
AC491
Application Note

PolarFire EDAC and Scrubbing of Fabric RAMs

51900491. 2.0 3/21

Microsemi Headquarters
One Enterprise, Aliso Viejo,
CA 92656 USA
Within the USA: +1 (800) 713-4113
Outside the USA: +1 (949) 380-6100
Sales: +1 (949) 380-6136
Fax: +1 (949) 215-4996
Email: sales.support@microsemi.com
www.microsemi.com

©2021 Microsemi, a wholly owned
subsidiary of Microchip Technology Inc. All
rights reserved. Microsemi and the
Microsemi logo are registered trademarks of
Microsemi Corporation. All other trademarks
and service marks are the property of their
respective owners.

Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of
its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the
application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have
been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any
performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all
performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not
rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer’s responsibility to
independently determine suitability of any products and to test and verify the same. The information provided by Microsemi
hereunder is provided “as is, where is” and with all faults, and the entire risk associated with such information is entirely
with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP
rights, whether with regard to such information itself or anything described by such information. Information provided in this
document is proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this
document or to any products and services at any time without notice.

About Microsemi
Microsemi, a wholly owned subsidiary of Microchip Technology Inc. (Nasdaq: MCHP), offers a comprehensive portfolio of
semiconductor and system solutions for aerospace & defense, communications, data center and industrial markets.
Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and
ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world's
standard for time; voice processing devices; RF solutions; discrete components; enterprise storage and communication
solutions, security technologies and scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs and
midspans; as well as custom design capabilities and services. Learn more at www.microsemi.com.

mailto:sales.support@microsemi.com
http://www.microsemi.com

Microsemi Proprietary AC491 Revision 2.0 iii

Contents

1 Revision History . 1
1.1 Revision 2.0 . 1
1.2 Revision 1.0 . 1

2 EDAC and Scrubbing of Fabric RAMs . 2
2.1 Design Requirements . 2
2.2 Prerequisites . 2
2.3 Application Note Design . 3

2.3.1 Design Description . 4
2.4 Clocking Structure . 6
2.5 Reset Structure . 6
2.6 Hardware Implementation . 7

3 Setting Up the Hardware . 8

4 Running the Demo . 10

5 Conclusion . 17

6 Appendix 1: Programming the Device Using FlashPro Express 18

7 Appendix 2: Running the TCL Script . 20

Microsemi Proprietary AC491 Revision 2.0 iv

Figures

Figure 1 Block Diagram . 3
Figure 2 CoreEDAC IP Configuration . 5
Figure 3 Refresh Period Timer . 5
Figure 4 Clocking Structure . 6
Figure 5 Reset Structure . 6
Figure 6 Hardware Implementation . 7
Figure 7 Device Manager . 8
Figure 8 PolarFire Board Setup . 9
Figure 9 Selecting the COM Port . 10
Figure 10 Device Connection Successful Message . 11
Figure 11 Write Incremental Data to Memory . 11
Figure 12 Single Bit Errors and Double Bit Errors Count . 12
Figure 13 Writing 0xAA at Address 0x48 . 12
Figure 14 Reading Value at 0xAA at Address 0x48 . 13
Figure 15 Single Error Injection at Address 0x48 . 13
Figure 16 Single Error count . 14
Figure 17 Single Bit Error Memory Scrubbing . 14
Figure 18 Double Error Injection at Address 0x45 . 15
Figure 19 Double Error count . 15
Figure 20 Loop Test . 16
Figure 21 FlashPro Express Job Project . 18
Figure 22 New Job Project from FlashPro Express Job . 18
Figure 23 Programming the Device . 19
Figure 24 FlashPro Express—RUN PASSED . 19

Microsemi Proprietary AC491 Revision 2.0 v

Tables

Table 1 Design Requirements . 2
Table 2 Jumper Settings . 8

Revision History

Microsemi Proprietary AC491 Revision 2.0 1

1 Revision History

The revision history describes the changes that were implemented in the document. The changes are
listed by revision, starting with the most current publication.

1.1 Revision 2.0
Added Appendix 2: Running the TCL Script, page 20.

1.2 Revision 1.0
The first publication of this document.

EDAC and Scrubbing of Fabric RAMs

Microsemi Proprietary AC491 Revision 2.0 2

2 EDAC and Scrubbing of Fabric RAMs

The CoreEDAC IP generates EDAC circuitry for both internal (on-chip) and external RAM blocks. The
user data is fed to the EDAC encoder, which calculates the parity bits and appends these to the user
data, forming a codeword. The codeword is stored into the RAM. During user read, the read codeword is
decoded first, which detects and corrects errors (if any), discards parity bits, and outputs the corrected
user data word. Scrubbing periodically checks every memory location using the ECC decoder. If a
location contains a corrupted word, the decoder detects and corrects the word. The scrubbing circuitry
then writes the corrected word back to the same location. To provide normal access to the RAM and
prevent decreasing performance, scrubbing is only done during idle periods. The scrubbing circuitry sets
a proper write address and write enable signals, writing the corrected codeword back to the RAM.
Writeback occurs only upon detecting an error.

The application note design can be programmed using the following option:

• Using the job file: To program the device using the job file provided along with the design files, see
Appendix 1: Programming the Device Using FlashPro Express.

2.1 Design Requirements
The following table lists the hardware and software requirements for this application note design.

Note: Libero SmartDesign and configuration screen shots shown in this guide are for illustration purpose only.
Open the Libero design to see the latest updates.

2.2 Prerequisites
Before you start:

1. Download the design files from:
http://soc.microsemi.com/download/rsc/?f=mpf_ac491_df

2. Download and install Libero SoC from:
https://www.microsemi.com/product-directory/design-resources/1750-libero-soc

Table 1 • Design Requirements

Requirement Version
Operating system 64-bit Windows 7, 8, or 10

Hardware
PolarFire Evaluation Kit (MPF300-EVAL-KIT)
-12 V/5 A AC power adapter and cord
-USB 2.0 A to mini-B cable for UART and programming

Rev D or later

Software
Libero SoC Note: Refer to the readme.txt file

provided in the design files for the
software versions used with this
reference design.

FlashPro Express

https://www.microsemi.com/product-directory/design-resources/1750-libero-soc
http://soc.microsemi.com/download/rsc/?f=mpf_ac491_df

EDAC and Scrubbing of Fabric RAMs

Microsemi Proprietary AC491 Revision 2.0 3

2.3 Application Note Design
EDAC detects a 1-bit error or 2-bit error when data is read from the memory. If EDAC detects the 1-bit
error, the EDAC controller corrects the same error bit. If EDAC is enabled for all the 1-bit and 2-bit errors,
corresponding error counters will get incremented. To demonstrate this, an error is introduced manually
and detection and correction is observed. The application note design shows how to use CoreEDAC IP
with internal μSRAMs for the following:

1. Detect and correct single-bit errors
2. Detect double-bit errors
3. Perform auto memory scrubbing and on-demand memory scrubbing
The similar approach can be used for on-chip LSRAMs. This application note design does not
demonstrate the use of EDAC with external memories.

The block diagram of the design is shown in Figure 1.

Figure 1 • Block Diagram

1. Configure CoreEDAC IP to use internal μSRAM blocks and set the memory depth to 1kb. Enable
error inject test port to induce an errors into the memory. Enable scrubbing logic to correct the errors.

2. The user RTL logic is used to write and read 1kb data to and from the memory. This logic will also
monitor the status flags set by the CoreEDAC controller for monitoring the scrubbing request and
detecting single-bit and double-bit errors.

3. UART is used to interface with GUI to provide commands to the design and display the error
counters and status flags.

4. The application note design performs the following operations using the GUI.
• Memory Write: Initialize 1kb μSRAM memory with incremental data.
• Memory Read: Read 1kb data from μSRAM memory to verify the memory is initialized. Initially, the

memory is not corrupted; hence the error counters must be zero.
• Inject Error: Inject Single-bit or double-bit error in memory locations.
• Memory Read: Read the data from corrupted μSRAM memory.

• Single-bit error: The relevant counter will be incremented and the corrected data will be
available.

• Double-bit error: The relevant counter will be incremented and the erroneous data will be
available.

• Memory Scrub: Performs memory scrubbing and correct single bit errors in μSRAM memory.
• Single Memory Write: User can access the entire 1kb memory through this operation. User can

provide the memory address and the data to be written during this operation.
• Single Memory Read: User can access the entire 1kb memory through this operation. User can

provide the memory address and the data to be read during this operation.
• Loop Test: User can use this option to perform the operations from step to step in one click.

GUI

PF_INIT
Monitor

CoreUART

Device_Init_done

UART IF and
control logic

CoreReset
PF

CoreEDAC IP

CCC

uSRAM

UART IF

Reset to Design

Status

CCC Lock

100 MHz clock to design

PolarFire FPGA

REF_CLK

EDAC and Scrubbing of Fabric RAMs

Microsemi Proprietary AC491 Revision 2.0 4

2.3.1 Design Description
This application note design involves implementation of following tasks:

• Writing data to μSRAM
• Reading data from μSRAM
• Corrupting one or two bits
• Reading the data

Note: In the case of a 1-bit error, the EDAC controller corrects the error. In the case of a 2-bit error, the EDAC
controller does not correct the error.

The following tests are implemented in this application note design.

• Loop Test
• Manual Test

Note: These tests are applicable to both 1-bit and 2-bit errors.

2.3.1.1 Loop Test
Loop Test is executed when the PolarFire FPGA receives a loop test command from the GUI. Initially, all
the error counters and EDAC related registers are placed in the RESET state.

The following steps are executed for each iteration:

1. 1kb incremental data is written into the memory.
2. 1kb data is read from the memory.
3. 50 single bit errors are injected into the memory.
4. The memory is read and the error count is displayed.
5. Scrubbing is performed on the memory and the scrubbing correction count is displayed.
6. 1-bit or 2-bit error detection and correction is sent to the GUI.

2.3.1.2 Manual Test
This method allows manual testing for enabling or disabling EDAC and write or read operation. Using this
method, 1-bit or 2-bit errors can be introduced to any location within the μSRAM. Enable the EDAC and
write data to the specified address using the GUI fields. Disable the EDAC and write 1-bit or 2-bit
corrupted data to the same address location. Enable the EDAC and read the data from the same address
location. The corresponding error counter is displayed on the GUI. The GUI Serial Console logs all the
actions performed in PolarFire.

As shown in Figure 2, the CoreEDAC IP is configured with the following options:

• Internal μSRAM blocks are selected and the memory depth is set to 1Kb.
• Error injection is enabled for inducing errors into the memory.
• Scrubbing logic is enabled for correcting errors.
• Triple Redundancy is also enabled for the generation of three independent sets of the EDAC

circuitry and the majority vote logic for protecting the EDAC from soft errors.
• Scrubber is enabled to detect data errors and repair them.

EDAC and Scrubbing of Fabric RAMs

Microsemi Proprietary AC491 Revision 2.0 5

Figure 2 • CoreEDAC IP Configuration

2.3.1.3 Scrubbing Refresh Period
The refresh period defines how often the scrubbing session runs. The block diagram of the refresh period
timer is shown in Figure 3. The timer is driven by the RCLK signal. The binary divider that has a
configurable bitwidth of DIV_WDTH, generates a relatively slow signal, dec. The frequency of the dec
signal equals the frequency of the read clock divided by 2DIV_WDTH. The dec signal serves as an input to
the configurable arbitrary divider. It divides dec frequency by arbitrary number TMOUT_SET. As a result,
the circuitry generates a timeout output signal once per TMOUT_SET × 2DIV_WDTH RCLK periods.

The refresh period must be more than 10 times the scrubbing time that is DIV_WDTH, and TMOUT_SET
parameters must satisfy the following condition: TMOUT_SET*2DIV_WDTH > 10*(SCRUB_AMAX -
SCRUB_AMIN). The timeout signal initiates another scrubbing session. As the user access takes priority
over scrubbing, there might be an exception.

For more information about setting the refresh period timer, scrubbing, and scrubbing refresh period, see
HB0143:CoreEDAC IP Handbook. Table 12 in this handbook explains DIV_WDTH, TMOUT_SET,
SCRUB_AMAX, and SCRUB_AMIN parameters.

Figure 3 • Refresh Period Timer

DIV_WIDTH bits

Binary Divider decread clk timeout

Arbitrary Divider

Counts up to

TMOUT_SET

http://www.actel.com/ipdocs/CoreEDAC_HB.pdf

EDAC and Scrubbing of Fabric RAMs

Microsemi Proprietary AC491 Revision 2.0 6

2.4 Clocking Structure
In this design, there is one clock domain. The on-board 50 MHz crystal oscillator is connected to the
PF_CCC block which generates 100 MHz clock that provides clock source to CORERESET_PF,
COREUART, UART_IF, and COREEDAC modules. The following figure shows the clocking structure of
the design.

Figure 4 • Clocking Structure

2.5 Reset Structure
In this design, the reset signal of COREUART, UART_IF, and COREEDAC blocks are issued using the
CORERESET_PF module. The CORERESET_PF module releases active low reset when the PF_CCC
lock and PF_INIT_MONITOR INIT_DONE are asserted. The following figure shows the reset structure of
the design.

Figure 5 • Reset Structure

Clock Domain 1

On chip 50 MHz Oscillator

PF_CCC_C0

CORERESET
_PF_C0 COREUART_C0 UART_IF COREEDAC_C0

PF_INIT
MONITOR

CORERESET_PFPF_CCC

RESET_N

RESET_N
COREUART

UART_IF
RESET_N

COREEDAC
NGRST

RST

FABRIC_RESET_NPLL_LOCK

INIT_DONE

FPGA_FOR_N

EDAC and Scrubbing of Fabric RAMs

Microsemi Proprietary AC491 Revision 2.0 7

2.6 Hardware Implementation
Figure 6 shows the PolarFire EDAC and scrubbing design implemented in Libero SoC.

Figure 6 • Hardware Implementation

Setting Up the Hardware

Microsemi Proprietary AC491 Revision 2.0 8

3 Setting Up the Hardware

The following steps describe how to setup the hardware.

1. Ensure that the following Jumper Settings are set on the board.

2. Connect the power supply cable to the J9 connector on the board.
3. Connect the USB cable from the Host PC to J5 (FTDI port) on the board.
4. Power on the board using the SW3 slide switch.
5. Ensure that the USB to UART bridge drivers are automatically detected. This can be verified in the

device manager of the host PC.
6. As shown in Figure 7, the port properties of COM13 show that it is connected to USB Serial

Converter C. Hence, COM13 is selected in this example. The COM port number is system specific.
Figure 7 • Device Manager

The PolarFire board setup is shown in Figure 8.

Table 2 • Jumper Settings

Jumper Description Default
J18, J19, J20, J21, and J22 Short pin 2 and 3 for programming the PolarFire FPGA through FTDI Closed

J28 Short pin 1 and 2 for programming through the on-board FlashPro5 Open

J26 Short pin 1 and 2 for programming through the FTDI SPI Closed

J4 Short pin 1 and 2 for manual power switching using SW3 Closed

J12 Short pin 3 and 4 for 2.5 V Closed

Setting Up the Hardware

Microsemi Proprietary AC491 Revision 2.0 9

Figure 8 • PolarFire Board Setup

Running the Demo

Microsemi Proprietary AC491 Revision 2.0 10

4 Running the Demo

The PolarFire EDAC application is a simple Graphic User Interface (GUI) that runs on the host PC to
communicate with the PolarFire Device. Before running the demo, ensure Setting Up the Hardware and
Appendix 1: Programming the Device Using FlashPro Express.

To run the EDAC demo:

1. Run the setup.exe file available at the following design files location:
<$Download_Directory>\mpf_ac491_df\GUI\EDAC_PF_GUI.exe

2. Follow the installation wizard to install the GUI application.
3. After successful GUI Installation. Invoke the EDAC GUI from All Programs > EDAC Demo > EDAC

PF GUI
4. Open the PolarFire EDAC GUI and select the COM port.

Figure 9 • Selecting the COM Port

Running the Demo

Microsemi Proprietary AC491 Revision 2.0 11

5. After selecting the COM port, click Connect icon as highlighted in Figure 10. The log window will
display connection successful message.

Figure 10 • Device Connection Successful Message

0
6. Click Write as highlighted in Figure 11 to write 1kb incremental data into the memory. The log

window will display the write successful message.
Figure 11 • Write Incremental Data to Memory

Running the Demo

Microsemi Proprietary AC491 Revision 2.0 12

7. Click Read as highlighted in Figure 12 to read 1kb data. The read data will be displayed in the Read
Data tab and the single bit errors and double bit errors will be displayed in their respective fields.
Also, the log window will display the read successful message.

Figure 12 • Single Bit Errors and Double Bit Errors Count

8. For a single memory location, enter the address and data to be written and click Write as highlighted
in Figure 13.

Figure 13 • Writing 0xAA at Address 0x48

Running the Demo

Microsemi Proprietary AC491 Revision 2.0 13

9. For reading a single location, provide the memory address and click Read as highlighted in
Figure 14. The corresponding data will be displayed in the GUI.

Figure 14 • Reading Value at 0xAA at Address 0x48

10. For injecting a single bit error, provide the memory address and click Inject Error as highlighted in
Figure 15.

Figure 15 • Single Error Injection at Address 0x48

Running the Demo

Microsemi Proprietary AC491 Revision 2.0 14

11. After Injecting a single bit error, click Read as highlighted in Figure 16. The Single Error count will be
updated to 1.

Figure 16 • Single Error count

12. The Memory Scrubbing detects and corrects single bit errors. Click Scrub as highlighted in
Figure 17 to perform scrubbing on the memory. After the scrubbing is completed, the Correction
Count will display the number of single bit errors corrected during scrubbing.

Figure 17 • Single Bit Error Memory Scrubbing

Note: One single bit error is introduced in step 11. Hence, during scrubbing, the single bit error is corrected,
and the correction value is updated to “1”.

Running the Demo

Microsemi Proprietary AC491 Revision 2.0 15

13. For injecting Double bit error, select the Error Type to Double, provide the memory address and
click Inject Error as highlighted in Figure 18.

Figure 18 • Double Error Injection at Address 0x45

14. Click Read as highlighted in Figure 19. The Double Error will be updated to “1”, indicating a double
bit error exists in the memory. The Single Error is zero because the single bit error is corrected
during scrubbing as mentioned in the previous step.

Figure 19 • Double Error count

Running the Demo

Microsemi Proprietary AC491 Revision 2.0 16

15. Click Loop Test as highlighted in Figure 20. The loop test performs the following operations.
• Writes 1kb incremental data into the memory.
• Reads 1kb data from the memory.
• Injects 50 single bit errors into the memory.
• Reads the memory and displays the error count.
• Performs scrubbing on the memory and displays the scrubbing correction count.

Figure 20 • Loop Test

This concludes the PolarFire EDAC Demo.

Conclusion

Microsemi Proprietary AC491 Revision 2.0 17

5 Conclusion

This demo highlights the EDAC capabilities of the PolarFire μSRAM memories. The 1-bit error or 2-bit
error are introduced manually. 1-bit error correction and 2-bit error detection is observed using a GUI.

Appendix 1: Programming the Device Using FlashPro Express

Microsemi Proprietary AC491 Revision 2.0 18

6 Appendix 1: Programming the Device Using
FlashPro Express

This chapter describes how to program the PolarFire device with the job file using Flashpro Express. The
job file is available at the following design files folder location:
<$Download_Directory>\mpf_ac491_df/Programming_Job

Follow these steps:

1. On the host PC, start the FlashPro Express software from its installation directory.
2. Select New or New Job Project from FlashPro Express Job from Project menu to create a new

job project, as shown in Figure 21, page 18.
Figure 21 • FlashPro Express Job Project

3. Enter the following in the New Job Project from FlashPro Express Job dialog box:
• Programming job file: Click Browse and navigate to the location where the job file is located

and select the file. The default location is: <$Download_Directory>\mpf_ac491_liberosoc_jb
• FlashPro Express job project location: Select Browse and navigate to the location where

you want to save the project.
Figure 22 • New Job Project from FlashPro Express Job

4. Click OK. The required programming file is selected and ready to be programmed in the device.
5. The FlashPro Express window appears as shown in Figure 23, page 19. Confirm that a programmer

number appears in the Programmer field. If it does not, confirm the board connections and click
Refresh/Rescan Programmers.

Appendix 1: Programming the Device Using FlashPro Express

Microsemi Proprietary AC491 Revision 2.0 19

Figure 23 • Programming the Device

6. Click RUN to program the device. When the device is programmed successfully, a RUN PASSED
status is displayed as shown in Figure 24, page 19. See Running the Demo, page 10.

Figure 24 • FlashPro Express—RUN PASSED

7. Close FlashPro Express (Project > Exit).
The PolarFire device is programmed.

Appendix 2: Running the TCL Script

Microsemi Proprietary AC491 Revision 2.0 20

7 Appendix 2: Running the TCL Script

TCL scripts are provided in the design files folder under directory TCL_Scripts. If required, the design
flow can be reproduced from Design Implementation till generation of job file.

To run the TCL, follow the steps below:

1. Launch the Libero software
2. Select Project > Execute Script....
3. Click Browse and select script.tcl from the downloaded TCL_Scripts directory.
4. Click Run.
After successful execution of TCL script, Libero project is created within TCL_Scripts directory.

For more information about TCL scripts, refer to mpf_ac491_df/TCL_Scripts/readme.txt

Refer to Libero® SoC TCL Command Reference Guide for more details on TCL commands. Contact
Technical Support for any queries encountered when running the TCL script.

https://www.microsemi.com/document-portal/doc_download/1245481-libero-soc-v12-6-tcl-commands-reference-guide-for-smartfusion2-igloo2-and-rtg4

	1 Revision History
	1.1 Revision 2.0
	1.2 Revision 1.0

	2 EDAC and Scrubbing of Fabric RAMs
	2.1 Design Requirements
	2.2 Prerequisites
	2.3 Application Note Design
	2.3.1 Design Description
	2.3.1.1 Loop Test
	2.3.1.2 Manual Test
	2.3.1.3 Scrubbing Refresh Period

	2.4 Clocking Structure
	2.5 Reset Structure
	2.6 Hardware Implementation

	3 Setting Up the Hardware
	4 Running the Demo
	5 Conclusion
	6 Appendix 1: Programming the Device Using FlashPro Express
	7 Appendix 2: Running the TCL Script

