
Synopsys Confidential Information

Verification Continuum™

Synopsys
Synplify Pro for Microchip
Reference Manual

June 2020

LO

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
2 Synopsys Confidential Information June 2020

Copyright Notice and Proprietary Information
© 2020 Synopsys, Inc. All rights reserved. This software and documentation
contain confidential and proprietary information that is the property of
Synopsys, Inc. The software and documentation are furnished under a
license agreement and may be used or copied only in accordance with the
terms of the license agreement. No part of the software and documentation
may be reproduced, transmitted, or translated, in any form or by any means,
electronic, mechanical, manual, optical, or otherwise, without prior written
permission of Synopsys, Inc., or as expressly provided by the license agree-
ment.

Free and Open-Source Licensing Notices
If applicable, Free and Open-Source Software (FOSS) licensing notices are
available in the product installation.

Destination Control Statement
All technical data contained in this publication is subject to the export
control laws of the United States of America. Disclosure to nationals of other
countries contrary to United States law is prohibited. It is the reader’s
responsibility to determine the applicable regulations and to comply with
them.

Disclaimer
SYNOPSYS, INC., AND ITS LICENSORS MAKE NO WARRANTY OF ANY
KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 3

Trademarks
Synopsys and certain Synopsys product names are trademarks of Synopsys,
as set forth at
http://www.synopsys.com/Company/Pages/Trademarks.aspx.
All other product or company names may be trademarks of their respective
owners.

Third-Party Links
Any links to third-party websites included in this document are for your
convenience only. Synopsys does not endorse and is not responsible for such
websites and their practices, including privacy practices, availability, and
content.

Synopsys, Inc.
690 East Middlefield Road
Mountain View, CA 94043
www.synopsys.com

June 2020

http://www.synopsys.com/Company/Pages/Trademarks.aspx

LO

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
4 Synopsys Confidential Information June 2020

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 5

Contents

Chapter 1: Product Overview
Overview of the Synthesis Tool . 12

Common Features . 12

Synopsys FPGA Tool Features . 14

Graphic User Interface . 17

Getting Help . 19

Chapter 2: User Interface Overview
The Project View . 22

Project Management View . 24

 The Project Results View . 26
Project Status Tab . 26
Report Tab . 30
Implementation Directory . 32
Process View . 33

Other Windows and Views . 36
Dockable GUI Entities . 37
Watch Window . 37
Tcl Script and Messages Windows . 40
Tcl Script Window . 41
Message Viewer . 41
Output Windows (Tcl Script and Watch Windows) . 45
Text Editor View . 45
Context Help Editor Window . 48
Interactive Attribute Examples . 50

Using the Mouse . 52
Mouse Operation Terminology . 52
Using Mouse Strokes . 53
Using the Mouse Buttons . 54

LO

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
6 Synopsys Confidential Information June 2020

Using the Mouse Wheel . 56

Toolbars . 57
Project Toolbar . 57
Analyst Toolbar . 59
Text Editor Toolbar . 61
FSM Viewer Toolbar . 62
Tools Toolbar . 63

Keyboard Shortcuts . 64

Buttons and Options . 72

Chapter 3: HDL Analyst Tool
HDL Analyst Views and Commands . 78

RTL View . 78
Technology View . 80
Hierarchy Browser . 82
FSM Viewer Window . 83
Filtered and Unfiltered Schematic Views . 85
Accessing HDL Analyst Commands . 86

Schematic Objects and Their Display . 88
Object Information . 88
Sheet Connectors . 89
Primitive and Hierarchical Instances . 90
Transparent and Opaque Display of Hierarchical Instances 91
Hidden Hierarchical Instances . 93
Schematic Display . 93

Basic Operations on Schematic Objects . 97
Finding Schematic Objects . 97
Selecting and Unselecting Schematic Objects . 98
Crossprobing Objects . 99
Dragging and Dropping Objects . 101

Multiple-sheet Schematics . 102
Controlling the Amount of Logic on a Sheet . 102
Navigating Among Schematic Sheets . 102
Multiple Sheets for Transparent Instance Details . 104

Exploring Design Hierarchy . 105
Pushing and Popping Hierarchical Levels . 105
Navigating With a Hierarchy Browser . 109
Looking Inside Hierarchical Instances . 110

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 7

Filtering and Flattening Schematics . 113
Commands That Result in Filtered Schematics . 113
Combined Filtering Operations . 114
Returning to The Unfiltered Schematic . 114
Commands That Flatten Schematics . 115
Selective Flattening . 116
Filtering Compared to Flattening . 117

Timing Information and Critical Paths . 119
Timing Reports . 119
Critical Paths and the Slack Margin Parameter . 120
Examining Critical Path Schematics . 121

Chapter 4: Constraint Guidelines
Constraint Types . 124

Constraint Files . 125

Timing Constraints . 127

FDC Constraints . 130

Methods for Creating Constraints . 131

Constraint Translation . 133
sdc2fdc Conversion . 133

Constraint Checking . 138

Database Object Search . 140

Forward Annotation . 141
Auto Constraints . 141

Chapter 5: Input and Result Files
Input Files . 144

HDL Sourc e Files . 145

Libraries . 148
Open Verification Library (Verilog) . 149
The Generic Technology Library . 149
ASIC Library Files . 150

Output Files . 152
Log File . 157

Timing Reports . 162

LO

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
8 Synopsys Confidential Information June 2020

Timing Report Header . 163
Performance Summary . 163
Clock Pre-map Reports . 165
Clock Relationships . 168
Interface Information . 169
A synchronous Clock Report . 170

Hierarchical Area Report . 172

Constraint Checking Report . 173

Chapter 6: RAM and ROM Inference
Guidelines and Support for RAM Inference . 182

Automatic RAM Inference . 183
Block RAM . 183
RAM Attributes . 184

Block RAM Inference . 187
Block RAM Examples . 193

Initial Values for RAMs . 229
Example 1: RAM Initialization . 229
Example 2: Cross-Module Referencing for RAM Initialization 230
Initialization Data File . 232
Forward Annotation of Initial Values . 235

RAM Instantiation with SYNCORE . 242

ROM Inference . 243

Chapter 7: SynCore IP Tool
SYNCore FIFO Compiler . 250

Synchronous FIFO Overview . 250
Specifying FIFOs with SYNCore . 251
SYNCore FIFO Wizard . 256
FIFO Read and Write Operations . 265
FIFO Ports . 266
FIFO Parameters . 269
FIFO Status Flags . 271
FIFO Programmable Flags . 274

SYNCore RAM Compiler . 281
Specifying RAMs with SYNCore . 281
SYNCore RAM Wizard . 289
Single-Port Memories . 293

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 9

Dual-Port Memories . 295
Read/Write Timing Sequences . 299

SYNCore Byte-Enable RAM Compiler . 303
Functional Overview . 303
Specifying Byte-Enable RAMs with SYNCore . 304
SYNCore Byte-Enable RAM Wizard . 311
Read/Write Timing Sequences . 314
Parameter List . 317

SYNCore ROM Compiler . 319
Functional Overview . 319
Specifying ROMs with SYNCore . 321
SYNCore ROM Wizard . 326
Single-Port Read Operation . 330
Dual-Port Read Operation . 331
Parameter List . 331

SYNCore Adder/Subtractor Compiler . 334
Functional Description . 334
Specifying Adder/Subtractors with SYNCore . 335
SYNCore Adder/Subtractor Wizard . 343
Adder . 346
Subtractor . 349
Dynamic Adder/Subtractor . 352

SYNCore Counter Compiler . 358
Functional Overview . 358
Specifying Counters with SYNCore . 359
SYNCore Counter Wizard . 365
UP Counter Operation . 368
Down Counter Operation . 369
Dynamic Counter Operation . 369

Appendix H: Designing with Microchip
Basic Support for Microchip Designs . 374

Microchip Device-specific Support . 374
Netlist Format . 374
Microchip Features . 376

Microchip Components . 377
Macros and Black Boxes in Microchip Designs . 377
DSP Block Inference . 379
Control Signals Extraction for Registers (SLE) . 384
Wide MUX Inference . 385

LO

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
10 Synopsys Confidential Information June 2020

Microchip RAM Implementations . 386
RAM for PolarFire . 386
RAM for RTG4 . 387
RAM for SmartFusion2/IGLOO2 . 388
PolarFire Asymmetric RAM support . 392
RAM Reporting . 397
Low Power RAM Inference . 398
URAM Inference for Sequential Shift Registers . 398
Async Reset and Dynamic Offset in Seqshifts . 400
Packing of Enable Signal on the Read Address Register 400
Packing of INIT Value on LSRAM and URAM Blocks in PolarFire 401
PolarFire RAM Inference for ROM Support . 401
Write Byte-Enable Support for RAM . 404
RAMINDEX Support . 405

Microchip Constraints and Attributes . 406
Global Buffer Promotion . 406
The syn_maxfan Attribute in Microchip Designs . 407
Radiation-tolerant Applications . 408

Microchip Device Mapping Options . 409
Promote Global Buffer Threshold . 409
I/O Insertion . 410
Update Compile Point Timing Data Option . 411
Operating Condition Device Option . 412
Microchip set_option Command Options . 415
Microchip Tcl set_option Command Options . 416

Microchip Output Files and Forward Annotation . 419
VM Flow Support . 419
Specifying Pin Locations . 420
Specifying Locations for Microchip Bus Ports . 421
Specifying Macro and Register Placement . 422
Synthesis Reports . 422

Integration with Microchip Tools and Flows . 423
Compile Point Synthesis . 423
Incremental Synthesis Flow . 424
Using Predefined Microchip Black Boxes . 424
Using Smartgen Macros . 425
Microchip Place-and-Route Tools . 425

Microchip Attribute and Directive Summary . 426

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 11

C H A P T E R 1

Product Overview

This document is part of a set that includes reference and procedural infor-
mation for the Synopsys® FPGA synthesis tool. The reference manual
provides additional details about the synthesis tool user interface,
commands, and features. Use this information to supplement the user guide
tasks, procedures, design flows, and result analysis.

The following sections include an introduction to the synthesis tool.

• Overview of the Synthesis Tool, on page 12

• Synopsys FPGA Tool Features, on page 14

• Graphic User Interface, on page 17

• Getting Help, on page 19

LO

 Product Overview Overview of the Synthesis Tool

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
12 Synopsys Confidential Information June 2020

Overview of the Synthesis Tool
This section introduces the technology, main features, and user interface of
the FPGA synthesis tool. See the following for details:

• Common Features, on page 12

• Graphic User Interface, on page 17

Common Features
The Synopsys FPGA synthesis tool includes the following built-in features:

• The HDL Analyst® analysis and debugging environment, a graphical tool
for analysis and crossprobing. See Analyzing With the HDL Analyst Tool,
on page 272 and Analyzing With the Standard HDL Analyst Tool, on
page 336 in the User Guide.

• The Text Editor window, with a language-sensitive editor for writing and
editing HDL code. See Text Editor View, on page 45.

• The SCOPE® (Synthesis Constraint Optimization Environment®) tool,
which provides a spreadsheet-like interface for managing timing
constraints and design attributes. See SCOPE Constraints Editor, on
page 216.

• FSM Compiler, a symbolic compiler that performs advanced finite state
machine (FSM) optimizations. See Running the FSM Compiler, on
page 425.

• Integration with the Identify Debugger.

The following features are specific to the Synplify Pro tool. For a comparison
of the features in the tools, see Synopsys FPGA Tool Features, on page 14.

• FSM Explorer, which tries different state machine optimizations before
picking the best implementation. See Running the FSM Explorer, on
page 429.

• The FSM Viewer, for viewing state transitions in detail. See Using the
FSM Viewer, on page 291.

• The Tcl window, a command line interface for running TCL scripts. See
Tcl Script Window, on page 41.

Overview of the Synthesis Tool Product Overview

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 13

• The Timing Analyst window, which allows you to generate timing
schematics and reports for specified paths for point-to-point timing
analysis.

• Other special windows, or views, for analyzing your design, including
the Watch Window and Message Viewer (see The Project View, on
page 22).

• Certain optimizations available, like retiming.

• Advanced analysis features like crossprobing and probe point insertion.

• Place-and-Route implementation(s) to automatically run placement and
routing after synthesis. You can run place-and-route from within the
tool or in batch mode. This feature is supported for certain technologies
(see Running P&R Automatically after Synthesis, on page 554 in the User
Guide).

LO

 Product Overview Synopsys FPGA Tool Features

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
14 Synopsys Confidential Information June 2020

Synopsys FPGA Tool Features
This table distinguishes between major functionality for the Synopsys FPGA
products.

Synplify Synplify
Pro

Synplify
Premier

Synplify
Premier DP

Performance

Behavior Extracting Synthesis
Technology® (BEST™)

x x x x

Vendor-Generated Core/IP
Support (certain technologies)

x x x

FSM Compiler x x x x

FSM Explorer x x x

Gated Clock Conversion x x x

Register Pipelining x x x

Register Retiming x x x

SCOPE® Constraint Entry x x x x

High Reliability Features Limited x x

Integrated Place-and-Route x x x x

Analysis

HDL Analyst® Option x x x

Timing Analyzer -
Point-to-point

x x x

Timing Report View x x

FSM Viewer x x x

Crossprobing x x x

Probe Point Creation x x x

Identify® Instrumentor x x x x

Identify Debugger x x x x

Synopsys FPGA Tool Features Product Overview

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 15

Physical Design

Design Planner x

Logic Assignment to Regions x

Area Estimation and Region
Capacity

x

Pin Assignment x

Physical Optimizations x x

Physical Analyst x x

Synopsys DesignWare®
Foundation Library

x x

Runtime

Hierarchical Design x x x

Multiprocessing /Distributed
Processing

x x

Compile on Error x x

Team Design

Mixed Language Design x x x

Compile Points x x x

Hierarchical Design x x x

True Batch Mode (Floating
licenses only)

x x x

GUI Batch Mode (Floating
licenses)

x x x x

Batch Mode P&R - x x x

Back Annotation of P&R Data - - x x

Identify Integration Limited x x x

Design Environment

Text Editor View x x x x

Synplify Synplify
Pro

Synplify
Premier

Synplify
Premier DP

LO

 Product Overview Synopsys FPGA Tool Features

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
16 Synopsys Confidential Information June 2020

Watch Window x x x

Message Window x x x

Tcl Window x x x

Multiple Implementations x x x

Vendor Technology Support x x Selected Selected

Prototyping Features

Runtime Features x x

Compile Points x x x

Gated Clock Conversion x x

Compile on Error x x

Unified Power Format (UPF) x x

Synplify Synplify
Pro

Synplify
Premier

Synplify
Premier DP

Graphic User Interface Product Overview

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 17

Graphic User Interface
The Synopsys FPGA family of products share a common graphical user
interface (GUI) in order to ensure a cohesive look and feel across the different
products.

LO

 Product Overview Graphic User Interface

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
18 Synopsys Confidential Information June 2020

The following table shows where you can find information about different
parts of the GUI, some of which are not shown in the above figure. For more
information, see the User Guide.

For information about ... See ...

Project window The Project View, on page 22

HDL Analyst view Chapter 7, Analyzing with HDL Analyst

Text Editor view Text Editor View, on page 45

Tcl window Tcl Script Window, on page 41

Watch Window Watch Window, on page 37

SCOPE spreadsheet SCOPE Constraints Editor, on page 216

Other views and windows The Project View, on page 22

Menu commands
and their dialog boxes

Chapter 5, User Interface Commands

Toolbars Toolbars, on page 57

Buttons Buttons and Options, on page 72

Context-sensitive popup menus
and their dialog boxes

Chapter 6, GUI Popup Menu Commands

Online help Use the F1 keyboard shortcut or click the Help
button in a dialog box. See Help Menu , on
page 455, for more information.

Getting Help Product Overview

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 19

Getting Help
Look through the documentation for information. You can access the infor-
mation online from the Help menu, or refer to the corresponding manual. The
following table shows you how the information is organized.

Finding Information

Document Set
This document is part of a series of books included with the Synopsys FPGA
synthesis software tool. The set consists of the following books that are
packaged with the tool:

• FPGA Synthesis User Guide

• FPGA Synthesis Reference

• FPGA Synthesis Command Reference

• FPGA Synthesis Attributes and Directives Reference

For help with ... Refer to the ...

How to... User Guide

Flow information User Guide

FPGA Implementation
Tool

Synopsys Web Page (Web->FPGA Implementation Tools menu
command from within the software)

Synthesis features User Guide and Reference Manual

Language and syntax Language Support Reference Manual

Attributes and
directives

Attribute Reference Manual

Tcl language Online help (Help->Tcl Help)

Synthesis Tcl
commands

Command Reference Manual or type help followed by the
command name in the Tcl window

Using tool-specific
features and attributes

User Guide

Error and warning
messages

Click the message ID code

LO

 Product Overview Getting Help

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
20 Synopsys Confidential Information June 2020

• FPGA Synthesis Language Support Reference

• Identify Instrumentor User Guide

• Identify Debugger User Guide

• Identify Debugging Environment Reference Manual

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 21

C H A P T E R 2

User Interface Overview

This chapter presents tools and technologies that are built into the Synopsys
FPGA synthesis software to enhance your productivity.

This chapter describes the following aspects of the graphical user interface
(GUI):

• The Project View, on page 22

• The Project Results View, on page 26

• Other Windows and Views, on page 36

• Using the Mouse, on page 52

• Toolbars, on page 57

• Keyboard Shortcuts, on page 64

• Buttons and Options, on page 72

LO

 User Interface Overview The Project View

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
22 Synopsys Confidential Information June 2020

The Project View
The Project View is the main interface to the tool. The Project View consists of
a Project Management View on the left and a Project Results View on the
right. The interface and available functionality vary for your tool. See the
following for an overview:

• Multiple Pane Project View, on page 22

Multiple Pane Project View
The Project Management view is on the left side of the window, and is used to
create or open projects, create new implementations, set device options, and
initiate design synthesis. The Project Results view is on the right.

You can also use the Project Management view to manage and synthesize
hierarchical designs.

The following figure shows the main parts of the interface. Additional details
about the project view are described here:

• Project Management View, on page 24

• The Project Results View

The Project View User Interface Overview

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 23

LO

 User Interface Overview The Project View

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
24 Synopsys Confidential Information June 2020

The Project view has the following main parts:

Project Management View

The Project Management view is on the left side of the window, and is used to
create or open projects, create new implementations, set device options, and
initiate design synthesis. The graphical user interface (GUI) lets you manage

Project View Interface Description

Status Displays the tool name or the current status of the
synthesis job that is running. Clicking in this area
displays additional information about the current job.

Buttons and options Allow immediate access to some of the more common
commands. See Buttons and Options , on page 72 for
details.

Implementation
Results view

Lists the result of the synthesis runs for the
implementations of your design. You can only view one set
of implementation results at a time. Click an
implementation in the Project view to make it active and
view its result files.
The Project Results view includes the following:
• Project Status Tab—provides an overview of the project

settings and at-a-glance summary of synthesis
messages and reports.

• Implementation Directory—lists the names and types of
the result files, and the dates they were last modified.

• Process View—gives you instant visibility to the
synthesis and place-and-route job flows.

See The Project Results View , on page 26 for more
information.

The Project View User Interface Overview

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 25

hierarchical designs that can be synthesized independently and imported
back to the top-level project in a team design flow. The following figure shows
the Project view as it appears in the interface.

LO

 User Interface Overview The Project Results View

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
26 Synopsys Confidential Information June 2020

 The Project Results View
The Project Results view appears on the right side of the Project view and
contains the results of the synthesis runs for the implementations of your
design. The Project Results view includes the following:

• Project Status Tab

• Implementation Directory

• Process View

• Report Tab

Project Status Tab
The Project Status view provides an overview of the project settings and
at-a-glance summary of synthesis messages and reports such as an area or
optimization summary for the active implementation. You can track the
status and settings for your design and easily navigate to reports and
messages in the Project view.

To display this window, click the Project Status tab in the Project view. An
overview for the project is displayed in a spreadsheet format for each of the
following sections:

• Project Settings

• Run Status

• Reports

For details about how to access synthesis results, see Accessing Specific
Reports Quickly, on page 193.

The Project Results View User Interface Overview

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 27

You can expand or collapse each section of the Project Status view by clicking
on the + or - icon in the upper left-corner of each section.

LO

 User Interface Overview The Project Results View

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
28 Synopsys Confidential Information June 2020

Project Settings
Project Settings is populated with the project settings from the run_options.txt file
after a synthesis run. This section displays information, like the following:

• Project name, top-level module, and implementation name

• Project options currently specified, such as Resource Sharing, Fanout
Guide, and Disable I/O Insertion

Run Status
The Run Status table gets updated during and after a synthesis run. This
section displays job status information for the compiler, premap job, mapper,
and place-and-route runs, as needed. This section displays information
about the synthesis run:

• Job name - Jobs include Compiler Input, Premap, and Map & Optimize. The job
might have a Detailed Report link. When you click on this link, it takes you
to the corresponding report in the log file.

• Status - Reports whether the job is running or completed.

The Project Results View User Interface Overview

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 29

• Notes, Warnings, and Errors - These columns are headed by the respective
icons and display the number of messages. The messages themselves
are displayed in the Messages tab, beside the TCL Script tab. Links are
available to the error message and the log location.

The message numbers may not match for designs with compile points.
The numbers reflect the top-level design.

• Real and CPU times, peak memory, and a timestamp

Reports
The mapper summary table generates various reports such as an

• Area Summary

• Optimization Summary

• Compile Point Summary

Click the Detailed Report link when applicable, to go to the log file and informa-
tion about the selected report. These reports are written to the synlog folder for
the active implementation.

Area Summary
For example, the Area Summary contains a resource usage count for compo-
nents such as registers, LUTs, and I/O ports in the design. Click the Detailed
report link to display the usage count information in the design for this report.

LO

 User Interface Overview The Project Results View

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
30 Synopsys Confidential Information June 2020

Report Tab
Some reporting such as the Hierarchical Area Report are written to the
Report tab of the Project Results view. These reports are typically not
included in the log file; therefore, they are displayed separately.

Hierarchical Area Report
The hierarchical area report is supported for the following technology
families.

The Project Results View User Interface Overview

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 31

A Hierarchical Area report is generated in a Report tab that you can access
from the Project Status view. This report generates area usage for compo-
nents such as sequential and combinational logic, RAM, and DSP blocks.

You can locate the Hierarchical Area report file in the following Implementation
Directory: /synlog/report.
Use the arrow icon () to get back to the main Project Status view.

Vendors Technologies

Microchip • IGLOO2 family
• RTG4 family
• Smartfusion2 family

LO

 User Interface Overview The Project Results View

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
32 Synopsys Confidential Information June 2020

Implementation Directory
An implementation is one version of a project, run with certain parameter or
option settings. You can synthesize again, with a different set of options, to
get a different implementation. In the Project view, an implementation is
shown in the folder of its project; the active implementation is highlighted.
You can display multiple implementations in the same Project view. The
output files generated for the active implementation are displayed in the
Implementation Directory.

The Project Results View User Interface Overview

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 33

Process View
As process flow jobs become more complex, the benefits of exposing the
underlying job flow is extremely valuable. The Process View gives you this
visibility to track the design progress for the synthesis and place-and-route
job flows.

Click the Process View tab on the right side of the Project Results view. This
displays the job flow hierarchy run on the active implementation and is a
function of this current implementation and its project settings.

LO

 User Interface Overview The Project Results View

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
34 Synopsys Confidential Information June 2020

Process View Displays and Controls
The Process View shows the current state of a job and allows you to control
the run. You can see various aspects of the synthesis process flow, such as
logical synthesis, premap, and map. If you run place and route, you can see
its job processes as well.

Appropriate jobs of the process flow contains the following information:

• Job Input and Output Files

• Completion State

Displays if the job generated an error, warning, or was canceled.

• Job State

– Out-of-date - Job needs to be run.

– Running - Job is active.

– Complete - Job has completed and is up-to-date.

– Complete * - Job is up-to-date, so the job is skipped.

• Run/File Time - Job process flow runtime in real time or file creation
date timestamp.

• Job TCL Command - Job process name.

Each job has the following control commands that allows you to run jobs at
any stage of the design process, for example map. Right-click on any job icon
and select one of the following commands from the popup menu:

• Cancel jobProcess that is running

• Disable jobProcess that you do not want to run

• Run this jobProcess only

• Run to this jobProcess from the beginning of run

• Run from this jobProcess to the end of run

The Project Results View User Interface Overview

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 35

Hierarchical Job Flows
A hierarchical job flow runs two or more subordinate jobs. Primitive jobs
launch an executable, but have no subordinate jobs. The Logical Synthesis
flow is a hierarchical job that runs the Compile and Map flows.

The state of a hierarchical job depends on the state of its subordinate jobs.

• If a subordinate job is out-of-date, then its parent job is out-of-date.

• If a subordinate job has an error, then its parent job terminates with
this error.

• If a subordinate job has been canceled, then its parent job is canceled as
well.

• If a subordinate job is running, then its parent job is also running.

The Process View is a hierarchical tree view. To collapse or expand the main
hierarchical tree, enable or disable the Show Hierarchy option. Use the plus or
minus icon to expand or collapse each process flow to show the details of the
jobs. The icons below are used to show the information for the state of each
process:

• Red arrow () - Job is out-of-date and needs to be rerun.

• Green arrow () - Job is up-to-date.

• Red Circle with! () - Job encountered an error.

LO

 User Interface Overview Other Windows and Views

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
36 Synopsys Confidential Information June 2020

Other Windows and Views
Besides the Project view, the tool provides other windows and views that help
you manage input and output files, direct the synthesis process, and analyze
your design and its results. The following windows and views are described
here:

• Dockable GUI Entities, on page 37

• Watch Window, on page 37

• Tcl Script and Messages Windows, on page 40

• Tcl Script Window, on page 41

• Message Viewer, on page 41

• Output Windows (Tcl Script and Watch Windows), on page 45

• Text Editor View, on page 45

• Context Help Editor Window, on page 48

• Interactive Attribute Examples, on page 50

See the following for descriptions of other views and windows that are not
covered here:

Project View The Project View, on page 22

SCOPE Interface SCOPE Tabs, on page 217

HDL Analyst Schematic Chapter 7, Analyzing with HDL Analyst

Other Windows and Views User Interface Overview

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 37

Dockable GUI Entities
Some of the main GUI entities can appear as either independent windows or
docked elements of the main application window. These entities include the
menu bar, Watch window, Tcl window, and various toolbars (see the descrip-
tion of each entity for details). Docked elements function effectively as panes
of the application window; you can drag the border between two such panes
to adjust their relative areas.

Watch Window
The Watch window displays selected information from the log file (see Log
File, on page 157) as a spreadsheet of parameters that you select to monitor.
The values are updated when synthesis finishes.

Watch Window Display
Display of the Watch window is controlled by the View ->Watch Window
command. By default, the Watch window is below the Project view in the
lower right corner of the main application window.

To access the Watch window configuration menu, right-click in any cell.
Select Configure Watch to display the Log Watch Configuration dialog box.

In the Watch window, indicate which implementations to watch under Watch
Selection. The selected implementation(s) will display in the Watch window.

LO

 User Interface Overview Other Windows and Views

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
38 Synopsys Confidential Information June 2020

You can move the Watch window anywhere on the screen; you can make it
float in its own window (named Watch Window) or dock it at a docking area (an
edge) of the application window. Double-click in the banner to toggle between
docked and floating.

The Watch window has a special positioning popup menu that you access by
right-clicking the window border. The following commands are in the menu:

Right-clicking the window title bar when the Watch window is floating
displays an alternative popup menu with commands Hide and Move; Move lets
you position the window using either the arrow keys or the mouse.

Using the Watch Window
You can view and compare the results of multiple implementations in the
Watch window.

Command Description

Allow Docking A toggle: when enabled, the window can be docked.

Hide Hides the window; use View ->Watch Window to show it again.

Float in Main Window A toggle: when enabled, the window is floated (undocked).

Other Windows and Views User Interface Overview

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 39

To choose log parameters from a pull-down menu, click in the Log Parameter
section of the window. Click the pull-down arrow that appears to display the
parameter list choices:

The Watch window creates an entry for each implementation of a project:

To choose the implementations to watch, use the Log Watch Configuration dialog
box. To display this box, right-click in the Watch window, then choose
Configure Watch in the popup menu. Enable Watch Selected Implementations, then
choose the implementations you want to watch in the list Selected Implementa-
tions to watch. The other buttons let you watch only the active implementation
or all implementations.

LO

 User Interface Overview Other Windows and Views

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
40 Synopsys Confidential Information June 2020

Tcl Script and Messages Windows
The Tcl window has tabs for the Tcl Script and Messages windows. By default,
the Tcl windows are located below the Project Tree view in the lower left corner
of the main application window.

You can float the Tcl windows by clicking on a window edge while holding the
Ctrl or Shift key. You can then drag the window to float it anywhere on the
screen or dock it at an edge of the application window. Double-click in the
banner to toggle between docked and floating.

Other Windows and Views User Interface Overview

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 41

Right-clicking the Tcl windows title bar when the window is floating displays a
popup menu with commands Hide and Move. Hide removes the window (use
View ->Tcl Window to redisplay the window). Move lets you position the window
using either the arrow keys or the mouse.

For more information about the Tcl windows, see Tcl Script Window, on
page 41 and Message Viewer, on page 41.

Tcl Script Window
The Tcl Script window is an interactive command shell that implements the
Tcl command-line interface. You can type or paste Tcl commands at the
prompt (“% ”). For a list of the available commands, type “help *” (without the
quotes) at the prompt. For general information about Tcl syntax, choose Help
->TCL.

The Tcl script window also displays each command executed in the course of
running the synthesis tool, regardless of whether it was initiated from a
menu, button, or keyboard shortcut. Right-clicking inside the Tcl window
displays a popup menu with the Copy, Paste, Hide, and Help commands.

See also

• Chapter 2, Tcl Synthesis Commands, for information about the Tcl
synthesis commands.

• Generating a Job Script, on page 513 in the User Guide.

Message Viewer
To display errors, warnings, and notes after running the synthesis tool, click
the Messages tab in the Tcl Window. A spreadsheet-style interactive interface
appears.

LO

 User Interface Overview Other Windows and Views

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
42 Synopsys Confidential Information June 2020

Interactive tasks in the Messages panel include:

• Drag the pane divider with the mouse to change the relative column size.

• Click on the ID entry to open online help for the error, warning, or note.

• Click on a Source Location entry to go to the section of code in the source
HDL file that is causing the message.

• Click on a Log Location entry to go to its location in the log file.

The following table describes the contents of the Messages panel. You can sort
the messages by clicking the column headers. For further sorting, use Find
and Filter. For details about using this window, see Checking Results in the
Message Viewer, on page 205 in the User Guide.

Item Description

Find Type into this field to find errors, warnings, or notes.

Filter Opens the Warning Filter dialog box. See Messages Filter , on
page 44.

Apply Filter Enable/disable the last saved filter.

Other Windows and Views User Interface Overview

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 43

Group Common
ID’s

Enable/disable grouping of repeated messages. Groups are
indicated by a number next to the type icon. There are two types
of groups:
• The same warning or note ID appears in multiple source files

indicated by a dash in the source files column.
• Multiple warnings or notes in the same line of source code

indicated by a bracketed number.

Type The icons indicate the type of message:
 Error
Warning
Note
Advisory

A plus sign next to an icon indicates that repeated messages are
grouped together. Click the plus sign to expand and view the
various occurrences of the message.

ID This is the message ID. You can select an underlined ID to
launch help on the message.

Message The error, warning, or note message text.

Source Location The HDL source file that generated the error, warning, or note
message.

Log Location The location of the error, warning, or note message in the log
file.

Time The time that the error, warning, or note message was recorded
in the log file for the various stages of synthesis (for example:
compiler, premap, and map). If you rerun synthesis, only new
messages generate a new timestamp for this session.
Note: Once synthesis has run to completion, all the .srr files for
the different stages of synthesis are merged into one unified .srr
file. If you exit the GUI, these timestamps remain the same
when you re-open the same project in the GUI again.

Report Indicates which section of the Log File report the error appears,
for example Compiler or Mapper.

Item Description

LO

 User Interface Overview Other Windows and Views

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
44 Synopsys Confidential Information June 2020

Messages Filter
You filter which errors, warnings, and notes appear in the Messages panel of
the Tcl Window using match criteria for each field. The selections are combined
to produce the result. You can elect to hide or show the warnings that match
the criteria you set. See Checking Results in the Message Viewer, on page 205
in the User Guide.

The following is a filtering example.

Item Description

Hide Filter Matches Hides matched criteria in the Messages Panel.

Show Filter Matches Shows matched criteria in the Messages Panel.

Syntax Help Gives quick syntax descriptions.

Apply Applies the filter criteria to the Messages Panel report,
without closing the window.

Type, ID, Message,
Source Location, Log
Location, Time, Report

Log file report criteria to use when filtering.

Other Windows and Views User Interface Overview

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 45

Output Windows (Tcl Script and Watch Windows)
The Output windows are the Tcl Script and Log Watch windows. To display or
hide them, use View->Output Windows from the main menu. Refer to Watch
Window, on page 37 and Tcl Script and Messages Windows, on page 40 for
more information.

Text Editor View
The Text Editor view displays text files. These can be constraint files, source
code files, or other informational or report files. You can enter and edit text in
the window. You use this window to update source code and fix syntax or
synthesis errors. You can also use it to crossprobe the design. For informa-
tion about using the Text Editor, see Editing HDL Source Files with the Built-in
Text Editor, on page 39 in the User Guide.

LO

 User Interface Overview Other Windows and Views

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
46 Synopsys Confidential Information June 2020

Opening the Text Editor
To open the Text Editor to edit an existing file, do one of the following:

• Double-click a source code file (.v or .vhd) in the Project view.

• Choose File ->Open. In the dialog box displayed, double-click a file to
open it.

With the Microsoft® Windows® operating system, you can instead drag
and drop a source file from a Windows folder into the gray background
area of the GUI (not into any particular view).

To open the Text Editor on a new file, do one of the following:

• Choose File ->New, then specify the kind of text file you want to create.

• Click the HDL icon () to create and edit an HDL source file.

The Text Editor colors HDL source code keywords such as module and output
blue and comments green.

Other Windows and Views User Interface Overview

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 47

Text Editor Features
The Text Editor has the features listed in the following table.

Feature Description

Color coding Keywords are blue, comments green, and strings red. All
other text is black.

Editing text You can use the Edit menu or keyboard shortcuts for
basic editing operations like Cut, Copy, Paste, Find, Replace,
and Goto.

Completing keywords To complete a keyword, type enough characters to make
the string unique and then press the Esc key.

Indenting a block of text The Tab key indents a selected block of text to the right.
Shift-Tab indents text to the left.

Inserting a bookmark Click the line you want to bookmark. Choose Edit ->Toggle
Bookmark, type Ctrl-F2, or click the Toggle Bookmark icon
() on the Edit toolbar.
The line number is highlighted to indicate that there is a
bookmark at the beginning of the line.

Deleting a bookmark Click the line with the bookmark. Choose Edit ->Toggle
Bookmark, type Ctrl-F2, or click the Toggle Bookmark icon
() on the Edit toolbar.

Deleting all bookmarks Choose Edit ->Delete all Bookmarks, type Ctrl-Shift-F2, or click
the Clear All Bookmarks icon () on the Edit toolbar.

Editing columns Press and hold Alt, then drag the mouse down a column of
text to select it.

Commenting out code Choose Edit ->Advanced ->Comment Code. The rest of the
current line is commented out: the appropriate comment
prefix is inserted at the current text cursor position.

Checking syntax Use Run ->Syntax Check to highlight syntax errors, such as
incorrect keywords and punctuation, in source code. If
the active window shows an HDL file, then only that file is
checked. Otherwise, the entire project is checked.

Checking synthesis Use Run ->Synthesis Check to highlight hardware-related
errors in source code, like incorrectly coded flip-flops. If
the active window shows an HDL file, then only that file is
checked. Otherwise, the entire project is checked.

LO

 User Interface Overview Other Windows and Views

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
48 Synopsys Confidential Information June 2020

See also:

• Editor Options Command, on page 436, for information on setting Text
Editor preferences.

• File Menu, on page 306, for information on printing setup operations.

• Edit Menu Commands for the Text Editor, on page 312, for information on
Text Editor editing commands.

• Text Editor Popup Menu, on page 461, for information on the Text Editor
popup menu.

• Text Editor Toolbar, on page 61, for information on bookmark icons of
the Edit toolbar.

• Keyboard Shortcuts, on page 64, for information on keyboard shortcuts
that can be used in the Text Editor.

Context Help Editor Window
Use the Context Help button to copy Verilog, SystemVerilog, or VHDL
constructs into your source file or Tcl constraint commands into your Tcl file.
When you load a Verilog/SystemVerilog/VHDL file or Tcl file into the UI, the
Context Help button displays at the bottom of the window. Click on this button
to display the Context Help Editor.

Other Windows and Views User Interface Overview

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 49

When you select a construct in the left-side of the window, the online help
description for the construct is displayed. If the selected construct has this
feature enabled, the online help topic is displayed on the top of the window
and a generic code or command template for that construct is displayed at
the bottom. The Insert Template button is also enabled. When you click the
Insert Template button, the code or command shown in the template window is
inserted into your file at the location of the cursor. This allows you to easily
insert the code or constraint command and modify it for the design that you
are going to synthesize. If you want to copy only parts of the template, select
the code or constraint command you want to insert and click Copy. You can
then paste it into your file.

LO

 User Interface Overview Other Windows and Views

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
50 Synopsys Confidential Information June 2020

Interactive Attribute Examples
The Interactive Attribute Examples wizard lets you select pre-defined attri-
butes to run in a project. To use this tool:

1. Launch the wizard from Help->Demos & Examples.

2. Click the Examples button. Then click on Interactive Attribute Examples and
the Launch Interactive Attributes Wizard links.

Field/Option Description

Top Takes you to the top of the context help page for the selected
construct.

Back Takes you back to the last context help page previously
viewed.

Forward Once you have gone back to a context help page, use Forward
to return to the original context help page from where you
started.

Online Help Brings up the interactive online help for the synthesis tool.

Copy Allows you to copy selected code from the Template file and
paste it into the editor file.

Insert Template Automatically copies the code description in its entirety from
the Template file to the editor file.

Other Windows and Views User Interface Overview

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 51

3. Double-click on an attribute to start the wizard.

4. Specify the Working Directory location to write your project.

5. Click Generate to generate a project for your attribute.

A project will be created with an implementation for each attribute value
selected.

6. Click Generate Run to run synthesis for all the implementations. When
synthesis completes:

– The Technology view opens to show how the selected attribute
impacts synthesis.

– You can compare resource utilization and timing information
between implementations in the Log Watch window.

LO

 User Interface Overview Using the Mouse

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
52 Synopsys Confidential Information June 2020

Using the Mouse
The mouse button operations in Synopsys FPGA product is standard; refer to
Mouse Operation Terminology for a summary of supported functions. The
tool provides support for:

• Using Mouse Strokes, on page 53

• Using the Mouse Buttons, on page 54

• Using the Mouse Wheel, on page 56

Mouse Operation Terminology
The following terminology is used to refer to mouse operations:

Term Meaning

Click Click with the left mouse button: press then release it without
moving the mouse.

Double-click Click the left mouse button twice rapidly, without moving the mouse.

Right-click Click with the right mouse button.

Drag Press the left mouse button, hold it down while moving the mouse,
then release it. Dragging an object moves the object to where the
mouse is released; then, releasing is sometimes called “dropping”.
Dragging initiated when the mouse is not over an object often traces
a selection rectangle, whose diagonal corners are at the press and
release positions.

Press Depress a mouse button; unless otherwise indicated, the left button
is implied. It is sometimes used as an abbreviation for “press
and hold”.

Hold Keep a mouse button depressed. It is sometimes used as an
abbreviation for “press and hold”.

Release Stop holding a mouse button depressed.

Using the Mouse User Interface Overview

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 53

Using Mouse Strokes
Mouse strokes are used to quickly perform simple repetitive commands.
Mouse strokes are drawn by pressing and holding the right mouse button as
you draw the pattern. The stroke must be at least 16 pixels in width or height
to be recognized. You will see a green mouse trail as you draw the stroke (the
actual color depends on the window background color).

Some strokes are context sensitive. That is, the interpretation of the stroke
depends upon the window in which the stroke is started. For example, in an
HDL Analyst view, the right stroke means “Next Sheet.” In a dialog box, the
right stroke means “OK.”

For information on each of the available mouse strokes, consult the Mouse
Stroke Tutor.

The strokes you draw are interpreted on a grid of one to three rows. Some
strokes are similar, differing only in the number of columns or rows, so it may
take a little practice to draw them correctly. For example, the strokes for Redo
and Back differ in that the Redo stroke is back and forth horizontally, within a
single-row grid, while the Back stroke involves vertical movement as well.

The Mouse Stroke Tutor
Do one of the following to access the Mouse Stroke Tutor:

• Help->Stroke Tutor

• Draw a question mark stroke ("?")

• Scribble (Show tutor when scribbling must be enabled on the Stroke Help
dialog box)

Redo Last Operation Back to Previous View

LO

 User Interface Overview Using the Mouse

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
54 Synopsys Confidential Information June 2020

The tutor displays the available strokes along with a description and a
diagram of the stroke. You can draw strokes while the tutor is displayed.

Mouse strokes are context sensitive. When viewing the Stroke Tutor, you can
choose All Strokes or Current Context to view just the strokes that apply to the
context of where you invoked the tutor. For example, if you draw the "?"
stroke in an HDL Analyst window, the Current Context option in the tutor shows
only those strokes recognized in the HDL Analyst window.

You can display the tutor while working in a window such as the HDL Analyst
view. However you cannot display the tutor while a modal dialog is displayed,
as input is restricted to the modal dialog.

Using the Mouse Buttons
The operations you can perform using mouse buttons include the following:

• You select an object by clicking it. You deselect a selected object by
clicking it. Selecting an object by clicking it deselects all previously
selected objects.

• You can select and deselect multiple objects by pressing and holding the
Control key (Ctrl) while clicking each of the objects.

Using the Mouse User Interface Overview

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 55

• You can select a range of objects in a Hierarchy Browser, as follows:

– select the first object in the range

– scroll the tree of objects, if necessary, to display the last object in the
range

– press and hold the Shift key while clicking the last object in the range

Selecting a range of objects in a Hierarchy Browser crossprobes to the
corresponding schematic, where the same objects are automatically
selected.

• You can select all of the objects in a region by tracing a selection
rectangle around them (lassoing).

• You can select text by dragging the mouse over it. You can alternatively
select text containing no white space (such as spaces) by
double-clicking it.

• Double-clicking sometimes selects an object and immediately initiates a
default action associated with it. For example, double-clicking a source
file in the Project view opens the file in a Text Editor window.

• You can access a contextual popup menu by clicking the right mouse
button. The menu displayed is specific to the current context, including
the object or window under the mouse.

For example, right-clicking a project name in the Project view displays a
popup menu with operations appropriate to the project file.
Right-clicking a source (HDL) file in the Project view displays a popup
menu with operations applicable to source files.

Right-clicking a selectable object in an HDL Analyst schematic also
selects it, and deselects anything that was selected. The resulting popup
menu applies only to the selected object. See Working in the Schematic,
on page 224 of the FPGA Synthesis User Guide, for information on HDL
Analyst views.

Most of the mouse button operations involve selecting and deselecting
objects. To use the mouse in this way in an HDL Analyst schematic, the
mouse pointer must be the cross-hairs symbol: . If the cross-hairs pointer
is not displayed, right-click the schematic background to display it.

LO

 User Interface Overview Using the Mouse

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
56 Synopsys Confidential Information June 2020

Using the Mouse Wheel
If your mouse has a wheel and you are using a Microsoft Windows platform,
you can use the wheel to scroll and zoom, as follows:

• Whenever only a horizontal scroll bar is visible, rotating the wheel
scrolls the window horizontally.

• Whenever a vertical scroll bar is visible, rotating the wheel scrolls the
window vertically.

• Whenever both horizontal and vertical scroll bars are visible, rotating
the wheel while pressing and holding the Shift key scrolls the window
horizontally.

• In a window that can be zoomed, such as a graphics window, rotating
the wheel while pressing and holding the Ctrl key zooms the window.

Toolbars User Interface Overview

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 57

Toolbars
Toolbars provide a quick way to access common menu commands by clicking
their icons. The following standard toolbars are available:

• Project Toolbar — Project control and file manipulation.

• Analyst Toolbar — Manipulation of compiled and mapped schematic
views.

• Text Editor Toolbar — Text editor bookmark commands.

• FSM Viewer Toolbar — Display of finite state machine (FSM) informa-
tion.

• Tools Toolbar — Opens supporting tool.

You can enable or disable the display of individual toolbars - see Toolbar
Command, on page 328.

By dragging a toolbar, you can move it anywhere on the screen: you can
make it float in its own window or dock it at a docking area (an edge) of the
application window. To move the menu bar to a docking area without docking
it there (that is, to leave it floating), press and hold the Ctrl or Shift key while
dragging it.

Right-clicking the window title bar when a toolbar is floating displays a popup
menu with commands Hide and Move. Hide removes the window. Move lets you
position the window using either the arrow keys or the mouse.

Project Toolbar
The Project toolbar provides the following icons, by default:

LO

 User Interface Overview Toolbars

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
58 Synopsys Confidential Information June 2020

The following table describes the default Project icons. Each is equivalent to a
File or Edit menu command; for more information, see the following:

• File Menu, on page 306

• Edit Menu, on page 311

Icon Description

Open Project Displays the Open Project dialog box to create a
new project or to open an existing project.
Same as File ->Open Project.

 New HDL file Opens the Text Editor window with a new, empty
source file.
Same as File ->New, Verilog File or VHDL File.

New Constraint File (SCOPE) Opens the SCOPE spreadsheet with a new,
empty constraint file.
Same as File ->New, Constraint File (SCOPE).

Open Displays the Open dialog box, to open a file.
Same as File ->Open.

Save Saves the current file. If the file has not yet been
saved, this displays the Save As dialog box, where
you specify the filename. The kind of file depends
on the active view.
Same as File ->Save.

Save All Saves all files associated with the current design.
Same as File ->Save All.

Cut Cuts text or graphics from the active view,
making it available to Paste.
Same as Edit ->Cut.

Paste Pastes previously cut or copied text or graphics
to the active view.
Same as Edit ->Paste.

Toolbars User Interface Overview

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 59

Analyst Toolbar
The Analyst toolbar becomes active after a design has been compiled. The
toolbar provides the following icons, by default:

The following table describes the default Analyst icons. Each is equivalent to
an HDL Analyst menu command - see HDL Analyst Menu, on page 412, for more
information.

Undo Undoes the last action taken.
Same as Edit ->Undo.

Redo Performs the action undone by Undo.
Same as Edit ->Redo.

Find Finds text in the Text Editor or objects in an RTL
view or Technology view.
Same as Edit ->Find.

Icon Description

LO

 User Interface Overview Toolbars

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
60 Synopsys Confidential Information June 2020

Icon Description

RTL View Opens a new, hierarchical RTL view: a register
transfer-level schematic of the compiled design,
together with the associated Hierarchy Browser.
Same as HDL Analyst ->RTL ->Hierarchical View.

Technology View Opens a new, hierarchical Technology view: a
technology-level schematic of the mapped
(synthesized) design, together with the associated
Hierarchy Browser.
Same as HDL Analyst ->Technology ->Hierarchical View.

 Timing Analyst Generates and displays a custom timing report and
view. The timing report provides more information
than the default report (specific paths or more than
five paths) or one that provides timing based on
additional analysis constraint files. See Analysis
Menu , on page 400.
Only available for certain device technologies.
Same as Analysis ->Timing Analyst.

Filter Schematic Filters your entire design to show only the selected
objects. The result is a filtered schematic.
Same as HDL Analyst ->Filter Schematic.

Show Critical Path Filters your design to show only the instances (and
their paths) whose slack times are within the slack
margin of the worst slack time of the design (see HDL
Analyst ->Set Slack Margin). The result is flat if the entire
design was already flat.
Available only in a Technology view.

Back Goes backward in displaying schematics of the current
HDL Analyst view.
Same as View ->Back.

Forward Goes forward in displaying schematics of the current
HDL Analyst view.
Same as View ->Forward.

Zoom In

Zoom Out

Zooms the view in or out. Buttons stay active until
deselected.
Same as View ->Zoom In or View ->Zoom Out.

Toolbars User Interface Overview

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 61

Text Editor Toolbar
The Edit toolbar is active whenever the Text Editor is active. You use it to edit
bookmarks in the file. (Other editing operations are located on the Project
toolbar - see Project Toolbar, on page 57.) The Edit toolbar provides the
following icons, by default:

The following table describes the default Edit icons. Each is available in the
Text Editor, and each is equivalent to an Edit menu command there - see Edit
Menu Commands for the Text Editor, on page 312, for more information.

Zoom Full Zoom that reduces the active view to display the entire
design.
Same as View ->Full View.

 Show Top Level Displays the schematic for the top-level view.

Pop Hierarchy Traverses the schematic hierarchy using pop mode.

Selection Back Displays the previous schematic that was selected.

Selection Forward Toggles back to the original schematic that was
previously selected.

Icon Description

LO

 User Interface Overview Toolbars

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
62 Synopsys Confidential Information June 2020

FSM Viewer Toolbar
When you push down into a state machine primitive in an RTL view, the FSM
Viewer displays and enables the FSM toolbar. The FSM Viewer graphically
displays the states and transitions. It also lists them in table form. By
default, the FSM toolbar provides the following icons, providing access to
common FSM Viewer commands.

The following table describes the default FSM icons. Each is available in the
FSM viewer, and each is equivalent to a View menu command available there
- see View Menu, on page 325, for more information.

Icon Description

Toggle Bookmark Alternately inserts and removes a bookmark at the line
that contains the text cursor.
Same as Edit ->Toggle bookmark.

Next Bookmark Takes you to the next bookmark.
Same as Edit ->Next bookmark.

Previous Bookmark Takes you to the previous bookmark.
Same as Edit ->Previous bookmark.

Clear All Bookmarks Removes all bookmarks from the Text Editor window.
Same as Edit ->Delete all bookmarks.

Toolbars User Interface Overview

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 63

Tools Toolbar
The Tools Toolbar opens supporting tool.

Icon Description

Toggle FSM Table Toggles the display of state-and-transition tables.
Same as View->FSM Table.

Unfilter FSM Restores a filtered FSM diagram so that all the states and
transitions are showing.
Same as View->Unfilter.

Filter by outputs Hides all but the selected state(s), their output
transitions, and the destination states of those
transitions.
Same as View->Filter->By output transitions.

Icon Description

Constraint Check Checks the syntax and applicability of the
timing constraints in the constraint file for your
project and generates a report
(project_name_cck.rpt).
Same as Run->Constraint Check.

Identify Instrumentor Brings up the Synopsys Identify Instrumentor
product. For more information, see Working
with the Identify Tools , on page 556of the User
Guide.

Launch Identify Debugger Launches the Synopsys Identify Debugger
product. For more information, see Working
with the Identify Tools , on page 556of the User
Guide.

 Launch SYNCore Launches the SYNCore IP wizard. This tool
helps you build IP blocks such as memory
models for your design.
For more information, see Launch SYNCore
Command , on page 389.

 VCS Simulator Configures and launches the VCS simulator.

LO

 User Interface Overview Keyboard Shortcuts

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
64 Synopsys Confidential Information June 2020

Keyboard Shortcuts
Keyboard shortcuts are key sequences that you type in order to run a
command. Menus list keyboard shortcuts next to the corresponding
commands.

For example, to check syntax, you can press and hold the Shift key while you
type the F7 key, instead of using the menu command Run ->Syntax Check.

The following table describes the keyboard shortcuts.

Keyboard Shortcuts User Interface Overview

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 65

Keyboard
Shortcut

Description

b In an RTL or Technology view, shows all logic between two or
more selected objects (instances, pins, ports). The result is a
filtered schematic. Limited to the current schematic.
Same as HDL Analyst ->Current Level ->Expand Paths (see HDL
Analyst Menu: Filtering and Flattening Commands , on
page 415).

Ctrl-++
(number pad)

In the FSM Viewer, hides all but the selected state(s), their
output transitions, and the destination states of those
transitions.
Same as View ->Filter ->By output transitions.

Ctrl-+-
(number pad)

In the FSM Viewer, hides all but the selected state(s), their input
transitions, and the origin states of those transitions.
Same as View ->Filter ->By input transitions.

Ctrl-+*
(number pad)

In the FSM Viewer, hides all but the selected state(s), their input
and output transitions, and their predecessor and successor
states.
Same as View ->Filter ->By any transition.

Ctrl-1 In an RTL or Technology view, zooms the active view, when you
click, to full (normal) size. Same as View ->Normal View.

Ctrl-a Centers the window on the design. Same as View ->Pan Center.

Ctrl-b In an RTL or Technology view, shows all logic between two or
more selected objects (instances, pins, ports). The result is a
filtered schematic. Operates hierarchically, on lower levels as
well as the current schematic.
Same as HDL Analyst ->Hierarchical ->Expand Paths (see HDL Analyst
Menu: Hierarchical and Current Level Submenus , on page 413).

Ctrl-c Copies the selected object. Same as Edit ->Copy. This shortcut is
sometimes available even when Edit ->Copy is not. See, for
instance, Find Command (HDL Analyst) , on page 317.)

Ctrl-d In an RTL or Technology view, selects the driver for the selected
net. Operates hierarchically, on lower levels as well as the
current schematic.
Same as HDL Analyst->Hierarchical ->Select Net Driver (see HDL
Analyst Menu: Hierarchical and Current Level Submenus , on
page 413).

LO

 User Interface Overview Keyboard Shortcuts

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
66 Synopsys Confidential Information June 2020

Ctrl-e In an RTL or Technology view, expands along the paths from
selected pins or ports, according to their directions, to the
nearest objects (no farther). The result is a filtered schematic.
Operates hierarchically, on lower levels as well as the current
schematic.
Same as HDL Analyst->Hierarchical ->Expand (see HDL Analyst
Menu: Hierarchical and Current Level Submenus , on page 413).

Ctrl-Enter (Return) In the FSM Viewer, hides all but the selected state(s).
Same as View->Filter->Selected (see View Menu , on page 325).

Ctrl-f Finds the selected object. Same as Edit->Find.

Ctrl-F2 Alternately inserts and removes a bookmark to the line that
contains the text cursor.
Same as Edit->Toggle bookmark (see Edit Menu Commands for the
Text Editor , on page 312).

Ctrl-F4 Closes the current window. Same as File ->Close.

Ctrl-F6 Toggles between active windows.

Ctrl-g In the Text Editor, jumps to the specified line. Same as Edit->Goto
(see Edit Menu Commands for the Text Editor , on page 312).
In an RTL or Technology view, selects the sheet number in a
multiple-page schematic. Same as View->View Sheets (see View
Menu: RTL and Technology Views Commands , on page 326).

Ctrl-h In the Text Editor, replaces text. Same as Edit->Replace (see Edit
Menu Commands for the Text Editor , on page 312).

Ctrl-i In an RTL or Technology view, selects instances connected to the
selected net. Operates hierarchically, on lower levels as well as
the current schematic. Same as HDL Analyst->Hierarchical->Select
Net Instances (see HDL Analyst Menu: Hierarchical and Current
Level Submenus , on page 413).

Ctrl-j In an RTL or Technology view, displays the unfiltered schematic
sheet that contains the net driver for the selected net. Operates
hierarchically, on lower levels as well as the current schematic.
Same as HDL Analyst->Hierarchical->Goto Net Driver (see HDL Analyst
Menu: Hierarchical and Current Level Submenus , on page 413).

Keyboard
Shortcut

Description

Keyboard Shortcuts User Interface Overview

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 67

Ctrl-l In the FSM Viewer, or an RTL or Technology view, toggles zoom
locking. When locking is enabled, if you resize the window the
displayed schematic is resized proportionately, so that it
occupies the same portion of the window.
Same as View->Zoom Lock (see View Menu Commands: All Views ,
on page 325).

Ctrl-m In an RTL or Technology view, expands inside the subdesign,
from the lower-level port that corresponds to the selected pin, to
the nearest objects (no farther). Same as HDL
Analyst->Hierarchical->Expand Inwards (see HDL Analyst Menu:
Hierarchical and Current Level Submenus , on page 413).

Ctrl-n Creates a new file or project. Same as File->New.

Ctrl-o Opens an existing file or project. Same as File->Open.

Ctrl-p Prints the current view. Same as File->Print.

Ctrl-q In an RTL or Technology view, toggles the display of visual
properties of instances, pins, nets, and ports in a design.

Ctrl-r In an RTL or Technology view, expands along the paths from
selected pins or ports, according to their directions, until
registers, ports, or black boxes are reached. The result is a
filtered schematic. Operates hierarchically, on lower levels as
well as the current schematic.
Same as HDL Analyst->Hierarchical->Expand to Register/Port (see HDL
Analyst Menu: Hierarchical and Current Level Submenus , on
page 413).

Ctrl-s In the Project View, saves the file. Same as File ->Save.

Ctrl-t Toggles display of the Tcl window.
Same as View ->Tcl Window (see View Menu , on page 325).

Ctrl-u In the Text Editor, changes the selected text to lower case. Same
as Edit->Advanced->Lowercase (see Edit Menu Commands for the
Text Editor , on page 312).
In the FSM Viewer, restores a filtered FSM diagram so that all
the states and transitions are showing. Same as View->Unfilter
(see View Menu: FSM Viewer Commands , on page 327).

Ctrl-v Pastes the last object copied or cut. Same as Edit ->Paste.

Keyboard
Shortcut

Description

LO

 User Interface Overview Keyboard Shortcuts

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
68 Synopsys Confidential Information June 2020

Ctrl-x Cuts the selected object(s), making it available to Paste. Same as
Edit ->Cut.

Ctrl-y In an RTL or Technology view, goes forward in the history of
displayed sheets for the current HDL Analyst view. Same as
View->Forward (see View Menu: RTL and Technology Views
Commands , on page 326).
In other contexts, performs the action undone by Undo. Same as
Edit->Redo.

Ctrl-z In an RTL or Technology view, goes backward in the history of
displayed sheets for the current HDL Analyst view. Same as
View->Back (see View Menu: RTL and Technology Views
Commands , on page 326).
In other contexts, undoes the last action. Same as Edit ->Undo.

Ctrl-Shift-F2 Removes all bookmarks from the Text Editor window. Same as
Edit ->Delete all bookmarks (see Edit Menu Commands for the Text
Editor , on page 312).

Ctrl-Shift-h In an RTL or Technology view, shows all pins on selected
transparent hierarchical (non-primitive) instances. Pins on
primitives are always shown. Available only in a filtered
schematic.
Same as HDL Analyst ->Show All Hier Pins (see HDL Analyst Menu:
Analysis Commands , on page 419).

Ctrl-Shift-i In an RTL or Technology view, selects all instances on the
current schematic level (all sheets). This does not select
instances on other levels.
Same as HDL Analyst->Select All Schematic->Instances (see HDL
Analyst Menu , on page 412).

Ctrl-Shift-p In an RTL or Technology view, selects all ports on the current
schematic level (all sheets). This does not select ports on other
levels.
Same as HDL Analyst->Select All Schematic->Ports (see HDL Analyst
Menu , on page 412).

Ctrl-Shift-u In the Text Editor, changes the selected text to lower case.
Same as Edit->Advanced->Uppercase (see Edit Menu Commands for
the Text Editor , on page 312).

Keyboard
Shortcut

Description

Keyboard Shortcuts User Interface Overview

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 69

d In an RTL or Technology view, selects the driver for the selected
net. Limited to the current schematic.
Same as HDL Analyst ->Current Level ->Select Net Driver (see HDL
Analyst Menu , on page 412).

Delete (DEL) Removes the selected files from the project. Same as
Project->Remove Files From Project.

e In an RTL or Technology view, expands along the paths from
selected pins or ports, according to their directions, to the
nearest objects (no farther). Limited to the current schematic.
Same as HDL Analyst->Current Level->Expand (see HDL Analyst
Menu , on page 412).

F1 Provides context-sensitive help. Same as Help->Help.

F2 In an RTL or Technology view, toggles traversing the hierarchy
using the push/pop mode. Same as View->Push/Pop Hierarchy (see
View Menu: RTL and Technology Views Commands , on
page 326).
In the Text Editor, takes you to the next bookmark. Same as
Edit->Next bookmark (see Edit Menu Commands for the Text Editor ,
on page 312).

F4 In the Project view, adds a file to the project. Same as
Project->Add Source File (see Build Project Command , on
page 310).
In an RTL or Technology view, zooms the view so that it shows
the entire design. Same as View->Full View (see View Menu: RTL
and Technology Views Commands , on page 326).

F5 Displays the next source file error.
Same as Run->Next Error/Warning (see Run Menu , on page 381).

F7 Compiles your design, without mapping it.
Same as Run->Compile Only (see Run Menu , on page 381).

F8 Synthesizes (compiles and maps) your design.
Same as Run->Synthesize (see Run Menu , on page 381).

F11 Toggles zooming in.
Same as View->Zoom In (see View Menu: RTL and Technology
Views Commands , on page 326).

Keyboard
Shortcut

Description

LO

 User Interface Overview Keyboard Shortcuts

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
70 Synopsys Confidential Information June 2020

F12 In an RTL or Technology view, filters your entire design to show
only the selected objects.
Same as HDL Analyst->Filter Schematic - see HDL Analyst Menu:
Filtering and Flattening Commands , on page 415.

i In an RTL or Technology view, selects instances connected to the
selected net. Limited to the current schematic.
Same as HDL Analyst->Current Level->Select Net Instances (see HDL
Analyst Menu , on page 412).

j In an RTL or Technology view, displays the unfiltered schematic
sheet that contains the net driver for the selected net.
Same as HDL Analyst->Current Level->Goto Net Driver (see HDL
Analyst Menu , on page 412).

r In an RTL or Technology view, expands along the paths from
selected pins or ports, according to their directions, until
registers, ports, or black boxes are reached. The result is a
filtered schematic. Limited to the current schematic.
Same as HDL Analyst ->Current Level->Expand to Register/Port (see
HDL Analyst Menu , on page 412).

Shift-F2 In the Text Editor, takes you to the previous bookmark.

Shift-F4 Allows you to add source files to your project (Project->Add Source
Files).

Shift-F5 Displays the previous source file error.
Same as Run->Previous Error/Warning (see Run Menu , on page 381).

Shift-F7 Checks source file syntax.
Same as Run->Syntax Check (see Run Menu , on page 381).

Shift-F8 Checks synthesis.
Same as Run->Synthesis Check (see Run Menu , on page 381).

Shift-F10 Checks the timing constraints in the constraint files in your
project and generates a report (project_name_cck.rpt).
Same as Run->Constraint Check (see Run Menu , on page 381).
In an RTL or Technology view, lets you pan (scroll) the schematic
by dragging it with the mouse. Same as View ->Pan (see View
Menu: RTL and Technology Views Commands , on page 326).

Keyboard
Shortcut

Description

Keyboard Shortcuts User Interface Overview

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 71

Shift-F11 Toggles zooming out.
Same as View->Zoom Out (see View Menu , on page 325).

Shift-Left Arrow Displays the previous sheet of a multiple-sheet schematic.

Shift-Right Arrow Displays the next sheet of a multiple-sheet schematic.

Shift-s Dissolves the selected instances, showing their lower-level
details. Dissolving an instance one level replaces it, in the
current sheet, by what you would see if you pushed into it using
the push/pop mode. The rest of the sheet (not selected) remains
unchanged.
The number of levels dissolved is the Dissolve Levels value in the
Schematic Options dialog box. The type (filtered or unfiltered) of the
resulting schematic is unchanged from that of the current
schematic. However, the effect of the command is different in
filtered and unfiltered schematics.
Same as HDL Analyst ->Dissolve Instances - see Dissolve Instances , on
page 421.

Keyboard
Shortcut

Description

LO

 User Interface Overview Buttons and Options

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
72 Synopsys Confidential Information June 2020

Buttons and Options
The Project view contains several buttons and a few additional features that
give you immediate access to some of the more common commands and user
options.

The following table describes the Project View buttons and options.

Buttons and Options User Interface Overview

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 73

Button/Option Action

Open Project... Opens a new or existing project.
Same as File->Open Project (see Open Project Command , on
page 311).

Close Project Closes the current project.
Same as File->Close Project (see Run Menu , on page 381).

Add File... Adds a source file to the project.
Same as Project->Add Source File (see Build Project
Command , on page 310).

Change File... Replaces one source file with another.
Same as Project ->Change File (see Change File Command ,
on page 337).

Add Implementation Creates a new implementation.

Implementation Options Displays the Implementation Options dialog box, where you
can set various options for synthesis.
Same as Project->Implementation Options (see
Implementation Options Command , on page 346).

Add P&R
Implementation

Creates a place-and-route implementation to control and
run place and route from within the synthesis tool. See
Add P&R Implementation Popup Menu Command , on
page 478 for a description of the dialog box, and Running
P&R Automatically after Synthesis , on page 554 in the
User Guidefor information about using this feature.

View Log Displays the log file.
Same as View->View Log File (see View Menu , on page 325).

Frequency (MHz) Sets the global frequency, which you can override locally
with attributes.
Same as enabling the Frequency (MHz) option on the
Constraints panel of the Implementation Options dialog box.

LO

 User Interface Overview Buttons and Options

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
74 Synopsys Confidential Information June 2020

Auto Constrain When Auto Constrain is enabled and no clocks are
defined, the software automatically constrains the design
to achieve best possible timing by reducing periods of
individual clock and the timing of any timed I/O paths in
successive steps.
See Using Auto Constraints , on page 376 in the User
Guide for detailed information about using this option.
You can also set this option on the Constraints panel of the
Implementation Options dialog box.

FSM Compiler Turning on this option enables special FSM optimizations.
Same as enabling the FSM Compiler option on the Options
panel of the Implementation Options dialog box (see
Optimizing State Machines , on page 424 in the User
Guide).

FSM Explorer When enabled, the FSM Explorer selects an encoding style
for the finite state machines in your design.
Same as enabling the FSM Explorer option on the Options
panel of the Implementation Options dialog box. For more
information, see Running the FSM Compiler , on page 425
in the User Guide.

Button/Option Action

Buttons and Options User Interface Overview

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 75

Resource Sharing When enabled, makes the compiler use resource sharing
techniques. This option does not affect resource sharing
by the mapper.
The option is the same as the Resource Sharing option on
the Options panel of the Implementation Options dialog box.
See Sharing Resources , on page 422 in the User Guide for
usage details.

Retiming When enabled, improves the timing performance of
sequential circuits. The retiming process moves storage
devices (flip-flops) across computational elements with no
memory (gates/LUTs) to improve the performance of the
circuit. This option also adds a retiming report to the log
file.
Same as enabling the Retiming option on the Options panel
of the Implementation Options dialog box. Use the
syn_allow_retiming attribute to enable or disable retiming for
individual flip-flops. See syn_allow_retiming , on page 59
for syntax details.

Run Runs synthesis (compilation and mapping).
Same as the Run->Run command (see Run Menu , on
page 381).

Button/Option Action

LO

 User Interface Overview Buttons and Options

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
76 Synopsys Confidential Information June 2020

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 77

C H A P T E R 3

HDL Analyst Tool

The HDL Analyst tool helps you examine your design and synthesis results,
and analyze how you can improve design performance and area.

The following describe the HDL Analyst tool and the operations you can
perform with it.

• HDL Analyst Views and Commands, on page 78

• Schematic Objects and Their Display, on page 88

• Basic Operations on Schematic Objects, on page 97

• Multiple-sheet Schematics, on page 102

• Exploring Design Hierarchy, on page 105

• Filtering and Flattening Schematics, on page 113

• Timing Information and Critical Paths, on page 119

LO

 HDL Analyst Tool HDL Analyst Views and Commands

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
78 Synopsys Confidential Information June 2020

HDL Analyst Views and Commands
The HDL Analyst tool graphically displays information in two schematic
views: the RTL and Technology views (see RTL View, on page 78 and
Technology View, on page 80 for information). The graphic representation is
useful for analyzing and debugging your design, because you can visualize
where coding changes or timing constraints might reduce area or increase
performance.

This section gives you information about the following:

• Hierarchy Browser, on page 82

• FSM Viewer Window, on page 83

• Filtered and Unfiltered Schematic Views, on page 85

• Accessing HDL Analyst Commands, on page 86

RTL View
The RTL view provides a high-level, technology-independent, graphic repre-
sentation of your design after compilation, using technology-independent
components like variable-width adders, registers, large multiplexers, and
state machines. RTL views correspond to the srs netlist files generated during
compilation. RTL views are only available after your design has been success-
fully compiled. For information about the other HDL Analyst view (the
Technology view generated after mapping), see Technology View, on page 80.

To display an RTL view, first compile or synthesize your design, then select
HDL Analyst->RTL and choose Hierarchical View or Flattened View, or click the
RTL icon ().

An RTL view has two panes: a Hierarchy Browser on the left and an RTL
schematic on the right. You can drag the pane divider with the mouse to
change the relative pane sizes. For more information about the Hierarchy
Browser, see Hierarchy Browser, on page 82. Your design is drawn as a set of
schematics. The schematic for a design module (or the top level) consists of
one or more sheets, only one of which is visible in a given view at any time.
The title bar of the window indicates the current hierarchical schematic level,
the current sheet, and the total number of sheets for that level.

HDL Analyst Views and Commands HDL Analyst Tool

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 79

The design in the RTL schematic can be hierarchical or flattened. Further, the
view can consist of the entire design or part of it. Different commands apply,
depending on the kind of RTL view.

The following table lists where to find further information about the RTL view:

For information about ... See ...

Hierarchy Browser Hierarchy Browser, on page 82

Procedures for RTL view
operations like
crossprobing, searching,
pushing/popping,
filtering, flattening, etc.

Working in the Standard Schematic, on page 295 of the
User Guide.

Explanations or
descriptions of features
like object display,
filtering, flattening, etc.

HDL Analyst Tool, on page 77

Commands for RTL view
operations like filtering,
flattening, etc.

Accessing HDL Analyst Commands, on page 86
HDL Analyst Menu, on page 412

LO

 HDL Analyst Tool HDL Analyst Views and Commands

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
80 Synopsys Confidential Information June 2020

Technology View
A Technology view provides a low-level, technology-specific view of your
design after mapping, using components such as look-up tables, cascade and
carry chains, multiplexers, and flip-flops. Technology views are only available
after your design has been synthesized (compiled and mapped). For informa-
tion about the other HDL Analyst view (the RTL view generated after compila-
tion), see RTL View, on page 78.

To display a Technology view, first synthesize your design, and then either
select a view from the HDL Analyst->Technology menu (Hierarchical View, Flattened
View, Flattened to Gates View, Hierarchical Critical Path, or Flattened Critical Path) or
select the Technology view icon ().

A Technology view has two panes: a Hierarchy Browser on the left and an RTL
schematic on the right. You can drag the pane divider with the mouse to
change the relative pane sizes. For more information about the Hierarchy
Browser, see Hierarchy Browser, on page 82. Your design is drawn as a set of
schematics at different design levels. The schematic for a design module (or
the top level) consists of one or more sheets, only one of which is visible in a
given view at any time. The title bar of the window indicates the current
schematic level, the current sheet, and the total number of sheets for that
level.

Viewing commands like
zooming, panning, etc.

View Menu: RTL and Technology Views Commands, on
page 326

History commands: Back
and Forward

View Menu: RTL and Technology Views Commands, on
page 326

Search command Find Command (HDL Analyst), on page 317

For information about ... See ...

HDL Analyst Views and Commands HDL Analyst Tool

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 81

The schematic design can be hierarchical or flattened. Further, the view can
consist of the entire design or a part of it. Different commands apply,
depending on the kind of view. In addition to all the features available in RTL
views, Technology views have two additional features: critical path filtering
and flattening to gates.

The following table lists where to find further information about the
Technology view:

For information about ... See ...

Hierarchy Browser Hierarchy Browser, on page 82

Procedures for
Technology view
operations like
crossprobing, searching,
pushing/popping,
filtering, flattening, etc.

Working in the Standard Schematic, on page 295 of the
User Guide

Explanations or
descriptions of features
like object display,
filtering, flattening, etc.

HDL Analyst Tool, on page 77

Commands for
Technology view
operations like filtering,
flattening, etc.

Accessing HDL Analyst Commands, on page 86
HDL Analyst Menu, on page 412

LO

 HDL Analyst Tool HDL Analyst Views and Commands

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
82 Synopsys Confidential Information June 2020

Hierarchy Browser
The Hierarchy Browser is the left pane in the RTL and Technology views. (See
RTL View, on page 78 and Technology View, on page 80.) The Hierarchy
Browser categorizes the design objects in a series of trees, and lets you
browse the design hierarchy or select objects. Selecting an object in the
Browser selects that object in the schematic. The objects are organized as
shown in the following table, with a symbol that indicates the object type. See
Hierarchy Browser Symbols, on page 83 for common symbols.

A tree node can be expanded or collapsed by clicking the associated icons:
the square plus () or minus () icons, respectively. You can also expand
or collapse all trees at the same time by right-clicking in the Hierarchy
Browser and choosing Expand All or Collapse All.

You can use the keyboard arrow keys (left, right, up, down) to move between
objects in the Hierarchy Browser, or you can use the scroll bar. Use the Shift
or Ctrl keys to select multiple objects. See Navigating With a Hierarchy
Browser, on page 109 for more information about using the Hierarchy
Browser for navigation and crossprobing.

Viewing commands like
zooming, panning, etc.

View Menu: RTL and Technology Views Commands, on
page 326

History commands: Back
and Forward

View Menu: RTL and Technology Views Commands, on
page 326

Search command Find Command (HDL Analyst), on page 317

Instances Lists all the instances and primitives in the design. In a Technology
view, it includes all technology-specific primitives.

Ports Lists all the ports in the design.

Nets Lists all the nets in the design.

Clock Tree Lists all the instances and ports that drive clock pins in an RTL view. If
you select everything listed under Clock Tree and then use the Filter
Schematic command, you see a filtered view of all clock pin drivers in
your design. Registers are not shown in the resulting schematic,
unless they drive clocks. This view can help you determine what to
define as clocks.

For information about ... See ...

HDL Analyst Views and Commands HDL Analyst Tool

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 83

Hierarchy Browser Symbols
Common symbols used in Hierarchy Browsers are listed in the following
table.

FSM Viewer Window
Pushing down into a state machine primitive in the RTL view displays the
FSM Viewer and enables the FSM toolbar. The FSM Viewer contains graphical
information about the finite state machines (FSMs) in your design. The
window has a state-transition diagram and tables of transitions and state
encodings.

Symbol Description Symbol Description

Folder Buffer

Input port AND gate

Output port NAND gate

Bidirectional port OR gate

Net NOR gate

Other primitive instance XOR gate

Hierarchical instance XNOR gate

Technology-specific primitive
or inferred ROM

Adder

Register
or inferred state machine

Multiplier

Multiplexer Equal comparator

Tristate Less-than comparator

Inverter Less-than-or-equal comparator

LO

 HDL Analyst Tool HDL Analyst Views and Commands

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
84 Synopsys Confidential Information June 2020

For the FSM Viewer to display state machine names for a Verilog design, you
must use the Verilog parameter keyword. If you specify state machine names
using the define keyword, the FSM Viewer displays the binary values for the
state machines, rather than their names.

You can toggle display of the FSM tables on and off with the Toggle FSM Table
icon () on the FSM toolbar. The FSM tables are in the following panels:

• The Transitions panel describes, for each transition, the From State, To State,
and Condition of transition.

• The RTL Encodings panel describes the correlation, in the RTL view,
between the states (State) and the outputs (Register) of the FSM cell.

• The Mapped Encodings panel describes the correlation, in the Technology
view, between the states (State) and their encodings into
technology-specific registers. The information in this panel is available
only after the design has been synthesized.

The following table describes FSM Viewer operations.

HDL Analyst Views and Commands HDL Analyst Tool

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 85

Filtered and Unfiltered Schematic Views
HDL Analyst views (RTL View, on page 78 and Technology View, on page 80)
consist of schematics that let you analyze your design graphically. The
schematics can be filtered or unfiltered. The distinction is important because
the kind of view determines how objects are displayed for certain commands.

• Unfiltered schematics display all the objects in your design, at appro-
priate hierarchical levels.

• Filtered schematics show only a subset of the objects in your design,
because the other objects have been filtered out by some operation. The
Hierarchy Browser in the filtered view always list all the objects in the
design, not just the filtered objects. Some commands, such as HDL
Analyst -> Show Context, are only available in filtered schematics. Views
with a filtered schematic have the word Filtered in the title bar.

To accomplish this ... Do this ...

Open the FSM Viewer Run the FSM Compiler or the FSM Explorer. Use the
push/pop mode in the RTL view to push down into
the FSM and open the FSM Viewer window.

Hide/display the table Use the FSM icons.

Filter selected states and
their transitions

Select the states. Right-click and choose the filter
criteria from the popup, or use the FSM icons.

Display the encoding
properties of a state

Select a state. Right-click to display its encoding
properties (RTL or Mapped).

Display properties for the
state machine

Right-click the window, outside the state-transition
diagram. The property sheet shows the selected
encoding method, the number of states, and the total
number of transitions among states.

Crossprobe Double-click a register in an RTL or Technology view
to see the corresponding code. Select a state in the
FSM view to highlight the corresponding code or
register in other open views.

LO

 HDL Analyst Tool HDL Analyst Views and Commands

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
86 Synopsys Confidential Information June 2020

Filtering commands affect only the displayed schematic, not the under-
lying design. See the following topics:

• For a detailed description of filtering, see Filtering and Flattening
Schematics, on page 113.

• For procedures on using filtering, see Filtering Schematics, on page 340
in the User Guide.

Accessing HDL Analyst Commands
You can access HDL Analyst commands in many ways, depending on the
active view, the currently selected objects, and other design context factors.
The software offers these alternatives to access the commands:

• HDL Analyst and View menus

• HDL Analyst popup menus appear when you right-click in an HDL
Analyst view. The popup menu is context-sensitive, and includes
commonly used commands from the HDL Analyst and View menus, as well
as some additional commands.

• HDL Analyst toolbar icons provide shortcuts to commonly used
commands

For brevity, this document primarily refers to the menu method of accessing
the commands and does not list alternative access methods.

See also:

• HDL Analyst Menu, on page 412

• View Menu, on page 325

• RTL and Technology Views Popup Menus, on page 483

HDL Analyst Views and Commands HDL Analyst Tool

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 87

• Analyst Toolbar, on page 59

LO

 HDL Analyst Tool Schematic Objects and Their Display

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
88 Synopsys Confidential Information June 2020

Schematic Objects and Their Display
Schematic objects are the objects that you manipulate in an HDL Analyst
schematic: instances, ports, and nets. Instances can be categorized in
different ways, depending on the operation: hidden/unhidden, trans-
parent/opaque, or primitive/hierarchical. The following topics describe
schematic objects and the display of associated information in more detail:

• Object Information, on page 88

• Sheet Connectors, on page 89

• Primitive and Hierarchical Instances, on page 90

• Hidden Hierarchical Instances, on page 93

• Transparent and Opaque Display of Hierarchical Instances, on page 91

• Schematic Display, on page 93

For most objects, you select them to perform an operation. For some objects
like sheet connectors, you do not select them but right-click on them and
select from the popup menu commands.

Object Information
To obtain information about specific objects, you can view object properties
with the Properties command from the right-click popup menu, or place the
pointer over the object and view the object information displayed. With the
latter method, information about the object displays in these two places until
you move the pointer away:

• The status bar at the bottom of the synthesis window displays the name
of the instance, net, port, or sheet connector and other relevant informa-
tion. If HDL Analyst->Show Timing Information is enabled, the status bar also
displays timing information for the object. Here is an example of the
status bar information for a net:

Net clock (local net clock) Fanout=4
You can enable and disable the display of status bar information by
toggling the command View -> Status Bar.

Schematic Objects and Their Display HDL Analyst Tool

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 89

• In a tooltip at the mouse pointer
Displays the name of the object and any attached attributes. The
following figure shows tooltip information for a state machine:

To disable tooltip display, select View -> Toolbars and disable the Show
Tooltips option. Do this if you want to reduce clutter.

See also

• Pin and Pin Name Display for Opaque Objects, on page 94

• Standard HDL Analyst Options Command, on page 444

Sheet Connectors
When the HDL Analyst tool divides a schematic into multiple sheets, sheet
connector symbols indicate how sheets are related. A sheet connector symbol
is like a port symbol, but it has an empty diamond with sheet numbers at one
end. Use the Options->HDL Analyst Options command (see Sheet Size Panel, on
page 450) to control how the schematic is divided into multiple sheets.

If you enable the Show Sheet Connector Index option in the (Options->HDL Analyst
Options), the empty diamond becomes a hexagon with a list of the connected
sheets. You go to a connecting sheet by right-clicking a sheet connector and
choosing the sheet number from the popup menu. The menu has as many
sheet numbers as there are sheets connected to the net at that point.

Tooltip

Mouse pointer

Diamond indicates sheet connector

Ports

LO

 HDL Analyst Tool Schematic Objects and Their Display

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
90 Synopsys Confidential Information June 2020

See also

• Multiple-sheet Schematics, on page 102

• Standard HDL Analyst Options Command, on page 444

• RTL and Technology Views Popup Menus, on page 483

Primitive and Hierarchical Instances
HDL Analyst instances are either primitive or hierarchical, and sorted into
these categories in the Hierarchy Browser. Under Instances, the browser first
lists hierarchical instances, and then lists primitive instances under
Instances->Primitives.

Primitive Instances
Although some primitive objects have hierarchy, the term is used here to
distinguish these objects from user-defined hierarchies. Primitive instances
include the following:

RTL View Technology View

High-level logic primitives, like XOR gates
or priority-encoded multiplexers

Black boxes

Inferred ROMs, RAMs, and state
machines

Technology-specific primitives, like
LUTs or FPGA block RAMs

Black boxes

Technology-specific primitives, like LUTs
or FPGA block RAMs

Show

Show

Schematic Objects and Their Display HDL Analyst Tool

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 91

In a schematic, logic gate primitives are represented with standard schematic
symbols, and technology-specific primitives with various symbols (see
Hierarchy Browser, on page 82). You can push into primitives like
technology-specific primitives, inferred ROMs, and inferred state machines to
view internal details. You cannot push into logic primitives.

Hierarchical Instances
Hierarchical instances are user-defined hierarchies; all other instances are
considered to be primitives. Hierarchical instances correspond to Verilog
modules and VHDL entities.

The Hierarchy Browser lists hierarchical instances under Instances, and uses
this symbol: . In a schematic, the display of hierarchical instances
depends on the combination of the following:

• Whether the instance is transparent or opaque. Transparent instances
show their internal details nested inside them; opaque instances do not.
You cannot directly control whether an object is transparent or opaque;
the views are automatically generated by certain commands. See Trans-
parent and Opaque Display of Hierarchical Instances, on page 91 for
details.

• Whether the instance is hidden or not. This is user-controlled, and you
can hide instances so that they are ignored by certain commands. See
Hidden Hierarchical Instances, on page 93 for more information.

Transparent and Opaque Display of Hierarchical Instances
A hierarchical instance can be displayed transparently or opaquely. You
cannot directly control the display; certain commands cause instances to be
transparent. The distinction between transparent and opaque is important
because some commands operate differently on transparent and opaque
instances. For example, in a filtered schematic Flatten Current Schematic flattens
only transparent hierarchical instances.

• Opaque instances are pale yellow boxes, and do not display their
internal hierarchy. This is the default display.

LO

 HDL Analyst Tool Schematic Objects and Their Display

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
92 Synopsys Confidential Information June 2020

• Transparent instances display some or all their lower-level hierarchy
nested inside a hollow box with a pale yellow border. Transparent
instances are only displayed in filtered schematics, and are a result of
certain commands. See Looking Inside Hierarchical Instances, on
page 110 for information about commands that generate transparent
instances.

A transparent instance can contain other opaque or transparent
instances nested inside. The details inside a transparent instance are
independent schematic objects and you can operate on them
independently: select, push into, hide, and so on. Performing an opera-
tion on a transparent object does not automatically perform it on any of
the objects nested inside it, and conversely.

See also

• Looking Inside Hierarchical Instances, on page 110

• Multiple Sheets for Transparent Instance Details, on page 104

• Filtered and Unfiltered Schematic Views, on page 85

No nested logic

Schematic Objects and Their Display HDL Analyst Tool

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 93

Hidden Hierarchical Instances
Certain commands do not operate on the lower-level hierarchy of hidden
instances, so you can hide instances to focus the operation of a command
and improve performance. You hide opaque or transparent hierarchical
instances with the Hide Instances command (described in RTL and Technology
Views Popup Menus, on page 483). Hiding and unhiding only affects the
current HDL Analyst view, and does not affect the Hierarchy Browser. You
can hide and unhide instances as needed. The hierarchical logic of a hidden
instance is not removed from the design; it is only excluded from certain
operations.

The schematics indicate hidden hierarchical instances with a small H in the
lower left corner. When the mouse pointer is over a hidden instance, the
status bar and the tooltip indicate that the instance is hidden.

Schematic Display
The HDL Analyst Options dialog box controls general properties for all HDL
Analyst views, and can determine the display of schematic object informa-
tion. Setting a display option affects all objects of the given type in all views.
Some schematic options only take effect in schematic windows opened after
the setting change; others affect existing schematic windows as well.

The following are some commonly used settings that affect the display of
schematic objects. See Standard HDL Analyst Options Command, on
page 444 for a complete list of display options.

LO

 HDL Analyst Tool Schematic Objects and Their Display

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
94 Synopsys Confidential Information June 2020

Pin and Pin Name Display for Opaque Objects
Although it always displays the pins, the software does not automatically
display pin names for opaque hierarchical instances, technology-specific
primitives, RAMS, ROMs, and state machines. To display pin names for these
objects, enable Options-> HDL Analyst Options->Text->Show Pin Name. The following
figures illustrate this display. The first figure shows pins and pin names of an
opaque hierarchical instance, and the second figure shows the pins of a
technology-specific primitive with its cell contents not displayed.

Option Controls the display of ...

Show Cell Interior Internal logic of technology-specific primitives

Compress Buses Buses as bundles

Dissolve Levels Hierarchical levels in a view flattened with HDL Analyst
-> Dissolve Instances or Dissolve to Gates, by setting the
number of levels to dissolve.

Instances
Filtered Instances
Instances added for
expansion

Instances on a schematic by setting limits to the
number of instances displayed

Instance Name
Show Conn Name
Show Symbol Name
Show Port Name

Object labels

Show Pin Name
HDL Analyst->Show All Hier
Pins

Pin names. See Pin and Pin Name Display for Opaque
Objects , on page 94 and Pin and Pin Name Display for
Transparent Objects , on page 95 for details.

Schematic Objects and Their Display HDL Analyst Tool

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 95

Pin and Pin Name Display for Transparent Objects
This section discusses pin name display for transparent hierarchical
instances in filtered views and technology-specific primitives.

Transparent Hierarchical Instances
In a filtered schematic, some of the pins on a transparent hierarchical
instance might not be displayed because of filtering. To display all the pins,
select the instance and select HDL Analyst -> Show All Hier Pins.

LO

 HDL Analyst Tool Schematic Objects and Their Display

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
96 Synopsys Confidential Information June 2020

To display pin names for the instance, enable Options->HDL Analyst Options->Text
->Show Pin Name. The software temporarily displays the pin name when you
move the cursor over a pin. To keep the pin name displayed even after you
move the cursor away, select the pin. The name remains until you select
something else.

Primitives
To display pin names for technology primitives in the Technology view, enable
Options-> HDL Analyst Options->Text->Show Pin Name. The software displays the pin
names until the option is disabled. If Show Pin Name is enabled when Options->
HDL Analyst Options->General->Show Cell Interior is also enabled, the primitive is
treated like a transparent hierarchical instance, and primitive pin names are
only displayed when the cursor moves over the pins. To keep a pin name
displayed even after you move the cursor away, select the pin. The name
remains until you select something else.

See also:

• Standard HDL Analyst Options Command, on page 444

• Controlling the Amount of Logic on a Sheet, on page 102

• Analyzing Timing in Schematic Views, on page 358 in the User Guide

Basic Operations on Schematic Objects HDL Analyst Tool

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 97

Basic Operations on Schematic Objects
Basic operations on schematic objects include the following:

• Finding Schematic Objects, on page 97

• Selecting and Unselecting Schematic Objects, on page 98

• Crossprobing Objects, on page 99

• Dragging and Dropping Objects, on page 101

For information about other operations on schematics and schematic objects,
see the following:

• Filtering and Flattening Schematics, on page 113

• Timing Information and Critical Paths, on page 119

• Multiple-sheet Schematics, on page 102

• Exploring Design Hierarchy, on page 105

Finding Schematic Objects
You can use the following techniques to find objects in the schematic. For
step-by-step procedures using these techniques, see Finding Objects
(Standard), on page 316 in the User Guide.

• Zooming and panning

• HDL Analyst Hierarchy Browser

You can use the Hierarchy Browser to browse and find schematic
objects. This can be a quick way to locate an object by name if you are
familiar with the design hierarchy. See Browsing With the Hierarchy
Browser, on page 316 in the User Guide for details.

• Edit -> Find command

The Edit -> Find command is described in Find Command (HDL Analyst),
on page 317. It displays the Object Query dialog box, which lists
schematic objects by type (Instances, Symbols, Nets, or Ports) and lets you
use wildcards to find objects by name. You can also fine-tune your
search by setting a range for the search.

LO

 HDL Analyst Tool Basic Operations on Schematic Objects

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
98 Synopsys Confidential Information June 2020

This command selects all found objects, whether or not they are
displayed in the current schematic. Although you can search for hidden
instances, you cannot find objects that are inside hidden instances at a
lower level. Temporarily hiding an instance thus further refines the
search range by excluding the internals of a a given instance. This can
be very useful when working with transparent instances, because the
lower-level details appear at the current level, and cannot be excluded
by choosing Current Level Only. See Using Find for Hierarchical and
Restricted Searches, on page 318 in the User Guide.

• Edit -> Find command combined with filtering

Edit->Find enhances filtering. Use Find to select by name and hierarchical
level, and then filter the design to limit the display to the current selec-
tion. Unselected objects are removed. Because Find only adds to the
current selection (it never deselects anything already selected), you can
use successive searches to build up exactly the selection you need,
before filtering.

• Filtering before searching with Edit->Find

Filtering helps you to fine-tune the range of a search. You can search for
objects just within a filtered schematic by limiting the search range to
the Current Level Only.

Filtering adds to the expressive power of displaying search results. You
can find objects on different sheets and filter them to see them all
together at once. Filtering collapses the hierarchy visually, showing
lower-level details nested inside transparent higher-level instances. The
resulting display combines the advantage of a high-level, abstract view
with detail-rich information from lower levels.

See Filtering and Flattening Schematics, on page 113 for further informa-
tion.

Selecting and Unselecting Schematic Objects
Whenever an object is selected in one place it is selected and highlighted
everywhere else in the synthesis tool, including all Hierarchy Browsers, all
schematics, and the Text Editor. Many commands operate on the currently
selected objects, whether or not those objects are visible.

Basic Operations on Schematic Objects HDL Analyst Tool

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 99

The following briefly list selection methods; for a concise table of selection
procedures, see Selecting Objects in the RTL/Technology Views, on page 302
in the User Guide.

Using the Mouse to Select a Range of Schematic Objects
In a Hierarchy Browser, you can select a range of schematic objects by
clicking the name of an object at one end of the range, then holding the Shift
key while clicking the name of an object at the other end of the range.To use
the mouse for selecting and unselecting objects in a schematic, the
cross-hairs symbol () must appear as the mouse pointer. If this is not
currently the case, right-click the schematic background.

Using Commands to Select Schematic Objects
You can select and deselect schematic objects using the commands in the
HDL Analyst menu, or use Edit->Find to find and select objects by name.

The HDL Analyst menu commands that affect selection include the following:

• Expansion commands like Expand, Expand to Register/Port, Expand Paths,
and Expand Inwards select the objects that result from the expansion. This
means that (except for Expand to Register/Port) you can perform successive
expansions and expand the set of objects selected.

• The Select All Schematic and Select All Sheet commands select all instances
or ports on the current schematic or sheet, respectively.

• The Select Net Driver and Select Net Instances commands select the appro-
priate objects according to the hierarchical level you have chosen.

• Deselect All deselects all objects in all HDL Analyst views.

See also

• Finding Schematic Objects, on page 97

• HDL Analyst Menu, on page 412

Crossprobing Objects
Crossprobing helps you diagnose where coding changes or timing constraints
might reduce area or increase performance. When you crossprobe, you select
an object in one place and it or its equivalent is automatically selected and

LO

 HDL Analyst Tool Basic Operations on Schematic Objects

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
100 Synopsys Confidential Information June 2020

highlighted in other places. For example, selecting text in the Text Editor
automatically selects the corresponding logic in all HDL Analyst views.
Whenever a net is selected, it is highlighted through all the hierarchical
instances it traverses, at all schematic levels.

Crossprobing Between Different Views
You can crossprobe objects (including logic inside hidden instances) between
RTL views, Technology views, the FSM Viewer, HDL source code files, and
other text files. Some RTL and source code objects are optimized away during
synthesis, so they cannot be crossprobed to certain views.

The following table summarizes crossprobing to and from HDL Analyst (RTL
and Technology) views. For information about crossprobing procedures, see
Crossprobing (Standard), on page 329 in the User Guide.

From ... To ... Do this ...

Text Editor: log
file

Text Editor:
HDL source
file

Double-click a log file note, error, or warning.
The corresponding HDL source code appears in
the Text Editor.

Text Editor: HDL
code

Analyst view

FSM Viewer

The RTL view or Technology view must be open.
Select the code in the Text Editor that
corresponds to the object(s) you want to
crossprobe.
The object corresponding to the selected code is
automatically selected in the target view, if an
HDL source file is in the Text Editor. Otherwise,
right-click and choose the Select in Analyst
command.
To cross-probe from text other than source
code, first select Options->HDL Analyst Options and
then enable Enhanced Text Crossprobing.

FSM Viewer Analyst view The target view must be open. The state
machine must be encoded with the onehot style
to crossprobe from the transition table.
Select a state anywhere in the FSM Viewer
(bubble diagram or transition table). The
corresponding object is automatically selected
in the HDL Analyst view.

Basic Operations on Schematic Objects HDL Analyst Tool

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 101

Dragging and Dropping Objects
You can drag and drop objects like instances, nets and pins from the HDL
Analyst schematic views to other windows to help you analyze your design or
set constraints. You can drag and drop objects from an RTL or Technology
views to the following other windows:

• SCOPE editor

• Text editor window

• Tcl window

Analyst view

FSM Viewer

Text Editor Double-click an object. The source code
corresponding to the object is automatically
selected in the Text Editor, which is opened to
show the selection.
If you just select an object, without
double-clicking it, the corresponding source
code is still selected and displayed in the editor
(provided it is open), but the editor window is
not raised to the front.

Analyst view Another open
view

Select an object in an HDL Analyst view. The
object is automatically selected in all open
views.
If the target view is the FSM Viewer, then the
state machine must be encoded as onehot.

Tcl window Text Editor Double-click an error or warning message
(available in the Tcl window errors or warnings
panel, respectively). The corresponding source
code is automatically selected in the Text
Editor, which is opened to show the selection.

Text Editor: any
text containing
instance names,
like a timing
report

Corresponding
instance

Highlight the text, then right-click & choose
Select or Filter. Use this to filter critical paths
reported in a text file by the FPGA timing
analysis tool.

From ... To ... Do this ...

LO

 HDL Analyst Tool Multiple-sheet Schematics

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
102 Synopsys Confidential Information June 2020

Multiple-sheet Schematics
When there is too much logic to display on a single sheet, the HDL Analyst
tool uses additional schematic sheets. Large designs can take several sheets.
In a hierarchical schematic, each module consists of one or more sheets.
Sheet connector symbols (Sheet Connectors, on page 89) mark logic connec-
tions from one sheet to the next.

For more information, see

• Controlling the Amount of Logic on a Sheet, on page 102

• Navigating Among Schematic Sheets, on page 102

• Multiple Sheets for Transparent Instance Details, on page 104

Controlling the Amount of Logic on a Sheet
You can control the amount of logic on a schematic sheet using the options in
Options->HDL Analyst Options->Sheet Size. The Maximum Instances option sets the
maximum number of instances on an unfiltered schematic sheet. The
Maximum Filtered Instances option sets the maximum number of instances
displayed at any given hierarchical level on a filtered schematic sheet.

See also:

• Standard HDL Analyst Options Command, on page 444

• Setting Schematic Preferences, on page 305 of the User Guide.

Navigating Among Schematic Sheets
This section describes how to navigate among the sheets in a given
schematic. The window title bar lets you know where you are at any time.

Multisheet Orientation in the Title Bar
The window title bar of an RTL view or Technology view indicates the current
context. For example, uc_alu (of module alu) in the title indicates that the
current schematic level displays the instance uc_alu (which is of module alu).
The objects shown are those comprising that instance.

Multiple-sheet Schematics HDL Analyst Tool

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 103

The title bar also indicates, for the current schematic, the number of the
displayed sheet, and the total number of sheets — for example, sheet 2 of 4. A
schematic is initially opened to its first sheet.

Navigating Among Sheets
You can navigate among different sheets of a schematic in these ways:

• Follow a sheet connector, by right-clicking it and choosing a connecting
sheet from the popup menu

• Use the sheet navigation commands of the View menu: Next Sheet,
Previous Sheet, and View Sheets, or their keyboard shortcut or icon equiva-
lents

• Use the history navigation commands of the View menu (Back and
Forward), or their keyboard shortcuts or icon equivalents to navigate to
sheets stored in the display history

For details, see Working with Multisheet Schematics, on page 303 in the User
Guide.

You can navigate among different design levels by pushing and popping the
design hierarchy. Doing so adds to the display history of the View menu, so
you can retrace your push/pop steps using View -> Back and View->Forward.
After pushing down, you can either pop back up or use View->Back.

See also:

• Filtering and Flattening Schematics, on page 113

LO

 HDL Analyst Tool Multiple-sheet Schematics

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
104 Synopsys Confidential Information June 2020

• View Menu: RTL and Technology Views Commands, on page 326

• Pushing and Popping Hierarchical Levels, on page 105

Multiple Sheets for Transparent Instance Details
The details of a transparent instance in a filtered view are drawn in two ways:

• Generally, these interior details are spread out over multiple sheets at
the same schematic level (module) as the instance that contains them.
You navigate these sheets as usual, using the methods described in
Navigating Among Schematic Sheets, on page 102.

• If the number of nested contents exceeds the limit set with the Filtered
Instances option (Options->HDL Analyst Options), the nested contents are
drawn on separate sheets. The parent hierarchical instance is empty,
with a notation (for example, Go to sheets 4-16) inside it, indicating which
sheets contain its lower-level details. You access the sheets containing
the lower-level details using the sheet navigation commands of the View
menu, such as Next Sheet.

See also:

• Controlling the Amount of Logic on a Sheet, on page 102

• View Menu: RTL and Technology Views Commands, on page 326

Exploring Design Hierarchy HDL Analyst Tool

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 105

Exploring Design Hierarchy
The hierarchy in your design can be explored in different ways. The following
sections explain how to move between hierarchical levels:

• Pushing and Popping Hierarchical Levels, on page 105

• Navigating With a Hierarchy Browser, on page 109

• Looking Inside Hierarchical Instances, on page 110

Pushing and Popping Hierarchical Levels
You can navigate your design hierarchy by pushing down into a high-level
schematic object or popping back up. Pushing down into an object takes you
to a lower-level schematic that shows the internal logic of the object. Popping
up from a lower level brings you back to the parent higher-level object.

Pushing and popping is best suited for traversing the hierarchy of a specific
object. If you want a more general view of your design hierarchy, use the
Hierarchy Browser instead. See Navigating With a Hierarchy Browser, on
page 109 and Looking Inside Hierarchical Instances, on page 110 for other
ways of viewing design hierarchy.

Pushable Schematic Objects
To push into an instance, it must have hierarchy. You can push into the
object regardless of its position in the design hierarchy; for example, you can
push into the object if it is shown nested inside a transparent instance. You
can push down into the following kinds of schematic objects:

• Non-hidden hierarchical instances. To push into a hidden instance,
unhide it first.

• Technology-specific primitives (not logic primitives)

• Inferred ROMs and state machines in RTL views. Inferred ROMs, RAMs,
and state machines do not appear in Technology views, because they are
resolved into technology-specific primitives.

LO

 HDL Analyst Tool Exploring Design Hierarchy

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
106 Synopsys Confidential Information June 2020

When you push/pop, the HDL Analyst window displays the appropriate level
of design hierarchy, except in the following cases:

• In the Synplify Pro tool, the FSM Viewer opens, with graphical informa-
tion about the FSM. See the FSM Viewer Window, on page 83, for more
information.

• When you push into an inferred ROM in an RTL view, the Text Editor
window opens and displays the ROM data table (rom.info file).

You can use the following indicators to determine whether you can push into
an object:

• The mouse pointer shape when Push/Pop mode is enabled. See How to
Push and Pop Hierarchical Levels, on page 106 for details.

• A small H symbol () in the lower left corner indicates a hidden
instance, and you cannot push into it.

• The Hierarchy Browser symbols indicates the type of instance and you
can use that to determine whether you can push into an object. For
example, hierarchical instance (), technology-specific primitive
(), logic primitive such as XOR (), or other primitive instance
(). The browser symbol does not indicate whether or not an instance
is hidden.

• The status bar at the bottom of the main synthesis tool window reports
information about the object under the pointer, including whether or not
it is a hidden instance or a primitive.

How to Push and Pop Hierarchical Levels
You push/pop design levels with the HDL Analyst Push/Pop mode. To enable
or disable this mode, toggle View->Push/Pop Hierarchy, use the icon, or use the
appropriate mouse strokes.

Exploring Design Hierarchy HDL Analyst Tool

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 107

Once Push/Pop mode is enabled, you push or pop as follows:

• To pop, place the pointer in an empty area of the schematic background,
then click or use the appropriate mouse stroke. The background area
inside a transparent instance acts just like the background area outside
the instance.

• To push into an object, place the mouse pointer over the object and click
or use the appropriate mouse stroke. To push into a transparent
instance, place the pointer over its pale yellow border, not its hollow
(white) interior. Pushing into an object nested inside a transparent
hierarchical instance descends to a lower level than pushing into the
enclosing transparent instance. In the following figure, pushing into
transparent instance inst2 descends one level; pushing into nested
instance inst2.II_3 descends two levels.

LO

 HDL Analyst Tool Exploring Design Hierarchy

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
108 Synopsys Confidential Information June 2020

The following arrow mouse pointers indicate status in Push/Pop mode. For
other indicators, see Pushable Schematic Objects, on page 105.

See also:

• Hidden Hierarchical Instances, on page 93

• Transparent and Opaque Display of Hierarchical Instances, on page 91

• Using Mouse Strokes, on page 53

• Navigating With a Hierarchy Browser, on page 109

A down arrow Indicates that you can push (descend) into the object under
the pointer and view its details at the next lower level.

An up arrow Indicates that there is a hierarchical level above the current
sheet.

A crossed-out
double arrow

Indicates that there is no accessible hierarchy above or below
the current pointer position. If the pointer is over the
schematic background it indicates that the current level is the
top and you cannot pop higher. If the pointer is over an object,
the object is an object you cannot push into: a
non-hierarchical instance, a hidden hierarchical instance, or a
black box.

Exploring Design Hierarchy HDL Analyst Tool

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 109

Navigating With a Hierarchy Browser
Hierarchy Browsers are designed for locating objects by browsing your
design. To move between design levels of a particular object, use Push/Pop
mode (see Pushing and Popping Hierarchical Levels, on page 105 and Looking
Inside Hierarchical Instances, on page 110 for other ways of viewing design
hierarchy).

The browser in the RTL view displays the hierarchy specified in the RTL
design description. The browser in the Technology view displays the
hierarchy of your design after technology mapping.

Selecting an object in the browser displays it in the schematic, because the
two are linked. Use the Hierarchy Browser to traverse your hierarchy and
select ports, nets, components, and submodules. The browser categorizes the
objects, and accompanies each with a symbol that indicates the object type.
The following figure shows crossprobing between a schematic and the
hierarchy browser.

Explore the browser hierarchy by expanding or collapsing the categories in
the browser. You can also use the arrow keys (left, right, up, down) to move
up and down the hierarchy and select objects. To select more than one object,

LO

 HDL Analyst Tool Exploring Design Hierarchy

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
110 Synopsys Confidential Information June 2020

press Ctrl and select the objects in the browser. To select a range of schematic
objects, click an object at one end of the range, then hold the Shift key while
clicking the name of an object at the other end of the range.

See also:

• Crossprobing Objects, on page 99

• Pushing and Popping Hierarchical Levels, on page 105

• Hierarchy Browser Popup Menu Commands, on page 483

Looking Inside Hierarchical Instances
An alternative method of viewing design hierarchy is to examine transparent
hierarchical instances (see Navigating With a Hierarchy Browser, on page 109
and Navigating With a Hierarchy Browser, on page 109 for other ways of
viewing design hierarchy). A transparent instance appears as a hollow box
with a pale yellow border. Inside this border are transparent and opaque
objects from lower design levels.

Transparent instances provide design context. They show the lower-level logic
nested within the transparent instance at the current design level, while
pushing shows the same logic a level down. The following figure compares the
same lower-level logic viewed in a transparent instance and a push operation:

Exploring Design Hierarchy HDL Analyst Tool

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 111

LO

 HDL Analyst Tool Exploring Design Hierarchy

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
112 Synopsys Confidential Information June 2020

You cannot control the display of transparent instances directly. However,
you can perform the following operations, which result in the display of
transparent instances:

• Hierarchically expand an object (using the expansion commands in the
HDL Analyst menu).

• Dissolve selected hierarchical instances in a filtered schematic (HDL
Analyst -> Dissolve Instances).

• Filter a schematic, after selecting multiple objects at more than one
level. See Commands That Result in Filtered Schematics, on page 113 for
additional information.

These operations only make non-hidden hierarchical instances transparent.
You cannot dissolve hidden or primitive instances (including
technology-specific primitives). However, you can do the following:

• Unhide hidden instances, then dissolve them.

• Push down into technology-specific primitives to see their lower-level
details, and you can show the interiors of all technology-specific primi-
tives.

See also:

• Pushing and Popping Hierarchical Levels, on page 105

• Navigating With a Hierarchy Browser, on page 109

• HDL Analyst Command, on page 413

• Transparent and Opaque Display of Hierarchical Instances, on page 91

• Hidden Hierarchical Instances, on page 93

Filtering and Flattening Schematics HDL Analyst Tool

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 113

Filtering and Flattening Schematics
This section describes the HDL Analyst commands that result in filtered and
flattened schematics. It describes

• Commands That Result in Filtered Schematics, on page 113

• Combined Filtering Operations, on page 114

• Returning to The Unfiltered Schematic, on page 114

• Commands That Flatten Schematics, on page 115

• Selective Flattening, on page 116

• Filtering Compared to Flattening, on page 117

Commands That Result in Filtered Schematics
A filtered schematic shows a subset of your design. Any command that
results in a filtered schematic is a filtering command. Some commands, like
the Expand commands, increase the amount of logic displayed, but they are
still considered filtering commands because they result in a filtered view of
the design. Other commands like Filter Schematic and Isolate Paths remove
objects from the current display.

Filtering commands include the following:

• Filter Schematic, Isolate Paths - reduce the displayed logic.

• Dissolve Instances (in a filtered schematic) - makes selected instances
transparent.

• Expand, Expand to Register/Port, Expand Paths, Expand Inwards, Select Net Driver,
Select Net Instances - display logic connected to the current selection.

• Show Critical Path, Flattened Critical Path, Hierarchical Critical Path - show critical
paths.

All the filtering commands, except those that display critical paths, operate
on the currently selected schematic object(s). The critical path commands
operate on your entire design, regardless of what is currently selected.

All the filtering commands except Isolate Paths are accessible from the HDL
Analyst menu; Isolate Paths is in the RTL view and Technology view popup
menus (along with most of the other commands above).

LO

 HDL Analyst Tool Filtering and Flattening Schematics

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
114 Synopsys Confidential Information June 2020

For information about filtering procedures, see Filtering Schematics, on
page 340 in the User Guide.

See also:

• Filtered and Unfiltered Schematic Views, on page 85

• HDL Analyst Menu, on page 412 and RTL and Technology Views Popup
Menus, on page 483

Combined Filtering Operations
Filtering operations are designed to be used in combination, successively.
You can perform a sequence of operations like the following:

1. Use Filter Schematic to filter your design to examine a particular instance.
See HDL Analyst Menu: Filtering and Flattening Commands, on page 415
for a description of the command.

2. Select Expand to expand from one of the output pins of the instance to
add its immediate successor cells to the display. See HDL Analyst Menu:
Hierarchical and Current Level Submenus, on page 413 for a description
of the command.

3. Use Select Net Driver to add the net driver of a net connected to one of the
successors. See HDL Analyst Menu: Hierarchical and Current Level
Submenus, on page 413 for a description of the command.

4. Use Isolate Paths to isolate the net driver instance, along with any of its
connecting paths that were already displayed. See HDL Analyst Menu:
Analysis Commands, on page 419 for a description of the command.

Filtering operations add their resulting filtered schematics to the history of
schematic displays, so you can use the View menu Forward and Back
commands to switch between the filtered views. You can also combine
filtering with the search operation. See Finding Schematic Objects, on page 97
for more information.

Returning to The Unfiltered Schematic
A filtered schematic often loses the design context, as it is removed from the
display by filtering. After a series of multiple or complex filtering operations,
you might want to view the context of a selected object. You can do this by

Filtering and Flattening Schematics HDL Analyst Tool

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 115

• Selecting a higher level object in the Hierarchy Browser; doing so always
crossprobes to the corresponding object in the original schematic.

• Using Show Context to take you directly from a selected instance to the
corresponding context in the original, unfiltered schematic.

• Using Goto Net Driver to go from a selected net to the corresponding
context in the original, unfiltered schematic.

There is no Unfilter command. Use Show Context to see the unfiltered schematic
containing a given instance. Use View->Back to return to the previous, unfil-
tered display after filtering an unfiltered schematic. You can go back and
forth between the original, unfiltered design and the filtered schematics,
using the commands View->Back and Forward.

See also:

• RTL and Technology Views Popup Menus, on page 483

• View Menu: RTL and Technology Views Commands, on page 326

Commands That Flatten Schematics
A flattened schematic contains no hierarchical objects. Any command that
results in a flattened schematic is a flattening command. This includes the
following.

Command Unfiltered Schematic Filtered Schematic

Dissolve Instances Flattens selected instances --

Flatten Current
Schematic (Flatten
Schematic)

Flattens at the current level
and all lower levels. RTL view:
flattens to generic logic level
Technology view: flattens to
technology-cell level

Flattens only non-hidden
transparent hierarchical
instances; opaque and hidden
hierarchical instances are not
flattened.

RTL->Flattened
View

Creates a new, unfiltered RTL schematic of the entire design,
flattened to the level of generic logic cells.

Technology->
Flattened View

Creates a new, unfiltered Technology schematic of the entire
design, flattened to the level of technology cells.

LO

 HDL Analyst Tool Filtering and Flattening Schematics

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
116 Synopsys Confidential Information June 2020

All the commands are on the HDL Analyst menu except Unflatten Schematic,
which is available in a schematic popup menu.

The most versatile commands, are Dissolve Instances and Flatten Current
Schematic, which you can also use for selective flattening (Selective Flattening,
on page 116).

See also:

• Filtering Compared to Flattening, on page 117

• Selective Flattening, on page 116

Selective Flattening
By default, flattening operations are not very selective. However, you can
selectively flatten particular instances with these command (see RTL and
Technology Views Popup Menus, on page 483 for descriptions):

• Use Hide Instances to hide instances that you do not want to flatten, then
flatten the others (flattening operations do not recognize hidden
instances). After flattening, you can Unhide Instances that are hidden.

• Flatten selected hierarchical instances using one of these commands:

– If the current schematic is unfiltered, use Dissolve Instances.

– If the schematic is filtered, use Dissolve Instances, followed by Flatten
Current Schematic. In a filtered schematic, Dissolve Instances makes the
selected instances transparent and Flatten Current Schematic flattens
only transparent instances.

Technology->
Flattened to Gates
View

Creates a new, unfiltered Technology schematic of the entire
design, flattened to the level of Boolean logic gates.

Technology->
Flattened Critical
Path

Creates a filtered, flattened Technology view schematic that
shows only the instances with the worst slack times and their
path.

Unflatten Schematic Undoes any flattening done by Dissolve Instances and Flatten
Current Schematic at the current schematic level. Returns to the
original schematic, as it was before flattening (and any
filtering).

Command Unfiltered Schematic Filtered Schematic

Filtering and Flattening Schematics HDL Analyst Tool

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 117

The Dissolve Instances and Flatten Current Schematic (or Flatten Schematic)
commands behave differently in filtered and unfiltered schematics as
outlined in the following table:

In a filtered schematic, flattening with Flatten Current Schematic is actually a
two-step process:

1. The transparent instances of the schematic are flattened in the context
of the entire design. The result of this step is the entire hierarchical
design, with the transparent instances of the filtered schematic replaced
by their internal logic.

2. The original filtering is then restored: the design is refiltered to show
only the logic that was displayed before flattening.

Although the result displayed is that of Step 2, you can view the intermediate
result of Step 1 with View->Back. This is because the display history is erased
before flattening (Step 1), and the result of Step 1 is added to the history as if
you had viewed it.

Filtering Compared to Flattening
As a general rule, use filtering to examine your design, and flatten it only if
you really need it. Here are some reasons to use filtering instead of flattening:

• Filtering before flattening is a more efficient use of computer time and
memory. Creating a new view where everything is flattened can take
considerable time and memory for a large design. You then filter anyway
to remove the flattened logic you do not need.

• Filtering is selective. On the other hand, the default flattening operations
are global: the entire design is flattened from the current level down.

Command Unfiltered Schematic Filtered Schematic

Dissolve Instances Flattens selected
instances

Provides virtual flattening: makes
selected instances transparent,
displaying their lower-level details.

Flatten Current
Schematic
Flatten Schematic

Flattens everything
at the current level
and below

Flattens only the non-hidden,
transparent hierarchical instances: does
not flatten opaque or hidden instances.
See below for details of the process.

LO

 HDL Analyst Tool Filtering and Flattening Schematics

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
118 Synopsys Confidential Information June 2020

Similarly, the inverse operation (UnFlatten Schematic) unflattens every-
thing on the current schematic level.

• Flattening operations eliminate the history for the current view: You can
not use View->Back after flattening. (You can, however, use UnFlatten
Schematic to regenerate the unflattened schematic.).

See also:

• RTL and Technology Views Popup Menus, on page 483

• Selective Flattening, on page 116

Timing Information and Critical Paths HDL Analyst Tool

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 119

Timing Information and Critical Paths
The HDL Analyst tool provides several ways of examining critical paths and
timing information, to help you analyze problem areas. The different ways are
described in the following sections.

• Timing Reports, on page 119

• Critical Paths and the Slack Margin Parameter, on page 120

• Examining Critical Path Schematics, on page 121

See the following for more information about timing and result analysis:

• Watch Window, on page 37

• Log File, on page 157

• Chapter 13, Optimizing Processes for Productivity in the User Guide

Timing Reports
When you synthesize a design, a default timing report is automatically
written to the log file, which you can view using View->View Log File. This report
provides a clock summary, I/O timing summary, and detailed timing infor-
mation for your design.

For certain device technologies, you can use the Analysis->Timing Analyst
command to generate a custom timing report. Use this command to specify
start and end points of paths whose timing interests you, and set a limit for
the number of paths to analyze between these points. By default, the sequen-
tial instances, input ports, and output ports that are currently selected in the
Technology views of the design are the candidates for choosing start and end
points. In addition, the start and end points of the previous Timing Analyst run
become the default start and end points for the next run. When analyzing
timing, any latches in the path are treated as level-sensitive registers.

The custom timing report is stored in a text file named resultsfile.ta, where
resultsfile is the name of the results file (see Implementation Results Panel, on
page 353). In addition, a corresponding output netlist file is generated,
named resultsfile_ta.srm. Both files are in the implementation results direc-
tory.

LO

 HDL Analyst Tool Timing Information and Critical Paths

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
120 Synopsys Confidential Information June 2020

The Timing Analyst dialog box provides check boxes for viewing the text report
(Open Report) in the Text Editor and the corresponding netlist (Open Schematic)
in a Technology view. This Technology view of the timing path, labeled Timing
View in the title bar, is special in two ways:

• The Timing View shows only the paths you specify in the Timing Analyst
dialog box. It corresponds to a special design netlist that contains
critical timing data.

• The Timing Analyst and Show Critical Path commands (and equivalent icons
and shortcuts) are unavailable whenever the Timing View is active.

See also:

• Analysis Menu, on page 400

• Timing Reports, on page 162

• Log File, on page 157

Critical Paths and the Slack Margin Parameter
The HDL Analyst tool can isolate critical paths in your design, so that you can
analyze problem areas, add timing constraints where appropriate, and resyn-
thesize for better results.

After you successfully run synthesis, you can display just the critical paths of
your design using any of the following commands from the HDL Analyst menu:

• Hierarchical Critical Path

• Flattened Critical Path

• Show Critical Path

The first two commands create a new Technology view, hierarchical or
flattened, respectively. The Show Critical Path command reuses the current
Technology view. Neither the current selection nor the current sheet display
have any effect on the result. The result is flat if the entire design was already
flat; otherwise it is hierarchical. Use Show Critical Path if you want to maintain
the existing display history.

All these commands filter your design to show only the instances (and their
paths) with the worst slack times. They also enable HDL Analyst -> Show Timing
Information, displaying timing information.

Timing Information and Critical Paths HDL Analyst Tool

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 121

Negative slack times indicate that your design has not met its timing require-
ments. The worst (most negative) slack time indicates the amount by which
delays in the critical path cause the timing of the design to fail. You can also
obtain a range of worst slack times by setting the slack margin parameter to
control the sensitivity of the critical-path display. Instances are displayed
only if their slack times are within the slack margin of the (absolutely) worst
slack time of the design.

The slack margin is the criterion for distinguishing worst slack times. The
larger the margin, the more relaxed the measure of worst, so the greater the
number of critical-path instances displayed. If the slack margin is zero (the
default value), then only instances with the worst slack time of the design are
shown. You use HDL Analyst->Set Slack Margin to change the slack margin.

The critical-path commands do not calculate a single critical path. They filter
out instances whose slack times are not too bad (as determined by the slack
margin), then display the remaining, worst-slack instances, together with
their connecting paths.

For example, if the worst slack time of your design is -10 ns and you set a
slack margin of 4 ns, then the critical path commands display all instances
with slack times between -6 ns and -10 ns.

See also:

• HDL Analyst Menu, on page 412

• HDL Analyst Command, on page 413

• Handling Negative Slack, on page 364 of the User Guide

• Analyzing Timing in Schematic Views, on page 358 of the User Guide

Examining Critical Path Schematics
Use successive filtering operations to examine different aspects of the critical
path. After filtering, use View -> Back to return to the previous point, then filter
differently. For example, you could use the command Isolate Paths to examine
the cone of logic from a particular pin, then use the Back command to return
to the previous display, then use Isolate Paths on a different pin to examine a
different logic cone, and so on.

LO

 HDL Analyst Tool Timing Information and Critical Paths

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
122 Synopsys Confidential Information June 2020

Also, the Show Context and Goto Net Driver commands are particularly useful
after you have done some filtering. They let you get back to the original, unfil-
tered design, putting selected objects in context.

See also:

• Returning to The Unfiltered Schematic, on page 114

• Filtering and Flattening Schematics, on page 113

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 123

C H A P T E R 4

Constraint Guidelines

Constraints are used in the FPGA synthesis environment to achieve optimal
design results. Timing constraints set performance goals, non-timing
constraints (design constraints) guide the tool through optimizations that
further enhance performance.

This chapter provides an overview of how constraints are handled in the
FPGA synthesis environment.

• Constraint Types, on page 124

• Constraint Files, on page 125

• Timing Constraints, on page 127

• FDC Constraints, on page 130

• Methods for Creating Constraints, on page 131

• Constraint Translation, on page 133

• Constraint Checking, on page 138

• Database Object Search, on page 140

• Forward Annotation, on page 141

• Auto Constraints, on page 141

LO

 Constraint Guidelines Constraint Types

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
124 Synopsys Confidential Information June 2020

Constraint Types
One way to ensure the FPGA synthesis tool achieves the best quality of
results for your design is to define proper constraints. In the FPGA environ-
ment, constraints can be categorized by the following types:

The easiest way to specify constraints is through the SCOPE interface. The
tool saves timing and design constraints to an FDC file that you add to your
project.

See Also

Type Description

Timing Performance constraints that guide the synthesis tools to achieve optimal
results. Examples: clocks (create_clock), clock groups (set_clock_groups),
and timing exceptions like multicycle and false paths (set_multicycle_path...)
See Timing Constraints , on page 127 for information on defining these
constraints.

Design Additional design goals that enhance or guide tool optimizations.
Examples: Attributes and directives (define_attribute, define_global_attribute),
I/O standards (define_io_standard), and compile points (define_compile_point).

Constraint Files , on page 125 Overview of constraint files

Timing Constraints , on page 127 Overview of timing constraint definitions and
FDC file generation.

SCOPE Constraints Editor , on
page 216

Information about automatic generation of
timing and design constraints.

Timing Constraints , on page 262 Timing constraint syntax

Design Constraints , on page 301 Design constraint syntax

Constraint Files Constraint Guidelines

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 125

Constraint Files
The figure below shows the files used for specifying various types of
constraints. The FDC file is the most important one and is the primary file for
both timing and non-timing design constraints. The other constraint files are
used for specific features or as input files to generate the FDC file, as
described in Timing Constraints, on page 127. The figure also indicates the
specific processes controlled by attributes and directives.

LO

 Constraint Guidelines Constraint Files

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
126 Synopsys Confidential Information June 2020

The table is a summary of the various kinds of constraint files.

File Type Common Commands Comments

FDC Timing
constraints

create_clock,
set_multicycle_delay …

Used for synthesis. Includes
timing constraints that
follow the Synopsys
standard format as well as
design constraints.

Design
constraints

define_attribute,
define_io_standard …

ADC Timing
constraints
for timing
analysis

create_clock,
set_multicycle_delay …

Used with the stand-alone
timing analyzer.

SDC
(Synopsys
Standard)

FPGA timing
constraints

create_clock,
set_clock_latency,
set_false_path …

Use sdc2fdc to convert
constraints to an FDC file so
that they can be passed to
the synthesis tools.

SDC
(Legacy)

Legacy
timing
constraints
and
non-timing
(or design)
constraints

define_clock,
define_false_path
define_attribute,
define_collection …

Use sdc2fdc to convert the
constraints to an FDC file so
that they can be passed to
the synthesis tools.

Timing Constraints Constraint Guidelines

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 127

Timing Constraints
The synthesis tool has supported different timing formats in the past, and
this section describes some of the details of standardization:

• Legacy SDC and Synopsys Standard SDC, on page 127

• FDC File Generation, on page 128

• Timing Constraint Precedence in Mixed Constraint Designs, on page 128

Legacy SDC and Synopsys Standard SDC
Releases prior to G-2012.09 had two types of constraint files that could be
used in a design project:

• Legacy “Synplify-style” timing constraints (define_clock, define_false_path...)
saved to an sdc file. This file also included non-timing design
constraints, like attributes and compile points.

• Synopsys standard timing constraints (create_clock, set_false_path...).
These constraints were also saved to an sdc file, which only contained
timing constraints. Non-timing constraints were in a separate sdc file.
The tool used the two files together, drawing timing constraints from one
and non-timing constraints from the other.

Starting with the G-2012.09 release, Synopsys standard timing constraint
format has replaced the legacy-style constraint format, and a new FDC (FPGA
design constraint) file consolidates both timing and design formats. As a
result of these updates, there are some changes in the use model:

• Timing constraints in the legacy format are converted and included in
an FDC file, which includes both timing and non-timing constraints. The
file uses the Synopsys standard syntax for timing constraints (create_-
clock, set_multicycle_path...). The syntax for non-timing design constraints
is unchanged (define_attribute, define_io_standard...).

• The SCOPE editor has been enhanced to support the timing constraint
changes, so that new constraints can be entered correctly.

• For older designs, use the sdc2fdc command to do a one-time conversion.

LO

 Constraint Guidelines Timing Constraints

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
128 Synopsys Confidential Information June 2020

FDC File Generation
The following figure is a simplified summary of constraint-file handling and
the generation of fdc.

It is not required that you convert Synopsys standard sdc constraints as the
figure implies, because they are already in the correct format. You could have
a design with mixed constraints, with separate Synopsys standard sdc and fdc
files. The disadvantage to keeping them in the standard sdc format is that you
cannot view or edit the constraints through the SCOPE interface.

Timing Constraint Precedence in Mixed Constraint Designs
Your design could include timing constraints in a Synopsys standard sdc file
and others in an fdc file. With mixed timing constraints in the same design,
the following order of precedence applies:

Timing Constraints Constraint Guidelines

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 129

The tool reads the file order listed in the project file and any conflicting
constraint overwrites a previous constraint. This means that constraint
priority is determined by the constraint that is read last.

With the legacy timing constraints, it is strongly recommended that you
convert them to the fdc format. However, even if you retain the old format in
an existing design, they must be used alone and cannot be mixed in the same
design as fdc or Synopsys standard timing sdc constraints. Specifically, do
not specify timing constraints using mixed formats. For example, do not
define clocks with define_clock and create_clock together in the same constraint
file or multiple SDC/FDC files.

For the list of FPGA timing constraints (FDC) and their syntax, see Timing
Constraints, on page 262.

LO

 Constraint Guidelines FDC Constraints

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
130 Synopsys Confidential Information June 2020

FDC Constraints
The FPGA design constraints (FDC) file contains constraints that the tool uses
during synthesis. This FDC file includes both timing constraints and
non-timing constraints in a single file.

• Timing constraints define performance targets to achieve optimal
results. The constraints follow the Synopsys standard format, such as
create_clock, set_input_delay, and set_false_path.

• Non-timing (or design constraints) define additional goals that help the
tool optimize results. These constraints are unique to the FPGA
synthesis tools and include constraints such as define_attribute, define_io_-
standard, and define_compile_point.

The recommended method to define constraints is to enter them in the
SCOPE editor, and the tool automatically generates the appropriate syntax. If
you define constraints manually, use the appropriate syntax for each type of
constraint (timing or non-timing), as described above. See Methods for
Creating Constraints, on page 131 for details on generating constraint files.

Prior to release G-2012.09, designs used timing constraints in either legacy
Synplify-style format or Synopsys standard format. You must do a one-time
conversion on any existing SDC files to convert them to FDC files using the
following command:

% sdc2fdc
sdc2fdc converts constraints as follows:

Once defined, the FDC file can be added to your project. Double-click this file
from the Project view to launch the SCOPE editor to view and/or modify your
constraints. See Converting SDC to FDC, on page 164 for details on how to
run sdc2fdc.

For legacy Synplify-style
timing constraints

Converts timing constraints to Synopsys standard
format and saves them to an FDC file.

For Synopsys standard
timing constraints

Preserves Synopsys standard format timing
constraints and saves them to an FDC file.

For non-timing or design
constraints

Preserves the syntax for these constraints and
saves them to an FDC file.

Methods for Creating Constraints Constraint Guidelines

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 131

Methods for Creating Constraints
Constraints are passed to the synthesis environment in FDC files using Tcl
command syntax.

New Designs
For new designs, you can specify constraints using any of the following
methods:

Definition Method Description

SCOPE Editor
(fdc file)–
Recommended

Use this method to specify constraints wherever possible.
The SCOPE editor automatically generates fdc
constraints with the right syntax. You can use it for most
constraints. See Chapter 4, Constraint Commands, for
information how to use SCOPE to automatically generate
constraint syntax.
Access: File->New->FPGA Design Constraints …

Manually-Entered Text
Editor
(fdc File, all other
constraint files)

You can manually enter constraints in a text file. Make
sure to use the correct syntax for the timing and design
commands.
The SCOPE GUI includes a TCL View with an advanced
text editor, where you can manually generate the
constraint syntax. For a description of this view, see TCL
View , on page 240.
You can also open any constraint file in a text editor to
modify it.

Source Code
Attributes/Directives
(HDL files)

Directives must be entered in the source code because
they affect the compiler. Do not include any other
constraints in the source code, as this makes the source
code less portable. In addition, you must recompile the
design for the constraints to take effect.
Attributes can be entered through the SCOPE interface,
as they affect the mapper, not the compiler

Automatic— First Pass Enable the Auto Constrain button in the Project view to
have the tool automatically generate constraints based
on inferred clocks. See Using Auto Constraints , on
page 376 in the User Guide for details.
Use this method as a quick first pass to get an idea of
what constraints can be set.

LO

 Constraint Guidelines Methods for Creating Constraints

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
132 Synopsys Confidential Information June 2020

If there are multiple timing exception constraints on the same object, the
software uses the guidelines described in Conflict Resolution for Timing Excep-
tions, on page 258 to determine the constraint that takes precedence.

See Also
To specify the correct syntax for the timing and design commands, see:

• Chapter 4, Constraint Commands

• Attribute Reference Manual

Existing Designs
The SCOPE editor in this release does not save constraints to SDC files. For
designs prior to G-2012.09, it is recommended that you migrate your timing
constraints to FDC format to take advantage of the tool’s enhanced handling
of these types of constraints. To migrate constraints, use the sdc2fdc
command (see Converting SDC to FDC, on page 164l) on your sdc files.

Note: If you need to edit an SDC file, either use a text editor, or
double-click the file to open the legacy SCOPE editor. For infor-
mation on editing older SDC files, see Using the SCOPE Editor
(Legacy), on page 165.

See Also
To use the current SCOPE editor, see:

• Chapter 4, Constraint Commands

• Chapter 5, Specifying Constraints

Constraint Translation Constraint Guidelines

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 133

Constraint Translation
The tool includes standalone scripts to convert specific vendor constraints, as
well as functionality that includes constraint translation as part of the larger
task of generating a synthesis project from vendor files.

sdc2fdc Conversion
The sdc2fdc Tcl shell command translates legacy FPGA timing constraints to
Synopsys FPGA timing constraints. This command scans the input SDC files
and attempts to convert constraints for the implementation.

For details, see the following:

• Troubleshooting Conversion Error Messages, on page 133

• sdc2fdc FPGA Design Constraint (FDC) File, on page 135

• sdc2fdc, on page 111 in the Command Reference manual (syntax)

Troubleshooting Conversion Error Messages
The following table contains common error messages you might encounter
when running the sdc2fdc Tcl shell command, and descriptions of how to
resolve these problems. In addition to these messages, you must also ensure
that your files have read/write permissions set properly and that there is
sufficient disk space.

Message Example Underlying Problem

Remove/disable
D:FDC_constraints/rev_FDC/top_translated.fdc from the
current implementation.

Cannot translate a
*_translated.fdc file

Add/enable one or more SDC constraint files. No active constraint files

Add clock object qualifier (p: n: ...) for
"define_clock -name {clka {clka} -period 10 -clockgroup
{default_clkgroup_0}"
Synplicity_SDC source file:
D:.../clk_prior/scratch/top.sdc. Line number: 32

Clock not translated

LO

 Constraint Guidelines Constraint Translation

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
134 Synopsys Confidential Information June 2020

Fix any issues in the SDC source file and rerun the sdc2fdc command.

Batch Mode
If you run sdc2fdc -batch, then the following occurs:

• The two Clock not translated messages in the table above are not
generated.

• When the translation is successful, the SDC file is disabled and the FDC
file is enabled and saved automatically in the project file.

However, if the -batch option is not used and the translation is
successful, then the SDC file is disabled and the FDC file is enabled but

Specify -name for "define_clock {p:clkb} -period 20
-clockgroup {default_clkgroup_1}"
Synplicity SDC source file:
D:.../clk_prior/scratch/top.sdc. Line number: 33

Clock not translated

Missing qualifier(s) (i: p: n: ...)
"define_multicycle_path 4 -from {a* b*} -to $fdc_cmd_0 -start"
Synplicity SDC source file:
D:.../clk_prior/scratch/top.sdc. Line number: 76

Bad -from list for
define_multicycle_path {a*
b*}

Mixing of object types not permitted
"define_multicycle_path -to {i:*y*.q[*] p:ena} 3"
Synplicity SDC source file:
D:.../clk_prior/scratch/top.sdc. Line number: 77

Bad -to list for
define_multicycle_path
{i: *y* .q[*] p:ena}

Mixing of object types and missing qualifiers not
permitted "define_multicycle_path -from {i:*y*.q[*] p:ena
enab} 3"
Synplicity SDC source file:
D:.../clk_prior/scratch/top.sdc. Line number: 77

Bad -from list for
define_multicycle_path
{i:*y* .q[*] p:ena enab}

Default 1000.
"create_clock -name {clkb} {p:clkb} -period 1000 -waveform
{0 500.0}"
Synplicity SDC source file:
D:.../clk_prior/scratch/top.sdc. Line number: 33

No period or frequency found

"create_clock -name {clka} {p:clka} -period 10 -rise 5
-clockgroup {default_clkgroup_0"
Synplicity SDC source file:
D:.../clk_prior/scratch/top.sdc. Line number: 32

Must specify both -rise and
-fall, or neither

Message Example Underlying Problem

Constraint Translation Constraint Guidelines

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 135

not automatically saved in the Project file. A message to this effect
displays in the Tcl shell window.

sdc2fdc FPGA Design Constraint (FDC) File
The FDC constraint file generated after running sdc2fdc contains translated
legacy FPGA timing constraints (SDC), which are now in the FDC format. This
file is divided into two sections:

This file also provides the following:

• Each source sdc file has its separate subhead.

• Each compile point is treated as a top level, so its sdc file has its own
_translated.fdc file.

• The translator adds the naming rule, set_rtl_ff_names, so that the
synthesis tool knows these constraints are not from the Synopsys
Design Compiler.

The following example shows the contents of the FDC file.

###
####This file contains constraints from Synplicity SDC files that have been
####translated into Synopsys FPGA Design Constraints (FDC.
####Translated FDC output file:
####D:/bugs/timing_88/clk_prior/scratch/FDC_constraints/rev_2/top_translated.fdc
####Source SDC files to the translation:
####D:/bugs/timing_88/clk_prior/scratch/top.sdc
###

####Source SDC file to the translation:
####D:/bugs/timing_88/clk_prior/scratch/top.sdc
###
#Legacy constraint file
#C:\Clean_Demos\Constraints_Training\top.sdc
#Written on Mon May 21 15:58:35 2012
#by Synplify Pro, Synplify Pro Scope Editor

#Collections

define_scope_collection all_grp {define_collection \

1 Contains this information:
• Valid FPGA design constraints (e.g. define_scope_collection and define_attribute)
• Legacy timing constraints that were not translated because they were

specified with -disable.

2 Contains the legacy timing constraints that were translated.

LO

 Constraint Guidelines Constraint Translation

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
136 Synopsys Confidential Information June 2020

[find -inst {i:FirstStbcPhase}] \
[find -inst {i:NormDenom[6:0]}] \
[find -inst {i:NormNum[7:0]}] \
[find -inst {i:PhaseOut[9:0]}] \
[find -inst {i:PhaseOutOld[9:0]}] \
[find -inst {i:PhaseValidOut}] \
[find -inst {i:ProcessData}] \
[find -inst {i:Quadrant[1:0]}] \
[find -inst {i:State[2:0]}] \
}

#Clocks
#define_clock -disable -name {clkc} -virtual -freq 150 -clockgroup default_clkgroup_1
#Clock to Clock

#Inputs/Outputs

define_input_delay -disable {b[7:0]} 2.00 -ref clka:r
define_input_delay -disable {c[7:0]} 0.20 -ref clkb:r
define_input_delay -disable {d[7:0]} 0.30 -ref clkb:r
define_output_delay -disable {x[7:0]} -improve 0.00 -route 0.00
define_output_delay -disable {y[7:0]} -improve 0.00 -route 0.00

#Registers

#Multicycle Path
#

#False Path
#

define_false_path -disable -from {i:x[1]}

#Path Delay

#Attributes

define_io_standard -default_input -delay_type input syn_pad_type {LVCMOS_33}#
#I/O standards

#Compile Points

#Other Constraints

#SDC compliant constraints translated from Legacy Timing Constraints
###

set_rtl_ff_names {#}
create_clock -name {clka} [get_ports {clka}] -period 10 -waveform {0 5.0}
create_clock -name {clkb} [get_ports {clkb}] -period 6.666666666666667

-waveform {0 3.3333333333333335}
set_input_delay -clock [get_clocks {clka}] -clock_fall -add_delay 0.000 [all_
inputs]

Constraint Translation Constraint Guidelines

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 137

set_output_delay -clock [get_clocks {clka}] -add_delay 0.000 [all_outputs]
set_input_delay -clock [get_clocks {clka}] -add_delay 2.00 [get_ports {a[7:0]
}]
set_input_delay -clock [get_clocks {clka}] -add_delay 0 [get_ports {rst}]
set mcp 4
set_multicycle_path $mcp -start \

-from \
[get_ports \
{a* \
b*} \
] \

-to \
[find -seq -hier {q?[*]}]

set_multicycle_path 3 -end \
-from \

[find -seq {*y*.q[*]}]
set_clock_groups -name default_clkgroup_0 -asynchronous \

-group [get_clocks {clka dcm|clk0_derived_clock dcm|
clk2x_derived_clock dcm|clk0fx_derived_clock}]

set_clock_groups -name default_clkgroup_1 -asynchronous \
-group [get_clocks {clkb}]

LO

 Constraint Guidelines Constraint Checking

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
138 Synopsys Confidential Information June 2020

Constraint Checking
The synthesis tool has several features to help you debug and analyze design
constraints. Use the constraint checker to check the syntax and applicability
of the timing constraints in the project. The synthesis log file includes a
timing report as well as detailed reports on the compiler, mapper, and
resource usage information for the design. A standalone timing analyzer
(STA) generates a customized timing report when you need more details
about specific paths or want to modify constraints and analyze, without
resynthesizing the design. The following sections provide more information
about these features.

Constraint Checker
Check syntax and other pertinent information on your constraint files using
Run->Constraint Check or the Check Constraints button in the SCOPE editor. This
command generates a report that checks the syntax and applicability of the
timing constraints that includes the following information:

• Constraints that are not applied

• Constraints that are valid and applicable to the design

• Wildcard expansion on the constraints

• Constraints on objects that do not exist

Note: Using collections with Tcl control constructs (such as if, for,
foreach, and while) can produce unexpected synthesis results.
Avoid defining constraints for collections with control constructs,
especially since the constraint checker does not recognize these
built-in Tcl commands.

See Constraint Checking Report, on page 173 for details.

Timing Constraint Report Files
The results of running constraint checking, synthesis, and standalone timing
analysis are provided in reports that help you analyze constraints.

Constraint Checking Constraint Guidelines

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 139

Use these files for additional timing constraint analysis:

File Description

_cck.rpt Lists the results of running the constraint checker (see Constraint
Checking Report , on page 173).

_cck_fdc_rpt Lists the wildcard expansion results of running the constraint
checker for collections with the get_* and all_* object query
commands using the check_fdc_query Tcl command. See
check_fdc_query , on page 32 for more information.

_scck.rpt Lists the results of running the constraint checker for collections
with the get_* and all_* object query commands.

.ta Reports timing analysis results (see Generating Custom Timing
Reports with STA , on page 366).

.srr or .htm Reports post-synthesis timing results as part of the text or HTML
log file (see Timing Reports , on page 162 and Log File , on
page 157).

LO

 Constraint Guidelines Database Object Search

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
140 Synopsys Confidential Information June 2020

Database Object Search
To apply constraints, you have to search the database to find the appropriate
objects. Sometimes you might want to search for and apply the same
constraint to multiple objects. The FPGA tool provides some Tcl commands to
facilitate the search for database objects:

Commands Common Commands Description

Find Tcl Find, open_design... Lets you search for design objects to
form collections that can apply
constraints to the group. See Using
Collections , on page 154 and find , on
page 147.

Collections define_collection,
c_union...

Create, copy, evaluate, traverse, and
filter collections. See Using Collections ,
on page 154 and Collection Commands ,
on page 164 for more information.

Forward Annotation Constraint Guidelines

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 141

Forward Annotation
The tool can automatically generate vendor-specific constraint files for
forward annotation to the place-and-route tools when you enable the Write
Vendor Constraints switch (on the Implementation Results tab) or use the -write_apr_-
constraint option of the set_option command.

For information about how forward annotation is handled for your target
technology, refer to the appropriate vendor chapter of the FPGA Synthesis
Reference Manual.

Auto Constraints
Auto constraints are automatically generated by the synthesis tool, however,
these do not replace regular timing constraints in the normal synthesis flow.
Auto constraints are intended as a quick first pass to evaluate the kind of
timing constraints you need to set in your design.

To enable this feature and automatically generate register-to-register
constraints, use the Auto Constrain option. For details, see Using Auto
Constraints, on page 376 in the User Guide.

Vendor File Extension

Microchip
PolarFire

_VM.SDC

Microchip
SmartFusion2

_SDC.SDC
_VM.SDC

Microchip
All devices except PolarFire
and SmartFusion2

_SDC.SDC

LO

 Constraint Guidelines Auto Constraints

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
142 Synopsys Confidential Information June 2020

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 143

C H A P T E R 5

Input and Result Files

This chapter describes the input and output files used by the tool.

• Input Files, on page 144

• Libraries, on page 148

• Output Files, on page 152

• Log File, on page 157

• Timing Reports, on page 162

• Hierarchical Area Report, on page 172

• Constraint Checking Report, on page 173

LO

 Input and Result Files Input Files

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
144 Synopsys Confidential Information June 2020

Input Files
The following table describes the input files used by the synthesis tool.

Extension File Description

.adc Analysis
Design
Constraint

Contains timing constraints to use for stand-alone
timing analysis. Constraints in this file are used only
for timing analysis and do not change the result files
from synthesis. Constraints in the adc file are applied
in addition to sdc constraints used during synthesis.
Therefore, adc constraints affect timing results only if
there are no conflicts with sdc constraints.
You can forward annotate adc constraints to your
vendor constraint file without rerunning synthesis.
See Using Analysis Design Constraints , on page 369
of the User Guide for details.

.fdc Synopsys
FPGA Design
Constraint

Create FPGA timing and design constraints with
SCOPE. You can run the sdc2fdc utility to translate
legacy FPGA timing constraints (SDC) to Synopsys
FPGA timing constraints (FDC). For details, see the
sdc2fdc , on page 111.

.ini Configuration
and
Initialization

Governs the behavior of the synthesis tool. You
normally do not need to edit this file. For example,
use the HDL Analyst Options dialog box, instead, to
customize behavior. See HDL Analyst Options
Command , on page 443.
On the Windows 7 platforms, the ini file is in the
C:\Users\userName\AppData\Roaming\Synplicity directory.
On Linux workstations, the ini file is in the following
directory: (~/.Synplicity, where ~ is your home
directory, which can be set with the environment
variable $HOME).

.prj Project Contains all the information required to complete a
design. It is in Tcl format, and contains references to
source files, compilation, mapping, and optimization
switches, specifications for target technology and
other runtime options.

.sdc Constraint Contains the timing constraints (clock parameters,
I/O delays, and timing exceptions) in Tcl format.
You can either create this file manually or generate it
by entering constraints in the SCOPE window.

Input Files Input and Result Files

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 145

HDL Source Files
The HDL source files for a project can be in either VHDL (.vhd), Verilog (.v), or
SystemVerilog (.sv) format.

The Synopsys FPGA synthesis tool contains built-in macro libraries for
vendor macros like gates, counters, flip-flops, and I/Os. If you use the
built-in macro libraries, you can easily instantiate vendor macros directly
into the VHDL designs, and forward-annotate them to the output netlist.
Refer to the appropriate vendor support documentation for more information.

.sv Source files
(Verilog)

Design source files in SystemVerilog format. The sv
source file is added to the Verilog directory in the
Project view. For more information about the Verilog
and SystemVerilog languages, and the synthesis
commands and attributes you can include, see
Verilog , on page 146, Chapter 1, Verilog Language
Support, and Chapter 2, SystemVerilog Language
Support. For information about using VHDL and
Verilog files together in a design, see Using Mixed
Language Source Files , on page 48 of the User
Guide.

.vhd Source files
(VHDL)

Design source files in VHDL format. See VHDL , on
page 146, Chapter 3, VHDL Language Support, and
Chapter 4, VHDL 2008 Language Support for details.
For information about using VHDL and Verilog files
together in a design, see Using Mixed Language
Source Files , on page 48 of the User Guide.

.v Source files
(Verilog)

Design source files in Verilog format. For more
information about the Verilog language, and the
synthesis commands and attributes you can include,
see Verilog , on page 146, Chapter 1, Verilog
Language Support, and Chapter 2, SystemVerilog
Language Support. For information about using
VHDL and Verilog files together in a design, see Using
Mixed Language Source Files , on page 48 of the User
Guide.

Extension File Description

LO

 Input and Result Files Input Files

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
146 Synopsys Confidential Information June 2020

VHDL
The Synopsys FPGA synthesis tool supports a synthesizable subset of
VHDL93 (IEEE 1076), and the following IEEE library packages:

• numeric_bit

• numeric_std

• std_logic_1164

The synthesis tool also supports the following industry standards in the IEEE
libraries:

• std_logic_arith

• std_logic_signed

• std_logic_unsigned

The Synopsys FPGA synthesis tool library contains an attributes package
(installDirectory/lib/vhd/synattr.vhd) of built-in attributes and timing constraints
that you can use with VHDL designs. The package includes declarations for
timing constraints (including black-box timing constraints), vendor-specific
attributes, and synthesis attributes. To access these built-in attributes, add
the following two lines to the beginning of each of the VHDL design units that
uses them:

library synplify;
use synplify.attributes.all;

For more information about the VHDL language, and the synthesis
commands and attributes you can include, see Chapter 3, VHDL Language
Support and Chapter 4, VHDL 2008 Language Support.

Verilog
The Synopsys FPGA synthesis tool supports a synthesizable subset of Verilog
2001 and Verilog 95 (IEEE 1364) and SystemVerilog extensions. For more
information about the Verilog language, and the synthesis commands and
attributes you can include, see Chapter 1, Verilog Language Support and
Chapter 2, SystemVerilog Language Support.

Input Files Input and Result Files

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 147

The Synopsys FPGA synthesis tool contains built-in macro libraries for
vendor macros like gates, counters, flip-flops, and I/Os. If you use the
built-in macro libraries, you can instantiate vendor macros directly into
Verilog designs and forward-annotate them to the output netlist. Refer to the
User Guide for more information.

LO

 Input and Result Files Libraries

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
148 Synopsys Confidential Information June 2020

Libraries
You can instantiate components from a library, which can be either in Verilog
or VHDL. For example, you might have technology-specific or custom IP
components in a library, or you might have generic library components. The
installDirectory/lib directory included with the software contains some compo-
nent libraries you can use for instantiation.

There are several kinds of libraries you can use:

• Technology-specific libraries that contain I/O pad, macro, or other
component descriptions. The lib directory lists these kinds of libraries
under vendor sub-directories. The libraries are named for the technology
family, and in some cases also include a version number for the version
of the place-and-route tool with which they are intended to be used.

For information about using vendor-specific libraries to instantiate
LPMs, PLLs, macros, I/O pads, and other components, refer to the
appropriate sections in the Appendices of the Reference Manual.

• The open verification library is automatically included in the FPGA
product installation. When using your own open verification library,
follow the recommendation described in Open Verification Library
(Verilog), on page 149.

• Technology-independent libraries that contain common components.
You can have your own library or use the one Synopsys provides. This
library is a Verilog library of common logic elements, much like the
Synopsys® GTECH component library. See The Generic Technology
Library, on page 149 for a description of this library.

• An ASIC Library Data Format file (.lib) is the technology library file that
contains information about the functionality of each standard cell, its
input capacitance, fanout, and timing information. For the synthesis
flow to understand the instantiated or mapped ASIC primitives in the
HDL, you would need to translate the functionality of the standard cell
to equivalent synthesizable Verilog/VHDL definitions. To do this, you
can use the lib2syn executable. For details, see ASIC Library Files, on
page 150.

Libraries Input and Result Files

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 149

Open Verification Library (Verilog)
The open verification library is automatically included in the FPGA product
installation. If you use your own version of the open verification library, then
it is recommended that you disable loading the default synovl library to avoid
any conflicts between the two libraries. To do this, set the -disable_synovl
environment variable to 1. For example:

#in bash
export disable_synovl=1
#in csh
setenv disable_synovl 1

When the default synovl library is disabled, the following message is gener-
ated in the log file: @N::Open Verification Library which is part of tool
installation, is being disabled by option "disable_synovl".

The Generic Technology Library
The synthesis software includes this Verilog library for generic components
under the installDirectory/lib/generic_technology directory. Currently, the library
is only available in Verilog format. The library consists of technology-indepen-
dent common logic elements, which help the designer to develop
technology-independent parts. The library models extract the functionality of
the component, but not its implementation. During synthesis, the mappers
implement these generic components in implementations that are appro-
priate to the technology being used.

To use components from this directory, add the library to the project by doing
either of the following:

• Add add_file -verilog "$LIB/generic_technology/gtech.v to your .prj file or type it
in the Tcl window.

• In the tool window, click the Add file button, navigate to the installDirec-
tory/lib/generic_technology directory and select the gtech.v file.

When you synthesize the design, the tool uses components from this library.

You cannot use the generic technology library together with other generic
libraries, as this could result in a conflict. If you have your own GTECH
library that you intend to use, do not use the generic technology library.

LO

 Input and Result Files Libraries

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
150 Synopsys Confidential Information June 2020

ASIC Library Files
An ASIC Library Data Format file (.lib) is the technology library file that
contains information about the functionality of each standard cell, its input
capacitance, fanout, and timing information.

For the synthesis flow to understand the instantiated or mapped ASIC
primitives in the HDL, you would need to manually translate the functionality
of the standard cell to equivalent synthesizable Verilog/VHDL definitions.
This .lib file conversion is not automated in the synthesis flow. This means
that the tool will not automatically translate .lib files into corresponding and
equivalent synthesizable Verilog/VHDL definitions.

However, you can use the lib2syn executable to facilitate this conversion
process. The lib2syn.exe executable generates equivalent synthesizable
Verilog/VHDL definitions for the cells defined in the input .lib file. You can
find this executable at these locations:

• Windows: installDirectory/bin/lib2syn.exe

• Linux: installDirectory/bin/lib2syn

The executable can be run as shown in these examples:

• For Verilog output: lib2syn.exe test.lib -ovm a.vm -logfile test_lib2syn.log

• For VHDL output: lib2syn.exe test.lib -ovhm a.vhm -logfile test_lib2syn.log

The tool supports the Synopsys GTECH library flow by default, so you do not
need the .lib file equivalent synthesizable Verilog/VHDL definitions for a
NETLIST mapped to a GTECH library.

Note that for the synthesis flow, the lib2syn executable does not translate cells
with state table definitions.

The synthesis tools do not read Synopsys Liberty format (.syn) files directly.
However, there are workarounds.

• If your design has instantiated ASIC cells, do the following:

– Get the Verilog functional files for the instantiated components.

– Add the functional files to your project as libraries.

• If you have an ASIC library in the Liberty (.lib) or .sel format, do the
following:

Libraries Input and Result Files

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 151

– Convert the ASIC library into a Verilog functional file with the lib2syn
utility. The lib2syn command syntax is shown below:

installDirectory/bin/lib2syn.exe library.lib - ovm VerilogFunctionalFile

or

installDirectory/bin/lib2syn.exe library.sel -ovm VerilogFunctionalFile

– Add the functional file to your project as a library.

LO

 Input and Result Files Output Files

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
152 Synopsys Confidential Information June 2020

Output Files
The synthesis tool generates reports about the synthesis run and files that
you can use for simulation or placement and routing. The following table
describes the output files, categorizing them as either synthesis result and
report files, or output files generated as input for other tools.

Extension File Description

.areasrr Hierarchical Area
Report

Reports area-specific information
such as sequential and
combinational RAMs, DSPs, and
Black Boxes on each module in the
design. See Hierarchical Area
Report , on page 172.

_cck.rpt Constraint Checker
Report

Checks the syntax and
applicability of the timing
constraints in the .fdc file for your
project and generates a report
(projectName_cck.rpt). See
Constraint Checking Report , on
page 173 for more information.

_compiler.linkerlog Compiler log file for
HDL source file
linking

Provides details for why the VHDL
and/or Verilog components in the
source files were not properly
linked. This file is located in the
synwork directory for the
implementation.

.fse FSM information file Design-dependent. Contains
information about encoding types
and transition states for all state
machines in the design.

.info Design component
files

Design-dependent. Contains
detailed information about design
components like state machines or
ROMs.

Output Files Input and Result Files

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 153

.linkerlog Mixed language
ports/generics
differences

Provides details of why the VHDL
and/or Verilog components in the
source files were not properly
linked. This file is located in the
synwork directory for the
implementation. The same
information is also reported in the
log file.

.pfl Message Filter
criteria

Output file created after filtering
messages in the Messages window.
See Updating the projectName.pfl
file , on page 215 in the User
Guide.

Results file:
• .edn
• .vm

Vendor-specific
results file

Results file that contains the
synthesized netlist, written out in a
format appropriate to the
technology and the
place-and-route tool you are using.
The vendor-specific formats
include the following:
• .edn or .vm for Microchip
Specify this file on the
Implementation Results panel of the
Implementation Options dialog box
(Implementation Results Panel , on
page 353).

run_options.txt Project settings for
implementations

This file is created when a design is
synthesized and contains the
project settings and options used
with the implementations. These
settings and options are also
processed for displaying the Project
Status view after synthesis is run.
For details, see Project Status Tab ,
on page 26.

Extension File Description

LO

 Input and Result Files Output Files

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
154 Synopsys Confidential Information June 2020

.sap Synplify Annotated
Properties

This file is generated after the
Annotated Properties for Analyst option
is selected in the Device panel of
the Implementation Options dialog
box. After the compile stage, the
tool annotates the design with
properties like clock pins. You can
find objects based on these
annotated properties using Tcl Find.
For more information, see find , on
page 147 and Using the Tcl Find
Command to Define Collections , on
page 149.

 .sar Archive file Output of the Synopsys FPGA
Archive utility in which design
project files are stored into a single
archive file. Archive files use
Synopsys Proprietary Format. See
Archive Project Command , on
page 339 for details on archiving,
unarchiving and copying projects.

_scck.rpt Constraint Checker
Report (Syntax Only)

Generates a report that contains
an overview of the design
information, such as, the top-level
view, name of the constraints file, if
there were any constraint syntax
issues, and a summary of clock
specifications.

.srd Intermediate
mapping files

Used to save mapping information
between synthesis runs. You do
not need to use these files.

.srm Mapping output files Output file after mapping. It
contains the actual
technology-specific mapped design.
This is the representation that
appears graphically in a
Technology view.

.srr Synthesis log file Provides information on the
synthesis run, as well as area and
timing reports. See Log File , on
page 157, for more information.

Extension File Description

Output Files Input and Result Files

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 155

.srs Compiler output file Output file after the compiler stage
of the synthesis process. It
contains an HDL-level
representation of a design. This is
the representation that appears
graphically in an RTL view.

synlog folder Intermediate
technology mapping
files

This folder contains intermediate
netlists and log files after
technology mapping has been run.
Timestamp information is
contained in these netlist files to
manage jobs with up-to-date
checks. For more information, see
Using Up-to-date Checking for Job
Management , on page 184.

synwork folder Intermediate
pre-mapping files

This folder contains intermediate
netlists and log files after
pre-mapping has been run.
Timestamp information is
contained in these netlist files to
manage jobs with up-to-date
checks. For more information, see
Using Up-to-date Checking for Job
Management , on page 184.

.ta Customized Timing
Report

Contains the custom timing
information that you specify
through Analysis->Timing Analyst. See
Analysis Menu , on page 400, for
more information.

_ta.srm Customized
mapping output file

Creates a customized output
netlist when you generate a custom
timing report with HDL
Analyst->Timing Analyst. It contains
the representation that appears
graphically in a Technology view.
See Analysis Menu , on page 400
for more information.

Extension File Description

LO

 Input and Result Files Output Files

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
156 Synopsys Confidential Information June 2020

.tap Timing Annotated
Properties

This file is generated after the
Annotated Properties for Analyst option
is selected in the Device panel of the
Implementation Options dialog box.
After the compile stage, the tool
annotates the design with timing
properties and the information can
be analyzed in the RTL view and
Design Planner. You can also find
objects based on these annotated
properties using Tcl Find. For more
information, see Using the Tcl Find
Command to Define Collections , on
page 149 in the User Guide.

.tlg Log file This log file contains a list of all the
modules compiled in the design.

vendor constraint file Constraints file for
forward annotation

Contains synthesis constraints to
be forward-annotated to the
place-and-route tool. The
constraint file type varies with the
vendor and the technology. Refer to
the vendor chapters for specific
information about the constraints
you can forward-annotate. Check
the Implementation Results dialog
(Implementation Options) for
supported files. See
Implementation Results Panel , on
page 353.

Extension File Description

Log File Input and Result Files

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 157

Log File
The log file report, located in the implementation directory, is written out in
two file formats: text (projectName.srr) and HTML with an interactive table of
contents (projectName.htm and projectName_srr.htm) where projectName is the
name of your project. Select View Log File in HTML in the Options->Project View
Options dialog box to enable viewing the log file in HTML. Select the View Log
button in the Project view (Buttons and Options, on page 72) to see the log file
report.

The log file is written each time you compile or synthesize (compile and map)
the design. When you compile a design without mapping it, the log file
contains only compiler information. As a precaution, a backup copy of the log
file (.srr) is written to the backup sub-directory in the Implementation Results
directory. Only one backup log file is updated for subsequent synthesis runs.

. vm

. vhm
Mapped Verilog or
VHDL netlist

Optional post-synthesis netlist file
in Verilog (.vm) or VHDL (.vhm)
format. This is a structural netlist
of the synthesized design, and
differs from the original HDL used
as input for synthesis. Specify
these files on the Implementation
Results dialog box (Implementation
Options). See Implementation
Results Panel , on page 353.
Typically, you use this netlist for
gate-level simulation, to verify your
synthesis results. Some designers
prefer to simulate before and after
synthesis, and also after place and
route. This approach helps them to
isolate the stage of the design
process where a problem occurred.
The Verilog and VHDL output files
are for functional simulation only.
When you input stimulus into a
simulator for functional
simulation, use a cycle time for the
stimulus of 1000 time ticks.

Extension File Description

LO

 Input and Result Files Log File

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
158 Synopsys Confidential Information June 2020

The log file contains detailed reports on the compiler, mapper, timing, and
resource usage information for your design. Errors, notes, warnings, and
messages appear in both the log file and on the Messages tab in the Tcl
window.

For further details about different sections of the log file, see the following:

Compiler Report
This report starts with the compiler version and date, and includes the
following:

• Project information: the top-level module.

• Design information: HDL syntax and synthesis checks, black box
instantiations, FSM extractions and inferred RAMs/ROMs.

For information about ... See ...

Compiled files, messages (warnings, errors, and
notes), user options set for synthesis, state machine
extraction information, including a list of reachable
states.

Compiler Report , on
page 158

Buffers added to clocks in certain supported
technologies.

Clock Buffering Report , on
page 159

Buffers added to nets. Net Buffering Report , on
page 159

Compile point remapping. Compile Point Information ,
on page 160

Timing results. This section of the log file begins with
“START TIMING REPORT” section.
If you use the Timing Analyst to generate a custom
timing report, its format is the same as the timing
report in the log file, but the customized timing
report is in a .ta file.

Timing Reports , on page 162

Resources used by synthesis mapping. Resource Usage Report , on
page 160

Design changes made as a result of retiming. Retiming Report, on
page 161

Design changes made as a result of gated clock
conversion.

, on page 180

Log File Input and Result Files

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 159

• Netlist filter information: constant propagation.

Premap Report
This report begins with the pre-mapper version and date, and reports the
following:

• File loading times and memory usage

• Clock summary - For details, see Clock Pre-map Reports, on page 165.

Mapper Report
This report begins with the mapper version and date, and reports the
following:

• Project information: the names of the constraint files, target technology,
and attributes set in the design.

• Design information such as flattened instances, extraction of counters,
FSM implementations, clock nets, buffered nets, replicated logic, HDL
optimizations, and informational or warning messages.

Clock Buffering Report
This section of the log file reports any clocks that were buffered. For example:

Clock Buffers:
Inserting Clock buffer for port clock0,TNM=clock0

Net Buffering Report
Net buffering reports are generated for most all of the supported FPGAs and
CPLDs. This information is written in the log file, and includes the following
information:

• The nets that were buffered or had their source replicated

• The number of segments created for that net

• The total number of buffers added during buffering

• The number of registers and look-up tables (or other cells) added during
replication

LO

 Input and Result Files Log File

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
160 Synopsys Confidential Information June 2020

Example: Net Buffering Report
Net buffering Report:
Badd_c[2] - loads: 24, segments 2, buffering source
Badd_c[1] - loads: 32, segments 2, buffering source
Badd_c[0] - loads: 48, segments 3, buffering source
Aadd_c[0] - loads: 32, segments 3, buffering source
Added 10 Buffers
Added 0 Registers via replication
Added 0 LUTs via replication

Compile Point Information
The Summary of Compile Points section of the log file (projectName.srr) lists each
compile point, together with an indication of whether it was remapped, and, if
so, why. Also, a timing report is generated for each compile point located in
its respective results directories in the Implementation Directory. The compile
point is the top-level design for this report file.

For more information on compile points and the compile-point synthesis flow,
see Synthesizing Compile Points, on page 455 of the User Guide.

Timing Section
A default timing report is written to the log file (projectName.srr) in the “START
OF TIMING REPORT” section. See Timing Reports, on page 162, for details.

For certain device technologies in the Synplify Pro tool, you can use the Timing
Analyst to generate additional timing reports for point-to-point analysis (see
Analysis Menu, on page 400). Their format is the same as the timing report.

Resource Usage Report
A resource usage report is added to the log file each time you compile or
synthesize. The format of the report varies, depending on the architecture you
are using. The report provides the following information:

• The total number of cells, and the number of combinational and sequen-
tial cells in the design

• The number of clock buffers and I/O cells

• Details of how many of each type of cell in the design

Log File Input and Result Files

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 161

See Checking Resource Usage, on page 201 in the User Guide for a brief
procedure on using the report to check for overutilization.

Retiming Report
Whenever retiming is enabled, a retiming report is added to the log file
(projectName.srr). It includes information about the design changes made as a
result of retiming, such as the following:

• The number of flip-flops added, removed, or modified because of
retiming. Flip-flops modified by retiming have a _ret suffix added to their
names.

• Names of the flip-flops that were moved by retiming and no longer exist
in the Technology view.

• Names of the flip-flops created as result of the retiming moves, that did
not exist in the RTL view.

• Names of the flip-flops modified by retiming; for example, flip-flops that
are in the RTL and Technology views, but have different fanouts because
of retiming.

LO

 Input and Result Files Timing Reports

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
162 Synopsys Confidential Information June 2020

Timing Reports
Timing results can be written to one or more of the following files:

The timing reports in the .srr/.htm and .ta files have the following sections:

• Timing Report Header, on page 163

• Performance Summary, on page 163

• Clock Pre-map Reports, on page 165

• Clock Relationships, on page 168

• Interface Information, on page 169

• Asynchronous Clock Report, on page 170

.srr or .htm Log file that contains a default timing report. To find this
information, after synthesis completes, open the log file
(View -> Log File), and search for START OF TIMING REPORT.

.ta Timing analysis file that contains timing information
based on the parameters you specify in the stand-alone
Timing Analyst (Analysis->Timing Analyst).

designName_async_clk
.rpt.scv

Asynchronous clock report file that is generated when you
enable the related option in the stand-alone Timing
Analyzer (Analysis->Timing Analyst). This report can be
displayed in a spreadsheet tool and contains information
for paths that cross between multiple clock groups. See
Asynchronous Clock Report , on page 170 for details on
this report.

Timing Reports Input and Result Files

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 163

Timing Report Header
The timing report header lists the date and time, the name of the top-level
module, the number of paths requested for the timing report, and the
constraint files used.

You can control the size of the timing report by choosing Project -> Implementa-
tion Options, clicking the Timing Report tab of the panel, and specifying the
number of start/end points and the number of critical paths to report. See
Timing Report Panel, on page 355, for details.

Performance Summary
The Performance Summary section of the timing report lists estimated and
requested frequencies for the clocks, with the clocks sorted by negative slack.
The timing report has a different section for detailed clock information.

The Performance Summary lists the following information for each clock in the
design:

LO

 Input and Result Files Timing Reports

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
164 Synopsys Confidential Information June 2020

The synthesis tool does not report inferred clocks that have an unreasonable
slack time. Also, a real clock might have a negative period. For example,
suppose you have a clock going to a single flip-flop, which has a single path
going to an output. If you specify an output delay of -1000 on this output,
then the synthesis tool cannot calculate the clock frequency. It reports a
negative period and no clock.

Clock Types
The synthesis timing reports include the following types of clocks:

• Declared Clocks

User-defined clocks specified in the constraint file.

• Inferred Clocks

These are clocks that the synthesis timing engine finds during
synthesis, but which have not been constrained by the user. The tool

Performance Summary
Column

Description

Starting Clock Clock at the start point of the path.
If the clock name is system, the clock is a collection
of clocks with an undefined clock event. Rising and
falling edge clocks are reported as one clock
domain.

Requested/Estimated
Frequency

Target frequency goal /estimated value after
synthesis. See Cross-Clock Path Timing Analysis ,
on page 168 for information on how cross-clock
path slack is reported.

Requested/Estimated Period Target clock period/estimated value after
synthesis.

Slack Difference between estimated and requested
period. See Cross-Clock Path Timing Analysis , on
page 168 for information on how cross-clock path
slack is reported.

Clock Type The type of clock: inferred, declared, derived or system.
For more information, see Clock Types , on
page 164.

Clock Group Name of the clock group that a clock belongs.

Timing Reports Input and Result Files

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 165

assigns the default global frequency specified for the project to these
clocks.

• Derived Clocks

These are clocks that the synthesis tool identifies from a clock
divider/multiplier such as DCM.

• System Clock

The system clock is the delay for the combinational path. Additionally, a
system clock can be reported if there are sequential elements in the
design for a clock network that cannot be traced back to a clock. Also,
the system clock can occur for unconstrained I/O ports. You must
investigate these conditions.

Paths to/from black boxes are timed by the system clock. Add the black-box
timing constraints. See syn_black_box, on page 63 for the black box source
code directives.

Clock Pre-map Reports
The following clock reports are generated during pre-map.

• Clock Summary, on page 166

• Clock Load Summary, on page 166

• Clock Optimization Report, on page 167

LO

 Input and Result Files Timing Reports

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
166 Synopsys Confidential Information June 2020

Clock Summary
Here is an example of the pre-map Clock Summary report.

Clock Load Summary
The pre-map Clock Load Summary table contains the following:

• Clock name

• Number of clock loads

• Clock source pin

• Clock load on clock pin sequential example

• Clock load on non-clock pin sequential example

• Clock load on combinatorial example

Timing Reports Input and Result Files

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 167

Clock Optimization Report
This is an example of the pre-map Clock Optimization report. A table is
provided with information for both the Non-Gated/Non-Generated Clocks
and Gated/Generated Clocks.

LO

 Input and Result Files Timing Reports

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
168 Synopsys Confidential Information June 2020

Clock Relationships
For each pair of clocks in the design, the Clock Relationships section of the
timing report lists both the required time (constraint) and the worst slack time
for each of the intervals rise to rise, fall to fall, rise to fall, and fall to rise. See
Cross-Clock Path Timing Analysis, on page 168 for details about cross-clock
paths.

This information is provided for the paths between related clocks (that is,
clocks in the same clock group). If there is no path at all between two clocks,
then that pair is not reported. If there is no path for a given pair of edges
between two clocks, then an entry of No paths appears.

For information about how these relationships are calculated, see Clock
Groups, on page 219. For tips on using clock groups, see Defining Other Clock
Requirements, on page 177 in the User Guide.

Cross-Clock Path Timing Analysis
The following describe how the timing analyst calculates cross-clock path
frequency and slack.

Cross-Clock Path Frequency
For each data path, the tool estimates the highest frequency that can be set
for the clock(s) without a setup violation. It finds the largest scaling factor
that can be applied to the clock(s) without causing a setup violation. If the
start clock is not the same as the end clock, it scales both by the same factor.

scale = (minimum time period -(-current slack))/minimum time period

It assumes all other delays in the setup calculation (e.g., uncertainty) are
fixed.

Timing Reports Input and Result Files

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 169

It applies relevant multicycle constraints to the setup calculation.

The estimated frequency for a clock is the minimum frequency over all paths
that start or end on that clock, with the following exceptions:

• The tool does not consider paths between the system clock and another
clock to estimate frequency.

• It considers paths with a path delay constraint to be asynchronous, and
does not use them to estimate frequency.

• It considers paths between clocks in different domains to be asynchro-
nous, and does not use them to estimate frequency.

Slack for Cross-Clock Paths
The slack reported for a cross-clock path is the worst slack for any path that
starts on that clock. Note that this differs from the estimated frequency calcu-
lation, which is based on the worst slack for any path starting or ending on
that clock.

Interface Information
The interface section of the timing report contains information on arrival
times, required times, and slack for the top-level ports. It is divided into two
subsections, one each for Input Ports and Output Ports. Bidirectional ports are
listed under both. For each port, the interface report contains the following
information.

Port parameter Description

Port Name Port name.

Starting Reference Clock The reference clock.

User Constraint The input/output delay. If a port has multiple delay
records, the report contains the values for the record with
the worst slack. The reference clock corresponds to the
worst slack delay record.

LO

 Input and Result Files Timing Reports

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
170 Synopsys Confidential Information June 2020

Asynchronous Clock Report
You can generate a report for paths that cross between clock groups using
the stand-alone Timing Analyst (Analysis->Timing Analyst, Generate Asynchronous
Clock Report check box). Generally, paths in different clock groups are
automatically handled as false paths. This option provides a file that contains
information on each of the paths and can be viewed in a spreadsheet tool. To
display the CSV-format report:

1. Locate the file in your results directory projectName_async_clk.rpt.csv.
2. Open the file in your spreadsheet tool.

Arrival Time Input ports: define_input_delay, or default value of 0.
Output ports: path delay (including clock-to-out delay of
source register).
For purely combinational paths, the propagation delay is
calculated from the driving input port.

Required Time Input ports: clock period - (path delay + setup time of
receiving register + define_reg_input_delay value).
Output ports: clock period - define_output_delay. Default
value of define_output_delay is 0.

Slack Required Time - Arrival Time

 Column Description

Index Path number.

Path Delay Delay value as reported in standard timing (ta) file.

Logic Levels Number of logic levels in the path (such as LUTs,
cells, and so on) that are between the start and end
points.

Types Cell types, such as LUT, logic cell, and so on.

Route Delay As reported for each path in ta

Source Clock Start clock.

Destination Clock End clock.

Port parameter Description

Timing Reports Input and Result Files

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 171

Data Start Pin Sequential device output pin at start of path.

Data End Pin Setup check pin at destination.

 Column Description

LO

 Input and Result Files Hierarchical Area Report

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
172 Synopsys Confidential Information June 2020

Hierarchical Area Report
An area report is created during synthesis which contains the percentage
utilization for elements in the design, as well as, total sequential utilization
for elements of specific modules. For instance, elements can include sequen-
tial, combinational, or memory elements. They can also include the following
types of technology-specific elements for ROMs, I/O pads, or DSPs.

This report generates technology-specific area information that is reflected in
the output depending upon the specified device. The report is written to the
projectName.areasrr file. You can view the file with the log viewer or any text
editor.

Constraint Checking Report Input and Result Files

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 173

Constraint Checking Report
Use the Run->Constraint Check command to generate a report on the constraint
files in your project. The projectName_cck.rpt file provides information such as
invalid constraint syntax, constraint applicability, and any warnings or
errors. For details about running Constraint Check, see Tcl Syntax Guidelines for
Constraint Files, on page 55 in the User Guide.

This section describes the following topics:

• Reporting Details, on page 173

• Inapplicable Constraints, on page 174

• Applicable Constraints With Warnings, on page 175

• Sample Constraint Check Report, on page 176

Reporting Details
This constraint checking file reports the following:

• Constraints that are not applied

• Constraints that are valid and applicable to the design

• Wildcard expansion on the constraints

• Constraints on objects that do not exist

It contains the following sections:

Summary Statement which summarizes the total number of issues
defined as an error or warning (x) out of the total number of
constraints with issues (y) for the total number of constraints
(z) in the .fdc file.
Found <x> issues in <y> out of <z> constraints

Clock Relationship Standard timing report clock table, without slack.

Unconstrained
Start/End Points

Lists I/O ports that are missing input/output delays.

LO

 Input and Result Files Constraint Checking Report

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
174 Synopsys Confidential Information June 2020

Inapplicable Constraints
Refer to the following table for constraints that were not applied because
objects do not exist or the object type check was not valid:

Unapplied
constraints

Constraints that cannot be applied because objects do not
exist or the object type check is not valid. See Inapplicable
Constraints , on page 174 for more information.

Applicable
constraints with
issues

Constraints will be applied either fully or partially, but there
might be issues that generate warnings which should be
investigated, such as some objects/collections not existing.
Also, whenever at least one object in a list of objects is not
specified with a valid object type a warning is displayed. See
Applicable Constraints With Warnings , on page 175 for more
information.

Constraints with
matching wildcard
expressions

Lists constraints or collections using wildcard expressions up
to the first 1000, respectively.

For these constraints ... Objects must be ...

Attributes Valid definitions

create_clock • Ports
• Nets
• Pins
• Registers
• Instantiated buffers

create_generated_clock Clocks

define_compile_point • Region
• View

define_current_design v:view

Constraint Checking Report Input and Result Files

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 175

Applicable Constraints With Warnings
The following table lists reasons for warnings in the report file:

set_false_path
set_multicycle_path
set_max_delay

For -to or -from objects:
• i:sequential instances
• p:ports
• i:black boxes
For -through objects
• n:nets
• t:hierarchical ports
• t:pins

set_multicycle_path Specified as a positive integer

set_input_delay • Input ports
• bidir ports

set_output_delay • Output ports
• Bidir ports

set_reg_input_delay
set_reg_output_delay

Sequential instances

For these constraints ... Objects must be ...

create_clock • Ports
• Nets
• Pins
• Registers
• Instantiated buffers

set_clock_uncertainty A single object. Multiple objects are
not supported.

define_compile_point A single object. Multiple objects are
not supported.

define_current_design v:view

For these constraints ... Objects must be ...

LO

 Input and Result Files Constraint Checking Report

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
176 Synopsys Confidential Information June 2020

Sample Constraint Check Report
The following is a sample report generated by constraint checking:

Synopsys Constraint Checker, version maprc, Build 1138R, built Jun 7 2016
Copyright (C) 1994-2016, Synopsys, Inc.

Written on Fri Jun 7 09:42:22 2016
DESIGN INFO

Top View: "decode_top"
Constraint File(s): "C:\timing_88\FPGA_decode_top.sdc"
SUMMARY

Found 3 issues in 2 out of 27 constraints

set_false_path
set_multicycle_path
set_path_delay

For -to or -from objects:
• i:sequential instances
• p:ports
• i:black boxes
For -through objects:
• n:nets
• t:hierarchical ports
• t:pins

set_input_delay A single object. Multiple objects are
not supported.

set_output_delay A single object. Multiple objects are
not supported.

set_reg_input_delay
set_reg_output_delay

A single object. Multiple objects are
not supported.

For these constraints ... Objects must be ...

Constraint Checking Report Input and Result Files

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 177

DETAILS

Clock Relationships

Starting Ending | rise to rise | fall to fall | rise to fall | fall to rise
--
clk2x clk2x | 24.000 | 24.000 | 12.000 | 12.000
--
clk2x clk | 24.000 | No paths | No paths | 12.000
clk clk2x | 24.000 | No paths | 12.000 | No paths
clk clk | 48.000 | No paths | No paths | No paths
==
Note:
'No paths' indicates there are no paths in the design for that pair of clock edges.
'Diff grp' indicates that paths exist but the starting clock and ending clock are in
different clock groups

Unconstrained Start/End Points

p:test_mode

Inapplicable constraints

set_false_path -from p:next_synd -through i:core.tab1.ram_loader
@E:|object "i:core.tab1.ram_loader" does not exist
@E:|object "i:core.tab1.ram_loader" is incorrect type; "-through" objects must be of
type net (n:), or pin (t:)

Applicable constraints with issues

set_false_path -from {core.decoder.root_mult*.root_prod_pre[*]} -to
{i:core.decoder.omega_inst.omega_tmp_d_lch[7:0]}
@W:|object "core.decoder.root_mult*.root_prod_pre[*]" is missing qualifier which may
result in undesired results; "-from" objects must be of type clock (c:), inst (i:), port
(p:), or pin (t:)

Constraints with matching wildcard expressions
**

set_false_path -from {core.decoder.root_mult*.root_prod_pre[*]} -to
{i:core.decoder.omega_inst.omega_tmp_d_lch[7:0]}
@N:|expression "core.decoder.root_mult*.root_prod_pre[*]" applies to objects:
core.decoder.root_mult1.root_prod_pre[14:0]
core.decoder.root_mult.root_prod_pre[14:0]

LO

 Input and Result Files Constraint Checking Report

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
178 Synopsys Confidential Information June 2020

set_false_path -from {i:core.decoder.*.root_prod_pre[*]} -to {i:core.decoder.t_*_[*]}
@N:|expression "core.decoder.*.root_prod_pre[*]" applies to objects:
core.decoder.root_mult1.root_prod_pre[14:0]
core.decoder.root_mult.root_prod_pre[14:0]
@N:|expression "core.decoder.t_*_[*]" applies to objects:
core.decoder.t_20_[7:0]
core.decoder.t_19_[7:0]
core.decoder.t_18_[7:0]
core.decoder.t_17_[7:0]
core.decoder.t_16_[7:0]
core.decoder.t_15_[7:0]
core.decoder.t_14_[7:0]
core.decoder.t_13_[7:0]
core.decoder.t_12_[7:0]
core.decoder.t_11_[7:0]
core.decoder.t_10_[7:0]
core.decoder.t_9_[7:0]
core.decoder.t_8_[7:0]
core.decoder.t_7_[7:0]
core.decoder.t_6_[7:0]
core.decoder.t_5_[7:0]
core.decoder.t_4_[7:0]
core.decoder.t_3_[7:0]
core.decoder.t_2_[7:0]
core.decoder.t_1_[7:0]
core.decoder.t_0_[7:0]

set_false_path -from {i:core.decoder.root_mult*.root_prod_pre[*]} -to
{i:core.decoder.err[7:0]}
N:|expression "core.decoder.root_mult*.root_prod_pre[*]" applies to objects:
core.decoder.root_mult1.root_prod_pre[14:0]
core.decoder.root_mult.root_prod_pre[14:0]

set_false_path -from {i:core.decoder.root_mult*.root_prod_pre[*]} -to
{i:core.decoder.omega_inst.deg_omega[4:0]}
@N:|expression "core.decoder.root_mult*.root_prod_pre[*]" applies to objects:
core.decoder.root_mult1.root_prod_pre[14:0]
core.decoder.root_mult.root_prod_pre[14:0]

set_false_path -from {i:core.decoder.root_mult*.root_prod_pre[*]} -to
{i:core.decoder.omega_inst.omega_tmp[0:7]}
@N:|expression "core.decoder.root_mult*.root_prod_pre[*]" applies to objects:
core.decoder.root_mult1.root_prod_pre[14:0]
core.decoder.root_mult.root_prod_pre[14:0]

set_false_path -from {i:core.decoder.root_mult*.root_prod_pre[*]} -to
{i:core.decoder.root[7:0]}
@N:|expression "core.decoder.root_mult*.root_prod_pre[*]" applies to objects:
core.decoder.root_mult1.root_prod_pre[14:0]
core.decoder.root_mult.root_prod_pre[14:0]

Constraint Checking Report Input and Result Files

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 179

set_false_path -from {i:core.decoder.root_mult*.root_prod_pre[*]} -to
{i:core.decoder.root_inst.count[3:0]}
N:|expression "core.decoder.root_mult*.root_prod_pre[*]" applies to objects:
core.decoder.root_mult1.root_prod_pre[14:0]
core.decoder.root_mult.root_prod_pre[14:0]

set_false_path -from {i:core.decoder.root_mult*.root_prod_pre[*]} -to
{i:core.decoder.root_inst.q_reg[7:0]}
@N:|expression "core.decoder.root_mult*.root_prod_pre[*]" applies to objects:
core.decoder.root_mult1.root_prod_pre[14:0]
core.decoder.root_mult.root_prod_pre[14:0]

set_false_path -from {i:core.decoder.root_mult*.root_prod_pre[*]} -to
{i:core.decoder.root_inst.q_reg_d_lch[7:0]}
@N:|expression "core.decoder.root_mult*.root_prod_pre[*]" applies to objects:
core.decoder.root_mult1.root_prod_pre[14:0]
core.decoder.root_mult.root_prod_pre[14:0]

set_false_path -from {i:core.decoder.root_mult.root_prod_pre[*]} -to
{i:core.decoder.error_inst.den[7:0]}
@N:|expression "core.decoder.root_mult.root_prod_pre[*]" applies to objects:
core.decoder.root_mult.root_prod_pre[14:0]

set_false_path -from {i:core.decoder.root_mult1.root_prod_pre[*]} -to
{i:core.decoder.error_inst.num1[7:0]}
@N:|expression "core.decoder.root_mult1.root_prod_pre[*]" applies to objects:
core.decoder.root_mult1.root_prod_pre[14:0]

set_false_path -from {i:core.decoder.synd_reg_*_[7:0]} -to {i:core.decoder.b_*_[7:0]}
@N:|expression "core.decoder.synd_reg_*_[7:0]" applies to objects:
core.decoder.un1_synd_reg_0_[7:0]
core.decoder.synd_reg_20_[7:0]
core.decoder.synd_reg_19_[7:0]
core.decoder.synd_reg_18_[7:0]
core.decoder.synd_reg_17_[7:0]
core.decoder.synd_reg_16_[7:0]
core.decoder.synd_reg_15_[7:0]
core.decoder.synd_reg_14_[7:0]
core.decoder.synd_reg_13_[7:0]
core.decoder.synd_reg_12_[7:0]
core.decoder.synd_reg_11_[7:0]
core.decoder.synd_reg_10_[7:0]
core.decoder.synd_reg_9_[7:0]
core.decoder.synd_reg_8_[7:0]
core.decoder.synd_reg_7_[7:0]
core.decoder.synd_reg_6_[7:0]
core.decoder.synd_reg_5_[7:0]
core.decoder.synd_reg_4_[7:0]
core.decoder.synd_reg_3_[7:0]
core.decoder.synd_reg_2_[7:0]
core.decoder.synd_reg_1_[7:0]

LO

 Input and Result Files Constraint Checking Report

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
180 Synopsys Confidential Information June 2020

@N:|expression "core.decoder.b_*_[7:0]" applies to objects:
core.decoder.un1_b_0_[7:0]
core.decoder.b_calc.un1_lambda_0_[7:0]
core.decoder.b_20_[7:0]
core.decoder.b_19_[7:0]
core.decoder.b_18_[7:0]
core.decoder.b_17_[7:0]
core.decoder.b_16_[7:0]
core.decoder.b_15_[7:0]
core.decoder.b_14_[7:0]
core.decoder.b_13_[7:0]
core.decoder.b_12_[7:0]
core.decoder.b_11_[7:0]
core.decoder.b_10_[7:0]
core.decoder.b_9_[7:0]
core.decoder.b_8_[7:0]
core.decoder.b_7_[7:0]
core.decoder.b_6_[7:0]
core.decoder.b_5_[7:0]
core.decoder.b_4_[7:0]
core.decoder.b_3_[7:0]
core.decoder.b_2_[7:0]
core.decoder.b_1_[7:0]
core.decoder.b_0_[7:0

Library Report

End of Constraint Checker Report

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 181

C H A P T E R 6

RAM and ROM Inference

This chapter provides guidelines and Verilog or VHDL examples for coding
RAMs for synthesis. It covers the following topics:

• Guidelines and Support for RAM Inference, on page 182

• Automatic RAM Inference, on page 183

• Block RAM Inference, on page 187

• Initial Values for RAMs, on page 229

• RAM Instantiation with SYNCORE, on page 242

• ROM Inference, on page 243

LO

 RAM and ROM Inference Guidelines and Support for RAM Inference

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
182 Synopsys Confidential Information June 2020

Guidelines and Support for RAM Inference
There are two methods to handle RAMs: instantiation and inference. Many
FPGA families provide technology-specific RAMs that you can instantiate in
your HDL source code. The software supports instantiation, but you can also
set up your source code so that it infers the RAMs. The following table sums
up the pros and cons of the two approaches.

You must structure your source code correctly for the type of RAM you want
to infer. The following table lists the supported technology-specific RAMs that
can be generated by the synthesis tool.

Inference in Synthesis Instantiation

Advantages
Portable coding style
Automatic timing-driven synthesis
No additional tool dependencies

Advantages
Most efficient use of the RAM primitives
of a specific technology
Supports all kinds of RAMs

Limitations
Glue logic to implement the RAM might
result in a sub-optimal implementation
Can only infer synchronous RAMs
No support for address wrapping
Pin name limitations means some pins
are always active or inactive

Limitations
Source code is not portable because it is
technology-dependent
Limited or no access to timing and area
data if the RAM is a black box
Inter-tool access issues, if the RAM is a
black box created with another tool

RAM Type Microchip

Single Port x

Dual Port x

True Dual
Port

x

Automatic RAM Inference RAM and ROM Inference

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 183

Automatic RAM Inference
Instead of instantiating synchronous RAMs, you can let the synthesis tools
automatically infer them directly from the HDL source code and map them to
the appropriate technology-specific RAM resources on the FPGA. This
approach lets you maintain portability.

Here are some of the advantages offered by the inference approach:

• The tool automatically infers the RAM from the HDL code, which is
technology-independent. This means that the design is portable from
one technology to another without rework.

• RAM inference is the best method for prototyping.

• The tool automatically adds the extra glue logic needed to ensure that
the logic is correct.

• The software automatically runs timing-driven synthesis for inferred
RAMs.

Block RAM
The synthesis software can implement the block RAM it infers using different
types of block RAM and different block RAM modes.

Types of Block RAM
The synthesis software can infer different kinds of block RAM, according to
how the code is set up. For details about block RAM inference, see Block RAM
Inference, on page 187 and RAM Attributes, on page 184. For inference
examples, and see Block RAM Examples, on page 193.

The synthesis tool can infer the following kinds of block RAM:

• Single-port RAM

• Dual-port RAM

Based on how the read and write ports are used, dual-port RAM can be
further classified as follows:

– Simple dual-port

– Dual-port

LO

 RAM and ROM Inference Automatic RAM Inference

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
184 Synopsys Confidential Information June 2020

– True dual-port

Supported Block RAM Modes
Block RAM supports three operating modes, which determine the output of
the RAM when write enable is active. The synthesis tools infer the mode from
the RTL you provide. It is best to explicitly describe the RAM behavior in the
code, so as to correctly infer the operating mode you want. Refer to the
examples for recommended coding styles.

The block RAM operating modes are described in the following table:

RAM Attributes
In addition to the automatic inference by the tool, you can specify RAM infer-
ence with the syn_ramstyle and syn_rw_conflict_logic attributes. The syn_ramstyle
attribute explicitly specifies the kind of RAM you want, while the syn_rw_con-
flict_logic attribute specifies that you want to infer a RAM, but leave it to the
synthesis tools to select the kind of RAM, as appropriate.

Attribute-Based Inference of Block RAM
For block RAM, the syn_ramstyle attribute has a number of valid values, all of
which are extensively described in the documentation. This section confines
itself to the following values, which are most relevant to the discussion:

Mode When write enable (WE) is active ...

WRITE_FIRST This is a transparent mode, and the input data is simultaneously
written into memory and stored in the RAM data output (DO). DO
uses the value of the RAM data input (DI). See WRITE_FIRST Mode
Example , on page 194 for an example.

READ_FIRST This mode is read before write. The data previously stored at the
write address appears at the RAM data output (DO) first, and then
the RAM input data is stored in memory. DO uses the value of the
memory content. See READ_FIRST Mode Example , on page 195 for
an example.

NO_CHANGE RAM data output (DO) remains the same during a write operation,
with DO containing the last read data. See NO_CHANGE Mode
Example , on page 196 for an example.

Automatic RAM Inference RAM and ROM Inference

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 185

If you specify the syn_rw_conflict_logic attribute, the synthesis tools can infer
block RAM, depending on the design. If the tool does infer block RAM, it does
not insert bypass logic around the block RAM to account for read-write
conflicts and prevent simulation mismatches. In this way its functionality is
the same as syn_ramstyle with no_rw_check, which does not insert bypass logic
either.

Specifying the Attributes
You set the attribute in the HDL source code, through the SCOPE interface or
in an FPGA constraint file.

HDL Source Code
Set the attribute on the Verilog register or VHDL signal that holds the output
values of the RAM. The following syntax shows how to specify the attribute in
Verilog and VHDL code:

SCOPE
For the syn_ramstyle attribute, set the attribute on the RAM register memory
signal, mem, as shown below. For the syn_rw_conflict_logic attribute, set it on
the instance or set it globally. The attributes are written out to a constraints
file using the syntax described in the next section.

syn_ramstyle Value Description

block_ram Enforces the inference and implementation of a
technology-specific RAM.

registers Prevents inference of a RAM, and maps the RAM to flip-flops
and logic.

no_rw_check Does not create overhead logic to account for read-write
conflicts.

Verilog reg [7:0] ram_dout [127:0]
/*synthesis syn_ramstyle = "block_ram"*/;
reg [d_width-1:0] mem [mem_depth-1:0]
/*synthesis syn_rw_conflict_logic = 0*/;

VHDL attribute syn_ramstyle of ram_dout : signal is "block_ram";

LO

 RAM and ROM Inference Automatic RAM Inference

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
186 Synopsys Confidential Information June 2020

Constraints File
In the fdc Tcl constraints file written out from the SCOPE interface, the
syn_ramstyle attribute is attached to the register mem signal of the RAM, and
the syn_rw_conflict_logic attribute is attached to the view, as shown below:

define_attribute {i:mem[7:0]} {syn_ramstyle} {block_ram}
define_attribute {v:mem[0:7]} syn_rw_conflict_logic {0}

For the syn_rw_conflict_logic attribute, you can also specify it globally, as well as
on individual modules and instances:

define_global_attribute syn_rw_conflict_logic {0}

Block RAM Inference RAM and ROM Inference

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 187

Block RAM Inference
Based on the design and how you code it, the tool can infer the following
kinds of block RAM: single-port, simple dual-port, dual-port, and true
dual-port. The details about RAM inference and setup guidelines are
described here:

• Setting up the RTL and Inferring Block RAM, on page 187

• Simple Dual-Port Block RAM Inference, on page 189

• Dual-Port RAM Inference, on page 191

• True Dual-Port RAM Inference, on page 191

• True Dual-Port Byte-Enabled RAM Inference, on page 192

Setting up the RTL and Inferring Block RAM
To ensure that the tool infers the kind of block RAM you want, do the
following:

1. Set up the RAM HDL code in accordance with the following guidelines:

– The RAM must be synchronous. It must not have any asynchronous
control signals connected. The synthesis tools do not infer
asynchronous block RAM.

– You must register either the read address or the output.

– The RAMs must not be too small, as the tool does not infer block RAM
for small-sized RAMs. The size threshold varies with the target
technology.

LO

 RAM and ROM Inference Block RAM Inference

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
188 Synopsys Confidential Information June 2020

2. Set up the clocks and read and write ports to infer the kind of RAM you
want. The following table summarizes how to set up the RAM in the RTL:

For illustrative code examples, see the single-port and dual-port
examples listed in Block RAM Examples, on page 193.

3. If needed, guide automatic inference with the syn_ramstyle attribute:

– To force the inference of block RAM, specify syn_ramstyle=blockram.

– To prevent a block RAM from being inferred or if your resources are
limited, use syn_ramstyle=registers.

– If you know your design does not read and write to the same address
simultaneously, specify syn_ramstyle=no_rw_check to ensure that the
synthesis tool does not unnecessarily create bypass logic for resolving
conflicts.

4. Synthesize the design.

The tool first compiles the design and infers the RAMs, which it
represents as abstract technology-independent primitives like RAM1 and
RAM2. You can view these RAMs in the RTL view, which is a graphic,
technology-independent representation of your design after compilation:

RAM Clock Read Ports Write Ports

Single-port Single clock One; same as write One; same as read

Simple
dual-port

Single or dual
clock

One dedicated read One dedicated write

Dual-port Single or dual
clock

Two independent
reads

One dedicated write

True dual-port Single or dual
clock

Two independent
reads

Two independent
writes

See Dual-Port RAM Inference , on page 191 and True Dual-Port RAM Inference ,
on page 191 for additional information.

Block RAM Inference RAM and ROM Inference

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 189

It is important that the compiler first infers the RAM, because the tool
only maps the inferred RAM primitives to technology-specific block RAM.
Any RAM that is not inferred is mapped to registers. You can view the
mapped RAMs in the Technology view, which is a graphic representation
of your design after synthesis, and shows the design mapped to
technology-specific resources.

Simple Dual-Port Block RAM Inference
Simple dual-port RAMs (SDP) are block RAMs with one port dedicated to read
operations and one port dedicated to write operations. SDP RAMs offer the
unique advantage of combining ports and using them to pack double the data
width and address width.

The synthesis tools map SDP RAMs to RAM primitives in the architecture. A
unique set of addresses, clocks, and enable signals are used for each port.
The synthesis tool might also set the RAM_MODE property on the RAM to
indicate the RAM mode.

The inference of simple dual-port RAM is dependent on the size of the
address and data. The RAM must follow the coding guidelines listed below to
be inferred.

• The read and write addresses must be different

• The read and write clocks can be different

• The enable signals can be different

LO

 RAM and ROM Inference Block RAM Inference

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
190 Synopsys Confidential Information June 2020

Here is an example where the tool infers SDP RAM:

module Read_First_RAM (
read_clk,
read_address,
data_in,
write_clk,
rd_en,
wr_en,
reg_en,
write_address,
data_out);

parameter address_width = 8;
parameter data_width = 32;
parameter depth = 256;
input read_clk, write_clk;
input rd_en;
input wr_en;
input reg_en;
input [address_width-1:0] read_address, write_address;
input [data_width-1:0] data_in;
output [data_width-1:0] data_out;
//wire [data_width-1:0] data_out;
reg [data_width-1:0] mem [depth -1 : 0]/* synthesis
syn_ramstyle="no_rw_check"

*/;
reg [data_width-1:0] data_out;
always @(posedge write_clk)
if(wr_en)

mem[write_address] <= data_in;
always @(posedge read_clk)
if(rd_en)

data_out <= mem[read_address];
endmodule

Block RAM Inference RAM and ROM Inference

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 191

Dual-Port RAM Inference
Dual-port RAM is configured to have read and/or write operations from both
ports of the RAM. One such configuration is a RAM with one port for both
read and write operations and another dedicated read-only port. A unique set
of addresses, clocks, and enable signals are used for each port. The synthesis
tool sets properties on the RAM to indicate the RAM mode.

To infer dual-port block RAM, the RAM must follow the coding rules
described below.

• The read and write addresses must be different

• The read and write clocks can be different

• The enable signals can be different

True Dual-Port RAM Inference
True dual-port RAMs (TDP) are block RAMs with two write ports and two read
ports. The compiler extracts a RAM2 primitive for RAMs with two write ports
or two read ports and the tool maps this primitive to TDP RAM. The ports
operate independently, with different clocks, addresses and enables.

The synthesis tool also sets the RAM_MODE property on the RAM to indicate
the RAM mode.

The compiler infers TDP block RAM based on the write processes. The imple-
mentation depends on whether the write enables use one process or multiple
processes:

• When all the writes are made in one process, there are no address
conflicts, and the compiler generates an nram that is later mapped to
either true dual-port block RAM. The following coding results in an nram

LO

 RAM and ROM Inference Block RAM Inference

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
192 Synopsys Confidential Information June 2020

with two write ports, one with write address waddr0 and the other with
write address waddr1:

always @(posedge clk)
begin

if(we1) mem[waddr0] <= data1;
if(we2) mem[waddr1] <= data2;

end
• When the writes are made in multiple processes, the software does not

infer a multiport RAM unless you explicitly specify the syn_ramstyle attri-
bute with a value that indicates the kind of RAM to implement, or with
the no_rw_check value. If the attribute is not specified as such, the
software does not infer an nram, but infers a RAM with multiple write
ports. You get a warning about simulation mismatches when the two
addresses are the same.

In the following case, the compiler infers an nram with two write ports
because the syn_ramstyle attribute is specified. The writes associated with
waddr0 and waddr1 are we1 and we2, respectively.

reg [1:0] mem [7:0] /* synthesis syn_ramstyle="no_rw_check" */;
always @(posedge clk1)
begin

if(we1) mem[waddr0] <= data1;
end
always @(posedge clk2)
begin

if(we2) mem[waddr1] <= data2;
end

True Dual-Port Byte-Enabled RAM Inference
The procedure below describes how to specify RAM where you can read/write
each byte into a specific address location independently, and how to imple-
ment it as block RAM. See the article 2560210,Verilog RTL Coding Style for
True Dual-Port Byte-Enabled RAM on the Synopsys website, for an example.

1. Instantiate the true dual-port RAM n number of times, where n is the
number of bytes for a particular RAM address.

In the following example, ram_dp is instantiated twice because there are
two bytes in the address:

Block RAM Inference RAM and ROM Inference

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 193

ram_dp u1 (clk1, clk2, dia[7:0] , addra, wea[0], doa[7:0] , dib[7:0] , addrb, web[0],
dob[7:0]);

ram_dp u2 (clk1, clk2, dia[15:8], addra, wea[1], doa[15:8], dib[15:8], addrb,
web[1], dob[15:8]);

2. To map the true dual-port RAM into a block RAM, add the
syn_ramstyle=”block_ram" attribute to the true dual-port RAM module.

3. Run compile.

The RTL schematic shows two instantiations, as specified.

4. Run map.

After synthesis, check the resource utilization report to make sure that
two block RAMs were inferred, as specified.

Block RAM Examples
The examples below show you how to define RAM in the HDL code so that the
synthesis tools can infer block RAM. See the following for details:

• Block RAM Mode Examples, on page 193

• Single-Port Block RAM Examples, on page 197

• Dual-Port Block RAM Examples, on page 200

• True Dual-Port RAM Examples, on page 202

For details about inferring block RAM, see Block RAM Inference, on page 187.

Block RAM Mode Examples
The coding style supports the enable and reset pins of the block RAM primi-
tive. The tool supports different write mode operations for single-port and
dual-port RAM. This section contains examples of how to specify the
supported block RAM output modes:

• WRITE_FIRST Mode Example, on page 194

• READ_FIRST Mode Example, on page 195

• NO_CHANGE Mode Example, on page 196

LO

 RAM and ROM Inference Block RAM Inference

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
194 Synopsys Confidential Information June 2020

WRITE_FIRST Mode Example

This example shows the WRITE_FIRST mode operation with active enable.

module v_rams_02a (clk, we, en, addr, di, dou);
input clk;
input we;
input en;
input [5:0] addr;
input [63:0] di;
output [63:0] dou;
reg [63:0] RAM [63:0];
reg [63:0] dou;
always @(posedge clk)
begin
if (en)

begin
if (we)

begin
RAM[addr] <= di;
dou <= di;

end
else

dou <= RAM[addr];
end

end
always @(posedge clk)
if (en & we) RAM[addr] <= di;
endmodule
The following figure shows the RTL view of a WRITE_FIRST mode RAM
with output registered. Select the Technology view to see that the RAM is
mapped to a block RAM.

Block RAM Inference RAM and ROM Inference

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 195

READ_FIRST Mode Example

The following piece of code is an example of READ_FIRST mode with both
enable and reset, with reset taking precedence:

module ram_test(data_out, data_in, addr, clk, rst, en, we);
output [7:0]data_out;
input [7:0]data_in;
input [6:0]addr;
input clk, en, rst, we;
reg [7:0] mem [127:0] /* synthesis syn_ramstyle = "block_ram" */;
reg [7:0] data_out;
always@(posedge clk)
if(rst == 1)

data_out <= 0;
else begin

if(en) begin
data_out <= mem[addr];

end
end
always @(posedge clk)
if (en & we) mem[addr] <= data_in;
endmodule
The following figure shows the RTL view of a READ_FIRST RAM with
inferred enable and reset, with reset taking precedence. Select the
Technology view to see that the inferred RAM is mapped to a block RAM.

RTL View

LO

 RAM and ROM Inference Block RAM Inference

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
196 Synopsys Confidential Information June 2020

NO_CHANGE Mode Example

This NO_CHANGE mode example has neither enable nor reset. If you register
the read address and the output address, the software infers block RAM.

module ram_test(data_out, data_in, addr, clk, we);
output [7:0]data_out;
input [7:0]data_in;
input [6:0]addr;
input clk,we;
reg [7:0] mem [127:0] /* synthesis syn_ramstyle = "block_ram" */;
reg [7:0] data_out;
always@(posedge clk)
if(we == 1)

data_out <= data_out;
else

data_out <= mem[addr];
always @(posedge clk)
if (we) mem[addr] <= data_in;
endmodule

The next figure shows the RTL view of a NO_CHANGE RAM. Select the
Technology view to see that the RAM is mapped to block RAM.

RTL View

Block RAM Inference RAM and ROM Inference

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 197

Single-Port Block RAM Examples
This section describes the coding style required to infer single-port block
RAMs. For single-port RAM, the same address is used to index the write-to
and read-from RAM. See the following examples:

• Single-Port Block RAM Examples, on page 197

• Single-Port RAM with RAM Output Registered Examples, on page 199

• Dual-Port Block RAM Examples, on page 200

Single-Port RAM with Read Address Registered Example
In these examples, the read address is registered, but the write address
(which is the same as the read address) is not registered. There is one clock
for the read address and the RAM.

Verilog Example: Read Address Registered

module ram_test(q, a, d, we, clk);
output [7:0] q;
input [7:0] d;
input [6:0] a;
input clk, we;

RTL View

LO

 RAM and ROM Inference Block RAM Inference

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
198 Synopsys Confidential Information June 2020

reg [6:0] read_add;
/* The array of an array register ("mem") from which the RAM is
inferred*/
reg [7:0] mem [127:0] ;
assign q = mem[read_add];
always @(posedge clk) begin
read_add <= a;
if(we)

/* Register RAM Data */
mem[a] <= d;

end
endmodule

VHDL Example: READ Address Registered

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
entity ram_test is

port (d : in std_logic_vector(7 downto 0);
a : in std_logic_vector(6 downto 0);
we : in std_logic;
clk : in std_logic;
q : out std_logic_vector(7 downto 0));

end ram_test;
architecture rtl of ram_test is
type mem_type is array (127 downto 0) of

std_logic_vector (7 downto 0);
signal mem: mem_type;
signal read_add : std_logic_vector(6 downto 0);
begin

process (clk)
begin

if rising_edge(clk) then
if (we = '1') then

mem(conv_integer(a)) <= d;
end if;
read_add <= a;

end if;
end process;

q <= mem(conv_integer(read_add));
end rtl ;

Block RAM Inference RAM and ROM Inference

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 199

Single-Port RAM with RAM Output Registered Examples
In this example, the RAM output is registered, but the read and write
addresses are unregistered. The write address is the same as the read
address. There is one clock for the RAM and the output.

Verilog Example: Data Output Registered

module ram_test(q, a, d, we, clk);
output [7:0] q;
input [7:0] d;
input [6:0] a;
input clk, we;
/* The array of an array register ("mem") from which the RAM is
inferred */
reg [7:0] mem [127:0] ;
reg [7:0] q;
always @(posedge clk) begin
q = mem[a];
if(we)

/* Register RAM Data */
mem[a] <= d;

end
endmodule

VHDL Example: Data Output Registered

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
entity ram_test is

port (d: in std_logic_vector(7 downto 0);
a: in integer range 127 downto 0;
we: in std_logic;
clk: in std_logic;

 q: out std_logic_vector(7 downto 0));
end ram_test;
architecture rtl of ram_test is
type mem_type is array (127 downto 0) of

std_logic_vector (7 downto 0);
signal mem: mem_type;
begin

LO

 RAM and ROM Inference Block RAM Inference

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
200 Synopsys Confidential Information June 2020

process(clk)
begin

if (clk'event and clk='1') then
q <= mem(a);

if (we='1') then
mem(a) <= d;

end if;
end if;

end process;
end rtl;

Dual-Port Block RAM Examples
The following example or HDL code results in simple dual-port block RAMs
being implemented in supported technologies.

Verilog Example: Dual-Port RAM

This Verilog example has two read addresses, both of which are registered,
and one address for write (same as a read address), which is unregistered. It
has two outputs for the RAM, which are unregistered. There is one clock for
the RAM and the addresses.

module dualportram (q1,q2,a1,a2,d,we,clk1) ;
output [7:0]q1,q2;
input [7:0] d;
input [6:0]a1,a2;
input clk1,we;
wire [7:0] q1;
reg [6:0] read_addr1,read_addr2;
reg[7:0] mem [127:0] /* synthesis syn_ramstyle = "no_rw_check" */;
assign q1 = mem [read_addr1];
assign q2 = mem[read_addr2];
always @ (posedge clk1) begin
read_addr1 <= a1;
read_addr2 <= a2;
if (we)

mem[a2] <= d;
end
endmodule

Block RAM Inference RAM and ROM Inference

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 201

VHDL Example: Dual-Port RAM

The following VHDL example is of READ_FIRST mode for a dual-port RAM:

Library IEEE ;
use IEEE.std_logic_1164.all ;
use IEEE.std_logic_arith.all ;
use IEEE.std_logic_unsigned.all ;
entity Dual_Port_ReadFirst is

generic (data_width: integer :=4;
address_width: integer :=10);

port (write_enable: in std_logic;
write_clk, read_clk: in std_logic;
data_in: in std_logic_vector (data_width-1 downto 0);
data_out: out std_logic_vector (data_width-1 downto 0);
write_address: in std_logic_vector (address_width-1 downto 0);
read_address: in std_logic_vector (address_width-1 downto 0)
);

end Dual_Port_ReadFirst;
architecture behavioral of Dual_Port_ReadFirst is
type memory is array (2**(address_width-1) downto 0) of

std_logic_vector (data_width-1 downto 0);
signal mem : memory;
signal reg_write_address : std_logic_vector (address_width-1 downto 0);
signal reg_write_enable: std_logic;
attribute syn_ramstyle : string;
attribute syn_ramstyle of mem : signal is "block_ram";
begin
register_enable_and_write_address:

process (write_clk,write_enable,write_address,data_in)
begin

if (rising_edge(write_clk)) then
reg_write_address <= write_address;
reg_write_enable <= write_enable;

end if;
end process;

LO

 RAM and ROM Inference Block RAM Inference

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
202 Synopsys Confidential Information June 2020

write:
process (read_clk,write_enable,write_address,data_in)
begin

if (rising_edge(write_clk)) then
if (write_enable=’1’) then

mem(conv_integer(write_address))<=data_in;
end if;

end if;
end process;

read:
process (read_clk,write_enable,read_address,write_address)
begin

if (rising_edge(read_clk)) then
if (reg_write_enable=’1’) and (read_address =

reg_write_address) then data_out <= "XXXX";
else

data_out<=mem(conv_integer(read_address));
end if;

end if;
end process;

end behavioral;

True Dual-Port RAM Examples
You must use a registered read address when you code the RAM or have
writes to one process. If you have writes to multiple processes, you must use
the syn_ramstyle attribute to infer the RAM.

There are two situations which can result in this error message:

"@E:MF216: ram.v(29)|Found NRAM mem_1[7:0] with multiple
processes"

• An nram with two clocks and two write addresses has syn_ramstyle set to a
value of registers. The software cannot implement this, because there is a
physical FPGA limitation that does not allow registers with multiple
writes.

• You have a registered output for an nram with two clocks and two write
addresses.

Block RAM Inference RAM and ROM Inference

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 203

Verilog Example: True Dual-Port RAM

The following HDL example shows the recommended coding style for true
dual-port block RAM. It is a Verilog example where the tool infers true
dual-port RAM from a design with multiple writes:

module ram(data0, data1, waddr0, waddr1, we0,we1,
clk0, clk1, q0, q1);

parameter d_width = 8;
parameter addr_width = 8;
parameter mem_depth = 256;
input [d_width-1:0] data0, data1;
input [addr_width-1:0] waddr0, waddr1;
input we0, we1, clk0, clk1;
output [d_width-1:0] q0, q1;
reg [addr_width-1:0] reg_addr0, reg_addr1;
reg [d_width-1:0] mem [mem_depth-1:0] /* synthesis
syn_ramstyle="no_rw_check" */;
assign q0 = mem[reg_addr0];
assign q1 = mem[reg_addr1];
always @(posedge clk0)
begin

reg_addr0 <= waddr0;
if (we0)

mem[waddr0] <= data0;
end
always @(posedge clk1)
begin

reg_addr1 <= waddr1;
if (we1)

mem[waddr1] <= data1;
end
endmodule

LO

 RAM and ROM Inference Block RAM Inference

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
204 Synopsys Confidential Information June 2020

VHDL Example: True Dual-Port RAM

The following HDL example shows the recommended coding style for true
dual-port block RAM. It is a VHDL example where the tool infers true
dual-port RAM from a design with multiple writes:

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity one is
generic (data_width : integer := 4;
address_width :integer := 5);

port (data_a:in std_logic_vector(data_width-1 downto 0);
data_b:in std_logic_vector(data_width-1 downto 0);
addr_a:in std_logic_vector(address_width-1 downto 0);
addr_b:in std_logic_vector(address_width-1 downto 0);
wren_a:in std_logic;

RTL View

Block RAM Inference RAM and ROM Inference

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 205

wren_b:in std_logic;
clk:in std_logic;
q_a:out std_logic_vector(data_width-1 downto 0);
q_b:out std_logic_vector(data_width-1 downto 0));

end one;
architecture rtl of one is
type mem_array is array(0 to 2**(address_width) -1) of
std_logic_vector(data_width-1 downto 0);
signal mem : mem_array;
attribute syn_ramstyle : string;
attribute syn_ramstyle of mem : signal is "no_rw_check" ;
signal addr_a_reg : std_logic_vector(address_width-1 downto 0);
signal addr_b_reg : std_logic_vector(address_width-1 downto 0);
begin

WRITE_RAM : process (clk)
begin

if rising_edge(clk) then
if (wren_a = '1') then

mem(to_integer(unsigned(addr_a))) <= data_a;
end if;
if (wren_b='1') then

mem(to_integer(unsigned(addr_b))) <= data_b;
end if;
addr_a_reg <= addr_a;
addr_b_reg <= addr_b;

end if;
end process WRITE_RAM;

q_a <= mem(to_integer(unsigned(addr_a_reg)));
q_b <= mem(to_integer(unsigned(addr_b_reg)));
end rtl;

Limitations to RAM Inference
RAM inference is only supported for synchronous RAMs.

// Example 1: Verilog Asymmetric RAM Coding Style 1

module asymmetric_ram (clkA, clkB, weA, enA, addrA, addrB, diA,
doB);

parameter WIDTHA = 2;
parameter SIZEA = 16384;

LO

 RAM and ROM Inference Block RAM Inference

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
206 Synopsys Confidential Information June 2020

parameter ADDRWIDTHA = 14;
parameter WIDTHB = 4;
parameter SIZEB = 8192;
parameter ADDRWIDTHB = 13;

input clkA;
input clkB;
input weA;
input enA;
input [ADDRWIDTHA-1:0] addrA;
input [ADDRWIDTHB-1:0] addrB;
input [WIDTHA-1:0] diA;
output reg [WIDTHB-1:0] doB;

`define max(a,b) {(a) > (b) ? (a) : (b)}
`define min(a,b) {(a) < (b) ? (a) : (b)}

function integer log2;
input integer value;
reg [31:0] shifted;
integer res;

begin
if (value < 2)

log2 = value;
else
begin

shifted = value-1;

Block RAM Inference RAM and ROM Inference

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 207

for (res=0; shifted>0; res=res+1)
shifted = shifted>>1;

log2 = res;
end

end
endfunction

localparam maxSIZE = `max(SIZEA, SIZEB);
localparam maxWIDTH = `max(WIDTHA, WIDTHB);
localparam minWIDTH = `min(WIDTHA, WIDTHB);
localparam RATIO = maxWIDTH / minWIDTH;
localparam log2RATIO = log2(RATIO);

reg [minWIDTH-1:0] RAM [0:maxSIZE-1];
reg [ADDRWIDTHB-1:0] addrB_reg;
genvar i;

always @(posedge clkA)
begin

if (enA & weA)
RAM[addrA] <= diA;

end

always @(posedge clkB)
begin

addrB_reg <= addrB;
end

LO

 RAM and ROM Inference Block RAM Inference

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
208 Synopsys Confidential Information June 2020

generate for (i = 0; i < RATIO; i = i+1)
begin: ramread

localparam [log2RATIO-1:0] lsbaddr = i;
always @(posedge clkB)
begin

doB[(i+1)*minWIDTH-1:i*minWIDTH] <= RAM[
{addrB_reg, lsbaddr}];

end
end
endgenerate

endmodule

// Example 1: VHDL Asymmetric RAM Coding Style 1

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
use ieee.std_logic_arith.all;

entity asymmetric_ram is
generic (

WIDTHA : integer := 2;
SIZEA : integer := 16384;
ADDRWIDTHA : integer := 14;
WIDTHB : integer := 4;
SIZEB : integer := 8192;

Block RAM Inference RAM and ROM Inference

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 209

ADDRWIDTHB : integer := 13
);

port (
clkA : in std_logic;
clkB : in std_logic;
weA : in std_logic;
enA : in std_logic;
addrA : in std_logic_vector(ADDRWIDTHA-1 downto 0);
addrB : in std_logic_vector(ADDRWIDTHB-1 downto 0);
diA : in std_logic_vector(WIDTHA-1 downto 0);
doB : out std_logic_vector(WIDTHB-1 downto 0)
);

end asymmetric_ram;

architecture behavioral of asymmetric_ram is

function max(L, R: INTEGER) return INTEGER is
begin

if L > R then
return L;

else
return R;

end if;
end;

function min(L, R: INTEGER) return INTEGER is

LO

 RAM and ROM Inference Block RAM Inference

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
210 Synopsys Confidential Information June 2020

begin
if L < R then

return L;
else

return R;
end if;
end;

function log2 (val: INTEGER) return natural is
variable res : natural;

begin
for i in 0 to 31 loop

if (val <= (2**i)) then
res := i;
exit;

end if;
end loop;
return res;

end function Log2;

constant minWIDTH : integer := min(WIDTHA,WIDTHB);
constant maxWIDTH : integer := max(WIDTHA,WIDTHB);
constant maxSIZE : integer := max(SIZEA,SIZEB);
constant RATIO : integer := maxWIDTH / minWIDTH;

type ramType is array (0 to maxSIZE-1) of
std_logic_vector(minWIDTH-1 downto 0);

Block RAM Inference RAM and ROM Inference

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 211

signal ram : ramType := (others => (others => ‘0’));
signal addrB_reg : std_logic_vector(ADDRWIDTHB-1 downto 0);

begin
process (clkA)
begin

if rising_edge(clkA) then
if enA = ‘1’ then

if weA = ‘1’ then
ram(conv_integer(addrA)) <= diA;
end if;

end if;
end if;

end process;

process (clkB)
begin

if rising_edge(clkB) then
for i in 0 to RATIO-1 loop
doB((i+1)*minWIDTH-1 downto i*minWIDTH) <=

ram(conv_integer(addrB_reg &
conv_std_logic_vector(i,log2(RATIO))));

addrB_reg <= addrB;
end loop;

end if;
end process;

LO

 RAM and ROM Inference Block RAM Inference

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
212 Synopsys Confidential Information June 2020

end behavioral;

// Example 1: Verilog Asymmetric RAM Coding Style 2

module asymmetric_ram (clkA, clkB, weA, enA, addrA, addrB, diA,
doB);

parameter WIDTHA = 2;
parameter SIZEA = 1024;
parameter ADDRWIDTHA = 10;
parameter WIDTHB = 8;
parameter SIZEB = 256;
parameter ADDRWIDTHB = 8;

input clkA;
input clkB;
input weA;
input enA;
input [ADDRWIDTHA-1:0] addrA;
input [ADDRWIDTHB-1:0] addrB;
input [WIDTHA-1:0] diA;
output reg [WIDTHB-1:0] doB;

`define max(a,b) {(a) > (b) ? (a) : (b)}
`define min(a,b) {(a) < (b) ? (a) : (b)}

localparam maxSIZE = `max(SIZEA, SIZEB);
localparam maxWIDTH = `max(WIDTHA, WIDTHB);

Block RAM Inference RAM and ROM Inference

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 213

localparam minWIDTH = `min(WIDTHA, WIDTHB);
localparam RATIO = maxWIDTH / minWIDTH;

reg [minWIDTH-1:0] RAM [0:maxSIZE-1];
reg [ADDRWIDTHB-1:0] addrB_reg;

always @(posedge clkA)
begin

if (weA)
begin

RAM[addrA] <= diA;
end

end

always @(posedge clkB)
begin

addrB_reg <= addrB;
doB[4*minWIDTH-1:3*minWIDTH] <= RAM[{addrB_reg, 2’d3}];
doB[3*minWIDTH-1:2*minWIDTH] <= RAM[{addrB_reg, 2’d2}];
doB[2*minWIDTH-1:minWIDTH] <= RAM[{addrB_reg, 2’d1}];
doB[minWIDTH-1:0] <= RAM[{addrB_reg, 2’d0}];

end

endmodule

LO

 RAM and ROM Inference Block RAM Inference

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
214 Synopsys Confidential Information June 2020

// Example 1: VHDL Asymmetric RAM Coding Style 2

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
use ieee.std_logic_arith.all;

entity asymmetric_ram is

generic (
WIDTHA : integer := 2;
SIZEA : integer := 1024;
ADDRWIDTHA : integer := 10;
WIDTHB : integer := 8;
SIZEB : integer := 256;
ADDRWIDTHB : integer := 8
);

port (
clkA : in std_logic;
clkB : in std_logic;
weA : in std_logic;
enA : in std_logic;
addrA : in std_logic_vector(ADDRWIDTHA-1 downto 0);
addrB : in std_logic_vector(ADDRWIDTHB-1 downto 0);
diA : in std_logic_vector(WIDTHA-1 downto 0);
doB : out std_logic_vector(WIDTHB-1 downto 0)
);

Block RAM Inference RAM and ROM Inference

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 215

end asymmetric_ram;

architecture behavioral of asymmetric_ram is

function max(L, R: INTEGER) return INTEGER is
begin

if L > R then
return L;

else
return R;

end if;
end;

function min(L, R: INTEGER) return INTEGER is
begin

if L < R then
return L;

else
return R;

end if;
end;

constant minWIDTH : integer := min(WIDTHA,WIDTHB);
constant maxWIDTH : integer := max(WIDTHA,WIDTHB);
constant maxSIZE : integer := max(SIZEA,SIZEB);
constant RATIO : integer := maxWIDTH / minWIDTH;

LO

 RAM and ROM Inference Block RAM Inference

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
216 Synopsys Confidential Information June 2020

type ramType is array (0 to maxSIZE-1) of
std_logic_vector(minWIDTH-1 downto 0);

signal ram : ramType := (others => (others => ‘0’));
signal addrB_reg : std_logic_vector(ADDRWIDTHB-1 downto 0);

begin
process (clkA)
begin

if rising_edge(clkA) then
if enA = ‘1’ then

if weA = ‘1’ then
ram(conv_integer(addrA)) <= diA;

end if;
end if;

end if;
end process;

process (clkB)
begin

if rising_edge(clkB) then
addrB_reg <= addrB;

doB(minWIDTH-1 downto 0) <=
ram(conv_integer(addrB_reg&conv_std_logic_vector(0,2)));

doB(2*minWIDTH-1 downto minWIDTH) <=
ram(conv_integer(addrB_reg&conv_std_logic_vector(1,2)));

doB(3*minWIDTH-1 downto 2*minWIDTH) <=

Block RAM Inference RAM and ROM Inference

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 217

ram(conv_integer(addrB_reg&conv_std_logic_vector(2,2)));
doB(4*minWIDTH-1 downto 3*minWIDTH) <=

ram(conv_integer(addrB_reg&conv_std_logic_vector(3,2)));
end if;

end process;

end behavioral;

// Example 2: Verilog Asymmetric RAM Coding Style 1

module v_asymmetric_ram (clkA, clkB, weB, addrA, addrB, doA, diB);

parameter WIDTHA = 8;
parameter SIZEA = 256;
parameter ADDRWIDTHA = 8;
parameter WIDTHB = 32;
parameter SIZEB = 64;
parameter ADDRWIDTHB = 6;

input clkA;
input clkB;
input weB;
input [ADDRWIDTHA-1:0] addrA;
input [ADDRWIDTHB-1:0] addrB;
output [WIDTHA-1:0] doA;
input [WIDTHB-1:0] diB;
reg [ADDRWIDTHA-1:0] addrA_reg;

LO

 RAM and ROM Inference Block RAM Inference

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
218 Synopsys Confidential Information June 2020

`define max(a,b) {(a) > (b) ? (a) : (b)}
`define min(a,b) {(a) < (b) ? (a) : (b)}
function integer log2;
input integer value;
reg [31:0] shifted;
integer res;

begin
if (value < 2)

log2 = value;
else
begin
shifted = value-1;

for (res=0; shifted>0; res=res+1)
shifted = shifted>>1;
log2 = res;

end
end

endfunction
localparam maxSIZE = `max(SIZEA, SIZEB);
localparam maxWIDTH = `max(WIDTHA, WIDTHB);
localparam minWIDTH = `min(WIDTHA, WIDTHB);
localparam RATIO = maxWIDTH / minWIDTH;
localparam log2RATIO = log2(RATIO);
reg [minWIDTH-1:0] RAM [0:maxSIZE-1];
reg [WIDTHB-1:0] readB;
genvar i;
always @(posedge clkA)

Block RAM Inference RAM and ROM Inference

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 219

begin
addrA_reg <= addrA;

end
assign doA = RAM[addrA_reg];

generate for (i = 0; i < RATIO; i = i+1)
begin: ramread

localparam [log2RATIO-1:0] lsbaddr = i;
always @(posedge clkB)
begin
if (weB)

RAM[{addrB, lsbaddr}] <= diB[(i+1)
*minWIDTH-1:i*minWIDTH];

end
end

endgenerate

endmodule

// Example 2: VHDL Asymmetric RAM Coding Style 1

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
use ieee.std_logic_arith.all;

entity asymmetric_ram is
generic (

LO

 RAM and ROM Inference Block RAM Inference

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
220 Synopsys Confidential Information June 2020

WIDTHA : integer := 8;
SIZEA : integer := 256;
ADDRWIDTHA : integer := 8;
WIDTHB : integer := 32;
SIZEB : integer := 64;
ADDRWIDTHB : integer := 6);

port (clkA : in std_logic;
clkB : in std_logic;
weB : in std_logic;
addrA : in std_logic_vector(ADDRWIDTHA-1 downto 0);
addrB : in std_logic_vector(ADDRWIDTHB-1 downto 0);
diB : in std_logic_vector(WIDTHB-1 downto 0);
doA : out std_logic_vector(WIDTHA-1 downto 0));

end asymmetric_ram;
architecture behavioral of asymmetric_ram is
function max(L, R: INTEGER) return INTEGER is

begin
if L > R then

return L;
else

return R;
end if;

end;
function min(L, R: INTEGER) return INTEGER is

begin
if L < R then

Block RAM Inference RAM and ROM Inference

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 221

return L;
else

return R;
end if;

end;
function log2 (val: INTEGER) return natural is

variable res : natural;
begin

for i in 0 to 31 loop
if (val <= (2**i)) then

res := i;
exit;

end if;
end loop;

return res;
end function Log2;

constant minWIDTH : integer := min(WIDTHA,WIDTHB);
constant maxWIDTH : integer := max(WIDTHA,WIDTHB);
constant maxSIZE : integer := max(SIZEA,SIZEB);
constant RATIO : integer := maxWIDTH / minWIDTH;
type ramType is array (0 to maxSIZE-1) of
std_logic_vector(minWIDTH-1 downto 0);
shared variable ram : ramType := (others => (others => ‘0’));
signal addrA_reg : std_logic_vector(ADDRWIDTHA-1 downto 0);
begin

process (clkA)

LO

 RAM and ROM Inference Block RAM Inference

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
222 Synopsys Confidential Information June 2020

begin
if rising_edge(clkA) then

addrA_reg <= addrA;
end if;

end process;
doA <= ram(conv_integer(addrA_reg));

process (clkB)
begin

if rising_edge(clkB) then
if weB = ‘1’ then

for i in 0 to RATIO-1 loop
ram(conv_integer(
addrB & conv_std_logic_vector(i,log2(RATIO))))

 := diB((i+1)*minWIDTH-1 downto i*minWIDTH);
end loop;

end if;
end if;

end process;

end behavioral;

// Example 2: Verilog Asymmetric RAM Coding Style 2

module asymmetric_ram (clkA, clkB, enA, enB, weA, addrA,
addrB, diA, doB);

parameter WIDTHA = 32;
parameter SIZEA = 256;

Block RAM Inference RAM and ROM Inference

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 223

parameter ADDRWIDTHA = 8;
parameter WIDTHB= 16;
parameter SIZEB = 512;
parameter ADDRWIDTHB = 9;

input clkA, clkB, enA, enB, weA;
input [ADDRWIDTHA-1:0] addrA;
input [ADDRWIDTHB-1:0] addrB;
input [WIDTHA-1:0] diA ;
output reg [WIDTHB-1:0] doB;
reg [WIDTHA-1:0] mux;
reg [WIDTHA-1:0] RAM [SIZEA-1:0];
always @(posedge clkA)
begin

if(enA & weA)
RAM[addrA] <= diA;

end

always @(posedge clkB)
begin
mux = RAM[addrB[ADDRWIDTHB-1:1]];
if(enB)

if (addrB[0])
begin

doB <= mux[WIDTHA-1:WIDTHB];
end
else

LO

 RAM and ROM Inference Block RAM Inference

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
224 Synopsys Confidential Information June 2020

begin
doB <= mux[WIDTHB-1:0];

end
end

endmodule

// Example 2: VHDL Asymmetric RAM Coding Style 2

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
use ieee.std_logic_arith.all;

entity asymmetric_ram is
generic (

WIDTHA : integer := 32;
SIZEA : integer := 256;
ADDRWIDTHA : integer := 8;
WIDTHB : integer := 16;
SIZEB : integer := 512;
ADDRWIDTHB : integer := 9

);

port (
clkA : in std_logic;
clkB : in std_logic;
rst : in std_logic;

Block RAM Inference RAM and ROM Inference

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 225

weA : in std_logic;
enA : in std_logic;
enB : in std_logic;
addrA : in std_logic_vector(ADDRWIDTHA-1 downto 0);
addrB : in std_logic_vector(ADDRWIDTHB-1 downto 0);
diA : in std_logic_vector(WIDTHA-1 downto 0);
doB : out std_logic_vector(WIDTHB-1 downto 0)

);
end asymmetric_ram;

architecture behavioral of asymmetric_ram is
type ramType is array (0 to SIZEA-1)

of std_logic_vector (WIDTHA-1 downto 0);
SHARED VARIABLE ram : ramType;

begin
process (clkA)

begin
if rising_edge(clkA) then

if enA = ‘1’ then
if weA = ‘1’ then

ram(conv_integer(addrA)) := diA;
end if;

end if;
end if;

end process;

LO

 RAM and ROM Inference Block RAM Inference

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
226 Synopsys Confidential Information June 2020

process (clkB)
variable mux : std_logic_vector(WIDTHA-1 downto 0);

begin
if rising_edge(clkB) then

if enB = ‘1’ then
if addrB(0) = ‘0’ then

mux := ram(conv_integer
(addrB(ADDRWIDTHB-1 downto 1)));

doB <= mux (WIDTHB-1 downto 0);
else

mux := ram(conv_integer(
addrB(ADDRWIDTHB-1 downto 1)));

doB <= mux(WIDTHA-1 downto WIDTHB);
end if;

end if;
end if;

end process;

end behavioral;

// Example - UltraRAM Inference

// simple dual port, no_change ram, single uram

//synthesis translate_off
`define SIMULATION 1
//synthesis translate_on

Block RAM Inference RAM and ROM Inference

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 227

`define ADDRSIZE 12
`define DATASIZE 72

`ifdef SIMULATION
`timescale 1 ps/1 ps
module rtl_ram(din, clk, we, waddr, raddr, dout);
 `else
module synth_ram(din, clk, we, waddr, raddr, dout);
 `endif

 input [`DATASIZE-1:0] din;
 input [`ADDRSIZE-1:0] waddr;
 input [`ADDRSIZE-1:0] raddr;
 input clk, we;
 output [`DATASIZE-1:0] dout;

 reg [`ADDRSIZE-1:0] raddr_reg;
 reg [`DATASIZE-1:0] reg2;
 reg [`DATASIZE-1:0] reg3;
 reg [`DATASIZE-1:0] mem [(2**`ADDRSIZE)-1:0];

 always @ (posedge clk)
 begin

if (we)
 begin
 mem[waddr] <= din;

LO

 RAM and ROM Inference Block RAM Inference

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
228 Synopsys Confidential Information June 2020

 end
raddr_reg <= raddr;

 end

 assign dout = mem[raddr_reg];

endmodule // top

Initial Values for RAMs RAM and ROM Inference

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 229

Initial Values for RAMs
You can specify initial values for a RAM in a data file and then include the
appropriate task enable statement, $readmemb or $readmemh, in the initial state-
ment of the HDL code for the module. The inferred logic can be different due
to the initial statement. The syntax for these two statements is as follows:

$readmemh ("fileName", memoryName [, startAddress [, stopAddress]]);

$readmemb ("fileName", memoryName [, startAddress [, stopAddress]]);

Also, see the following topics:

• Example 1: RAM Initialization, on page 229

• Example 2: Cross-Module Referencing for RAM Initialization, on
page 230

• Initialization Data File, on page 232

• Forward Annotation of Initial Values, on page 235

Example 1: RAM Initialization
This example shows a single-port RAM that is initialized using the $readmemb
binary task enable statement which reads the values specified in the binary
mem.ini file. See Initialization Data File, on page 232 for details of the binary
and hexadecimal file formats.

$readmemb Use this with a binary data file.

$readmemh Use this with a hexadecimal data file.

fileName Name of the data file that contains initial values. See
Initialization Data File , on page 232 for format examples.

memoryName The name of the memory.

startAddress Optional starting address for RAM initialization; if omitted,
defaults to first available memory location.

stopAddress Optional stopping address for RAM initialization;
startAddress must be specified

LO

 RAM and ROM Inference Initial Values for RAMs

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
230 Synopsys Confidential Information June 2020

module ram_inference (data, clk, addr, we, data_out);
input [27:0] data;
input clk, we;
input [10:0] addr;
output [27:0] data_out;
reg [27:0] mem [0:2000] /* synthesis syn_ramstyle = "no_rw_check" */;
reg [10:0] addr_reg;
initial
begin

$readmemb ("mem.ini", mem, 2, 1900) /* Initialize RAM with contents */
/* from locations 2 thru 1900*/;

end
always @(posedge clk)
begin

addr_reg <= addr;
end
always @(posedge clk)
begin

if(we)
begin

mem[addr] <= data;
end

end
assign data_out = mem[addr_reg];
endmodule

Example 2: Cross-Module Referencing for RAM Initialization
The following example shows how a RAM using cross-module referencing
(XMR) can be accessed hierarchically and initialized with the
$readmemb/$readmemh statement which reads the values specified in the
mem.txt file from the top-level design.

Example2A: XMR for RAM Initialization (Top-Level Module)

// Example 2A: XMR for RAM Initialization
(Top-Level Module)

//Top

Initial Values for RAMs RAM and ROM Inference

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 231

module top (input[27:0] data, input clk, we, input[10:0] addr,
output[27:0] data_out);

ram_inference ram_inst (.*);
initial
begin

$readmemb (“mem.txt”, top.ram_inst.mem, 0, 10);
end
endmodule

This code example implements cross-module referencing of the RAM block
and is initialized with the $readmemb statement in the top-level module.

Example2B: XMR for RAM Initialization (RAM)

// Example 2B: XMR for RAM Initialization (RAM)

//RAM
module ram_inference (input[27:0] data, input clk, input[10:0]

addr, output[27:0] data_out);
reg[27:0] mem[0:2000] /*synthesis syn_ramstyle = “no_rw_check”*/;
reg [10:0] addr_reg;
always @(posedge clk)
begin

addr_reg <= addr;
end
always @(posedge clk)
begin

if(we)
begin

mem[addr] <= data;

LO

 RAM and ROM Inference Initial Values for RAMs

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
232 Synopsys Confidential Information June 2020

end
end
assign data_out = mem[addr_reg];
endmodule

Here is the code example of the RAM block to be implemented for
cross-module referencing and initialized.

The following shows the HDL Analyst view of a RAM module that must be
accessed hierarchically to be initialized.

RAM Initialization Limitations with XMR
XMR for RAM initialization requires that the following conditions be met:

• Variables must be recognized as inferred memories.

• Cross-module referencing of memory variables cannot occur between
HDL languages.

• Cross-module referencing paths must be static and cannot include an
index with a dynamic value.

Initialization Data File
The initialization data file, read by the $readmemb and $readmemh system
tasks, contains the initial values to be loaded into the memory array. This
initialization file can reside in the project directory or can be referenced by an
include path relative to the project directory. The system $readmemb or

Initial Values for RAMs RAM and ROM Inference

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 233

$readmemh task first looks in the project directory for the named file and, if
not found, searches for the file in the list of directories on the Verilog tab in
include-path order.

If the initialization data file does not contain initial values for every memory
address, the unaddressed memory locations are initialized to 0. Also, if a
width mismatch exists between an initialization value and the memory width,
loading of the memory array is terminated; any values initialized before the
mismatch is encountered are retained.

Unless an internal address is specified (see Internal Address Format, on
page 234), each value encountered is assigned to a successive word element
of the memory. If no addressing information is specified either with the
$readmem task statement or within the initialization file itself, the default
starting address is the lowest available address in the memory. Consecutive
words are loaded until either the highest address in the memory is reached or
the data file is completely read.

If a start address is specified without a finish address, loading starts at the
specified start address and continues upward toward the highest address in
the memory. In either case, loading continues upward. If both a start address
and a finish address are specified, loading begins at the start address and
continues until the finish address is reached (or until all initialization data is
read).

For example:

initial
begin
//$readmemh ("mem.ini", ram_bank1)

/* Initialize RAM with contents from locations 0 thru 31*/;
//$readmemh ("mem.ini", ram_bank1,0)

/* Initialize RAM with contents from locations 0 thru 31*/;
$readmemh ("mem.ini", ram_bank1, 0, 31)

/* Initialize RAM with contents from locations 0 thru 31*/;
$readmemh ("mem.ini", ram_bank2, 31, 0)

/* Initialize RAM with contents from locations 31 thru 0*/;
The data initialization file can contain the following:

• White space (spaces, new lines, tabs, and form-feeds)

• Comments (both comment formats are allowed)

LO

 RAM and ROM Inference Initial Values for RAMs

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
234 Synopsys Confidential Information June 2020

• Binary values for the $readmemb task, or hexadecimal values for the
$readmemh tasks

In addition, the data initialization file can include any number of hexadecimal
addresses (see Internal Address Format, on page 234).

Binary File Format

The binary data file mem.ini that corresponds to the example in Example 1:
RAM Initialization, on page 229 looks like this:

1111111111111111111100110111 /* data for address 0 */
1111111111111111111101100111 /* data for address 1 */
1111111111111111111111000010
1111111111111111111100100001
1111111111111111111101110000
1111111111111111111011100110
... /* continues until Address 1999 */

Hex File Format

If you use $readmemh instead of $readmemb, the hexadecimal data file for the
example in Example 1: RAM Initialization, on page 229 looks like this:

FFFFF37 /* data for address 0 */
FFFFF63 /* data for address 1 */
FFFFFC2
FFFFF21
.../* continues until Address 1999 */

Internal Address Format

In addition to the binary and hex formats described above, the initialization
file can include embedded hexadecimal addresses. These hexadecimal
addresses must be prefaced with an at sign (@) as shown in the example
below.

FFFFF37 /* data for address 0 */
FFFFF63 /* data for address 1 */
@0EA /* memory address 234
FFFFFC2 /* data for address 234*/
FFFFF21 /* data for address 235*/

Initial Values for RAMs RAM and ROM Inference

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 235

...
@0A7 /* memory address 137
FFFFF77 /* data for address 137*/
FFFFF7A /* data for address 138*/
...

Either uppercase or lowercase characters can be used in the address. No
white space is allowed between the @ and the hex address. Any number of
address specifications can be included in the file, and in any order. When the
$readmemb or $readmemh system task encounters an embedded address speci-
fication, it begins loading subsequent data at that memory location.

When addressing information is specified both in the system task and in the
data file, the addresses in the data file must be within the address range
specified by the system task arguments; otherwise, an error message is
issued, and the load operation is terminated.

Forward Annotation of Initial Values
Initial values for RAMs and sequential shift components are forward
annotated to the netlist. The compiler currently generates netlist (srs) files
with seqshift, ram1, ram2, and nram components. If initial values are specified in
the HDL code, the synthesis tool attaches an attribute to the component in
the srs file.

// Example: Verilog Initial Values for Asymmetric RAM

//
// Asymmetric port RAM
// Port A is 256x8-bit read-only
// Port B is 64x32-bit write-only
// Write_First mode with no control signals on Address register.
Different clocks.
//

module v_asymmetric_ram_4 (clkA, clkB, weB, addrA, addrB, doA,
diB);

LO

 RAM and ROM Inference Initial Values for RAMs

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
236 Synopsys Confidential Information June 2020

 parameter WIDTHA = 8;
 parameter SIZEA = 256;
 parameter ADDRWIDTHA = 8;
 parameter WIDTHB = 32;
 parameter SIZEB = 64;
 parameter ADDRWIDTHB = 6;

 input clkA;
 input clkB;
 input weB;
 input [ADDRWIDTHA-1:0] addrA;
 input [ADDRWIDTHB-1:0] addrB;
 output [WIDTHA-1:0] doA;
 input [WIDTHB-1:0] diB;
 reg [ADDRWIDTHA-1:0] addrA_reg;

 `define max(a,b) {(a) > (b) ? (a) : (b)}
 `define min(a,b) {(a) < (b) ? (a) : (b)}

 function integer log2;
 input integer value;
 reg [31:0] shifted;
 integer res;
 begin
 if (value < 2)
 log2 = value;
 else

Initial Values for RAMs RAM and ROM Inference

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 237

 begin
 shifted = value-1;
 for (res=0; shifted>0; res=res+1)
 shifted = shifted>>1;
 log2 = res;
 end
 end
 endfunction

 localparam maxSIZE = `max(SIZEA, SIZEB);
 localparam maxWIDTH = `max(WIDTHA, WIDTHB);
 localparam minWIDTH = `min(WIDTHA, WIDTHB);
 localparam RATIO = maxWIDTH / minWIDTH;
 localparam log2RATIO = log2(RATIO);

 reg [WIDTHB-1:0] readB;

 genvar i;

 reg [minWIDTH-1:0] RAM [0:maxSIZE-1];
 // RAM initialization
 initial
 $readmemb (“mem_init_256x8.dat”, RAM);

 always @(posedge clkA)
 begin

LO

 RAM and ROM Inference Initial Values for RAMs

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
238 Synopsys Confidential Information June 2020

 addrA_reg <= addrA;
 end
 assign doA = RAM[addrA_reg];

 generate for (i = 0; i < RATIO; i = i+1)
 begin: ramread
 localparam [log2RATIO-1:0] lsbaddr = i;
 always @(posedge clkB)
 begin
 if (weB)
 RAM[{addrB, lsbaddr}] <= diB[(i+1)*minWIDTH-1:i*minWIDTH];
 end
 end

 endgenerate

endmodule

// Example: VHDL Initial Values for Asymmetric RAM

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
use ieee.std_logic_arith.all;

entity asymmetric_ram_4 is
generic (

Initial Values for RAMs RAM and ROM Inference

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 239

WIDTHA : integer := 8;
SIZEA : integer := 256;
ADDRWIDTHA : integer := 8;
WIDTHB : integer := 32;
SIZEB : integer := 64;
ADDRWIDTHB : integer := 6
);

port (
clkA : in std_logic;
clkB : in std_logic;
reA : in std_logic;
weB : in std_logic;
addrA : in std_logic_vector(ADDRWIDTHA-1 downto 0);
addrB : in std_logic_vector(ADDRWIDTHB-1 downto 0);
diB : in std_logic_vector(WIDTHB-1 downto 0);
doA : out std_logic_vector(WIDTHA-1 downto 0)
);

end asymmetric_ram_4;

architecture behavioral of asymmetric_ram_4 is

function max(L, R: INTEGER) return INTEGER is
begin

if L > R then
return L;

LO

 RAM and ROM Inference Initial Values for RAMs

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
240 Synopsys Confidential Information June 2020

else
return R;

end if;
end;

function min(L, R: INTEGER) return INTEGER is
begin

if L < R then
return L;

else
return R;

end if;
end;

function log2 (val: INTEGER) return natural is
variable res : natural;

begin
for i in 0 to 31 loop

if (val <= (2**i)) then
res := i;
exit;

end if;
end loop;
return res;

end function Log2;

constant minWIDTH : integer := min(WIDTHA,WIDTHB);

Initial Values for RAMs RAM and ROM Inference

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 241

constant maxWIDTH : integer := max(WIDTHA,WIDTHB);
constant maxSIZE : integer := max(SIZEA,SIZEB);
constant RATIO : integer := maxWIDTH / minWIDTH;

type ramType is array (0 to maxSIZE-1) of
std_logic_vector(minWIDTH-1 downto 0);

shared variable ram : ramType := (others =>”11111111”);

signal readA : std_logic_vector(WIDTHA-1 downto 0):= (
others => ‘0’);

signal regA : std_logic_vector(WIDTHA-1 downto 0):=
(others => ‘0’);

begin

process (clkA)
begin

if rising_edge(clkA) then
if reA = ‘1’ then

doA <= ram(conv_integer(addrA));
end if;

end if;
end process;

process (clkB)
begin

if rising_edge(clkB) then

LO

 RAM and ROM Inference RAM Instantiation with SYNCORE

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
242 Synopsys Confidential Information June 2020

if weB = ‘1’ then
for i in 0 to RATIO-1 loop

ram(conv_integer(addrB &
conv_std_logic_vector(i,log2(RATIO))))

 := diB((i+1)*minWIDTH-1 downto i*minWIDTH);
end loop;

end if;
end if;

end process;

end behavioral;

RAM Instantiation with SYNCORE
The SYNCORE Memory Compiler in the IP Wizard helps you generate HDL
code for your specific RAM implementation requirements. For information on
using the SYNCORE Memory Compiler, see Chapter 7, SynCore IP Tool

ROM Inference RAM and ROM Inference

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 243

ROM Inference
As part of BEST (Behavioral Extraction Synthesis Technology) feature, the
synthesis tool infers ROMs (read-only memories) from your HDL source code,
and generates block components for them in the RTL view.

The data contents of the ROMs are stored in a text file named rom.info. To
quickly view rom.info in read-only mode, synthesize your HDL source code,
open an RTL view, then push down into the ROM component.

Generally, the Synopsys FPGA synthesis tool infers ROMs from HDL source
code that uses case statements, or equivalent if statements, to make 16 or
more signal assignments using constant values (words). The constants must
all be the same width.

Another requirement for ROM inference is that values must be specified for at
least half of the address space. For example, if the ROM has 5 address bits,
then the address space is 32 and at least 16 of the different addresses must
be specified.

Verilog Example
module rom(z,a);
output [3:0] z;
input [4:0] a;
reg [3:0] z;
always @(a) begin

case (a)
5'b00000 : z = 4'b0001;
5'b00001 : z = 4'b0010;
5'b00010 : z = 4'b0110;
5'b00011 : z = 4'b1010;
5'b00100 : z = 4'b1000;
5'b00101 : z = 4'b1001;
5'b00110 : z = 4'b0000;
5'b00111 : z = 4'b1110;
5'b01000 : z = 4'b1111;
5'b01001 : z = 4'b1110;
5'b01010 : z = 4'b0001;
5'b01011 : z = 4'b1000;
5'b01100 : z = 4'b1110;
5'b01101 : z = 4'b0011;
5'b01110 : z = 4'b1111;

LO

 RAM and ROM Inference ROM Inference

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
244 Synopsys Confidential Information June 2020

5'b01111 : z = 4'b1100;
5'b10000 : z = 4'b1000;
5'b10001 : z = 4'b0000;
5'b10010 : z = 4'b0011;
default : z = 4'b0111;

endcase
end
endmodule

VHDL Example
library ieee;
use ieee.std_logic_1164.all;
entity rom4 is

port (a : in std_logic_vector(4 downto 0);
z : out std_logic_vector(3 downto 0));

end rom4;
architecture behave of rom4 is
begin

process(a)
begin

if a = "00000" then
z <= "0001";

elsif a = "00001" then
z <= "0010";

elsif a = "00010" then
z <= "0110";

elsif a = "00011" then
z <= "1010";

elsif a = "00100" then
z <= "1000";

elsif a = "00101" then
z <= "1001";

elsif a = "00110" then
z <= "0000";

elsif a = "00111" then
z <= "1110";

elsif a = "01000" then
z <= "1111";

elsif a = "01001" then
z <= "1110";

elsif a = "01010" then
z <= "0001";

elsif a = "01011" then

ROM Inference RAM and ROM Inference

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 245

z <= "1000";
elsif a = "01100" then

z <= "1110";
elsif a = "01101" then

z <= "0011";
elsif a = "01110" then

z <= "1111";
elsif a = "01111" then

z <= "1100";
elsif a = "10000" then

z <= "1000";
elsif a = "10001" then

z <= "0000";
elsif a = "10010" then

z <= "0011";
else

z <= "0111";
end if;

end process;
end behave;

LO

 RAM and ROM Inference ROM Inference

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
246 Synopsys Confidential Information June 2020

ROM Table Data (rom.info File)
Note: This data is for viewing only.

ROM work.rom4(behave)-z_1[3:0]
address width: 5
data width: 4
inputs:
0: a[0]
1: a[1]
2: a[2]
3: a[3]
4: a[4]
outputs:
0: z_1[0]
1: z_1[1]
2: z_1[2]
3: z_1[3]
data:
00000 -> 0001
00001 -> 0010
00010 -> 0110
00011 -> 1010
00100 -> 1000
00101 -> 1001
00110 -> 0000
00111 -> 1110
01000 -> 1111
01001 -> 1110
01010 -> 0001
01011 -> 1000
01100 -> 1110
01101 -> 0011
01110 -> 0010
01111 -> 0010
10000 -> 0010
10001 -> 0010
10010 -> 0010
default -> 0111

ROM Inference RAM and ROM Inference

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 247

ROM Initialization with Generate Block
The software supports conditional ROM initialization with the generate block,
as shown in the following example:

generate
if (INIT) begin

initial
begin

$readmemb("init.hex",mem);
end

end
endgenerate

LO

 RAM and ROM Inference ROM Inference

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
248 Synopsys Confidential Information June 2020

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 249

C H A P T E R 7

SynCore IP Tool

This chapter describes the SYNCore IP functionality that is bundled with the
synthesis tool.

• SYNCore FIFO Compiler, on page 250

• SYNCore RAM Compiler, on page 281

• SYNCore Byte-Enable RAM Compiler, on page 303

• SYNCore ROM Compiler, on page 319

• SYNCore Adder/Subtractor Compiler, on page 334

• SYNCore Counter Compiler, on page 358

LO

 SynCore IP Tool SYNCore FIFO Compiler

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
250 Synopsys Confidential Information June 2020

SYNCore FIFO Compiler
The SYNCore synchronous FIFO compiler offers an IP wizard that generates
Verilog code for your FIFO implementation. This section describes the
following:

• Synchronous FIFO Overview, on page 250

• Specifying FIFOs with SYNCore, on page 251

• SYNCore FIFO Wizard, on page 256

• FIFO Read and Write Operations, on page 265

• FIFO Ports, on page 266

• FIFO Parameters, on page 269

• FIFO Status Flags, on page 271

• FIFO Programmable Flags, on page 274

Synchronous FIFO Overview
A FIFO is a First-In-First-Out memory queue. Different control logic manages
the read and write operations. A FIFO also has various handshake signals for
interfacing with external user modules.

The SYNCore FIFO compiler generates synchronous FIFOs with symmetric
ports and one clock controlling both the read and write operations. The FIFO
is symmetric because the read and write ports have the same width.

When the Write_enable signal is active and the FIFO has empty locations, data
is written into FIFO memory on the rising edge of the clock. A Full status flag
indicates that the FIFO is full and that no more write operations can be
performed. See FIFO Write Operation, on page 265 for details.

When the FIFO has valid data and Read_enable is active, data is read from the
FIFO memory and presented at the outputs. The FIFO Empty status flag
indicates that the FIFO is empty and that no more read operations can be
performed. See FIFO Read Operation, on page 266 for details.

The FIFO is not corrupted by an invalid request: for example, if a read request
is made while the FIFO is empty or a write request is received when the FIFO
is full. Invalid requests do not corrupt the data, but they cause the corre-

SYNCore FIFO Compiler SynCore IP Tool

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 251

sponding read or write request to be ignored and the Overflow or Underflow flags
to be asserted. You can monitor these status flags for invalid requests. These
and other flags are described in FIFO Status Flags, on page 271 and FIFO
Programmable Flags, on page 274.

At any point in time, Data count reflects the available data inside the FIFO. In
addition, you can use the Programmable Full and Programmable Empty status flags
for user-defined thresholds.

Specifying FIFOs with SYNCore
The SYNCore IP Wizard helps you generate Verilog code for your FIFO imple-
mentations. The following procedure shows you how to generate Verilog code
for a FIFO using the SYNCore IP wizard.

Note: The SYNCore FIFO model uses Verilog 2001. When adding a FIFO
model to a Verilog-95 design, be sure to enable the Verilog 2001 check
box on the Verilog tab of the Implementation Options dialog box or include
a set_option -vlog_std v2001 statement in your project file to prevent a
syntax error.

1. Start the wizard.

– From the synthesis tool GUI, select Run->Launch SYNCore or click the
Launch SYNCore icon to start the SYNCore IP wizard.

LO

 SynCore IP Tool SYNCore FIFO Compiler

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
252 Synopsys Confidential Information June 2020

– In the window that opens, select sfifo_model and click Ok. This opens
the first screen of the wizard.

2. Specify the parameters you need in the five pages of the wizard. For
details, refer to Specifying SYNCore FIFO Parameters, on page 254.

The FIFO symbol on the left reflects the parameters you set.

3. After you have specified all the parameters you need, click the Generate
button (lower left).

The tool displays a confirmation message (TCL execution successful!) and
writes the required files to the directory you specified in the parameters.
The HDL code is in Verilog.

The FIFO generated is a synchronous FIFO with symmetric ports and
with the same clock controlling both the read and write operations. Data
is written or read on the rising edge of the clock. All resets are synchro-

SYNCore FIFO Compiler SynCore IP Tool

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 253

nous with the clock. All edges (clock, enable, and reset) are considered
positive.

SYNCore also generates a testbench for the FIFO that you can use for
simulation. The testbench covers a limited set of vectors for testing.

You can now close the SYNCore wizard.

4. Add the FIFO you generated to your design.

– Use the Add File command to add the Verilog design file that was
generated and the syncore_sfifo.v file to your project. These files are in
the directory for output files that you specified on page 1 of the
wizard.

– Use a text editor to open the instantiation_file.vin template file, which is
located in the same directory. Copy the lines that define the memory,
and paste them into your top-level module. The following shows a
template file (in red text) inserted into a top-level module.

5. Edit the template port connections so that they agree with the port
definitions in your top-level module as shown in the example below (the
updated connection names are shown in red). You can also assign a
unique name to each instantiation.

LO

 SynCore IP Tool SYNCore FIFO Compiler

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
254 Synopsys Confidential Information June 2020

Note that currently, the FIFO models will not be implemented with the
dedicated FIFO blocks available in certain technologies.

Specifying SYNCore FIFO Parameters
The following elaborates on the parameter settings for SYNCore FIFOs. The
status, handshaking, and programmable flags are optional. For descriptions
of the parameters, see SYNCore FIFO Wizard, on page 256.

1. Start the SYNCore wizard, as described in Specifying FIFOs with
SYNCore, on page 251.

2. Do the following on page 1 of the FIFO wizard:

– In Component Name, specify a name for the FIFO. Do not use spaces.

– In Directory, specify a directory where you want the output files to be
written. Do not use spaces.

– In Filename, specify a name for the Verilog output file with the FIFO
specifications. Do not use spaces.

fifo_a32 busfifo(
.Clock(Clk)
,.Din(DataIn)
,.Write_enable(WrEn)

,.Dout(DataOut)

endmodule

module top (
input Clk,
input [15:0] DataIn,
input WrEn,

);

input RdEn,

,.Read_enable(RdEn)

,.Full(Full)
,.Empty(Empty)
)

output [15:0] DataOut

output Full,
output Empty,

SYNCore FIFO Compiler SynCore IP Tool

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 255

– Click Next. The wizard opens another page where you can set
parameters.

3. For a FIFO with no status, handshaking, or programmable flags, use the
default settings. You can generate the FIFO, as described in Specifying
FIFOs with SYNCore, on page 251.

4. To set an almost full status flag, do the following on page 2 of the FIFO
wizard:

– Enable Almost Full.

– Set associated handshaking flags for the signal as desired, with the
Overflow Flag and Write Acknowledge options.

– Click Next when you are done.

5. To set an almost empty status flag, do the following on page 3:

– Enable Almost Empty.

– Set associated handshaking flags for the signal as desired, with the
Underflow Flag and Read Acknowledge options.

– Click Next when you are done.

6. To set a programmable full flag, do the following:

– Make sure you have enabled Full on page 2 of the wizard and set any
handshaking flags you require.

– Go to page 4 and enable Programmable Full.
– Select one of the four mutually exclusive configurations for

Programmable Full on page 4. See Programmable Full, on page 275 or
details.

– Click Next when you are done.

7. To set a programmable empty flag, do the following:

– Make sure you have enabled Empty on page 3 of the wizard and set
any handshaking flags you require.

– Go to page 5 and enable Programmable Empty.

– Select one of the four mutually exclusive configurations for
Programmable Empty on page 5. See Programmable Empty, on
page 277 or details.

You can now generate the FIFO and add it to the design, as described in
Specifying FIFOs with SYNCore, on page 251.

LO

 SynCore IP Tool SYNCore FIFO Compiler

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
256 Synopsys Confidential Information June 2020

SYNCore FIFO Wizard
The following describe the parameters you can set in the FIFO wizard, which
opens when you select sfifo_model:

• SYNCore FIFO Parameters Page 1, on page 256

• SYNCore FIFO Parameters Page 2, on page 257

• SYNCore FIFO Parameters Page 3, on page 259

• SYNCore FIFO Parameters Page 4, on page 261

• SYNCore FIFO Parameters Page 5, on page 263

SYNCore FIFO Parameters Page 1
The page 1 parameters define the FIFO. Data is written/read on the rising
edge of the clock.

Parameter Function

Component Name Specifies a name for the FIFO. This is the name that you
instantiate in your design file to create an instance of the
SYNCore FIFO in your design. Do not use spaces.

Directory Indicates the directory where the generated files will be
stored. Do not use spaces.

SYNCore FIFO Compiler SynCore IP Tool

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 257

SYNCore FIFO Parameters Page 2

Filename Specifies the name of the generated file containing the HDL
description of the generated FIFO. Do not use spaces.

Width Specifies the width of the FIFO data input and output. It
must be within the valid range.

Depth Specifies the depth of the FIFO. It must be within the valid
range.

Parameter Function

LO

 SynCore IP Tool SYNCore FIFO Compiler

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
258 Synopsys Confidential Information June 2020

The page 2 parameters let you specify optional handshaking flags for FIFO
write operations. When you specify a flag, the symbol on the left reflects your
choice. Data is written/read on the rising edge of the clock.

Parameter Function

Full Flag Specifies a Full signal, which is asserted when the FIFO
memory queue is full and no more writes can be performed
until data is read.
Enabling this option makes the Active High and Active Low
options (FULL_FLAG_SENSE parameter) available for the
signal. See Full/Almost Full Flags , on page 271 and FIFO
Parameters , on page 269 for descriptions of the flag and
parameter.

Almost Full Flag Specifies an Almost_full signal, which is asserted to indicate
that there is one location left and the FIFO will be full after
one more write operation.
Enabling this option makes the Active High and Active Low
options available for the signal (AFULL_FLAG_SENSE
parameter). See Full/Almost Full Flags , on page 271 and
FIFO Parameters , on page 269 for descriptions of the flag
and parameter.

Overflow Flag Specifies an Overflow signal, which is asserted to indicate
that the write operation was unsuccessful because the FIFO
was full.
Enabling this option makes the Active High and Active Low
options available for the signal (OVERFLOW_FLAG_SENSE
parameter). See Handshaking Flags , on page 272 f and
FIFO Parameters , on page 269 for descriptions of the flag
and parameter.

Write Acknowledge
Flag

Specifies a Write_ack signal, which is asserted at the
completion of a successful write operation.
Enabling this option makes the Active High and Active Low
options (WACK_FLAG_SENSE parameter) available for the
signal. See Handshaking Flags , on page 272 and FIFO
Parameters , on page 269 for descriptions of the flag and
parameter.

Active High Sets the specified signal to active high (1).

Active Low Sets the specified signal to active low (0).

SYNCore FIFO Compiler SynCore IP Tool

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 259

SYNCore FIFO Parameters Page 3
The page 3 parameters let you specify optional handshaking flags for FIFO
read operations. Data is written/read on the rising edge of the clock.

Parameter Function

Empty Flag Specifies an Empty signal, which is asserted when the
memory queue for the FIFO is empty and no more reads
can be performed until data is written.
Enabling this option makes the Active High and Active Low
options (EMPTY_FLAG_SENSE parameter) available for the
signal. See Empty/Almost Empty Flags , on page 272 and
FIFO Parameters , on page 269 for descriptions of the flag
and parameter.

LO

 SynCore IP Tool SYNCore FIFO Compiler

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
260 Synopsys Confidential Information June 2020

Almost Empty Flag Specifies an Almost_empty signal, which is asserted when
there is only one location left to be read. The FIFO will be
empty after one more read operation.
Enabling this option makes the Active High and Active Low
options (AEMPTY_FLAG_SENSE parameter) available for the
signal. See Empty/Almost Empty Flags , on page 272 and
FIFO Parameters , on page 269 for descriptions of the flag
and parameter.

Underflow Flag Specifies an Underflow signal, which is asserted to indicate
that the read operation was unsuccessful because the FIFO
was empty.
Enabling this option makes the Active High and Active Low
options (UNDRFLW_FLAG_SENSE parameter) available for the
signal. See Handshaking Flags , on page 272 and FIFO
Parameters , on page 269 for descriptions of the flag and
parameter.

Read Acknowledge
Flag

Specifies a Read_ack signal, which is asserted at the
completion of a successful read operation.
Enabling this option makes the Active High and Active Low
options (RACK_FLAG_SENSE parameter) available for the
signal. See Handshaking Flags , on page 272 and FIFO
Parameters , on page 269 for descriptions of the flag and
parameter.

Active High Sets the specified signal to active high (1).

Active Low Sets the specified signal to active low (0).

Parameter Function

SYNCore FIFO Compiler SynCore IP Tool

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 261

SYNCore FIFO Parameters Page 4

The page 4 parameters let you specify optional handshaking flags for FIFO
programmable full operations. To use these options, you must have a Full
signal specified. See FIFO Programmable Flags, on page 274 for details and
FIFO Parameters, on page 269 for a list of the FIFO parameters. Data is
written/read on the rising edge of the clock.

Parameter Function

Programmable Full
Flag

Specifies a Prog_full signal, which indicates that the FIFO
has reached a user-defined full threshold.
You can only enable this option if you set Full Flag on page 2.
When it is enabled, you can specify other options for the
Prog_Full signal (PFULL_FLAG_SENSE parameter). See
Programmable Full , on page 275 and FIFO Parameters , on
page 269 for descriptions of the flag and parameter.

LO

 SynCore IP Tool SYNCore FIFO Compiler

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
262 Synopsys Confidential Information June 2020

Single Programmable
Full Threshold
Constant

Specifies a Prog_full signal with a single constant defining the
assertion threshold (PGM_FULL_TYPE=1 parameter). See
Programmable Full with Single Threshold Constant , on
page 275 for details.
Enabling this option makes Full Threshold Assert Constant
available.

Multiple Programmable
Full Threshold
Constant

Specifies a Prog_full signal (PGM_FULL_TYPE=2 parameter),
with multiple constants defining the assertion and
de-assertion thresholds. See Programmable Full with
Multiple Threshold Constants , on page 276 for details.
Enabling this option makes Full Threshold Assert Constant and
Full Threshold Negate Constant available.

Full Threshold Assert
Constant

Specifies a constant that is used as a threshold value for
asserting the Prog_full signal It sets the PGM_FULL_THRESH
parameter for PGM_FULL_TYPE=1 and the
PGM_FULL_ATHRESH parameter for PGM_FULL_TYPE=2.

Full Threshold Negate
Constant

Specifies a constant that is used as a threshold value for
de-asserting the Prog_full signal (PGM_FULL_NTHRESH
parameter).

Single Programmable
Full Threshold Input

Specifies a Prog_full signal (PGM_FULL_TYPE=3 parameter),
with a threshold value specified dynamically through a
Prog_full_thresh input port during the reset state. See
Programmable Full with Single Threshold Input , on
page 276 for details.
Enabling this option adds the Prog_full_thresh input port to
the FIFO.

Multiple Programmable
Full Threshold Input

Specifies a Prog_full signal (PGM_FULL_TYPE=4 parameter),
with threshold assertion and deassertion values specified
dynamically through input ports during the reset state.
See Programmable Full with Multiple Threshold Inputs , on
page 276 for details.
Enabling this option adds the Prog_full_thresh_assert and
Prog_full_thresh_negate input ports to the FIFO.

Active High Sets the specified signal to active high (1).

Active Low Sets the specified signal to active low (0).

Parameter Function

SYNCore FIFO Compiler SynCore IP Tool

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 263

SYNCore FIFO Parameters Page 5
These options specify optional handshaking flags for FIFO programmable
empty operations. To use these options, you first specify an Empty signal on
page 3. See FIFO Programmable Flags, on page 274 for details and FIFO Param-
eters, on page 269 for a list of the FIFO parameters. Data is written/read on
the rising edge of the clock.

Parameter Function

Programmable Empty
Flag

Specifies a Prog_empty signal (PEMPTY_FLAG_SENSE
parameter), which indicates that the FIFO has reached a
user-defined empty threshold. See Programmable Empty ,
on page 277 and FIFO Parameters , on page 269 for
descriptions of the flag and parameter.
Enabling this option makes the other options available to
specify the threshold value, either as a constant or through
input ports. You can also specify single or multiple
thresholds for each of these options.

LO

 SynCore IP Tool SYNCore FIFO Compiler

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
264 Synopsys Confidential Information June 2020

Single Programmable
Empty Threshold
Constant

Specifies a Prog_empty signal (PGM_EMPTY_TYPE=1
parameter), with a single constant defining the assertion
threshold. See Programmable Empty with Single Threshold
Input , on page 279 for details.
Enabling this option makes Empty Threshold Assert Constant
available.

Multiple Programmable
Empty Threshold
Constant

Specifies a Prog_empty signal (PGM_EMPTY_TYPE=2
parameter), with multiple constants defining the assertion
and de-assertion thresholds. See Programmable Empty with
Multiple Threshold Constants , on page 278 for details.
Enabling this option makes Empty Threshold Assert Constant
and Empty Threshold Negate Constant available.

Empty Threshold
Assert Constant

Specifies a constant that is used as a threshold value for
asserting the Prog_empty signal. It sets the
PGM_EMPTY_THRESH parameter for PGM_EMPTY_TYPE=1
and the PGM_EMPTY_ATHRESH parameter for
PGM_EMPTY_TYPE=2.

Empty Threshold
Negate Constant

Specifies a constant that is used as a threshold value for
de-asserting the Prog_empty signal (PGM_EMPTY_NTHRESH
parameter).

Single Programmable
Empty Threshold Input

Specifies a Prog_empty signal (PGM_EMPTY_TYPE=3
parameter), with a threshold value specified dynamically
through a Prog_empty_thresh input port during the reset
state. See Programmable Empty with Single Threshold
Input , on page 279 for details.
Enabling this option adds the Prog_full_thresh input port to
the FIFO.

Multiple Programmable
Empty Threshold Input

Specifies a Prog_empty signal (PGM_EMPTY_TYPE=4
parameter), with threshold assertion and deassertion
values specified dynamically through
Prog_empty_thresh_assert and Prog_empty_thresh_negate input
ports during the reset state. See Programmable Empty with
Multiple Threshold Inputs , on page 279 for details.
Enabling this option adds the input ports to the FIFO.

Active High Sets the specified signal to active high (1).

Active Low Sets the specified signal to active low (0).

Parameter Function

SYNCore FIFO Compiler SynCore IP Tool

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 265

FIFO Read and Write Operations
This section describes FIFO behavior with read and write operations.

FIFO Write Operation
When write enable is asserted and the FIFO is not full, data is added to the
FIFO from the input bus (Din) and write acknowledge (Write_ack) is asserted. If
the FIFO is continuously written without being read, it will fill with data. The
status outputs are asserted when the number of entries in the FIFO is greater
than or equal to the corresponding threshold, and should be monitored to
avoid overflowing the FIFO.

When the FIFO is full, any attempted write operation fails and the overflow
flag is asserted.

The following figure illustrates the write operation. Write acknowledge
(Write_ack) is asserted on the next rising clock edge after a valid write opera-
tion. When Full is asserted, there can be no more legal write operations. This
example shows that asserting Write_enable when Full is high causes the asser-
tion of Overflow.

Number of Valid Data
in FIFO

Specifies the Data_cnt signal for the FIFO output. This signal
contains the number of words in the FIFO in the read
domain.

Parameter Function

LO

 SynCore IP Tool SYNCore FIFO Compiler

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
266 Synopsys Confidential Information June 2020

FIFO Read Operation
When read enable is asserted and the FIFO is not empty, the next data word
in the FIFO is driven on the output bus (Dout) and a read valid is asserted. If
the FIFO is continuously read without being written, the FIFO will empty. The
status outputs are asserted when the number of entries in the FIFO are less
than or equal to the corresponding threshold, and should be monitored to
avoid underflow of the FIFO. When the FIFO is empty, all read operations fail
and the underflow flag is asserted.

If read and write operation occur simultaneously during the empty state, the
write operation will be valid and empty, and is de-asserted at the next rising
clock edge. There cannot be a legal read operation from an empty FIFO, so
the underflow flag is asserted.

The following figure illustrates a typical read operation. If the FIFO is not
empty, Read_ack is asserted at the rising clock edge after Read_enable is
asserted and the data on Dout is valid. When Empty is asserted, no more read
operations can be performed. In this case, initiating a read causes the asser-
tion of Underflow on the next rising clock edge, as shown in this figure.

FIFO Ports
The following figure shows the FIFO ports.

SYNCore FIFO Compiler SynCore IP Tool

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 267

Port Name Description

Almost_empty Almost empty flag output (active high). Asserted when the FIFO
is almost empty and only one more read can be performed. Can
be active high or active low.

Almost_full Almost full flag output (active high). Asserted when only one
more write can be performed into the FIFO. Can be active high or
active low.

AReset Asynchronous reset input. Resets all internal counters and FIFO
flag outputs.

Clock Clock input for write and read. Data is written/read on the
rising edge.

Data_cnt Data word count output. Indicates the number of words in the
FIFO in the read clock domain.

Din [width:0] Data input word to the FIFO.

Dout [width:0] Data output word from the FIFO.

LO

 SynCore IP Tool SYNCore FIFO Compiler

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
268 Synopsys Confidential Information June 2020

Empty FIFO empty output (active high). Asserted when the FIFO is
empty and no additional reads can be performed. Can be active
high or active low.

Full FIFO full output (active high). Asserted when the FIFO is full and
no additional writes can be performed. Can be active high or
active low.

Overflow FIFO overflow output flag (active high). Asserted when the FIFO
is full and the previous write was rejected. Can be active high or
active low.

Prog_empty Programmable empty output flag (active high). Asserted when
the words in the FIFO exceed or equal the programmable empty
assert threshold. De-asserted when the number of words is more
than the programmable full negate threshold. Can be active high
or active low.

Prog_empty_
thresh

Programmable FIFO empty threshold input. User-programmable
threshold value for the assertion of the Prog_empty flag. Set
during reset.

Prog_empty_
thresh_assert

Programmable FIFO empty threshold assert input.
User-programmable threshold value for the assertion of the
Prog_empty flag. Set during reset.

Prog_empty_
thresh_negate

Programmable FIFO empty threshold negate input. User
programmable threshold value for the de-assertion of the
Prog_full flag. Set during reset.

Prog_full Programmable full output flag (active high). Asserted when the
words in the FIFO exceed or equal the programmable full assert
threshold. De-asserted when the number of words is less than
the programmable full negate threshold. Can be active high or
active low.

Prog_full_thresh Programmable FIFO full threshold input. User-programmable
threshold value for the assertion of the Prog_full flag. Set during
reset.

Prog_full_thresh_
assert

Programmable FIFO full threshold assert input.
User-programmable threshold value for the assertion of the
Prog_full flag. Set during reset.

Prog_full_thresh_
negate

Programmable FIFO full threshold negate input.
User-programmable threshold value for the de-assertion of the
Prog_full flag. Set during reset.

Port Name Description

SYNCore FIFO Compiler SynCore IP Tool

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 269

FIFO Parameters

Read_ack Read acknowledge output (active high). Asserted when valid data
is read from the FIFO. Can be active high or active low.

Read_enable Read enable output (active high). If the FIFO is not empty, data
is read from the FIFO on the next rising edge of the read clock.

Underflow FIFO underflow output flag (active high). Asserted when the
FIFO is empty and the previous read was rejected.

Write_ack Write Acknowledge output (active high). Asserted when there is a
valid write into the FIFO. Can be active high or active low.

Write_enable Write enable input (active high). If the FIFO is not full, data is
written into the FIFO on the next rising edge.

Parameter Description

AEMPTY_FLAG_SENSE FIFO almost empty flag sense
0 Active Low
1 Active High

AFULL_FLAG_SENSE FIFO almost full flag sense
0 Active Low
1 Active High

DEPTH FIFO depth

EMPTY_FLAG_SENSE FIFO empty flag sense
0 Active Low
1 Active High

FULL_FLAG_SENSE FIFO full flag sense
0 Active LowOVERFLOW_
1 Active High

OVERFLOW_FLAG_
SENSE

FIFO overflow flag sense
0 Active Low
1 Active High

Port Name Description

LO

 SynCore IP Tool SYNCore FIFO Compiler

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
270 Synopsys Confidential Information June 2020

PEMPTY_FLAG_
SENSE

FIFO programmable empty flag sense
0 Active Low
1 Active High

PFULL_FLAG_SENSE FIFO programmable full flag sense
0 Active Low
1 Active High

PGM_EMPTY_
ATHRESH

Programmable empty assert threshold for
PGM_EMPTY_TYPE=2

PGM_EMPTY_
NTHRESH

Programmable empty negate threshold for
PGM_EMPTY_TYPE=2

PGM_EMPTY_THRESH Programmable empty threshold for
PGM_EMPTY_TYPE=1

PGM_EMPTY_TYPE Programmable empty type. See Programmable Empty ,
on page 277 for details.
1 Programmable empty with single threshold constant.
2 Programmable empty with multiple threshold
constant
3 Programmable empty with single threshold input
4 Programmable empty with multiple threshold input

PGM_FULL_ATHRESH Programmable full assert threshold for
PGM_FULL_TYPE=2

PGM_FULL_NTHRESH Programmable full negate threshold for
PGM_FULL_TYPE=2

PGM_FULL_THRESH Programmable full threshold for PGM_FULL_TYPE=1

PGM_FULL_TYPE Programmable full type. See Programmable Full , on
page 275 for details.
1 Programmable full with single threshold constant
2 Programmable full with multiple threshold constant
3 Programmable full with single threshold input
4 Programmable full with multiple threshold input

RACK_FLAG_SENSE FIFO read acknowledge flag sense
0 Active Low
1 Active High

Parameter Description

SYNCore FIFO Compiler SynCore IP Tool

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 271

FIFO Status Flags
You can set the following status flags for FIFO read and write operations.

• Full/Almost Full Flags, on page 271

• Empty/Almost Empty Flags, on page 272

• Handshaking Flags, on page 272

• Programmable full and empty flags, which are described in Program-
mable Full, on page 275 and Programmable Empty, on page 277.

Full/Almost Full Flags
These flags indicate the status of the FIFO memory queue for write opera-
tions:

The following figure displays the behavior of these flags. In this example,
asserting Wriite_enable when Almost_full is high causes the assertion of Full on
the next rising clock edge.

UNDERFLOW_FLAG_
SENSE

FIFO underflow flag sense
0 Active Low
1 Active High

WACK_FLAG_SENSE FIFO write acknowledge flag sense
0 Active Low
1 Active High

WIDTH FIFO data input and data output width

Full Indicates that the FIFO memory queue is full and no more writes can
be performed until data is read. Full is synchronous with the clock
(Clock). If a write is initiated when Full is asserted, the write does not
succeed and the overflow flag is asserted.

Almost_full The almost full flag (Almost_full) indicates that there is one location left
and the FIFO will be full after one more write operation. Almost full is
synchronous to Clock. This flag is guaranteed to be asserted when the
FIFO has one remaining location for a write operation.

Parameter Description

LO

 SynCore IP Tool SYNCore FIFO Compiler

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
272 Synopsys Confidential Information June 2020

Empty/Almost Empty Flags
These flags indicate the status of the FIFO memory queue for read operations:

The following figure illustrates the behavior of the FIFO with one word
remaining.

Handshaking Flags
You can specify optional Read_ack, Write_ack, Overflow, and Underflow
handshaking flags for the FIFO.

Empty Indicates that the memory queue for the FIFO is empty and no more
reads can be performed until data is written. The output is active high
and is synchronous to the clock. If a read is initiated when the empty
flag is true, the underflow flag is asserted.

Almost_
empty

Indicates that the FIFO will be empty after one more read operation.
Almost_empty is active high and is synchronous to the clock. The flag is
guaranteed to be asserted when the FIFO has one remaining location
for a read operation.

SYNCore FIFO Compiler SynCore IP Tool

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 273

Read_ack Asserted at the completion of each successful read operation. It
indicates that the data on the Dout bus is valid. It is an optional port
that is synchronous with Clock and can be configured as active high or
active low.
Read_ack is deasserted when the FIFO is underflowing, which indicates
that the data on the Dout bus is invalid. Read_ack is asserted at the next
rising clock edge after read enable. Read_enable is asserted when the
FIFO is not empty.

LO

 SynCore IP Tool SYNCore FIFO Compiler

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
274 Synopsys Confidential Information June 2020

FIFO Programmable Flags
The FIFO supports completely programmable full and empty flags to indicate
when the FIFO reaches a predetermined user-defined fill level. See the
following:

Both flags support various implementation options. You can do the following:

• Set a constant value

• Set dedicated input ports so that the thresholds can change dynamically
in the circuit

• Use hysteresis, so that each flag has different assert and negative values

Write_ack Asserted at the completion of each successful write operation. It
indicates that the data on the Din port has been stored in the FIFO. It is
synchronous with the clock, and can be configured as active high or
active low.
Write_ack is deasserted for a write to a full FIFO, as illustrated in the
figure. Write_ack is deasserted one clock cycle after Full is asserted to
indicate that the last write operation was valid and no other write
operations can be performed.

Overflow Indicates that a write operation was unsuccessful because the FIFO
was full. In the figure, Full is asserted to indicate that no more writes
can be performed. Because the write enable is still asserted and the
FIFO is full, the next cycle causes Overflow to be asserted. Note that
Write_ack is not asserted when FIFO is overflowing. When the write
enable is deasserted, Overflow deasserts on the next clock cycle.

Underflow Indicates that a read operation was unsuccessful, because the read
was attempted on an empty FIFO. In the figure, Empty is asserted to
indicate that no more reads can be performed. As the read enable is
still asserted and the FIFO is empty, the next cycle causes Underflow to
be asserted. Note that Read_ack is not asserted when FIFO is
underflowing. When the read enable is deasserted, the Underflow flag
deasserts on the next clock cycle.

Prog_full Indicates that the FIFO has reached a user-defined full threshold. See
Programmable Full , on page 275 for more information.

Prog_empty Indicates that the FIFO has reached a user-defined empty threshold.
See Programmable Empty , on page 277 for more information.

SYNCore FIFO Compiler SynCore IP Tool

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 275

Programmable Full
The Prog_full flag (programmable full) is asserted when the number of entries
in the FIFO is greater than or equal to a user-defined assert threshold. If the
number of words in the FIFO is less than the negate threshold, the flag is
de-asserted. The following is the valid range of threshold values:

Prog_full has four threshold types:

• Programmable Full with Single Threshold Constant, on page 275

• Programmable Full with Multiple Threshold Constants, on page 276

• Programmable Full with Single Threshold Input, on page 276

• Programmable Full with Multiple Threshold Inputs, on page 276

Programmable Full with Single Threshold Constant
PGM_FULL_TYPE = 1

This option lets you set a single constant value for the threshold. It requires
significantly fewer resources when the FIFO is generated. This figure illus-
trates the behavior of Prog_full when configured as a single threshold constant
with a value of 6.

Assert
threshold
value

Depth/2 to Max of Depth
For multiple threshold types, the assert value should always be
larger than the negate value in multiple threshold types.

Negate
threshold
value

Depth/2 to Max of Depth

LO

 SynCore IP Tool SYNCore FIFO Compiler

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
276 Synopsys Confidential Information June 2020

Programmable Full with Multiple Threshold Constants
PGM_FULL_TYPE = 2

The programmable full flag is asserted when the number of words in the FIFO
is greater than or equal to the full threshold assert value. If the number of
FIFO words drops to less than the full threshold negate value, the program-
mable full flag is de-asserted. Note that the negate value must be set to a
value less than the assert value. The following figure illustrates the behavior
of Prog_full configured as multiple threshold constants with an assert value of
6 and a negate value of 4.

Programmable Full with Single Threshold Input
PGM_FULL_TYPE = 3

This option lets you specify the threshold value through an input port (Prog_-
full_thresh) during the reset state, instead of using constants. The following
figure illustrates the behavior of Prog_full configured as a single threshold
input with a value of 6.

Programmable Full with Multiple Threshold Inputs
PGM_FULL_TYPE = 4

SYNCore FIFO Compiler SynCore IP Tool

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 277

This option lets you specify the assert and negate threshold values dynami-
cally during the reset stage using the Prog_full_thresh_assert and Prog_full_-
thresh_negate input ports. You must set the negate value to a value less than
the assert value.

The programmable full flag is asserted when the number of words in the FIFO
is greater than or equal to the Prog_full_thresh_assert value. If the number of
FIFO words goes below Prog_full_thresh_negate value, the programmable full
flag is deasserted. The following figure illustrates the behavior of Prog_full
configured as multiple threshold inputs with an assert value of 6 and a
negate value of 4.

Programmable Empty
The programmable empty flag (Prog_empty) is asserted when the number of
entries in the FIFO is less than or equal to a user-defined assert threshold. If
the number of words in the FIFO is greater than the negate threshold, the flag
is deasserted. The following is the valid range of threshold values:

There are four threshold types you can specify:

• Programmable Empty with Single Threshold Constant, on page 278

• Programmable Empty with Multiple Threshold Constants, on page 278

• Programmable Empty with Single Threshold Input, on page 279

Assert
threshold
value

1 to Max of Depth/2
For multiple threshold types, the assert value should always be
lower than the negate value in multiple threshold types.

Negate
threshold
value

1 to Max of Depth/2

LO

 SynCore IP Tool SYNCore FIFO Compiler

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
278 Synopsys Confidential Information June 2020

• Programmable Empty with Multiple Threshold Inputs, on page 279

Programmable Empty with Single Threshold Constant
PGM_EMPTY_TYPE = 1

This option lets you specify an empty threshold value with a single constant.
This approach requires significantly fewer resources when the FIFO is gener-
ated. The following figure illustrates the behavior of Prog_empty configured as
a single threshold constant with a value of 3.

Programmable Empty with Multiple Threshold Constants
PGM_EMPTY_TYPE = 2

This option lets you specify constants for the empty threshold assert value
and empty threshold negate value. The programmable empty flag asserts and
deasserts in the range set by the assert and negate values. The assert value
must be set to a value less than the negate value. When the number of words
in the FIFO is less than or equal to the empty threshold assert value, the
Prog_empty flag is asserted. When the number of words in FIFO is greater than
the empty threshold negate value, Prog_empty is deasserted.

The following figure illustrates the behavior of Prog_empty when configured as
multiple threshold constants with an assert value of 3 and a negate value of
5.

SYNCore FIFO Compiler SynCore IP Tool

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 279

Programmable Empty with Single Threshold Input
PGM_EMPTY_TYPE = 3

This option lets you specify the threshold value dynamically during the reset
state with the Prog_empty_thresh input port, instead of with a constant. The
Prog_empty flag asserts when the number of FIFO words is equal to or less
than the Prog_empty_thresh value and deasserts when the number of FIFO
words is more than the Prog_empty_thresh value. The following figure illus-
trates the behavior of Prog_empty when configured as a single threshold input
with a value of 3.

Programmable Empty with Multiple Threshold Inputs
PGM_EMPTY_TYPE = 4

This option lets you specify the assert and negate threshold values dynami-
cally during the reset stage using the Prog_empty_thresh_assert and Prog_empty_-
thresh_negate input ports instead of constants. The programmable empty flag
asserts and deasserts according to the range set by the assert and negate
values. The assert value must be set to a value less than the negate value.

LO

 SynCore IP Tool SYNCore FIFO Compiler

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
280 Synopsys Confidential Information June 2020

When the number of FIFO words is less than or equal to the empty threshold
assert value, Prog_empty is asserted. If the number of FIFO words is greater
than the empty threshold negate value, the flag is deasserted. The following
figure illustrates the behavior of Prog_empty configured as multiple threshold
inputs, with an assert value of 3 and a negate value of 5.

SYNCore RAM Compiler SynCore IP Tool

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 281

SYNCore RAM Compiler
The SYNCore RAM Compiler generates Verilog code for your RAM implemen-
tation. This section describes the following:

• Specifying RAMs with SYNCore, on page 281

• SYNCore RAM Wizard, on page 289

• Single-Port Memories, on page 293

• Dual-Port Memories, on page 295

• Read/Write Timing Sequences, on page 299

Specifying RAMs with SYNCore
The SYNCore IP wizard helps you generate Verilog code for your RAM imple-
mentation requirements. The following procedure shows you how to generate
Verilog code for a RAM using the SYNCore IP wizard.

Note: The SYNCore RAM model uses Verilog 2001. When adding a RAM
model to a Verilog-95 design, be sure to enable the Verilog 2001 check
box on the Verilog tab of the Implementation Options dialog box or include
a set_option -vlog_std v2001 statement in your project file to prevent a
syntax error.

1. Start the wizard.

– From the synthesis tool GUI, select Run->Launch SYNCore or click the
Launch SYNCore icon to start the SYNCore IP wizard.

LO

 SynCore IP Tool SYNCore RAM Compiler

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
282 Synopsys Confidential Information June 2020

– In the window that opens, select ram_model and click Ok. This opens
the first screen of the wizard.

SYNCore RAM Compiler SynCore IP Tool

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 283

2. Specify the parameters you need in the wizard.

– For details about the parameters for a single-port RAM, see
Specifying Parameters for Single-Port RAM, on page 286.

– For details about the parameters for a dual-port RAM, see Specifying
Parameters for Dual-Port RAM, on page 287. Note that dual-port
implementations are only supported for some technologies.

The RAM symbol on the left reflects the parameters you set.

The default settings for the tool implement a block RAM with synchro-
nous resets, and where all edges (clock, enable, and reset) are considered
positive.

LO

 SynCore IP Tool SYNCore RAM Compiler

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
284 Synopsys Confidential Information June 2020

3. After you have specified all the parameters you need, click the Generate
button in the lower left corner.

The tool displays a confirmation message is displayed (TCL execution
successful!) and writes the required files to the directory you specified in
the parameters. The HDL code is in Verilog.

SYNCore also generates a testbench for the RAM. The testbench covers a
limited set of vectors.

You can now close the SYNCore Memory Compiler.

4. Edit the RAM files if necessary.

– The default RAM has a no_rw_check attribute enabled. If you do not
want this, edit syncore_ram.v and comment out the `define
SYN_MULTI_PORT_RAM statement, or use `undef
SYN_MULTI_PORT_RAM.

– If you want to use the synchronous RAMs available in the target
technology, make sure to register either the read address or the
outputs.

5. Add the RAM you generated to your design.

– Use the Add File command to add the Verilog design file that was
generated and the syncore_ram.v file to your project. These files are in
the directory for output files that you specified on page 1 of the
wizard.

– Use a text editor to open the instantiation_file.vin template file, which is
located in the same directory. Copy the lines that define the memory,
and paste them into your top-level module. The following figure
shows a template file (in red text) inserted into a top-level module.

SYNCore RAM Compiler SynCore IP Tool

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 285

6. Edit the template port connections so that they agree with the port
definitions in your top-level module as shown in the example below (the
updated connection names are shown in red). You can also assign a
unique name to each instantiation.

LO

 SynCore IP Tool SYNCore RAM Compiler

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
286 Synopsys Confidential Information June 2020

Specifying Parameters for Single-Port RAM
To create a single-port RAM with the SYNCore Memory Compiler, you need to
specify a single read/write address (single port) and a single clock. You only
need to configure Port A. The following procedure lists what you need to
specify. For descriptions of each parameter, refer to SYNCore RAM Wizard, on
page 289.

1. Start the SYNCore RAM wizard, as described in Specifying RAMs with
SYNCore, on page 281.

2. Do the following on page 1 of the RAM wizard:

– In Component Name, specify a name for the memory. Do not use
spaces.

– In Directory, specify a directory where you want the output files to be
written. Do not use spaces.

– In Filename, specify a name for the Verilog file that will be generated
with the RAM specifications. Do not use spaces.

module top (

input ClkA,
input [7:0] AddrA,
input [15:0] DataInA,
input WrEnA,

output [15:0] DataOutA

);

myram2 decoderram(
.PortAClk(ClkA)
, .PortAAddr(AddrA)
, .PortADataIn(DataInA)
, .PortAWriteEnable(WrEnA)
, .PortADataOut(DataOutA)
);

endmodule

SYNCore RAM Compiler SynCore IP Tool

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 287

– Enter data and address widths.

– Enable Single Port, to specify that you want to generate a single-port
RAM. This automatically enables Single Clock.

– Click Next. The wizard opens another page where you can set
parameters for Port A.

The RAM symbol dynamically updates to reflect the parameters you set.

3. Do the following on page 2 of the RAM wizard:

– Set Use Write Enable to the setting you want.

– Set Register Read Address to the setting you want.

– Set Synchronous Reset to the setting you want. Register Outputs is
always enabled

– Specify the read access you require for the RAM.

You can now generate the RAM by clicking Generate, as described in
Specifying RAMs with SYNCore, on page 281. You do not need to specify
any parameters on page 3, as this is a single-port RAM and you do not
need to specify Port B. All output files are in the directory you specified
on the first page of the wizard.

For details about setting dual-port RAM parameters, see Specifying
Parameters for Dual-Port RAM, on page 287. For read/write timing
diagrams, see Read/Write Timing Sequences, on page 299.

Specifying Parameters for Dual-Port RAM
The following procedure shows you how to set parameters for dual-port
memory in the SYNCore wizard. Dual-port RAMs are only supported for some
technologies. For information about generating single-port RAMs, see Speci-
fying Parameters for Single-Port RAM, on page 286. It shows you how to
generate these common RAM configurations:

• One read access and one write access

• Two read accesses and one write access

• Two read accesses and two write accesses

For the corresponding read/write timing diagrams, see Read/Write Timing
Sequences, on page 299.

LO

 SynCore IP Tool SYNCore RAM Compiler

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
288 Synopsys Confidential Information June 2020

1. Start the SYNCore RAM wizard, as described in Specifying RAMs with
SYNCore, on page 281.

2. Do the following on page 1 of the RAM wizard:

– In Component Name, specify a name for the memory. Do not use
spaces.

– In Directory, specify a directory where you want the output files to be
written. Do not use spaces.

– In Filename, specify a name for the Verilog file that will be generated
with the RAM specifications. Do not use spaces.

– Enter data and address widths.

– Enable Dual Port, to specify that you want to generate a dual-port
RAM.

– Specify the clocks.

– Click Next. The wizard opens another page where you can set
parameters for Port A.

3. Do the following on page 2 of the RAM wizard to specify settings for Port
A:

– Set parameters according to the kind of memory you want to
generate:

– Specify a setting for Register Read Address.
– Set Synchronous Reset to the setting you want. Register Outputs is

always enabled.

For a single clock ... Enable Single Clock.

For separate clocks for
each of the ports ...

Enable Separate Clocks For Each Port.

One read & one write Enable Read Only Access.

Two reads & one write Enable Read and Write Access.
Specify a setting for Use Write Enable.

Two reads & two writes Enable Read and Write Access.
Specify a setting for Use Write Enable.
Specify a read access option for Port A.

SYNCore RAM Compiler SynCore IP Tool

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 289

– Click Next. The wizard opens another page where you can set
parameters for Port B. The page and the parameters are identical to
the previous page, except that the settings are for Port B instead of
Port A.

4. Specify the settings for Port B on page 3 of the wizard according to the
kind of memory you want to generate:

The RAM symbol on the left reflects the parameters you set. All output
files are written to the directory you specified on the first page of the
wizard.

You can now generate the RAM by clicking Generate, as described in
Specifying RAMs with SYNCore, on page 281, and add it to your design.

SYNCore RAM Wizard
The following describe the parameters you can set in the RAM wizard, which
opens when you select ram_model:

• SYNCore RAM Parameters Page 1, on page 290

• SYNCore RAM Parameters Pages 2 and 3, on page 292

One read & one write Enable Write Only Access.
Set Use Write Enable to the setting you want.

Two reads & one write Enable Read Only Access.
Specify a setting for Register Read Address.

Two reads & two writes Enable Read and Write Access.
Specify a setting for Use Write Enable.
Specify a setting for Register Read Address.
Set Synchronous Reset to the setting you want.
Note that Register Outputs is always enabled.
Select a read access option for Port B.

LO

 SynCore IP Tool SYNCore RAM Compiler

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
290 Synopsys Confidential Information June 2020

SYNCore RAM Parameters Page 1

SYNCore RAM Compiler SynCore IP Tool

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 291

Component
Name

Specifies the name of the component. This is the name that you
instantiate in your design file to create an instance of the
SYNCore RAM in your design. Do not use spaces. For example:

ram101 <ComponentName> (
.PortAClk(PortAClk)
, .PortAAddr(PortAAddr)
, .PortADataIn(PortADataIn)
, .PortAWriteEnable(PortAWriteEnable)
, .PortBDataIn(PortBDataIn)
, .PortBAddr(PortBAddr)
, .PortBWriteEnable(PortBWriteEnable)
, .PortADataOut(PortADataOut)
, .PortBDataOut(PortBDataOut)

);
Directory Specifies the directory where the generated files are stored. Do

not use spaces. The following files are created:
• filelist.txt - lists files written out by SYNCore
• options.txt - lists the options selected in SYNCore
• readme.txt - contains a brief description and known issues
• syncore_ram.v - Verilog library file required to generate RAM

model
• testbench.v - Verilog testbench file for testing the RAM model
• instantiation_file.vin - describes how to instantiate the wrapper file
• component.v - RAM model wrapper file generated by SYNCore
Note that running the Memory Compiler wizard in the same
directory overwrites the existing files.

Filename Specifies the name of the generated file containing the HDL
description of the compiled RAM. Do not use spaces.

Data Width Is the width of the data you need for the memory. The unit used is
the number of bits.

Address Width Is the address depth you need for the memory. The unit used is
the number of bits.

Single Port When enabled, generates a single-port RAM.

LO

 SynCore IP Tool SYNCore RAM Compiler

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
292 Synopsys Confidential Information June 2020

SYNCore RAM Parameters Pages 2 and 3
The port implementation parameters on pages 2 and 3 are identical, but page
2 applies to Port A (single- and dual-port configurations), and page 3 applies
to Port B (dual-port configurations only). The following figure shows the
parameters on page 2 for Port A.

Dual Port When enabled, generates a dual-port RAM.

Single Clock When enabled, generates a RAM with a single clock for dual-port
configurations.

Separate Clocks
for Each Port

When enabled, generates separate clocks for each port in
dual-port RAM configurations.

Read and Write
Access

Specifies that the port can be accessed by both read and write
operations.

Read Only Access Specifies that the port can only be accessed by read operations.

Write Only Access Specifies that the port can only be accessed by write operations.

Use Write Enable Includes write-enable control. The RAM symbol on the left
reflects the selections you make.

SYNCore RAM Compiler SynCore IP Tool

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 293

Single-Port Memories
For single-port RAM, it is only necessary to configure Port A. The following
diagrams show the read-write timing for single-port memories. See Specifying
RAMs with SYNCore, on page 281 for a procedure.

Register Read
Address

Adds registers to the read address lines. The RAM symbol on the
left reflects the selections you make.

Register Outputs Adds registers to the write address lines when you specify
separate read/write addressing. The register outputs are always
enabled. The RAM symbol on the left reflects the selections you
make.

Synchronous
Reset

Individually synchronizes the reset signal with the clock when
you enable Register Outputs. The RAM symbol on the left reflects
the selections you make.

Read before Write Specifies that the read operation takes place before the write
operation for port configurations with both read and write
access (Read And Write Access is enabled). For a timing diagram,
see Read Before Write , on page 300.

Read after Write Specifies that the read operation takes place after the write
operation for port configurations with both read and write
access (Read And Write Access is enabled). For a timing diagram,
see Write Before Read , on page 301.

No Read on Write Specifies that no read operation takes place when there is a
write operation for port configurations with both read and write
access (Read And Write Access is enabled). For a timing diagram,
see No Read on Write , on page 302.

LO

 SynCore IP Tool SYNCore RAM Compiler

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
294 Synopsys Confidential Information June 2020

Single-Port Read

SYNCore RAM Compiler SynCore IP Tool

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 295

Single-Port Write

Dual-Port Memories
SYNCore dual-port memory includes the following common configurations:

• One read access and one write access

• Two read accesses and one write access

• Two read accesses and two write accesses

The following diagrams show the read-write timing for dual-port memories.
See Specifying RAMs with SYNCore, on page 281 for a procedure to specify a
dual-port RAM with SYNCore.

LO

 SynCore IP Tool SYNCore RAM Compiler

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
296 Synopsys Confidential Information June 2020

Dual-Port Single Read

SYNCore RAM Compiler SynCore IP Tool

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 297

Dual-Port Single Write

LO

 SynCore IP Tool SYNCore RAM Compiler

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
298 Synopsys Confidential Information June 2020

Dual-Port Read

SYNCore RAM Compiler SynCore IP Tool

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 299

Dual-Port Write

Read/Write Timing Sequences
The waveforms in this section describe the behavior of the RAM when both
read and write are enabled and the address is the same operation. The
waveforms show the behavior when each of the read-write sequences is
enabled. The waveforms are merged with the simple waveforms shown in the
previous sections. See the following:

• Read Before Write, on page 300

LO

 SynCore IP Tool SYNCore RAM Compiler

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
300 Synopsys Confidential Information June 2020

• Write Before Read, on page 301

• No Read on Write, on page 302

Read Before Write

SYNCore RAM Compiler SynCore IP Tool

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 301

Write Before Read

LO

 SynCore IP Tool SYNCore RAM Compiler

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
302 Synopsys Confidential Information June 2020

No Read on Write

SYNCore Byte-Enable RAM Compiler SynCore IP Tool

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 303

SYNCore Byte-Enable RAM Compiler
The SYNCore byte-enable RAM compiler generates SystemVerilog code
describing byte-enabled RAMs. The data width of each byte is calculated by
dividing the total data width by the write enable width. The byte-enable RAM
compiler supports both single- and dual-port configurations.

This section describes the following:

• Functional Overview, on page 303

• Specifying Byte-Enable RAMs with SYNCore, on page 304

• SYNCore Byte-Enable RAM Wizard, on page 311

• Read/Write Timing Sequences, on page 314

• Parameter List, on page 317

Functional Overview
The SYNCore byte-enable RAM component supports bit/byte-enable RAM
implementations using block RAM and distributed memory. For each config-
uration, design optimizations are made for optimum use of core resources.
The timing diagram that follow illustrate the supported signals for
byte-enable RAM configurations.

Byte-enable RAM can be configured in both single- and dual-port configura-
tions. In the dual-port configuration, each port is controlled by different
clock, enable, and control signals. User configuration controls include
selecting the enable level, reset type, and register type for the read data
outputs and address inputs.

Reset applies only to the output read data registers; default value of read data
on reset can be changed by user while generating core. Reset option is
inactive when output read data is not registered.

LO

 SynCore IP Tool SYNCore Byte-Enable RAM Compiler

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
304 Synopsys Confidential Information June 2020

Specifying Byte-Enable RAMs with SYNCore
The SYNCore IP wizard helps you generate SystemVerilog code for your
byte-enable RAM implementation requirements. The following procedure
shows you how to generate SystemVerilog code for a byte-enable RAM using
the SYNCore IP wizard.

Note: The SYNCore byte-enable RAM model uses SystemVerilog. When
adding a byte-enable RAM to your design, be sure to enable the
System Verilog check box on the Verilog tab of the Implementation Options
dialog box or include a set_option -vlog_std sysv statement in your
project file to prevent a syntax error.

1. Start the wizard.

– From the FPGA synthesis tool GUI, select Run->Launch SYNCore or
click the Launch SYNCore icon to start the SYNCore IP wizard.

– In the window that opens, select byte_en_ram_model and click Ok to
open the first page (page1) of the wizard.

SYNCore Byte-Enable RAM Compiler SynCore IP Tool

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 305

2. Specify the parameters you need in the wizard. For details about the
parameters, see Specifying Byte-Enable RAM Parameters, on page 308.
The BYTE ENABLE RAM symbol on the left reflects any parameters you
set.

3. After you have specified all the parameters you need, click the Generate
button in the lower left corner. The tool displays a confirmation message
(TCL execution successful!) and writes the required files to the directory you
specified on page 1 of the wizard. The HDL code is in SystemVerilog.

SYNCore also generates a test bench for the byte-enable RAM compo-
nent. The test bench covers a limited set of vectors. You can now close
the SYNCore byte-enable RAM compiler.

4. Edit the generated files for the byte-enable RAM component if necessary.

5. Add the byte-enable RAM that you generated to your design.

LO

 SynCore IP Tool SYNCore Byte-Enable RAM Compiler

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
306 Synopsys Confidential Information June 2020

– On the Verilog tab of the Implementation Options dialog box, make
sure that SystemVerilog is enabled.

– Use the Add File command to add the Verilog design file that was
generated (the filename entered on page 1 of the wizard) and the
syncore_*.v file to your project. These files are in the directory for
output files that you specified on page 1 of the wizard.

– Use a text editor to open the instantiation_file.vin template file. This file is
located in the same output files directory. Copy the lines that define
the byte-enable RAM and paste them into your top-level module.

– Edit the template port connections so that they agree with the port
definitions in the top-level module; also change the instantiation
name to agree with the component name entered on page 1. The
following figure shows a template file inserted into a top-level module
with the updated component name and port connections in red.

SYNCore Byte-Enable RAM Compiler SynCore IP Tool

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 307

Port List
Port A interface signals are applicable for both single-port and dual-port
configurations; Port B signals are applicable for dual-port configuration only.

 Name Type Description

ClkA Input Clock input for Port A

WenA Input Write enable for Port A; present when Port
A is in write mode

AddrA Input Memory access address for Port A

LO

 SynCore IP Tool SYNCore Byte-Enable RAM Compiler

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
308 Synopsys Confidential Information June 2020

Specifying Byte-Enable RAM Parameters
When creating a single-port, byte-enable RAM with the SYNCore IP wizard,
you must specify a single read address and a single clock; you only need to
configure the Port A parameters on page 2 of the wizard.

When creating a dual-port, byte-enable RAM, you must additionally configure
the Port B parameters on page 3 of the wizard.

The following procedure lists the parameters you need to specify. For descrip-
tions of each parameter, refer to Parameter List, on page 317.

1. Start the SYNCore byte-enable RAM wizard as described in Specifying
Byte-Enable RAMs with SYNCore, on page 304.

ResetA Input Reset for memory and all registers in core;
present with registered read data when
Reset is enabled; active low (cannot be
changed)

WrDataA Input Write data to memory for Port A; present
when Port A is in write mode

RdDataA Output Read data output for Port A; present when
Port A is in read or read/write mode

ClkB Input Clock input for Port B; present in
dual-port mode

WenB Input Write enable for Port B; present in
dual-port mode when Port B is in write
mode

AddrB Input Memory access address for Port B; present
in dual-port mode

ResetB Input Reset for memory and all registers in core;
present in dual-port mode when read data
is registered and Reset is enabled; active
low (cannot be changed)

WrDataB Input Write data to memory for Port B; present
in dual-port mode when Port B is in write
mode

RdDataB Output Read data output for Port B; present in
dual-port mode when Port B is in read or
read/write mode

SYNCore Byte-Enable RAM Compiler SynCore IP Tool

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 309

2. Do the following on page 1 of the byte-enable RAM wizard:

– Specify a name for the memory in the Component Name field; do not
use spaces.

– Specify a directory name in the Directory field where you want the
output files to be written; do not use spaces.

– Specify a name in the File Name field for the SystemVerilog file to be
generated with the byte-enable RAM specifications; do not use
spaces.

– Enter a value for the address width of the byte-enable RAM; the
maximum depth of memory is limited to 2^256.

– Enter a value for the data width for the byte-enable RAM; data width
values range from 2 to 256.

– Enter a value for the write enable width; write-enable width values
range from 1 to 4.

– Select Single Port to generate a single-port, byte-enable RAM or select
Dual Port to generate a dual-port, byte-enable RAM.

– Click Next to open page 2 of the wizard.

The Byte Enable RAM symbol dynamically updates to reflect the param-
eters that you set.

LO

 SynCore IP Tool SYNCore Byte-Enable RAM Compiler

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
310 Synopsys Confidential Information June 2020

3. Do the following on page 2 (configuring Port A) of the wizard:

– Select the Port A configuration. Only Read and Write Access mode is
valid for single-port configurations; this mode is selected by default.

– Set Pipelining Address Bus and Output Data according to your
application. By default, read data is registered; you can register both
the address and data registers.

– Set the Configure Reset Options. Enabling the checkbox enables the
synchronous reset for read data. This option is enabled only when the
read data is registered. Reset is active low and cannot be changed.

– Configure output reset data value options under Specify output data
on reset; reset data can be set to default value of all '1' s or to a
user-defined decimal value. Reset data value options are disabled
when the reset is not enabled for Port A.

– Set Write Enable for Port A value; default for the write-enable level is
active high.

4. If you are generating a dual-port, byte-enable RAM, set the Port B
parameters on page 3 (note that the Port B parameters are only enabled
when Dual Port is selected on page 1).

The Port B parameters are identical to the Port A parameters on page 2.
When using the dual-port configuration, when one port is configured for
read access, the other port can only be configured for read/write access
or write access.

5. Generate the byte-enable RAM by clicking Generate. Add the file to your
project and edit the template file as described in Specifying Byte-Enable
RAMs with SYNCore, on page 304. For read/write timing diagrams, see
Read/Write Timing Sequences, on page 299.

SYNCore Byte-Enable RAM Compiler SynCore IP Tool

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 311

SYNCore Byte-Enable RAM Wizard
The following describes the parameters you can set in the byte-enable RAM
wizard, which opens when you select byte_en_ram.

• SYNCore Byte-Enable RAM Parameters Page 1, on page 311

• SYNCore Byte-Enable RAM Parameters Pages 2 and 3, on page 312

SYNCore Byte-Enable RAM Parameters Page 1

LO

 SynCore IP Tool SYNCore Byte-Enable RAM Compiler

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
312 Synopsys Confidential Information June 2020

SYNCore Byte-Enable RAM Parameters Pages 2 and 3
The port implementation parameters on pages 2 and 3 are identical, but page
2 applies to Port A (single- and dual-port configurations), and page 3 applies
to Port B (dual-port configurations only). The following figure shows the
parameters on page 2 for Port A.

Component
Name

Specifies the name of the component. This is the name that you
instantiate in your design file to create an instance of the
SYNCore byte-enable RAM in your design. Do not use spaces.

Directory Specifies the directory where the generated files are stored. Do
not use spaces. The following files are created:
• filelist.txt - lists files written out by SYNCore
• options.txt - lists the options selected in SYNCore
• readme.txt - contains a brief description and known issues
• syncore_be_ram_sdp.v - SystemVerilog library file required to

generate single or simple dual-port, byte-enable RAM model
• syncore_be_ram_tdp.v - SystemVerilog library file required to

generate true dual-port byte-enable RAM model
• testbench.v - Verilog testbench file for testing the byte-enable

RAM model
• instantiation_file.vin - describes how to instantiate the wrapper file
• component.v - Byte-enable RAM model wrapper file generated by

SYNCore
Note that running the byte-enable RAM wizard in the same
directory overwrites the existing files.

Filename Specifies the name of the generated file containing the HDL
description of the compiled byte-enable RAM. Do not use spaces.

Address Width Specifies the address depth for Ports A and B. The unit used is
the number of bits; the default is 2.

Data Width Specifies the width of the data for Ports A and B. The unit used is
the number of bits; the default is 2.

Write Enable
Width

Specifies the write enable width for Ports A and B. The unit used
is the number of byte enables; the default is 2, the maximum is 4.

Single Port When enabled, generates a single-port, byte-enable RAM
(automatically enables single clock).

Dual Port When enabled, generates a dual-port, byte-enable RAM
(automatically enables separate clocks for each port).

SYNCore Byte-Enable RAM Compiler SynCore IP Tool

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 313

Read and Write
Access

Specifies that the port can be accessed by both read and write
operations (only mode allowed for single-port configurations).

Read Only Access Specifies that the port can only be accessed by read operations
(dual-port mode only).

Write Only Access Specifies that the port can only be accessed by write operations
(dual-port mode only).

Register address
bus AddrA/B

Adds registers to the read address lines.

Register output
data bus
RdDataA/B

Adds registers to the read data lines. By default, the read data
register is enabled.

LO

 SynCore IP Tool SYNCore Byte-Enable RAM Compiler

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
314 Synopsys Confidential Information June 2020

Read/Write Timing Sequences
The waveforms in this section describe the behavior of the byte-enable RAM
for both read and write operations.

Read Operation
On each active edge of the clock when there is a change in address, data is
valid on the same clock or next clock (depending on latency parameter values
for read address and read data ports). Active reset ignores any change in
input address, and data and output data are initialized to user-defined values
set by parameters RST_RDATA_A and RST_RDATA_B for port A and port B,
respectively.

The following waveform shows the read sequence of the byte-enable RAM
component with read data registered in single-port mode.

Reset for
RdDataA/B

Specifies the reset type for registered read data:
• Reset type is synchronous when Reset for RdDataA/B is enabled
• Reset type is no reset when Reset for RdDataA/B is disabled

Specify output
data on reset

Specifies reset value for registered read data (applies only when
RdDataA/B is enabled):
• Default value of ‘1’ for all bits - sets read data to all 1’s on reset
• Specify Reset value for RdDataA/B - specifies reset value for read

data; when enabled, value is entered in adjacent field

Write Enable for
Port A/B

Specifies the write enable level for Port A/B. Default is Active
High.

SYNCore Byte-Enable RAM Compiler SynCore IP Tool

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 315

As shown in the above waveform, output read data changes on the same
clock following the input address changed. When the address changes from
'h00 to 'h01, read data changes to 50 on the same clock, and data will be
valid on the next clock edge.

The following waveform shows the read sequence with both the read data and
address registered in single-port mode.

LO

 SynCore IP Tool SYNCore Byte-Enable RAM Compiler

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
316 Synopsys Confidential Information June 2020

As shown in the above waveform, output read data changes on the next clock
edge after the input address changes. When the address changes from 'h00 to
'h01, read data changes to 50 on the next clock, and data is valid on the next
clock edge.

Note: The read sequence for dual-port mode is the same as single port;
read/write conflicts occurring due to accessing the same location
from both ports are the user’s responsibility.

Write Operation
The following waveform shows a write sequence with read-after write in
single-port mode.

On each active edge of the clock when there is a change in address with an
active enable, data is written into memory on the same clock. When enable is
not active, any change in address or data is ignored. Active reset ignores any
change in input address and data.

SYNCore Byte-Enable RAM Compiler SynCore IP Tool

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 317

The width of the write enable is controlled by the WE_WIDTH parameter. Input
data is symmetrically divided and controlled by each write enable. For
example, with a data width of 32 and a write enable width of 4, each bit of the
write enable controls 8 bits of data (32/4=8). The byte-enable RAM compiler
will error for wrong combination data width and write enable values.

The above waveform shows a write sequence with all possible values for write
enable followed by a read:

• Value for parameter WE_WIDTH is 2 and DATA_WIDTH is 8 so each write
enable controls 4 bits of input data.

• WenA value changes from 1 to 2, 2 to 0, and 0 to 3 which toggles all
possible combinations of write enable.

The first sequence of address, write enable changes to perform a write
sequence and the data patterns written to memory are 00, aa, ff. The read
data pattern reflects the current content of memory before the write.

The second address sequence is a read (WenA is always zero). As shown in the
read pattern, only the respective bits of data are written according to the write
enable value.

Note: The write sequence for dual-port mode is the same as single port;
conflicts occurring due to writing the same location from both
ports are the user’s responsibility.

Parameter List
The following table lists the file entries corresponding to the byte-enable RAM
wizard parameters.

 Name Description Default Value Range

ADDR_WIDTH Bit/byte enable RAM
address width

2 multiples of 2

DATA_WIDTH Data width for input
and output data,
common to both Port A
and Port B

8 2 to 256

LO

 SynCore IP Tool SYNCore Byte-Enable RAM Compiler

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
318 Synopsys Confidential Information June 2020

WE_WIDTH Write enable width,
common to both Port A
and Port B

2

CONFIG_PORT Selects single/dual
port configuration

1 (single port) 0 = dual-port
1 = single-port

RST_TYPE_A/B Port A/B reset type
selection

1 (synchronous) 0 = no reset
1 = synchronous

RST_RDATA_A/B Default data value for
Port A/B on active
reset

All 1’s decimal value

WEN_SENSE_A/B Port A/B write enable
sense

1 (active high) 0 = active low
1 = active high

RADDR_LTNCY_A/B Optional read address
register select Port
A/B

1 0 = no latency
1 = one cycle latency

RDATA_LTNCY_A/B Optional read data
register select Port
A/B

1 0 = no latency
1 = one cycle latency

SYNCore ROM Compiler SynCore IP Tool

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 319

SYNCore ROM Compiler
The SYNCore ROM Compiler generates Verilog code for your ROM implemen-
tation. This section describes the following:

• Functional Overview, on page 319

• Specifying ROMs with SYNCore, on page 321

• SYNCore ROM Wizard, on page 326

• Single-Port Read Operation, on page 330

• Dual-Port Read Operation, on page 331

• Parameter List, on page 331

Functional Overview
The SYNCore ROM component supports ROM implementations using block
ROM or logic memory. For each configuration, design optimizations are made
for optimum usage of core resources. Both single- and dual-port memory
configurations are supported. Single-port ROM allows read access to memory
through a single port, and dual-port ROM allows read access to memory
through two ports. The following figure illustrates the supported signals for
both configurations.

LO

 SynCore IP Tool SYNCore ROM Compiler

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
320 Synopsys Confidential Information June 2020

In the single-port (Port A) configuration, signals are synchronized to ClkA;
ResetA can be synchronous or asynchronous depending on parameter selec-
tion. The read address (AddrA) and/or data output (DataA) can be registered to
increase memory performance and improve timing. In the dual-port configu-
ration, all Port A signals are synchronized to ClkA, and all PortB signals are
synchronized to ClkB. ResetA and ResetB can be synchronous or asynchronous
depending on parameter selection, and both data outputs can be registered
and are subject to the same clock latencies. Registering the data output is
recommended.

Note: When the data output is unregistered, the data is immediately
set to its predefined reset value concurrent with an active reset
signal.

SYNCore ROM Compiler SynCore IP Tool

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 321

Specifying ROMs with SYNCore
The SYNCore IP wizard helps you generate Verilog code for your ROM imple-
mentation requirements. The following procedure shows you how to generate
Verilog code for a ROM using the SYNCore IP wizard.

Note: The SYNCore ROM model uses Verilog 2001. When adding a ROM
model to a Verilog-95 design, be sure to enable the Verilog 2001 check
box on the Verilog tab of the Implementation Options dialog box or include
a set_option -vlog_std v2001 statement in your project file to prevent a
syntax error.

1. Start the wizard.

– From the FPGA synthesis tool GUI, select Run->Launch SYNCore or
click the Launch SYNCore icon to start the SYNCore IP wizard.

– In the window that opens, select rom_model and click Ok to open page
1 of the wizard.

LO

 SynCore IP Tool SYNCore ROM Compiler

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
322 Synopsys Confidential Information June 2020

2. Specify the parameters you need in the wizard. For details about the
parameters, see Specifying ROM Parameters, on page 325. The ROM
symbol on the left reflects any parameters you set.

3. After you have specified all the parameters you need, click the Generate
button in the lower left corner. The tool displays a confirmation message
(TCL execution successful!) and writes the required files to the directory you
specified on page 1 of the wizard. The HDL code is in Verilog.

SYNCore also generates a testbench for the ROM. The testbench covers
a limited set of vectors.

SYNCore ROM Compiler SynCore IP Tool

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 323

You can now close the SYNCore ROM Compiler.

4. Edit the ROM files if necessary. If you want to use the synchronous
ROMs available in the target technology, make sure to register either the
read address or the outputs.

5. Add the ROM you generated to your design.

– Use the Add File command to add the Verilog design file that was
generated and the syncore_rom.v file to your project. These files are in
the directory for output files that you specified on page 1 of the
wizard.

– Use a text editor to open the instantiation_file.vin template file. This file
is located in the same output files directory. Copy the lines that
define the ROM, and paste them into your top-level module. The
following figure shows a template file (in red text) inserted into a
top-level module.

6. Edit the template port connections so that they agree with the port
definitions in your top-level module as shown in the example below (the
updated connection names are shown in red). You can also assign a
unique name to each instantiation.

LO

 SynCore IP Tool SYNCore ROM Compiler

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
324 Synopsys Confidential Information June 2020

Port List
PortA interface signals are applicable for both single-port and dual-port
configurations; PortB signals are applicable for dual-port configuration only.

 Name Type Description

ClkA Input Clock input for Port A

EnA Input Enable input for Port A

AddrA Input Read address for Port A

ResetA Input Reset or interface disable pin for Port A

DataA Output Read data output for Port A

ClkB Input Clock input for Port B

EnB Input Enable input for Port B

AddrB Input Read address for Port B

ResetB Input Reset or interface disable pin for Port B

DataB Output Read data output for Port B

module test_rom_style(z,a,clk,en,rst);
input clk,en,rst;
output reg [3:0] z;
input [6:0] a;

my1stROM decode_rom(
 // Output Ports
 .DataA(z),

 // Input Ports
 .ClkA(clk),
 .EnA(en),
 .ResetA(rst),
 .AddrA(a)
);

SYNCore ROM Compiler SynCore IP Tool

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 325

Specifying ROM Parameters
If you are creating a single-port ROM with the SYNCore IP wizard, you need to
specify a single read address and a single clock, and you only need to
configure the Port A parameters on page 2. If you are creating a dual-port
ROM, you must additionally configure the Port B parameters on page 3. The
following procedure lists what you need to specify. For descriptions of each
parameter, refer to SYNCore RAM Wizard, on page 289.

1. Start the SYNCore ROM wizard, as described in Specifying ROMs with
SYNCore, on page 321.

2. Do the following on page 1 of the ROM wizard:

– In Component Name, specify a name for the memory. Do not use
spaces.

– In Directory, specify a directory where you want the output files to be
written. Do not use spaces.

– In Filename, specify a name for the Verilog file that will be generated
with the ROM specifications. Do not use spaces.

– Enter values for Read Data width and ROM address width (minimum depth
value is 2; maximum depth of the memory is limited to 2^256).

– Select Single Port Rom to indicate that you want to generate a
single-port ROM or select Dual Port Rom to generate a dual-port ROM.

– Click Next. The wizard opens page 2 where you set parameters for Port
A.

The ROM symbol dynamically updates to reflect any parameters you set.

3. Do the following on page 2 (Configuring Port A) of the RAM wizard:

– For synchronous ROMs, select Register address bus AddrA and/or
Register output data bus DataA to register the read address and/or the
outputs. Selecting either checkbox enables the Enable for Port A
checkbox which is used to select the Enable level.

– Set the Configure Reset Options. Enabling the checkbox enables the type
of reset (asynchronous or synchronous) and allows an output data
pattern (all 1’s or a specified pattern) to be defined on page 4.

4. If you are generating a dual-port ROM, set the port B parameters on
page 3 (the page 3 parameters are only enabled when Dual Port Rom is
selected on page 1).

LO

 SynCore IP Tool SYNCore ROM Compiler

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
326 Synopsys Confidential Information June 2020

5. On page 4, specify the location of the ROM initialization file and the data
format (Hexadecimal or Binary). ROM initialization is supported using
memory-coefficient files. The data format is either binary or hexadecimal
with each data entry on a new line in the memory-coefficient file
(specified by parameter INIT_FILE). Supported file types are txt, mem, dat,
and init (recommended).

6. Generate the ROM by clicking Generate, as described in Specifying ROMs
with SYNCore, on page 321 and add it to your design. All output files are
in the directory you specified on page 1 of the wizard.

For read/write timing diagrams, see Read/Write Timing Sequences, on
page 299.

SYNCore ROM Wizard
The following describe the parameters you can set in the ROM wizard, which
opens when you select rom_model:

• SYNCore ROM Parameters Page 1, on page 327

• SYNCore ROM Parameters Pages 2 and 3, on page 328

• SYNCore ROM Parameters Page 4, on page 330

SYNCore ROM Compiler SynCore IP Tool

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 327

SYNCore ROM Parameters Page 1

Component Name Specifies the name of the component. This is the name that
you instantiate in your design file to create an instance of
the SYNCore ROM in your design. Do not use spaces.

Directory Specifies the directory where the generated files are stored.
Do not use spaces. The following files are created:
filelist.txt - lists files written out by SYNCore
options.txt - lists the options selected in SYNCore
readme.txt - contains a brief description and known issues
syncore_rom.v - Verilog library file required to generate ROM
model
testbench.v - Verilog testbench file for testing the ROM model
instantiation_file.vin - describes how to instantiate the wrapper
file
component.v - ROM model wrapper file generated by SYNCore
Note that running the ROM wizard in the same directory
overwrites the existing files.

File Name Specifies the name of the generated file containing the HDL
description of the compiled ROM. Do not use spaces.

LO

 SynCore IP Tool SYNCore ROM Compiler

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
328 Synopsys Confidential Information June 2020

SYNCore ROM Parameters Pages 2 and 3
The port implementation parameters on pages 2 and 3 are the same; page 2
applies to Port A (single- and dual-port configurations), and page 3 applies to
Port B (dual-port configurations only).

Read Data Width Specifies the read data width of the ROM. The unit used is
the number of bits and ranges from 2 to 256. Default value
is 8. The read data width is common to both Port A and Port
B. The corresponding file parameter is DATA_WIDTH=n.

ROM address width Specifies the address depth for the memory. The unit used
is the number of bits. Default value is 10. The
corresponding file parameter is ADD_WIDTH=n.

Single Port Rom When enabled, generates a single-port ROM. The
corresponding file parameter is CONFIG_PORT="single".

Dual Port Rom When enabled, generates a dual-port ROM. The
corresponding file parameter is CONFIG_PORT="dual".

SYNCore ROM Compiler SynCore IP Tool

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 329

Register address bus
AddrA

Used with synchronous ROM configurations to register the
read address. When checked, also allows chip enable to be
configured.

Register output data
bus DataA

Used with synchronous ROM configurations to register the
data outputs. When checked, also allows chip enable to be
configured.

Asynchronous Reset Sets the type of reset to asynchronous (Configure Reset
Options must be checked). Configuring reset also allows
the output data pattern on reset to be defined. The
corresponding file parameter is
RST_TYPE_A=1/RST_TYPE_B=1.

Synchronous Reset Sets the type of reset to synchronous (Configure Reset Options
must be checked). Configuring reset also allows the output
data pattern on reset to be defined. The corresponding file
parameter is RST_TYPE_A=0/RST_TYPE_B=0.

Active High Enable Sets the level of the chip enable to high for synchronous
ROM configurations. The corresponding file parameter is
EN_SENSE_A=1/EN_SENSE_B=1.

Active Low Enable Sets the level of the chip enable to low for synchronous ROM
configurations. The corresponding file parameter is
EN_SENSE_A=0/EN_SENSE_B=0.

Default value of '1' for
all bits

Specifies an output data pattern of all 1’s on reset. The
corresponding file parameter is
RST_DATA_A={n{1'b1} }/RST_DATA_B={n{1'b1} }.

Specify reset value for
DataA/DataB

Specifies a user-defined output data pattern on reset. The
pattern is defined in the adjacent field. The corresponding
file parameter is RST_TYPE_A=pattern/RST_TYPE_B=pattern.

LO

 SynCore IP Tool SYNCore ROM Compiler

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
330 Synopsys Confidential Information June 2020

SYNCore ROM Parameters Page 4

Single-Port Read Operation
For single-port ROM, it is only necessary to configure Port A (see Specifying
ROMs with SYNCore, on page 321. The following diagram shows the read
timing for a single-port ROM.

On every active edge of the clock when there is a change in address with an
active enable, data will be valid on the same clock or next clock (depending on
latency parameter values). When enable is inactive, any address change is
ignored, and the data port maintains the last active read value. An active
reset ignores any change in input address and forces the output data to its
predefined initialization value. The following waveform shows the functional
behavior of control signals in single-port mode.

Binary Specifies binary-formatted initialization file.

Hexadecimal Specifies hexadecimal-formatted initial file.

Initialization File Specifies path and filename of initialization file. The
corresponding file parameter is INIT_FILE="filename".

SYNCore ROM Compiler SynCore IP Tool

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 331

When reset is active, the output data holds the initialization value (i.e., 255).
When reset goes inactive (and enable is active), data is read form the
addressed location of ROM. Reset has priority over enable and always sets
the output to the predefined initialization value. When both enable and reset
are inactive, the output holds its previous read value.

Note: In the above timing diagram, reset is synchronous.

Dual-Port Read Operation
Dual-port ROMs allow read access to memory through two ports. For
dual-port ROM, both port A and port B must be configured (see Specifying
ROMs with SYNCore, on page 321). The following diagram shows the read
timing for a dual-port ROM.

When either reset is active, the corresponding output data holds the initial-
ization value (i.e., 255). When a reset goes inactive (and its enable is active),
data is read form the addressed location of ROM. Reset has priority over
enable and always sets the output to the predefined initialization value. When
both enable and reset are inactive, the output holds its previous read value.

Note: In the above timing diagram, reset is synchronous.

Parameter List
The following table lists the file entries corresponding to the ROM wizard
parameters.

LO

 SynCore IP Tool SYNCore ROM Compiler

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
332 Synopsys Confidential Information June 2020

 Name Description Default Value Range

ADD_WIDTH ROM address width
value. Default
value is 10

10 --

DATA_WIDTH Read Data width,
common to both
Port A and Port B

8 2 to 256

CONFIG_PORT Parameter to select
Single/Dual
configuration

dual (Dual Port) dual (Dual), single (Single).

RST_TYPE_A Port A reset type
selection
(synchronous,
asynchronous)

1 - asynchronous 1(asyn), 0 (sync)

RST_TYPE_B Port B reset type
selection
(synchronous,
asynchronous)

1 - asynchronous 1 (asyn), 0 (sync)

RST_DATA_A Default data value
for Port A on active
Reset

‘1’ for all data bits 0 - 2^DATA_WIDTH - 1

RST_DATA_B Default data value
for Port A on active
Reset

‘1’ for all data bits 0 - 2^DATA_WIDTH - 1

EN_SENSE_A Port A enable sense 1 - active high 0 - active low, 1- active high

EN_SENSE_B Port B enable sense 1 - active high 0 - active low, 1- active high

ADDR_LTNCY_A Optional address
register select Port
A

1- address registered 1(reg), 0(no reg)

ADDR_LTNCY_B Optional address
register select Port
B

1- address registered 1(reg), 0(no reg)

SYNCore ROM Compiler SynCore IP Tool

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 333

DATA_LTNCY_A Optional data
register select Port
A

1- data registered 1(reg), 0(no reg)

DATA_LTNCY_B Optional data
register select Port
B

1- data registered 1(reg), 0(no reg)

INIT_FILE Initial values file
name

init.txt --

LO

 SynCore IP Tool SYNCore Adder/Subtractor Compiler

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
334 Synopsys Confidential Information June 2020

SYNCore Adder/Subtractor Compiler
The SYNCore adder/subtractor compiler generates Verilog code for a parame-
trizable, pipelined adder/subtractor. This section describes the functionality
of this block in detail.

• Functional Description, on page 334

• Specifying Adder/Subtractors with SYNCore, on page 335

• SYNCore Adder/Subtractor Wizard, on page 343

• Adder, on page 346

• Subtractor, on page 349

• Dynamic Adder/Subtractor, on page 352

Functional Description
The adder/subtractor has a single clock that controls the entire pipeline
stages (if used) of the adder/subtractor.

As its name implies, this block just adds/subtracts the inputs and provides
the output result. One of the inputs can be configured as a constant. The
data inputs and outputs of the adder/subtractor can be pipelined; the
pipeline stages can be 0 or 1, and can be configured individually. The
individual pipeline stage registers include their own reset and enable ports.

The reset to all of the pipeline registers can be configured either as synchro-
nous or asynchronous using the RESET_TYPE parameter. The reset type of the
pipeline registers cannot be configured individually.

SYNCore Adder/Subtractor Compiler SynCore IP Tool

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 335

SYNCore adder/subtractor has ADD_N_SUB parameter, which can take three
values ADD, SUB, or DYNAMIC. Based on this parameter value, the
adder/subtractor can be configured as follows.

• Adder

• Subtractor

• Dynamic Adder and Subtractor

Specifying Adder/Subtractors with SYNCore
The SYNCore IP wizard helps you generate Verilog code for your
adder/subtractor implementation requirements. The following procedure
shows you how to generate Verilog code for an adder/subtractor using the
SYNCore IP wizard.

Note: The SYNCore adder/subtractor models use Verilog 2001. When
adding an adder/subtractor model to a Verilog-95 design, be sure to
enable the Verilog 2001 check box on the Verilog tab of the Implementation
Options dialog box or include a set_option -vlog_std v2001 statement in
your project file to prevent a syntax error.

LO

 SynCore IP Tool SYNCore Adder/Subtractor Compiler

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
336 Synopsys Confidential Information June 2020

1. Start the wizard.

– From the FPGA synthesis tool GUI, select Run->Launch SYNCore or
click the Launch SYNCore icon to start the SYNCore IP wizard.

– Ιn the window that opens, select addnsub_model and click Ok to open
page1 of the wizard.

SYNCore Adder/Subtractor Compiler SynCore IP Tool

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 337

2. Specify the parameters you need in the wizard. For details about the
parameters, see Specifying Adder/Subtractor Parameters, on page 341.
The ADDnSUB symbol on the left reflects any parameters you set.

3. After you have specified all the parameters you need, click the Generate
button in the lower left corner.

The tool displays a confirmation message (TCL execution successful!)
and writes the required files to the directory you specified on page 1 of
the wizard. The HDL code is in Verilog.

LO

 SynCore IP Tool SYNCore Adder/Subtractor Compiler

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
338 Synopsys Confidential Information June 2020

The SYNCore wizard also generates a testbench for your
adder/subtractor. The testbench covers a limited set of vectors. You can
now close the wizard.

4. Add the adder/subtractor you generated to your design.

– Edit the adder/subtractor files if necessary.

– Use the Add File command to add the Verilog design file that was
generated and the syncore_addnsub.v file to your project. These files are
in the directory for output files that you specified on page 1 of the
wizard.

– Use a text editor to open the instantiation_file.v template file. This file is
located in the same output files directory. Copy the lines that define
the adder/subtractor and paste them into your top-level module. The
following figure shows a template file (in red text) inserted into a
top-level module.

SYNCore Adder/Subtractor Compiler SynCore IP Tool

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 339

5. Edit the template port connections so that they agree with the port
definitions in your top-level module as shown in the example below (the
updated connection names are shown in red). You can also assign a
unique name to each instantiation.

module top (
output [15 : 0] Out,
input Clk,
input [15 : 0] A,
input CEA,

LO

 SynCore IP Tool SYNCore Adder/Subtractor Compiler

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
340 Synopsys Confidential Information June 2020

input RSTA,
input [15 : 0] B,
input CEB,
input RSTB,
input CEOut,
input RSTOut,
input ADDnSUB,
input CarryIn);

My_ADDnSUB ADDnSUB_inst(
// Output Ports

.PortOut(Out),
// Input Ports

.PortClk(Clk),

.PortA(A),

.PortCEA(CEA),

.PortRSTA(RSTA),

.PortB(B),

.PortCEB(CEB),

.PortRSTB(RSTB),

.PortCEOut(CEOut),

.PortRSTOut(RSTOut),

.PortADDnSUB(ADDnSUB),

.PortCarryIn(CarryIn));
endmodule

Port List
The following table lists the port assignments for all possible configurations;
the third column specifies the conditions under which the port is available.

Port Name Description Required/Optional

PortA Data input for
adder/subtractor
Parameterized width and
pipeline stages

Always present

PortB Data input for
adder/subtractor
Parameterized width and
pipeline stages

Not present if
adder/subtractor is
configured as a constant
adder/subtractor

PortClk Primary clock input; clocks all
registers in the unit

Always present

SYNCore Adder/Subtractor Compiler SynCore IP Tool

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 341

Specifying Adder/Subtractor Parameters
The SYNCore adder/subtractor can be configured as any of the following:

• Adder

• Subtractor

• Dynamic Adder/Subtractor

If you are creating a constant input adder, subtractor, or a dynamic
adder/subtractor with the SYNCore IP wizard, you must select Constant Value
Input and specify a value for port B in the Constant Value/Port B Width field on
page 2 of the parameters. The following procedure lists the parameters you
need to define when generating an adder/subtractor. For descriptions of each
parameter, see SYNCore Adder/Subtractor Wizard, on page 343.

PortRstA Reset input for port A pipeline
registers (active high)

Not present if pipeline stage
for port A is 0

PortRstB Reset input for port B pipeline
registers (active high)

Not present if pipeline stage
for port B is 0 or for constant
adder/subtractor

PortADDnSUB Selection port for dynamic
operation

Not present if
adder/subtractor configured
as standalone adder or
subtractor

PortRstOut Reset input for output register
(active high)

Not present if output pipeline
stage is 0

PortCEA Clock enable for port A
pipeline registers (active high)

Not present if pipeline stage
for port A is 0

PortCEB Clock enable for port B
pipeline registers (active high)

Not present if pipeline stage
for port B is 0 or for constant
adder/subtractor

PortCarryIn Carry input for
adder/subtractor

Always present

PortCEOut Clock enable for output
register (active high)

Not present if output pipeline
stage is 0

PortOut Data output Always present

Port Name Description Required/Optional

LO

 SynCore IP Tool SYNCore Adder/Subtractor Compiler

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
342 Synopsys Confidential Information June 2020

1. Start the SYNCore adder/subtractor wizard as described in Specifying
Adder/Subtractors with SYNCore, on page 335.

2. Enter the following on page 1 of the wizard:

– Ιn the Component Name field, specify a name for your
adder/subtractor. Do not use spaces.

– In the Directory field, specify a directory where you want the output
files to be written. Do not use spaces.

– Ιn the Filename field, specify a name for the Verilog file that will be
generated with the adder/subtractor definitions. Do not use spaces.

– Select the appropriate configuration in Configure the Mode of Operation.

3. Click Next. The wizard opens page 2 where you set parameters for port A
and port B.

4. Configure Port A and B.

– In the Configure Port A section, enter a value in the Port A Width field.

– If you are defining a synchronous adder/subtractor, check Register
Input A and then check Clock Enable for Register A and/or Reset for Register
A.

– To configure port B as a constant port, go to the Configure Port B
section and check Constant Value Input. Enter the constant value in the
Constant Value/Port B Width field.

– To configure port B as a dynamic port, go to the Configure Port B
section and check Enable Port B and enter the port width in the
Constant Value/Port B Width field.

– To define a synchronous adder/subtractor, check Register Input B and
then check Clock Enable for Register B and/or Reset for Register B.

5. In the Configure Output Port section:

– Enter a value in the Output port Width field.

– If you are registering the output port, check Register output Port.
– If you are defining a synchronous adder/subtractor check Clock Enable

for Register PortOut and/or Reset for Register PortOut.

6. In the Configure Reset type for all Reset Signal section, click Synchronous Reset
or Asynchronous Reset as appropriate.

SYNCore Adder/Subtractor Compiler SynCore IP Tool

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 343

As you enter the page 2 parameters, the ADDnSUB symbol dynamically
updates to reflect the parameters you set.

7. Generate the adder/subtractor by clicking the Generate button as
described in Specifying Adder/Subtractors with SYNCore, on page 335
and add it to your design. All output files are in the directory you
specified on page 1 of the wizard.

SYNCore Adder/Subtractor Wizard
The following describe the parameters you can set in the adder/subtractor
wizard, which opens when you select addnsub_model:

• SYNCore Adder/Subtractor Parameters Page 1, on page 343

• SYNCore Adder/Subtractor Parameters Page 2, on page 345

SYNCore Adder/Subtractor Parameters Page 1

LO

 SynCore IP Tool SYNCore Adder/Subtractor Compiler

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
344 Synopsys Confidential Information June 2020

Component Name Specifies a name for the adder/subtractor. This is the name
that you instantiate in your design file to create an instance
of the SYNCore adder/subtractor in your design. Do not use
spaces.

Directory Indicates the directory where the generated files will be
stored. Do not use spaces. The following files are created:
• filelist.txt - lists files written out by SYNCore
• options.txt - lists the options selected in SYNCore
• readme.txt - contains a brief description and known issues
• syncore_ADDnSUB.v - Verilog library file required to

generate adder/subtractor model
• testbench.v - Verilog testbench file for testing the

adder/subtractor model
• instantiation_file.vin - describes how to instantiate the

wrapper file
• component.v - adder/subtractor model wrapper file

generated by SYNCore
Note that running the wizard in the same directory
overwrites any existing files.

Filename Specifies the name of the generated file containing the HDL
description of the generated adder/subtractor. Do not use
spaces.

Adder When enabled, generates an adder (the corresponding file
parameter is ADD_N_SUB ="ADD").

Subtractor When enabled, generates a subtractor (the corresponding
file parameter is ADD_N_SUB ="SUB").

Adder/Subtractor When enabled, generates a dynamic adder/subtractor (the
corresponding file parameter is ADD_N_SUB ="DYNAMIC").

SYNCore Adder/Subtractor Compiler SynCore IP Tool

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 345

SYNCore Adder/Subtractor Parameters Page 2

Port A Width Specifies the width of port A (the corresponding file
parameter is PORT_A_WIDTH=n).

Register Input A Used with synchronous adder/subtractor configurations to
register port A. When checked, also allows clock enable and
reset to be configured (the corresponding file parameter is
PORTA_PIPELINE_STAGE=’0’ or ‘1’).

Clock Enable for
Register A

Specifies the enable for port A register.

Reset for Register A Specifies the reset for port A register.

Constant Value Input Specifies port B as a constant input when checked and
allows you to enter a constant value in the Constant Value/Port
B Width field (the corresponding file parameter is
CONSTANT_PORT =‘0’).

LO

 SynCore IP Tool SYNCore Adder/Subtractor Compiler

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
346 Synopsys Confidential Information June 2020

Adder
Based on the parameter CONSTANT_PORT, the adder can be configured in two
ways.

• CONSTANT_PORT='0' - adder with two input ports (port A and port B)

• CONSTANT_PORT='1' - adder with one constant port

Enable Port B Specifies port B as an input when checked and allows you to
enter a port B width in the Constant Value/Port B Width field
(the corresponding file parameter is CONSTANT_PORT =‘1’).

Constant Value/Port B
Width

Specifies either a constant value or port B width depending
on Constant Value Input and Enable Port B selection (the
corresponding file parameters are CONSTANT_VALUE= n or
PORT_B_WIDTH=n).

Register Input B Used with synchronous adder/subtractor configurations to
register port B. When checked, also allows clock enable and
reset to be configured (the corresponding file parameter is
PORTB_PIPELINE_STAGE=’0’ or ‘1’).

Clock Enable for
Register B

Specifies the enable for the port B register.

Reset for Register B Specifies the reset for the port B register.

Output port Width Specifies the width of the output port (the corresponding file
parameter is PORT_OUT_WIDTH=n).

Register output
PortOut

Used with synchronous adder/subtractor configurations to
register the output port. When checked, also allows clock
enable and reset to be configured (the corresponding file
parameter is PORTOUT_PIPELINE_STAGE=’0’ or ‘1’.

Clock Enable for
Register PortOut

Specifies the enable for the output port register.

Reset for Register
PortOut

Specifies the reset for the output port register.

Synchronous Reset Sets the type of reset to synchronous (the corresponding file
parameter is RESET_TYPE=’0’).

Asynchronous Reset Sets the type of reset to asynchronous (the corresponding
file parameter is RESET_TYPE=’1’).

SYNCore Adder/Subtractor Compiler SynCore IP Tool

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 347

Adder with Two Input Ports (Port A and Port B)
In this mode, port A and port B values are added. Optional pipeline stages
can also be inserted at port A, port B or at both port A and port B. Optionally,
pipeline stages can also be added at the output port. Depending on pipeline
stages, a number of the adder configurations are given below.

Adder with No Pipeline Stages - In this mode, the port A and port B inputs
are added. The adder is purely combinational, and the output changes
immediately with respect to the inputs.

Adder with Pipeline Stages at Input Only - In this mode, the port A and
port B inputs are pipelined and added. Because there is no pipeline stage at
the output, the result is valid at each rising edge of the clock.

Adder with Pipeline Stages at Input and Output - In this mode, the port A
and port B inputs are pipelined and added, and the result is pipelined. The
result is valid only on the second rising edge of the clock.

Parameters: PORTA_PIPELINE_STAGE= ‘0’

Parameters: PORTA_PIPELINE_STAGE= ‘1’
PORTB_PIPELINE_STAGE= ‘1’
PORTOUT_PIPELINE_STAGE= ‘0’

LO

 SynCore IP Tool SYNCore Adder/Subtractor Compiler

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
348 Synopsys Confidential Information June 2020

Adder with a Port Constant
In this mode, port A is added with a constant value (the constant value can be
passed though the parameter CONSTANT_VALUE). Optional pipeline stages can
also be inserted at port A, Optionally, pipeline stages can also be added at the
output port. Depending on the pipeline stages, a number of the adder config-
urations are given below (here CONSTANT_VALUE=’3’)
Adder with No Pipeline Stages - In this mode, input port A is added with a
constant value. The adder is purely combinational, and the output changes
immediately with respect to the input.

Adder with Pipeline Stage at Input Only - In this mode, input port A is
pipelined and added with a constant value. Because there is no pipeline stage
at the output, the result is valid at each rising edge of the clock.

Parameters: PORTA_PIPELINE_STAGE= ‘1’
PORTB_PIPELINE_STAGE= ‘1’
PORTOUT_PIPELINE_STAGE= ‘1’

Parameters: PORTA_PIPELINE_STAGE= ‘0’
PORTOUT_PIPELINE_STAGE= ‘0’

SYNCore Adder/Subtractor Compiler SynCore IP Tool

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 349

Adder with Pipeline Stages at Input and Output - In this mode, input port
A is pipelined and added with a constant value, and the result is pipelined.
The result is valid only on the second rising edge of the clock.

Subtractor
Based on the parameter CONSTANT_PORT, the subtractor can be configure in
two ways.

CONSTANT_PORT='0' - subtractor with two input ports (port A and port B)

CONSTANT_PORT='1' - subtractor with one constant port

Parameters: PORTA_PIPELINE_STAGE= ‘1’
PORTOUT_PIPELINE_STAGE= ‘0’

Parameters: PORTA_PIPELINE_STAGE= ‘1’
PORTOUT_PIPELINE_STAGE= ‘1’

LO

 SynCore IP Tool SYNCore Adder/Subtractor Compiler

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
350 Synopsys Confidential Information June 2020

Subtractor with Two Input Ports (Port A and Port B)
In this mode, port B is subtracted from port A. Optional pipeline stages can
also be inserted at port A, port B, or both ports. Optionally, pipeline stages
can also be added at the output port. Depending on the pipeline stages, a
number of the subtractor configurations are given below.

Subtractor with No Pipeline Stages - In this mode, input port B is
subtracted from port A, and the subtractor is purely combinational. The
output changes immediately with respect to the inputs.

Subtractor with Pipeline Stages at Input Only - In this mode, input port B
and input PortA are pipelined and then subtracted. Because there is no
pipeline stage at the output, the result is valid at each rising edge of the
clock.

Parameters: PORTA_PIPELINE_STAGE= ‘0’
PORTB_PIPELINE_STAGE= ‘0’
PORTOUT_PIPELINE_STAGE= ‘0’

Parameters: PORTA_PIPELINE_STAGE= ‘1’
PORTB_PIPELINE_STAGE= ‘1’
PORTOUT_PIPELINE_STAGE= ‘0’

SYNCore Adder/Subtractor Compiler SynCore IP Tool

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 351

Subtractor with Pipeline Stages at Input and Output - In this mode, input
PortA and PortB are pipelined and then subtracted, and the result is
pipelined. The result is valid only at the second rising edge of the clock.

Subtractor with a Port Constant
In this mode, a constant value is subtracted from port A (the constant value
can be passed though the parameter CONSTANT_VALUE). Optional pipeline
stages can also be inserted at port A, Optionally, pipeline stages can also be
added at the output port. Depending on pipeline stages, a number of the
subtractor configurations are given below (here CONSTANT_VALUE=’1’).
Subtractor with No Pipeline Stages - In this mode, a constant value is
subtracted from port A. The subtractor is purely combinational, and the
output changes immediately with respect to the input.

Parameters: PORTA_PIPELINE_STAGE= ‘1’
PORTB_PIPELINE_STAGE= ‘1’
PORTOUT_PIPELINE_STAGE= ‘1’

Parameters: PORTA_PIPELINE_STAGE= ‘0’
PORTOUT_PIPELINE_STAGE= ‘0’

LO

 SynCore IP Tool SYNCore Adder/Subtractor Compiler

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
352 Synopsys Confidential Information June 2020

Subtractor with Pipeline Stages at Input Only - In this mode, a constant
value is subtracted from pipelined input port A. Because there is no pipeline
stage at the output, the output is valid at each rising edge of the clock.

Subtractor with Pipeline Stages at Input and Output - In this mode, a
constant value is subtracted from pipelined port A, and the output is
pipelined. The result is valid only at the second rising edge of the clock.

Dynamic Adder/Subtractor
In dynamic adder/subtractor mode, port PortADDnSUB controls
adder/subtractor operation.

PortADDnSUB='0 ' - adder operation

PortADDnSUB='1 ' - subtractor operation

Based on the parameter CONSTANT_PORT the dynamic adder/subtractor can
be configured in one of two ways:

Parameters: PORTA_PIPELINE_STAGE= ‘1’
PORTOUT_PIPELINE_STAGE= ‘0’

Parameters: PORTA_PIPELINE_STAGE= ‘1’
PORTOUT_PIPELINE_STAGE= ‘1’

SYNCore Adder/Subtractor Compiler SynCore IP Tool

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 353

CONSTANT_PORT='0 ' - dynamic adder/subtractor with two input ports

CONSTANT_PORT='1 ' - dynamic adder/subtractor with one constant port

Dynamic Adder/Subtractor with Two Input Ports (Port A and Port B)
In this mode, the addition and subtraction is dynamic based on the value of
input port PortADDnSUB. Optional pipeline stages can also be inserted at Port
A, Port B, or both Port A and Port B. Optionally, pipeline stages can also be
added at the output port. Depending on pipeline stages, some of the dynamic
adder/subtractor configurations are given below.

Dynamic Adder/Subtractor with No Pipeline Registers - In this mode, the
dynamic adder/subtractor is a purely combinational, and output changes
immediately with respect to the inputs.

Dynamic Adder/Subtractor with Pipeline Stages at Input Only - In this
mode, input port A and port B are pipelined and then added/subtracted
based on the value of port PortADDnSUB. Because there is no pipeline stage at
the output port, the result immediately changes with respect to the PortADD-
nSUB signal.

Parameters: PORTA_PIPELINE_STAGE= ‘0’
PORTB_PIPELINE_STAGE= ‘0’
PORTOUT_PIPELINE_STAGE= ‘0’

Parameters: PORTA_PIPELINE_STAGE= ‘1’
PORTB_PIPELINE_STAGE= ‘1’
PORTOUT_PIPELINE_STAGE= ‘0’

LO

 SynCore IP Tool SYNCore Adder/Subtractor Compiler

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
354 Synopsys Confidential Information June 2020

Dynamic Adder/Subtractor with Pipeline Stages at Input and Output - In
this mode, input port A and port B are pipelined and then added/subtracted
based on the value of port PortADDnSUB. Because the output port is pipelined,
the result is valid only on the second rising edge of the clock.

Dynamic Adder/Subtractor with a Port Constant
In this mode, a constant value is either added or subtracted from port A
based on input port value PortADDnSUB (the constant value can be passed
though the parameter CONSTANT_VALUE). Optional pipeline stages can also be
inserted at port A, Optionally, pipeline stages can also be added at the output
port. Depending on the pipeline stages, a number of the dynamic
adder/subtractor configurations are given below (here CONSTANT_VALUE=’1’).

Parameters: PORTA_PIPELINE_STAGE= ‘1’
PORTB_PIPELINE_STAGE= ‘1’
PORTOUT_PIPELINE_STAGE= ‘1’

SYNCore Adder/Subtractor Compiler SynCore IP Tool

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 355

Dynamic Adder/Subtractor with No Pipeline Registers - In this mode,
dynamic adder/subtractor is a purely combinational, and the output change
immediately with respect to the input.

Dynamic Adder/Subtractor with Pipeline Stages at Input Only - In this
mode, a constant value is either added or subtracted from the pipelined
version of port A based on the value of port PortADDnSUB. Because there is no
pipeline stage on the output port, the result changes immediately with
respect to the PortADDnSUB signal.

Dynamic Adder/Subtractor with Pipeline Stages at Input and Output - In
this mode, a constant value is either added or subtracted from the pipelined
version of port A based on the value of port PortADDnSUB. Because the output
port is pipelined, the result is valid only on the second rising edge of the
clock.

Parameters: PORTA_PIPELINE_STAGE= ‘0’
PORTOUT_PIPELINE_STAGE= ‘0’

Parameters: PORTA_PIPELINE_STAGE= ‘1’
PORTOUT_PIPELINE_STAGE= ‘0’

LO

 SynCore IP Tool SYNCore Adder/Subtractor Compiler

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
356 Synopsys Confidential Information June 2020

Dynamic Adder/Subtractor with Carry Input
The following waveform shows the behavior of the dynamic adder/subtractor
with a carry input (the carry input is assumed to be 0).

Dynamic Adder/Subtractor with Complete Control Signals
The following waveform shows the complete signal set for the dynamic
adder/subtractor. The enable and reset signals are always present in all of
the previous cases.

Parameters: PORTA_PIPELINE_STAGE= ‘1’
PORTOUT_PIPELINE_STAGE= ‘1’

SYNCore Adder/Subtractor Compiler SynCore IP Tool

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 357

LO

 SynCore IP Tool SYNCore Counter Compiler

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
358 Synopsys Confidential Information June 2020

SYNCore Counter Compiler
The SYNCore counter compiler generates Verilog code for your up, down, and
dynamic (up/down) counter implementation. This section describes the
following:

• Functional Overview, on page 358

• Specifying Counters with SYNCore, on page 359

• SYNCore Counter Wizard, on page 365

• UP Counter Operation, on page 368

• Down Counter Operation, on page 369

• Dynamic Counter Operation, on page 369

Functional Overview
The SYNCore counter component supports up, down, and dynamic
(up/down) counter implementations using DSP blocks or logic elements. For
each configuration, design optimizations are made for optimum use of core
resources.

As its name implies, the COUNTER block counts up (increments) or down
(decrements) by a step value and provides an output result. You can load a
constant or a variable as an intermediate value or base for the counter. Reset
to the counter on the PortRST input is active high and can be can be config-
ured either as synchronous or asynchronous using the RESET_TYPE param-
eter. Count enable on the PortCE input must be value high to enable the
counter to increment or decrement.

SYNCore Counter Compiler SynCore IP Tool

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 359

Specifying Counters with SYNCore
The SYNCore IP wizard helps you generate Verilog code for your counter
implementation requirements. The following procedure shows you how to
generate Verilog code for a counter using the SYNCore IP wizard.

Note: The SYNCore counter model uses Verilog 2001. When adding a
counter model to a Verilog-95 design, be sure to enable the Verilog
2001 check box on the Verilog tab of the Implementation Options dialog box
or include a set_option -vlog_std v2001 statement in your project file to
prevent a syntax error.

1. Start the wizard.

– From the FPGA synthesis tool GUI, select Run->Launch SYNCore or
click the Launch SYNCore icon to start the SYNCore IP wizard.

– Ιn the window that opens, select counter_model and click Ok to open
page1 of the wizard.

LO

 SynCore IP Tool SYNCore Counter Compiler

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
360 Synopsys Confidential Information June 2020

2. Specify the parameters you need in the wizard. For details about the
parameters, see Specifying Counter Parameters, on page 364. The
COUNTER symbol on the left reflects any parameters you set.

3. After you have specified all the parameters you need, click the Generate
button in the lower left corner.

The tool displays a confirmation message (TCL execution successful!)
and writes the required files to the directory you specified on page 1 of
the wizard. The HDL code is in Verilog.

SYNCore Counter Compiler SynCore IP Tool

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 361

The SYNCore wizard also generates a testbench for your counter. The
testbench covers a limited set of vectors. You can now close the wizard.

4. Add the counter you generated to your design.

– Edit the counter files if necessary.

– Use the Add File command to add the Verilog design file that was
generated and the syncore_addnsub.v file to your project. These files are
in the directory for output files that you specified on page 1 of the
wizard.

– Use a text editor to open the instantiation_file.v template file. This file is
located in the same output files directory. Copy the lines that define
the counter and paste them into your top-level module. The following
figure shows a template file (in red text) inserted into a top-level
module.

LO

 SynCore IP Tool SYNCore Counter Compiler

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
362 Synopsys Confidential Information June 2020

5. Edit the template port connections so that they agree with the port
definitions in your top-level module as shown in the example below (the
updated connection names are shown in red). You can also assign a
unique name to each instantiation. You can also assign a unique name
to each instantiation.

SYNCore Counter Compiler SynCore IP Tool

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 363

module counter #(
parameter COUNT_WIDTH = 5,
parameter STEP = 2,
parameter RESET_TYPE = 0,
parameter LOAD = 2,
parameter MODE = "Dynamic")

(
// Output Ports

output wire [WIDTH-1:0] Count,
// Input Ports

input wire Clock,
input wire Reset,
input wire Up_Down,
input wire Load,
input wire [WIDTH-1:0] LoadValue,
input wire Enable);

SynCoreCounter #(
.COUNT_WIDTH(COUNT_WIDTH),
.STEP(STEP),
.RESET_TYPE(RESET_TYPE),
.LOAD(LOAD),
.MODE(MODE))

SynCoreCounter_ins1 (
.PortCount(Count),
.PortClk(Clock),
.PortRST(Reset),
.PortUp_nDown(Up_Down),
.PortLoad(Load),
.PortLoadValue(LoadValue),
.PortCE(Enable));

endmodule

Port List
The following table lists the port assignments for all possible configurations;
the third column specifies the conditions under which the port is available.

LO

 SynCore IP Tool SYNCore Counter Compiler

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
364 Synopsys Confidential Information June 2020

Specifying Counter Parameters
The SYNCore counter can be configured for any of the following functions:

• Up Counter

• Down Counter

• Dynamic Up/Down Counter

The counter core can have a constant or variable input load or no load value.
If you are creating a constant-load counter, you will need to select Enable Load
and Load Constant Value on page 2 of the wizard. If you are creating a
variable-load counter, you will need to select Enable Load and Use Variable Port
Load on page 2. The following procedure lists the parameters you need to
define when generating a counter. For descriptions of each parameter, see
SYNCore Counter Wizard, on page 365.

1. Start the SYNCore counter wizard, as described in Specifying Counters
with SYNCore, on page 359.

Port Name Description Required/Optional

PortCE Count Enable input pin with
size one (active high)

Always present

PortClk Primary clock input Always present

PortLoad Load Enable input which
loads the counter (active high).

Not present for parameter
LOAD=0

PortLoadValue Load value primary input
(active high)

Not present for parameter
LOAD=0 and LOAD=1

PortRST Reset input which resets the
counter (active high)

Always present

PortUp_nDown Primary input which
determines the counter mode.
0 = Up counter
1 = Down counter

Present only for
MODE=”Dynamic”

PortCount Counter primary output Always present

SYNCore Counter Compiler SynCore IP Tool

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 365

2. Enter the following on page 1 of the wizard:

– Ιn the Component Name field, specify a name for your counter. Do not
use spaces.

– In the Directory field, specify a directory where you want the output
files to be written. Do not use spaces.

– Ιn the Filename field, specify a name for the Verilog file that will be
generated with the counter definitions. Do not use spaces.

– Enter the width and depth of the counter in the Configure the Counter
Parameters section.

– Select the appropriate configuration in the Configure the Mode of Counter
section.

3. Click Next. The wizard opens page 2 where you set parameters for
PortLoad and PortLoadValue.

– Select Enable Load option and the required load option in Configure Load
Value section.

– Select the required reset type in the Configure Reset type section.

The COUNTER symbol dynamically updates to reflect the parameters you
set.

4. Generate the counter core by clicking Generate button. All output files
are written to the directory you specified on page1 of the wizard.

SYNCore Counter Wizard
The following describe the parameters you can set in the ROM wizard, which
opens when you select counter_model:

• SYNCore Counter Parameters Page 1, on page 366

• SYNCore Counter Parameters Page 2, on page 367

LO

 SynCore IP Tool SYNCore Counter Compiler

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
366 Synopsys Confidential Information June 2020

SYNCore Counter Parameters Page 1

Component Name Specifies a name for the counter. This is the name that you
instantiate in your design file to create an instance of the
SYNCore counter in your design. Do not use spaces.

Directory Indicates the directory where the generated files will be
stored. Do not use spaces. The following files are created:
• filelist.txt - lists files written out by SYNCore
• options.txt - lists the options selected in SYNCore
• readme.txt - contains a brief description and known issues
• syncore_counter.v - Verilog library file required to generate

counter model
• testbench.v - Verilog testbench file for testing the counter

model
• instantiation_file.vin - describes how to instantiate the

wrapper file
• component.v - counter model wrapper file generated by

SYNCore
Note that running the wizard in the same directory
overwrites any existing files.

Filename Specifies the name of the generated file containing the HDL
description of the generated counter. Do not use spaces.

SYNCore Counter Compiler SynCore IP Tool

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 367

SYNCore Counter Parameters Page 2

Width of Counter Determines the counter width (the corresponding file
parameter is COUNT_WIDTH=n).

Counter Step Value Determines the counter step value (the corresponding file
parameter is STEP=n).

Up Counter Specifies an up counter (the default) configuration (the
corresponding file parameter is MODE=Up).

Down Counter Specifies an down counter configuration (the
corresponding file parameter is MODE=Down).

UpDown Counter Specifies a dynamic up/down counter configuration (the
corresponding file parameter is MODE=Dynamic).

Enable Load option Enables the load options

Load Constant Value Load the constant value specified in the Load Value for constant
load option field; (the corresponding file parameter is LOAD=1).

Load Value for
constant load option

The constant value to be loaded.

LO

 SynCore IP Tool SYNCore Counter Compiler

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
368 Synopsys Confidential Information June 2020

UP Counter Operation
In this mode, the counter is incremented by the step value defined by the
STEP parameter. When reset is asserted (when PostRST is active high), the
counter output is reset to 0. After the assertion of PortCE, the counter starts
counting upwards coincident with the rising edge of the clock. The following
waveform is with a constant STEP value of 5 and no load value.

Note: Counter core can be configured to use a constant or dynamic
load value in Up Counter mode (for the counter to load the Port-
LoadValue, PortCE must be active). This functionality is explained
in Dynamic Counter Operation, on page 369.

Use the port
PortLoadValue to load
Value

Loads variable value from PortLoadValue (the corresponding
file parameter is LOAD=2).

Synchronous Reset Specifies a synchronous (the default) reset input (the
corresponding file parameter is MODE=0).

Asynchronous Reset Specifies an asynchronous reset input (the corresponding
file parameter is MODE=1).

Parameters: MODE= ‘Up’
LOAD= ‘0’

SYNCore Counter Compiler SynCore IP Tool

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 369

Down Counter Operation
In this mode, the counter is decremented by the step value defined by the
STEP parameter. When reset is asserted (when PostRST is active high), the
counter output is reset to 0. After the assertion of PortCE, the counter starts
counting downwards coincident with the rising edge of the clock. The
following waveform is with a constant STEP value of 5 and no load value.

Note: Counter core can be configured to use a constant or dynamic
load value in Down Counter mode (for the counter to load the
PortLoadValue, PortCE must be active). This functionality is
explained in Dynamic Counter Operation, on page 369.

Dynamic Counter Operation
In this mode, the counter is incremented or decremented by the step value
defined by the STEP parameter; the count direction (up or down) is controlled
by the PortUp_nDown input (1 = up, 0 = down).

Dynamic Up/Down Counters with Constant Load Value*
On de-assertion of PortRST, the counter starts counting up or down based on
the PortUp_nDown input value. The following waveform is with STEP value of 5
and a LOAD_VALUE of 80. When PortLoad is asserted, the counter loads the
constant load value on the next active edge of clock and resumes counting in
the specified direction.

Parameters: MODE= ‘Down’
LOAD= ‘0’

LO

 SynCore IP Tool SYNCore Counter Compiler

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
370 Synopsys Confidential Information June 2020

Note: *For counter to load the PortLoadValue, PortCE must be active.

Dynamic Up/Down Counters with Dynamic Load Value*
On de-assertion of PortRST, the counter starts counting up or down based on
the PortUp_nDown input value. The following waveform is with STEP value of 5
and a LOAD_VALUE of 80. When PortLoad is asserted, the counter loads the
constant load value on the next active edge of clock and resumes counting in
the specified direction.

In this mode, the counter counts up or down based on the PortUp_nDown input
value. On the assertion of PortLoad, the counter loads a new PortLoadValue and
resumes up/down counting on the next active clock edge. In this example, a
variable PortLoadValue of 8 is used with a counter STEP value of 5.

Parameters: MODE= ‘Dynamic’
LOAD= ‘1’

Parameters: MODE= ‘Dynamic’
LOAD= ‘2’

SYNCore Counter Compiler SynCore IP Tool

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 371

Note: * For counter to load the PortLoadValue, PortCE should be active.

LO

 SynCore IP Tool SYNCore Counter Compiler

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
372 Synopsys Confidential Information June 2020

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 373

A P P E N D I X H

Designing with Microchip

This chapter discusses the following topics for synthesizing Microchip
designs:

• Basic Support for Microchip Designs, on page 374

• Microchip Components, on page 377

• Microchip RAM Implementations, on page 386

• Microchip Constraints and Attributes, on page 406

• Microchip Device Mapping Options, on page 409

• Microchip Output Files and Forward Annotation, on page 419

• Integration with Microchip Tools and Flows, on page 423

• Microchip Attribute and Directive Summary, on page 426

LO

 Designing with Microchip Basic Support for Microchip Designs

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
374 Synopsys Confidential Information June 2020

Basic Support for Microchip Designs
This section describes the uses of the tool with Microchip devices. Topics
include:

• Microchip Device-specific Support, on page 374

• Netlist Format, on page 374

• Microchip Features, on page 376

Microchip Device-specific Support
The tool creates technology-specific netlists for a number of Microchip
families of FPGAs. The following technologies are supported:

New devices are added on an ongoing basis. For the most current list of
supported devices, check the Device panel of the Implementation Options
dialog box.

Netlist Format
The synthesis tool outputs EDIF or VM netlist files for use with the Microchip
place-and-route application. These files have edn and vm extensions.

After synthesis the tool generates a constraint file as well, which is forward
annotated as input into the Microchip place-and-route tool. These files have
the following extensions:

FPGAs Technology Families

Mixed-Signal SmartFusion2

Low-Power • PolarFireSoC
• PolarFire
• IGLOO2

Rad-Tolerant RTG4

Basic Support for Microchip Designs Designing with Microchip

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 375

On the Implementation Results tab of the Implementation Options dialog box, two file
formats: edif and vm, are available depending on your design’s device family.

You can also use the project Tcl command to specify the result file format.

project -result_format edif/vm

Targeting Output for Microchip
You can generate output targeted for Microchip.

1. To specify the output, click the Implementation Options button.

2. Click the Implementation Results tab, and check the output files you need.

The following table summarizes the outputs to set for the different
devices, and shows the P&R tools for which the output is intended.

3. To generate mapped Verilog/VHDL netlists and constraint files, check
the appropriate boxes and click OK.

Vendor Support Forward Annotation Constraint File

Microchip (PolarFire) designName_vm.sdc

Microchip (SmartFusion2) designName_sdc.sdc and designName_vm.sdc

Microchip (All, except
PolarFire or SmartFusion2)

designName_sdc.sdc

Vendor Support Output Netlist P&R Tool

Microchip (PolarFire) VM (.vm) Libero SoC

Microchip (SmartFusion2) EDIF/VM
(.edn or .vm)

Libero SoC

Microchip EDIF (.edn) Libero SoC or IDE

LO

 Designing with Microchip Basic Support for Microchip Designs

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
376 Synopsys Confidential Information June 2020

Customizing Netlist Formats
The following table lists some attributes for customizing your Microchip
output netlists:

Microchip Forward Annotation
The synthesis tool generates Microchip-compliant constraint files from
selected constraints that are forward annotated (read in and then used) by
the Microchip Libero SoC or Libero IDE place-and-route software. The
Microchip constraint file uses the _vm.sdc or _sdc.sdc extension. This
constraint file must be imported into the Microchip flow.

By default, Microchip constraint files are generated from the synthesis tool
constraints. You can then forward annotate these files to the place-and-route
tool. To disable this feature, deselect the Write Vendor Constraint File box (on the
Implementation Results tab of the Implementation Options dialog box).

Microchip Features
The synthesis tool contains the following Microchip-specific features:

• Direct mapping to Microchip c-modules and s-modules

• Timing-driven mapping, replication, and buffering

• Inference of counters, adders, and subtractors; module generation

• Automatic use of clock buffers for clocks and reset signals

• Automatic I/O insertion. See I/O Insertion, on page 410 for more infor-
mation.

For ... Use ...

Netlist formatting syn_netlist_hierarchy
define_global_attribute syn_netlist_hierarchy {0}

Bus specification syn_noarrayports
define_global_attribute syn_noarrayports {1}

Microchip Components Designing with Microchip

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 377

Microchip Components
These topics describe how the synthesis tool handles various Microchip
components, and show you how to work with or manipulate them during
synthesis to get the results you need:

• Macros and Black Boxes in Microchip Designs, on page 377

• DSP Block Inference, on page 379

• Control Signals Extraction for Registers (SLE), on page 384

• Wide MUX Inference, on page 385

Macros and Black Boxes in Microchip Designs
You can instantiate Smartgen1 macros or other Microchip macros like gates,
counters, flip-flops, or I/Os by using the supplied Microchip macro libraries
to pre-define the Microchip macro black boxes. For certain technologies, the
following macros are also supported:

• MACC and RAM Timing Models

• SmartFusion2 MACC Block

• SIMBUF Macro

For general information on instantiating black boxes, see Instantiating Black
Boxes in VHDL, on page 401, and Instantiating Black Boxes in Verilog, on
page 120. For specific procedures about instantiating macros and black
boxes and using Microchip black boxes, see the following sections in the User
Guide:

• Defining Black Boxes for Synthesis, on page 382

• Using Predefined Microchip Black Boxes, on page 424

• Using Smartgen Macros, on page 425

1. Smartgen macros now replace the ACTgen macros. ACTgen macros were available
in the previous Designer 6.x place-and-route tool.

LO

 Designing with Microchip Microchip Components

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
378 Synopsys Confidential Information June 2020

MACC and RAM Timing Models

MACC and RAM timing models are supported for PolarFire, RTG4, SmartFu-
sion2, and IGLOO2 devices. Timing analysis considers the timing arcs for RAM
and MACC.

SmartFusion2 MACC Block
SmartFusion2 devices support bit-signed 18x18 multiply-accumulate blocks.
This architecture provides dedicated components called SmartFusion2 MACC
blocks, for which DSP-related operations can be performed like multiplication
followed by addition, multiplication followed by subtraction, and multiplica-
tion with accumulate. For more information, see DSP Block Inference, on
page 379.

SIMBUF Macro
The synthesis software supports instantiation of the SIMBUF macro. The
SIMBUF macro provides the flexibility to probe signals without using physical
locations, as possible from the Identify tool. The Resource Summary will report
the number of SIMBUF instantiations in the IO Tile section of the log file.

Microchip Components Designing with Microchip

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 379

DSP Block Inference
This feature allows the synthesis tool to infer DSP or MATH18x18 blocks for
SmartFusion2 devices and MACC_PA block for PolarFire devices. The
following structures are supported for SmartFusion2 devices:

• DOTP Support

The MACC block is configured in DOTP mode when two independent
signed 9-bit x 9-bit multipliers are followed by addition. The sum of the
dual independent 9x9 multiplier (DOTP) result is stored in the upper 35
bits of the 44-bit output. In DOTP mode, the MACC block implements
the following equation:

P = D + (CARRYIN + C) + 512 * ((AL * BH)+ (AH * BL)), when SUB = 0

P = D + (CARRYIN + C) - 512 * ((AL * BH) + (AH * BL)), when SUB = 1

Below is an example RTL which infers MACC block in DOTP mode after
synthesis:

module dotp_add_unsign_syn (ina, inb, inc, ind, ine, dout);
parameter widtha = 6;
parameter widthb = 7;
parameter widthc = 7;
parameter widthd = 8;
parameter widthe = 30;
parameter width_out = 44;

input [widtha-1:0] ina;
input [widthb-1:0] inb;
input [widthc-1:0] inc;
input [widthd-1:0] ind;
input [widthe-1:0] ine;
output reg [width_out-1:0] dout;
always @(ina or inb or inc or ind or ine)

begin
dout <= (ina * inb) + (inc * ind) + ine;

end
endmodule
The MACC block does not support DOTP mode if the

– Width of the multiplier inputs is greater than 9-bits when signed.

– Width of the multiplier inputs is greater than 8-bits when unsigned.

– Width of the non-multiplier inputs is greater than 36-bits.

LO

 Designing with Microchip Microchip Components

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
380 Synopsys Confidential Information June 2020

• Multipliers

• Mult-adds — Multiplier followed by an Adder

• Mult-subs — Multiplier followed by a Subtractor

• Wide multiplier inference

A multiplier is treated as wide, if any of its inputs is larger than 18 bits
signed or 17 bits unsigned. The multiplier can be configured with only
one input that is wide, or else both inputs are wide. Depending on the
number of wide inputs for signed or unsigned multipliers, the synthesis
software uses the cascade feature to determine how many math blocks
to use and the number of Shift functions it needs.

• MATH block inferencing across hierarchy

This enhancement to MATH block inferencing allows packing input
registers, output registers, and any adders or subtractors into different
hierarchies. This helps to improve QoR by packing logic more efficiently
into MATH blocks.

By default, the synthesis software maps the multiplier to DSP blocks if all
inputs to the multiplier are more than 2-bits wide; otherwise, the multiplier is
mapped to logic. You can override this default behavior using the syn_multstyle
attribute. See syn_multstyle, on page 129 for details.

The following conditions also apply:

• Signed and unsigned multiplier inferencing is supported.

• Registers at inputs and outputs of multiplier/multiplier-adder/multi-
plier-subtractor are packed into DSP blocks.

• Synthesis software fractures multipliers larger than 18X18 (signed) and
17X17 (unsigned) into smaller multipliers and packs them into DSP
blocks.

• When multadd/multsub are fractured, the final adder/subtractor are
packed into logic.

The following structures are supported for PolarFire devices:

• Add-mult — Adder followed by a Multiplier

• Multipliers

• Mult-adds — Multiplier followed by an Adder

Microchip Components Designing with Microchip

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 381

• Mult-subs — Multiplier followed by a Subtractor

• Mult-acc — Multiplier followed by an Accumulator

• Wide multiplier inference

• MATH block inferencing across hierarchy

• DOTP Support

• Coefficient ROM

This section also includes the following topics:

• Packing Coefficient ROM in the DSP, on page 381

• DSP Cascade Chain Inference, on page 382

• Symmetric FIR Filter Packing in MACC_PA_BC_ROM, on page 382

• Multiplier-Accumulators (MACC) Inference, on page 383

Packing Coefficient ROM in the DSP
Packing the coefficient ROM in the DSP implements the coefficient ROM data
as one input to mult-add/add/sub, when inferring the MACC_PA_BC_ROM
macro. The MACC_PA_BC_ROM macro extends the functionality of the
MACC_PA macro to provide a 16x18 ROM at the A input. The USE_ROM pin
is available for the primitive to select the input data A or the ROM data at
ROM_ADDR.

Select operand A as follows:

• When USE_ROM = 0, select input data A.

• When USE_ROM = 1, select the ROM data at ROM_ADDR.

The RTL example below infers the MACC_PA_BC_ROM macro after synthesis:

module test(in1, rom_addr, out);
parameter data_width = 17;
parameter rom_width = 17;
parameter rom_depth = 4;
input [data_width-1:0] in1;
input [rom_depth-1:0] rom_addr;
output [47:0] out;

LO

 Designing with Microchip Microchip Components

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
382 Synopsys Confidential Information June 2020

reg [rom_width-1:0] mem [0:2**rom_depth -1];
wire [rom_width-1:0] rom_data;
initial
begin

$readmemb("mem.dat", mem);
end
assign rom_data = mem [rom_addr];
assign out = rom_data * in1;
endmodule

DSP Cascade Chain Inference
The MATH18x18 block cascade feature supports the implementation of
multi-input Mult-Add/Sub for devices with MATH blocks. The software packs
logic into MATH blocks efficiently using hard-wired cascade paths, which
improves the QoR for the design.

Prerequisites include the following requirements:

• The input size for multipliers is not greater than 18x18 bits (signed) and
17x17 bits (unsigned).

• Signed multipliers have the proper sign-extension.

• All multiplier output bits feed the adder.

• Multiplier inputs and outputs can be registered or not.

Symmetric FIR Filter Packing in MACC_PA_BC_ROM
PolarFire

The tool supports the packing of symmetric FIR filters though the inference of
MACC_PA_BC_ROM blocks with shift chain.

Microchip Components Designing with Microchip

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 383

Multiplier-Accumulators (MACC) Inference
The Multiplier-Accumulator structures use internal paths for adder feedback
loops inside the MATH18x18 block instead of connecting it externally.

Prerequisites include the following requirements:

• The input size for multipliers is not greater than 18x18 bits (signed) and
17x17 bits (unsigned).

• Signed multipliers have the proper sign-extension.

• All multiplier output bits feed the adder.

• The output of the adder must be registered.

• The registered output of the adder feeds back to the adder for accumula-
tion.

• Since the Microchip MATH block contains one multiplier, only Multi-
plier-Accumulator structures with one multiplier can be packed inside
the MATH block.

The other Multiplier-Accumulator structure supported is with Synchronous
Loadable Register.

Prerequisites include the following requirements:

• All the requirements mentioned above apply for this structure as well.

• For the Loading Multiplier-Accumulator structure, new Load data
should be passed to input C.

• The LoadEn signal should be registered.

DSP Limitations

Currently, DSP inferencing does not support the following functions:

• Overflow extraction

• Arithmetic right shift for operand C

LO

 Designing with Microchip Microchip Components

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
384 Synopsys Confidential Information June 2020

Note: For more information about Microchip DSP math blocks along
with a comprehensive set of examples, see the Inferring Microchip
RTAX-DSP MATH Blocks application note on the Synopsys
website.

Control Signals Extraction for Registers (SLE)
The synthesis software supports extraction of control signals, the enable,
synchronous set or reset, and asynchronous reset on the registers. The tool
packs the enable with the EN pin, synchronous set or reset using SLn pin
and asynchronous reset using ALn pin of the SLE.

When the fanout limit is 12, synchronous set or reset is packed using the SLn
pin. If the fanout limit is less than 12, the tool inserts extra logic for the
synchronous set or reset.

The tool supports packing of the enable signal, which has higher priority than
the reset signal (synchronous) of the SLE.

Initial Values for Registers (SLE)
Initial values are not supported on registers (SLE). If the initial value is
specified for a register in the RTL code, the tool ignores the value and issues a
warning. For the following Verilog code:

module test
input clk,
input [7:0] a,
output [7:0] z);
reg [7:0] z_reg = 8'hf0;
reg one = 1'd1;
always@(posedge clk)
z_reg <= a + one;
assign z = z_reg;
endmodule

The initial value for register z_reg is specified, so the tool issues a warning
message in the synthesis log report:

@W: FX1039|User-specified initial value defined for instance z_reg[7:0] is being ignored.

Microchip Components Designing with Microchip

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 385

Wide MUX Inference
Wide MUXs are implemented using ARI1 primitives and is supported for
PolarFire, RTG4, and SmartFusion2 technologies.

LO

 Designing with Microchip Microchip RAM Implementations

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
386 Synopsys Confidential Information June 2020

Microchip RAM Implementations
Refer to the following topics for Microchip RAM implementations:

• RAM for PolarFire

• RAM for RTG4

• RAM for SmartFusion2/IGLOO2

• PolarFire Asymmetric RAM support

• RAM Reporting

• Low Power RAM Inference

• URAM Inference for Sequential Shift Registers

• Async Reset and Dynamic Offset in Seqshifts

• Packing of Enable Signal on the Read Address Register

• Packing of INIT Value on LSRAM and URAM Blocks in PolarFire

• PolarFire RAM Inference for ROM Support

• Write Byte-Enable Support for RAM

• RAMINDEX Support

RAM for PolarFire
The tool supports the following RAM primitives for the PolarFire device:

• RAM1K20 (LSRAM) is supported for both inference and instantiation.

The following configurations are supported for inference:

– True dual-port configuration

– Dual-port ROM

– Two independent data ports

– Non-ECC—1Kx20, 2Kx10, 4Kx5, 8Kx2 or 16Kx1 on each port

– Two-port configuration

– Read from port A and write to port B

Microchip RAM Implementations Designing with Microchip

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 387

– Non-ECC—512x40, 1Kx20, 2Kx10, 4Kx5, 8Kx2 or 16Kx1 on each
port

– ECC—512x33 on both ports

Generates SB_CORRECT and DB_DETECT flags

– Write operations

Three modes—simple write, write feed-through, read before write

– Asymmetric RAM is supported. See PolarFire Asymmetric RAM
support, on page 392.

• RAM64x12 (USRAM) is supported for both inference and instantiation.

The following configurations are supported for inference:

– The RAM64x12 block contains 768 memory bits and is a two-port
memory, providing one write port and one read port. Write operations
for the RAM64x12 memory are synchronous. Read operations can be
asynchronous or synchronous to set up the address and read out the
data.

– Consists of one read-data port and one write-data port.

– Both read-data and write-data ports are configured to 64x12.

RAM for RTG4
The software supports the following RAM primitives for the RTG4 device:

RAM1K18_RT Maps to RAM1K18_RT for:
• Single-port, two-port, and dual-port synchronous read/write

memory.
• Read-before-write in dual-port mode for single-port and dual-

port synchronous memory.
• Read-enable extraction1.

1. Currently, read-enable extraction for wide RAM is not supported.

RAM64X18_RT Maps to RAM64X18_RT for single-port, two-port, and three-port
synchronous/asynchronous read and synchronous write
memory.

LO

 Designing with Microchip Microchip RAM Implementations

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
388 Synopsys Confidential Information June 2020

Read-before-write mode not supported for RAM1K18_RT primitive of
RTG4
Read-before-write mode is not supported for the RTG4 RAM1K18_RT RAM
primitive. By default, when Read/Write Check insertion is OFF, RAM1K18_RT
is inferred in the mode in which Read-data port holds the previous value,
with A_WMODE/B_WMODE set to 00.

When Read/Write Check insertion is ON, true dual-port RAM in Read-before-
write mode errors out due to multiple write clocks or is implemented as
registers if a single clock is present. Single-port RAM in Read-before-write
mode is inferred as RAM64x18_RT and logic.

RAM for SmartFusion2/IGLOO2
Two types of RAM macros are supported: RAM1K18 and RAM64X18. The
synthesis software extracts the RAM structure from the RTL and infers
RAM1K18 or RAM64X18 based on the size of the RAM.

The default criteria for specifying the macro is described in the table below for
the following RAM types.

True Dual-Port Synchronous
Read Memory

The synthesis tool maps to RAM1K18, regardless of
its memory size.

Microchip RAM Implementations Designing with Microchip

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 389

You can override the default behavior by applying the syn_ramstyle attribute to
control how the memory gets mapped. To map to

• RAM1K18 set syn_ramstyle = "lsram"

• RAM64X18 set syn_ramstyle = "uram"
• Registers set syn_ramstyle = "registers"

The value you set for this attribute always overrides the default behavior.

Three-Port RAM Inference Support

Verilog Example 1: Three-Port RAM—Synchronous Read
module ram_infer15_rtl

(clk,dinc,douta,doutb,wrc,rda,rdb,addra,addrb,addrc);
input clk;
input [17:0] dinc;
input wrc,rda,rdb;
input [5:0] addra,addrb,addrc;
output [17:0] douta,doutb;
reg [17:0] douta,doutb;
reg [17:0] mem [0:63];

Simple Dual-Port or Single-Port
Synchronous Memory

If the size of the memory is:
• 4608 bits or greater, the synthesis tool maps to

RAM1K18.
• Greater than 12 bits and less than 4608 bits, the

synthesis tool maps to RAM64X18.
• Less than or equal to 12 bits, the synthesis tool

maps to registers.

Simple Dual-Port or Single-Port
Asynchronous Memory

When the size of the memory is 12 bits or greater,
the synthesis tool maps to RAM64x18. Otherwise, it
maps to registers.

Three-Port RAM Inference
Support

This feature supports SmartFusion2 and IGLOO2
devices only.
• RAM64x18 is a 3-port memory that provides one

Write port and two Read ports.
• Write operation is synchronous, while read

operations can be asynchronous or synchronous.
The tool infers RAM64X18 for these structures.

LO

 Designing with Microchip Microchip RAM Implementations

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
390 Synopsys Confidential Information June 2020

always@(posedge clk)
begin
if(wrc)
mem[addrc] <= dinc;
end
always@(posedge clk)
begin
douta <= mem[addra];
end
always@(posedge clk)
begin
doutb <= mem[addrb] ;
end
endmodule

Microchip RAM Implementations Designing with Microchip

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 391

RTL View:

The tool infers one RAM64X18.

VHDL Example 2: Three-Port RAM—Asynchronous Read
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
entity ram_singleport_noreg is
port (d : in std_logic_vector(7 downto 0);
addw : in std_logic_vector(6 downto 0);
addr1 : in std_logic_vector(6 downto 0);
addr2 : in std_logic_vector(6 downto 0);
we : in std_logic;
clk : in std_logic;
q1 : out std_logic_vector(7 downto 0);
q2 : out std_logic_vector(7 downto 0));
end ram_singleport_noreg;
architecture rtl of ram_singleport_noreg is
type mem_type is array (127 downto 0) of
std_logic_vector (7 downto 0);
signal mem: mem_type;
begin
process (clk)
begin
if rising_edge(clk) then
if (we = '1') then
mem(conv_integer (addw)) <= d;
end if;

LO

 Designing with Microchip Microchip RAM Implementations

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
392 Synopsys Confidential Information June 2020

end if;
end process;
q1<= mem(conv_integer (addr1));
q2<= mem(conv_integer (addr2));
end rtl;

RTL View:

The tool infers one RAM64X18.

PolarFire Asymmetric RAM support
Synthesis of asymmetric simple dual-port RAM is supported. Asymmetric
RAM has different widths for read and write access ports. Read and write
widths on RAM1K20 are configured independent of each other.

Two-port mode is also supported. For example, for a read configuration of
1Kx20, the following write configurations are supported:

• Write width < read width (4Kx5, 2Kx10)

• Write width > read width (512x40) (two-port mode)

Microchip RAM Implementations Designing with Microchip

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 393

Example 1—When Write Width < Read Width
In the RTL below, write access configuration is 2Kx8 and read access
configuration is 1Kx16.

module asym_ram (din ,dout, addra, addrb, clk, wen);
input [7:0] din;
input wen;
input [10:0] addra;
output reg [15:0] dout;
input [9:0] addrb;
input clk;
localparam ratio= 2;
localparam max_depth=2048;
localparam min_width=8;
reg [10:0] taddra;
reg [min_width-1:0] mem_ram[max_depth-1:0];
always @(posedge clk)
begin

if(wen)
mem_ram[taddra]<=din;
taddra<=addra;

end
always @(posedge clk)
begin // manual concatenation

dout[min_width*0+:min_width]<=mem_ram[{0,addrb}]; // it can be
written inside generate-loop

dout[min_width*1+:min_width]<=mem_ram[{1,addrb}];
end
endmodule

LO

 Designing with Microchip Microchip RAM Implementations

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
394 Synopsys Confidential Information June 2020

RTL View

Technology View

Microchip RAM Implementations Designing with Microchip

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 395

Example 2—When Write Width > Read Width
The code below implements asymmetric RAM with 1Kx16 write access and
2Kx8 read access configurations.

module asym_ram(din, dout, addra, addrb, clk, we);
input [15:0] din;
input [9:0] addra;
output reg [7:0] dout;
input [10:0] addrb;
input clk;
input we;
localparam max_depth=2048;
localparam min_width=8;
reg [min_width-1:0] mem_ram[max_depth-1:0];
reg [9:0] taddra;
reg [10:0] taddrb;
always @(posedge clk)
begin
dout<=mem_ram[taddrb];
taddrb<=addrb;
end
always @(posedge clk)
if (we)
begin
mem_ram[{0,addra}]<=din[min_width*0+:min_width];
mem_ram[{1,addra}]<=din[min_width*1+:min_width];
end
endmodule

LO

 Designing with Microchip Microchip RAM Implementations

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
396 Synopsys Confidential Information June 2020

RTL View

Technology View

Microchip RAM Implementations Designing with Microchip

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 397

Attributes
RAM attributes, like syn_ramstyle, are applied to control the inference.

Read Write Control Signals
Control signals are the same as that of symmetric RAM implementation:

• Enable read and write

• Synchronous and asynchronous reset on RAM registers

• RAM read-write mode (no change, write-first, read-first)

• Packing of RAM registers or pipelines

Limitations
• Initial value is not supported.

• Asymmetric true dual-port RAM is not supported.

• Read/write logic check creation is not supported. If the read/write check
option is enabled, then the RAM is implemented in symmetric mode.

RAM Reporting
A detailed report is generated in the {implname}_ram_rpt.txt file with details of
the LSRAM and URAMs inferred for a design.

LO

 Designing with Microchip Microchip RAM Implementations

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
398 Synopsys Confidential Information June 2020

Low Power RAM Inference
PolarFire, RTG4, SmartFusion2, and IGLOO2 Technologies

Enhanced RAM inference uses the BLK pin of the RAM for reducing power
consumption. By setting the global option low_power_ram_decomp 1 in the
project file, the tool fractures the wide RAMs on the address width, using the
BLK pin of the RAM to reduce power consumption. By default, the tool
fractures wide RAMs by splitting the data width to improve timing.

This feature is supported for single-port, simple-dual port, and true-dual port
RAM modes.

URAM Inference for Sequential Shift Registers
PolarFire Technologies

URAM inference is supported for sequential shift registers.

By default, seqshift is implemented using registers. The syn_srlstyle attribute is
used to override the default behavior of seqshift implementation using URAM.
This attribute can be applied on the top-level module or on a seqshift instance
in the RTL view, by dragging and dropping the instance to the SCOPE editor.

If the attribute is applied on the top-level module, the tool infers URAM for all
the seqshifts in the design using the following threshold values:

Depth >= 4 and Depth*Width > 36

If the attribute is applied on the seqshift instance, the tool infers URAM
irrespective of the threshold values.

syn_srlstyle Values

Value Description

Registers seqshifts are inferred as registers.

URAM seqshift is inferred as RAM64X12.

Microchip RAM Implementations Designing with Microchip

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 399

syn_srlstyle Syntax

Example
The tool infers a seqshift primitive for the following HDL:

module p_seqshift(clk, we, din, dout);
parameter SRL_WIDTH = 7;
parameter SRL_DEPTH = 37;
input clk, we;
input [SRL_WIDTH-1:0] din;
output [SRL_WIDTH-1:0] dout;
reg [SRL_WIDTH-1:0] regBank[SRL_DEPTH-1:0]

/*synthesis syn_srlstyle = "uram"*/;
integer i;
always @(posedge clk) begin

if (we) begin
for (i=SRL_DEPTH-1; i>0; i=i-1) begin

regBank[i] <= regBank[i-1];
end
regBank[0] <= din;

end
end
assign dout = regBank[SRL_DEPTH-1];
endmodule

The seqshift generated for the HDL above is shown in technology view.

FDC define_attribute {object} syn_srlstyle {registers|uram }
define_global_attribute syn_srlstyle {registers|uram }

Verilog object /* synthesis syn_srlstyle = "registers | uram " */;

VHDL attribute syn_srlstyle : string;
attribute syn_srlstyle of object : signal is "registers | uram ";

LO

 Designing with Microchip Microchip RAM Implementations

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
400 Synopsys Confidential Information June 2020

Limitations
Limitations include the following:

• Seqshifts with both reset and set are inferred as registers.

• Seqshifts with enable signal having higher priority than synchronous set
or synchronous reset are inferred as registers.

Async Reset and Dynamic Offset in Seqshifts
The tool supports the packing of async reset and dynamic offset logic in
seqshifts through the inference of RAM blocks in PolarFire devices.

Packing of Enable Signal on the Read Address Register
PolarFire and RTG4 Technologies

The tool packs the enable signal on the read address register for the
following:

• PolarFire RAM1K20 and RAM64x12 Enhancements

• RTG4 RAM64x18, RAM64x18_RT, RAM1K18_RT Enhancements

Microchip RAM Implementations Designing with Microchip

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 401

PolarFire RAM1K20 and RAM64x12 Enhancements
The tool supports the packing of enable signal on the read address register into
RAM1K20 (A_REN) and RAM64x12 (R_ADDR_EN).

RTG4 RAM64x18, RAM64x18_RT, RAM1K18_RT Enhancements
Packing of enable signal on the read address register into RAM1K18_RT
(A_REN), RAM64x18 (A_ADDR_EN & B_ADDR_EN), and RAM64x18_RT (A_ADDR_EN
& B_ADDR_EN) is supported.

Packing of INIT Value on LSRAM and URAM Blocks in PolarFire
INIT value packing is supported for RAM1K20 and RAM64x12 RAM blocks in
the PolarFire device. Here is some sample code:

module test (clk,we,waddr,raddr,din,q);
input clk,we;
input [addr_width - 1 : 0] waddr,raddr;
input [data_width - 1 : 0] din;
output [data_width - 1 : 0] q;
reg [data_width - 1 : 0] q;
reg [data_width - 1 : 0] mem [(2**addr_width) - 1 : 0];
initial $readmemb("mem1.dat", mem);
always @ (posedge clk)
 if(we) mem[waddr] <= din;
always @ (posedge clk)
 if(we) q <= din;
 else q <= mem[raddr];
endmodule

PolarFire RAM Inference for ROM Support
By default, ROM is implemented using RAM1K20 and RAM64x12 depending on
the RAM threshold values. The RAM is inferred in non-low (speed) mode.
Asynchronous ROM is always mapped to RAM64x12.

Use the syn_romstyle attribute to override the default behavior of the ROM
implementation with RAM or logic.

LO

 Designing with Microchip Microchip RAM Implementations

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
402 Synopsys Confidential Information June 2020

The syn_romstyle attribute can be used to determine the implementation of the
ROM components as follows:

The syn_romstyle values are:

Example 1
module test(clk,addr,dataout);
input clk;
parameter addr_width = 10;
parameter data_width = 20;
input [addr_width-1:0] addr;
output [data_width-1:0] dataout;
reg [data_width-1:0] dataout;
always @ (posedge clk)
case (addr)
10'd0 : dataout <= 20'b01000110000010001100;
10'd1 : dataout <= 20'b11100000110110011100;
10'd2 : dataout <= 20'b10110101101111011001;
10'd3 : dataout <= 20'b01111010011000000000;
10'd4 : dataout <= 20'b00110110100111111100;
10'd5 : dataout <= 20'b11110101000010001010;
10'd6 : dataout <= 20'b00010010110101000110;
10'd7 : dataout <= 20'b01001001010010100110;
10'd8 : dataout <= 20'b01110111000111111011;
10'd9 : dataout <= 20'b10010101111110111110;
…
…
10'd1015 : dataout <= 20'b11011010000111111101;
10'd1016 : dataout <= 20'b11001000101001110111;
10'd1017 : dataout <= 20'b01010000111100100011;

FDC define_attribute {object} syn_romstyle {logic|uram|lsram}
define_global_attribute syn_romstyle {logic|uram|lsram}

Verilog object /* synthesis syn_romstyle = "logic | uram | lsram" */ ;

VHDL attribute syn_romstyle : string;
attribute syn_romstyle of object : signal is "logic | uram | lsram";

Value Description

logic ROM is inferred as registers or LUTs.

uram|lsram ROM is inferred as RAM1K20 or RAM64x12. Asynchronous
ROM is mapped to RAM64x12 even if the lsram attribute is
applied.

Microchip RAM Implementations Designing with Microchip

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 403

10'd1018 : dataout <= 20'b11000110011011011011;
10'd1019 : dataout <= 20'b10000000110101100110;
10'd1020 : dataout <= 20'b11100101010001001011;
10'd1021 : dataout <= 20'b10010011000110001010;
10'd1022 : dataout <= 20'b00100000110010000101;
10'd1023 : dataout <= 20'b10001010000011111010;
default : dataout <= 20'b00000000000000000000;
endcase
endmodule

The following ROM is displayed in the SRS view of the tool for the RTL above.
The tool infers RAM1K20 for the ROM below.

Example 2
module test (addr,dataout);
parameter addr_width = 8;
parameter data_width = 10;
input [addr_width - 1 : 0] addr;
output [data_width - 1 : 0] dataout;
reg [data_width - 1 : 0] mem [(2**addr_width) - 1 : 0] ;
initial $readmemh("mem256x10_hex.list", mem);
assign dataout = mem[addr];
endmodule

The following ROM is displayed in the SRS view of the tool for the RTL above.
Since this is an asynchronous ROM, the tool infers RAM64x12.

LO

 Designing with Microchip Microchip RAM Implementations

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
404 Synopsys Confidential Information June 2020

Write Byte-Enable Support for RAM
For RAM with n write enables used to control writing of data into memory
locations, the compiler creates n sub-instances of the RAM with different
write enables. The mapper merges these multiple RAM blocks into single or
multiple block RAM, depending on the threshold and number of write
enables. The write byte-enable pin (A_WEN/B_WEN [1:0]) of the block RAM
primitives are configured to control the write operation for block RAMs.

Example
module ram (din, dout, addra, addrb, clk, wen1, wen2);
input [7:0] din;
input wen1;
input wen2;
input [9:0] addra;
input clk;
output reg [7:0] dout;
localparam max_depth=1024;
localparam min_width=8;
reg [9:0] taddra;
reg [min_width-1:0] mem_ram[max_depth-1:0];
always @(posedge clk)
begin

taddra<=addra;
if(wen1)
mem_ram[taddra][3:0]<=din[3:0];

 if(wen2)
mem_ram[taddra][7:4]<=din[7:4];

end
always @(posedge clk)
begin

dout <= mem_ram[taddra];
end
endmodule

The compiler infers two ram1 shown in the SRS view below, which can be
combined and mapped into a single RAM1K18_RT or RAM1K20.

Microchip RAM Implementations Designing with Microchip

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 405

RAMINDEX Support
The RAMINDEX attribute is supported for all inferred RAMs of RTG4,
SmartFusion2, IGLOO2 and PolarFire devices.

LO

 Designing with Microchip Microchip Constraints and Attributes

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
406 Synopsys Confidential Information June 2020

Microchip Constraints and Attributes
The synthesis tools let you specify timing constraints, general HDL attributes,
and Microchip-specific attributes to improve your design. You can manage
the attributes and constraints in the SCOPE interface. The following topics
explain how to implement constraints and attributes for Microchip designs.
Refer to:

• Global Buffer Promotion, on page 406

• The syn_maxfan Attribute in Microchip Designs, on page 407

• Radiation-tolerant Applications, on page 408

Global Buffer Promotion
PolarFire, RTG4, SmartFusion2, IGLOO2 Technologies

The synthesis software inserts the global buffer (CLKINT) on clock, asynchro-
nous set/reset, and data nets based on a threshold value. The supported
devices have specific threshold values that cannot be changed for the
different types of nets in the design. Inserting global buffers on nets with
fanout greater than the threshold can help reduce the route delay during
place and route.

Net Global buffer inserted for threshold value > or =

PolarFire Devices

Clock 2

Asynchronous Set/Reset 6

Data 5000

RTG4 Devices

Clock 2

Asynchronous Set/Reset 200000

Data 5000

SmartFusion2 and IGLOO2 Devices

Microchip Constraints and Attributes Designing with Microchip

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 407

To override these default option settings you can:

• Use the syn_noclockbuf attribute on a net that you do not want a global
buffer inserted, even though fanout is greater than the threshold.

• Use syn_insert_buffer="CLKINT" so that the tool inserts a global buffer on
the particular net, which is less than the threshold value. You can only
specify CLKINT as a valid value for SmartFusion2 devices.

The syn_maxfan Attribute in Microchip Designs
The syn_maxfan attribute is used to control the maximum fanout of the design,
or an instance, net, or port. The limit specified by this attribute is treated as a
hard or soft limit depending on where it is specified. The following rules
described the behavior:

• Global fanout limits are usually specified with the fanout guide options
(Project->Implementation Options->Device), but you can also use the
syn_maxfan attribute on a top-level module or view to set a global soft
limit. This limit may not be honored if the limit degrades performance.
To set a global hard limit, you must use the Hard Limit to Fanout option.

• A syn_maxfan attribute can be applied locally to a module or view. In this
case, the limit specified is treated as a soft limit for the scope of the
module. This limit overrides any global fanout limits for the scope of the
module.

• When a syn_maxfan attribute is specified on an instance that is not of
primitive type inferred by Synopsys FPGA compiler, the limit is consid-
ered a soft limit which is propagated down the hierarchy. This attribute
overrides any global fanout limits.

• When a syn_maxfan attribute is specified on a port, net, or register (or any
primitive instance), the limit is considered a hard limit. This attribute
overrides any other global fanout limits. Note that the syn_maxfan attri-
bute does not prevent the instance from being optimized away and that

Clock 2

Asynchronous Set/Reset 12

Data 5000

Net Global buffer inserted for threshold value > or =

LO

 Designing with Microchip Microchip Constraints and Attributes

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
408 Synopsys Confidential Information June 2020

design rule violations resulting from buffering or replication are the
responsibility of the user.

Radiation-tolerant Applications
You can specify the radiation-resistant design technique to use on an object
for a design with the syn_radhardlevel attribute. This attribute can be applied to
a module/architecture or a register output signal (inferred register in VHDL),
and is used in conjunction with the Microchip macro files supplied with the
software.

Values for syn_radhardlevel are as follows:

For details, see:

• Working with Microchip Radhard Designs, on page 542

• syn_radhardlevel, on page 195

Value Description

none Standard design techniques are used.

cc Combinational cells with feedback are used to implement storage rather
than flip-flop or latch primitives.

tmr Triple module redundancy or triple voting is used to implement registers.
Each register is implemented by three flip-flops or latches that “vote” to
determine the state of the register.

tmr_cc Triple module redundancy is used where each voting register is composed
of combinational cells with feedback rather than flip-flop or latch
primitives.

Microchip Device Mapping Options Designing with Microchip

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 409

Microchip Device Mapping Options
To achieve optimal design results, set the correct implementation options.
Some options include the following:

• I/O Insertion, on page 410

• Update Compile Point Timing Data Option, on page 411

• Operating Condition Device Option, on page 412

See Also
• Microchip set_option Command Options, on page 415

• Microchip Tcl set_option Command Options, on page 416

Promote Global Buffer Threshold
The Promote Global Buffer Threshold option is used for both ports and nets.

The Tcl command equivalent is set_option -globalthreshold value, where the value
refers to the minimum number of fanout loads. The default value is 1.

Only signals with fanout loads larger than the defined value are promoted to
global signals. The synthesis tool assigns the available global buffers to drive
these signals using the following priority:

1. Clock

2. Asynchronous set/reset signal

3. Enable, data

SmartFusion2, IGLOO2, and RTG4 Global Buffer Promotion
The synthesis software inserts the global buffer (CLKINT) on clock, asynchro-
nous set/reset, and data nets based on a threshold value. SmartFusion2,
IGLOO2, and RTG4 devices have specific threshold values that cannot be
changed for the different types of nets in the design. Inserting global buffers
on nets with fanout greater than the threshold can help reduce the route
delay during place and route.

LO

 Designing with Microchip Microchip Device Mapping Options

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
410 Synopsys Confidential Information June 2020

The threshold values for SmartFusion2 and IGLOO2 devices are the
following:

The threshold values for RTG4 devices are the following:

To override these default option settings you can:

• Use the syn_noclockbuf attribute on a net that you do not want a global
buffer inserted, even though fanout is greater than the threshold.

• Use syn_insert_buffer="CLKINT" so that the tool inserts a global buffer on
the particular net, which is less than the threshold value. You can
specify CLKINT, RCLKINT, CLKBUF, or CLKBIBUF as values for
SmartFusion2, RTG4, and IGLOO2 devices.

I/O Insertion
The Synopsys FPGA synthesis tool inserts I/O pads for inputs, outputs, and
bidirectionals in the output netlist unless you disable I/O insertion. You can
control I/O insertion with the Disable I/O Insertion option (Project->Implementation
Options->Device).

If you do not want to automatically insert any I/O pads, check the Disable I/O
Insertion box (Project->Implementation Options->Device). This is useful to see how
much area your blocks of logic take up, before synthesizing an entire FPGA. If
you disable automatic I/O insertion, you will not get any I/O pads in your
design unless you manually instantiate them yourself.

Net Global buffer inserted for threshold value > or =

Clock 2

Asynchronous Set/Reset 12

Data 5000

Net Global buffer inserted for threshold value > or =

Clock 2

Asynchronous Set/Reset 200000

Data 5000

Microchip Device Mapping Options Designing with Microchip

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 411

If you disable I/O insertion, you can instantiate the Microchip I/O pads you
need directly. If you manually insert I/O pads, you only insert them for the
pins that require them.

Update Compile Point Timing Data Option
PolarFire, SmartFusion2, IGLOO2Technologies

The Update Compile Point Timing Data option used with the Synopsys FPGA
compile-point synthesis flow lets you break down a design into smaller
synthesis units, called compile points, making incremental synthesis
possible. See Synthesizing Compile Points, on page 455 in the User Guide.

The Update Compile Point Timing Data option controls whether or not changes to a
locked compile point force remapping of its parents, taking into account the
new timing model of the child.

Note: To simplify this description, the term child is used here to refer to
a compile point that is contained inside another; the term parent
is used to refer to the compile point that contains the child.
These terms are thus not used here in their strict sense of direct,
immediate containment: If a compile point A is nested in B,
which is nested in C, then A and B are both considered children
of C, and C is a parent of both A and B. The top level is consid-
ered the parent of all compile points.

Disabled
When the Update Compile Point Timing Data option is disabled (the default), only
(locked) compile points that have changed are remapped, and their remap-
ping does not take into account changes in the timing models of any of their
children. The old (pre-change) timing model of a child is used, instead, to
map and optimize its parents.

An exceptional case occurs when the option is disabled and the interface of a
locked compile point is changed. Such a change requires that the immediate
parent of the compile point be changed accordingly, so both are remapped. In
this exceptional case, however, the updated timing model (not the old model)
of the child is used when remapping this parent.

LO

 Designing with Microchip Microchip Device Mapping Options

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
412 Synopsys Confidential Information June 2020

Enabled
When the Update Compile Point Timing Data option is enabled, locked compile-
point changes are taken into account by updating the timing model of the
compile point and resynthesizing all of its parents (at all levels), using the
updated model. This includes any compile point changes that took place prior
to enabling this option, and which have not yet been taken into account
(because the option was disabled).

The timing model of a compile point is updated when either of the following is
true:

• The compile point is remapped, and the Update Compile Point Timing Data
option is enabled.

• The interface of the compile point is changed.

Automatic Compile Points
PolarFire Technology

This feature is enabled, by default, only for PolarFire devices.

The tool supports the Automatic Compile Points (ACP) flow. For details, see
The Automatic Compile Point Flow, on page 456 in the User Guide.

Operating Condition Device Option
You can specify an operating condition for certain Microchip technologies:

• PolarFire

• RTG4

• SmartFusion2

• IGLOO2

Different operating conditions cause differences in device performance. The
operating condition affects the following:

• optimization, if you have timing constraints

• timing analysis

• timing reports

Microchip Device Mapping Options Designing with Microchip

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 413

To set an operating condition, select the value for Operating Conditions from the
menu on the Device tab of the Implementation Options dialog box.

To set an operating condition in a project or Tcl file, use the command:

set_option -opcond value

where value can be specified like the following typical operating conditions:

Default Typical timing

MIL-WC Worst-case Military timing

MIL-TC Typical-case Military timing

MIL-BC Best-case Military timing

Automotive-WC Worst-case Automotive timing

LO

 Designing with Microchip Microchip Device Mapping Options

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
414 Synopsys Confidential Information June 2020

For Example

The Microchip operating condition can contain any of the following specifica-
tions:

• MIL—military

• COM—commercial

• IND—Industrial

• TGrade1

• TGrade2

as well as, include one of the following designations:

• WC—worst case

• BC—best case

• TC—typical case

For specific operating condition values for your required technology, see the
Device tab on the Implementation Options dialog box.

Even when a particular operating condition is valid for a family, it may not be
applicable to every part/package/speed-grade combination in that family.
Consult Microchip's documentation or software for information on valid
combinations and more information on the meaning of each operating condi-
tion.

Microchip Device Mapping Options Designing with Microchip

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 415

Microchip set_option Command Options
To select device mapping options for Microchip technologies, select Project ->
Implementation Options->Device and set the options.

Option For details, see ...

Automatic Read/Write Check Insertion for
RAM

Enabling this option automatically inserts
bypass logic when required to prevent
simulation mismatch in read-during-
write scenarios. For asynchronous clocks,
the tool will not generate bypass logic
which can cause unintended CDC paths
between the clocks. For more information
about using this option in conjunction
with the syn_ramstyle attribute, see
syn_ramstyle , on page 199.

Conservative Register Optimization See the Microchip Tcl set_option
Command Options , on page 416 for more
information about the preserve_registers
option.

Disable I/O Insertion I/O Insertion , on page 410.

Fanout Guide Setting Fanout Limits , on page 418 of the
User Guide and The syn_maxfan
Attribute in Microchip Designs , on
page 407.

Operating Conditions (certain technologies) Operating Condition Device Option , on
page 412

Promote Global Buffer Threshold Controlling Buffering and Replication , on
page 420 of the User Guide and Promote
Global Buffer Threshold , on page 409.

Resolve Mixed Drivers When a net is driven by a VCC or GND
and active drivers, enable this option to
connect the net to the VCC or GND driver.

Update Compile point Timing Data Update Compile Point Timing Data
Option , on page 411

LO

 Designing with Microchip Microchip Device Mapping Options

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
416 Synopsys Confidential Information June 2020

Microchip Tcl set_option Command Options
You can use the set_option Tcl command to specify the same device mapping
options as are available through the Implementation Options dialog box displayed
in the Project view with Project -> Implementation Options (see Implementation
Options Command, on page 346).

This section describes the Microchip-specific set_option Tcl command options.
These include the target technology, device architecture, and synthesis
styles.

The table below provides information on specific options for Microchip archi-
tectures. For a complete list of options for this command, refer to set_option,
on page 113. You cannot specify a package (-package option) for some Micro-
chip technologies in the synthesis tool environment. You must use the Micro-
chip back-end tool for this.

.

Option Description

-technology keyword Sets target technology for the implementation.
Keyword must be one of the following Microchip
architecture names:
IGLOO2, SmartFusion2, RTG4, PolarFire

-part partName Specifies a part for the implementation. Refer to
the Implementation Options dialog box for available
choices.

-package packageName RTG4 and PolarFire families
Specifies the package. Refer to Project->
Implementation Options->Device for available
choices.

-speed_grade value Sets speed grade for the implementation. Refer to
the Implementation Options dialog box for available
choices.

-disable_io_insertion 1|0 Prevents (1) or allows (0) insertion of I/O pads
during synthesis. The default value is false
(enable I/0 pad insertion). For additional
information about disabling I/O pads, see I/O
Insertion , on page 410.

-fanout_limit value Sets fanout limit guidelines for the current
project. For more information about fanout
limits, see The syn_maxfan Attribute in
Microchip Designs , on page 407.

Microchip Device Mapping Options Designing with Microchip

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 417

-globalthreshold value PolarFire, SmartFusion2, IGLOO2, RTG4
Sets fanout threshold for synchronous set/reset
and data nets to infer CLKINT. Default value is
5000. For more information, see Promote Global
Buffer Threshold , on page 409.

-clock_globalthreshold value PolarFire, SmartFusion2, IGLOO2, RTG4
Sets fanout threshold for clock nets to infer
CLKINT. Default value is 2.

-async_globalthreshold value Sets fanout threshold for asynchronous
reset/set nets to infer CLKINT. Default value is 8
for RTG4 and 800 for PolarFire, SmartFusion2
and IGLOO2.

-opcond value PolarFire, IGLOO2
Sets operating condition for device performance
in the areas of optimization, timing analysis, and
timing reports. Values are Default, MIL-WC, IND-
WC, COM-WC, and Automotive-WC. See Operating
Condition Device Option , on page 412 for more
information.

-preserve_registers 1|0 When enabled, the software uses less restrictive
register optimizations during synthesis if area is
not as great a concern for your device. The
default for this option is disabled (0).

-resolve_multiple_driver
1|0

When a net is driven by a VCC or GND and active
drivers, enable this option to connect the net to
the VCC or GND driver.

-rw_check_on_ram 1 | 0 Enabling this option automatically inserts
bypass logic when required, to prevent
simulation mismatch in read-during-write
scenarios. For asynchronous clocks, the tool will
not generate bypass logic which can cause
unintended CDC paths between the clocks.
For more information about using this option in
conjunction with the syn_ramstyle attribute, see
syn_ramstyle , on page 199.

Option Description

LO

 Designing with Microchip Microchip Device Mapping Options

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
418 Synopsys Confidential Information June 2020

-update_models_cp 1|0 PolarFire, IGLOO2
When set to 1, the locked compile point changes
are taken into account, by updating the timing
model of the compile point and resynthesizing all
of its parents (at all levels), using the updated
model. See Update Compile Point Timing Data
Option , on page 411, for details.

-low_power_ram_decomp 0 |1 PolarFire, SmartFusion2, IGLOO2, RTG4
Enables use of BLK pins of the RAM for reducing
power consumption, by fracturing wide RAMs on
the address width. Default value is 0.

-seqshift_to_uram 0 |1 PolarFire, SmartFusion2, IGLOO2, RTG4
Enables inference of URAM if the threshold is
met. Default value is 1.

-disable_ramindex 0 |1 PolarFire, SmartFusion2, IGLOO2, RTG4
Disables the generation of RAMINDEX for RAM
blocks if set to 1.

-microsemi_enhanced_flow 0 |1 PolarFire, SmartFusion2, IGLOO2, RTG4
Enables advanced constraint writer flow and
writes the forward annotation constraints in
Libero enhanced constraints format, when the
value is set to 1. The default is 1.

-rep_clkint_driver 0 |1 PolarFire, SmartFusion2, IGLOO2, RTG4
Enables replication of the register driving a
CLKINT as well as some other loads, for which
the fanout threshold is not met. Default value is
1.

-ternary_adder_decomp value PolarFire, SmartFusion2, IGLOO2, RTG4
Enables ternary adder implementation with the
limit of the adder output width set by default to
66. Ternary adder implementation can be turned
off by setting the value to 0.

Option Description

Microchip Output Files and Forward Annotation Designing with Microchip

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 419

Microchip Output Files and Forward
Annotation

The following procedures show you how to pass information or files that
forward annotate information to the Microchip place-and-route tool. This
section describes the following:

• VM Flow Support, on page 419

• Specifying Pin Locations, on page 420

• Specifying Locations for Microchip Bus Ports, on page 421

• Specifying Macro and Register Placement, on page 422

• Synthesis Reports, on page 422

After synthesis, the software generates a log file and output files for forward
annotation to the Microchip P&R tool as described in some of the reports.

VM Flow Support
The tool generates a Verilog output netlist (.vm) for the PolarFire, SmartFu-
sion2, RTG4 and IGLOO2 devices for the P&R flow. After synthesis, the tool:

• Writes a separate SDC file (*_vm.sdc).
• Writes a separate TCL file (*_partition_vm.tcl) to forward annotate the

timestamps on instances in an incremental compile point flow.

• Forward annotates properties like RTL attributes in the .vm netlist and
constraints in an SDC file.

By default, the tool generates a .vm netlist. You can change the netlist from
Verilog to EDIF.

The tool now supports the Libero Enhanced constraint flow by default. To
disable this flow, the following switch needs to be added in the Synplify Pro
project .prj file:

set_option -microchip_enhanced_flow 0
To select a Verilog output netlist, go to Implementation Options->Implementation
Results->Result Format. Select vm from the drop-down menu, click OK and save
the project.

LO

 Designing with Microchip Microchip Output Files and Forward Annotation

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
420 Synopsys Confidential Information June 2020

Specifying Pin Locations
In certain technologies you can specify pin locations that are forward-
annotated to the corresponding place-and-route tool. The following procedure
shows you how to specify the appropriate attributes. For information about
other placement properties, see Specifying Macro and Register Placement, on
page 422.

1. Start with a design using an appropriate Microchip technology.

2. Add the appropriate attribute to the port. For a bus, list all the bus pins,
separated by commas. To specify Microchip bus port locations, see
Specifying Locations for Microchip Bus Ports, on page 421.

– To add the attribute from the SCOPE interface, click the Attributes tab
and specify the appropriate attribute and value.

Microchip Output Files and Forward Annotation Designing with Microchip

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 421

– To add the attribute in the source files, use the appropriate attribute
and syntax. For details about the attributes in the tables, see the
Attribute Reference Manual.

Specifying Locations for Microchip Bus Ports
You can specify pin locations for Microchip bus ports. To assign pin numbers
to a bus port, or to a single- or multiple-bit slice of a bus port, do the
following:

1. Open the constraint file and add these attributes to the design.

2. Specify the syn_noarrayports attribute globally to bit blast all bus ports in
the design.

define_global_attribute syn_noarrayports {1};
3. Use the alspin attribute to specify pin locations for individual bus bits.

This example shows locations specified for individual bits of bus
ADDRESS0.

define_attribute {ADDRESS0[4]} alspin {26}
define_attribute {ADDRESS0[3]} alspin {30}
define_attribute {ADDRESS0[2]} alspin {33}
define_attribute {ADDRESS0[1]} alspin {38}
define_attribute {ADDRESS0[0]} alspin {40}
The software forward-annotates these pin locations to the place-and-
route software.

Vendor Family Attribute and Value

Microchip syn_loc {pin_number}
or
alspin {pin_number}

LO

 Designing with Microchip Microchip Output Files and Forward Annotation

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
422 Synopsys Confidential Information June 2020

Specifying Macro and Register Placement
You can use attributes to specify macro and register placement in Microchip
designs. The information here supplements the pin placement information
described in Specifying Pin Locations, on page 420 and bus pin placement
information described in Specifying Locations for Microchip Bus Ports, on
page 421.

Synthesis Reports
The synthesis tool generates a resource usage report, a timing report, and a
net buffering report for the Microchip designs that you synthesize.To view the
synthesis reports, click View Log.

For ... Use ...

Relative placement of Microchip
macros and IP blocks

alsloc
define_attribute {u1} alsloc {R15C6}

Integration with Microchip Tools and Flows Designing with Microchip

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 423

Integration with Microchip Tools and Flows
The following procedures provide Microchip-specific design tips.

• Compile Point Synthesis, on page 423

• Incremental Synthesis Flow, on page 424

• Using Predefined Microchip Black Boxes, on page 424

• Using Smartgen Macros, on page 425

• Microchip Place-and-Route Tools, on page 425

Compile Point Synthesis
Microchip PolarFire

Compile-point synthesis is available when you want to isolate portions of a
design in order to stabilize results and/or improve runtime performance
during placement and routing, the Synopsys FPGA The compile-point
synthesis flow lets you achieve incremental design and synthesis without
having to write and maintain sets of complex, error-prone scripts to direct
synthesis and keep track of design dependencies. See Synthesizing Compile
Points, on page 455 for a description, and Working with Compile Points, on
page 435 in the User Guide for a step-by-step explanation of the compile-
point synthesis flow.

In device technologies that can take advantage of compile points, you break
down your design into smaller synthesis units or compile points, in order to
make incremental synthesis possible. A compile point is a module that is
treated as a block for incremental mapping: When your design is resynthe-
sized, compile points that have already been synthesized are not resynthe-
sized, unless you have changed:

• the HDL source code in such a way that the design logic is changed,

• the constraints applied to the compile points, or

• the device mapping options used in the design.

(For details on the conditions that necessitate resynthesis of a compile point,
see Compile Point Basics, on page 436, and Update Compile Point Timing Data
Option, on page 411.)

LO

 Designing with Microchip Integration with Microchip Tools and Flows

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
424 Synopsys Confidential Information June 2020

Incremental Synthesis Flow
Microchip IGLOO2 and SmartFusion2 Technologies

The synthesis tool provides timestamps for each manual compile point in the
*_partition.tcl file. You can use the timestamps to check whether the compile
point was resynthesized in an incremental run of the tool.

To run this flow:

1. Define compile point constraint on the modules in the design. For
example:

define_compile_point {viewName} -type {locked, partition}
-cpfile {fileName}

2. Run the standard synthesis flow. The synthesis tool writes the
timestamps for each compile point in the designName_partition.tcl file. For
example:

set_partition_info -name partitionName -timestamp timestamp

For an incremental synthesis run, only affected compile points display
new timestamps, while unaffected compile points retain the same
timestamps.

Check the Compile Point Summary report available in the log file.

Using Predefined Microchip Black Boxes
The Microchip macro libraries contain predefined black boxes for Microchip
macros so that you can manually instantiate them in your design. For infor-
mation about using ACTGen macros, see Using Smartgen Macros, on
page 425. For general information about working with black boxes, see
Defining Black Boxes for Synthesis, on page 382.

To instantiate an Microchip macro, use the following procedure.

1. Locate the Microchip macro library file appropriate to your technology
and language (v or vhd) in one of these subdirectories under
installDirectory/lib.

Microchip Macros for Microchip technologies.

Integration with Microchip Tools and Flows Designing with Microchip

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 425

Use the macro file that corresponds to your target architecture.

2. Add the Microchip macro library at the top of the source file list for your
synthesis project. Make sure that the library file is first in the list.

3. For VHDL, also add the appropriate library and use clauses to the top of
the files that instantiate the macros:

library family;
use family.components.all;

Specify the appropriate technology in family.

Using Smartgen Macros
The Smartgen macros replace the ACTgen macros, which were available in
the previous Designer 6.x place-and-route tool. The following procedure
shows you how to include Smartgen macros in your design. For information
about using Microchip macro libraries, see Using Predefined Microchip Black
Boxes, on page 424. For general information about working with black boxes,
see Defining Black Boxes for Synthesis, on page 382.

1. In Smartgen, generate the function you want to include.

2. For Verilog macros, do the following:

– Include the appropriate Microchip macro library file for your target
architecture in your the source files list for your project.

– Include the Verilog version of the Smartgen result in your source file
list. Make sure that the Microchip macro library is first in the source
files list, followed by the Smartgen Verilog files, followed by the other
source files.

3. Synthesize your design as usual.

Microchip Place-and-Route Tools
You can run place and route automatically after synthesis. For details on how
to set options, see Running P&R Automatically after Synthesis, on page 554 in
the User Guide.

For details about the place-and-route tools, refer to the Microchip documen-
tation.

LO

 Designing with Microchip Microchip Attribute and Directive Summary

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
426 Synopsys Confidential Information June 2020

Microchip Attribute and Directive Summary
The following table summarizes the synthesis and Microchip-specific
attributes and directives available with the Microchip technology.

Attribute/Directive Description

alsloc Forward annotates the relative placements of
macros and IP blocks to Microchip Designer.

alspin Assigns scalar or bus ports to Microchip I/O pin
numbers.

alspreserve Specifies that a net be preserved, and prevents it
from being removed during place-and-route
optimization.

black_box_pad_pin (D) Specifies that a pin on a black box is an I/O pad. It
is applied to a component, architecture, or module,
with a value that specifies the set of pins on the
module or entity.

black_box_tri_pins (D) Specifies that a pin on a black box is a tristate pin. It
is applied to a component, architecture, or module,
with a value that specifies the set of pins on the
module or entity.

full_case (D) Specifies that a Verilog case statement has covered
all possible cases.

loop_limit (D) Specifies a loop iteration limit for for loops.

parallel_case (D) Specifies a parallel multiplexed structure in a Verilog
case statement, rather than a priority-encoded
structure.

syn_allow_retiming Specifies whether registers can be moved during
retiming.

syn_black_box (D) Defines a black box for synthesis.

syn_direct_enable Assigns clock enable nets to dedicated flip-flop
enable pins. It can also be used as a compiler
directive that marks flip-flops with clock enables for
inference.

syn_encoding Specifies the encoding style for state machines.

(D) indicates directives; all others are attributes.

Microchip Attribute and Directive Summary Designing with Microchip

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 427

syn_enum_encoding (D) Specifies the encoding style for enumerated types
(VHDL only).

syn_hier Controls the handling of hierarchy boundaries of a
module or component during optimization and
mapping.

syn_insert_buffer Inserts a clock buffer according to the specified
value.

syn_insert_pad Removes an existing I/O buffer from a port or net
when I/O buffer insertion is enabled.

syn_isclock (D) Specifies that a black-box input port is a clock, even
if the name does not indicate it is one.

syn_keep (D) Prevents the internal signal from being removed
during synthesis and optimization.

syn_looplimit Specifies a loop iteration limit for while loops in the
design.

syn_maxfan Overrides the default fanout guide for an individual
input port, net, or register output.

syn_multstyle Determines how multipliers are implemented for
Microchip devices.

syn_netlist_hierarchy Determines whether the EDIF output netlist is flat or
hierarchical.

syn_noarrayports Prevents the ports in the EDIF output netlist from
being grouped into arrays, and leaves them as
individual signals.

syn_noclockbuf Turns off the automatic insertion of clock buffers.

syn_noprune (D) Controls the automatic removal of instances that
have outputs that are not driven.

syn_no_compile_point Use this attribute with the Automatic Compile Point
(ACP) feature. If you do not want the software to
create a compile point for a particular view or
module, then apply this attribute.

syn_pad_type Specifies an I/O buffer standard.

Attribute/Directive Description

(D) indicates directives; all others are attributes.

LO

 Designing with Microchip Microchip Attribute and Directive Summary

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
428 Synopsys Confidential Information June 2020

syn_preserve (D) Prevents sequential optimizations across a flip-flop
boundary during optimization, and preserves the
signal.

syn_probe Adds probe points for testing and debugging.

syn_radhardlevel Specifies the radiation-resistant design technique to
apply to a module, architecture, or register.

syn_ramstyle Specifies the implementation to use for an inferred
RAM. You apply syn_ramstyle globally, to a module,
or to a RAM instance.

syn_reference_clock Specifies a clock frequency other than that implied
by the signal on the clock pin of the register.

syn_replicate Controls replication.

syn_resources Specifies resources used in black boxes.

syn_safe_case Enables/disables the safe case option. When
enabled, the high reliability safe case option turns
off sequential optimizations for counters, FSM, and
sequential logic to increase the circuit’s reliability.

syn_sharing (D) Specifies resource sharing of operators.

syn_shift_resetphase Allows you to remove the flip-flop on the inactive
clock edge, built by the reset recovery logic for an
FSM when a single event upset (SEU) fault occurs.

syn_state_machine (D) Determines if the FSM Compiler extracts a structure
as a state machine.

syn_tco<n> (D) Defines timing clock to output delay through the
black box. The n indicates a value between 1 and 10.

syn_tpd<n> (D) Specifies timing propagation for combinational delay
through the black box. The n indicates a value
between 1 and 10.

syn_tristate (D) Specifies that a black-box pin is a tristate pin.

Attribute/Directive Description

(D) indicates directives; all others are attributes.

Microchip Attribute and Directive Summary Designing with Microchip

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 429

syn_tsu<n> (D) Specifies the timing setup delay for input pins,
relative to the clock. The n indicates a value between
1 and 10.

syn_useenables Generates clock enable pins for registers.

translate_off/translate_on
(D)

Specifies sections of code to exclude from synthesis,
such as simulation-specific code.

Attribute/Directive Description

(D) indicates directives; all others are attributes.

LO

 Designing with Microchip Microchip Attribute and Directive Summary

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
430 Synopsys Confidential Information June 2020

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 431

Index

Symbols
_ta.srm file 155
.adc file 144
.areasrr file 152
.fse file 152
.info file 152
.ini file 144
.prj file 144
.sap

annotated properties for analyst 154
.sar file 154
.sdc file 144
.srd file 154
.srm file 154
.srr file 157

watching selected information 37
.srs file 155

initial values (Verilog) 235
.sv file 145

SystemVerilog source file 145
.ta file

See timing report file 155
.v file 145
.vhd file 145
.vhm file 157
.vm file 157

A
ACTgen macros 425
adc file (analysis design constraint) 144
adder

SYNCore 334
adders

SYNCore 335
Allow Docking command 38

alspin
bus port pin numbers 421

Alt key, selecting columns in Text Editor
47

analysis design constraint file (.adc) 144
Analyst toolbar 59
annotated properties for analyst

.sap 154

.timing annotated properties (.tap) 156
archive file (.sar) 154
areasrr file

hierarchical area report 172
arrow keys, selecting objects in

Hierarchy Browser 109
arrow pointers for push and pop 108
asynchronous clock report

description 170
attributes

inferring RAM 184
attributes (Microchip) 426
Attributes demo 50
auto constraints 141

Maximize option 74

B
black boxes

See also macros, macro libraries
Microchip 377

block RAM
dual-port RAM examples 200
inferring 187
modes 183
NO_CHANGE mode example 196
READ_FIRST mode example 195
single-port RAM examples 197
types 183
WRITE_FIRST mode example 193

block RAMs

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
432 Synopsys Confidential Information June 2020

syn_ramstyle attribute 428
buttons and options, Project view 72
byte-enable RAMs

SYNCore 304

C
cck.rpt file (constraint checking report)

152
check boxes, Project view 72
clock buffering report, log file (.srr) 159
clock groups

Clock Relationships (timing report) 168
clock pin drivers, selecting all 82
clock relationships, timing report 168
clock report

asynchronous 162
Clock Tree, HDL Analyst tool 82
clocks

asynchronous report 170
declared clock 164
defining 82
derived clock 165
inferred clock 164
system clock 165

color coding
Text Editor 47

commenting out code (Text Editor) 47
compile points

Microchip 423
updating data (Microchip) 411

compiler report, log file (.srr) 158
Constraint Check command 173
constraint checking report 173
constraint files 125

.sdc 144
automatic. See auto constraints
fdc and sdc precedence order 128

constraint files (.sdc)
creating 58

constraint priority 128
constraints

auto constraints. See auto constraints
non-DC 135
priority 128

report file 173
styles 127
types 124

context help editor 48
context of filtered schematic, displaying

114
context sensitive help

using the F1 key 18
copying

for pasting 65
counter compiler

SYNCore 358
counters

SYNCore 359
critical paths 119

analyzing 120
finding 120

cross-clock paths, timing analysis 168
cross-hair mouse pointer 55
crossprobing 99

definition 99
Ctrl key

avoiding docking 57
multiple selection 54
zooming using the mouse wheel 56

cutting (for pasting) 58

D
declared clock 164
deleting

See removing
derived clock 165
design size, schematic sheet

setting 102
device options (Microchip) 415
directives (Microchip) 426
Dissolve Instances command 117
docking 38

avoiding 57
docking GUI entities

toolbar 57
DSP blocks

inferencing 379

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 433

dual-port RAM examples 200
dual-port RAMs

SYNCore parameters 287

E
editor view

context help 48
encoding

state machine
FSM Explorer 74

examples
Interactive Attribute Examples 50

Explorer, FSM
enabling 74

F
failures, timing (definition) 121
fanout

Microchip 407
fdc

constraint priority 128
precedence over sdc 128

fdc constraints 130
generation process 128

fdc file
relationship with other constraint files

125
feature comparison

FPGA tools 14
FIFO compiler

SYNCore 250
FIFO flags

empty/almost empty 272
full/almost full 271
handshaking 272
programmable 274
programmable empty 277
programmable full 275

FIFOs
compiling with SYNCore 251

files
.adc 144
.areasrr 152
.fdc 144
.fse 152

.info 152

.ini 144

.prj 144

.sar 154

.sdc 144

.srm 154, 155

.srr 157
watching selected information 37

.srs 155

.ta 155

.v 145

.vhd 145

.vhm 157

.vm 157
compiler output (.srs) 155
constraint (.adc) 144
constraint (.sdc) 144
creating 58
customized timing report (.ta) 155
design component info (.info) 152
initialization (.ini) 144
log (.srr) 157

watching selected information 37
mapper output (.srm) 154, 155
output

See output files
project (.prj) 144
RTL view (.srs) 155
srr 157

watching selected information 37
state machine encoding (.fse) 152
Synopsys archive file (.sar) 154
synthesis output 152
Technology view (.srm) 154, 155
Verilog (.v) 145
VHDL (.vhd) 145

files for synthesis 144
filtered schematic

compared with unfiltered 85
filtering 113

commands 113
compared with flattening 117
FSM states and transitions 85
paths from pins or ports 121

filtering critical paths 120
finding

critical paths 120
information on synthesis tool 19

GUI 18

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
434 Synopsys Confidential Information June 2020

finite state machines
See state machines

Flatten Current Schematic command 117
Flatten Schematic command 117
flattening

commands 115
compared with filtering 117
selected instances 116

Float command
Watch window popup menu 38

floating
toolbar 57

floating toolbar popup menu 57
forward annotation

initial values 235
Forward Annotation of Initial Values

Verilog 235
frequency

cross-clock paths 168
Frequency (Mhz) option, Project view 73
fse file 152
FSM Compiler option, Project view 74
FSM Compiler, enabling and disabling

globally
with GUI 74

FSM encoding file (.fse) 152
FSM Explorer

enabling 74
FSM Explorer option, Project view 74
FSM toolbar 62
FSM Viewer 83
FSMs (finite state machines)

See state machines

G
generic technology library 149
graphical user interface (GUI), overview

21
GTECH library. See generic technology

library
gtech.v library 149
gui

synthesis software 17

GUI (graphical user interface), overview
21

H
HDL Analyst tool 77

accessing commands 86
analyzing critical paths 119
Clock Tree 82
crossprobing 99
filtering designs 113
finding objects 97
hierarchical instances. See hierarchical

instances
object information 88
preferences 102
push/pop mode 105
ROM table viewer 243
schematic sheet size 102
schematics, filtering 113
schematics, multiple-sheet 102
status bar information 88
title bar information 102

HDL Analyst toolbar
See Analyst toolbar

HDL Analyst views 78
See also RTL view, Technology view

HDL files, creating 58
header, timing report 163
help

online
accessing 18

hidden hierarchical instances 93
are not flattened 117

Hide command
floating toolbar popup menu 57
Log Watch window popup menu 38
Tcl Window popup menu 41

hierarchical area report 172
.areasrr file 172

hierarchical instances 91
compared with primitive 90
display in HDL Analyst 91
hidden 93
opaque 91
transparent 91

hierarchical schematic sheet, definition
102

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 435

hierarchy
flattening

compared with filtering 117
pushing and popping 105
schematic sheets 102

Hierarchy Browser 109
changing size in view 78
Clock Tree 82
finding schematic objects 97
moving between objects 82
RTL view 78
symbols (legend) 83
Technology view 80
trees of objects 82

I
I/O insertion (Microchip) 410
Identify Instrumentor

launching 63
IEEE 1364 Verilog 95 standard 146
Implementation Directory 32
Implementation Results 32
indenting a block of text 47
indenting text (Text Editor) 47
inferencing

DSP blocks 379
inferred clock 164
info file (design component info) 152
ini file 144
initial value data file

Verilog 232
Initial Values

forward annotation 235
initial values

$readmemb 229
$readmemh 229

initial values (Verilog)
netlist file (.srs) 235

initialization file (.ini) 144
input files 144

.adc 144

.ini 144

.sdc 144

.sv 145

.v 145

.vhd 145
inserting

bookmarks (Text Editor) 47
instances

hierarchical
dissolving 110
making transparent 110

hierarchical. See hierarchical instances
primitive. See primitive instances

Interactive Attribute Examples 50
interface information, timing report 169
IPs

SYNCore byte-enable RAMs 304
SYNCore counters 359
SYNCore FIFOs 251
SYNCore RAMs 281
SYNCore ROMs 321
SYNCore subtractors 335

isolating paths from pins or ports 121

K
keyboard shortcuts 64

arrow keys (Hierarchy Browser) 109
keyword completion, Text Editor 47
keywords

completing in Text Editor 47

L
latches

in timing analysis 119
Launch Identify Instrumentor icon 63
legacy sdc file. See sdc files, difference

between legacy and Synopsys
standard

lib2syn
using 150

libraries
general technology 148
macro, built-in 145
technology-independent 148
VHDL

attributes and constraints 146
linkerlog file 153
log file (.srr) 157

watching selected information 37

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
436 Synopsys Confidential Information June 2020

log file report 157
clock buffering 159
compiler 158
mapper 159
net buffering 159
resource usage 160
retiming 161
summary of compile points 160
timing 160

Log Watch Configuration dialog box 39
Log Watch window 37

Output Windows 45
positioning commands 38

M
macros

libraries 145
Microchip 377
SIMBUF 378

mapper output file (.srm) 154, 155
mapper report

log file (.srr) 159
margin, slack 120
message viewer

description 41
Messages Tab 41
Microchip

ACTgen macros 425
attributes 426
black boxes 377
compile point synthesis 423
compile point timing data 411
device options 415
directives 426
features 376
I/O insertion 410
macro libraries 424
macros 377
Operating Condition Device Option 412
output netlist 375
pin numbers for bus ports 421
product families 374
reports 422
SIMBUF macro 378
Tcl implementation options 416

Microchip implementing RAM 386
mouse button operations 54

mouse operations 52
Mouse Stroke Tutor 53
mouse wheel operations 56
Move command

floating toolbar window 57
Log Watch window popup menu 38
Tcl window popup menu 41

moving between objects in the Hierarchy
Browser 82

moving GUI entities
toolbar 57

multiple-sheet schematics 102
multipliers

DSP blocks 379
multisheet schematics

transparent hierarchical instances 104

N
navigating

among hierarchical levels
by pushing and popping 105
with the Hierarchy Browser 109

among the sheets of a schematic 102
nesting design details (display) 110
net buffering report, log file 159
netlist file 157

initial values (Verilog) 235
netlists for different vendors 375

O
object information

status bar, HDL Analyst tool 88
viewing in HDL Analyst tool 88

objects
crossprobing 99
dissolving 110
making transparent 110

objects, schematic
See schematic objects

Online help
F1 key 18

online help
accessing 18

opaque hierarchical instances 91

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 437

are not flattened 117
options

Project view 72
Frequency (Mhz) 73
FSM Compiler 74
FSM Explorer 74
Resource Sharing 75
Retiming 75

options (Microchip) 416
output files 152

.areasrr 152

.info 152

.sar 154

.srm 154, 155

.srr 157
watching selected information 37

.srs 155

.ta 155

.vhm 157

.vm 157
netlist 157
See also files

Output Windows 45
Overview of the Synopsys FPGA

Synthesis Tools 12

P
parameters

SYNCore adder/subtractor 343
SYNCore byte-enable RAM 311
SYNCore counter 365
SYNCore FIFO 256
SYNCore RAM 289
SYNCore ROM 326

partitioning of schematics into sheets
102

pasting 58
performance summary, timing report 163
pins

displaying
on transparent instances 95

displaying on technology-specific
primitives 96

isolating paths from 121
pointers, mouse

cross-hairs 55
push/pop arrows 108

popping up design hierarchy 105
popup menus

floating toolbar 57
Log Watch window 38, 39
Log Watch window positioning 38
Tcl window 41

precedence of constraint files 128
preferences

HDL Analyst tool 102
primitive instances 90
primitives

pin names in Technology view 96
prj file 144
Process View 33
project files (.prj) 144
project results

Implementation Directory 32
Process View 33
Project Status View 26

Project Results View 26
Project Status View 26
Project toolbar 57
Project view 22

buttons and options 72
options 72
Synplify Pro 22

Project window 22
project_name_cck.rpt file 173
push/pop mode, HDL Analyst tool 105

R
RAM implementations

Microchip 386
RAM inference 183

using attributes 184
RAMs

compiling with SYNCore 281
inferring block RAM 187
initial values (Verilog) 229
SYNCore 281
SYNCore, byte-enable 304

RAMs, inferring
advantages 182

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
438 Synopsys Confidential Information June 2020

reference manual, role in document set
11

removing
bookmark (Text Editor) 47
window (view) 57

reports
constraint checking (cck.rpt) 173
hierarchical area report 172

Resource Sharing option, Project view 75
resource usage report, log file 160
retiming

report, log file 161
Retiming option, Project view 75
ROM compiler

SYNCore 319
ROM inference examples 243
ROM initialization

with rom.info file 246
with Verilog generate block 247

rom.info file 243
ROMs

SYNCore 321
RTL view 78

displaying 60
file (.srs) 155

S
schematic objects

crossprobing 99
definition 88
dissolving 110
finding 97
making transparent 110
status bar information 88

schematic sheets 102
hierarchical (definition) 102
navigating among 102
setting size 102

schematics
configuring amount of logic on a sheet

102
crossprobing 99
filtered 85
filtering commands 113
flattening compared with filtering 117
flattening selectively 116

hierarchical (definition) 102
multiple-sheet 102
multiple-sheet. See also schematic

sheets
object information 88
partitioning into sheets 102
sheet connectors 89
sheets

navigating among 102
size, setting 102

size in view, changing 78
unfiltered 85
unfiltering 114

SCOPE
for legacy sdc 132

sdc
fdc precedence 128
SCOPE for legacy files 132

sdc file
difference between legacy and

Synopsys standard 127
sdc2fdc utility 133
selecting

text column (Text Editor) 47
selecting multiple objects using the Ctrl

key 54
set_rtl_ff_names 135
sheet connectors 89
Shift key 57
shortcuts

keyboard
See keyboard shortcuts

SIMBUF macro 378
single-port RAM examples 197
single-port RAMs

SYNCore parameters 286
slack

cross-clock paths 169
defined 164
margin

definition 121
setting 120

source files
See also files
creating 58

srd file 154

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 439

srm file 154, 155
srr file 157

watching selected information 37
srs file 155

initial values (Verilog) 235
standards, supported

Verilog 146
VHDL 146

state machines
encoding

displaying 85
FSM Explorer 74

encoding file (.fse) 152
filtering states and transitions 85
state encoding, displaying 85

status bar information, HDL Analyst tool
88

structural netlist file (.vhm) 157
structural netlist file (.vm) 157
subtractor

SYNCore 334
subtractors

SYNCore 335
summary of compile points report

log file (.srr) 160
supported standards

Verilog 146
VHDL 146

symbols
Hierarchy Browser (legend) 83

syn_maxfan
fanout limits (Microchip) 407

syn_noarrayports attribute
use with alspin 421

SYNCore
adder/subtractor 334
adder/subtractor parameters 343
adders 335
byte-enable RAM compiler

byte-enable RAM compiler
SYNCore 303

byte-enable RAM parameters 311
counter compiler 358
counter parameters 365
counters 359
FIFO compiler 250, 251

FIFO parameters 256
RAM compiler

RAM compiler
SYNCore 281

RAM parameters 289
RAMs 281
RAMs, byte-enable 304
RAMs, dual-port parameters 287
RAMs, single-port parameters 286
ROM compiler 319
ROM parameters 326
ROMs 321
ROMs, parameters 325
subtractors 335

SYNCore adder/subtractor
adders 346
dynamic adder/subtractor 352
functional description 334
subtractors 349

SYNCore FIFOs
definition 250
parameter definitions 269
port list 266
read operations 266
status flags 271
write operations 265

SYNCore ROMs
dual-port read 331
parameter list 331
single-port read 330

Synopsys FPGA Synthesis Tools
overview 12

Synopsys standard sdc file. See sdc files,
difference between legacy and
Synopsys standard

Synplify Pro tool
Project view 22
user interface 17

Synplify tool
user interface 17

synthesis
log file (.srr) 157

watching selected information 37
synthesis software

gui 17
system clock 165
SystemVerilog keywords

context help 48

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
440 Synopsys Confidential Information June 2020

T
ta file (customized timing report) 155
Tcl commands

constraint files 131
pasting 41

Tcl Script window
Output Windows 45

Tcl shell command
sdc2fdc 133

Tcl window
popup menu commands 41
popup menus 41

Technology view 80
displaying 60
file (.srm) 154, 155

Text Editor
features 47
indenting a block of text 47
opening 46
selecting text column 47
view 45

text editor
completing keywords 47

Text Editor view 45
timing analysis of critical paths (HDL

Analyst tool) 119
timing analyst

cross-clock paths 168
timing annotated properties (.tap) 156
timing constraints

See also FPGA timing constraints
See constraints

timing failures, definition 121
timing report 162

clock relationships 168
customized (.ta file) 155
file (.ta) 155
header 163
interface information 169
performance summary 163

timing reports
asynchronous clocks 170
log file (.srr) 160

title bar information, HDL Analyst tool
102

toolbars 57
FSM 62
moving and docking 57

transparent hierarchical instances 92
lower-level logic on multiple sheets 104
operations resulting in 112
pins and pin names 95

trees of objects, Hierarchy Browser 82
trees, browser, collapsing and expanding

82

U
unfiltered schematic, compared with

filtered 85
unfiltering schematic 114
user interface

Synplify Pro tool 17
user interface, overview 21
using the mouse 52
utilities

lib2syn 150
sdc2fdc 133

V
v file 145
vendor technologies

Microchip 373
vendor-specific netlists 375
Verilog

Forward Annotation of Initial Values
235

generic technology library 149
initial value data file 232
initial values for RAMs 229
Microchip ACTgen macros 425
netlist file 157
ROM inference 243
source files (.v) 145
structural netlist file (.vm) 157
supported standards 146

Verilog 2001 146
Verilog 95 146
Verilog macro libraries

Microchip 424

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 441

Verilog source file (.v) 145
vhd file 145
vhd source file 145
VHDL

libraries
attributes, supplied with synthesis

tool 146
macro libraries, Microchip 424
source files (.vhd) 145
structural netlist file (.vhm) 157
supported standards 146

VHDL source file (.vhd) 145
vhm file 157
views 36

FSM 83
Project 22
removing 57
RTL 78
Technology 80

vm file 157

W
Watch Window. See Log Watch window
window

Project 22
windows 36

closing 66
log watch 37
removing 57

Z
zoom

using the mouse wheel and Ctrl key 56

LO

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
442 Synopsys Confidential Information June 2020

	Synplify Pro for Microchip Reference Manual
	Copyright Notice and Proprietary Information
	Free and Open-Source Licensing Notices
	Destination Control Statement
	Disclaimer
	Trademarks
	Third-Party Links

	Product Overview
	Overview of the Synthesis Tool
	Common Features

	Synopsys FPGA Tool Features
	Graphic User Interface
	Getting Help

	User Interface Overview
	The Project View
	Project Management View

	The Project Results View
	Project Status Tab
	Report Tab
	Implementation Directory
	Process View

	Other Windows and Views
	Dockable GUI Entities
	Watch Window
	Tcl Script and Messages Windows
	Tcl Script Window
	Message Viewer
	Output Windows (Tcl Script and Watch Windows)
	Text Editor View
	Context Help Editor Window
	Interactive Attribute Examples

	Using the Mouse
	Mouse Operation Terminology
	Using Mouse Strokes
	Using the Mouse Buttons
	Using the Mouse Wheel

	Toolbars
	Project Toolbar
	Analyst Toolbar
	Text Editor Toolbar
	FSM Viewer Toolbar
	Tools Toolbar

	Keyboard Shortcuts
	Buttons and Options

	HDL Analyst Tool
	HDL Analyst Views and Commands
	RTL View
	Technology View
	Hierarchy Browser
	FSM Viewer Window
	Filtered and Unfiltered Schematic Views
	Accessing HDL Analyst Commands

	Schematic Objects and Their Display
	Object Information
	Sheet Connectors
	Primitive and Hierarchical Instances
	Transparent and Opaque Display of Hierarchical Instances
	Hidden Hierarchical Instances
	Schematic Display

	Basic Operations on Schematic Objects
	Finding Schematic Objects
	Selecting and Unselecting Schematic Objects
	Crossprobing Objects
	Dragging and Dropping Objects

	Multiple-sheet Schematics
	Controlling the Amount of Logic on a Sheet
	Navigating Among Schematic Sheets
	Multiple Sheets for Transparent Instance Details

	Exploring Design Hierarchy
	Pushing and Popping Hierarchical Levels
	Navigating With a Hierarchy Browser
	Looking Inside Hierarchical Instances

	Filtering and Flattening Schematics
	Commands That Result in Filtered Schematics
	Combined Filtering Operations
	Returning to The Unfiltered Schematic
	Commands That Flatten Schematics
	Selective Flattening
	Filtering Compared to Flattening

	Timing Information and Critical Paths
	Timing Reports
	Critical Paths and the Slack Margin Parameter
	Examining Critical Path Schematics

	Constraint Guidelines
	Constraint Types
	Constraint Files
	Timing Constraints
	FDC Constraints
	Methods for Creating Constraints
	Constraint Translation
	sdc2fdc Conversion

	Constraint Checking
	Database Object Search
	Forward Annotation
	Auto Constraints

	Input and Result Files
	Input Files
	HDL Source Files

	Libraries
	Open Verification Library (Verilog)
	The Generic Technology Library
	ASIC Library Files

	Output Files
	Log File
	Timing Reports
	Timing Report Header
	Performance Summary
	Clock Pre-map Reports
	Clock Relationships
	Interface Information
	Asynchronous Clock Report

	Hierarchical Area Report
	Constraint Checking Report

	RAM and ROM Inference
	Guidelines and Support for RAM Inference
	Automatic RAM Inference
	Block RAM
	RAM Attributes

	Block RAM Inference
	Block RAM Examples

	Initial Values for RAMs
	Example 1: RAM Initialization
	Example 2: Cross-Module Referencing for RAM Initialization
	Initialization Data File
	Forward Annotation of Initial Values

	RAM Instantiation with SYNCORE
	ROM Inference

	SynCore IP Tool
	SYNCore FIFO Compiler
	Synchronous FIFO Overview
	Specifying FIFOs with SYNCore
	SYNCore FIFO Wizard
	FIFO Read and Write Operations
	FIFO Ports
	FIFO Parameters
	FIFO Status Flags
	FIFO Programmable Flags

	SYNCore RAM Compiler
	Specifying RAMs with SYNCore
	SYNCore RAM Wizard
	Single-Port Memories
	Dual-Port Memories
	Read/Write Timing Sequences

	SYNCore Byte-Enable RAM Compiler
	Functional Overview
	Specifying Byte-Enable RAMs with SYNCore
	SYNCore Byte-Enable RAM Wizard
	Read/Write Timing Sequences
	Parameter List

	SYNCore ROM Compiler
	Functional Overview
	Specifying ROMs with SYNCore
	SYNCore ROM Wizard
	Single-Port Read Operation
	Dual-Port Read Operation
	Parameter List

	SYNCore Adder/Subtractor Compiler
	Functional Description
	Specifying Adder/Subtractors with SYNCore
	SYNCore Adder/Subtractor Wizard
	Adder
	Subtractor
	Dynamic Adder/Subtractor

	SYNCore Counter Compiler
	Functional Overview
	Specifying Counters with SYNCore
	SYNCore Counter Wizard
	UP Counter Operation
	Down Counter Operation
	Dynamic Counter Operation

	Designing with Microchip
	Basic Support for Microchip Designs
	Microchip Device-specific Support
	Netlist Format
	Microchip Features

	Microchip Components
	Macros and Black Boxes in Microchip Designs
	DSP Block Inference
	Control Signals Extraction for Registers (SLE)
	Wide MUX Inference

	Microchip RAM Implementations
	RAM for PolarFire
	RAM for RTG4
	RAM for SmartFusion2/IGLOO2
	PolarFire Asymmetric RAM support
	RAM Reporting
	Low Power RAM Inference
	URAM Inference for Sequential Shift Registers
	Async Reset and Dynamic Offset in Seqshifts
	Packing of Enable Signal on the Read Address Register
	Packing of INIT Value on LSRAM and URAM Blocks in PolarFire
	PolarFire RAM Inference for ROM Support
	Write Byte-Enable Support for RAM
	RAMINDEX Support

	Microchip Constraints and Attributes
	Global Buffer Promotion
	The syn_maxfan Attribute in Microchip Designs
	Radiation-tolerant Applications

	Microchip Device Mapping Options
	Promote Global Buffer Threshold
	I/O Insertion
	Update Compile Point Timing Data Option
	Operating Condition Device Option
	Microchip set_option Command Options
	Microchip Tcl set_option Command Options

	Microchip Output Files and Forward Annotation
	VM Flow Support
	Specifying Pin Locations
	Specifying Locations for Microchip Bus Ports
	Specifying Macro and Register Placement
	Synthesis Reports

	Integration with Microchip Tools and Flows
	Compile Point Synthesis
	Incremental Synthesis Flow
	Using Predefined Microchip Black Boxes
	Using Smartgen Macros
	Microchip Place-and-Route Tools

	Microchip Attribute and Directive Summary
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Z

