the element types for arrays and the field types for records
to be unconstrained. In addition, VHDL 2008 includes support for partially
constrained subtypes in which some elements of the subtype are
constrained, while others elements are unconstrained. Specifically, VHDL
2008:

• Supports unconstrained arrays of unconstrained arrays (i.e., element
types of arrays can be unconstrained)

• Supports the VHDL 2008 syntax that allows a new subtype to be
declared that constrains any element of an existing type that is not yet
constrained

• Supports the ‘element attribute that returns the element subtype of an
array object

• Supports the new ‘subtype attribute that returns the subtype of an object

Example - Unconstrained Element Types

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_signed.all;
package myTypes is

type memUnc is array (natural range <>) of std_logic_vector;
function summation(varx: memUnc) return std_logic_vector;

end package myTypes;
package body myTypes is

function summation(varx: memUnc) return std_logic_vector is
variable sum: varx’element;

begin
sum := (others => '0');

for I in 0 to varx’length - 1 loop
sum := sum + varx(I);

end loop;
return sum;

end function summation;
end package body myTypes;

Unconstrained Data Types VHDL 2008 Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 419

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_signed.all;
use work.myTypes.all;
entity sum is

port (in1: memUnc(0 to 2)(3 downto 0);
out1: out std_logic_vector(3 downto 0));

end sum;
architecture uncbehv of sum is
begin

out1 <= summation(in1);
end uncbehv;

Example - Unconstrained Elements within Nested Arrays

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_signed.all;
package myTypes is

type t1 is array (0 to 1) of std_logic_vector;
type memUnc is array (natural range <>) of t1;
function doSum(varx: memUnc) return std_logic_vector;

end package myTypes;
package body myTypes is

function addVector(vec: t1) return std_logic_vector is
variable vecres: vec’element := (others => '0');

begin
for I in vec’Range loop

vecres := vecres + vec(I);
end loop;
return vecres;

end function addVector;
function doSum(varx: memUnc) return std_logic_vector is

variable sumres: varx’element’element;
begin

if (varx’length = 1) then
return addVector(varx(varx’low));

end if;
if (varx’Ascending) then

sumres := addVector(varx(varx’high)) +
doSum(varx(varx’low to varx’high-1));

else
sumres := addVector(varx(varx’low)) +

LO

 VHDL 2008 Language Support Unconstrained Record Elements

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

doSum(varx(varx’high downto varx’low+1));
end if;
return sumres;

end function doSum;
end package body myTypes;
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_signed.all;
use work.myTypes.all;
entity uncfunc is

port (in1: in memUnc(1 downto 0)(open)(0 to 3);
in2: in memUnc(0 to 2)(open)(5 downto 0);
in3: in memUnc(3 downto 0)(open)(2 downto 0);
out1: out std_logic_vector(5 downto 0);
out2: out std_logic_vector(0 to 3);
out3: out std_logic_vector(2 downto 0));

end uncfunc;
architecture uncbehv of uncfunc is
begin

out1 <= doSum(in2);
out2 <= doSum(in1);
out3 <= doSum(in3);

end uncbehv;

Unconstrained Record Elements
VHDL 2008 allows element types for records to be unconstrained (earlier
versions of VHDL required that the element types for records be fully
constrained). In addition, VHDL 2008 supports the concept of partially
constrained subtypes in which some parts of the subtype are constrained,
while others remain unconstrained.

Example - Unconstrained Record Elements

library ieee;
use ieee.std_logic_1164.all;

Predefined Functions VHDL 2008 Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 421

entity unctest is
port (in1: in std_logic_vector (2 downto 0);

in2: in std_logic_vector (3 downto 0);
out1: out std_logic_vector(2 downto 0));

end unctest;
architecture uncbehv of unctest is

type zRec is record
f1: std_logic_vector;
f2: std_logic_vector;

end record zRec;
subtype zCnstrRec is zRec(f1(open), f2(3 downto 0));
subtype zCnstrRec2 is zCnstrRec(f1(2 downto 0), f2(open));
signal mem: zCnstrRec2;
begin

mem.f1 <= in1;
mem.f2 <= in2;
out1 <= mem.f1 and mem.f2(2 downto 0);

end uncbehv;

Predefined Functions
VHDL 2008 adds the minimum and maximum predefined functions. The
behavior of these functions is defined in terms of the “<” operator for the
operand type. The functions can be binary to compare two elements, or unary
when the operand is an array type.

Example - Minimum/Maximum Predefined Functions

entity minmaxTest is
port (ary1, ary2: in bit_vector(3 downto 0);

minout, maxout: out bit_vector(3 downto 0);
unaryres: out bit);

end minmaxTest;
architecture rtlArch of minmaxTest is
begin

maxout <= maximum(ary1, ary2);
minout <= minimum(ary1, ary2);
unaryres <= maximum(ary1);

end rtlArch;

LO

 VHDL 2008 Language Support Predefined Functions

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

Generic Types
VHDL 2008 introduces several types of generics that are not present in VHDL
IEEE Std 1076-1993. These types include generic types, generic packages,
and generic subprograms.

Generic Types
Generic types allow logic descriptions that are independent of type. These
descriptions can be declared as a generic parameter in both packages and
entities. The actual type must be provided when instantiating a component or
package.

Example of a generic type declaration:

entity mux is
generic (type dataType);
port (sel: in bit; za, zb: in dataType; res: out dataType);

end mux;
Example of instantiating an entity with a type generic:

inst1: mux generic map (bit_vector(3 downto 0))
port map (selval,in1,in2,out1);

Generic Packages
Generic packages allow descriptions based on a formal package. These
descriptions can be declared as a generic parameter in both packages and
entities. An actual package (an instance of the formal package) must be
provided when instantiating a component or package.

Example of a generic package declaration:

entity mux is generic(
package argpkg is new dataPkg generic map (<>);

);
port (sel: in bit; za, zb: in bit_vector(3 downto 0);

res: out bit_vector(3 downto 0));
end mux;

Packages VHDL 2008 Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 423

Example of instantiating a component with a package generic:

package memoryPkg is new dataPkg generic map (4, 16);
...
inst1: entity work.mux generic map (4, 16, argPkg => memoryPkg)

Generic Subprograms
Generic subprograms allow descriptions based on a formal subprogram that
provides the function prototype. These descriptions can be declared as a
generic parameter in both packages and entities. An actual function must be
provided when instantiating a component or package.

Example of a generic subprogram declaration:

entity mux is
generic (type dataType; function filter(datain: dataType)

return dataType);
port (sel: in bit; za, zb: in dataType; res: out dataType);

end mux;
Example of instantiating a component with a subprogram generic:

architecture myarch2 of myTopDesign is
function intfilter(din: integer) return integer is
begin

return din + 1;
end function intfilter;

...
begin

inst1: mux generic map (integer, intfilter)
port map (selval,intin1,intin2,intout);

Packages
VHDL 2008 includes several new packages and modifies some of the existing
packages. The new and modified packages are located in the $LIB/vhd2008
folder instead of $LIB/vhd.

LO

 VHDL 2008 Language Support Packages

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

New Packages
The following packages are supported in VHDL 2008:

• fixed_pkg.vhd, float_pkg.vhd, fixed_generic_pkg.vhd, float_generic_pkg.vhd, fixed_-
float_types.vhd - IEEE fixed and floating point packages

• numeric_bit_unsigned.vhd - Overloads for bit_vector to have all operators
defined for ieee.numeric_bit.unsigned

• numeric_std_unsigned.vhd - Overloads for std_ulogic_vector to have all opera-
tors defined for ieee.numeric_std.unsigned

String and text I/O functions in the above packages are not to be supported.
These functions include read(), write().

Modified Packages
The following modified IEEE packages are supported with the exception of the
new string and text I/O functions (the previously supported string and text
I/O functions are unchanged):

• std.vhd - new overloads

• std_logic_1164.vhd - std_logic_vector is now a subtype of std_ulogic_vector; new
overloads

• numeric_std.vhd - new overloads

• numeric_bit.vhd - new overloads

Supported Package Functions
VHDL 2008 supports the following functions in the numeric_std.vhd, numer-
ic_bit.vhd, and std_logic_1164.vhd packages:

• to_01

• to_string/to_ostring/to_hstring

Packages VHDL 2008 Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 425

Unsupported Packages/Functions
The following packages and functions are not currently supported:

• string and text I/O functions in the new packages

• The fixed_pkg_params.vhd or float_pkg_params.vhd packages, which were
temporarily supported to allow the default parameters to be changed for
fixed_pkg.vhd and float_pkg.vhd packages, have been obsoleted by the
inclusion of the fixed_generic_pkg.vhd or float_generic_pkg.vhd packages.

Using the Packages
A switch for VHDL 2008 is located in the GUI on the VHDL panel (Implemen-
tation Options dialog box) to enable use of these packages and the ??
operator.

You can also enable the VHDL 2008 packages by including the following
command in the compiler options section of your design file:

set_option -vhdl2008 1

LO

 VHDL 2008 Language Support Generics in Packages

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

Generics in Packages
In VHDL 2008, packages can include generic clauses. These generic packages
can then be instantiated by providing values for the generics as shown in the
following example.

Example - Including Generics in Packages

-- Example - Including generics in packages
-- Generic Package Declaration
package myTypesGeneric is

generic
(width: integer := 7; testVal: bit_vector(3 downto 0) := “0011”;
 dfltVal: bit_vector(3 downto 0) := “1110”
);
subtype nvector is bit_vector(width-1 downto 0);
constant resetVal: bit_vector(3 downto 0) := dfltVal;
constant myVal: bit_vector(3 downto 0) := testVal;

end package myTypesGeneric;

-- Package instantiation
package myTypes is new work.myTypesGeneric

generic map
(width => 4, dfltVal => “0110”
);

library IEEE;
package my_fixed_pkg is new IEEE.fixed_generic_pkg

generic map

Generics in Packages VHDL 2008 Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 427

(fixed_round_style => IEEE.fixed_float_types.fixed_round,
 fixed_overflow_style => IEEE.fixed_float_types.fixed_saturate,
 fixed_guard_bits => 3,
 no_warning => false
);

use work.myTypes.all;
use work.my_fixed_pkg.all;

entity myTopDesign is
port (in1: in nvector; out1: out nvector;

insf: in sfixed(3 downto 0);
outsf: out sfixed(3 downto 0);
out2, out3, out4: out bit_vector(3 downto 0)
);

end myTopDesign;

architecture myarch2 of myTopDesign is
begin

out1 <= in1;
out2 <= resetVal;
out3 <= myVal;
outsf <= insf;

end myarch2;

LO

 VHDL 2008 Language Support Context Declarations

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

Context Declarations
VHDL 2008 provides a new type of design unit called a context declaration. A
context is a collection of library and use clauses. Both context declarations and
context references are supported as shown in the following example.

Example - Context Declaration

-- Example - Context declaration
context zcontext is

library ieee;
use ieee.std_logic_1164.all;

end context zcontext;

context work.zcontext;
use ieee.numeric_std.all;

entity myTopDesign is
port (in1: in std_logic_vector(1 downto 0);

out1: out std_logic_vector(1 downto 0));
end myTopDesign;

architecture myarch2 of myTopDesign is
begin

out1 <= in1;
end myarch2;

In VHDL 2008, a context clause cannot precede a context declaration. The
following code segment results in a compiler error.

Case-generate Statements VHDL 2008 Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 429

library ieee; -- Illegal context clause before a
-- context declaration

context zcontext is
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

end context zcontext;
Similarly, VHDL 2008 does not allow reference to the library name work in a
context declaration. The following code segment also results in a compiler
error.

context zcontext is
use work.zpkg.all; -- Illegal reference to library work

 -- in a context declaration
library ieee;
use ieee.numeric_std.all;

end context zcontext;
VHDL 2008 supports the following two, standard context declarations in the
IEEE package:

• IEEE_BIT_CONTEXT

• IEEE_STD_CONTEXT

Case-generate Statements
The case-generate statement is a new type of generate statement incorporated
into VHDL 2008. Within the statement, alternatives are specified similar to a
case statement. A static (computable at elaboration) select statement is
compared against a set of choices as shown in the following syntax:

caseLabel: case expression generate
 when choice1 =>
 -- statement list
 when choice2 =>
 -- statement list
 …
 end generate caseLabel;

LO

 VHDL 2008 Language Support Case-generate Statements

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

To allow for configuration of alternatives in case-generate statements, each
alternative can include a label preceding the choice value (e.g., labels L1 and
L2 in the syntax below):

caseLabel: case expression generate
 when L1: choice1 =>
 -- statement list
 when L2: choice2 =>
 -- statement list
 …
 end generate caseLabel;

Example - Case-generate Statement with Alternatives

entity myTopDesign is
generic (instSel: bit_vector(1 downto 0) := "10");
port (in1, in2, in3: in bit; out1: out bit);

end myTopDesign;
architecture myarch2 of myTopDesign is
component mycomp

port (a: in bit; b: out bit);
end component;
begin
a1: case instSel generate

when "00" =>
inst1: component mycomp port map (in1,out1);

when "01" =>
inst1: component mycomp port map (in2,out1);

when others =>
inst1: component mycomp port map (in3,out1);

end generate;
end myarch2;

Example - Case-generate Statement with Labels for Configuration

entity myTopDesign is
generic (selval: bit_vector(1 downto 0) := "10");

port (in1, in2, in3: in bit; tstIn: in bit_vector(3 downto 0);
out1: out bit);

end myTopDesign;

Case-generate Statements VHDL 2008 Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 431

architecture myarch2 of myTopDesign is
component mycomp

port (a: in bit; b: out bit);
end component;

begin
a1: case selval generate

when spec1: "00" | "11"=> signal inRes: bit;
begin

inRes <= in1 and in3;
inst1: component mycomp port map (inRes,out1);

end;
when spec2: "01" =>

inst1: component mycomp port map (in1, out1);
when spec3: others =>

inst1: component mycomp port map (in3,out1);
end generate;

end myarch2;
entity mycomp is

port (a : in bit;
b : out bit);

end mycomp;
architecture myarch of mycomp is
begin

b <= not a;
end myarch;
architecture zarch of mycomp is
begin

b <= '1';
end zarch;
configuration myconfig of myTopDesign is
for myarch2

for a1 (spec1)
for inst1: mycomp use entity mycomp(myarch);
end for;

end for;
for a1 (spec2)

for inst1: mycomp use entity mycomp(zarch);
end for;

end for;
for a1 (spec3)

LO

 VHDL 2008 Language Support Matching case and select Statements

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

for inst1: mycomp use entity mycomp(myarch);
end for;

end for;
end for;
end configuration myconfig;

Matching case and select Statements
Matching case and matching select statements are supported - case?
(matching case statement) and select? (matching select statement). The state-
ments use the ?= operator to compare the case selector against the case
options.

Example - Use of case? Statement

-- Example - Use of case? statement
library ieee;
use ieee.std_logic_1164.all;
entity myTopDesign is

port (in1, in2: in bit;
sel: in std_logic_vector(2 downto 0);
out1: out bit);

end myTopDesign;
architecture myarch2 of myTopDesign is
begin

process(all)
begin

a1: case? sel is
when “1--” =>

out1 <= in1;
when “01-” =>

Matching case and select Statements VHDL 2008 Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 433

out1 <= in2;
when others =>

out1 <= in1 xor in2;
end case?;

end process;
end myarch2;

Example - Use of select? Statement

-- Example - Use of select? Statement
library ieee;
use ieee.std_logic_1164.all;
entity myTopDesign is

port (in1, in2: in bit;
sel: in std_logic_vector(2 downto 0);
out1: out bit);

end myTopDesign;
architecture myarch2 of myTopDesign is
begin

with sel select?
out1 <=
in1 when “1--”,
in2 when “01-”,
in1 xor in2 when others;

end myarch2;

LO

 VHDL 2008 Language Support Else/elsif Clauses

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

Else/elsif Clauses
In VHDL 2008, else and elsif clauses can be included in if-generate statements.
You can configure specific if/else/elsif clauses using configurations by adding a
label before each condition. In the code example below, the labels on the
branches of the if-generate statement are spec1, spec2, and spec3. These labels
are later referenced in the configuration myconfig to specify the appropriate
entity/architecture pair. This form of labeling allows statements to be refer-
enced in configurations.

Example - Else/elsif Clauses in If-Generate Statements

-- Example - Else/elsif clauses in if-generate statements

entity myTopDesign is
generic (genval: bit_vector(1 downto 0) := “01”);
port (in1, in2, in3: in bit; out1: out bit);

end myTopDesign;

architecture myarch2 of myTopDesign is

component mycomp
port (a: in bit;

b: out bit);
end component;

begin
a1:

if spec1: genval=”10” generate
inst1: mycomp port map (in1,out1);

elsif spec2: genval=”11” generate

Else/elsif Clauses VHDL 2008 Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 435

inst1: component mycomp port map (in2,out1);
else spec3: generate

inst1: component mycomp port map (in3,out1);
end generate;

end myarch2;

library ieee;
use ieee.std_logic_1164.all;

entity mycomp is
port (a: in bit;

 b : out bit);
end entity mycomp;

architecture myarch1 of mycomp is
begin

b <= ‘1’ xor a;
end myarch1;

architecture myarch2 of mycomp is
begin

b <= ‘1’ xnor a;
end myarch2;

architecture myarch3 of mycomp is
signal temp : bit := ‘1’;

LO

 VHDL 2008 Language Support Else/elsif Clauses

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

begin
b <= temp xor not(a);

end myarch3;

configuration myconfig of myTopDesign is
for myarch2

for a1 (spec1)
for inst1: mycomp

use entity mycomp(myarch1);
end for;

end for;
for a1 (spec2)

for inst1: mycomp
use entity mycomp(myarch2);

end for;
end for;
for a1 (spec3)

for inst1: mycomp
use entity mycomp(myarch3);

end for;
end for;

end for;
end configuration myconfig;

Sequential Signal Assignments VHDL 2008 Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 437

Sequential Signal Assignments
Earlier versions of VHDL allowed when-else and with-select assignments to
be used only as concurrent statements. VHDL 2008 supports that these
assignments can also be used in a sequential context, such as, inside a
process block.

Using When-Else and With-Select Assignments
Here are examples of when-else and with-select assignments inside a process
block.

Example: When-else in a process block

-- Example: When-else in a process block
library IEEE;
use IEEE.std_logic_1164.all;
entity top is

port (
in1 : in std_logic;
in2 : in std_logic;
sel : in std_logic;
out1 : out std_logic
);

end entity;
architecture top_in1 of top is
begin

process (in1,in2,sel)
begin

out1 <= in1 when sel = ‘0’ else

LO

 VHDL 2008 Language Support Sequential Signal Assignments

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

in2;
end process;
end architecture;

Example: With-select in a process block

-- Example: With-select in a process block
entity top is
port
sel : in bit_vector (1 downto 0);
in1: in bit;
in2: in bit;
in3: in bit;
out1: out bit
);
end top;
architecture myarch2 of top is
begin
process(sel,in1,in2,in3)
begin
with sel select out1 <= in1 when “00”,

 in2 when “01”,
 in3 when “10”,
 in1 xor in2 when “11”;

end process;
end myarch2;

Syntax Conventions VHDL 2008 Language Support

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 439

Using Output Ports in a Sensitivity List
VHDL 2008 supports the use of output ports in the sensitivity list of a
process block.

Syntax Conventions
The following syntax conventions are supported in VHDL 2008:

• All keyword

• Comment delimiters

• Extended character set

All Keyword
VHDL 2008 supports the use of an all keyword in place of the list of input
signals to a process in the sensitivity list.

Example - All Keyword in Sensitivity List

-- Example - all keyword
entity mycomp is

port (a, c: in bit; b: out bit);
end mycomp;

architecture myarch of mycomp is
begin

process (all)
begin

b <= not a or c;
end process;

LO

 VHDL 2008 Language Support Syntax Conventions

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Refer-
ence

end myarch;

Comment Delimiters
VHDL 2008 supports the /* and */ comment-delimiter characters. All text
enclosed between the beginning /* and the ending */ is treated as a
comment, and the commented text can span multiple lines. The standard
VHDL “--” comment-introduction character string is also supported.

Extended Character Set
The extended ASCII character literals (ASCII values from 128 to 255) are
supported.

Example - Extended Character Set

-- Example - extended character set
library ieee;
use ieee.std_logic_1164.all;
entity get_version is

port (ver : out string(16 downto 1));
end get_version;
architecture behv of get_version is
constant version : string (16 downto 1) := “version ©«ãëïõü»”;
-- Above string includes extended ASCII characters that
-- fall between 127-255
begin

ver <= version;
end behv;

Synplify Pro for Microchip Edition Language Support Reference © 2020 Synopsys, Inc.
October 2020 Synopsys Confidential Information 441

Index

Symbols
.* connection (SystemVerilog) 249
.name connection (SystemVerilog) 248
`ifdef 124
$bits system function 262

A
aggregate expressions 186
all keyword, VHDL 2008 439
always blocks

Verilog 85
combinational logic 98
event control 99
flip-flops 103
level-sensitive latches 104
multiple event control arguments 85

always_comb (SystemVerilog) 222
always_ff (SystemVerilog) 226
always_latch (SystemVerilog) 225
arithmetic operators

Verilog 14
assignment operators

VHDL 294
assignment statement

combinational logic (Verilog) 100
level-sensitive latches (Verilog) 104
VHDL 342

asynchronous sets and resets
Verilog 107
VHDL 355

asynchronous state machines
Verilog 117
VHDL 365

attributes
specifying in the source code 129
syntax, Verilog 129
syntax, VHDL 403

automatic task declaration 57

B
bit-stream casting 158
bit-string literals 414
black box constraints

VHDL 402
black boxes

instantiating, Verilog 120
instantiating, VHDL 401
Verilog 120
VHDL 401

block name on end (SystemVerilog) 219
built-in gate primitives (Verilog) 17

C
case statement

VHDL 317
casting

static 158
casting types 158
clock edges (VHDL) 346
clocks

edges in VHDL 346
combinational logic

always_comb block
(SystemVerilog) 222

Verilog 97
VHDL 327

combinational loop errors in state
machines 366

combined data, port types (Verilog) 34
comma-separated sensitivity list

(Verilog) 35
comments

Verilog 91
VHDL 343

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Reference
442 Synopsys Confidential Information October 2020

components, VHDL. See VHDL
components

concurrent signal assignments
(VHDL) 323

condition operator
VHDL 2008 412

conditional signal assignments
(VHDL) 325

configuration statement
VHDL 381
VHDL generic mapping 381
VHDL multiple entities 383
VHDL port mapping 382

configuration, VHDL
declaration 374
specification 371

constant function
syntax restrictions 82

constant function (Verilog 2001) 37
constant math function 52
constants (SystemVerilog) 174
constants, VHDL 302

SNS (Selected Name Support) 330
constructs

interface 151, 253
union (SystemVerilog) 153

context declarations
VHDL 2008 428

continuous assignments (Verilog)
combinational logic 100

continuous assignments, Verilog
level-sensitive latches 104

cross-module referencing
Verilog 60

D
D flip-flop, active-high reset, set (VHDL)

asynchronous 356
synchronous 358

data objects (SystemVerilog) 173
data type conversion 158
data types

in SystemVerilog parameters 180
data types (SystemVerilog) 141

data types (VHDL) 289
data types, VHDL

guidelines 342
declaring and assigning objects

(VHDL) 293
default assignment (VHDL) 363
default propagation 336
directives

black box instantiation (VHDL) 401
specifying 129
syntax, Verilog 129
syntax, VHDL 403

do-while loops (SystemVerilog) 211
dynamic range assignment (VHDL) 294

E
else/elsif clauses

VHDL 2008 434
encoding

enumeration, default (VHDL) 343
state machine

guidelines
Verilog 112

enumerated types (SystemVerilog) 144
enumerated types (VHDL) 363
enumeration encoding, default

(VHDL) 343
events, defining outside process

(VHDL) 347
exit statement 321
exponential operator 26
extra initialization state, creating

(VHDL) 364

F
factorials

calculating 57
flip-flops

Verilog 103
flip-flops (VHDL) 344
forgotten assignment to next state,

detecting (VHDL) 365
for-loop statement 319

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Reference
443 Synopsys Confidential Information October 2020

FSM coding style
Verilog 112
VHDL 361

FSM default state assignment
(Verilog) 115

functions
Verilog constant math 52
Verilog signed 52
Verilog unsigned 52
VHDL 2008 predefined 421

functions, selected name support
(VHDL) 331

G
gate primitives, Verilog 17
generate statement

VHDL 399
generics

VHDL 2008 packages 426

H
hierarchical design, creating

Verilog 122
VHDL 367

hierarchical designs
using include files 124

hierarchy
Verilog 122

hierarchy (VHDL) 367

I
I/Os

See also ports
ieee library (VHDL) 304
if-then-else statement (VHDL) 316
ignored language constructs (Verilog) 15
ignored language constructs (VHDL) 288
include files

hierarchical designs 124
init values

in RAMs 339
initial values

registers (Verilog) 86

Verilog 86
inserting

level-sensitive latches in design,
warning 98, 342

instantiating black boxes (Verilog) 120
instantiating black boxes (VHDL) 401
instantiating components

(VHDL) 306, 328
instantiating gate primitives, Verilog 17
integer data type (VHDL) 291
interface construct 151, 253

K
keywords

all (VHDL 2008) 439
SystemVerilog 283

L
language

guidelines (Verilog) 85
language constructs (Verilog) 14
language constructs (VHDL) 286, 288
language guidelines (VHDL) 342
latches

always blocks (Verilog) 104
concurrent signal assignment

(VHDL) 349
continuous assignments (Verilog) 104
error message (VHDL) 352
level-sensitive

Verilog 104
process blocks (VHDL) 350
SystemVerilog always_latch 225

level-sensitive latches
Verilog 104
VHDL

unwanted 352
level-sensitive latches (VHDL)

using concurrent signal
assignments 349

using processes 350
libraries

macro, built-in 304
Verilog

macro 120

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Reference
444 Synopsys Confidential Information October 2020

VHDL
attributes and constraints 304
IEEE, supported 286

libraries (VHDL) 303
library and package rules, VHDL 305
library packages (VHDL), accessing 305
library statement (VHDL) 305
limitations

SystemVerilog 137
literal

bit string 414
literals

SystemVerilog 141
localparams

Verilog 2001 52
logical operators

VHDL 2008 410
loop statement 318

M
macromodule 14
macros

libraries 304
model template, VHDL 343
modules, Verilog 90
multidimensional array

syntax restrictions 82
Verilog 2001 58

multiplexer (Verilog) 99

N
naming

objects (VHDL) 293
nets (SystemVerilog) 174
next statement 321
numeric_bit IEEE package (VHDL) 304
numeric_std IEEE package (VHDL) 304

O
objects (VHDL)

naming 293
operators

exponential 26
set membership (SystemVerilog) 200
streaming (SystemVerilog) 196
type (SystemVerilog) 206
Verilog 14
VHDL

assignment 294
Selected Name Support (SNS) 332
sharing in case statements 327
SNS 332

VHDL 2008 condition 412
VHDL 2008 logical 410
VHDL 2008 relational 414

operators (SystemVerilog) 185
operators (VHDL) 309
overriding parameter value, Verilog 93

P
packages 239

VHDL 2008 423
VHDL 2008 generics 426

packages, VHDL 303
parameter data types

SystemVerilog 176
ports (VHDL) 299
ports connections (SystemVerilog) 248
predefined enumeration types

(VHDL) 289
predefined functions

VHDL 2008 421
predefined packages (VHDL) 303
PREP benchmarks

Verilog 121
VHDL 407

primitives, Verilog 17
process keyword (VHDL) 313
process template (VHDL)

modeling combinational logic 313
process template, VHDL 345
processes, VHDL 342

R
registers (VHDL) 344
relational operators

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Reference
445 Synopsys Confidential Information October 2020

VHDL 2008 414
resets

Verilog 106
VHDL 355

detecting problems 364
resource library (VHDL), creating 306
resource sharing

VHDL 327
RTL view

primitives
Verilog 109
VHDL 356

rules
library and package, VHDL 305

S
scalable adder, creating (Verilog) 93
scalable architecture, using (VHDL) 397
scalable designs (VHDL) 395
scaling by overriding parameter value,

Verilog
with # 93
with defparam 93

Selected Name Support (SNS),
VHDL 330

sensitivity list (VHDL) 314
sequential logic

SystemVerilog
sequential logic 226

VHDL
examples 406

sequential logic (Verilog) 102
sequential logic (VHDL) 327
set and reset signals (VHDL) 355
sets and resets

VHDL 355
sets and resets (Verilog) 106
sign casting 158
signal assignments

Verilog, always blocks 103
VHDL

conditional 325
simple and selected 324

signal assignments (VHDL) 294

concurrent 323
signed arithmetic (VHDL) 291
signed functions 52
signed multipliers (Verilog) 84
signed signals, Verilog 2001 36, 56
simple component instantiation

(VHDL) 328
simple gates, Verilog 17
simple signal assignments, VHDL 324
simulation

using enumerated types, VHDL 364
size casting 158
SNS (Selected Name Support),

VHDL 332
constants 330
demand loading 335
functions and operators 331
user-defined function support 333

source files
adding to VHDL design library 303

standard IEEE package (VHDL) 304
state machines

asynchronous
Verilog 117
VHDL 355

encoding
syn_encoding attribute

Verilog 113
VHDL 360

enumerated type, VHDL 363
SystemVerilog example with

enumerated types 145
Verilog 115, 116

state machines (Verilog) 112
state machines (VHDL) 359
state values (FSM), Verilog 116
static casting 158
std IEEE library (VHDL) 304
std_logic_1164 IEEE package

(VHDL) 304
std_logic_arith IEEE package

(VHDL) 304
std_logic_signed IEEE package

(VHDL) 304

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Reference
446 Synopsys Confidential Information October 2020

std_logic_unsigned IEEE package
(VHDL) 304

streaming operator
SystemVerilog 196

structural designs, Verilog 122
supported language constructs

(Verilog) 14
supported language constructs

(VHDL) 286
syn_encoding attribute

FSM encoding style
Verilog 113
VHDL 360

syn_enum_encoding directive
not for FSM encoding 361

synchronous FSM from concurrent
assignment statement
(VHDL) 366

synchronous sets and resets
Verilog 108

synchronous sets and resets (VHDL) 356
syntax restrictions

constant function 82
multidimensional array 82

synthesis
attributes and directives (VHDL) 403
attributes and directives, Verilog 129
examples, VHDL 405
guidelines

Verilog 77
guidelines (VHDL) 341

synthesis macro, Verilog 124
SystemVerilog 151, 239, 253

.* connection 249

.name connection 248
$bits system function 262
always_comb 222
always_ff 226
always_latch 225
block name on end 219
constants 174
data objects 173
data types 141
do-while loops 211
enumerated types 144
interface construct 151, 253
keywords 283

limitations 137
literals 141
nets 174
operators 185
packages 239
procedural blocks 222
type casting 148
typedef 142
unnamed blocks 218
variables 174

T
task declaration

automatic 57
template, module (Verilog) 90
text macro

Verilog 125
tristates, Verilog 18
type casting 158

SystemVerilog 148
typedef (SystemVerilog) 142

U
union construct (SystemVerilog) 153
unnamed blocks (SystemVerilog) 218
unsigned arithmetic (VHDL) 291
unsigned functions 52
unsupported language constructs

VHDL
configuration declaration 380
configuration specification 374

unsupported language constructs
(VHDL) 287

use statement (VHDL) 305
user-defined enumeration data types

(VHDL) 290
user-defined functions, SNS (VHDL) 333

V
variables

SystemVerilog 174
variables (VHDL) 301
Verilog

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Reference
447 Synopsys Confidential Information October 2020

’ifdef 124
always blocks 85

combinational logic 98
event control 99
level-sensitive latches 104
multiple event control arguments 85

asynchronous sets and resets 107
asynchronous state machines 117
attribute syntax 129
black boxes 120
built-in gate primitives 17
combinational logic 97
combined data, port types 34
comma-separated sensitivity list 35
comments, syntax 91
constant function (Verilog 2001) 37
continuous assignments 100, 104
cross-module referencing 60
directive syntax 129
flip-flops using always blocks 103
gate primitives 17
hierarchical design 122
hierarchy 122
ignored language constructs 15
ignoring code with ‘ifdef 124
initial values 86
initial values for registers 86
instantiating

black boxes 120
gate primitives 17

language
constructs 14

language guidelines 85
level-sensitive latches 104
localparams (Verilog 2001) 52
module template 90
multidimensional array (Verilog

2001) 58
multiplexer 99
operators 14
overriding parameter value

with # 93
with defparam 93

PREP benchmarks 121
primitives 17
scalable adder, creating 93
scalable modules 91
scaling by overriding parameter value

with # (example) 93
with defparam (example) 93

sequential logic 102, 104

sets and resets 106
signal assignments always blocks 103
signed multipliers 84
signed signals (Verilog 2001) 36, 52, 56
simple gates 17
state machines 112
state values (FSM) 116
structural Verilog 122
supported language constructs 14
synchronous sets and resets 108
synthesis macro 124
synthesis text macro 124
text macro 125
tristate gates 18
wildcard (*) in sensitivity list 33, 35

Verilog 2001
constant statement 37
localparams 52
multidimensional array 58
signed signals 36, 52, 56

Verilog 2001 support 33
Verilog include files

hierarchical designs 124
Verilog language support 13, 133
Verilog synthesis guidelines 77
VHDL

accessing packages 305
adding source files to design

library 303
assignment operators 294
assignments 342
asynchronous FSM created with

process 366
asynchronous sets and resets 355
asynchronous state machines 365
attribute syntax 403
attributes package 403
black boxes 401
case statement 317
clock edges 346
clock edges, wait statements 348
combinational logic

definition 327
examples 405

comments, syntax 343
compiling design units into

libraries 303
component instantiation 328
concurrent signal assignments 323

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Reference
448 Synopsys Confidential Information October 2020

conditional signal assignments 325
configuration

declaration 374
specification 371

configuration statement 381
constants 302

SNS (Selected Name Support) 330
D flip-flop with active-high reset, set

asynchronous 356
synchronous 358

data types 289
guidelines 342

declaring and assigning objects 293
default assignment 363
demand loading 335
design libraries 303
detecting reset problems 364
directive syntax 403
dynamic range assignment 294
enumerated types as state values 363
enumeration encoding, default 343
events, defining outside process 347
flip-flops 344
forgotten assignment to next state,

detecting 365
FSM coding style 361
generics for scalable designs 396
hierarchical designs 367
if-then-else statement 316
ignored language constructs 288
initialization state, extra 364
instantiating

black boxes 401
components 306, 328

instantiating components 306
integer data type 291
language

constructs 286, 288
guidelines 342
support 285

latch error, example 352
level-sensitive latches

concurrent signal assignment 349
process blocks 350
unwanted 352

libraries 303
attributes, supplied with synthesis

tool 304
library and package rules 305
library packages

accessing 305

attributes package 403
IEEE support 286
predefined 303

library statement 305
model template 343
naming objects 293
object naming syntax 293
operators 309
packages 303
ports 299
predefined enumeration types 289
predefined packages 303
PREP benchmarks 407
process keyword 313
process template 345

modeling combinational logic 313
processes 342

creating flip-flops and registers 344
registers 344
reset signals 355
resource library, creating 306
resource sharing 327
RTL view primitives 356
scalable architecture, using 397
scalable design

creating using generate
statements 399

creating using generics 396
creating using unconstrained vector

ports 395
scalable designs 395

generate statement 399
generics 396
unconstrained vector ports 395

Selected Name Support (SNS) 330
selected signal assignments 325
sensitivity list 314
sequential logic 327

examples 406
sequential statements 315
set signals 355
sharing operators in case

statements 327
signal assignments 294

concurrent 323
conditional 325
selected 325
simple 324

signals 299
simple component instantiation 328
simple signal assignments 324

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Reference
449 Synopsys Confidential Information October 2020

simulation using enumerated
types 364

SNS 330
constants 330
demand loading 335
functions and operators 331
user-defined function support 333

state machines 359
statements

case 317
generate 399
if-then-else 316
library 305
use 305
wait 348

supported language constructs 286
synchronous FSM from concurrent

assignment statement 366
synchronous sets and resets 356
synthesis

attributes and directives 403
examples 405
guidelines 341

unsupported language constructs 287
configuration declaration 380
configuration specification 374

use statement 305
user-defined enumeration data

types 290
variables 301
wait statement inside process 348

VHDL 2008 409
enabling 425
operators 410
packages 423

VHDL assignment
dynamic range 294

VHDL components
configuration declarations 374
creating resource library 307
instantiating 306, 328
specifying configurations 372
vendor macro libraries 306

VHDL generic mapping
configuration statement 381

VHDL libraries
compiling design units 303

VHDL multiple entities
configuration statement 383

VHDL port mapping
configuration statement 382

W
wait statement, inside process

(VHDL) 348
while-loop statement 319
wildcards

Verilog sensitivity list 33, 35

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Language Support Reference
450 Synopsys Confidential Information October 2020

	Synplify Pro for Microchip Language Support Reference Manual
	Copyright Notice and Proprietary Information
	Free and Open-Source Licensing Notices
	Destination Control Statement
	Disclaimer
	Trademarks
	Third-Party Links

	Verilog Language Support
	Support for Verilog Language Constructs
	Data Types
	Built-in Gate Primitives
	Port Definitions
	Statements
	Blocks
	Compiler Directives
	Operators
	Procedural Assignments

	Verilog 2001 Support
	Combined Data, Port Types (ANSI C-style Modules)
	Comma-separated Sensitivity List
	Wildcards (*) in Sensitivity List
	Signed Signals
	Inline Parameter Assignment by Name
	Constant Function
	Localparam
	Configuration Blocks
	Localparams
	$signed and $unsigned Built-in Functions
	$clog2 Constant Math Function
	Generate Statement
	Automatic Task Declaration
	Multidimensional Arrays
	Variable Partial Select
	Cross-Module Referencing
	ifndef and elsif Compiler Directives

	Verilog Synthesis Guidelines
	General Synthesis Guidelines
	Library Support in Verilog
	Constant Function Syntax Restrictions
	Multi-dimensional Array Syntax Restrictions
	Signed Multipliers in Verilog
	Verilog Language Guidelines: always Blocks
	Initial Values in Verilog
	Cross-language Parameter Passing in Mixed HDL
	Library Directory Specification for the Verilog Compiler

	Verilog Module Template
	Scalable Modules
	Creating a Scalable Module
	Using Scalable Modules
	Using Hierarchical defparam

	Combinational Logic
	Combinational Logic Examples
	always Blocks for Combinational Logic
	Continuous Assignments for Combinational Logic
	Signed Multipliers

	Sequential Logic
	Sequential Logic Examples
	Flip-flops Using always Blocks
	Level-sensitive Latches
	Sets and Resets
	SRL Inference

	Verilog State Machines
	State Machine Guidelines
	State Values
	Asynchronous State Machines

	Instantiating Black Boxes in Verilog
	PREP Verilog Benchmarks
	Hierarchical or Structural Verilog Designs
	Using Hierarchical Verilog Designs
	Creating a Hierarchical Verilog Design
	Include Files
	synthesis Macro
	text Macro

	Verilog Attribute and Directive Syntax
	Attribute Examples Using Verilog 2001 Parenthetical Comments

	SystemVerilog Language Support
	Feature Summary
	SystemVerilog Limitations

	Unsized Literals
	Data Types
	Typedefs
	Enumerated Types
	Struct Construct
	Union Construct
	Static Casting

	Arrays
	Arrays
	Arrays of Structures
	Array Querying Functions

	Data Declarations
	Constants
	Variables
	Nets
	Implicit Nets
	Data Types in Parameters
	Type Parameters

	Operators and Expressions
	Operators
	Aggregate Expressions
	Streaming Operator
	Set Membership Operator
	Set Membership Case Inside Operator
	Type Operator
	$typeof Operator

	Procedural Statements and Control Flow
	Do-While Loops
	For Loops
	Foreach Loops
	Unnamed Blocks
	Block Name on end Keyword
	Unique and Priority Modifiers

	Processes
	always_comb
	always_latch
	always_ff

	Tasks and Functions
	Implicit Statement Group
	Formal Arguments
	endtask/endfunction Names

	Hierarchy
	Compilation Units
	Packages
	Port Connection Constructs
	Extern Module

	Interface
	Interface Construct
	Modports
	Modport Limitations and Non-Supported Features

	System Tasks and System Functions
	$bits System Function
	$countbits System Function
	$countones System Function
	$onehot and $onehot0 System Functions
	Array Querying Functions

	Generate Statement
	Conditional Generate Constructs

	Assertions
	Keyword Support

	VHDL Language Support
	Language Constructs
	Supported VHDL Language Constructs
	Unsupported VHDL Language Constructs
	Partially-supported VHDL Language Constructs
	Ignored VHDL Language Constructs

	VHDL Language Constructs
	Data Types
	Physical Types
	Arrays
	Declaring and Assigning Objects in VHDL
	Ranges
	Dynamic Range Assignments
	Null Ranges
	Signals and Ports
	Variables
	VHDL Constants
	Aliases
	Libraries and Packages
	Literals
	Operators
	Large Time Resolution
	VHDL Process
	Common Sequential Statements
	Concurrent Signal Assignments
	Resource Sharing
	Combinational Logic
	Sequential Logic
	Component Instantiation in VHDL
	VHDL Selected Name Support
	User-defined Function Support
	Demand Loading

	VHDL Implicit Data-type Defaults
	VHDL Synthesis Guidelines
	General Synthesis Guidelines
	VHDL Language Guidelines
	Model Template
	Constraint Files for VHDL Designs
	Creating Flip-flops and Registers Using VHDL Processes
	Clock Edges
	Defining an Event Outside a Process
	Using a WAIT Statement Inside a Process
	Level-sensitive Latches Using Concurrent Signal Assignments
	Level-sensitive Latches Using VHDL Processes
	Signed mod Support for Constant Operands

	Sets and Resets
	Asynchronous Sets and Resets
	Synchronous Sets and Resets

	VHDL State Machines
	State Machine Guidelines
	Using Enumerated Types for State Values
	Simulation Tips When Using Enumerated Types
	Asynchronous State Machines in VHDL

	Hierarchical Design Creation in VHDL
	Configuration Specification and Declaration
	Configuration Specification
	Configuration Declaration
	VHDL Configuration Statement Enhancement

	Scalable Designs
	Creating a Scalable Design Using Unconstrained Vector Ports
	Creating a Scalable Design Using VHDL Generics
	Using a Scalable Architecture with VHDL Generics
	Creating a Scalable Design Using Generate Statements

	Instantiating Black Boxes in VHDL
	Black-Box Timing Constraints

	VHDL Attribute and Directive Syntax
	VHDL Synthesis Examples
	Combinational Logic Examples
	Sequential Logic Examples

	PREP VHDL Benchmarks

	VHDL 2008 Language Support
	Operators and Expressions
	Logical Reduction Operators
	Condition Operator
	Matching Relational Operators
	Bit-string Literals
	Array Aggregates

	Unconstrained Data Types
	Unconstrained Record Elements
	Predefined Functions
	Generic Types

	Packages
	New Packages
	Modified Packages
	Supported Package Functions
	Unsupported Packages/Functions
	Using the Packages

	Generics in Packages
	Context Declarations
	Case-generate Statements
	Matching case and select Statements
	Else/elsif Clauses
	Sequential Signal Assignments
	Using When-Else and With-Select Assignments
	Using Output Ports in a Sensitivity List

	Syntax Conventions
	All Keyword
	Comment Delimiters
	Extended Character Set

	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

