Verification Continuum™
Synopsys

Synplify Pro for Microchip
Reference Manual

June 2020

SYNOPSYS

Synopsys Confidential Information

Copyright Notice and Proprietary Information

© 2020 Synopsys, Inc. All rights reserved. This software and documentation
contain confidential and proprietary information that is the property of
Synopsys, Inc. The software and documentation are furnished under a
license agreement and may be used or copied only in accordance with the
terms of the license agreement. No part of the software and documentation
may be reproduced, transmitted, or translated, in any form or by any means,
electronic, mechanical, manual, optical, or otherwise, without prior written
permission of Synopsys, Inc., or as expressly provided by the license agree-
ment.

Free and Open-Source Licensing Notices

If applicable, Free and Open-Source Software (FOSS) licensing notices are
available in the product installation.

Destination Control Statement

All technical data contained in this publication is subject to the export
control laws of the United States of America. Disclosure to nationals of other
countries contrary to United States law is prohibited. It is the reader’s
responsibility to determine the applicable regulations and to comply with
them.

Disclaimer

SYNOPSYS, INC., AND ITS LICENSORS MAKE NO WARRANTY OF ANY
KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
2 Synopsys Confidential Information June 2020

Trademarks

Synopsys and certain Synopsys product names are trademarks of Synopsys,
as set forth at

http:/ /www.synopsys.com/Company/Pages/Trademarks.aspx.

All other product or company names may be trademarks of their respective
owners.

Third-Party Links

Any links to third-party websites included in this document are for your
convenience only. Synopsys does not endorse and is not responsible for such
websites and their practices, including privacy practices, availability, and
content.

Synopsys, Inc.

690 East Middlefield Road
Mountain View, CA 94043
WWW.SyNnopsys.com

June 2020

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information

http://www.synopsys.com/Company/Pages/Trademarks.aspx

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
4 Synopsys Confidential Information June 2020

Contents

Chapter 1: Product Overview

Overview of the Synthesis Tool 12

Common Features 12
Synopsys FPGA Tool Features i, 14
Graphic User Interface i e 17
Getting Help e 19

Chapter 2: User Interface Overview

The Project View 22
Project Management View 24
The Project Results View 26
Project Status Tab 26
Report Tab 30
Implementation Directory e 32
Process View e 33
Other Windows and Views i e 36
Dockable GUI Entities 37
Watch Window e 37
Tcl Script and Messages Windows 40
Tel Script WIndowo 41
Message ViewWer 41
Output Windows (Tcl Script and Watch Windows) 45
Text Editor View e 45
Context Help Editor Window i, 48
Interactive Attribute Examples 50
Usingthe MoUSE e e 52
Mouse Operation Terminology e 52
Using Mouse Strokes 53
Usingthe Mouse Buttons 54
Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 5

Using the Mouse Wheel 56

Toolbars 57
Project Toolbar 57
Analyst Toolbar e 59
Text Editor Toolbar 61
FSMViewer Toolbar i 62
Tools Toolbar 63

Keyboard Shortcuts 64

Buttonsand Options e 72

Chapter 3: HDL Analyst Tool

HDL Analyst Views and Commands i, 78
RT L VieW ..o 78
Technology View 80
Hierarchy Browser e 82
FSM Viewer Window e e 83
Filtered and Unfiltered Schematic Views 85
Accessing HDL Analyst Commands 86

Schematic Objects and TheirDisplay 88
Object Information e 88
Sheet ConnecCtorso 89
Primitive and Hierarchical Instances 90
Transparent and Opaque Display of Hierarchical Instances 91
Hidden Hierarchical Instances 93
Schematic Display e 93

Basic Operations on SchematicObjects 97
Finding SchematicObjects 97
Selecting and Unselecting Schematic Objects 98
Crossprobing Objects 99
Dragging and Dropping Objects 101

Multiple-sheet Schematics 102
Controlling the Amount of LogiconaSheet 102
Navigating Among Schematic Sheets 102
Multiple Sheets for Transparent Instance Details 104

Exploring Design Hierarchy 105
Pushing and Popping Hierarchical Levels 105
Navigating With a Hierarchy Browser 109
Looking Inside Hierarchical Instances 110

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual

6 Synopsys Confidential Information June 2020

Filtering and Flattening Schematics 113

Commands That Result in Filtered Schematics 113
Combined Filtering Operations i 114
Returning to The Unfiltered Schematic 114
Commands That Flatten Schematics 115
Selective Flattening 116
Filtering Compared to Flattening 117
Timing Information and Critical Paths 119
Timing Reports e 119
Critical Paths and the Slack Margin Parameter 120
Examining Critical Path Schematics 121

Chapter 4: Constraint Guidelines

Constraint TYyPeSot 124
Constraint Files 125
Timing Constraints e 127
FDC Constraintsot e 130
Methods for Creating Constraints 131
Constraint Translation 133

sAdc2fdc CONVErSION e 133
Constraint Checking e 138
Database ObjectSearch 140
Forward Annotation 141
Auto Constraints e 141

Chapter 5: Input and Result Files

Input Files 144

HDL Sourc e Files. e 145

Libraries 148

Open Verification Library (Verilog) i 149

The Generic Technology Library 149

ASIC Library Files 150

Output Files 152

Log File . ..o 157

Timing Reports 162
Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 7

Timing Report Header 163

Performance Summary e 163
Clock Pre-map Reports e 165
Clock Relationships e 168
Interface Information 169
A synchronous Clock Report i 170
Hierarchical Area Report 172
Constraint Checking Report 173
Chapter 6: RAM and ROM Inference
Guidelines and Support for RAM Inference 182
Automatic RAM Inference 183
Block RAM .. 183
RAM Attributes 184
Block RAM Inference 187
Block RAM Examples e 193
Initial Values for RAMS e 229
Example 1: RAM Initialization 229
Example 2: Cross-Module Referencing for RAM Initialization 230
Initialization Data File 232
Forward Annotation of Initial Values 235
RAM Instantiation with SYNCORE 242
ROM INference e e e 243
Chapter 7: SynCore IP Tool
SYNCore FIFO Compiler e 250
Synchronous FIFO Overview i 250
Specifying FIFOs with SYNCore 251
SYNCore FIFOWizard i 256
FIFO Read and Write Operations 265
FIFO POrts ... e 266
FIFO Parameters i e e 269
FIFO Status Flags e 271
FIFO Programmable Flags e 274
SYNCore RAM Compiler 281
Specifying RAMs with SYNCore 281
SYNCore RAM Wizard i 289
Single-Port Memories 293
© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual

8 Synopsys Confidential Information June 2020

Dual-Port Memories e 295

Read/Write Timing Sequencesttt 299
SYNCore Byte-Enable RAM Compiler 303
Functional Overview 303
Specifying Byte-Enable RAMs with SYNCore 304
SYNCore Byte-Enable RAM Wizard 311
Read/Write Timing Sequences 314
Parameter List 317
SYNCore ROM Compiler e i 319
Functional Overview 319
Specifying ROMs with SYNCore 321
SYNCore ROM Wizard e e 326
Single-Port Read Operation i 330
Dual-Port Read Operation 331
Parameter List 331
SYNCore Adder/Subtractor Compiler 334
Functional Description 334
Specifying Adder/Subtractors with SYNCore 335
SYNCore Adder/Subtractor Wizard, 343
AdAEr . 346
Subtractor 349
Dynamic Adder/Subtractor 352
SYNCore Counter Compiler 358
Functional Overview 358
Specifying Counters with SYNCore 359
SYNCore Counter Wizard 365
UP Counter Operation i 368
Down Counter Operation 369
Dynamic Counter Operation 369

Appendix H: Designing with Microchip

Basic Support for Microchip Designs 374
Microchip Device-specific Support 374
Netlist Format 374
Microchip Features e 376
Microchip Components e 377
Macros and Black Boxes in Microchip Designs 377
DSP Block Inference 379
Control Signals Extraction for Registers (SLE) 384
Wide MUX Inference e 385
Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 9

Microchip RAM Implementations 386

RAM for PolarFire 386
RAM for RTG4 . ..o e e e e 387
RAM for SmartFusion2/IGLOO2 i 388
PolarFire Asymmetric RAM support 392
RAM Reportingo 397
Low Power RAM Inference e 398
URAM Inference for Sequential Shift Registers 398
Async Reset and Dynamic Offsetin Segshifts 400
Packing of Enable Signal on the Read Address Register 400
Packing of INIT Value on LSRAM and URAM Blocks in PolarFire 401
PolarFire RAM Inference for ROM Support 401
Write Byte-Enable Supportfor RAM 404
RAMINDEX SUPPOIt . . . oo 405
Microchip Constraints and Attributes 406
Global Buffer Promotion 406
The syn_maxfan Attribute in Microchip Designs 407
Radiation-tolerant Applications 408
Microchip Device Mapping Options i 409
Promote Global Buffer Threshold 409
O INSertion 410
Update Compile Point Timing Data Option 411
Operating Condition Device Option 412
Microchip set_option Command Options 415
Microchip Tcl set_option Command Options 416
Microchip Output Files and Forward Annotation 419
VM Flow SUppOrt 419
Specifying Pin Locations 420
Specifying Locations for Microchip Bus Ports 421
Specifying Macro and Register Placement 422
Synthesis Reports 422
Integration with Microchip Toolsand Flows 423
Compile Point Synthesis 423
Incremental Synthesis Flow 424
Using Predefined MicrochipBlack Boxes 424
Using Smartgen Macrost 425
Microchip Place-and-Route Tools 425
Microchip Attribute and Directive Summary 426
© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual

10 Synopsys Confidential Information June 2020

SYNOPSYS

Silicon to Software

CHAPTER 1

Product Overview

This document is part of a set that includes reference and procedural infor-
mation for the Synopsys® FPGA synthesis tool. The reference manual
provides additional details about the synthesis tool user interface,
commands, and features. Use this information to supplement the user guide
tasks, procedures, design flows, and result analysis.

The following sections include an introduction to the synthesis tool.
* Overview of the Synthesis Tool, on page 12
* Synopsys FPGA Tool Features, on page 14
* Graphic User Interface, on page 17

* Getting Help, on page 19

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 11

Product Overview Overview of the Synthesis Tool

Overview of the Synthesis Tool

This section introduces the technology, main features, and user interface of
the FPGA synthesis tool. See the following for details:

* Common Features, on page 12

¢ Graphic User Interface, on page 17

Common Features

The Synopsys FPGA synthesis tool includes the following built-in features:

¢ The HDL Analyst® analysis and debugging environment, a graphical tool
for analysis and crossprobing. See Analyzing With the HDL Analyst Tool,
on page 272 and Analyzing With the Standard HDL Analyst Tool, on
page 336 in the User Guide.

¢ The Text Editor window, with a language-sensitive editor for writing and
editing HDL code. See Text Editor View, on page 45.

* The SCOPE" (Synthesis Constraint Optimization Environment®) tool,
which provides a spreadsheet-like interface for managing timing
constraints and design attributes. See SCOPE Constraints Editor, on
page 216.

* FSM Compiler, a symbolic compiler that performs advanced finite state
machine (FSM) optimizations. See Running the FSM Compiler, on
page 425.

¢ Integration with the Identify Debugger.

The following features are specific to the Synplify Pro tool. For a comparison
of the features in the tools, see Synopsys FPGA Tool Features, on page 14.

e FSM Explorer, which tries different state machine optimizations before
picking the best implementation. See Running the FSM Explorer, on
page 429.

* The FSM Viewer, for viewing state transitions in detail. See Using the
FSM Viewer, on page 291.

¢ The Tcl window, a command line interface for running TCL scripts. See
Tcl Script Window, on page 41.

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
12 Synopsys Confidential Information June 2020

Overview of the Synthesis Tool Product Overview

The Timing Analyst window, which allows you to generate timing
schematics and reports for specified paths for point-to-point timing
analysis.

Other special windows, or views, for analyzing your design, including
the Watch Window and Message Viewer (see The Project View, on
page 22).

Certain optimizations available, like retiming.
Advanced analysis features like crossprobing and probe point insertion.

Place-and-Route implementation(s) to automatically run placement and
routing after synthesis. You can run place-and-route from within the
tool or in batch mode. This feature is supported for certain technologies
(see Running P&R Automatically after Synthesis, on page 554 in the User
Guide).

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.

June 2020

Synopsys Confidential Information 13

Product Overview Synopsys FPGA Tool Features

Synopsys FPGA Tool Features

This table distinguishes between major functionality for the Synopsys FPGA

products.
Synplify Synplify Synplify Synplify
Pro Premier Premier DP
Performance
Behavior Extracting Synthesis b4 b4 X X
Technology® (BEST™)
Vendor-Generated Core/IP X X X
Support (certain technologies)
FSM Compiler X b 4 X X
FSM Explorer b4 X X
Gated Clock Conversion b4 X X
Register Pipelining b4 X X
Register Retiming b4 X X
SCOPE® Constraint Entry X X X X
High Reliability Features Limited X X
Integrated Place-and-Route X X X X
Analysis
HDL Analyst® Option X X X
Timing Analyzer - X X X
Point-to-point
Timing Report View bi¢ bi¢
FSM Viewer b:4 X X
Crossprobing b4 X X
Probe Point Creation b4 X X
Identify® Instrumentor X X X X
Identify Debugger X X X X
© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual

14 Synopsys Confidential Information June 2020

Synopsys FPGA Tool Features Product Overview

Synplify Synplify Synplify Synplify
Pro Premier Premier DP
Physical Design
Design Planner b4
Logic Assignment to Regions X
Area Estimation and Region X
Capacity
Pin Assignment b:¢
Physical Optimizations X X
Physical Analyst X X
Synopsys DesignWare® X b4
Foundation Library
Runtime
Hierarchical Design X X X
Multiprocessing /Distributed X X
Processing
Compile on Error b4 b4
Team Design
Mixed Language Design X b X
Compile Points X X X
Hierarchical Design X X X
True Batch Mode (Floating X X X
licenses only)
GUI Batch Mode (Floating X X X X
licenses)
Batch Mode P&R - X X X
Back Annotation of P&R Data - - X X
Identify Integration Limited X X X
Design Environment
Text Editor View X X X X
Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.

June 2020 Synopsys Confidential Information 15

Product Overview

Synopsys FPGA Tool Features

Watch Window

Message Window

Tcl Window

Multiple Implementations
Vendor Technology Support
Prototyping Features
Runtime Features

Compile Points

Gated Clock Conversion
Compile on Error

Unified Power Format (UPF)

© 2020 Synopsys, Inc.

16

Synopsys Confidential Information

Synplify Synplify
Pro

X

X

Synplify Synplify
Premier Premier DP

X X

X X

X X

X X
Selected Selected

X X

X X

X X

X X

X X

Synplify Pro for Microchip Edition Reference Manual

June 2020

Graphic User Interface Product Overview

Graphic User Interface

The Synopsys FPGA family of products share a common graphical user
interface (GUI) in order to ensure a cohesive look and feel across the different
products.

Implementation
Results view

""""""""" E-F‘".........;'.“;.. T S S
e .. B pE B B
Tool bar5§ D [0] 8 8 W

J2Run T
- =
;,Bmw, L YoRC Shs | mplemertatonDieckry | Process U
}| 5 vom ragen & = =
IR Frojort dana tinrtal Irapk ket homa
MR T Trp Wasul: cigtl_b_wn N:tirirg
H oy per— X Masituica enanng 1 FANAL e
H re——— Drankes Wolmerion 0 FiM Gk
: | o S,
& add "BE nokmenaten
Buttons 3y v Ly - Swns |0 &) [OPU T [t s My
| Froueyimiz: Cmmaknm | ol (230 [0 |- ms |- n
b b= F| # Audn Carck. PRI I I
i Compite (4|1 |0 (Wt i [sME 4
0 Iow B A | i |60 |0 | Bt i iue
v
] Core Cale T4
Bock FAME q
Tabs to B
: -] e Ry Firay Est Fiuiy Hack
|ACLess] dacx 68 MHz A0 WHz e
: - - :] Ditaliad rosie
‘main viewsT :
] L
! edoralyr
: Weorcrcn
[0 anings, 43nmes A = |setRber.. |] apphyFiter | o
e Jaee [re— | S sizinn [omy i [rum Jawan.
] MILZ PO A TR TR gL, A WO D, [W] BEILDE K, 04549, TEORNE R
MULLY PO PUM THTILRGR_L| LI, NEWNGS [y Li.. I CNTIVIN [OIS, (UA54Y . TETORNE R
: BAZES Wadliy cefcul e iy an i Ba S wal., - gl BE W, (09333, TenoppEn Rapai
fom 5 crem Sasig tme rasoltin G bl (123} sdll B8 ar (04331 Conplarfad

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 17

Product Overview

Graphic User Interface

The following table shows where you can find information about different
parts of the GUI, some of which are not shown in the above figure. For more
information, see the User Guide.

For information about ...
Project window

HDL Analyst view

Text Editor view

Tel window

Watch Window

SCOPE spreadsheet
Other views and windows

Menu commands
and their dialog boxes

Toolbars
Buttons

Context-sensitive popup menus
and their dialog boxes

Online help

© 2020 Synopsys, Inc.

18

See ...

The Project View, on page 22

Chapter 7, Analyzing with HDL Analyst
Text Editor View, on page 45

Tcl Script Window, on page 41

Watch Window, on page 37

SCOPE Constraints Editor, on page 216
The Project View, on page 22

Chapter 5, User Interface Commands

Toolbars, on page 57
Buttons and Options, on page 72

Chapter 6, GUI Popup Menu Commands

Use the F1 keyboard shortcut or click the Help

button in a dialog box. See Help Menu , on

page 455, for more information.

Synplify Pro for Microchip Edition Reference Manual
Synopsys Confidential Information

June 2020

Getting Help

Product Overview

Getting Help

Look through the documentation for information. You can access the infor-
mation online from the Help menu, or refer to the corresponding manual. The
following table shows you how the information is organized.

Finding Information

For help with ...
How to...
Flow information

FPGA Implementation
Tool

Synthesis features
Language and syntax

Attributes and
directives

Tcl language

Synthesis Tcl
commands

Using tool-specific
features and attributes

Error and warning
messages

Document Set

Refer to the ...
User Guide
User Guide

Synopsys Web Page (Web->FPGA Implementation Tools menu
command from within the software)

User Guide and Reference Manual
Language Support Reference Manual

Attribute Reference Manual

Online help (Help->Tcl Help)

Command Reference Manual or type help followed by the
command name in the Tcl window

User Guide

Click the message ID code

This document is part of a series of books included with the Synopsys FPGA
synthesis software tool. The set consists of the following books that are
packaged with the tool:

* FPGA Synthesis User Guide

* FPGA Synthesis Reference

e FPGA Synthesis Command Reference

* FPGA Synthesis Attributes and Directives Reference

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.

June 2020

Synopsys Confidential Information 19

Product Overview Getting Help

e FPGA Synthesis Language Support Reference
» Identify Instrumentor User Guide
* Identify Debugger User Guide

e Identify Debugging Environment Reference Manual

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
20 Synopsys Confidential Information June 2020

CHAPTER 2

User Interface Overview

SYNOPSYS

Silicon to Software

This chapter presents tools and technologies that are built into the Synopsys

FPGA synthesis software to enhance your productivity.

This chapter describes the following aspects of the graphical user interface
(GUI):

The Project View, on page 22

The Project Results View, on page 26
Other Windows and Views, on page 36
Using the Mouse, on page 52
Toolbars, on page 57

Keyboard Shortcuts, on page 64
Buttons and Options, on page 72

Synplify Pro for Microchip Edition Reference Manual

June 2020

Synopsys Confidential Information

© 2020 Synopsys, Inc.
21

User Interface Overview The Project View

The Project View

The Project View is the main interface to the tool. The Project View consists of
a Project Management View on the left and a Project Results View on the
right. The interface and available functionality vary for your tool. See the
following for an overview:

¢ Multiple Pane Project View, on page 22

Multiple Pane Project View

The Project Management view is on the left side of the window, and is used to
create or open projects, create new implementations, set device options, and
initiate design synthesis. The Project Results view is on the right.

You can also use the Project Management view to manage and synthesize
hierarchical designs.

The following figure shows the main parts of the interface. Additional details
about the project view are described here:

¢ Project Management View, on page 24

* The Project Results View

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual

22

Synopsys Confidential Information June 2020

The Project View

User Interface Overview

User
Options

T syinplily

Rendy

Hierarchical Project view Siatus

Implementation Results view

| Grarch sabeicr

L

L Tenf] - Ol
- WAL
) verbg
B IR |

Franztlan | Rasan Hanre

near [PR YR

s e g

5z Modite
A0:RTE
FURE B
1
1
1
1
1
1
1
1
I
Bl _b s 1
CF egnlicocsf IME 1
o B ehl bk 1 Dyl 1
o b TR xR 1
b gghn e e e JILERES 1
HE= ey 1 T T Sy 1
r [oot bk vosT 1348 1

Synplify Pro for Microchip Edition Reference Manual

June 2020

Synopsys Confidential Information

© 2020 Synopsys, Inc.
23

User Interface Overview The Project View

The Project view has the following main parts:

Project View Interface Description

Status Displays the tool name or the current status of the
synthesis job that is running. Clicking in this area
displays additional information about the current job.

Buttons and options Allow immediate access to some of the more common
commands. See Buttons and Options , on page 72 for
details.

Implementation Lists the result of the synthesis runs for the

Results view implementations of your design. You can only view one set

of implementation results at a time. Click an
implementation in the Project view to make it active and
view its result files.

The Project Results view includes the following:

e Project Status Tab—provides an overview of the project
settings and at-a-glance summary of synthesis
messages and reports.

* Implementation Directory—lists the names and types of
the result files, and the dates they were last modified.

* Process View—gives you instant visibility to the
synthesis and place-and-route job flows.

See The Project Results View , on page 26 for more
information.

Project Management View

- Synplify Pro®
‘ Reacdy
Progect Flies Desgn Herarchy Proiect StEtus Imalermmentanon JlrL%w IrocEss WIEW
I I
| |
Project Management Views Froject Results View

The Project Management view is on the left side of the window, and is used to
create or open projects, create new implementations, set device options, and
initiate design synthesis. The graphical user interface (GUI) lets you manage

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
24 Synopsys Confidential Information June 2020

The Project View User Interface Overview

hierarchical designs that can be synthesized independently and imported
back to the top-level project in a team design flow. The following figure shows
the Project view as it appears in the interface.

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 25

User Interface Overview The Project Results View

The Project Results View

The Project Results view appears on the right side of the Project view and
contains the results of the synthesis runs for the implementations of your
design. The Project Results view includes the following:

* Project Status Tab
¢ Implementation Directory
* Process View

* Report Tab

Project Status Tab

The Project Status view provides an overview of the project settings and
at-a-glance summary of synthesis messages and reports such as an area or
optimization summary for the active implementation. You can track the
status and settings for your design and easily navigate to reports and
messages in the Project view.

To display this window, click the Project Status tab in the Project view. An
overview for the project is displayed in a spreadsheet format for each of the
following sections:

* Project Settings
* Run Status

* Reports

For details about how to access synthesis results, see Accessing Specific
Reports Quickly, on page 193.

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
26 Synopsys Confidential Information June 2020

The Project Results View User Interface Overview

Project Statds | Implementation Directory | Procesa View |

Frogect Mame tutonal | Implemeniaticen Mame rey_3
TDP Module alu RE‘tirring i
Regource Sharing 1 Fanout Guida 10000
Disakrle 'O Insertion | 0 Disable Sequential Ogtimizations 1]
PU Real

Job Mame Status [[/ D me | Time |Wemory Date/Time
Compila Input

. : Br11/2016
‘comgiler Comgletel 0] 040 |- Omo02g] - iy
gmnilad lamh [REEESI
Fre-mapoing
R Complete} 3 | 1] 0 | omDos| om:00g| 7amz | B11/2916
Deizilzd report o
Map &
Optimize ! 1172016
(foga_mapper) Completel 11) 2§ 0 | 0m 01s| Om:00s| BOMB Crerman
Deimil=d sepeor
Camy Celle 89 [Sequential Colls 10
DSP Blocks (MAGC) (dsp_used) 1 |WO Cells 40
Global Clock Buffers 4 |LUTs (total luts) 108

You can expand or collapse each section of the Project Status view by clicking
on the + or - icon in the upper left-corner of each section.

Project Status I Implementation Directory | Process View]

Project Name physical_synthsys Implementation Name logical_synthesis

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 27

User Interface Overview The Project Results View

Project Settings

Project Settings is populated with the project settings from the run_options.txt file
after a synthesis run. This section displays information, like the following:

* Project name, top-level module, and implementation name
* Project options currently specified, such as Resource Sharing, Fanout
Guide, and Disable I/O Insertion
Run Status

The Run Status table gets updated during and after a synthesis run. This
section displays job status information for the compiler, premap job, mapper,
and place-and-route runs, as needed. This section displays information
about the synthesis run:

* Job name - Jobs include Compiler Input, Premap, and Map & Optimize. The job
might have a Detailed Report link. When you click on this link, it takes you
to the corresponding report in the log file.

=) Run Status

Job Name Status m | A | @ [CPU Time Real Time Memory |Date/Time
Compile Input . 8/8/2013
Detailed report Complete (22/0 |0 Om:02s B 1:29:29 FM
Prgmap . . 8/8/2013

DEE S Complete 4 (1 (0 | 0m:00s 0m:00s 78MB e
M3p & Optimize | ¢, coniats. L6l a Lo Lomadgss . NencdTs.........lApae | 8/8/2013
LDetailed report | Repar: tutarial (re_7) Syncpsys Tectnology Fre-mapplng. Verslon mar |

| =)~ Synthosis

I : _ompilar Report

[fra-mapping Raport
Clock Surnrmary
C- Mapper Report
Clock Comversion
=~ Timing Repart
=crfarrance SUMMzry
Zlack Feletionsklos
Inie face nfurmalion
- Nelailes] Repo | Dor Chickess
Resource Wiilizetion
lierarchizal Area Reporteight bt
i =l-Place and Route
] dackannctenon HepoT (14:29 Us-A
Sesslon Log (L3:29 08-2uq)

© 2020 Synopsys, Inc.
28

Synopsys Confidential Information

Copyrigkt (C) 1591-20.2, Symopayz, Ime. This softwg----
Procuct Verslon I-2C13.0% beta :

Happer StTartup Corplets (Real Time =21apsed :lr.:':ljm.:'::
Linked Fil=: elche bdT uc Sccl DT :
Prirting clcel gummary report irx "Oolgwhvtubcrizlhr
DHIMEZ3S © | Running 1o 3i-bIT modsa.

AH:-MFIEE - | Flock conversion crabled

Degign Iapat Complzte (Deal Time clapsed Oh:COm:CO0Z
Mappe: Ioiticalivasive Ttmplere (Beal Tize elepe=nd C

Srmart leadirg timine filas (Resl Tize slapaas On:=0f

routetakle dis l.§, L.5SDOSSLE18TTEIET, . 2717LI156£57

Status - Reports whether the job is running or completed.

Synplify Pro for Microchip Edition Reference Manual
June 2020

The Project Results View User Interface Overview

* Notes, Warnings, and Errors - These columns are headed by the respective
icons and display the number of messages. The messages themselves
are displayed in the Messages tab, beside the TCL Script tab. Links are
available to the error message and the log location.

12 wernings (2 fikered’, 39 notes (24 fikered) Fings|
Ty |
1] [T
=l i = 0
1] FRAnE

Apph Fiter || Gkstor Page Fiker |#] CroupCommen [I'g

Souree Losalivr | Log Locaben |

TOLSINPL | Mlagsaoes

The message numbers may not match for designs with compile points.
The numbers reflect the top-level design.

* Real and CPU times, peak memory, and a timestamp

Reports

The mapper summary table generates various reports such as an
* Area Summary
* Optimization Summary

* Compile Point Summary

Click the Detailed Report link when applicable, to go to the log file and informa-
tion about the selected report. These reports are written to the synlog folder for
the active implementation.

Area Summary

For example, the Area Summary contains a resource usage count for compo-
nents such as registers, LUTs, and I/O ports in the design. Click the Detailed
report link to display the usage count information in the design for this report.

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 29

User Interface Overview

The Project Results View

‘B Kun Status
‘ |[Job Name Status @ | & €k |CPU Time |Real Time |Memory |DatefTime
: [Comar'e Input } i) 110412011
: |Data led regon, ErorEm ||EL||ED ||t DB B:12:35 AM
¢ |Premap s s . T : /#2011
; (——— Comrpee |2 [1 0 | Emzs U133 1468 et
: [Map & Daotimza . = - S13 < 1142011
1 —— }C:Jrrpc_& 23 1143 0 | Cemclis 1Em:33s 1283MB o2 7m A
= Area summary
I3 ports 3L Mon 4O Rog sior bits 44472 T3E1%)
V0 legiater bita o Blocklams | ded
NsPAlls _'I:‘ Repuil: Lulur al {12y 3} Reasurrcs Masgs Rennrvt Far eighr_hit_oe @
- Ll ﬁ}'ﬂrrpﬁiﬁ Hopping so part: wgivnw22ltrflle7-14
: : Zomoller Report Cell usage:
e - Pre-mapping Report DSP40EL 1 us=e
*|Clock Hame Cleck Summary D B uses
s o, kon|shi El- Mapper Resort Foc 133 usas
sbo |aquanis_toolshif:_clocs . TOCT 124 nmoas
i | shg Jaquans_ton|systam_clack Clocs Conversion L= 5 uszes
: |Uetalled regort E-Timing Rzport FoT 2 uses
] Fer [manuz Suinimary TODE 24 r=es
: Clock Relationships =t 10 L=es
£ : Interface Information MY _T. 13 naes
- |Gengrazec Clock Optmizaton 14 Netailed Report tor Cloces | MOETT 2 uses
"""" Resource Unlizatan fnMEIERS 1 maea
A, K - | VT 1] uses
: Hierdrchival & ea Repon leivhl_bil_ M o
1 _ = “ wses
i B Place end Route TUTL 27 Lges
: Zackanrotztion Report [12:29 08-0 frorz 25 roes
Session Log (13:29 08-Auc) T2 3 uzas
Lurs Wi uaes
LUTE 72 uwaeca
LUT s 154 us=3
IUTS 2 2 um=s

Report Tab

Some reporting such as the Hierarchical Area Report are written to the
Report tab of the Project Results view. These reports are typically not
included in the log file; therefore, they are displayed separately.

Hierarchical Area Report

The hierarchical area report is supported for the following technology

families.

© 2020 Synopsys, Inc.
30

Synplify Pro for Microchip Edition Reference Manual

Synopsys Confidential Information

June 2020

The Project Results View User Interface Overview

Vendors Technologies

Microchip * IGLOO2 family
* RTG4 family
* Smartfusion2 family

A Hierarchical Area report is generated in a Report tab that you can access
from the Project Status view. This report generates area usage for compo-
nents such as sequential and combinational logic, RAM, and DSP blocks.

You can locate the Hierarchical Area report file in the following Implementation
Directory: / synl og/ report.

Use the arrow icon () to get back to the main Project Status view.

Project Mame tutorial |Implemen1a1iun Hame: rew_1
= Run Status
Job Name | Status W | Ay CPU Time [Real Time |Memory Date/Time
Compile Input 112011
Duillgd mmg.j Complele 27| 0|0 | - Urm: 02 - 2:18:57 FMl
Fremap 112011
Detai Complete 5 |0 |0 Om:00s Dm:D0s TiMB T
Map &
Opiimize Complete| 77 (12 |0 Om-10s | 0mi0s | gema | 11201
Datailed raport
= Area Summary
D ports 26 MNen VO Register bits 253 (4%)
'O Reqister bits 0 Block Hams 1(12)
OSP4Bs 1(8) |LUT= 260 (10%)
Dietgiled report i ical A
Profect 5%etus Imolemantation Directory | Process View Repart
% Timing Suma #rem Surmnmary @ Hierchical Area report
Detailed report Module name |LUTS |REGISTERS |SYNC RAMS |DSP48
= eight_bk_uc 265 253 1 1
~dmsroM 1 1 1 0
-0 au 38 10 0 1
PO data_mux (17 16 0 0
L --glins_decode 33 18 0 0
- T prep4 37 16 i 0
O prom_otr - B4 106 0 0
i~ 2 reqg_fia 0 5 4] 0
“-O spclregs 3 73 0 0
Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.

June 2020 Synopsys Confidential Information 31

User Interface Overview

The Project Results View

Implementation Directory

An implementation is one version of a project, run with certain parameter or
option settings. You can synthesize again, with a different set of options, to
get a different implementation. In the Project view, an implementation is
shown in the folder of its project; the active implementation is highlighted.
You can display multiple implementations in the same Project view. The
output files generated for the active implementation are displayed in the
Implementation Directory.

Chswitutorialirev_3

| Name | size Type Modified
[} backup Directory 14:45:19 18-
ﬁf] coreip Directory 14:11:29 11-F
ﬁf] dm Directory 14:45:19 181
ﬁf] eight_bit_uc_srm Directory 14:45:19 18-p
ﬁf] synlog Directory 11:48:11 8-AL
[syntmp Directory 11:55:38 8-AL
ﬁf] synwork Directory 14:43: 20 12-4
O AutoConstraint_d_ff... 203 bytes sdc File 14:11:57 11-F
O AutoConstraint_eigh... 202 bytes sdc File 12:40:26 13-

© 2020 Synopsys, Inc.
32

Synplify Pro for Microchip Edition Reference Manual
Synopsys Confidential Information

June 2020

The Project Results View User Interface Overview

Process View

As process flow jobs become more complex, the benefits of exposing the
underlying job flow is extremely valuable. The Process View gives you this
visibility to track the design progress for the synthesis and place-and-route
job flows.

Click the Process View tab on the right side of the Project Results view. This
displays the job flow hierarchy run on the active implementation and is a
function of this current implementation and its project settings.

rov_3 /| Ehow Hisrarchy
|Process State |RunFreime [ToLName Juobip
= E Leogic Synthesis Complets 00=00:01 synthesis job503
& ¥ compie Complate 0O=0001 compile |ob3gz
i B Compile Process Complets D-00-01 compile_flow jobd
& B Pre-mapping Complate = 000000 premap job4oE
=- B Mzp Complete 020000 mag Jobs0n
& & Map & Optimize Complsts * 00-00:00 fpga_mapper | job501
Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.

June 2020 Synopsys Confidential Information 33

User Interface Overview The Project Results View

Process View Displays and Controls

The Process View shows the current state of a job and allows you to control
the run. You can see various aspects of the synthesis process flow, such as
logical synthesis, premap, and map. If you run place and route, you can see
its job processes as well.

Appropriate jobs of the process flow contains the following information:
* Job Input and Output Files
* Completion State
Displays if the job generated an error, warning, or was canceled.

¢ Job State
— Out-of-date - Job needs to be run.
— Running - Job is active.
— Complete - Job has completed and is up-to-date.
— Complete * - Job is up-to-date, so the job is skipped.

* Run/File Time - Job process flow runtime in real time or file creation
date timestamp.

* Job TCL Command - Job process name.

Each job has the following control commands that allows you to run jobs at
any stage of the design process, for example map. Right-click on any job icon
and select one of the following commands from the popup menu:

* Cancel jobProcess that is running

* Disable jobProcess that you do not want to run

* Run this jobProcess only

* Run to this jobProcess from the beginning of run

* Run from this jobProcess to the end of run

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
34 Synopsys Confidential Information June 2020

The Project Results View User Interface Overview

Hierarchical Job Flows

A hierarchical job flow runs two or more subordinate jobs. Primitive jobs
launch an executable, but have no subordinate jobs. The Logical Synthesis
flow is a hierarchical job that runs the Compile and Map flows.

The state of a hierarchical job depends on the state of its subordinate jobs.
* If a subordinate job is out-of-date, then its parent job is out-of-date.

* If a subordinate job has an error, then its parent job terminates with
this error.

* Ifa subordinate job has been canceled, then its parent job is canceled as
well.

* If a subordinate job is running, then its parent job is also running.

The Process View is a hierarchical tree view. To collapse or expand the main
hierarchical tree, enable or disable the Show Hierarchy option. Use the plus or
minus icon to expand or collapse each process flow to show the details of the
jobs. The icons below are used to show the information for the state of each

process:

* Red arrow (¥) - Job is out-of-date and needs to be rerun.
* Green arrow (5) - Job is up-to-date.

* Red Circle with! (@) - Job encountered an error.

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 35

User Interface Overview Other Windows and Views

Other Windows and Views

Besides the Project view, the tool provides other windows and views that help
you manage input and output files, direct the synthesis process, and analyze
your design and its results. The following windows and views are described
here:

* Dockable GUI Entities, on page 37

* Watch Window, on page 37

* Tcl Script and Messages Windows, on page 40

* Tcl Script Window, on page 41

* Message Viewer, on page 41

* Output Windows (Tcl Script and Watch Windows), on page 45
* Text Editor View, on page 45

* Context Help Editor Window, on page 48

* Interactive Attribute Examples, on page 50

See the following for descriptions of other views and windows that are not
covered here:

Project View The Project View, on page 22
SCOPE Interface SCOPE Tabs, on page 217
HDL Analyst Schematic Chapter 7, Analyzing with HDL Analyst
© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual

36 Synopsys Confidential Information June 2020

Other Windows and Views User Interface Overview

Dockable GUI Entities

Some of the main GUI entities can appear as either independent windows or
docked elements of the main application window. These entities include the
menu bar, Watch window, Tcl window, and various toolbars (see the descrip-
tion of each entity for details). Docked elements function effectively as panes
of the application window; you can drag the border between two such panes
to adjust their relative areas.

Watch Window

The Watch window displays selected information from the log file (see Log
File, on page 157) as a spreadsheet of parameters that you select to monitor.
The values are updated when synthesis finishes.

Watch Window Display

Display of the Watch window is controlled by the View ->Watch Window
command. By default, the Watch window is below the Project view in the
lower right corner of the main application window.

To access the Watch window configuration menu, right-click in any cell.
Select Configure Watch to display the Log Watch Configuration dialog box.

Log Watch Configuration 211
Wakch Selection
® ‘Watch Active Implementation
‘wakch Selected Implementations
‘takch Al Implementations
Selected Implementations ko watch:
rev_1
% rev_l,l’pr 1 Select Al
Clear all

In the Watch window, indicate which implementations to watch under Watch
Selection. The selected implementation(s) will display in the Watch window.

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 37

User Interface Overview Other Windows and Views

You can move the Watch window anywhere on the screen; you can make it
float in its own window (named Watch Window) or dock it at a docking area (an
edge) of the application window. Double-click in the banner to toggle between
docked and floating.

The Watch window has a special positioning popup menu that you access by
right-clicking the window border. The following commands are in the menu:

Command Description
Allow Docking A toggle: when enabled, the window can be docked.
Hide Hides the window; use View ->Watch Window to show it again.

Float in Main Window A toggle: when enabled, the window is floated (undocked).

Right-clicking the window title bar when the Watch window is floating
displays an alternative popup menu with commands Hide and Move; Move lets
you position the window using either the arrow keys or the mouse.

Using the Watch Window

You can view and compare the results of multiple implementations in the
Watch window.

MEBLE TUm L

o

Log Fararmter_ | rew_2 |_2,l'p| rev_ 4 4

-

Warst Sack R 0 T B P -3 <

: I
neble_run 1 eicht_bi:_uc|dbck - Estinabed Frequency || 703.6MHz |« [130.0M-z =

a0

sight_be_ur|oick - Mequested requancy | J92.4MHZ | <. | 1she Mz <

-

—

Lusg Wall)

Log Parameters Log Watch Window

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
38 Synopsys Confidential Information June 2020

Other Windows and Views

User Interface Overview

To choose log parameters from a pull-down menu, click in the Log Parameter
section of the window. Click the pull-down arrow that appears to display the
parameter list choices:

Log Parameter i‘ ‘t{\.'_z |
I J
4=
micht_bi_ucllock - Ectimated Fraquensy
aicht_bik_ucjdock - Reqguestad Fraguency —l

el _bk_uclclock - Cstimated Peiod

eighe_bit_ucklock -

eighi_bt_ucdock - Sladk

. eight_bR_uc Part

eight_bit_uc [0 AT0Ms

Requestsd Period

= !
-

Click pull-down armow
ta

display st or cholces

The Watch window creates an entry for each implementation of a project:

|»

Log Parameter ren_2 resw_4
Worst Slack. -0.418 -1.266
eight_bit_uc|clock - Estimated Frequency 299.6 MHz 130.0 MHz
eight_bit_uc|clock - Requested Frequency 342.4 MHz 155.6 MHz

a0

To choose the implementations to watch, use the Log Watch Configuration dialog
box. To display this box, right-click in the Watch window, then choose

Configure Watch in the popup menu. Enable Watch Selected Implementations, then
choose the implementations you want to watch in the list Selected Implementa-
tions to watch. The other buttons let you watch only the active implementation
or all implementations.

Synplify Pro for Microchip Edition Reference Manual
Synopsys Confidential Information

June 2020

© 2020 Synopsys, Inc.
39

User Interface Overview Other Windows and Views

Log Watch Configuration 2 x|

Corvigure '

Fclrzzh ! Watch Selection

Clezr Paiarreters

Fide

{1 watch Active Implementation
‘@ watch Selected Implementations

1 wvatch All Implementations

Selected Implementations to watch:

rev_z
]

[] rev_4/par_1

Select Al

Clear Al

(019

Canecel

Tcl Script and Messages Windows

The Tcl window has tabs for the Tcl Script and Messages windows. By default,
the Tcl windows are located below the Project Tree view in the lower left corner
of the main application window.

Analysis Froperty Generstor Complete
Tunndng PROASICIE Happer. . .

Lounching mopper in pro mode

PROASICAE Mapper Compleced wich warnings

[*]

K|

%

TCL Seript | Messages |

Message panel displays errors, warnings, and notes

Tel Script panel to display and input Tcl commands

You can float the Tcl windows by clicking on a window edge while holding the
Ctrl or Shift key. You can then drag the window to float it anywhere on the
screen or dock it at an edge of the application window. Double-click in the
banner to toggle between docked and floating.

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
40 Synopsys Confidential Information June 2020

Other Windows and Views User Interface Overview

Right-clicking the Tcl windows title bar when the window is floating displays a
popup menu with commands Hide and Move. Hide removes the window (use
View ->Tcl Window to redisplay the window). Move lets you position the window
using either the arrow keys or the mouse.

For more information about the Tcl windows, see Tcl Script Window, on
page 41 and Message Viewer, on page 41.

Tcl Script Window

The Tcl Script window is an interactive command shell that implements the
Tcl command-line interface. You can type or paste Tcl commands at the
prompt (“%”). For a list of the available commands, type “hel p *” (without the

quotes) at the prompt. For general information about Tcl syntax, choose Help
->TCL.

The Tcl script window also displays each command executed in the course of
running the synthesis tool, regardless of whether it was initiated from a
menu, button, or keyboard shortcut. Right-clicking inside the Tcl window
displays a popup menu with the Copy, Paste, Hide, and Help commands.

See also

* Chapter 2, Tcl Synthesis Commands, for information about the Tcl
synthesis commands.

* Generating a Job Script, on page 513 in the User Guide.

Message Viewer

To display errors, warnings, and notes after running the synthesis tool, click
the Messages tab in the Tcl Window. A spreadsheet-style interactive interface
appears.

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 41

User Interface Overview

Other Windows and Views

0B @egy

P cEEEEEEEER

'-Eu\.- Mo

-

e s] o | [1| [(oetpiere] 0 ety iker | () Groupomman s
Type 1o [Hessage | £curce Location
= BhEET This data was produced by a restricted version of 5. -

[ehy Running in 32-bit mode. .

[Gabed clock cormversion dissbled

Frourd RAM, rege.merm_reofis{7:0T, 32 words by 8_ ren fis w ({3
Find ROM, ‘rom. Daka_1[11:07, 92 words by 12 645 ing rom.vhd (22)

Found RUAM mem_regfle, depthe2, width=A rea fim o (171
Syrkhesizie) work.ins_rom.first ine rom,vhe (30
Syrkhasizig module: sight_bi_uc -

Defaul generstor successful =

Feurd 11 bit ineremantor, 'oniS_pef10:0] [

b o

Fourd 11 bt incrementor, 'un7_stack{10:0] By (77 o bE yprlsa) 10

Found 11 bit incrementor, 'unl®_pcf 10:0T BTt
i = T

(g

Error Message Ids

Grouped Common lds

Location in source

Log File Location

lcon shows message type

Interactive tasks in the Messages panel include:

* Drag the pane divider with the mouse to change the relative column size.

Click on the ID entry to open online help for the error, warning, or note.

* Click on a Source Location entry to go to the section of code in the source
HDL file that is causing the message.

* Click on a Log Location entry to go to its location in the log file.

The following table describes the contents of the Messages panel. You can sort
the messages by clicking the column headers. For further sorting, use Find
and Filter. For details about using this window, see Checking Results in the
Message Viewer, on page 205 in the User Guide.

Item Description

Find Type into this field to find errors, warnings, or notes.

Filter Opens the Warning Filter dialog box. See Messages Filter , on
page 44.

Apply Filter Enable/disable the last saved filter.

© 2020 Synopsys, Inc.
42

Synplify Pro for Microchip Edition Reference Manual
Synopsys Confidential Information June 2020

Other Windows and Views User Interface Overview

Item Description

Group Common Enable/disable grouping of repeated messages. Groups are

ID's indicated by a number next to the type icon. There are two types
of groups:

* The same warning or note ID appears in multiple source files
indicated by a dash in the source files column.

* Multiple warnings or notes in the same line of source code
indicated by a bracketed number.

Type The icons indicate the type of message:
9 Error
A Warning
m Note
@ Advisory
A plus sign next to an icon indicates that repeated messages are

grouped together. Click the plus sign to expand and view the
various occurrences of the message.

ID This is the message ID. You can select an underlined ID to
launch help on the message.

Message The error, warning, or note message text.

Source Location The HDL source file that generated the error, warning, or note

message.
Log Location The location of the error, warning, or note message in the log
file.
Time The time that the error, warning, or note message was recorded

in the log file for the various stages of synthesis (for example:
compiler, premap, and map). If you rerun synthesis, only new
messages generate a new timestamp for this session.

Note: Once synthesis has run to completion, all the .srr files for
the different stages of synthesis are merged into one unified .srr
file. If you exit the GUI, these timestamps remain the same
when you re-open the same project in the GUI again.

Report Indicates which section of the Log File report the error appears,
for example Compiler or Mapper.

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 43

User Interface Overview Other Windows and Views

Messages Filter

You filter which errors, warnings, and notes appear in the Messages panel of
the Tcl Window using match criteria for each field. The selections are combined
to produce the result. You can elect to hide or show the warnings that match
the criteria you set. See Checking Results in the Message Viewer, on page 205
in the User Guide.

Warning Fiker 2]

|| serteciek |

W id=Tler Maxch=s 1 Jrowe T lker Mazch=c | Bk I | Tlose

Fud Ir Type m o EXeT Sanre acliom Lol Al Tinr *
1 |+ warnii o Fi 07
2 Maze 0233
2 [Haze osz0 :
(2] A

© 2020 Synopsys, Inc.

Item

Description

Hide Filter Matches Hides matched criteria in the Messages Panel.

Show Filter Matches Shows matched criteria in the Messages Panel.

Syntax Help Gives quick syntax descriptions.

Applies the filter criteria to the Messages Panel report,
without closing the window.

Apply

Type, ID, Message,
Source Location, Log
Location, Time, Report

Log file report criteria to use when filtering.

The following is a filtering example.

Synplify Pro for Microchip Edition Reference Manual
Synopsys Confidential Information June 2020

Other Windows and Views User Interface Overview

T ke it vakches @ Srowliber Yabched | Aphy ” Cleas]I Ea |
| nsnas | [re— BascdLecabion | Laglocaton Tirss [[=]
o |
1 | L
| = I+ |
|_ I—.
Al = {
o G5
Show Fillar [T o e — | =] [| @anmmin | #amacmer ws
Matches | e » | [- | Sarslosdu L [T T | []
BN T TEEEE Ay v el i Y o pvwi s he o e [R PO T F LS erR |
I AL terthrasrgwsr, v b e . e e b e mps Ly il ol |
- T T L e g T M T3 | F ¥ 1T I AT A e TErL BRI ‘
T | M]
Hide Filter e g 20 Tl 27 gl AL Tl rusk | o e | kel | B St maTh
Matches [t [e | Heaair Saruesaliin | anbastu | Tee BCTE
o BEL desmar DEGTE AEPTE wd Wb e WPamA™ Wl Flar 00 FARTR0 ¥y
B e ».4.-.-“ S T ey v ryepl
: FARg P e, (T, s = w0 Dl 8 et pE PRI SRR A Pyl
] T LT T T T e e M R S Ty R R A G} W W e W e
- Bl Temepbrg A0 Jeie di0 ra aom bl G e R LR e e Rl T]
Lo NEE0E Ak ks s i O . il Fikey 3E ORI Wl M0 Pliggss Sl | =

Letiazonn.| e §

Output Windows (Tcl Script and Watch Windows)

The Output windows are the Tcl Script and Log Watch windows. To display or
hide them, use View->Output Windows from the main menu. Refer to Watch
Window, on page 37 and Tcl Script and Messages Windows, on page 40 for
more information.

Text Editor View

The Text Editor view displays text files. These can be constraint files, source
code files, or other informational or report files. You can enter and edit text in
the window. You use this window to update source code and fix syntax or
synthesis errors. You can also use it to crossprobe the design. For informa-
tion about using the Text Editor, see Editing HDL Source Files with the Built-in
Text Editor, on page 39 in the User Guide.

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 45

User Interface Overview Other Windows and Views

B C:/tutorial/tutorial/tutorial/rtl/ins_decode.vhd

12 CLE : in std logic; [+]

13 RESET: in std logic:

14 INST : in std logic_vector (1l downto 0): D

15 LONGE :out std logic vector (8 downto 0):

16 ALUCP : out ALUOP TYPE:

17 FWE : out std logic:

13 W_Reg Write : out std logic;

19 ALUA SEL : out ALU SEL TYPE;

20 ALUB SEL : out ALU SEL TYPE;

21 STATUS Z WRITE : out =std logic:

22 STATUS C WRITE : out =std logic:

23 TRIS WE : out =std logic;

24 IWO_CYC INST : out std logic:

23 SKIP_INST : out std logic:

26 CPCODE_GOTO : out std logic:

27 OPCODE CALL : out std logic:

28 CPCODE RETLW : cut std logic

29 ;

30 end INS Decode:

31

32 Rrchitecture RTL of Ins Decode is @
o 1]

Ln 3 col| 14 Total| 331 [owr |

Opening the Text Editor

To open the Text Editor to edit an existing file, do one of the following:
* Double-click a source code file (.v or .vhd) in the Project view.

* Choose File ->Open. In the dialog box displayed, double-click a file to
open it.

With the Microsoft® Windows® operating system, you can instead drag
and drop a source file from a Windows folder into the gray background
area of the GUI (not into any particular view).

To open the Text Editor on a new file, do one of the following:
* Choose File ->New, then specify the kind of text file you want to create.
* Click the HDL icon () to create and edit an HDL source file.

The Text Editor colors HDL source code keywords such as module and output

blue and comments green.

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
46 Synopsys Confidential Information June 2020

Other Windows and Views User Interface Overview

Text Editor Features

The Text Editor has the features listed in the following table.

Feature Description

Color coding Keywords are blue, comments green, and strings red. All
other text is black.

Editing text You can use the Edit menu or keyboard shortcuts for
basic editing operations like Cut, Copy, Paste, Find, Replace,
and Goto.

Completing keywords To complete a keyword, type enough characters to make
the string unique and then press the Esc key.

Indenting a block of text The Tab key indents a selected block of text to the right.
Shift-Tab indents text to the left.

Inserting a bookmark Click the line you want to bookmark. Choose Edit ->Toggle
Bookmark, type Ctrl-F2, or click the Toggle Bookmark icon

() on the Edit toolbar.

The line number is highlighted to indicate that there is a
bookmark at the beginning of the line.

Deleting a bookmark Click the line with the bookmark. Choose Edit ->Toggle
Bookmark, type Ctrl-F2, or click the Toggle Bookmark icon

() on the Edit toolbar.

Deleting all bookmarks Choose Edit ->Delete all Bookmarks, type Ctrl-Shift-F2, or click
the Clear All Bookmarks icon () on the Edit toolbar.

Editing columns Press and hold Alt, then drag the mouse down a column of
text to select it.

Commenting out code Choose Edit ->Advanced ->Comment Code. The rest of the
current line is commented out: the appropriate comment
prefix is inserted at the current text cursor position.

Checking syntax Use Run ->Syntax Check to highlight syntax errors, such as
incorrect keywords and punctuation, in source code. If
the active window shows an HDL file, then only that file is
checked. Otherwise, the entire project is checked.

Checking synthesis Use Run ->Synthesis Check to highlight hardware-related
errors in source code, like incorrectly coded flip-flops. If
the active window shows an HDL file, then only that file is
checked. Otherwise, the entire project is checked.

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 47

User Interface Overview Other Windows and Views

See also:

Editor Options Command, on page 436, for information on setting Text
Editor preferences.

File Menu, on page 306, for information on printing setup operations.

Edit Menu Commands for the Text Editor, on page 312, for information on
Text Editor editing commands.

Text Editor Popup Menu, on page 461, for information on the Text Editor
popup menu.

Text Editor Toolbar, on page 61, for information on bookmark icons of
the Edit toolbar.

Keyboard Shortcuts, on page 64, for information on keyboard shortcuts
that can be used in the Text Editor.

Context Help Editor Window

Use the Context Help button to copy Verilog, SystemVerilog, or VHDL
constructs into your source file or Tcl constraint commands into your Tcl file.
When you load a Verilog/SystemVerilog/VHDL file or Tcl file into the UlI, the
Context Help button displays at the bottom of the window. Click on this button
to display the Context Help Editor.

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual

48

Synopsys Confidential Information June 2020

Other Windows and Views

User Interface Overview

|1.-'erilog

module dff
input [4:0
input clk;
output [4:
reg [4:0]
input el,
input ei;
zlways B(p
begin

10 if (el
11 gl =
12 end

13 end

14 endmodulel
—_—

L1

|:|| Context Help

(= s BN e T N O T

temverilog

- hits

- Sunit

- always_comb
- always_ff
- always_latch
- const

. do

- endfunction
- endpackage
- endtask

-+ Eum

... for

- function

- interface

- modport

- package

- parameter
- priority

- struct

- task

- typedef

- unian

- unigue

- var

- while

- ire

Context Help

| Help struct

Top

Synopsy
System

Struct Construct

System\erilog adds several ent
amounts of data. In System\eril
both in how data can be repres
data type has been defined as =
These data types can be either
or, they can be user-defined typ
allow multiple signalg, of various

referenced by a single name.
Template:
/*Btructure data type

deta types. These data
data types (such as in

logic, or bit)
(typedef) */

or, the

When you select a construct in the left-side of the window, the online help
description for the construct is displayed. If the selected construct has this
feature enabled, the online help topic is displayed on the top of the window
and a generic code or command template for that construct is displayed at
the bottom. The Insert Template button is also enabled. When you click the
Insert Template button, the code or command shown in the template window is
inserted into your file at the location of the cursor. This allows you to easily
insert the code or constraint command and modify it for the design that you
are going to synthesize. If you want to copy only parts of the template, select
the code or constraint command you want to insert and click Copy. You can
then paste it into your file.

Synplify Pro for Microchip Edition Reference Manual

June 2020

Synopsys Confidential Information

© 2020 Synopsys, Inc.
49

User Interface Overview Other Windows and Views

Field/Option Description

Top Takes you to the top of the context help page for the selected
construct.

Back Takes you back to the last context help page previously
viewed.

Forward Once you have gone back to a context help page, use Forward
to return to the original context help page from where you
started.

Online Help Brings up the interactive online help for the synthesis tool.

Copy Allows you to copy selected code from the Template file and

paste it into the editor file.

Insert Template Automatically copies the code description in its entirety from
the Template file to the editor file.

Interactive Attribute Examples

The Interactive Attribute Examples wizard lets you select pre-defined attri-
butes to run in a project. To use this tool:

1. Launch the wizard from Help->Demos & Examples.

2. Click the Examples button. Then click on Interactive Attribute Examples and
the Launch Interactive Attributes Wizard links.

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
50 Synopsys Confidential Information June 2020

Other Windows and Views User Interface Overview

c_;."__'?|

SYNOPSYS

T Inbarachren Abiribute Example I

| File Lt
Abnut warard

- Mlemary sym_hier Attribute
sn_ramsty e
- Mhicoalla - L - - e = = e inanasce Surin|
‘:" ::::J:im * Interactive Attribaie Daamole - sn hier. - - .= 'ﬂH Lo
- s
sym_hier ﬂ
Cetimization -
o o SYNOPSYS' |fsieses—
oyn_probe I a . ! u
Micruseni FraASICaE aricd
b e 0ol
| saft o Pred ¥ hard %] Py
LI —— T
oot | [concratadn][coca || bon.. |

3. Double-click on an attribute to start the wizard.
4. Specify the Working Directory location to write your project.
5. Click Generate to generate a project for your attribute.

A project will be created with an implementation for each attribute value
selected.

6. Click Generate Run to run synthesis for all the implementations. When
synthesis completes:

— The Technology view opens to show how the selected attribute
impacts synthesis.

— You can compare resource utilization and timing information
between implementations in the Log Watch window.

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 51

User Interface Overview Using the Mouse

Using the Mouse

The mouse button operations in Synopsys FPGA product is standard; refer to
Mouse Operation Terminology for a summary of supported functions. The
tool provides support for:

¢ Using Mouse Strokes, on page 53
* Using the Mouse Buttons, on page 54
* Using the Mouse Wheel, on page 56

Mouse Operation Terminology

The following terminology is used to refer to mouse operations:

Term Meaning

Click Click with the left mouse button: press then release it without
moving the mouse.

Double-click Click the left mouse button twice rapidly, without moving the mouse.
Right-click Click with the right mouse button.

Drag Press the left mouse button, hold it down while moving the mouse,
then release it. Dragging an object moves the object to where the
mouse is released; then, releasing is sometimes called “dropping”.

Dragging initiated when the mouse is not over an object often traces
a selection rectangle, whose diagonal corners are at the press and
release positions.

Press Depress a mouse button; unless otherwise indicated, the left button
is implied. It is sometimes used as an abbreviation for “press
and hold”.
Hold Keep a mouse button depressed. It is sometimes used as an
abbreviation for “press and hold”.
Release Stop holding a mouse button depressed.
© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual

52 Synopsys Confidential Information June 2020

Using the Mouse User Interface Overview

Using Mouse Strokes

Mouse strokes are used to quickly perform simple repetitive commands.
Mouse strokes are drawn by pressing and holding the right mouse button as
you draw the pattern. The stroke must be at least 16 pixels in width or height
to be recognized. You will see a green mouse trail as you draw the stroke (the
actual color depends on the window background color).

Some strokes are context sensitive. That is, the interpretation of the stroke
depends upon the window in which the stroke is started. For example, in an
HDL Analyst view, the right stroke means “Next Sheet.” In a dialog box, the
right stroke means “OK.”

For information on each of the available mouse strokes, consult the Mouse
Stroke Tutor.

The strokes you draw are interpreted on a grid of one to three rows. Some
strokes are similar, differing only in the number of columns or rows, so it may
take a little practice to draw them correctly. For example, the strokes for Redo
and Back differ in that the Redo stroke is back and forth horizontally, within a
single-row grid, while the Back stroke involves vertical movement as well.

Redo Last Operation Back to Previous View

The Mouse Stroke Tutor

Do one of the following to access the Mouse Stroke Tutor:
* Help->Stroke Tutor
* Draw a question mark stroke ("?")

* Scribble (Show tutor when scribbling must be enabled on the Stroke Help
dialog box)

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 53

User Interface Overview Using the Mouse

Stroke Tutor KB

Use the right mouse butkon ko draw a stroke,
Strokes are interpreted as being either horizontal, vertical, or drawn on a 3%3 grid.

Click on & command below b see what stroke to use.

Show

) Al strokes @

) Current Contexk

Undo

Redo

Find

Open
Stroke Tubor
Help

Unda the last aperation

Show tutor when scribbling

The tutor displays the available strokes along with a description and a
diagram of the stroke. You can draw strokes while the tutor is displayed.

Mouse strokes are context sensitive. When viewing the Stroke Tutor, you can
choose All Strokes or Current Context to view just the strokes that apply to the
context of where you invoked the tutor. For example, if you draw the "?"
stroke in an HDL Analyst window, the Current Context option in the tutor shows
only those strokes recognized in the HDL Analyst window.

You can display the tutor while working in a window such as the HDL Analyst
view. However you cannot display the tutor while a modal dialog is displayed,
as input is restricted to the modal dialog.

Using the Mouse Buttons

The operations you can perform using mouse buttons include the following:

* You select an object by clicking it. You deselect a selected object by
clicking it. Selecting an object by clicking it deselects all previously
selected objects.

* You can select and deselect multiple objects by pressing and holding the
Control key (Ctrl) while clicking each of the objects.

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
54 Synopsys Confidential Information June 2020

Using the Mouse User Interface Overview

* You can select a range of objects in a Hierarchy Browser, as follows:
— select the first object in the range

— scroll the tree of objects, if necessary, to display the last object in the
range

— press and hold the Shift key while clicking the last object in the range

Selecting a range of objects in a Hierarchy Browser crossprobes to the
corresponding schematic, where the same objects are automatically
selected.

* You can select all of the objects in a region by tracing a selection
rectangle around them (lassoing).

* You can select text by dragging the mouse over it. You can alternatively
select text containing no white space (such as spaces) by
double-clicking it.

* Double-clicking sometimes selects an object and immediately initiates a
default action associated with it. For example, double-clicking a source
file in the Project view opens the file in a Text Editor window.

* You can access a contextual popup menu by clicking the right mouse
button. The menu displayed is specific to the current context, including
the object or window under the mouse.

For example, right-clicking a project name in the Project view displays a
popup menu with operations appropriate to the project file.
Right-clicking a source (HDL) file in the Project view displays a popup
menu with operations applicable to source files.

Right-clicking a selectable object in an HDL Analyst schematic also
selects it, and deselects anything that was selected. The resulting popup
menu applies only to the selected object. See Working in the Schematic,
on page 224 of the FPGA Synthesis User Guide, for information on HDL
Analyst views.

Most of the mouse button operations involve selecting and deselecting
objects. To use the mouse in this way in an HDL Analyst schematic, the
mouse pointer must be the cross-hairs symbol: . If the cross-hairs pointer
is not displayed, right-click the schematic background to display it.

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 55

User Interface Overview Using the Mouse

Using the Mouse Wheel

If your mouse has a wheel and you are using a Microsoft Windows platform,
you can use the wheel to scroll and zoom, as follows:

Whenever only a horizontal scroll bar is visible, rotating the wheel
scrolls the window horizontally.

Whenever a vertical scroll bar is visible, rotating the wheel scrolls the
window vertically.

Whenever both horizontal and vertical scroll bars are visible, rotating
the wheel while pressing and holding the Shift key scrolls the window
horizontally.

In a window that can be zoomed, such as a graphics window, rotating
the wheel while pressing and holding the Ctrl key zooms the window.

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual

56

Synopsys Confidential Information June 2020

Toolbars

User Interface Overview

Toolbars

Toolbars provide a quick way to access common menu commands by clicking
their icons. The following standard toolbars are available:

* Project Toolbar — Project control and file manipulation.

* Analyst Toolbar — Manipulation of compiled and mapped schematic
views.

¢ Text Editor Toolbar — Text editor bookmark commands.

* FSM Viewer Toolbar — Display of finite state machine (FSM) informa-
tion.

* Tools Toolbar — Opens supporting tool.

You can enable or disable the display of individual toolbars - see Toolbar
Command, on page 328.

By dragging a toolbar, you can move it anywhere on the screen: you can
make it float in its own window or dock it at a docking area (an edge) of the
application window. To move the menu bar to a docking area without docking
it there (that is, to leave it floating), press and hold the Ctrl or Shift key while
dragging it.

Right-clicking the window title bar when a toolbar is floating displays a popup
menu with commands Hide and Move. Hide removes the window. Move lets you
position the window using either the arrow keys or the mouse.

Project Toolbar

The Project toolbar provides the following icons, by default:

M
Er%ajag{: 1 C;"' it Open iﬁve Copy Undo Find
File |
| | | | | |
4 > o ; L d i \
PEEBOE@ R0 B A A
| | | | | !
M M
Hg‘lrlif Dzz}lgn Save Cut Paste Redo
File File

Synplify Pro for Microchip Edition Reference Manual

June 2020

Synopsys Confidential Information

© 2020 Synopsys, Inc.
57

User Interface Overview Toolbars

The following table describes the default Project icons. Each is equivalent to a
File or Edit menu command; for more information, see the following:

¢ File Menu, on page 306
¢ Edit Menu, on page 311

Icon Description
Open Project Displays the Open Project dialog box to create a

new project or to open an existing project.
Same as File ->Open Project.

New HDL file Opens the Text Editor window with a new, empty
4 source file.

Same as File ->New, Verilog File or VHDL File.

[E] New Constraint File (SCOPE) Opens the SCOPE spreadsheet with a new,
empty constraint file.

Same as File ->New, Constraint File (SCOPE).

-}

[Open Displays the Open dialog box, to open a file.
Same as File ->Open.

Save Saves the current file. If the file has not yet been
saved, this displays the Save As dialog box, where
you specify the filename. The kind of file depends
on the active view.

Same as File ->Save.

| Save Al Saves all files associated with the current design.
Same as File ->Save All.

Cut Cuts text or graphics from the active view,
making it available to Paste.

Same as Edit ->Cut.

Paste Pastes previously cut or copied text or graphics
to the active view.

Same as Edit ->Paste.

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
58 Synopsys Confidential Information June 2020

Toolbars

User Interface Overview

Ilcon

Undo
Redo
Find

Description

Undoes the last action taken.
Same as Edit ->Undo.

Performs the action undone by Undo.
Same as Edit ->Redo.

Finds text in the Text Editor or objects in an RTL
view or Technology view.

Same as Edit ->Find.

Analyst Toolbar

The Analyst toolbar becomes active after a design has been compiled. The

toolbar provides the following icons, by default:

aTL Eming Show Full Zoom Selection
| r_EDO Critical View Out Pop Forward
V||ew ‘u|e|w Fon.r|n'ard Path ‘ | Hierarchy ‘

= s | e - B @G o o
PLEY GV AR ETL G5
Technoloegy Timing Back ‘ Find Zoom Show Selection
View Analyst Fiter In Top Back

Schematic View

The following table describes the default Analyst icons. Each is equivalent to
an HDL Analyst menu command - see HDL Analyst Menu, on page 412, for more

information.

Synplify Pro for Microchip Edition Reference Manual
June 2020 Synopsys Confidential Information

© 2020 Synopsys, Inc.
59

User Interface Overview Toolbars

Icon Description

RTL View Opens a new, hierarchical RTL view: a register
transfer-level schematic of the compiled design,
together with the associated Hierarchy Browser.

Same as HDL Analyst ->RTL ->Hierarchical View.

Technology View Opens a new, hierarchical Technology view: a
technology-level schematic of the mapped
(synthesized) design, together with the associated
Hierarchy Browser.

Same as HDL Analyst ->Technology ->Hierarchical View.

Timing Analyst Generates and displays a custom timing report and
view. The timing report provides more information
than the default report (specific paths or more than
five paths) or one that provides timing based on
additional analysis constraint files. See Analysis
Menu , on page 400.

Only available for certain device technologies.
Same as Analysis ->Timing Analyst.

Filter Schematic Filters your entire design to show only the selected
objects. The result is a filtered schematic.

Same as HDL Analyst ->Filter Schematic.

Show Ciritical Path Filters your design to show only the instances (and
their paths) whose slack times are within the slack
margin of the worst slack time of the design (see HDL
Analyst ->Set Slack Margin). The result is flat if the entire
design was already flat.

Available only in a Technology view.

Back Goes backward in displaying schematics of the current
HDL Analyst view.
Same as View ->Back.

Forward Goes forward in displaying schematics of the current
HDL Analyst view.
Same as View ->Forward.

Zoom In Zooms the view in or out. Buttons stay active until
deselected.

@, Zoom Out Same as View ->Zoom In or View ->Zoom Out.

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual

60 Synopsys Confidential Information June 2020

Toolbars User Interface Overview

Icon Description
Zoom Full Zoom that reduces the active view to display the entire
design.

Same as View ->Full View.

a Show Top Level Displays the schematic for the top-level view.

E] Pop Hierarchy Traverses the schematic hierarchy using pop mode.
E Selection Back Displays the previous schematic that was selected.
E] Selection Forward Toggles back to the original schematic that was

previously selected.

Text Editor Toolbar

The Edit toolbar is active whenever the Text Editor is active. You use it to edit
bookmarks in the file. (Other editing operations are located on the Project
toolbar - see Project Toolbar, on page 57.) The Edit toolbar provides the
following icons, by default:

Toggle Bookmark Previous Bookmark
Mext Booicmark Clear All Bookmarks

The following table describes the default Edit icons. Each is available in the
Text Editor, and each is equivalent to an Edit menu command there - see Edit
Menu Commands for the Text Editor, on page 312, for more information.

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 61

User Interface Overview Toolbars

Icon Description

Toggle Bookmark Alternately inserts and removes a bookmark at the line
that contains the text cursor.

Same as Edit ->Toggle bookmark.

Next Bookmark Takes you to the next bookmark.
Same as Edit ->Next bookmark.

Previous Bookmark Takes you to the previous bookmark.
Same as Edit ->Previous bookmark.

Clear All Bookmarks Removes all bookmarks from the Text Editor window.
Same as Edit ->Delete all bookmarks.

FSM Viewer Toolbar

When you push down into a state machine primitive in an RTL view, the FSM
Viewer displays and enables the FSM toolbar. The FSM Viewer graphically
displays the states and transitions. It also lists them in table form. By
default, the FSM toolbar provides the following icons, providing access to
common FSM Viewer commands.

Toggle FSM Tabl %% 5:3 i
oggle able r— | Filter by outputs

Unfilter FSM

The following table describes the default FSM icons. Each is available in the
FSM viewer, and each is equivalent to a View menu command available there
- see View Menu, on page 325, for more information.

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
62 Synopsys Confidential Information June 2020

Toolbars User Interface Overview

Icon Description

Toggle FSM Table Toggles the display of state-and-transition tables.
Same as View->FSM Table.

Unfilter FSM Restores a filtered FSM diagram so that all the states and
transitions are showing.

Same as View->Unfilter.

Filter by outputs Hides all but the selected state(s), their output
transitions, and the destination states of those
transitions.

Same as View->Filter->By output transitions.

Tools Toolbar

The Tools Toolbar opens supporting tool.

Icon Description

i¢, Constraint Check Checks the syntax and applicability of the
timing constraints in the constraint file for your
project and generates a report
(project_name_cck.rpt).
Same as Run->Constraint Check.

Identify Instrumentor Brings up the Synopsys Identify Instrumentor
product. For more information, see Working
with the Identify Tools , on page 5560f the User
Guide.

Launch Identify Debugger Launches the Synopsys Identify Debugger
product. For more information, see Working
with the Identify Tools , on page 5560f the User
Guide.

Launch SYNCore Launches the SYNCore IP wizard. This tool
helps you build IP blocks such as memory
models for your design.

For more information, see Launch SYNCore
Command , on page 389.

ves VCS Simulator Configures and launches the VCS simulator.

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 63

User Interface Overview

Keyboard Shortcuts

Keyboard Shortcuts

Keyboard shortcuts are key sequences that you type in order to run a
command. Menus list keyboard shortcuts next to the corresponding

commands.

For example, to check syntax, you can press and hold the Shift key while you
type the F7 key, instead of using the menu command Run ->Syntax Check.

Run

Resynthesize Al

Compile Jnly

Wirite Cutpul Netlist Cnly
Estimats Area

Cornpile Physical Hierarchy
FSM Explarer

Translate Constrainks...
Synkay Check

Synthesis Check,

x.rg Copskrain Check

-

ra

b

Fr

Fo
Shift+F3
F11

Shift+F7
Shifk+F3

Arrange YHOL Flles

Laurch Ioenkify

0k Launch Identify Debugger

™) Laurch SYMCore. ..

WeE “onfigure and Laurch WS Simulakor ...
RFun TEL Scripk, ..

Fun Al Tmplerent ations
Job 5katus

ek Errorf\arning

Prewvious Errarftwarning

FS
Shift+F5

Shift+EiD |

The following table describes the keyboard shortcuts.

© 2020 Synopsys, Inc.

64

Synplify Pro for Microchip Edition Reference Manual

Synopsys Confidential Information June 2020

Keyboard Shortcuts User Interface Overview

Keyboard Description
Shortcut
b In an RTL or Technology view, shows all logic between two or

more selected objects (instances, pins, ports). The result is a
filtered schematic. Limited to the current schematic.

Same as HDL Analyst ->Current Level ->Expand Paths (see HDL
Analyst Menu: Filtering and Flattening Commands , on

page 415).
Ctrl-++ In the FSM Viewer, hides all but the selected state(s), their
(number pad) output transitions, and the destination states of those
transitions.

Same as View ->Filter ->By output transitions.

Ctrl-+- In the FSM Viewer, hides all but the selected state(s), their input
(number pad) transitions, and the origin states of those transitions.

Same as View ->Filter ->By input transitions.

Ctrl-+* In the FSM Viewer, hides all but the selected state(s), their input
(number pad) and output transitions, and their predecessor and successor
states.

Same as View ->Filter ->By any transition.

Ctrl-1 In an RTL or Technology view, zooms the active view, when you
click, to full (normal) size. Same as View ->Normal View.

Ctrl-a Centers the window on the design. Same as View ->Pan Center.

Ctrl-b In an RTL or Technology view, shows all logic between two or

more selected objects (instances, pins, ports). The result is a
filtered schematic. Operates hierarchically, on lower levels as
well as the current schematic.

Same as HDL Analyst ->Hierarchical ->Expand Paths (see HDL Analyst
Menu: Hierarchical and Current Level Submenus , on page 413).

Ctrl-c Copies the selected object. Same as Edit ->Copy. This shortcut is
sometimes available even when Edit ->Copy is not. See, for
instance, Find Command (HDL Analyst) , on page 317.)

Ctrl-d In an RTL or Technology view, selects the driver for the selected
net. Operates hierarchically, on lower levels as well as the
current schematic.

Same as HDL Analyst->Hierarchical ->Select Net Driver (see HDL
Analyst Menu: Hierarchical and Current Level Submenus , on
page 413).

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 65

User Interface Overview

Keyboard Shortcuts

Keyboard
Shortcut

Ctrl-e

Ctrl-Enter (Return)

Ctrl-f
Ctrl-F2

Ctrl-F4
Ctrl-F6
Ctrl-g

Ctrl-h

Ctrl-i

Ctrl+j

© 2020 Synopsys, Inc.
66

Description

In an RTL or Technology view, expands along the paths from
selected pins or ports, according to their directions, to the
nearest objects (no farther). The result is a filtered schematic.
Operates hierarchically, on lower levels as well as the current
schematic.

Same as HDL Analyst->Hierarchical ->Expand (see HDL Analyst
Menu: Hierarchical and Current Level Submenus , on page 413).

In the FSM Viewer, hides all but the selected state(s).
Same as View->Filter->Selected (see View Menu , on page 325).

Finds the selected object. Same as Edit->Find.

Alternately inserts and removes a bookmark to the line that
contains the text cursor.

Same as Edit->Toggle bookmark (see Edit Menu Commands for the
Text Editor , on page 312).

Closes the current window. Same as File ->Close.
Toggles between active windows.

In the Text Editor, jumps to the specified line. Same as Edit->Goto
(see Edit Menu Commands for the Text Editor , on page 312).

In an RTL or Technology view, selects the sheet number in a
multiple-page schematic. Same as View->View Sheets (see View
Menu: RTL and Technology Views Commands , on page 326).

In the Text Editor, replaces text. Same as Edit->Replace (see Edit
Menu Commands for the Text Editor , on page 312).

In an RTL or Technology view, selects instances connected to the
selected net. Operates hierarchically, on lower levels as well as
the current schematic. Same as HDL Analyst->Hierarchical->Select
Net Instances (see HDL Analyst Menu: Hierarchical and Current
Level Submenus , on page 413).

In an RTL or Technology view, displays the unfiltered schematic
sheet that contains the net driver for the selected net. Operates
hierarchically, on lower levels as well as the current schematic.

Same as HDL Analyst->Hierarchical->Goto Net Driver (see HDL Analyst
Menu: Hierarchical and Current Level Submenus , on page 413).

Synplify Pro for Microchip Edition Reference Manual
Synopsys Confidential Information June 2020

Keyboard Shortcuts

User Interface Overview

Keyboard
Shortcut

Ctrl-l

Ctrl-m

Ctrl-n
Ctrl-o
Ctrl-p
Ctrlq

Ctrl-r

Ctrl-s
Ctrl-t

Ctrl-u

Ctrl-v

Description

In the FSM Viewer, or an RTL or Technology view, toggles zoom
locking. When locking is enabled, if you resize the window the
displayed schematic is resized proportionately, so that it
occupies the same portion of the window.

Same as View->Zoom Lock (see View Menu Commands: All Views ,
on page 325).

In an RTL or Technology view, expands inside the subdesign,
from the lower-level port that corresponds to the selected pin, to
the nearest objects (no farther). Same as HDL
Analyst->Hierarchical->Expand Inwards (see HDL Analyst Menu:
Hierarchical and Current Level Submenus , on page 413).

Creates a new file or project. Same as File->New.
Opens an existing file or project. Same as File->Open.
Prints the current view. Same as File->Print.

In an RTL or Technology view, toggles the display of visual
properties of instances, pins, nets, and ports in a design.

In an RTL or Technology view, expands along the paths from
selected pins or ports, according to their directions, until
registers, ports, or black boxes are reached. The result is a
filtered schematic. Operates hierarchically, on lower levels as
well as the current schematic.

Same as HDL Analyst->Hierarchical->Expand to Register/Port (see HDL
Analyst Menu: Hierarchical and Current Level Submenus , on
page 413).

In the Project View, saves the file. Same as File ->Save.

Toggles display of the Tcl window.
Same as View ->Tcl Window (see View Menu , on page 325).

In the Text Editor, changes the selected text to lower case. Same
as Edit->Advanced->Lowercase (see Edit Menu Commands for the
Text Editor , on page 312).

In the FSM Viewer, restores a filtered FSM diagram so that all
the states and transitions are showing. Same as View->Unfilter
(see View Menu: FSM Viewer Commands , on page 327).

Pastes the last object copied or cut. Same as Edit ->Paste.

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.

June 2020

Synopsys Confidential Information 67

User Interface Overview Keyboard Shortcuts

Keyboard
Shortcut

Ctrl-x

Ctrl-y

Ctrl-z

Ctrl-Shift-F2

Ctrl-Shift-h

Ctrl-Shift-i

Ctrl-Shift-p

Ctrl-Shift-u

© 2020 Synopsys, Inc.

68

Description

Cuts the selected object(s), making it available to Paste. Same as
Edit ->Cut.

In an RTL or Technology view, goes forward in the history of
displayed sheets for the current HDL Analyst view. Same as
View->Forward (see View Menu: RTL and Technology Views
Commands , on page 320).

In other contexts, performs the action undone by Undo. Same as
Edit->Redo.

In an RTL or Technology view, goes backward in the history of
displayed sheets for the current HDL Analyst view. Same as
View->Back (see View Menu: RTL and Technology Views
Commands , on page 326).

In other contexts, undoes the last action. Same as Edit ->Undo.

Removes all bookmarks from the Text Editor window. Same as
Edit ->Delete all bookmarks (see Edit Menu Commands for the Text
Editor , on page 312).

In an RTL or Technology view, shows all pins on selected
transparent hierarchical (non-primitive) instances. Pins on
primitives are always shown. Available only in a filtered
schematic.

Same as HDL Analyst ->Show All Hier Pins (see HDL Analyst Menu:
Analysis Commands , on page 419).

In an RTL or Technology view, selects all instances on the
current schematic level (all sheets). This does not select
instances on other levels.

Same as HDL Analyst->Select All Schematic->Instances (see HDL
Analyst Menu , on page 412).

In an RTL or Technology view, selects all ports on the current
schematic level (all sheets). This does not select ports on other
levels.

Same as HDL Analyst->Select All Schematic->Ports (see HDL Analyst
Menu , on page 412).
In the Text Editor, changes the selected text to lower case.

Same as Edit->Advanced->Uppercase (see Edit Menu Commands for
the Text Editor , on page 312).

Synplify Pro for Microchip Edition Reference Manual
Synopsys Confidential Information June 2020

Keyboard Shortcuts User Interface Overview

Keyboard Description
Shortcut
d In an RTL or Technology view, selects the driver for the selected

net. Limited to the current schematic.

Same as HDL Analyst ->Current Level ->Select Net Driver (see HDL
Analyst Menu , on page 412).

Delete (DEL) Removes the selected files from the project. Same as
Project->Remove Files From Project.

e In an RTL or Technology view, expands along the paths from
selected pins or ports, according to their directions, to the
nearest objects (no farther). Limited to the current schematic.

Same as HDL Analyst->Current Level->Expand (see HDL Analyst
Menu , on page 412).

F1 Provides context-sensitive help. Same as Help->Help.

F2 In an RTL or Technology view, toggles traversing the hierarchy
using the push/pop mode. Same as View->Push/Pop Hierarchy (see
View Menu: RTL and Technology Views Commands , on
page 326).
In the Text Editor, takes you to the next bookmark. Same as
Edit->Next bookmark (see Edit Menu Commands for the Text Editor ,

on page 312).

F4 In the Project view, adds a file to the project. Same as
Project->Add Source File (see Build Project Command , on
page 310).

In an RTL or Technology view, zooms the view so that it shows
the entire design. Same as View->Full View (see View Menu: RTL
and Technology Views Commands , on page 326).

F5 Displays the next source file error.
Same as Run->Next Error/Warning (see Run Menu , on page 381).

F7 Compiles your design, without mapping it.
Same as Run->Compile Only (see Run Menu , on page 381).

F8 Synthesizes (compiles and maps) your design.
Same as Run->Synthesize (see Run Menu , on page 381).

F11 Toggles zooming in.

Same as View->Zoom In (see View Menu: RTL and Technology
Views Commands , on page 326).

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 69

User Interface Overview Keyboard Shortcuts

Keyboard Description
Shortcut
F12 In an RTL or Technology view, filters your entire design to show

only the selected objects.

Same as HDL Analyst->Filter Schematic - see HDL Analyst Menu:
Filtering and Flattening Commands , on page 415.

i In an RTL or Technology view, selects instances connected to the
selected net. Limited to the current schematic.

Same as HDL Analyst->Current Level->Select Net Instances (see HDL
Analyst Menu , on page 412).

i In an RTL or Technology view, displays the unfiltered schematic
sheet that contains the net driver for the selected net.

Same as HDL Analyst->Current Level->Goto Net Driver (see HDL
Analyst Menu , on page 412).

r In an RTL or Technology view, expands along the paths from
selected pins or ports, according to their directions, until
registers, ports, or black boxes are reached. The result is a
filtered schematic. Limited to the current schematic.

Same as HDL Analyst ->Current Level->Expand to Register/Port (see
HDL Analyst Menu , on page 412).

Shift-F2 In the Text Editor, takes you to the previous bookmark.

Shift-F4 Allows you to add source files to your project (Project->Add Source
Files).

Shift-F5 Displays the previous source file error.

Same as Run->Previous Error/Warning (see Run Menu , on page 381).

Shift-F7 Checks source file syntax.
Same as Run->Syntax Check (see Run Menu , on page 381).
Shift-F8 Checks synthesis.

Same as Run->Synthesis Check (see Run Menu , on page 381).

Shift-F10 Checks the timing constraints in the constraint files in your
project and generates a report (project_name_cck.rpt).

Same as Run->Constraint Check (see Run Menu , on page 381).

In an RTL or Technology view, lets you pan (scroll) the schematic
by dragging it with the mouse. Same as View ->Pan (see View
Menu: RTL and Technology Views Commands , on page 326).

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
70 Synopsys Confidential Information June 2020

Keyboard Shortcuts User Interface Overview

Keyboard Description
Shortcut
Shift-F11 Toggles zooming out.

Same as View->Zoom Out (see View Menu , on page 325).
Shift-Left Arrow Displays the previous sheet of a multiple-sheet schematic.
Shift-Right Arrow Displays the next sheet of a multiple-sheet schematic.

Shift-s Dissolves the selected instances, showing their lower-level
details. Dissolving an instance one level replaces it, in the
current sheet, by what you would see if you pushed into it using
the push/pop mode. The rest of the sheet (not selected) remains
unchanged.

The number of levels dissolved is the Dissolve Levels value in the
Schematic Options dialog box. The type (filtered or unfiltered) of the
resulting schematic is unchanged from that of the current
schematic. However, the effect of the command is different in
filtered and unfiltered schematics.

Same as HDL Analyst ->Dissolve Instances - see Dissolve Instances , on
page 421.

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 71

User Interface Overview

Buttons and Options

Buttons and Options

2 Run

}} Cpen Projeck, .,

T Chse Project

I@ AddFile. .

§y Change File. ..

& Add Irplementation, .

Iﬁ Implemertation OpUons. ..

lﬁg Add PR Imolementabion

I &, View Log

Frequency(MHz):

Oli =

@ Ato Constrain

© 2020 Synopsys, Inc.

72

The Project view contains several buttons and a few additional features that
give you immediate access to some of the more common commands and user
options.

The following table describes the Project View buttons and options.

Synplify Pro for Microchip Edition Reference Manual

Synopsys Confidential Information June 2020

Buttons and Options

User Interface Overview

Button/Option
Open Project...

Close Project

Add File...

Change File...

Add Implementation

Implementation Options

Add P&R
Implementation

View Log

Frequency (MHz)

Synplify Pro for Microchip Edition Reference Manual
June 2020

Action

Opens a new or existing project.

Same as File->Open Project (see Open Project Command , on
page 311).

Closes the current project.

Same as File->Close Project (see Run Menu , on page 381).

Adds a source file to the project.

Same as Project->Add Source File (see Build Project
Command , on page 310).

Replaces one source file with another.

Same as Project ->Change File (see Change File Command ,
on page 337).

Creates a new implementation.

Displays the Implementation Options dialog box, where you
can set various options for synthesis.

Same as Project->Implementation Options (see
Implementation Options Command , on page 340).

Creates a place-and-route implementation to control and
run place and route from within the synthesis tool. See
Add P&R Implementation Popup Menu Command , on
page 478 for a description of the dialog box, and Running
P&R Automatically after Synthesis , on page 554 in the
User Guidefor information about using this feature.

Displays the log file.
Same as View->View Log File (see View Menu , on page 325).
Sets the global frequency, which you can override locally

with attributes.

Same as enabling the Frequency (MHz) option on the
Constraints panel of the Implementation Options dialog box.

© 2020 Synopsys, Inc.
Synopsys Confidential Information 73

User Interface Overview Buttons and Options

Button/Option Action

Auto Constrain When Auto Constrain is enabled and no clocks are
defined, the software automatically constrains the design
to achieve best possible timing by reducing periods of
individual clock and the timing of any timed 1/O paths in
successive steps.

See Using Auto Constraints , on page 376 in the User
Guide for detailed information about using this option.

You can also set this option on the Constraints panel of the
Implementation Options dialog box.

FSM Compiler Turning on this option enables special FSM optimizations.

Same as enabling the FSM Compiler option on the Options
panel of the Implementation Options dialog box (see
Optimizing State Machines , on page 424 in the User
Guide).

FSM Explorer When enabled, the FSM Explorer selects an encoding style
for the finite state machines in your design.

Same as enabling the FSM Explorer option on the Options
panel of the Implementation Options dialog box. For more
information, see Running the FSM Compiler , on page 425
in the User Guide.

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
74 Synopsys Confidential Information June 2020

Buttons and Options User Interface Overview

Button/Option Action

Resource Sharing When enabled, makes the compiler use resource sharing
techniques. This option does not affect resource sharing
by the mapper.

The option is the same as the Resource Sharing option on
the Options panel of the Implementation Options dialog box.
See Sharing Resources , on page 422 in the User Guide for
usage details.

Retiming When enabled, improves the timing performance of
sequential circuits. The retiming process moves storage
devices (flip-flops) across computational elements with no
memory (gates/LUTs) to improve the performance of the
circuit. This option also adds a retiming report to the log
file.

Same as enabling the Retiming option on the Options panel
of the Implementation Options dialog box. Use the
syn_allow_retiming attribute to enable or disable retiming for
individual flip-flops. See syn_allow_retiming , on page 59
for syntax details.

Run Runs synthesis (compilation and mapping).
Same as the Run->Run command (see Run Menu , on
page 381).
Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.

June 2020 Synopsys Confidential Information 75

User Interface Overview Buttons and Options

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
76 Synopsys Confidential Information June 2020

SYNOPSYS

Silicon to Software

CHAPTER 3

HDL Analyst Tool

The HDL Analyst tool helps you examine your design and synthesis results,
and analyze how you can improve design performance and area.

The following describe the HDL Analyst tool and the operations you can
perform with it.

* HDL Analyst Views and Commands, on page 78

* Schematic Objects and Their Display, on page 88

* Basic Operations on Schematic Objects, on page 97
* Multiple-sheet Schematics, on page 102

* Exploring Design Hierarchy, on page 105

* Filtering and Flattening Schematics, on page 113

* Timing Information and Critical Paths, on page 119

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 77

HDL Analyst Tool HDL Analyst Views and Commands

HDL Analyst Views and Commands

The HDL Analyst tool graphically displays information in two schematic
views: the RTL and Technology views (see RTL View, on page 78 and
Technology View, on page 80 for information). The graphic representation is
useful for analyzing and debugging your design, because you can visualize
where coding changes or timing constraints might reduce area or increase
performance.

This section gives you information about the following:
* Hierarchy Browser, on page 82
* FSM Viewer Window, on page 83
* Filtered and Unfiltered Schematic Views, on page 85

¢ Accessing HDL Analyst Commands, on page 86

RTL View

The RTL view provides a high-level, technology-independent, graphic repre-
sentation of your design after compilation, using technology-independent
components like variable-width adders, registers, large multiplexers, and
state machines. RTL views correspond to the sr s netlist files generated during
compilation. RTL views are only available after your design has been success-
fully compiled. For information about the other HDL Analyst view (the
Technology view generated after mapping), see Technology View, on page 80.

To display an RTL view, first compile or synthesize your design, then select
HDL Analyst->RTL and choose Hierarchical View or Flattened View, or click the

RTL icon (|@|).

An RTL view has two panes: a Hierarchy Browser on the left and an RTL
schematic on the right. You can drag the pane divider with the mouse to
change the relative pane sizes. For more information about the Hierarchy
Browser, see Hierarchy Browser, on page 82. Your design is drawn as a set of
schematics. The schematic for a design module (or the top level) consists of
one or more sheets, only one of which is visible in a given view at any time.
The title bar of the window indicates the current hierarchical schematic level,
the current sheet, and the total number of sheets for that level.

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
78 Synopsys Confidential Information June 2020

HDL Analyst Views and Commands HDL Analyst Tool

Sheet # of total # Current schematic level

™

& Filleied Skeel 1 o 1 lop level [of medule paep?_ 2| [Filtesed RTL View) lmpl-mlins

et (16—
Poxts [B]
Hals (23]
Chack Tios

Dooo0

Hierarchy Browser Movable pane divider Schematic

The design in the RTL schematic can be hierarchical or flattened. Further, the
view can consist of the entire design or part of it. Different commands apply,
depending on the kind of RTL view.

The following table lists where to find further information about the RTL view:

For information about ... See ...

Hierarchy Browser Hierarchy Browser, on page 82

Procedures for RTL view Working in the Standard Schematic, on page 295 of the
operations like User Guide.

crossprobing, searching,

pushing/popping,

filtering, flattening, etc.

Explanations or HDL Analyst Tool, on page 77
descriptions of features

like object display,

filtering, flattening, etc.

Commands for RTL view Accessing HDL Analyst Commands, on page 86

operations like filtering, HpL Analyst Menu, on page 412
flattening, etc.

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 79

HDL Analyst Tool HDL Analyst Views and Commands

For information about ... See ...

Viewing commands like = View Menu: RTL and Technology Views Commands, on
zooming, panning, etc. page 326

History commands: Back View Menu: RTL and Technology Views Commands, on
and Forward page 326

Search command Find Command (HDL Analyst), on page 317

Technology View

A Technology view provides a low-level, technology-specific view of your
design after mapping, using components such as look-up tables, cascade and
carry chains, multiplexers, and flip-flops. Technology views are only available
after your design has been synthesized (compiled and mapped). For informa-
tion about the other HDL Analyst view (the RTL view generated after compila-
tion), see RTL View, on page 78.

To display a Technology view, first synthesize your design, and then either
select a view from the HDL Analyst->Technology menu (Hierarchical View, Flattened
View, Flattened to Gates View, Hierarchical Critical Path, or Flattened Critical Path) or
select the Technology view icon ().

A Technology view has two panes: a Hierarchy Browser on the left and an RTL
schematic on the right. You can drag the pane divider with the mouse to
change the relative pane sizes. For more information about the Hierarchy
Browser, see Hierarchy Browser, on page 82. Your design is drawn as a set of
schematics at different design levels. The schematic for a design module (or
the top level) consists of one or more sheets, only one of which is visible in a
given view at any time. The title bar of the window indicates the current
schematic level, the current sheet, and the total number of sheets for that
level.

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
80 Synopsys Confidential Information June 2020

HDL Analyst Views and Commands HDL Analyst Tool

Sheet # of total # Current schematic level

S

F Shert | ol 3 lup lowel (ol modul geepl_2] |1 cchelogs Vies]
P

& O Indwrews (120
-
3 O Mem[ITR Fl_}EEh —
s -
¥ e er
s - — — R
o] = i
|
b e
% E— ! g]
11
Hierarchy Browser Movable pane divider Schemalic

The schematic design can be hierarchical or flattened. Further, the view can
consist of the entire design or a part of it. Different commands apply,
depending on the kind of view. In addition to all the features available in RTL
views, Technology views have two additional features: critical path filtering
and flattening to gates.

The following table lists where to find further information about the
Technology view:

For information about ... See ...

Hierarchy Browser Hierarchy Browser, on page 82
Procedures for Working in the Standard Schematic, on page 295 of the
Technology view User Guide

operations like
crossprobing, searching,
pushing/popping,
filtering, flattening, etc.

Explanations or HDL Analyst Tool, on page 77
descriptions of features

like object display,

filtering, flattening, etc.

Commands for Accessing HDL Analyst Commands, on page 86

Technology view HDL Analyst Menu, on page 412
operations like filtering,

flattening, etc.

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 81

HDL Analyst Tool HDL Analyst Views and Commands

For information about ... See ...

Viewing commands like = View Menu: RTL and Technology Views Commands, on
zooming, panning, etc. page 326

History commands: Back View Menu: RTL and Technology Views Commands, on
and Forward page 326

Search command Find Command (HDL Analyst), on page 317

Hierarchy Browser

The Hierarchy Browser is the left pane in the RTL and Technology views. (See
RTL View, on page 78 and Technology View, on page 80.) The Hierarchy
Browser categorizes the design objects in a series of trees, and lets you
browse the design hierarchy or select objects. Selecting an object in the
Browser selects that object in the schematic. The objects are organized as
shown in the following table, with a symbol that indicates the object type. See
Hierarchy Browser Symbols, on page 83 for common symbols.

Instances Lists all the instances and primitives in the design. In a Technology
view, it includes all technology-specific primitives.

Ports Lists all the ports in the design.
Nets Lists all the nets in the design.

Clock Tree Lists all the instances and ports that drive clock pins in an RTL view. If
you select everything listed under Clock Tree and then use the Filter
Schematic command, you see a filtered view of all clock pin drivers in
your design. Registers are not shown in the resulting schematic,
unless they drive clocks. This view can help you determine what to
define as clocks.

A tree node can be expanded or collapsed by clicking the associated icons:
the square plus () or minus (|E|) icons, respectively. You can also expand
or collapse all trees at the same time by right-clicking in the Hierarchy
Browser and choosing Expand All or Collapse All.

You can use the keyboard arrow keys (left, right, up, down) to move between
objects in the Hierarchy Browser, or you can use the scroll bar. Use the Shift
or Ctrl keys to select multiple objects. See Navigating With a Hierarchy
Browser, on page 109 for more information about using the Hierarchy
Browser for navigation and crossprobing.

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
82 Synopsys Confidential Information June 2020

HDL Analyst Views and Commands

HDL Analyst Tool

Hierarchy Browser Symbols

Common symbols used in Hierarchy Browsers are listed in the following

table.

Symbol Description
Folder

Input port
Output port
Bidirectional port
Net

Other primitive instance

Hierarchical instance

Gl = I R A RV ¢

or inferred ROM

Register
or inferred state machine

Multiplexer
Tristate

Inverter

v s]

FSM Viewer Window

Technology-specific primitive

Symbol

oW ® T8y Yooy

Description
Buffer

AND gate
NAND gate
OR gate
NOR gate
XOR gate
XNOR gate
Adder

Multiplier

Equal comparator
Less-than comparator

Less-than-or-equal comparator

Pushing down into a state machine primitive in the RTL view displays the
FSM Viewer and enables the FSM toolbar. The FSM Viewer contains graphical
information about the finite state machines (FSMs) in your design. The
window has a state-transition diagram and tables of transitions and state

encodings.

Synplify Pro for Microchip Edition Reference Manual
June 2020

© 2020 Synopsys, Inc.

Synopsys Confidential Information 83

HDL Analyst Tool HDL Analyst Views and Commands

it .
Transition . i
Diagram = '.-

@ -
Transitions TR
and @ ®

Encodings
Tables , — -
| | Fomese oz | rardetn b=
PRI L e lwrded
gr_u_"n:lcn At Ca]
e |18 RH R -
E_. |srcurrs liaswr Ul e AR] =

| wacstore | B.Eiushie Masd Sl

For the FSM Viewer to display state machine names for a Verilog design, you
must use the Verilog parameter keyword. If you specify state machine names
using the define keyword, the FSM Viewer displays the binary values for the
state machines, rather than their names.

You can toggle display of the FSM tables on and off with the Toggle FSM Table
icon () on the FSM toolbar. The FSM tables are in the following panels:

* The Transitions panel describes, for each transition, the From State, To State,
and Condition of transition.

* The RTL Encodings panel describes the correlation, in the RTL view,
between the states (State) and the outputs (Register) of the FSM cell.

* The Mapped Encodings panel describes the correlation, in the Technology
view, between the states (State) and their encodings into
technology-specific registers. The information in this panel is available
only after the design has been synthesized.

The following table describes FSM Viewer operations.

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
84 Synopsys Confidential Information June 2020

HDL Analyst Views and Commands

HDL Analyst Tool

To accomplish this ...

Open the FSM Viewer

Hide/display the table

Filter selected states and
their transitions

Display the encoding
properties of a state

Display properties for the
state machine

Crossprobe

Do this ...

Run the FSM Compiler or the FSM Explorer. Use the
push/pop mode in the RTL view to push down into
the FSM and open the FSM Viewer window.

Use the FSM icons.

Select the states. Right-click and choose the filter
criteria from the popup, or use the FSM icons.

Select a state. Right-click to display its encoding
properties (RTL or Mapped).

Right-click the window, outside the state-transition
diagram. The property sheet shows the selected
encoding method, the number of states, and the total
number of transitions among states.

Double-click a register in an RTL or Technology view
to see the corresponding code. Select a state in the
FSM view to highlight the corresponding code or
register in other open views.

Filtered and Unfiltered Schematic Views

HDL Analyst views (RTL View, on page 78 and Technology View, on page 80)
consist of schematics that let you analyze your design graphically. The

schematics can be filtered or unfiltered. The distinction is important because
the kind of view determines how objects are displayed for certain commands.

* Unfiltered schematics display all the objects in your design, at appro-
priate hierarchical levels.

* Filtered schematics show only a subset of the objects in your design,
because the other objects have been filtered out by some operation. The
Hierarchy Browser in the filtered view always list all the objects in the
design, not just the filtered objects. Some commands, such as HDL
Analyst -> Show Context, are only available in filtered schematics. Views
with a filtered schematic have the word Filtered in the title bar.

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 85

HDL Analyst Tool HDL Analyst Views and Commands

Indicates a filtered schematic

P Rlbered Sheet 1 of 1 - top kevel (of medole sght_batoc) (Aliered Technology View)} PROASICIE

[k [Instarces (34)

| B [Primitves (35) data mux
- fF decode (ns_decode) o

Filtering commands affect only the displayed schematic, not the under-
lying design. See the following topics:

* For a detailed description of filtering, see Filtering and Flattening
Schematics, on page 113.

* For procedures on using filtering, see Filtering Schematics, on page 340
in the User Guide.

Accessing HDL Analyst Commands

You can access HDL Analyst commands in many ways, depending on the
active view, the currently selected objects, and other design context factors.
The software offers these alternatives to access the commands:

* HDL Analyst and View menus

* HDL Analyst popup menus appear when you right-click in an HDL
Analyst view. The popup menu is context-sensitive, and includes
commonly used commands from the HDL Analyst and View menus, as well
as some additional commands.

* HDL Analyst toolbar icons provide shortcuts to commonly used
commands

For brevity, this document primarily refers to the menu method of accessing
the commands and does not list alternative access methods.

See also:
* HDL Analyst Menu, on page 412
* View Menu, on page 325
* RTL and Technology Views Popup Menus, on page 483

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
86 Synopsys Confidential Information June 2020

HDL Analyst Views and Commands HDL Analyst Tool

* Analyst Toolbar, on page 59

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 87

HDL Analyst Tool Schematic Objects and Their Display

Schematic Objects and Their Display

Schematic objects are the objects that you manipulate in an HDL Analyst
schematic: instances, ports, and nets. Instances can be categorized in
different ways, depending on the operation: hidden/unhidden, trans-
parent/opaque, or primitive/hierarchical. The following topics describe
schematic objects and the display of associated information in more detail:

* Object Information, on page 88

¢ Sheet Connectors, on page 89

* Primitive and Hierarchical Instances, on page 90

* Hidden Hierarchical Instances, on page 93

* Transparent and Opaque Display of Hierarchical Instances, on page 91

* Schematic Display, on page 93

For most objects, you select them to perform an operation. For some objects
like sheet connectors, you do not select them but right-click on them and
select from the popup menu commands.

Object Information

To obtain information about specific objects, you can view object properties
with the Properties command from the right-click popup menu, or place the
pointer over the object and view the object information displayed. With the
latter method, information about the object displays in these two places until
you move the pointer away:

* The status bar at the bottom of the synthesis window displays the name
of the instance, net, port, or sheet connector and other relevant informa-
tion. If HDL Analyst->Show Timing Information is enabled, the status bar also
displays timing information for the object. Here is an example of the
status bar information for a net:

Net cl ock (local net clock) Fanout=4

You can enable and disable the display of status bar information by
toggling the command View -> Status Bar.

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
88 Synopsys Confidential Information June 2020

Schematic Objects and Their Display HDL Analyst Tool

* In a tooltip at the mouse pointer
Displays the name of the object and any attached attributes. The
following figure shows tooltip information for a state machine:

statermachine \
% :: Q[2:0] el , lgusss ==
[rst == R uni_state
Mouse pointer —— |7 state[0:3]
Hy—
Tooltip state[0: 3] [statemaching] - Properties: syn_fem_id:6218211|

To disable tooltip display, select View -> Toolbars and disable the Show
Tooltips option. Do this if you want to reduce clutter.

See also
* Pin and Pin Name Display for Opaque Objects, on page 94
* Standard HDL Analyst Options Command, on page 444

Sheet Connectors

When the HDL Analyst tool divides a schematic into multiple sheets, sheet
connector symbols indicate how sheets are related. A sheet connector symbol
is like a port symbol, but it has an empty diamond with sheet numbers at one
end. Use the Options->HDL Analyst Options command (see Sheet Size Panel, on
page 450) to control how the schematic is divided into multiple sheets.

Ports i
Diamond indicates sheet connector

If you enable the Show Sheet Connector Index option in the (Options->HDL Analyst
Options), the empty diamond becomes a hexagon with a list of the connected
sheets. You go to a connecting sheet by right-clicking a sheet connector and
choosing the sheet number from the popup menu. The menu has as many
sheet numbers as there are sheets connected to the net at that point.

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 89

HDL Analyst Tool Schematic Objects and Their Display

P

[INST_0<(2
Show
INST_0 ()
Show

See also
* Multiple-sheet Schematics, on page 102
* Standard HDL Analyst Options Command, on page 444
* RTL and Technology Views Popup Menus, on page 483

rimitive and Hierarchical Instances

HDL Analyst instances are either primitive or hierarchical, and sorted into
these categories in the Hierarchy Browser. Under Instances, the browser first
lists hierarchical instances, and then lists primitive instances under
Instances->Primitives.

Primitive Instances

Although some primitive objects have hierarchy, the term is used here to
distinguish these objects from user-defined hierarchies. Primitive instances
include the following:

RTL View Technology View

High-level logic primitives, like XOR gates Black boxes
or priority-encoded multiplexers

Inferred ROMs, RAMs, and state Technology-specific primitives, like
machines LUTs or FPGA block RAMs
Black boxes

Technology-specific primitives, like LUTs
or FPGA block RAMs

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual

90

Synopsys Confidential Information June 2020

Schematic Objects and Their Display HDL Analyst Tool

In a schematic, logic gate primitives are represented with standard schematic
symbols, and technology-specific primitives with various symbols (see
Hierarchy Browser, on page 82). You can push into primitives like
technology-specific primitives, inferred ROMs, and inferred state machines to
view internal details. You cannot push into logic primitives.

Hierarchical Instances

Hierarchical instances are user-defined hierarchies; all other instances are
considered to be primitives. Hierarchical instances correspond to Verilog
modules and VHDL entities.

The Hierarchy Browser lists hierarchical instances under Instances, and uses
this symbol: T} . In a schematic, the display of hierarchical instances
depends on the combination of the following:

* Whether the instance is transparent or opaque. Transparent instances
show their internal details nested inside them; opaque instances do not.
You cannot directly control whether an object is transparent or opaque;
the views are automatically generated by certain commands. See Trans-
parent and Opaque Display of Hierarchical Instances, on page 91 for
details.

* Whether the instance is hidden or not. This is user-controlled, and you
can hide instances so that they are ignored by certain commands. See
Hidden Hierarchical Instances, on page 93 for more information.

Transparent and Opaque Display of Hierarchical Instances

A hierarchical instance can be displayed transparently or opaquely. You
cannot directly control the display; certain commands cause instances to be
transparent. The distinction between transparent and opaque is important
because some commands operate differently on transparent and opaque
instances. For example, in a filtered schematic Flatten Current Schematic flattens
only transparent hierarchical instances.

* Opaque instances are pale yellow boxes, and do not display their
internal hierarchy. This is the default display.

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 91

HDL Analyst Tool Schematic Objects and Their Display

rrioed 1
[T o
| EHIGE: e S < BAERTER el m—" .
- pa pa :I: : ———— No nested logic

inst

* Transparent instances display some or all their lower-level hierarchy
nested inside a hollow box with a pale yellow border. Transparent
instances are only displayed in filtered schematics, and are a result of
certain commands. See Looking Inside Hierarchical Instances, on
page 110 for information about commands that generate transparent
instances.

A transparent instance can contain other opaque or transparent
instances nested inside. The details inside a transparent instance are
independent schematic objects and you can operate on them
independently: select, push into, hide, and so on. Performing an opera-
tion on a transparent object does not automatically perform it on any of
the objects nested inside it, and conversely.

E: = r.l"." .“Ir .-I".r —q
ATt " BT Canm i S cny el
[L= T —I |— '::-]E}_-" _\:—u' T

= HAL LT DAT, 1
Inel4.ILE _J—""r LERRTAL Wi Ine I3

el —
=gls ey
ik
[T T
B e 7y

e

Transparent Mested Transparent Nested Opaque
Instance Instance Instance

See also
* Looking Inside Hierarchical Instances, on page 110
* Multiple Sheets for Transparent Instance Details, on page 104

* Filtered and Unfiltered Schematic Views, on page 85

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
92 Synopsys Confidential Information June 2020

Schematic Objects and Their Display HDL Analyst Tool

Hidden Hierarchical Instances

Certain commands do not operate on the lower-level hierarchy of hidden
instances, so you can hide instances to focus the operation of a command
and improve performance. You hide opaque or transparent hierarchical
instances with the Hide Instances command (described in RTL and Technology
Views Popup Menus, on page 483). Hiding and unhiding only affects the
current HDL Analyst view, and does not affect the Hierarchy Browser. You
can hide and unhide instances as needed. The hierarchical logic of a hidden
instance is not removed from the design; it is only excluded from certain
operations.

The schematics indicate hidden hierarchical instances with a small H in the
lower left corner. When the mouse pointer is over a hidden instance, the
status bar and the tooltip indicate that the instance is hidden.

ins_rom
-— clk
—— rst data_out[11:0] —
e 31110 01]
rom

"H" Indicates a |—==—|

Hidden Instance - :
I1SER] HIDDEM rom [ins_n:um]l

Toodtip Indicates
Instance is Hidden

Schematic Display

The HDL Analyst Options dialog box controls general properties for all HDL
Analyst views, and can determine the display of schematic object informa-
tion. Setting a display option affects all objects of the given type in all views.
Some schematic options only take effect in schematic windows opened after
the setting change; others affect existing schematic windows as well.

The following are some commonly used settings that affect the display of
schematic objects. See Standard HDL Analyst Options Command, on
page 444 for a complete list of display options.

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 93

HDL Analyst Tool

Schematic Objects and Their Display

Option
Show Cell Interior
Compress Buses

Dissolve Levels

Instances
Filtered Instances

Instances added for
expansion

Instance Name
Show Conn Name
Show Symbol Name
Show Port Name

Show Pin Name

HDL Analyst->Show All Hier
Pins

Controls the display of ...
Internal logic of technology-specific primitives
Buses as bundles

Hierarchical levels in a view flattened with HDL Analyst
-> Dissolve Instances or Dissolve to Gates, by setting the
number of levels to dissolve.

Instances on a schematic by setting limits to the
number of instances displayed

Object labels

Pin names. See Pin and Pin Name Display for Opaque
Objects , on page 94 and Pin and Pin Name Display for
Transparent Objects , on page 95 for details.

Pin and Pin Name Display for Opaque Objects

Although it always displays the pins, the software does not automatically
display pin names for opaque hierarchical instances, technology-specific
primitives, RAMS, ROMs, and state machines. To display pin names for these
objects, enable Options-> HDL Analyst Options->Text->Show Pin Name. The following
figures illustrate this display. The first figure shows pins and pin names of an
opaque hierarchical instance, and the second figure shows the pins of a
technology-specific primitive with its cell contents not displayed.

© 2020 Synopsys, Inc.

94

Synplify Pro for Microchip Edition Reference Manual

Synopsys Confidential Information June 2020

Schematic Objects and Their Display HDL Analyst Tool

Tooltip with Pin Infermation
Mouse Pointer 1
Pin Symboal . data Mux
[7]
! L ¥
] [KIFLk[4:0] Fanilt=3-22|
_ F_
Fing 1 le 1 £ Pin Names
.
LUT4 DDD&
.o
Mouse Pointer 3
Pin Symbaol ins an
" 2 Ein Nar:as O

—

| “HALUE et T4 Fanou=]

=

alub_d 3 am[5]

Pin and Pin Name Display for Transparent Objects

This section discusses pin name display for transparent hierarchical
instances in filtered views and technology-specific primitives.

Transparent Hierarchical Instances

In a filtered schematic, some of the pins on a transparent hierarchical
instance might not be displayed because of filtering. To display all the pins,
select the instance and select HDL Analyst -> Show All Hier Pins.

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 95

HDL Analyst Tool Schematic Objects and Their Display

To display pin names for the instance, enable Options->HDL Analyst Options->Text
->Show Pin Name. The software temporarily displays the pin name when you
move the cursor over a pin. To keep the pin name displayed even after you
move the cursor away, select the pin. The name remains until you select
something else.

Primitives

To display pin names for technology primitives in the Technology view, enable
Options-> HDL Analyst Options->Text->Show Pin Name. The software displays the pin
names until the option is disabled. If Show Pin Name is enabled when Options->
HDL Analyst Options->General->Show Cell Interior is also enabled, the primitive is
treated like a transparent hierarchical instance, and primitive pin names are
only displayed when the cursor moves over the pins. To keep a pin name
displayed even after you move the cursor away, select the pin. The name
remains until you select something else.

ragisher

LUT4_DDOS

(on)

[
== vl op h{‘:

e R
— 1
irest W_BuG2[1:0]
a0 alub_d_3_am[5]
Pin selected, showing names
See also:

* Standard HDL Analyst Options Command, on page 444

* Controlling the Amount of Logic on a Sheet, on page 102

* Analyzing Timing in Schematic Views, on page 358 in the User Guide

© 2020 Synopsys, Inc.

96

Synplify Pro for Microchip Edition Reference Manual
Synopsys Confidential Information June 2020

Basic Operations on Schematic Objects HDL Analyst Tool

Basic Operations on Schematic Objects

Basic operations on schematic objects include the following:
* Finding Schematic Objects, on page 97
* Selecting and Unselecting Schematic Objects, on page 98
* Crossprobing Objects, on page 99
* Dragging and Dropping Objects, on page 101

For information about other operations on schematics and schematic objects,
see the following:

* Filtering and Flattening Schematics, on page 113

* Timing Information and Critical Paths, on page 119
* Multiple-sheet Schematics, on page 102

* Exploring Design Hierarchy, on page 105

Finding Schematic Objects

You can use the following techniques to find objects in the schematic. For
step-by-step procedures using these techniques, see Finding Objects
(Standard), on page 316 in the User Guide.

* Zooming and panning
* HDL Analyst Hierarchy Browser

You can use the Hierarchy Browser to browse and find schematic
objects. This can be a quick way to locate an object by name if you are
familiar with the design hierarchy. See Browsing With the Hierarchy
Browser, on page 316 in the User Guide for details.

¢ Edit-> Find command

The Edit -> Find command is described in Find Command (HDL Analyst),
on page 317. It displays the Object Query dialog box, which lists
schematic objects by type (Instances, Symbols, Nets, or Ports) and lets you
use wildcards to find objects by name. You can also fine-tune your
search by setting a range for the search.

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 97

HDL Analyst Tool Basic Operations on Schematic Objects

This command selects all found objects, whether or not they are
displayed in the current schematic. Although you can search for hidden
instances, you cannot find objects that are inside hidden instances at a
lower level. Temporarily hiding an instance thus further refines the
search range by excluding the internals of a a given instance. This can
be very useful when working with transparent instances, because the
lower-level details appear at the current level, and cannot be excluded
by choosing Current Level Only. See Using Find for Hierarchical and
Restricted Searches, on page 318 in the User Guide.

* Edit-> Find command combined with filtering

Edit->Find enhances filtering. Use Find to select by name and hierarchical
level, and then filter the design to limit the display to the current selec-
tion. Unselected objects are removed. Because Find only adds to the
current selection (it never deselects anything already selected), you can
use successive searches to build up exactly the selection you need,
before filtering.

* Filtering before searching with Edit->Find

Filtering helps you to fine-tune the range of a search. You can search for
objects just within a filtered schematic by limiting the search range to
the Current Level Only.

Filtering adds to the expressive power of displaying search results. You
can find objects on different sheets and filter them to see them all
together at once. Filtering collapses the hierarchy visually, showing
lower-level details nested inside transparent higher-level instances. The
resulting display combines the advantage of a high-level, abstract view
with detail-rich information from lower levels.

See Filtering and Flattening Schematics, on page 113 for further informa-
tion.

Selecting and Unselecting Schematic Objects

Whenever an object is selected in one place it is selected and highlighted
everywhere else in the synthesis tool, including all Hierarchy Browsers, all
schematics, and the Text Editor. Many commands operate on the currently
selected objects, whether or not those objects are visible.

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
98 Synopsys Confidential Information June 2020

Basic Operations on Schematic Objects HDL Analyst Tool

The following briefly list selection methods; for a concise table of selection
procedures, see Selecting Objects in the RTL/ Technology Views, on page 302
in the User Guide.

Using the Mouse to Select a Range of Schematic Objects

In a Hierarchy Browser, you can select a range of schematic objects by
clicking the name of an object at one end of the range, then holding the Shift
key while clicking the name of an object at the other end of the range.To use
the mouse for selecting and unselecting objects in a schematic, the
cross-hairs symbol (~‘—) must appear as the mouse pointer. If this is not
currently the case, right-click the schematic background.

Using Commands to Select Schematic Objects

You can select and deselect schematic objects using the commands in the
HDL Analyst menu, or use Edit->Find to find and select objects by name.

The HDL Analyst menu commands that affect selection include the following:

* Expansion commands like Expand, Expand to Register/Port, Expand Paths,
and Expand Inwards select the objects that result from the expansion. This
means that (except for Expand to Register/Port) you can perform successive
expansions and expand the set of objects selected.

* The Select All Schematic and Select All Sheet commands select all instances
or ports on the current schematic or sheet, respectively.

* The Select Net Driver and Select Net Instances commands select the appro-
priate objects according to the hierarchical level you have chosen.

* Deselect All deselects all objects in all HDL Analyst views.
See also

* Finding Schematic Objects, on page 97

* HDL Analyst Menu, on page 412

Crossprobing Objects

Crossprobing helps you diagnose where coding changes or timing constraints
might reduce area or increase performance. When you crossprobe, you select
an object in one place and it or its equivalent is automatically selected and

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 99

HDL Analyst Tool Basic Operations on Schematic Objects

highlighted in other places. For example, selecting text in the Text Editor
automatically selects the corresponding logic in all HDL Analyst views.
Whenever a net is selected, it is highlighted through all the hierarchical
instances it traverses, at all schematic levels.

Crossprobing Between Different Views

You can crossprobe objects (including logic inside hidden instances) between
RTL views, Technology views, the FSM Viewer, HDL source code files, and
other text files. Some RTL and source code objects are optimized away during
synthesis, so they cannot be crossprobed to certain views.

The following table summarizes crossprobing to and from HDL Analyst (RTL
and Technology) views. For information about crossprobing procedures, see
Crossprobing (Standard), on page 329 in the User Guide.

From ... To ... Do this ...
Text Editor: log Text Editor: Double-click a log file note, error, or warning.
file HDL source The corresponding HDL source code appears in
file the Text Editor.
Text Editor: HDL Analyst view The RTL view or Technology view must be open.
code i Select the code in the Text Editor that
FSM Viewer corresponds to the object(s) you want to
crossprobe.

The object corresponding to the selected code is
automatically selected in the target view, if an
HDL source file is in the Text Editor. Otherwise,
right-click and choose the Select in Analyst
command.

To cross-probe from text other than source
code, first select Options->HDL Analyst Options and
then enable Enhanced Text Crossprobing.

FSM Viewer Analyst view The target view must be open. The state
machine must be encoded with the onehot style
to crossprobe from the transition table.

Select a state anywhere in the FSM Viewer
(bubble diagram or transition table). The
corresponding object is automatically selected
in the HDL Analyst view.

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual

100

Synopsys Confidential Information June 2020

Basic Operations on Schematic Objects HDL Analyst Tool

From ... To ... Do this ...

Analyst view Text Editor Double-click an object. The source code
corresponding to the object is automatically

FSM Viewer selected in the Text Editor, which is opened to

show the selection.

If you just select an object, without
double-clicking it, the corresponding source
code is still selected and displayed in the editor
(provided it is open), but the editor window is
not raised to the front.

Analyst view Another open Select an object in an HDL Analyst view. The
view object is automatically selected in all open
views.

If the target view is the FSM Viewer, then the
state machine must be encoded as onehot.

Tcl window Text Editor Double-click an error or warning message
(available in the Tcl window errors or warnings
panel, respectively). The corresponding source
code is automatically selected in the Text
Editor, which is opened to show the selection.

Text Editor: any Corresponding Highlight the text, then right-click & choose

text containing instance Select or Filter. Use this to filter critical paths
instance names, reported in a text file by the FPGA timing
like a timing analysis tool.

report

Dragging and Dropping Objects

You can drag and drop objects like instances, nets and pins from the HDL
Analyst schematic views to other windows to help you analyze your design or
set constraints. You can drag and drop objects from an RTL or Technology
views to the following other windows:

* SCOPE editor
¢ Text editor window

* Tcl window

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 101

HDL Analyst Tool Multiple-sheet Schematics

Multiple-sheet Schematics

When there is too much logic to display on a single sheet, the HDL Analyst
tool uses additional schematic sheets. Large designs can take several sheets.
In a hierarchical schematic, each module consists of one or more sheets.
Sheet connector symbols (Sheet Connectors, on page 89) mark logic connec-
tions from one sheet to the next.

For more information, see
¢ Controlling the Amount of Logic on a Sheet, on page 102
* Navigating Among Schematic Sheets, on page 102

* Multiple Sheets for Transparent Instance Details, on page 104

Controlling the Amount of Logic on a Sheet

You can control the amount of logic on a schematic sheet using the options in
Options->HDL Analyst Options->Sheet Size. The Maximum Instances option sets the
maximum number of instances on an unfiltered schematic sheet. The
Maximum Filtered Instances option sets the maximum number of instances
displayed at any given hierarchical level on a filtered schematic sheet.

See also:
¢ Standard HDL Analyst Options Command, on page 444
* Setting Schematic Preferences, on page 305 of the User Guide.

Navigating Among Schematic Sheets

This section describes how to navigate among the sheets in a given
schematic. The window title bar lets you know where you are at any time.

Multisheet Orientation in the Title Bar

The window title bar of an RTL view or Technology view indicates the current
context. For example, uc_alu (of module alu) in the title indicates that the
current schematic level displays the instance uc_alu (which is of module alu).
The objects shown are those comprising that instance.

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
102 Synopsys Confidential Information June 2020

Multiple-sheet Schematics

HDL Analyst Tool

The title bar also indicates, for the current schematic, the number of the
displayed sheet, and the total number of sheets — for example, sheet 2 of 4. A

schematic is initially opened to its first sheet.

Sheet # of total #

Context (level) of current sheet:

instance name and module

v sheetd of & - prgmantr (of module prgm_cuir) (Technology View) PROASICIE: A:
=,

- decode (ns_d=cod=)

[retances (44)
Frimitives (35)

O cmux (Sata_mux)

i & pliorepd)

i B O oromantr (prgm_critr)

©1 B [Nets(125)

- ® chock_c, Fanout=111
I3 s 2

B ® fin, Fanout=1
2. ® irst, Fancut=1
4. ® k,Fenout[1-3]

® skip_jn_0_0 a2 0_D Fanz

® opoode_call, Fanout =14
- W opoode_csll_0, Fanout=15
- W apoode_coto, Fanout=13
. # opoode_retiw, Fanout=7

. = oRA

) 4= pc, Fanout[3-5]

Navigating Among Sheets

You can navigate among different sheets of a schematic in these ways:

sheet from the popup menu

Follow a sheet connector, by right-clicking it and choosing a connecting

Use the sheet navigation commands of the View menu: Next Sheet,

Previous Sheet, and View Sheets, or their keyboard shortcut or icon equiva-

lents

Use the history navigation commands of the View menu (Back and

Forward), or their keyboard shortcuts or icon equivalents to navigate to
sheets stored in the display history

For details, see Working with Multisheet Schematics, on page 303 in the User

Guide.

You can navigate among different design levels by pushing and popping the
design hierarchy. Doing so adds to the display history of the View menu, so
you can retrace your push/pop steps using View -> Back and View->Forward.
After pushing down, you can either pop back up or use View->Back.

See also:

* Filtering and Flattening Schematics, on page 113

Synplify Pro for Microchip Edition Reference Manual

June 2020

Synopsys Confidential Information

© 2020 Synopsys, Inc.
103

HDL Analyst Tool Multiple-sheet Schematics

* View Menu: RTL and Technology Views Commands, on page 326
* Pushing and Popping Hierarchical Levels, on page 105

Multiple Sheets for Transparent Instance Details

The details of a transparent instance in a filtered view are drawn in two ways:

* Generally, these interior details are spread out over multiple sheets at
the same schematic level (module) as the instance that contains them.
You navigate these sheets as usual, using the methods described in
Navigating Among Schematic Sheets, on page 102.

* If the number of nested contents exceeds the limit set with the Filtered
Instances option (Options->HDL Analyst Options), the nested contents are
drawn on separate sheets. The parent hierarchical instance is empty,
with a notation (for example, Go to sheets 4-16) inside it, indicating which
sheets contain its lower-level details. You access the sheets containing
the lower-level details using the sheet navigation commands of the View
menu, such as Next Sheet.

See also:
* Controlling the Amount of Logic on a Sheet, on page 102
* View Menu: RTL and Technology Views Commands, on page 326

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
104 Synopsys Confidential Information June 2020

Exploring Design Hierarchy HDL Analyst Tool

Exploring Design Hierarchy

The hierarchy in your design can be explored in different ways. The following
sections explain how to move between hierarchical levels:

* Pushing and Popping Hierarchical Levels, on page 105
* Navigating With a Hierarchy Browser, on page 109

* Looking Inside Hierarchical Instances, on page 110

Pushing and Popping Hierarchical Levels

You can navigate your design hierarchy by pushing down into a high-level
schematic object or popping back up. Pushing down into an object takes you
to a lower-level schematic that shows the internal logic of the object. Popping
up from a lower level brings you back to the parent higher-level object.

Pushing and popping is best suited for traversing the hierarchy of a specific
object. If you want a more general view of your design hierarchy, use the
Hierarchy Browser instead. See Navigating With a Hierarchy Browser, on
page 109 and Looking Inside Hierarchical Instances, on page 110 for other
ways of viewing design hierarchy.

Pushable Schematic Objects

To push into an instance, it must have hierarchy. You can push into the
object regardless of its position in the design hierarchy; for example, you can
push into the object if it is shown nested inside a transparent instance. You
can push down into the following kinds of schematic objects:

* Non-hidden hierarchical instances. To push into a hidden instance,
unhide it first.

* Technology-specific primitives (not logic primitives)

* Inferred ROMs and state machines in RTL views. Inferred ROMs, RAMs,
and state machines do not appear in Technology views, because they are
resolved into technology-specific primitives.

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 105

HDL Analyst Tool Exploring Design Hierarchy

When you push/pop, the HDL Analyst window displays the appropriate level
of design hierarchy, except in the following cases:

* In the Synplify Pro tool, the FSM Viewer opens, with graphical informa-
tion about the FSM. See the FSM Viewer Window, on page 83, for more
information.

* When you push into an inferred ROM in an RTL view, the Text Editor
window opens and displays the ROM data table (romi nfo file).

You can use the following indicators to determine whether you can push into
an object:

* The mouse pointer shape when Push/Pop mode is enabled. See How to
Push and Pop Hierarchical Levels, on page 106 for details.

* A small H symbol () in the lower left corner indicates a hidden
instance, and you cannot push into it.

* The Hierarchy Browser symbols indicates the type of instance and you
can use that to determine whether you can push into an object. For
example, hierarchical instance (I}), technology-specific primitive
(¢), logic primitive such as XOR (i+), or other primitive instance
({F). The browser symbol does not indicate whether or not an instance
is hidden.

* The status bar at the bottom of the main synthesis tool window reports
information about the object under the pointer, including whether or not
it is a hidden instance or a primitive.

How to Push and Pop Hierarchical Levels

You push/pop design levels with the HDL Analyst Push/Pop mode. To enable
or disable this mode, toggle View->Push/Pop Hierarchy, use the icon, or use the
appropriate mouse strokes.

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
106 Synopsys Confidential Information June 2020

Exploring Design Hierarchy

ins_rom
clk

i

rst data_out]11:0] b
add10:0) I
Nt]

|

Fom
Push Daowin
Fop Up
(0

L
aaaio 0] o] =110 DOUT 0] bl [i7110] 2[1101] N e T)

R

Data[11:0]
[data_out[11:0]

Down (Push) or Up (Pop) Arow Mouse Pointer

Once Push/Pop mode is enabled, you push or pop as follows:

To pop, place the pointer in an empty area of the schematic background,
then click or use the appropriate mouse stroke. The background area
inside a transparent instance acts just like the background area outside
the instance.

To push into an object, place the mouse pointer over the object and click
or use the appropriate mouse stroke. To push into a transparent
instance, place the pointer over its pale yellow border, not its hollow
(white) interior. Pushing into an object nested inside a transparent
hierarchical instance descends to a lower level than pushing into the
enclosing transparent instance. In the following figure, pushing into
transparent instance inst2 descends one level; pushing into nested
instance inst2.ll_3 descends two levels.

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.

June 2020

Synopsys Confidential Information 107

HDL Analyst Tool

HDL Analyst Tool

Exploring Design Hierarchy

Push inte transparent

instance along its border

Push inte nested
pushable object

it 2 [mod]_ingt2)

register I 0 I 3
CLI

RST

-

]

1 1
210 s———b

]

Pop from background
(interlor or exterlor),
unless al top level

|
—J1 inst2 2
linst211_3 fegister 1_0_1_31|

Ireside

Outzide

The following arrow mouse pointers indicate status in Push/Pop mode. For

other indicators, se

A down arrow [}
An up arrow ‘&

A crossed-out
double arrow @

See also:

e Pushable Schematic Objects, on page 1035.

Indicates that you can push (descend) into the object under
the pointer and view its details at the next lower level.

Indicates that there is a hierarchical level above the current
sheet.

Indicates that there is no accessible hierarchy above or below
the current pointer position. If the pointer is over the
schematic background it indicates that the current level is the
top and you cannot pop higher. If the pointer is over an object,
the object is an object you cannot push into: a
non-hierarchical instance, a hidden hierarchical instance, or a
black box.

* Hidden Hierarchical Instances, on page 93

* Transparent and Opaque Display of Hierarchical Instances, on page 91

* Using Mouse Strokes, on page 53

* Navigating With a Hierarchy Browser, on page 109

© 2020 Synopsys, Inc.
108

Synplify Pro for Microchip Edition Reference Manual
Synopsys Confidential Information June 2020

Exploring Design Hierarchy HDL Analyst Tool

Navigating With a Hierarchy Browser

Hierarchy Browsers are designed for locating objects by browsing your
design. To move between design levels of a particular object, use Push/Pop
mode (see Pushing and Popping Hierarchical Levels, on page 105 and Looking
Inside Hierarchical Instances, on page 110 for other ways of viewing design
hierarchy).

The browser in the RTL view displays the hierarchy specified in the RTL
design description. The browser in the Technology view displays the
hierarchy of your design after technology mapping.

Selecting an object in the browser displays it in the schematic, because the
two are linked. Use the Hierarchy Browser to traverse your hierarchy and
select ports, nets, components, and submodules. The browser categorizes the
objects, and accompanies each with a symbol that indicates the object type.
The following figure shows crossprobing between a schematic and the
hierarchy browser.

® Sheet 106 1 - top kevel (of modude eight_bit_uc) (Technology View) PROASICIE: ATPEGOOPQIP208-2 _frev_1eipht_|

L.;? Instances (449 Z'

&) Primitves (35)
- d=code= (ins_d=code)
- I dwu (datz_mu)
T p1(prepq)
- I prgmmir (prgm_enkr)
O reqs (reg_fille)
O cpeaal_regs (ad_regs)
& uc_ai fak)
B E Metz (111)
i B Ports {11
Er g Primitives (127)
| & {1 su_b_o[o] (eR3

E@86

T

o@

LT 103 |6

T

|
Bl & promair (orgm [+ |
- regs (reg_file) e A pewesn

&2}
B} speda_regs [pes
Bl 8 uclal fak) — s

- B Mets (111 *—ﬂ
-) Iports {10) __—D—-—Eb'__ﬁDﬂ“ T

G

PR

ik alu_b —— | E—

Explore the browser hierarchy by expanding or collapsing the categories in
the browser. You can also use the arrow keys (left, right, up, down) to move
up and down the hierarchy and select objects. To select more than one object,

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 109

HDL Analyst Tool Exploring Design Hierarchy

press Ctrl and select the objects in the browser. To select a range of schematic
objects, click an object at one end of the range, then hold the Shift key while
clicking the name of an object at the other end of the range.

See also:
* Crossprobing Objects, on page 99
* Pushing and Popping Hierarchical Levels, on page 105

* Hierarchy Browser Popup Menu Commands, on page 483

Looking Inside Hierarchical Instances

An alternative method of viewing design hierarchy is to examine transparent
hierarchical instances (see Navigating With a Hierarchy Browser, on page 109
and Navigating With a Hierarchy Browser, on page 109 for other ways of
viewing design hierarchy). A transparent instance appears as a hollow box
with a pale yellow border. Inside this border are transparent and opaque
objects from lower design levels.

Transparent instances provide design context. They show the lower-level logic
nested within the transparent instance at the current design level, while

pushing shows the same logic a level down. The following figure compares the
same lower-level logic viewed in a transparent instance and a push operation:

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
110 Synopsys Confidential Information June 2020

Exploring Design Hierarchy HDL Analyst Tool

Pushing down to lower-level schematic:

] The pushed instance is not shown at the lower level;
%:: BT only itz defails are shown.
i e LU I -

/ inst1
g | g
E‘:: _.g—:_l_.?___l_”-'r _, e | 2 e
[et g S — P 10
g L2 [&1
gl

Dissolving:
The dissolved instance is shown
transparently, with its details nested inside it

Same details

Transparent (dissolved) instance

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 111

HDL Analyst Tool Exploring Design Hierarchy

You cannot control the display of transparent instances directly. However,
you can perform the following operations, which result in the display of
transparent instances:

Hierarchically expand an object (using the expansion commands in the
HDL Analyst menu).

Dissolve selected hierarchical instances in a filtered schematic (HDL
Analyst -> Dissolve Instances).

Filter a schematic, after selecting multiple objects at more than one
level. See Commands That Result in Filtered Schematics, on page 113 for
additional information.

These operations only make non-hidden hierarchical instances transparent.
You cannot dissolve hidden or primitive instances (including
technology-specific primitives). However, you can do the following:

Unhide hidden instances, then dissolve them.

Push down into technology-specific primitives to see their lower-level
details, and you can show the interiors of all technology-specific primi-
tives.

See also:

Pushing and Popping Hierarchical Levels, on page 105

Navigating With a Hierarchy Browser, on page 109

HDL Analyst Command, on page 413

Transparent and Opaque Display of Hierarchical Instances, on page 91

Hidden Hierarchical Instances, on page 93

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual

112

Synopsys Confidential Information June 2020

Filtering and Flattening Schematics HDL Analyst Tool

Filtering and Flattening Schematics

This section describes the HDL Analyst commands that result in filtered and
flattened schematics. It describes

* Commands That Result in Filtered Schematics, on page 113
* Combined Filtering Operations, on page 114

* Returning to The Unfiltered Schematic, on page 114

* Commands That Flatten Schematics, on page 115

* Selective Flattening, on page 116

* Filtering Compared to Flattening, on page 117

Commands That Result in Filtered Schematics

A filtered schematic shows a subset of your design. Any command that
results in a filtered schematic is a filtering command. Some commands, like
the Expand commands, increase the amount of logic displayed, but they are
still considered filtering commands because they result in a filtered view of
the design. Other commands like Filter Schematic and Isolate Paths remove
objects from the current display.

Filtering commands include the following:
* Filter Schematic, Isolate Paths - reduce the displayed logic.

* Dissolve Instances (in a filtered schematic) - makes selected instances
transparent.

* Expand, Expand to Register/Port, Expand Paths, Expand Inwards, Select Net Driver,
Select Net Instances - display logic connected to the current selection.

* Show Critical Path, Flattened Critical Path, Hierarchical Critical Path - show critical
paths.

All the filtering commands, except those that display critical paths, operate
on the currently selected schematic object(s). The critical path commands
operate on your entire design, regardless of what is currently selected.

All the filtering commands except Isolate Paths are accessible from the HDL
Analyst menu; Isolate Paths is in the RTL view and Technology view popup
menus (along with most of the other commands above).

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 113

HDL Analyst Tool Filtering and Flattening Schematics

For information about filtering procedures, see Filtering Schematics, on
page 340 in the User Guide.

See also:
* Filtered and Unfiltered Schematic Views, on page 85

¢ HDL Analyst Menu, on page 412 and RTL and Technology Views Popup
Menus, on page 483

Combined Filtering Operations

Filtering operations are designed to be used in combination, successively.
You can perform a sequence of operations like the following:

1. Use Filter Schematic to filter your design to examine a particular instance.
See HDL Analyst Menu: Filtering and Flattening Commands, on page 415
for a description of the command.

2. Select Expand to expand from one of the output pins of the instance to
add its immediate successor cells to the display. See HDL Analyst Menu:
Hierarchical and Current Level Submenus, on page 413 for a description
of the command.

3. Use Select Net Driver to add the net driver of a net connected to one of the
successors. See HDL Analyst Menu: Hierarchical and Current Level
Submenus, on page 413 for a description of the command.

4. Use Isolate Paths to isolate the net driver instance, along with any of its
connecting paths that were already displayed. See HDL Analyst Menu:
Analysis Commands, on page 419 for a description of the command.

Filtering operations add their resulting filtered schematics to the history of
schematic displays, so you can use the View menu Forward and Back
commands to switch between the filtered views. You can also combine
filtering with the search operation. See Finding Schematic Objects, on page 97
for more information.

Returning to The Unfiltered Schematic

A filtered schematic often loses the design context, as it is removed from the
display by filtering. After a series of multiple or complex filtering operations,
you might want to view the context of a selected object. You can do this by

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
114 Synopsys Confidential Information June 2020

Filtering and Flattening Schematics HDL Analyst Tool

* Selecting a higher level object in the Hierarchy Browser; doing so always
crossprobes to the corresponding object in the original schematic.

* Using Show Context to take you directly from a selected instance to the
corresponding context in the original, unfiltered schematic.

* Using Goto Net Driver to go from a selected net to the corresponding
context in the original, unfiltered schematic.

There is no Unfilter command. Use Show Context to see the unfiltered schematic
containing a given instance. Use View->Back to return to the previous, unfil-
tered display after filtering an unfiltered schematic. You can go back and
forth between the original, unfiltered design and the filtered schematics,
using the commands View->Back and Forward.

See also:

* RTL and Technology Views Popup Menus, on page 483

* View Menu: RTL and Technology Views Commands, on page 326

Commands That Flatten Schematics

A flattened schematic contains no hierarchical objects. Any command that
results in a flattened schematic is a flattening command. This includes the

following.

Command
Dissolve Instances

Flatten Current
Schematic (Flatten
Schematic)

RTL->Flattened
View

Technology->
Flattened View

Unfiltered Schematic Filtered Schematic

Flattens selected instances -

Flattens at the current level Flattens only non-hidden

and all lower levels. RTL view: transparent hierarchical
flattens to generic logic level instances; opaque and hidden
Technology view: flattens to hierarchical instances are not
technology-cell level flattened.

Creates a new, unfiltered RTL schematic of the entire design,
flattened to the level of generic logic cells.

Creates a new, unfiltered Technology schematic of the entire
design, flattened to the level of technology cells.

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.

June 2020

Synopsys Confidential Information 115

HDL Analyst Tool Filtering and Flattening Schematics

Command Unfiltered Schematic Filtered Schematic
Technology-> Creates a new, unfiltered Technology schematic of the entire
Flattened to Gates design, flattened to the level of Boolean logic gates.

View

Technology-> Creates a filtered, flattened Technology view schematic that
Flattened Critical shows only the instances with the worst slack times and their
Path path.

Unflatten Schematic Undoes any flattening done by Dissolve Instances and Flatten
Current Schematic at the current schematic level. Returns to the
original schematic, as it was before flattening (and any
filtering).

All the commands are on the HDL Analyst menu except Unflatten Schematic,
which is available in a schematic popup menu.

The most versatile commands, are Dissolve Instances and Flatten Current
Schematic, which you can also use for selective flattening (Selective Flattening,
on page 116).

See also:
* Filtering Compared to Flattening, on page 117

* Selective Flattening, on page 116

Selective Flattening

By default, flattening operations are not very selective. However, you can
selectively flatten particular instances with these command (see RTL and
Technology Views Popup Menus, on page 483 for descriptions):

* Use Hide Instances to hide instances that you do not want to flatten, then
flatten the others (flattening operations do not recognize hidden
instances). After flattening, you can Unhide Instances that are hidden.

* Flatten selected hierarchical instances using one of these commands:
— If the current schematic is unfiltered, use Dissolve Instances.

— If the schematic is filtered, use Dissolve Instances, followed by Flatten
Current Schematic. In a filtered schematic, Dissolve Instances makes the
selected instances transparent and Flatten Current Schematic flattens
only transparent instances.

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
116 Synopsys Confidential Information June 2020

Filtering and Flattening Schematics HDL Analyst Tool

The Dissolve Instances and Flatten Current Schematic (or Flatten Schematic)
commands behave differently in filtered and unfiltered schematics as
outlined in the following table:

Command Unfiltered Schematic Filtered Schematic
Dissolve Instances Flattens selected Provides virtual flattening: makes
instances selected instances transparent,

displaying their lower-level details.

Flatten Current Flattens everything Flattens only the non-hidden,
Schematic at the current level transparent hierarchical instances: does
Flatten Schematic and below not flatten opaque or hidden instances.

See below for details of the process.

In a filtered schematic, flattening with Flatten Current Schematic is actually a
two-step process:

1. The transparent instances of the schematic are flattened in the context
of the entire design. The result of this step is the entire hierarchical
design, with the transparent instances of the filtered schematic replaced
by their internal logic.

2. The original filtering is then restored: the design is refiltered to show
only the logic that was displayed before flattening.

Although the result displayed is that of Step 2, you can view the intermediate
result of Step 1 with View->Back. This is because the display history is erased
before flattening (Step 1), and the result of Step 1 is added to the history as if
you had viewed it.

Filtering Compared to Flattening

As a general rule, use filtering to examine your design, and flatten it only if
you really need it. Here are some reasons to use filtering instead of flattening:

* Filtering before flattening is a more efficient use of computer time and
memory. Creating a new view where everything is flattened can take
considerable time and memory for a large design. You then filter anyway
to remove the flattened logic you do not need.

* Filtering is selective. On the other hand, the default flattening operations
are global: the entire design is flattened from the current level down.

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 117

HDL Analyst Tool Filtering and Flattening Schematics

Similarly, the inverse operation (UnFlatten Schematic) unflattens every-
thing on the current schematic level.

* Flattening operations eliminate the history for the current view: You can
not use View->Back after flattening. (You can, however, use UnFlatten
Schematic to regenerate the unflattened schematic.).

See also:
* RTL and Technology Views Popup Menus, on page 483
* Selective Flattening, on page 116

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
118 Synopsys Confidential Information June 2020

Timing Information and Critical Paths HDL Analyst Tool

Timing Information and Critical Paths

The HDL Analyst tool provides several ways of examining critical paths and
timing information, to help you analyze problem areas. The different ways are
described in the following sections.

* Timing Reports, on page 119
* Critical Paths and the Slack Margin Parameter, on page 120
* Examining Critical Path Schematics, on page 121

See the following for more information about timing and result analysis:
* Watch Window, on page 37
* Log File, on page 157
* Chapter 13, Optimizing Processes for Productivity in the User Guide

Timing Reports

When you synthesize a design, a default timing report is automatically
written to the log file, which you can view using View->View Log File. This report
provides a clock summary, I/O timing summary, and detailed timing infor-
mation for your design.

For certain device technologies, you can use the Analysis->Timing Analyst
command to generate a custom timing report. Use this command to specify
start and end points of paths whose timing interests you, and set a limit for
the number of paths to analyze between these points. By default, the sequen-
tial instances, input ports, and output ports that are currently selected in the
Technology views of the design are the candidates for choosing start and end
points. In addition, the start and end points of the previous Timing Analyst run
become the default start and end points for the next run. When analyzing
timing, any latches in the path are treated as level-sensitive registers.

The custom timing report is stored in a text file named resultsfile. ta, where
resultsfile is the name of the results file (see Implementation Results Panel, on
page 353). In addition, a corresponding output netlist file is generated,
named resultsfile ta.srm. Both files are in the implementation results direc-

tory.

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 119

HDL Analyst Tool Timing Information and Critical Paths

The Timing Analyst dialog box provides check boxes for viewing the text report
(Open Report) in the Text Editor and the corresponding netlist (Open Schematic)
in a Technology view. This Technology view of the timing path, labeled Timing
View in the title bar, is special in two ways:

* The Timing View shows only the paths you specify in the Timing Analyst
dialog box. It corresponds to a special design netlist that contains
critical timing data.

* The Timing Analyst and Show Critical Path commands (and equivalent icons
and shortcuts) are unavailable whenever the Timing View is active.

See also:
* Analysis Menu, on page 400
¢ Timing Reports, on page 162
* Log File, on page 157

Critical Paths and the Slack Margin Parameter

The HDL Analyst tool can isolate critical paths in your design, so that you can
analyze problem areas, add timing constraints where appropriate, and resyn-
thesize for better results.

After you successfully run synthesis, you can display just the critical paths of
your design using any of the following commands from the HDL Analyst menu:

¢ Hierarchical Critical Path
* Flattened Ciritical Path
* Show Critical Path

The first two commands create a new Technology view, hierarchical or
flattened, respectively. The Show Critical Path command reuses the current
Technology view. Neither the current selection nor the current sheet display
have any effect on the result. The result is flat if the entire design was already
flat; otherwise it is hierarchical. Use Show Critical Path if you want to maintain
the existing display history.

All these commands filter your design to show only the instances (and their
paths) with the worst slack times. They also enable HDL Analyst -> Show Timing
Information, displaying timing information.

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
120 Synopsys Confidential Information June 2020

Timing Information and Critical Paths HDL Analyst Tool

Negative slack times indicate that your design has not met its timing require-
ments. The worst (most negative) slack time indicates the amount by which
delays in the critical path cause the timing of the design to fail. You can also
obtain a range of worst slack times by setting the slack margin parameter to
control the sensitivity of the critical-path display. Instances are displayed
only if their slack times are within the slack margin of the (absolutely) worst
slack time of the design.

The slack margin is the criterion for distinguishing worst slack times. The
larger the margin, the more relaxed the measure of worst, so the greater the
number of critical-path instances displayed. If the slack margin is zero (the
default value), then only instances with the worst slack time of the design are
shown. You use HDL Analyst->Set Slack Margin to change the slack margin.

The critical-path commands do not calculate a single critical path. They filter
out instances whose slack times are not too bad (as determined by the slack
margin), then display the remaining, worst-slack instances, together with
their connecting paths.

For example, if the worst slack time of your design is -10 ns and you set a
slack margin of 4 ns, then the critical path commands display all instances
with slack times between -6 ns and -10 ns.

See also:
* HDL Analyst Menu, on page 412
* HDL Analyst Command, on page 413
* Handling Negative Slack, on page 364 of the User Guide
* Analyzing Timing in Schematic Views, on page 358 of the User Guide

Examining Critical Path Schematics

Use successive filtering operations to examine different aspects of the critical
path. After filtering, use View -> Back to return to the previous point, then filter
differently. For example, you could use the command Isolate Paths to examine
the cone of logic from a particular pin, then use the Back command to return
to the previous display, then use Isolate Paths on a different pin to examine a
different logic cone, and so on.

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 121

HDL Analyst Tool Timing Information and Critical Paths

Also, the Show Context and Goto Net Driver commands are particularly useful
after you have done some filtering. They let you get back to the original, unfil-
tered design, putting selected objects in context.

See also:
* Returning to The Unfiltered Schematic, on page 114

* Filtering and Flattening Schematics, on page 113

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
122 Synopsys Confidential Information June 2020

SYNOPSYS

Silicon to Software

CHAPTER 4

Constraint Guidelines

Constraints are used in the FPGA synthesis environment to achieve optimal
design results. Timing constraints set performance goals, non-timing
constraints (design constraints) guide the tool through optimizations that
further enhance performance.

This chapter provides an overview of how constraints are handled in the
FPGA synthesis environment.

* Constraint Types, on page 124

* Constraint Files, on page 125

* Timing Constraints, on page 127

* FDC Constraints, on page 130

* Methods for Creating Constraints, on page 131
* Constraint Translation, on page 133

* Constraint Checking, on page 138

* Database Object Search, on page 140

* Forward Annotation, on page 141

* Auto Constraints, on page 141

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 123

Constraint Guidelines

Constraint Types

Constraint Types

One way to ensure the FPGA synthesis tool achieves the best quality of
results for your design is to define proper constraints. In the FPGA environ-
ment, constraints can be categorized by the following types:

Type Description

Timing Performance constraints that guide the synthesis tools to achieve optimal
results. Examples: clocks (create_clock), clock groups (set_clock_groups),
and timing exceptions like multicycle and false paths (set_multicycle_path...)

See Timing Constraints , on page 127 for information on defining these

constraints.

Design Additional design goals that enhance or guide tool optimizations.
Examples: Attributes and directives (define_attribute, define_global_attribute),
I/0O standards (define_io_standard), and compile points (define_compile_point).

The easiest way to specify constraints is through the SCOPE interface. The
tool saves timing and design constraints to an FDC file that you add to your

project.

See Also

Constraint Files , on page 125

Timing Constraints , on page 127

SCOPE Constraints Editor , on
page 216

Timing Constraints , on page 262

Design Constraints , on page 301

© 2020 Synopsys, Inc.

Overview of constraint files

Overview of timing constraint definitions and
FDC file generation.

Information about automatic generation of
timing and design constraints.

Timing constraint syntax

Design constraint syntax

Synplify Pro for Microchip Edition Reference Manual

124 Synopsys Confidential Information June 2020

Constraint Files Constraint Guidelines

Constraint Files

The figure below shows the files used for specifying various types of
constraints. The FDC file is the most important one and is the primary file for
both timing and non-timing design constraints. The other constraint files are
used for specific features or as input files to generate the FDC file, as
described in Timing Constraints, on page 127. The figure also indicates the
specific processes controlled by attributes and directives.

TIMING
DESIGN egacy Synplify Timing
- Consfraints
o ao. ... Directives
Synopsys Standard PHYSICAL

Affributes -
' Timing Constraints

Legacy SOC

Standard SDC

Design Planner Constraints

[s7F_|

B
=)
2]

Static Synthesis
——— Compiler Mapper Timing with Design
Analyzer Planner

== Timing constraints

mm= Design constraints

we Controling constraint & module
mmpe- Design Planner constraints
B Constraint files

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 125

Constraint Guidelines

Constraint Files

The table is a summary of the various kinds of constraint files.

File Type Common Commands Comments
FDC Timing create_clock, Used for synthesis. Includes
constraints set_multicycle_delay ... timing constraints that
) . . follow the Synopsys
Design define_attribute, standard format as well as
constraints define_io_standard ... design constraints.
ADC Timing create_clock, Used with the stand-alone
constraints set_multicycle_delay ... timing analyzer.
for timing
analysis
SDC FPGA timing create_clock, Use sdc2fdc to convert
(Synopsys constraints get clock_latency, constraints to an FDC file so
Standard) set_false_path ... that they can be passed to
- - the synthesis tools.
SDC Legacy define_clock, Use sdc2fdc to convert the
(Legacy) timing define_false_path constraints to an FDC file so
constraints 4efine attribute that they can be passed to
and . . the synthesis tools.

non-timing
(or design)
constraints

define_collection ...

© 2020 Synopsys, Inc.

126

Synplify Pro for Microchip Edition Reference Manual

Synopsys Confidential Information

June 2020

Timing Constraints Constraint Guidelines

Timing Constraints

The synthesis tool has supported different timing formats in the past, and
this section describes some of the details of standardization:

* Legacy SDC and Synopsys Standard SDC, on page 127
* FDC File Generation, on page 128

* Timing Constraint Precedence in Mixed Constraint Designs, on page 128

Legacy SDC and Synopsys Standard SDC

Releases prior to G-2012.09 had two types of constraint files that could be
used in a design project:

* Legacy “Synplify-style” timing constraints (define_clock, define_false_path...)
saved to an sdc file. This file also included non-timing design
constraints, like attributes and compile points.

* Synopsys standard timing constraints (create_clock, set_false_path...).
These constraints were also saved to an sdc file, which only contained
timing constraints. Non-timing constraints were in a separate sdc file.
The tool used the two files together, drawing timing constraints from one
and non-timing constraints from the other.

Starting with the G-2012.09 release, Synopsys standard timing constraint
format has replaced the legacy-style constraint format, and a new FDC (FPGA
design constraint) file consolidates both timing and design formats. As a
result of these updates, there are some changes in the use model:

* Timing constraints in the legacy format are converted and included in
an FDC file, which includes both timing and non-timing constraints. The
file uses the Synopsys standard syntax for timing constraints (create_-
clock, set_multicycle_path...). The syntax for non-timing design constraints
is unchanged (define_attribute, define_io_standard...).

* The SCOPE editor has been enhanced to support the timing constraint
changes, so that new constraints can be entered correctly.

* For older designs, use the sdc2fdc command to do a one-time conversion.

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 127

Constraint Guidelines Timing Constraints

FDC File Generation

The following figure is a simplified summary of constraint-file handling and
the generation of fdc.

It is not required that you convert Synopsys standard sdc constraints as the
figure implies, because they are already in the correct format. You could have
a design with mixed constraints, with separate Synopsys standard sdc and fdc
files. The disadvantage to keeping them in the standard sdc format is that you
cannot view or edit the constraints through the SCOPE interface.

Existing Designs
Synplify-Style Timing Synopsys Standard Timing
Legacy sdc Standard sdc
Timingand Design Timing Constraints Only
Constraints
create clhock ...
define_clock ..
define_atiribute... Legacy sdc
MNew Design Constraints Only
Designs 1File define_attrbute...

2 Files

— | sdafle

FDC

Timing Constraint Precedence in Mixed Constraint Designs

Your design could include timing constraints in a Synopsys standard sdc file
and others in an fdc file. With mixed timing constraints in the same design,
the following order of precedence applies:

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual

Synopsys Confidential Information June 2020

Timing Constraints Constraint Guidelines

The tool reads the file order listed in the project file and any conflicting
constraint overwrites a previous constraint. This means that constraint
priority is determined by the constraint that is read last.

With the legacy timing constraints, it is strongly recommended that you
convert them to the f dc format. However, even if you retain the old format in
an existing design, they must be used alone and cannot be mixed in the same
design as f dc or Synopsys standard timing sdc constraints. Specifically, do
not specify timing constraints using mixed formats. For example, do not
define clocks with define_clock and create_clock together in the same constraint
file or multiple SDC/FDC files.

For the list of FPGA timing constraints (FDC) and their syntax, see Timing
Constraints, on page 262.

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 129

Constraint Guidelines FDC Constraints

FDC Constraints

The FPGA design constraints (FDC) file contains constraints that the tool uses
during synthesis. This FDC file includes both timing constraints and
non-timing constraints in a single file.

* Timing constraints define performance targets to achieve optimal
results. The constraints follow the Synopsys standard format, such as
create_clock, set_input_delay, and set_false path.

* Non-timing (or design constraints) define additional goals that help the
tool optimize results. These constraints are unique to the FPGA
synthesis tools and include constraints such as define_attribute, define_io_-
standard, and define_compile_point.

The recommended method to define constraints is to enter them in the
SCOPE editor, and the tool automatically generates the appropriate syntax. If
you define constraints manually, use the appropriate syntax for each type of
constraint (timing or non-timing), as described above. See Methods for
Creating Constraints, on page 131 for details on generating constraint files.

Prior to release G-2012.09, designs used timing constraints in either legacy
Synplify-style format or Synopsys standard format. You must do a one-time
conversion on any existing SDC files to convert them to FDC files using the
following command:

% sdc2f dc

sdc2fdc converts constraints as follows:

For legacy Synplify-style Converts timing constraints to Synopsys standard
timing constraints format and saves them to an FDC file.

For Synopsys standard Preserves Synopsys standard format timing
timing constraints constraints and saves them to an FDC file.

For non-timing or design Preserves the syntax for these constraints and
constraints saves them to an FDC file.

Once defined, the FDC file can be added to your project. Double-click this file
from the Project view to launch the SCOPE editor to view and/or modify your
constraints. See Converting SDC to FDC, on page 164 for details on how to
run sdc2fdc.

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
130 Synopsys Confidential Information June 2020

Methods for Creating Constraints

Constraint Guidelines

Methods for Creating Constraints

Constraints are passed to the synthesis environment in FDC files using Tcl

command syntax.

New Designs

For new designs, you can specify constraints using any of the following

methods:

Definition Method

SCOPE Editor

(fdc file)—
Recommended

Manually-Entered Text
Editor

(fdc File, all other
constraint files)

Source Code
Attributes/Directives

(HDL files)

Automatic— First Pass

Synplify Pro for Microchip Edition Reference Manual
June 2020

Description

Use this method to specify constraints wherever possible.
The SCOPE editor automatically generates fdc
constraints with the right syntax. You can use it for most
constraints. See Chapter 4, Constraint Commands, for
information how to use SCOPE to automatically generate
constraint syntax.

Access: File->New->FPGA Design Constraints ...

You can manually enter constraints in a text file. Make
sure to use the correct syntax for the timing and design
commands.

The SCOPE GUI includes a TCL View with an advanced
text editor, where you can manually generate the
constraint syntax. For a description of this view, see TCL
View , on page 240.

You can also open any constraint file in a text editor to
modify it.

Directives must be entered in the source code because
they affect the compiler. Do not include any other
constraints in the source code, as this makes the source
code less portable. In addition, you must recompile the
design for the constraints to take effect.

Attributes can be entered through the SCOPE interface,
as they affect the mapper, not the compiler

Enable the Auto Constrain button in the Project view to
have the tool automatically generate constraints based
on inferred clocks. See Using Auto Constraints , on
page 376 in the User Guide for details.

Use this method as a quick first pass to get an idea of
what constraints can be set.

© 2020 Synopsys,
Synopsys Confidential Information

Inc.
131

Constraint Guidelines Methods for Creating Constraints

If there are multiple timing exception constraints on the same object, the
software uses the guidelines described in Conflict Resolution for Timing Excep-
tions, on page 258 to determine the constraint that takes precedence.

See Also
To specify the correct syntax for the timing and design commands, see:
¢ Chapter 4, Constraint Commands

* Attribute Reference Manual

Existing Designs

The SCOPE editor in this release does not save constraints to SDC files. For
designs prior to G-2012.09, it is recommended that you migrate your timing
constraints to FDC format to take advantage of the tool’s enhanced handling
of these types of constraints. To migrate constraints, use the sdc2fdc
command (see Converting SDC to FDC, on page 164l]) on your sdc files.

Note: If you need to edit an SDC file, either use a text editor, or
double-click the file to open the legacy SCOPE editor. For infor-
mation on editing older SDC files, see Using the SCOPE Editor
(Legacy), on page 165.

See Also
To use the current SCOPE editor, see:
* Chapter 4, Constraint Commands

* Chapter 5, Specifying Constraints

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual

132

Synopsys Confidential Information June 2020

Constraint Translation Constraint Guidelines

Constraint Translation

The tool includes standalone scripts to convert specific vendor constraints, as
well as functionality that includes constraint translation as part of the larger
task of generating a synthesis project from vendor files.

sdc2fdc Conversion

The sdc2fdc Tcl shell command translates legacy FPGA timing constraints to
Synopsys FPGA timing constraints. This command scans the input SDC files
and attempts to convert constraints for the implementation.

For details, see the following:
* Troubleshooting Conversion Error Messages, on page 133
* sdc2fdc FPGA Design Constraint (FDC) File, on page 135

* sdc2fdc, on page 111 in the Command Reference manual (syntax)

Troubleshooting Conversion Error Messages

The following table contains common error messages you might encounter
when running the sdc2fdc Tcl shell command, and descriptions of how to
resolve these problems. In addition to these messages, you must also ensure
that your files have read /write permissions set properly and that there is
sufficient disk space.

Message Example Underlying Problem

Remove/disable Cannot translate a
D:FDC_constraints/rev_FDC/top_translated.fdc from the *_translated.fdc file
current implementation.

Add/enable one or more SDC constraint files. No active constraint files

Add clock object qualifier (p: n: ...) for Clock not translated
"define_clock -name {clka {clka} -period 10 -clockgroup

{default_clkgroup_0}"

Synplicity_SDC source file:

D:.../clk_prior/scratch/top.sdc. Line number: 32

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 133

Constraint Guidelines

Constraint Translation

Message Example

Specify -name for "define_clock {p:clkb} -period 20
-clockgroup {default_clkgroup_1}"

Synplicity SDC source file:
D:.../clk_prior/scratch/top.sdc. Line number: 33

Missing qualifier(s) (i: p: n: ...)

"define_multicycle_path 4 -from {a* b*} -to $fdc_cmd_0 -start"

Synplicity SDC source file:
D:.../clk_prior/scratch/top.sdc. Line number: 76

Mixing of object types not permitted
"define_multicycle_path -to {i:*y*.q[*] p:ena} 3"
Synplicity SDC source file:
D:.../clk_prior/scratch/top.sdc. Line number: 77

Mixing of object types and missing qualifiers not
permitted "define_multicycle_path -from {i:*y*.q[*] p:ena
enab} 3"

Synplicity SDC source file:
D:.../clk_prior/scratch/top.sdc. Line number: 77

Default 1000.

"create_clock -name {clkb} {p:clkb} -period 1000 -waveform
{0 500.0}"

Synplicity SDC source file:
D:.../clk_prior/scratch/top.sdc. Line number: 33

"create_clock -name {clka} {p:clka} -period 10 -rise 5
-clockgroup {default_clkgroup_0"

Synplicity SDC source file:
D..../clk_prior/scratch/top.sdc. Line number: 32

Underlying Problem

Clock not translated

Bad -from list for

define_multicycle_path {a*
b*}

Bad -to list for
define_multicycle_path

{i: *y* .q|*] p:ena}

Bad -from list for
define_multicycle_path
{i:*y* .q[*] p:ena enab}

No period or frequency found

Must specify both -rise and
-fall, or neither

Fix any issues in the SDC source file and rerun the sdc2fdc command.

Batch Mode

If you run sdc2fdc -batch, then the following occurs:

* The two A ock not transl at ed messages in the table above are not

generated.

* When the translation is successful, the SDC file is disabled and the FDC
file is enabled and saved automatically in the project file.

However, if the -batch option is not used and the translation is
successful, then the SDC file is disabled and the FDC file is enabled but

© 2020 Synopsys, Inc.
134 Synopsys Confidential Information

Synplify Pro for Microchip Edition Reference Manual
June 2020

Constraint Translation Constraint Guidelines

not automatically saved in the Project file. A message to this effect
displays in the Tcl shell window.

sdc2fdc FPGA Design Constraint (FDC) File

The FDC constraint file generated after running sdc2fdc contains translated
legacy FPGA timing constraints (SDC), which are now in the FDC format. This
file is divided into two sections:

1 Contains this information:
* Valid FPGA design constraints (e.g. define_scope_collection and define_attribute)

* Legacy timing constraints that were not translated because they were
specified with -disable.

2 Contains the legacy timing constraints that were translated.

This file also provides the following:
* Each source sdc file has its separate subhead.

* Each compile point is treated as a top level, so its sdc file has its own
_translated.fdc file.

* The translator adds the naming rule, set_rtl_ff_names, so that the
synthesis tool knows these constraints are not from the Synopsys
Design Compiler.

The following example shows the contents of the FDC file.

BT T
####This file contains constraints from Synplicity SDC files that have been
####t ransl ated i nto Synopsys FPGA Design Constraints (FDC.

####Transl ated FDC out put file:

####D: / bugs/ tim ng_88/cl k_prior/scratch/ FDC constraints/rev_2/top_transl ated. fdc
####Source SDC files to the translation:

####D: [bugs/ ti m ng_88/cl k_prior/scratch/top.sdc
B

IR R R R R R R R R R R
####Source SDC file to the translation:

####D: [bugs/ ti m ng_88/cl k_prior/scratch/top.sdc

IR R R R R R R R R

#Legacy constraint file

#C.\ O ean_Denos\ Constrai nts_Trai ni ng\t op. sdc
#Witten on Mon May 21 15:58:35 2012

#by Synplify Pro, Synplify Pro Scope Editor
#

#Col | ecti ons
#
define_scope_col l ection all_grp {define_collection \

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 135

Constraint Guidelines Constraint Translation

find -inst {i:FirstStbcPhase}] \
find -inst {i:NornDenon{6:0]}] \
find -inst {i:NormNun{7:0]}] \
find -inst {i:PhaseCQut[9:0]}] \
find -inst {i:PhaseQutdd[9:0]}] \
find -inst {i:PhaseValidQut}] \
find -inst {i:ProcessData}] \
find -inst {i:Quadrant[1:0]}] \
find -inst {i:State[2:0]}] \

#

#C ocks

#define_cl ock -disable -nane {clkc} -virtual -freqg 150 -cl ockgroup default_cl kgroup_1

#d ock to d ock
#

#

#l nput s/ Qut put s

#

define_i nput _del ay -disable {b[7:0]} 2.00 -ref clka:r
define_input_del ay -disable {c[7:0]} 0.20 -ref clkb:r
define_input_delay -disable {d[7:0]} 0.30 -ref clkb:r
define_out put _del ay -disable {x[7:0]} -inprove 0.00 -route 0.00
define_output_delay -disable {y[7:0]} -inprove 0.00 -route 0.00
#

#Regi sters

#

#

#Mil ticycle Path

#

#
#Fal se Path
#

#
define_false path -disable -from{i:x[1]}
#

#Pat h Del ay
#

#

#Attributes

#

define_io_standard -default_input -del ay_type input syn_pad_type {LVOMXS 33} #

#1/ O st andar ds
#

#

#Conpi | e Points
#

#
#O her Constraints

HHHH A
#SDC conpl i ant constraints translated from Legacy Tinming Constraints

HH R R R R R R R R R
#

set_rtl_ff_names {#}

create_clock -nane {clka} [get_ports {clka}] -period 10 -waveform {0 5.0}

create_cl ock -nane {cl kb} [get_ports {clkb}] -period 6. 666666666666667
-waveform {0 3. 3333333333333335}

set _input _delay -clock [get_clocks {clka}] -clock_fall -add_delay 0.000 [all _

i nput s]

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
136 Synopsys Confidential Information June 2020

Constraint Translation Constraint Guidelines

set _output _delay -clock [get_clocks {clka}] -add_delay 0.000 [all_outputs]
set i nput _delay -clock [get_clocks {clka}] -add_delay 2.00 [get_ports {a[7:0]

3
set _i nput _delay -clock [get_clocks {clka}] -add_delay O [get_ports {rst}]
set ncp 4
set_nulticycle_path $ncp -start \
-from\
[get _ports \
* o\

[find -seq -hier {g?[*]}]

set_multicycle_path 3 -end \
-from\
[find -seq {*y*.a[*]} 1]
set _cl ock_groups -nanme default_cl kgroup_0 -asynchronous \
-group [get_clocks {clka dcmcl kO_derived_cl ock dcni
cl k2x_derived_cl ock dcnj cl kOf x_deri ved_cl ock}]

set _cl ock_groups -nanme default_cl kgroup_1 -asynchronous \
-group [get_clocks {clkb}]

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 137

Constraint Guidelines Constraint Checking

Constraint Checking

The synthesis tool has several features to help you debug and analyze design
constraints. Use the constraint checker to check the syntax and applicability
of the timing constraints in the project. The synthesis log file includes a
timing report as well as detailed reports on the compiler, mapper, and
resource usage information for the design. A standalone timing analyzer
(STA) generates a customized timing report when you need more details
about specific paths or want to modify constraints and analyze, without
resynthesizing the design. The following sections provide more information
about these features.

Constraint Checker

Check syntax and other pertinent information on your constraint files using
Run->Constraint Check or the Check Constraints button in the SCOPE editor. This
command generates a report that checks the syntax and applicability of the
timing constraints that includes the following information:

* Constraints that are not applied
* Constraints that are valid and applicable to the design
* Wildcard expansion on the constraints

* Constraints on objects that do not exist

Note: Using collections with Tcl control constructs (such as if, for,
foreach, and while) can produce unexpected synthesis results.
Avoid defining constraints for collections with control constructs,
especially since the constraint checker does not recognize these
built-in Tcl commands.

See Constraint Checking Report, on page 173 for details.

Timing Constraint Report Files

The results of running constraint checking, synthesis, and standalone timing
analysis are provided in reports that help you analyze constraints.

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
138 Synopsys Confidential Information June 2020

Constraint Checking

Constraint Guidelines

Use these files for additional timing constraint analysis:

File
_cck.rpt

_cck_fdc_rpt

_scck. rpt

.ta

.Srr or.htm

Description

Lists the results of running the constraint checker (see Constraint
Checking Report , on page 173).

Lists the wildcard expansion results of running the constraint
checker for collections with the get_* and all_* object query
commands using the check_fdc_query Tcl command. See
check_fdc_query , on page 32 for more information.

Lists the results of running the constraint checker for collections
with the get_* and all_* object query commands.

Reports timing analysis results (see Generating Custom Timing
Reports with STA , on page 366).

Reports post-synthesis timing results as part of the text or HTML
log file (see Timing Reports , on page 162 and Log File , on
page 157).

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.

June 2020

Synopsys Confidential Information 139

Constraint Guidelines Database Object Search

Database Object Search

To apply constraints, you have to search the database to find the appropriate
objects. Sometimes you might want to search for and apply the same
constraint to multiple objects. The FPGA tool provides some Tcl commands to
facilitate the search for database objects:

Commands Common Commands Description

Find Tcl Find, open_design... Lets you search for design objects to
form collections that can apply
constraints to the group. See Using
Collections , on page 154 and find , on

page 147.
Collections define_collection, Create, copy, evaluate, traverse, and
C_union... filter collections. See Using Collections ,

on page 154 and Collection Commands ,
on page 164 for more information.

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual

140

Synopsys Confidential Information June 2020

Forward Annotation Constraint Guidelines

Forward Annotation

The tool can automatically generate vendor-specific constraint files for
forward annotation to the place-and-route tools when you enable the Write
Vendor Constraints switch (on the Implementation Results tab) or use the -write_apr_-
constraint option of the set_option command.

Vendor File Extension
Microchip _VM.SDC
PolarFire

Microchip _SDC.SDC
SmartFusion?2 _VM.SDC
Microchip _SDC.SDC

All devices except PolarFire
and SmartFusion?2

For information about how forward annotation is handled for your target
technology, refer to the appropriate vendor chapter of the FPGA Synthesis
Reference Manual.

Auto Constraints

Auto constraints are automatically generated by the synthesis tool, however,
these do not replace regular timing constraints in the normal synthesis flow.
Auto constraints are intended as a quick first pass to evaluate the kind of
timing constraints you need to set in your design.

To enable this feature and automatically generate register-to-register
constraints, use the Auto Constrain option. For details, see Using Auto
Constraints, on page 376 in the User Guide.

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 141

Constraint Guidelines Auto Constraints

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
142 Synopsys Confidential Information June 2020

CHAPTER §

Input and Result Files

SYNOPSYS

Silicon to Software

This chapter describes the input and output files used by the tool.

Input Files, on page 144

Libraries, on page 148

Output Files, on page 152

Log File, on page 157

Timing Reports, on page 162
Hierarchical Area Report, on page 172
Constraint Checking Report, on page 173

Synplify Pro for Microchip Edition Reference Manual

June 2020

Synopsys Confidential Information

© 2020 Synopsys, Inc.
143

Input and Result Files

Input Files

Input Files

The following table describes the input files used by the synthesis tool.

Extension File

. adc Analysis
Design
Constraint

.fdc Synopsys
FPGA Design
Constraint

A ni Configuration
and
Initialization

. prj Project

. sdc Constraint

© 2020 Synopsys, Inc.

Description

Contains timing constraints to use for stand-alone
timing analysis. Constraints in this file are used only
for timing analysis and do not change the result files
from synthesis. Constraints in the adc file are applied
in addition to sdc constraints used during synthesis.
Therefore, adc constraints affect timing results only if
there are no conflicts with sdc constraints.

You can forward annotate adc constraints to your
vendor constraint file without rerunning synthesis.
See Using Analysis Design Constraints , on page 369
of the User Guide for details.

Create FPGA timing and design constraints with
SCOPE. You can run the sdc2fdc utility to translate
legacy FPGA timing constraints (SDC) to Synopsys
FPGA timing constraints (FDC). For details, see the
sdc2fdc , on page 111.

Governs the behavior of the synthesis tool. You
normally do not need to edit this file. For example,
use the HDL Analyst Options dialog box, instead, to
customize behavior. See HDL Analyst Options
Command , on page 443.

On the Windows 7 platforms, the i ni file is in the
C:\Users\userName\AppData\Roaming\Synplicity directory.

On Linux workstations, the i ni file is in the following
directory: (~/.Synplicity, where ~ is your home
directory, which can be set with the environment
variable $HOME).

Contains all the information required to complete a
design. It is in Tcl format, and contains references to
source files, compilation, mapping, and optimization
switches, specifications for target technology and
other runtime options.

Contains the timing constraints (clock parameters,
I/0 delays, and timing exceptions) in Tcl format.
You can either create this file manually or generate it
by entering constraints in the SCOPE window.

Synplify Pro for Microchip Edition Reference Manual

144 Synopsys Confidential Information June 2020

Input Files Input and Result Files

Extension File Description
. SV Source files Design source files in SystemVerilog format. The sv
(Verilog) source file is added to the Verilog directory in the

Project view. For more information about the Verilog
and SystemVerilog languages, and the synthesis
commands and attributes you can include, see
Verilog , on page 146, Chapter 1, Verilog Language
Support, and Chapter 2, SystemVerilog Language
Support. For information about using VHDL and
Verilog files together in a design, see Using Mixed
Language Source Files , on page 48 of the User

Guide.
.vhd Source files Design source files in VHDL format. See VHDL , on
(VHDL) page 146, Chapter 3, VHDL Language Support, and

Chapter 4, VHDL 2008 Language Support for details.
For information about using VHDL and Verilog files
together in a design, see Using Mixed Language
Source Files , on page 48 of the User Guide.

Y Source files Design source files in Verilog format. For more

(Verilog) information about the Verilog language, and the
synthesis commands and attributes you can include,
see Verilog , on page 146, Chapter 1, Verilog
Language Support, and Chapter 2, SystemVerilog
Language Support. For information about using
VHDL and Verilog files together in a design, see Using
Mixed Language Source Files , on page 48 of the User
Guide.

HDL Source Files

The HDL source files for a project can be in either VHDL (.vhd), Verilog (.v), or
SystemVerilog (.sv) format.

The Synopsys FPGA synthesis tool contains built-in macro libraries for
vendor macros like gates, counters, flip-flops, and I/Os. If you use the
built-in macro libraries, you can easily instantiate vendor macros directly
into the VHDL designs, and forward-annotate them to the output netlist.
Refer to the appropriate vendor support documentation for more information.

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 145

Input and Result Files Input Files

VHDL

The Synopsys FPGA synthesis tool supports a synthesizable subset of
VHDLO3 (IEEE 1076), and the following IEEE library packages:

* numeric_bit
* numeric_std
* std_logic_1164

The synthesis tool also supports the following industry standards in the IEEE
libraries:

¢ std _logic_arith
¢ std _logic_signed
¢ std_logic_unsigned

The Synopsys FPGA synthesis tool library contains an attributes package
(installDirectory/lib/vhd/synattr.vhd) of built-in attributes and timing constraints
that you can use with VHDL designs. The package includes declarations for
timing constraints (including black-box timing constraints), vendor-specific
attributes, and synthesis attributes. To access these built-in attributes, add
the following two lines to the beginning of each of the VHDL design units that
uses them:

library synplify;
use synplify.attributes.all;

For more information about the VHDL language, and the synthesis
commands and attributes you can include, see Chapter 3, VHDL Language
Support and Chapter 4, VHDL 2008 Language Support.

Verilog

The Synopsys FPGA synthesis tool supports a synthesizable subset of Verilog
2001 and Verilog 95 (IEEE 1364) and SystemVerilog extensions. For more
information about the Verilog language, and the synthesis commands and
attributes you can include, see Chapter 1, Verilog Language Support and
Chapter 2, SystemVerilog Language Support.

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
146 Synopsys Confidential Information June 2020

Input Files Input and Result Files

The Synopsys FPGA synthesis tool contains built-in macro libraries for
vendor macros like gates, counters, flip-flops, and I/Os. If you use the
built-in macro libraries, you can instantiate vendor macros directly into
Verilog designs and forward-annotate them to the output netlist. Refer to the
User Guide for more information.

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 147

Input and Result Files Libraries

Libraries

You can instantiate components from a library, which can be either in Verilog
or VHDL. For example, you might have technology-specific or custom IP
components in a library, or you might have generic library components. The
installDirectory/lib directory included with the software contains some compo-
nent libraries you can use for instantiation.

There are several kinds of libraries you can use:

* Technology-specific libraries that contain I/O pad, macro, or other
component descriptions. The lib directory lists these kinds of libraries
under vendor sub-directories. The libraries are named for the technology
family, and in some cases also include a version number for the version
of the place-and-route tool with which they are intended to be used.

For information about using vendor-specific libraries to instantiate
LPMs, PLLs, macros, I/O pads, and other components, refer to the
appropriate sections in the Appendices of the Reference Manual.

* The open verification library is automatically included in the FPGA
product installation. When using your own open verification library,
follow the recommendation described in Open Verification Library
(Verilog), on page 149.

* Technology-independent libraries that contain common components.
You can have your own library or use the one Synopsys provides. This
library is a Verilog library of common logic elements, much like the
Synopsys® GTECH component library. See The Generic Technology
Library, on page 149 for a description of this library.

* An ASIC Library Data Format file (.lib) is the technology library file that
contains information about the functionality of each standard cell, its
input capacitance, fanout, and timing information. For the synthesis
flow to understand the instantiated or mapped ASIC primitives in the
HDL, you would need to translate the functionality of the standard cell
to equivalent synthesizable Verilog/VHDL definitions. To do this, you
can use the lib2syn executable. For details, see ASIC Library Files, on
page 150.

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
148 Synopsys Confidential Information June 2020

Libraries Input and Result Files

Open Verification Library (Verilog)

The open verification library is automatically included in the FPGA product
installation. If you use your own version of the open verification library, then
it is recommended that you disable loading the default synovl library to avoid
any conflicts between the two libraries. To do this, set the -disable_synovl
environment variable to 1. For example:

#i n bash
export disabl e_synovl =1

#in csh
setenv di sabl e _synovl 1

When the default synovl library is disabled, the following message is gener-
ated in the log file: @\: : Qpen Verification Library which is part of tool
installation, is being disabled by option "di sabl e_synovl ".

The Generic Technology Library

The synthesis software includes this Verilog library for generic components
under the installDirectory/lib/generic_technology directory. Currently, the library
is only available in Verilog format. The library consists of technology-indepen-
dent common logic elements, which help the designer to develop
technology-independent parts. The library models extract the functionality of
the component, but not its implementation. During synthesis, the mappers
implement these generic components in implementations that are appro-
priate to the technology being used.

To use components from this directory, add the library to the project by doing
either of the following:

* Add add _file -verilog "$LIB/generic_technology/gtech.v to your .pij file or type it
in the Tcl window.

* In the tool window, click the Add file button, navigate to the installDirec-
tory/lib/generic_technology directory and select the gtech.v file.

When you synthesize the design, the tool uses components from this library.

You cannot use the generic technology library together with other generic
libraries, as this could result in a conflict. If you have your own GTECH
library that you intend to use, do not use the generic technology library.

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 149

Input and Result Files Libraries

ASIC Library Files

An ASIC Library Data Format file (.lib) is the technology library file that
contains information about the functionality of each standard cell, its input
capacitance, fanout, and timing information.

For the synthesis flow to understand the instantiated or mapped ASIC
primitives in the HDL, you would need to manually translate the functionality
of the standard cell to equivalent synthesizable Verilog/VHDL definitions.
This .lib file conversion is not automated in the synthesis flow. This means
that the tool will not automatically translate .lib files into corresponding and
equivalent synthesizable Verilog/VHDL definitions.

However, you can use the lib2syn executable to facilitate this conversion
process. The lib2syn.exe executable generates equivalent synthesizable
Verilog/VHDL definitions for the cells defined in the input .lib file. You can
find this executable at these locations:

* Windows: installDirectory/bin/lib2syn.exe
* Linux: installDirectory/bin/lib2syn
The executable can be run as shown in these examples:
* For Verilog output: lib2syn.exe test.lib -ovm a.vm -lodfile test_lib2syn.log

* For VHDL output: lib2syn.exe test.lib -ovhm a.vhm -lodfile test_lib2syn.log

The tool supports the Synopsys GTECH library flow by default, so you do not
need the .lib file equivalent synthesizable Verilog/VHDL definitions for a
NETLIST mapped to a GTECH library.

Note that for the synthesis flow, the lib2syn executable does not translate cells
with state table definitions.

The synthesis tools do not read Synopsys Liberty format (.syn) files directly.
However, there are workarounds.

¢ If your design has instantiated ASIC cells, do the following:
— Get the Verilog functional files for the instantiated components.
— Add the functional files to your project as libraries.

* Ifyou have an ASIC library in the Liberty (.lib) or .sel format, do the
following:

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
150 Synopsys Confidential Information June 2020

Libraries Input and Result Files

— Convert the ASIC library into a Verilog functional file with the lib2syn
utility. The lib2syn command syntax is shown below:

installDirectory/bin/lib2syn.exe library.lib - ovm VerilogFunctionalFile
or

installDirectory/bin/lib2syn.exe library.sel -ovm VerilogFunctionalFile

— Add the functional file to your project as a library.

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 151

Input and Result Files

Output Files

Output Files

The synthesis tool generates reports about the synthesis run and files that
you can use for simulation or placement and routing. The following table
describes the output files, categorizing them as either synthesis result and
report files, or output files generated as input for other tools.

Extension

.areasrr

_cck. rpt

_conpi ler.linkerl og

.fse

.info

© 2020 Synopsys, Inc.
152

File

Hierarchical Area
Report

Constraint Checker
Report

Compiler log file for
HDL source file
linking

FSM information file

Design component
files

Description

Reports area-specific information
such as sequential and
combinational RAMs, DSPs, and
Black Boxes on each module in the
design. See Hierarchical Area
Report , on page 172.

Checks the syntax and
applicability of the timing
constraints in the .fdc file for your
project and generates a report
(projectName_cck.rpt). See
Constraint Checking Report , on
page 173 for more information.

Provides details for why the VHDL
and/or Verilog components in the
source files were not properly
linked. This file is located in the
synwork directory for the
implementation.

Design-dependent. Contains
information about encoding types
and transition states for all state
machines in the design.

Design-dependent. Contains
detailed information about design
components like state machines or
ROMs.

Synplify Pro for Microchip Edition Reference Manual

Synopsys Confidential Information

June 2020

Output Files

Input and Result Files

Extension

.linkerl og

.pfl

Results file:

e . edn
e .VM

run_options. t xt

File

Mixed language
ports/generics
differences

Message Filter
criteria

Vendor-specific
results file

Project settings for
implementations

Synplify Pro for Microchip Edition Reference Manual

June 2020

Synopsys Confidential Information

Description

Provides details of why the VHDL
and/or Verilog components in the
source files were not properly
linked. This file is located in the
synwork directory for the
implementation. The same
information is also reported in the
log file.

Output file created after filtering
messages in the Messages window.
See Updating the projectName.pfl
file , on page 215 in the User
Guide.

Results file that contains the
synthesized netlist, written out in a
format appropriate to the
technology and the
place-and-route tool you are using.
The vendor-specific formats
include the following:

e .edn or .vm for Microchip

Specify this file on the
Implementation Results panel of the
Implementation Options dialog box
(Implementation Results Panel , on
page 353).

This file is created when a design is
synthesized and contains the
project settings and options used
with the implementations. These
settings and options are also
processed for displaying the Project
Status view after synthesis is run.
For details, see Project Status Tab ,
on page 26.

© 2020 Synopsys, Inc.

153

Input and Result Files

Output Files

Extension

. sap

.sar

_scck. rpt

.srd

.SIr

© 2020 Synopsys, Inc.
154

File

Synplify Annotated
Properties

Archive file

Constraint Checker
Report (Syntax Only)

Intermediate
mapping files

Mapping output files

Synthesis log file

Description

This file is generated after the
Annotated Properties for Analyst option
is selected in the Device panel of
the Implementation Options dialog
box. After the compile stage, the
tool annotates the design with
properties like clock pins. You can
find objects based on these
annotated properties using Tcl Find.
For more information, see find , on
page 147 and Using the Tcl Find
Command to Define Collections , on
page 149.

Output of the Synopsys FPGA
Archive utility in which design
project files are stored into a single
archive file. Archive files use
Synopsys Proprietary Format. See
Archive Project Command , on
page 339 for details on archiving,
unarchiving and copying projects.

Generates a report that contains
an overview of the design
information, such as, the top-level
view, name of the constraints file, if
there were any constraint syntax
issues, and a summary of clock
specifications.

Used to save mapping information
between synthesis runs. You do
not need to use these files.

Output file after mapping. It
contains the actual
technology-specific mapped design.
This is the representation that
appears graphically in a
Technology view.

Provides information on the
synthesis run, as well as area and
timing reports. See Log File , on
page 157, for more information.

Synplify Pro for Microchip Edition Reference Manual
Synopsys Confidential Information June 2020

Output Files

Input and Result Files

Extension

.SIs

synl og fol der

synwor k fol der

.ta

_ta.srm

File

Compiler output file

Intermediate
technology mapping
files

Intermediate
pre-mapping files

Customized Timing

Report

Customized
mapping output file

Synplify Pro for Microchip Edition Reference Manual
Synopsys Confidential Information 155

June 2020

Description

Output file after the compiler stage
of the synthesis process. It
contains an HDL-level
representation of a design. This is
the representation that appears
graphically in an RTL view.

This folder contains intermediate
netlists and log files after
technology mapping has been run.
Timestamp information is
contained in these netlist files to
manage jobs with up-to-date
checks. For more information, see
Using Up-to-date Checking for Job
Management , on page 184.

This folder contains intermediate
netlists and log files after
pre-mapping has been run.
Timestamp information is
contained in these netlist files to
manage jobs with up-to-date
checks. For more information, see
Using Up-to-date Checking for Job
Management , on page 184.

Contains the custom timing
information that you specify
through Analysis->Timing Analyst. See
Analysis Menu , on page 400, for
more information.

Creates a customized output
netlist when you generate a custom
timing report with HDL
Analyst->Timing Analyst. It contains
the representation that appears
graphically in a Technology view.
See Analysis Menu , on page 400
for more information.

© 2020 Synopsys, Inc.

Input and Result Files

Output Files

Extension

.tap

.tlg

vendor constraint file

© 2020 Synopsys, Inc.
156

File

Timing Annotated
Properties

Log file

Constraints file for
forward annotation

Description

This file is generated after the
Annotated Properties for Analyst option
is selected in the Device panel of the
Implementation Options dialog box.
After the compile stage, the tool
annotates the design with timing
properties and the information can
be analyzed in the RTL view and
Design Planner. You can also find
objects based on these annotated
properties using Tcl Find. For more
information, see Using the Tcl Find
Command to Define Collections , on
page 149 in the User Guide.

This log file contains a list of all the
modules compiled in the design.

Contains synthesis constraints to
be forward-annotated to the
place-and-route tool. The
constraint file type varies with the
vendor and the technology. Refer to
the vendor chapters for specific
information about the constraints
you can forward-annotate. Check
the Implementation Results dialog
(Implementation Options) for
supported files. See
Implementation Results Panel , on
page 353.

Synplify Pro for Microchip Edition Reference Manual
Synopsys Confidential Information June 2020

Log File Input and Result Files

Extension File Description
. vm Mapped Verilog or Optional post-synthesis netlist file
_vhm VHDL netlist in Verilog (.vm) or VHDL (.vhm)

format. This is a structural netlist
of the synthesized design, and
differs from the original HDL used
as input for synthesis. Specify
these files on the Implementation
Results dialog box (Implementation
Options). See Implementation
Results Panel , on page 353.
Typically, you use this netlist for
gate-level simulation, to verify your
synthesis results. Some designers
prefer to simulate before and after
synthesis, and also after place and
route. This approach helps them to
isolate the stage of the design
process where a problem occurred.

The Verilog and VHDL output files
are for functional simulation only.
When you input stimulus into a
simulator for functional
simulation, use a cycle time for the
stimulus of 1000 time ticks.

Log File

The log file report, located in the implementation directory, is written out in
two file formats: text (projectName.srr) and HTML with an interactive table of
contents (projectName.htm and projectName_srr.htm) where projectName is the
name of your project. Select View Log File in HTML in the Options->Project View
Options dialog box to enable viewing the log file in HTML. Select the View Log
button in the Project view (Buttons and Options, on page 72) to see the log file
report.

The log file is written each time you compile or synthesize (compile and map)
the design. When you compile a design without mapping it, the log file
contains only compiler information. As a precaution, a backup copy of the log
file (.srr) is written to the backup sub-directory in the Implementation Results
directory. Only one backup log file is updated for subsequent synthesis runs.

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 157

Input and Result Files

Log File

© 2020 Synopsys, Inc.

The log file contains detailed reports on the compiler, mapper, timing, and
resource usage information for your design. Errors, notes, warnings, and
messages appear in both the log file and on the Messages tab in the Tcl

window.

For further details about different sections of the log file, see the following:

For information about ...

Compiled files, messages (warnings, errors, and
notes), user options set for synthesis, state machine
extraction information, including a list of reachable
states.

Buffers added to clocks in certain supported
technologies.

Buffers added to nets.
Compile point remapping.

Timing results. This section of the log file begins with
“START TIMING REPORT” section.

If you use the Timing Analyst to generate a custom
timing report, its format is the same as the timing
report in the log file, but the customized timing
report is in a .ta file.

Resources used by synthesis mapping.

Design changes made as a result of retiming.

Design changes made as a result of gated clock
conversion.

Compiler Report

See ...

Compiler Report , on
page 158

Clock Buffering Report , on
page 159

Net Buffering Report , on
page 159

Compile Point Information ,
on page 160

Timing Reports , on page 162

Resource Usage Report , on
page 160

Retiming Report, on
page 161

, on page 180

This report starts with the compiler version and date, and includes the

following:

* Project information: the top-level module.

* Design information: HDL syntax and synthesis checks, black box
instantiations, FSM extractions and inferred RAMs/ROMs.

Synopsys Confidential Information

Synplify Pro for Microchip Edition Reference Manual

June 2020

Log File Input and Result Files

* Netlist filter information: constant propagation.

Premap Report

This report begins with the pre-mapper version and date, and reports the
following:

* File loading times and memory usage

* Clock summary - For details, see Clock Pre-map Reports, on page 165.

Mapper Report

This report begins with the mapper version and date, and reports the
following:

* Project information: the names of the constraint files, target technology,
and attributes set in the design.

* Design information such as flattened instances, extraction of counters,
FSM implementations, clock nets, buffered nets, replicated logic, HDL
optimizations, and informational or warning messages.

Clock Buffering Report
This section of the log file reports any clocks that were buffered. For example:

d ock Buffers:
Inserting dock buffer for port clockO, TNM=cl ockO

Net Buffering Report

Net buffering reports are generated for most all of the supported FPGAs and
CPLDs. This information is written in the log file, and includes the following
information:

* The nets that were buffered or had their source replicated
* The number of segments created for that net
* The total number of buffers added during buffering

* The number of registers and look-up tables (or other cells) added during
replication

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 159

Input and Result Files Log File

Example: Net Buffering Report

Net buffering Report:

Badd c[2] - loads: 24, segnents
Badd c[1] - loads: 32, segnents
Badd _c[0] - loads: 48, segnents
Aadd_c[0] - l|oads: 32, segnents
Added 10 Buffers

Added O Registers via replication
Added O LUTs via replication

buffering source
buf fering source
buf fering source
buffering source

SRANNEN

Compile Point Information

The Summary of Compile Points section of the log file (projectName.srr) lists each
compile point, together with an indication of whether it was remapped, and, if
so, why. Also, a timing report is generated for each compile point located in
its respective results directories in the Implementation Directory. The compile
point is the top-level design for this report file.

For more information on compile points and the compile-point synthesis flow,
see Synthesizing Compile Points, on page 455 of the User Guide.

Timing Section

A default timing report is written to the log file (projectName.srr) in the “START
OF TIMING REPORT” section. See Timing Reports, on page 162, for details.

For certain device technologies in the Synplify Pro tool, you can use the Timing
Analyst to generate additional timing reports for point-to-point analysis (see
Analysis Menu, on page 400). Their format is the same as the timing report.

Resource Usage Report

A resource usage report is added to the log file each time you compile or
synthesize. The format of the report varies, depending on the architecture you
are using. The report provides the following information:

* The total number of cells, and the number of combinational and sequen-
tial cells in the design

* The number of clock buffers and I/O cells

* Details of how many of each type of cell in the design

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
160 Synopsys Confidential Information June 2020

Log File Input and Result Files

See Checking Resource Usage, on page 201 in the User Guide for a brief
procedure on using the report to check for overutilization.

Retiming Report

Whenever retiming is enabled, a retiming report is added to the log file
(projectName.srr). It includes information about the design changes made as a
result of retiming, such as the following:

* The number of flip-flops added, removed, or modified because of
retiming. Flip-flops modified by retiming have a _ret suffix added to their
names.

* Names of the flip-flops that were moved by retiming and no longer exist
in the Technology view.

* Names of the flip-flops created as result of the retiming moves, that did
not exist in the RTL view.

* Names of the flip-flops modified by retiming; for example, flip-flops that
are in the RTL and Technology views, but have different fanouts because
of retiming.

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 161

Input and Result Files

Timing Reports

Timing Reports

Timing results can be written to one or more of the following files:

.srror.htm

.ta

designName_async_clk
. rpt. scv

Log file that contains a default timing report. To find this
information, after synthesis completes, open the log file
(View -> Log File), and search for START OF TIMING REPORT.

Timing analysis file that contains timing information
based on the parameters you specify in the stand-alone
Timing Analyst (Analysis->Timing Analyst).

Asynchronous clock report file that is generated when you
enable the related option in the stand-alone Timing
Analyzer (Analysis->Timing Analyst). This report can be
displayed in a spreadsheet tool and contains information
for paths that cross between multiple clock groups. See
Asynchronous Clock Report , on page 170 for details on
this report.

The timing reports in the .srr/.htm and .ta files have the following sections:

* Timing Report Header, on page 163

* Performance Summary, on page 163

* Clock Pre-map Reports, on page 165

* Clock Relationships, on page 168

* Interface Information, on page 169

* Asynchronous Clock Report, on page 170

© 2020 Synopsys, Inc.
162

Synplify Pro for Microchip Edition Reference Manual
Synopsys Confidential Information June 2020

Timing Reports Input and Result Files

Timing Report Header

The timing report header lists the date and time, the name of the top-level
module, the number of paths requested for the timing report, and the
constraint files used.

(BLRRE =R

00056 ####4 START TIMING RFEFORT #####
00057 # Timing Report written on Fri Sep 06 13:38:15 2002

00056 #

oooss

0o0sn

0005l Top wiew: modz
00062 Paths requested: 5

00063 Constraint Fileis):
00064 [N| This timing report estimates place and route data. Please look

00065 [EN| Clock constraints cower all FF-to-FF, FF-to-output, input-to-FF
[plgRaiadas

You can control the size of the timing report by choosing Project -> Implementa-
tion Options, clicking the Timing Report tab of the panel, and specifying the
number of start/end points and the number of critical paths to report. See
Timing Report Panel, on page 355, for details.

Performance Summary

The Performance Summary section of the timing report lists estimated and
requested frequencies for the clocks, with the clocks sorted by negative slack.
The timing report has a different section for detailed clock information.

L‘J:n slack in design: B.479

Roguasted Eatimated Raguasted Eat imatad clack
|starting Clock Freguency Fregaenay Fericd Pericd Elack Type

Hh 18.0808 HA NA dsclared
111.1 HHz 1520.% HHz §.000 0.521 B.479 declared
L2%.0 mHz HA B.000 HA HA declaced

1.8 MHz KA 12890.080 HA HA
B6.7 HHz WA 13,000 H HA
1530.5 MHz §.000 B.521 17.47%

declared
derived {from elkl}

[Estimated period and frequency reported as WA means no slack depends directly on the clock wavefors

The Performance Summary lists the following information for each clock in the
design:

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 163

Input and Result Files Timing Reports

Performance Summary Description
Column
Starting Clock Clock at the start point of the path.

If the clock name is system, the clock is a collection
of clocks with an undefined clock event. Rising and
falling edge clocks are reported as one clock

domain.
Requested/Estimated Target frequency goal /estimated value after
Frequency synthesis. See Cross-Clock Path Timing Analysis ,

on page 168 for information on how cross-clock
path slack is reported.

Requested/Estimated Period Target clock period/estimated value after
synthesis.

Slack Difference between estimated and requested
period. See Cross-Clock Path Timing Analysis , on
page 168 for information on how cross-clock path
slack is reported.

Clock Type The type of clock: inferred, declared, derived or system.
For more information, see Clock Types , on
page 164.

Clock Group Name of the clock group that a clock belongs.

The synthesis tool does not report inferred clocks that have an unreasonable
slack time. Also, a real clock might have a negative period. For example,
suppose you have a clock going to a single flip-flop, which has a single path
going to an output. If you specify an output delay of -1000 on this output,
then the synthesis tool cannot calculate the clock frequency. It reports a
negative period and no clock.

Clock Types
The synthesis timing reports include the following types of clocks:
¢ Declared Clocks
User-defined clocks specified in the constraint file.
* Inferred Clocks

These are clocks that the synthesis timing engine finds during
synthesis, but which have not been constrained by the user. The tool

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
164 Synopsys Confidential Information June 2020

Timing Reports Input and Result Files

assigns the default global frequency specified for the project to these
clocks.

* Derived Clocks

These are clocks that the synthesis tool identifies from a clock
divider/multiplier such as DCM.

* System Clock

The system clock is the delay for the combinational path. Additionally, a
system clock can be reported if there are sequential elements in the
design for a clock network that cannot be traced back to a clock. Also,
the system clock can occur for unconstrained I/O ports. You must
investigate these conditions.

Paths to/from black boxes are timed by the system clock. Add the black-box
timing constraints. See syn_black_box, on page 63 for the black box source
code directives.

Clock Pre-map Reports
The following clock reports are generated during pre-map.
* Clock Summary, on page 166
* Clock Load Summary, on page 166
* Clock Optimization Report, on page 167

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 165

Input and Result Files Timing Reports

Clock Summary

Here is an example of the pre-map Clock Summary report.

Clock Summary
Bequasted fequested Cleck

Level Frequency Period Load
o- ek 10.0M8s 100.000 declazed defavlc_cikgrowp 20

- clk_co=b 10.0 MH= 100.000 declazed default_clkgroup 5
g = clk_pin0 10.0 Mz 100.000 declared dafault_clkgroup

- clk_pinl 10.0 MHs 100.000 declared default_clkgroup 1

- clk pind 10.0 MHz 100.000 declared default clkgroup 1

- clk _pin3 10.0 MHz 100.000 declared defsult_clkgroup 1

- clk_pind 10.0 HMHz 100.000 declazed default_clkgroup 1
Clock Load Summary
The pre-map Clock Load Summary table contains the following:

* Clock name

* Number of clock loads

* Clock source pin

* Clock load on clock pin sequential example

* Clock load on non-clock pin sequential example

* Clock load on combinatorial example

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual

166

Synopsys Confidential Information June 2020

Timing Reports Input and Result Files

=lock Load Summazy
srasshdanbreanatdsadhn e

Cleck Source Clock Pin Hen=eleck Pin Hen-elock Pin
Zlock Load Bin Seq Example Seq Example Comb Example

=1k 0 clk.clk(i) il.i0.cut.D[0] iZ.and_cut0.I[1] land)
z1k_comb 3 clk_comb.clk_comb (1) - - 12.and_ourd.I[2] (and)
=1k_ping 1 elk_pind.elk_pind (L) 11.40.0ue.C - -
=lk_pinl 1 clk_pinl.clk_pinl(di) il.il.oue.C - =
=lk_pin2 1 clk_pin2.clk_pin2 (i) il.i2.out.C - -
=lk_pind 1 elk_pind.clk pind (i) il.i3.eue.C = "
zlk_pind 1 elk_pind.clk_pind (1) il.44.0uc.C - -

Clock Optimization Report

This is an example of the pre-map Clock Optimization report. A table is
provided with information for both the Non-Gated /Non-Generated Clocks
and Gated/Generated Clocks.

TTT RS £ L ¥ b FEFE I

& non-gated/nen-genecated clock tresisl driving 16 elock pinie) of sequential slemencis)
% gated/gensrated clook toes (s delving § slook pinis) of sequentlal element(s)
} instances convested, 5 sequeantial instances cemaln deiven by gated/genscated clocks

Nan-Ganed/Hen-Ganarated Clocks

Zlock Tres ID Brivimg Elamens brive Elemsnc Typs Fanous Sampls Inscance
sloskid o b elk_pind 1 £1.44.0us
Zloskid 0§ elk_pind pore 4 11.18. sun
slockld p 7' =lk_pind port 1 41.12.oun
slaskid o 4 ‘=lk_pinl port L Al.il.eun
slaskia o9 21k _ping pore T 11.10.0u8
slgkic © 190 cix pere 10 10 surh

Gatsd/Cansrated Ciocke
Zleck Tzen ID Deiving Elamant Deive Elamant Type Unsorverted Fansut Sample Inatamce Explanation
slgskid 00 42 and_gund 00T and q gt our Multipls clocks on Lnstance
ilogkld O 1 i3, and_gutd.OUT and 1 Tegd.out Multiple clocks on Lnstance
zlockid 0.3 i1.and_putl.oUT and 1 Tegl.out Hultiple clocks on instance
aleckid ol i3 suel, ouT (L i Eagl.out Mulripls clocks on Lnstance
lockid O 4 A3 and_pued 60T amd L ragd. oun Huleipls slocks on Lnstance

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 167

Input and Result Files Timing Reports

Clock Relationships

For each pair of clocks in the design, the Clock Relationships section of the
timing report lists both the required time (constraint) and the worst slack time
for each of the intervals rise to rise, fall to fall, rise to fall, and fall to rise. See
Cross-Clock Path Timing Analysis, on page 168 for details about cross-clock
paths.

This information is provided for the paths between related clocks (that is,
clocks in the same clock group). If there is no path at all between two clocks,
then that pair is not reported. If there is no path for a given pair of edges
between two clocks, then an entry of No paths appears.

For information about how these relationships are calculated, see Clock
Groups, on page 219. For tips on using clock groups, see Defining Other Clock
Requirements, on page 177 in the User Guide.

Clock Relationships
FERT TR RERLLRTLTRERELS

Clocks | rise to rise | fall to fall | rize to fall | fall to rise
Starting Ending | constraint slack | constraint slack | constraint slack | constraint slack
clkl clkl | 25,000 15.943 | 25.000 17.764 | HNo paths - | No paths -

clkl clkz | 1.000 -5.430 | Ho paths - | No paths - | 1.000 -1.531
clkz clkl | No paths - | 1.000 -0.811 | 1.000 -1.531 | No paths -
clkz clkZz | §.000 0.764 | &.000 -1.057 | No paths - | &6.000 Z.514
clk3 clk3 | HNo paths - | 10,000 0,943 | HNo paths - | Mo paths -

Cross-Clock Path Timing Analysis

The following describe how the timing analyst calculates cross-clock path
frequency and slack.

Cross-Clock Path Frequency

For each data path, the tool estimates the highest frequency that can be set
for the clock(s) without a setup violation. It finds the largest scaling factor
that can be applied to the clock(s) without causing a setup violation. If the
start clock is not the same as the end clock, it scales both by the same factor.

scale = (minimum time period -(-current slack))/minimum time period

It assumes all other delays in the setup calculation (e.g., uncertainty) are
fixed.

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
168 Synopsys Confidential Information June 2020

Timing Reports Input and Result Files

It applies relevant multicycle constraints to the setup calculation.

The estimated frequency for a clock is the minimum frequency over all paths
that start or end on that clock, with the following exceptions:

* The tool does not consider paths between the system clock and another
clock to estimate frequency.

* It considers paths with a path delay constraint to be asynchronous, and
does not use them to estimate frequency.

* It considers paths between clocks in different domains to be asynchro-
nous, and does not use them to estimate frequency.

Slack for Cross-Clock Paths

The slack reported for a cross-clock path is the worst slack for any path that
starts on that clock. Note that this differs from the estimated frequency calcu-
lation, which is based on the worst slack for any path starting or ending on
that clock.

Interface Information

The interface section of the timing report contains information on arrival
times, required times, and slack for the top-level ports. It is divided into two
subsections, one each for Input Ports and Output Ports. Bidirectional ports are
listed under both. For each port, the interface report contains the following

information.
Port parameter Description
Port Name Port name.

Starting Reference Clock The reference clock.

User Constraint The input/output delay. If a port has multiple delay
records, the report contains the values for the record with
the worst slack. The reference clock corresponds to the
worst slack delay record.

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 169

Input and Result Files

Timing Reports

Port parameter

Arrival Time

Required Time

Slack

Description

Input ports: define_input_delay, or default value of 0.

Output ports: path delay (including clock-to-out delay of
source register).

For purely combinational paths, the propagation delay is
calculated from the driving input port.

Input ports: clock period - (path delay + setup time of
receiving register + define_reg_input_delay value).

Output ports: clock period - define_output_delay. Default
value of define_output_delay is O.

Required Time - Arrival Time

Asynchronous Clock Report

You can generate a report for paths that cross between clock groups using
the stand-alone Timing Analyst (Analysis->Timing Analyst, Generate Asynchronous
Clock Report check box). Generally, paths in different clock groups are
automatically handled as false paths. This option provides a file that contains
information on each of the paths and can be viewed in a spreadsheet tool. To
display the CSV-format report:

1. Locate the file in your results directory projectName_async_clk.rpt.csv.

2. Open the file in your spreadsheet tool.

Column
Index
Path Delay

Logic Levels

Types
Route Delay
Source Clock

Destination Clock

© 2020 Synopsys, Inc.
170

Description
Path number.
Delay value as reported in standard timing (t a) file.

Number of logic levels in the path (such as LUTs,
cells, and so on) that are between the start and end
points.

Cell types, such as LUT, logic cell, and so on.
As reported for each path inta
Start clock.

End clock.

Synplify Pro for Microchip Edition Reference Manual
Synopsys Confidential Information June 2020

Timing Reports Input and Result Files

Column Description
Data Start Pin Sequential device output pin at start of path.
Data End Pin Setup check pin at destination.

1533 1 LUTT_L 0,632 Clock_A Clock_BE reg_ A0 ey B0

1 |Index Path Delsy Logic Levels Types Foute Delay Source Clock |Destination Clock Dats Stad Pin |Data End Pin
Z 1
] 2175 1LUTT L 0.884 Clock B Clock € reg B0 g C.0
4

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 171

Input and Result Files Hierarchical Area Report

Hierarchical Area Report

An area report is created during synthesis which contains the percentage
utilization for elements in the design, as well as, total sequential utilization
for elements of specific modules. For instance, elements can include sequen-
tial, combinational, or memory elements. They can also include the following
types of technology-specific elements for ROMs, 1/O pads, or DSPs.

This report generates technology-specific area information that is reflected in
the output depending upon the specified device. The report is written to the
projectName.areasrr file. You can view the file with the log viewer or any text
editor.

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual

172

Synopsys Confidential Information June 2020

Constraint Checking Report Input and Result Files

Constraint Checking Report

Use the Run->Constraint Check command to generate a report on the constraint
files in your project. The projectName_cck.rpt file provides information such as
invalid constraint syntax, constraint applicability, and any warnings or
errors. For details about running Constraint Check, see Tcl Syntax Guidelines for
Constraint Files, on page 55 in the User Guide.

This section describes the following topics:
* Reporting Details, on page 173
* Inapplicable Constraints, on page 174
* Applicable Constraints With Warnings, on page 175
* Sample Constraint Check Report, on page 176

Reporting Details

This constraint checking file reports the following:
* Constraints that are not applied
* Constraints that are valid and applicable to the design
* Wildcard expansion on the constraints

* Constraints on objects that do not exist

It contains the following sections:

Summary Statement which summarizes the total number of issues
defined as an error or warning (x) out of the total number of
constraints with issues (y) for the total number of constraints
(2) in the .fdc file.

Found <x> issues in <y> out of <z> constraints
Clock Relationship Standard timing report clock table, without slack.

Unconstrained Lists I/O ports that are missing input/output delays.
Start/End Points

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 173

Input and Result Files

Constraint Checking Report

Unapplied
constraints

Applicable
constraints with
issues

Constraints with
matching wildcard
expressions

Constraints that cannot be applied because objects do not
exist or the object type check is not valid. See Inapplicable
Constraints , on page 174 for more information.

Constraints will be applied either fully or partially, but there
might be issues that generate warnings which should be
investigated, such as some objects/collections not existing.
Also, whenever at least one object in a list of objects is not
specified with a valid object type a warning is displayed. See
Applicable Constraints With Warnings , on page 175 for more
information.

Lists constraints or collections using wildcard expressions up
to the first 1000, respectively.

Inapplicable Constraints

Refer to the following table for constraints that were not applied because
objects do not exist or the object type check was not valid:

For these constraints ...

Attributes

create_clock

Objects must be ...
Valid definitions

e Ports

* Nets

* Pins

* Registers

* Instantiated buffers

create_generated_clock Clocks

define_compile_point

define_current_design

© 2020 Synopsys, Inc.

* Region
e View

v:view

Synplify Pro for Microchip Edition Reference Manual
Synopsys Confidential Information

June 2020

Constraint Checking Report Input and Result Files

For these constraints ... Objects must be ...
set_false_path For -to or -from objects:
set_multicycle_path * i:sequential instances
set_max_delay * p:ports

¢ i:black boxes

For -through objects

* n:nets

* t:hierarchical ports

e t:pins
set_multicycle_path Specified as a positive integer
set_input_delay ¢ Input ports

* bidir ports

set_output_delay * Output ports
 Bidir ports

set_reg_input_delay Sequential instances
set_reg_output_delay

Applicable Constraints With Warnings

The following table lists reasons for warnings in the report file:

For these constraints ... Objects must be ...
create_clock * Ports

* Nets

¢ Pins

* Registers
¢ Instantiated buffers

set_clock_uncertainty A single object. Multiple objects are
not supported.
define_compile_point A single object. Multiple objects are
not supported.
define_current_design viview
Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.

June 2020 Synopsys Confidential Information 175

Input and Result Files Constraint Checking Report

For these constraints ... Objects must be ...
set_false_path For -to or -from objects:
set_multicycle_path * i:sequential instances
set_path_delay * p:ports

¢ i:black boxes

For -through objects:

* n:nets

¢ t:hierarchical ports

e t:pins

set_input_delay A single object. Multiple objects are
not supported.

set_output_delay A single object. Multiple objects are
not supported.

set_reg_input_delay A single object. Multiple objects are

set_reg_output_delay not supported.

Sample Constraint Check Report

The following is a sample report generated by constraint checking:

Synopsys Constraint Checker, version maprc, Build 1138R built Jun 7 2016
Copyright (C 1994-2016, Synopsys, Inc.

Witten on Fri Jun 7 09:42:22 2016
#ittt DES| GN | NFO S

Top View "decode_t op"
Constraint File(s): "C \'tinm ng_88\ FPGA decode_t op. sdc"
#HittHE SUMWARY S

Found 3 issues in 2 out of 27 constraints

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
176 Synopsys Confidential Information June 2020

Constraint Checking Report Input and Result Files

GitR DETA LS SRSHH G e B B A R A R R R R

d ock Rel ationships

kkkkkhkkhkkkhkkhkkkhkhkkkhkkk

Starting Ending | risetorise | fall tofall | risetofall | fall torise
cl k2x clk2x | 24.000 | 24.000 | 12.000 | 12.000

cl k2x clk | 24.000 | No paths | No paths | 12.000

clk clk2x | 24.000 | No paths | 12.000 | No paths

cl k cl k | 48.000 | No paths | No paths | No paths

Not e:

"No paths' indicates there are no paths in the design for that pair of clock edges.
"Dff grp' indicates that paths exist but the starting clock and ending clock are in
di fferent clock groups

Unconstrai ned Start/End Points

Kkkkkkkkkhkhkhkhhhkhhhhhhhkhhhhhkk

p: test _node

I nappl i cabl e constraints

khkkkkkkhkkhkhkhkhhkhkhhkhkhkhkhkkk

set _false_path -fromp:next_synd -through i:core.tabl.ram| oader

@ | object "i:core.tabl.raml| oader" does not exist

@ |object "i:core.tabl.ramloader" is incorrect type; "-through" objects nust be of
type net (n:), or pin (t:)

Appl i cabl e constraints wth issues

LR R R R EEEEEEEEEEEEEEEEEEEEEEEEEEES

set_false path -from{core. decoder.root_nult*.root_prod_pre[*]} -to
{i:core.decoder.onega_inst.onega_tnp_d_| ch[7:0]}

@V | obj ect "core.decoder.root_nult*.root_prod_pre[*]" is missing qualifier which nmay
result inundesired results; "-from' objects nust be of type clock (c:), inst (i:), port
(p:), or pin (t:)

Constraints with matching wldcard expressions

EEEEEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEEEEEEEE RS

set_false path -from{core. decoder.root_nult*.root_prod_pre[*]} -to

{i:core. decoder.onega_inst.onega_tnp_d_| ch[7:0]}

@\ | expression "core. decoder.root_nult*.root_prod_pre[*]" applies to objects:
core. decoder. root_nult1l.root_prod_pre[14: 0]

core. decoder. root _nul t.root_prod_pre[14: 0]

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 177

Input and Result Files

Constraint Checking Report

set_false path -from{i:core.decoder.*.root_prod_pre[*]} -to {i:core.decoder.t_*_[*]}
@\ | expression "core. decoder.*.root_prod_pre[*]" applies to objects:

core. decoder.root_nultl.root_prod_pre[14: 0]

core. decoder.root _mul t.root_prod_pre[14: 0]

@\ | expression "core.

cor e. decoder
cor e. decoder
core. decoder
cor e. decoder
cor e. decoder
core. decoder
cor e. decoder
cor e. decoder

cor e. decoder.
cor e. decoder .
cor e. decoder .
cor e. decoder.
cor e. decoder .
cor e. decoder .
core. decoder.
cor e. decoder .
cor e. decoder .
core. decoder.
cor e. decoder .
cor e. decoder .
core. decoder.

1. 20 [7:
Lt 19 [7:
L1118 [7:
A7 (7
Lt 16 [7:
.t 15 [7:
Lt 1407
Lt 13 [7
t_12 [7
t_ 11 [7
t_10 [7
t 9 [7
t 8 [7
t_7.[7:
t_6_[7:
t 5 [7:
t_4[7:
t_ 3 [7:
t 2 [7:
t_ 1 [7:
t_ 0 [7

0]
0]
0]
0]
0]
0]
0]
: 0]
1 0]
:0]
1 0]

1 0]
0]

0]
0]
0]
0]
0]
0]
0]

1 0]

decoder.t_*_[*]" applies to objects:

set_false path -from{i:core.decoder.root_mult*.root_prod_pre[*]} -to

{i:core.decoder.err[7:0]}

N | expressi on "core. decoder.root_mult*.root_prod_pre[*]" applies to objects:
core. decoder. root _nul t 1. root _prod_pr e[14: 0]
core. decoder.root _mul t.root_prod_pre[14: 0]

{i:core.decoder.root[7:0]}

set_false path -from{i:core.decoder.root_mult*.root_prod_pre[*]} -to
{i:core. decoder. omega_i nst. deg_omnega[4: 0] }

@\ | expression "core. decoder.root_mult*.root_prod_pre[*]" applies to objects:
cor e. decoder. root _nul t 1. root _prod_pr e[14: 0]

core. decoder. root _mul t.root_prod_pre[14: 0]

set_false path -from{i:core.decoder.root_mlt*.root_prod_pre[*]} -to
{i:core. decoder. omega_i nst. omega_t np[0: 7] }

@\ | expression "core. decoder.root_mult*.root_prod_pre[*]" applies to objects:
cor e. decoder. root _nul t 1. root _prod_pre[14: 0]

core. decoder. root _mul t.root_prod_pre[14: 0]

set_false path -from{i:core.decoder.root_mlt*.root_prod_pre[*]} -to

@\ | expression "core. decoder.root_mult*.root_prod_pre[*]" applies to objects:

cor e. decoder. root _nul t 1. root _prod_pr e[14: 0]
core. decoder. root _mul t.root_prod_pre[14: 0]

© 2020 Synopsys, Inc.

178

Synplify Pro for Microchip Edition Reference Manual
Synopsys Confidential Information June 2020

Constraint Checking Report

Input and Result Files

set_false path -from{i:core.decoder.root_mult*.root_prod_pre[*]} -to

{i:core.decoder.root_inst.count[3:0]}

N | expressi on "core. decoder.root _mult*.root_prod _pre[*]" applies to objects:

core. decoder.root_nultl.root_prod_pre[14: 0]
core. decoder. root _nul t. root_prod_pre[14: 0]

set_false path -from{i:core.decoder.root_mult*.root_prod_pre[*]}
{i:core.decoder.root_inst.q_reg[7:0]}

@\ | expression "core. decoder.root_nult*.root_prod_pre[*]" applies
core. decoder. root_nult1l.root_prod_pre[14: 0]

core. decoder. root _nul t. root_prod_pre[14: 0]

set_false path -from{i:core.decoder.root_mult*.root_prod_pre[*]}
{i:core.decoder.root_inst.q_reg_d_lch[7:0]}

@\ | expression "core. decoder.root_nult*.root_prod_pre[*]" applies
core. decoder. root_nult1.root_prod_pre[14: 0]

core. decoder. root _nul t. root_prod_pre[14: 0]

-to

to objects:

-to

to objects:

set_false path -from{i:core.decoder.root_mult.root_prod_pre[*]} -to

{i:core.decoder.error_inst.den[7:0]}

@\ | expression "core. decoder.root_nult.root_prod pre[*]" applies to objects:

core. decoder. root _nult.root_prod_pre[14: 0]

set_false path -from¢{i:core.decoder.root_nultl.root_prod_pre[*]} -to

{i:core.decoder.error_inst.nunl[7:0]}

@\ | expression "core.decoder.root_nultl.root_prod_pre[*]" applies to objects:

core. decoder.root_nultl. root_prod_pre[14: 0]

set_false path -from{i:core.decoder.synd_reg_* [7:0]} -to {i:core.decoder.b_* _[7:0]}

@\ | expression "core. decoder.synd_reg_* [7:0]" applies to objects:
unl_synd_reg_0_[7: 0]

synd_reg_20_[7:
.synd_reg_19 [7:
synd_reg_18 [7:
synd_reg_17 [7:
synd_reg_16 [7:
synd_reg_15 [7:
synd_reg_14 [7:
synd_reg_13 [7:
synd_reg_12 [7:
.synd_reg_11 [7:
.synd_reg_10 [7:
decoder .
decoder .
decoder .
decoder .
decoder .
decoder .
decoder .

core.
core.
core.
core.
core.
core.
core.
core.
core.
core.
core.
core.
core.
core.
core.
core.
core.
core.
core.
core.
core.

Synplify Pro for Microchip Edition Reference Manual
Synopsys Confidential Information

June 2020

decoder .
decoder.

decoder

decoder .
decoder.
decoder.
decoder.
decoder.
decoder.
decoder .

decoder
decoder

decoder
decoder

synd_reg_9 [7:
synd_reg_8_[7:
synd_reg 7 [7:
synd_reg_6_[7:
synd_reg_5 [7:
synd_reg_4 [7:
synd_reg_3 [7:

.synd_reg_2 [7:
.synd_reg_1 [7:

0]
0]
0]
0]
0]
0]
0]
0]
0]
0]
0]
0]
0]
0]
0]
0]
0]
0]
0]
0]

© 2020 Synopsys, Inc.
179

Input and Result Files

Constraint Checking Report

@\ | expression "core.decoder.b_* [7:0]" applies to objects:

core. decoder
cor e. decoder
cor e. decoder
core. decoder

cor e. decoder .
cor e. decoder .
core. decoder.
cor e. decoder .
cor e. decoder .
core. decoder.
core. decoder. b__
core. decoder. b__
core. decoder.
cor e. decoder .
cor e. decoder .
core. decoder.
cor e. decoder .
cor e. decoder .
core. decoder.
cor e. decoder .
cor e. decoder .
core. decoder.
cor e. decoder .

.b_calc.unl_| anbda_0_[7:0]

.unl_b 0 [7:0]

.b_20_[7:0]

.b_19 [7:0]
b_18 [7:0]
b 17 [7:0]
b_16_[7:0]
b_15 [7:0]
b_14 [7:0]
b_13_[7:0]
b_12 [7:0]
b 11 [7:0]
b_10_[7:0]
b_9 [7:0]
b_8 [7:0]
b_7 [7:0]
b_6_[7:0]
b_5_[7:0]
b_4 [7:0]
b_3 [7:0]
b 2 [7:0]
b 1 [7:0]
b 0J[7:0

Li brary Report

khkkkkkkkhkkkkk*k

End of Constraint

© 2020 Synopsys, Inc.

180

Checker Report

Synplify Pro for Microchip Edition Reference Manual

Synopsys Confidential Information

June 2020

SYNOPSYS

Silicon to Software

CHAPTER 6

RAM and ROM Inference

This chapter provides guidelines and Verilog or VHDL examples for coding
RAMs for synthesis. It covers the following topics:

* Guidelines and Support for RAM Inference, on page 182
* Automatic RAM Inference, on page 183

* Block RAM Inference, on page 187

* Initial Values for RAMs, on page 229

* RAM Instantiation with SYNCORE, on page 242

* ROM Inference, on page 243

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 181

RAM and ROM Inference

Guidelines and Support for RAM Inference

Guidelines and Support for RAM Inference

There are two methods to handle RAMs: instantiation and inference. Many
FPGA families provide technology-specific RAMs that you can instantiate in
your HDL source code. The software supports instantiation, but you can also
set up your source code so that it infers the RAMs. The following table sums
up the pros and cons of the two approaches.

Inference in Synthesis

Advantages

Portable coding style

Automatic timing-driven synthesis
No additional tool dependencies

Limitations

Glue logic to implement the RAM might
result in a sub-optimal implementation

Can only infer synchronous RAMs
No support for address wrapping

Pin name limitations means some pins
are always active or inactive

Instantiation

Advantages

Most efficient use of the RAM primitives
of a specific technology

Supports all kinds of RAMs

Limitations

Source code is not portable because it is
technology-dependent

Limited or no access to timing and area
data if the RAM is a black box
Inter-tool access issues, if the RAM is a
black box created with another tool

You must structure your source code correctly for the type of RAM you want
to infer. The following table lists the supported technology-specific RAMs that

can be generated by the synthesis tool.

RAM Type Microchip
Single Port X
Dual Port b4
True Dual X
Port

© 2020 Synopsys, Inc.
182

Synopsys Confidential Information

Synplify Pro for Microchip Edition Reference Manual
June 2020

Automatic RAM Inference RAM and ROM Inference

Automatic RAM Inference

Instead of instantiating synchronous RAMs, you can let the synthesis tools
automatically infer them directly from the HDL source code and map them to
the appropriate technology-specific RAM resources on the FPGA. This
approach lets you maintain portability.

Here are some of the advantages offered by the inference approach:

* The tool automatically infers the RAM from the HDL code, which is
technology-independent. This means that the design is portable from
one technology to another without rework.

* RAM inference is the best method for prototyping.

* The tool automatically adds the extra glue logic needed to ensure that
the logic is correct.

* The software automatically runs timing-driven synthesis for inferred
RAMs.

Block RAM

The synthesis software can implement the block RAM it infers using different
types of block RAM and different block RAM modes.

Types of Block RAM

The synthesis software can infer different kinds of block RAM, according to
how the code is set up. For details about block RAM inference, see Block RAM
Inference, on page 187 and RAM Attributes, on page 184. For inference
examples, and see Block RAM Examples, on page 193.

The synthesis tool can infer the following kinds of block RAM:
* Single-port RAM
* Dual-port RAM

Based on how the read and write ports are used, dual-port RAM can be
further classified as follows:

— Simple dual-port
— Dual-port

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 183

RAM and ROM Inference Automatic RAM Inference

— True dual-port

Supported Block RAM Modes

Block RAM supports three operating modes, which determine the output of
the RAM when write enable is active. The synthesis tools infer the mode from
the RTL you provide. It is best to explicitly describe the RAM behavior in the
code, so as to correctly infer the operating mode you want. Refer to the
examples for recommended coding styles.

The block RAM operating modes are described in the following table:

Mode When write enable (WE) is active ...

WRITE_FIRST This is a transparent mode, and the input data is simultaneously
written into memory and stored in the RAM data output (DO). DO
uses the value of the RAM data input (Dl). See WRITE_FIRST Mode
Example , on page 194 for an example.

READ_FIRST This mode is read before write. The data previously stored at the
write address appears at the RAM data output (DO) first, and then
the RAM input data is stored in memory. DO uses the value of the
memory content. See READ_FIRST Mode Example , on page 195 for
an example.

NO_CHANGE RAM data output (DO) remains the same during a write operation,
with DO containing the last read data. See NO_CHANGE Mode
Example , on page 196 for an example.

RAM Attributes

In addition to the automatic inference by the tool, you can specify RAM infer-
ence with the syn_ramstyle and syn_rw_conflict_logic attributes. The syn_ramstyle
attribute explicitly specifies the kind of RAM you want, while the syn_rw_con-
flict_logic attribute specifies that you want to infer a RAM, but leave it to the
synthesis tools to select the kind of RAM, as appropriate.

Attribute-Based Inference of Block RAM

For block RAM, the syn_ramstyle attribute has a number of valid values, all of
which are extensively described in the documentation. This section confines
itself to the following values, which are most relevant to the discussion:

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
184 Synopsys Confidential Information June 2020

Automatic RAM Inference RAM and ROM Inference

syn_ramstyle Value Description

block_ram Enforces the inference and implementation of a
technology-specific RAM.

registers Prevents inference of a RAM, and maps the RAM to flip-flops
and logic.

no_rw_check Does not create overhead logic to account for read-write
conflicts.

If you specify the syn_rw_conflict_logic attribute, the synthesis tools can infer
block RAM, depending on the design. If the tool does infer block RAM, it does
not insert bypass logic around the block RAM to account for read-write
conflicts and prevent simulation mismatches. In this way its functionality is
the same as syn_ramstyle with no_rw_check, which does not insert bypass logic
either.

Specifying the Attributes

You set the attribute in the HDL source code, through the SCOPE interface or
in an FPGA constraint file.

HDL Source Code

Set the attribute on the Verilog register or VHDL signal that holds the output
values of the RAM. The following syntax shows how to specify the attribute in
Verilog and VHDL code:

Verilog reg [7:0] ramdout [127:0]
/*synthesis syn_ranstyle = "block_ran*/;
reg [d_w dth-1:0] nem [mem dept h-1: 0]
/*synthesis syn rw conflict_logic = 0*/;

VHDL attribute syn_ranstyle of ramdout : signal is "block_rani;

SCOPE

For the syn_ramstyle attribute, set the attribute on the RAM register memory
signal, mem, as shown below. For the syn_rw_conflict_logic attribute, set it on
the instance or set it globally. The attributes are written out to a constraints
file using the syntax described in the next section.

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 185

RAM and ROM Inference Automatic RAM Inference

|| Enabled | Object Type | Object | Attribute | value | val Type |
1 | ¥ <any= i:mem([7:0] Syn_ramstyle block_ram| - |string

Constraints File

In the fdc Tcl constraints file written out from the SCOPE interface, the
syn_ramstyle attribute is attached to the register mem signal of the RAM, and
the syn_rw_conflict_logic attribute is attached to the view, as shown below:

define_ attribute {i:menf7:0]} {syn_ranstyle} {block_ran}
define attribute {v:menj0:7]} syn_rw conflict _logic {0}

For the syn_rw_conflict_logic attribute, you can also specify it globally, as well as
on individual modules and instances:

define_global _attribute syn rw conflict_logic {0}

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual

186

Synopsys Confidential Information June 2020

Block RAM Inference RAM and ROM Inference

Block RAM Inference

Based on the design and how you code it, the tool can infer the following
kinds of block RAM: single-port, simple dual-port, dual-port, and true
dual-port. The details about RAM inference and setup guidelines are
described here:

* Setting up the RTL and Inferring Block RAM, on page 187
* Simple Dual-Port Block RAM Inference, on page 189

* Dual-Port RAM Inference, on page 191

* True Dual-Port RAM Inference, on page 191

* True Dual-Port Byte-Enabled RAM Inference, on page 192

Setting up the RTL and Inferring Block RAM

To ensure that the tool infers the kind of block RAM you want, do the
following;:

1. Set up the RAM HDL code in accordance with the following guidelines:

— The RAM must be synchronous. It must not have any asynchronous
control signals connected. The synthesis tools do not infer
asynchronous block RAM.

— You must register either the read address or the output.

— The RAMs must not be too small, as the tool does not infer block RAM
for small-sized RAMs. The size threshold varies with the target
technology.

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 187

RAM and ROM Inference Block RAM Inference

2. Set up the clocks and read and write ports to infer the kind of RAM you
want. The following table summarizes how to set up the RAM in the RTL:

RAM Clock Read Ports Write Ports

Single-port Single clock One; same as write One; same as read

Simple Single or dual One dedicated read One dedicated write

dual-port clock

Dual-port Single or dual Two independent One dedicated write
clock reads

True dual-port Single or dual Two independent Two independent
clock reads writes

See Dual-Port RAM Inference , on page 191 and True Dual-Port RAM Inference ,
on page 191 for additional information.

For illustrative code examples, see the single-port and dual-port
examples listed in Block RAM Examples, on page 193.

3. If needed, guide automatic inference with the syn_ramstyle attribute:
— To force the inference of block RAM, specify syn_ramstyle=blockram.

— To prevent a block RAM from being inferred or if your resources are
limited, use syn_ramstyle=registers.

— If you know your design does not read and write to the same address
simultaneously, specify syn_ramstyle=no_rw_check to ensure that the
synthesis tool does not unnecessarily create bypass logic for resolving
conflicts.

4. Synthesize the design.

The tool first compiles the design and infers the RAMs, which it
represents as abstract technology-independent primitives like RAM1 and
RAM2. You can view these RAMs in the RTL view, which is a graphic,
technology-independent representation of your design after compilation:

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
188 Synopsys Confidential Information June 2020

Block RAM Inference RAM and ROM Inference

T = —a—ia oy rami
SIS et [350] 100] (i AL]
L -
addr_reg[5:0 EHAT 1) e
= QE] [E:ll) DOUTF O] : I”‘“. 0] =
|-—L- WADDR[50] SR

We a—| wEm
data[7:0] — —| CLK

ram[7.0]

It is important that the compiler first infers the RAM, because the tool
only maps the inferred RAM primitives to technology-specific block RAM.
Any RAM that is not inferred is mapped to registers. You can view the
mapped RAMs in the Technology view, which is a graphic representation
of your design after synthesis, and shows the design mapped to
technology-specific resources.

Simple Dual-Port Block RAM Inference

Simple dual-port RAMs (SDP) are block RAMs with one port dedicated to read
operations and one port dedicated to write operations. SDP RAMs offer the
unique advantage of combining ports and using them to pack double the data
width and address width.

The synthesis tools map SDP RAMs to RAM primitives in the architecture. A
unique set of addresses, clocks, and enable signals are used for each port.
The synthesis tool might also set the RAM_MODE property on the RAM to
indicate the RAM mode.

The inference of simple dual-port RAM is dependent on the size of the
address and data. The RAM must follow the coding guidelines listed below to
be inferred.

* The read and write addresses must be different
* The read and write clocks can be different

* The enable signals can be different

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 189

RAM and ROM Inference Block RAM Inference

Here is an example where the tool infers SDP RAM:

nmodul e Read_First _RAM (
read_cl k,
read_address,
data_ in,
wite clk,
rd_en,
w_en,
reg_en,
wite_address,
data out);

paranet er address_wi dth = 8;
paraneter data width = 32;
paraneter depth = 256;
input read clk, wite clk;
i nput rd_en;
i nput w_en;
i nput reg_en;
i nput [address_wi dth-1:0] read address, wite_ address;
input [data width-1:0] data_in;
output [data wi dth-1:0] data out;
[/wire [data_wi dth-1:0] data out;
reg [data_width-1:0] mem[depth -1 : 0]/* synthesis
syn_ranst yl e="no_rw _check”
*/ :
reg [data_w dth-1:0] data out;
al ways @ posedge wite clk)

i f(w _en)

menfwite_address] <= data_in;
al ways @ posedge read_cl k)
if(rd_en)

data out <= nenjread_address];

endnodul e

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
190 Synopsys Confidential Information June 2020

Block RAM Inference RAM and ROM Inference

rami

T ==
[ualE =+ == data_out[31:0]
mem[31:0]

==

Dual-Port RAM Inference

Dual-port RAM is configured to have read and/or write operations from both
ports of the RAM. One such configuration is a RAM with one port for both
read and write operations and another dedicated read-only port. A unique set
of addresses, clocks, and enable signals are used for each port. The synthesis
tool sets properties on the RAM to indicate the RAM mode.

To infer dual-port block RAM, the RAM must follow the coding rules
described below.

* The read and write addresses must be different
* The read and write clocks can be different

* The enable signals can be different

True Dual-Port RAM Inference

True dual-port RAMs (TDP) are block RAMs with two write ports and two read
ports. The compiler extracts a RAM2 primitive for RAMs with two write ports
or two read ports and the tool maps this primitive to TDP RAM. The ports
operate independently, with different clocks, addresses and enables.

The synthesis tool also sets the RAM_MODE property on the RAM to indicate
the RAM mode.

The compiler infers TDP block RAM based on the write processes. The imple-
mentation depends on whether the write enables use one process or multiple
processes:

* When all the writes are made in one process, there are no address
conflicts, and the compiler generates an nram that is later mapped to
either true dual-port block RAM. The following coding results in an nram

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 191

RAM and ROM Inference Block RAM Inference

with two write ports, one with write address waddrO and the other with
write address waddr1:

al ways @ posedge cl k)
begi n
i f(wel) nenfwaddrQ] <= datal,;
i f(we2) nenjwaddrl] <= data2;
end

* When the writes are made in multiple processes, the software does not
infer a multiport RAM unless you explicitly specify the syn_ramstyle attri-
bute with a value that indicates the kind of RAM to implement, or with
the no_rw_check value. If the attribute is not specified as such, the
software does not infer an nram, but infers a RAM with multiple write
ports. You get a warning about simulation mismatches when the two
addresses are the same.

In the following case, the compiler infers an nram with two write ports
because the syn_ramstyle attribute is specified. The writes associated with
waddrO0 and waddr1 are we1 and we2, respectively.

reg [1:0] nem[7:0] /* synthesis syn_ranstyl e="no_rw check" */;
al ways @ posedge cl k1)

begi n

i f(wel) nenfwaddrQ] <= datal,;
end
al ways @ posedge cl k2)
begi n

i f(we2) nenjwaddrl] <= data2;
end

True Dual-Port Byte-Enabled RAM Inference

The procedure below describes how to specify RAM where you can read /write
each byte into a specific address location independently, and how to imple-
ment it as block RAM. See the article 2560210, Verilog RTL Coding Style for
True Dual-Port Byte-Enabled RAM on the Synopsys website, for an example.

1. Instantiate the true dual-port RAM n number of times, where n is the
number of bytes for a particular RAM address.

In the following example, ram_dp is instantiated twice because there are
two bytes in the address:

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual

192

Synopsys Confidential Information June 2020

Block RAM Inference RAM and ROM Inference

ram_dp u1 (clk1, clk2, dia[7:0] , addra, weal0], doa[7:0], dib[7:0] , addrb, web][0],
dob[7:0]);

ram_dp u2 (clk1, clk2, dia[15:8], addra, wea[1], doa[15:8], dib[15:8], addrb,
web[1], dob[15:8]);

. To map the true dual-port RAM into a block RAM, add the

syn_ramstyle="block_ram" attribute to the true dual-port RAM module.

. Run compile.

The RTL schematic shows two instantiations, as specified.

Run map.

After synthesis, check the resource utilization report to make sure that
two block RAMs were inferred, as specified.

Block RAM Examples

The examples below show you how to define RAM in the HDL code so that the
synthesis tools can infer block RAM. See the following for details:

Block RAM Mode Examples, on page 193
Single-Port Block RAM Examples, on page 197
Dual-Port Block RAM Examples, on page 200

True Dual-Port RAM Examples, on page 202

For details about inferring block RAM, see Block RAM Inference, on page 187.

Block RAM Mode Examples

The coding style supports the enable and reset pins of the block RAM primi-
tive. The tool supports different write mode operations for single-port and
dual-port RAM. This section contains examples of how to specify the
supported block RAM output modes:

WRITE_FIRST Mode Example, on page 194
READ_FIRST Mode Example, on page 195
NO_CHANGE Mode Example, on page 196

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.

June 2020

Synopsys Confidential Information 193

RAM and ROM Inference Block RAM Inference

WRITE_FIRST Mode Example

This example shows the WRITE_FIRST mode operation with active enable.

modul e v_ranms_02a (clk, we, en, addr, di, dou);
i nput clk;

i nput we;

i nput en;

input [5:0] addr;

input [63:0] di;

out put [63:0] dou;

reg [63:0] RAM[63:0];

reg [63:0] dou;

al ways @ posedge cl k)

begi n
if (en)
begi n
if (we)
begi n
RAM addr] <= di;
dou <= di;
end
el se
dou <= RAM addr];
end
end

al ways @ posedge cl k)
if (en &we) RAMaddr] <= di;
endnodul e

The following figure shows the RTL view of a WRITE_FIRST mode RAM
with output registered. Select the Technology view to see that the RAM is
mapped to a block RAM.

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
194 Synopsys Confidential Information June 2020

Block RAM Inference RAM and ROM Inference

RTL View
=l
— =
== — L =
=

READ_FIRST Mode Example

The following piece of code is an example of READ_FIRST mode with both
enable and reset, with reset taking precedence:

nodul e ramtest(data out, data in, addr, clk, rst, en, we);
output [7:0]data out;

input [7:0]data_in;

i nput [6: 0] addr;

i nput clk, en, rst, we;

reg [7:0] nem[127:0] /* synthesis syn_ranmstyle = "block_rant */;
reg [7:0] data out;

al ways @ posedge cl k)
if(rst == 1)
data out <= 0;
el se begin
i f(en) begin
data_out <= menjaddr];
end
end

al ways @ posedge cl k)
if (en & we) menjaddr] <= data_in;
endnodul e

The following figure shows the RTL view of a READ_FIRST RAM with
inferred enable and reset, with reset taking precedence. Select the
Technology view to see that the inferred RAM is mapped to a block RAM.

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 195

RAM and ROM Inference Block RAM Inference
i} raml RTL VleW
=) =
und_en ’_ dataout_4[7:0] data_oul[T0]
menm{7:0] N

i

uni_data_ou_1_sgmuoa

data_outb

NO_CHANGE Mode Example

This NO_CHANGE mode example has neither enable nor reset. If you register
the read address and the output address, the software infers block RAM.

nodul e ramtest(data_out, data_ in, addr, clk, we);

output [7:0]data out;

input [7:0]data_in;

i nput [6: 0] addr;

i nput cl k, we;

reg [7:0] nmem[127:0] /* synthesis syn_ranstyle
reg [7:0] data_ out;

al ways @ posedge cl k)

if(we == 1
data out <= data out;
el se

data out <= nenfaddr];

al ways @ posedge cl k)
if (we) nenfjaddr] <= data_in;

endnodul e

"bl ock_ramt */;

The next figure shows the RTL view of a NO_CHANGE RAM. Select the
Technology view to see that the RAM is mapped to block RAM.

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual

196 Synopsys Confidential Information

June 2020

Block RAM Inference RAM and ROM Inference

RTL View
. ram1i
By FADORIE O]
FENT] et DATHT i
T - a1 T DOUT? St 017 270 et 5 L[] ==
W — —— E
ok ' data_out[7:0]
mem{7:0]

.

uni_we

Single-Port Block RAM Examples

This section describes the coding style required to infer single-port block
RAMs. For single-port RAM, the same address is used to index the write-to
and read-from RAM. See the following examples:

* Single-Port Block RAM Examples, on page 197
* Single-Port RAM with RAM Output Registered Examples, on page 199
* Dual-Port Block RAM Examples, on page 200

Single-Port RAM with Read Address Registered Example

In these examples, the read address is registered, but the write address
(which is the same as the read address) is not registered. There is one clock
for the read address and the RAM.

Verilog Example: Read Address Registered

nodul e ramtest(q, a, d, we, clk);
output [7:0] q;
input [7:0] d;
input [6:0] a;
i nput clk, we;

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 197

RAM and ROM Inference Block RAM Inference

reg [6:0] read_add

/* The array of an array register ("nem') fromwhich the RAMis
i nferred*/

reg [7:0] mem[127:0] ;

assign g = nenjread_add];

al ways @ posedge cl k) begin
read_add <= a;

i f(we)
/* Register RAM Data */
menjal <= d;

end

endnodul e

VHDL Example: READ Address Registered

library ieee;
use ieee.std _|logic_1164.all;
use ieee.std_|ogic_unsigned.all

entity ramtest is
port (d : in std_|logic_vector(7 dowto 0);
a: in std |ogic vector(6 dowto 0);
we : in std_ | ogic;
clk : in std_logic;
g : out std_|logic_vector(7 downto 0));
end ramtest;

architecture rtl of ramtest is
type memtype is array (127 downto 0) of
std_ | ogic_vector (7 downto 0);
signal nem nemtype;
signal read add : std |l ogic vector(6 downto 0);

begi n
process (cl k)
begi n
if rising_edge(clk) then
if (we ="1) then
men{conv_i nteger(a)) <= d;
end if;
read_add <= a;
end if;

end process;
g <= men{conv_i nteger (read_add));
end rtl ;

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
198 Synopsys Confidential Information June 2020

Block RAM Inference RAM and ROM Inference

Single-Port RAM with RAM Output Registered Examples

In this example, the RAM output is registered, but the read and write
addresses are unregistered. The write address is the same as the read
address. There is one clock for the RAM and the output.

Verilog Example: Data Output Registered

nmodul e ramtest(qg, a, d, we, clk);

output [7:0] q;

input [7:0] d;

input [6:0] a;

i nput clk, we;

/* The array of an array register ("nmenf) fromwhich the RAMis

inferred */

reg [7:0] nem[127:0] ;

reg [7:0] o;

al ways @ posedge cl k) begin

q = menjal;

i f(we)
/* Register RAM Data */
nenja] <= d;

end

endrodul e

VHDL Example: Data Output Registered

library ieee;
use ieee.std logic 1164. al |
use ieee.std | ogic_unsigned.all;

entity ramtest is
port (d: in std |logic_vector(7 downto 0);
a: in integer range 127 downto O;
we: in std_logic;
clk: in std_|logic;
g: out std_ logic vector(7 dowto 0));
end ramtest;

architecture rtl of ramtest is

type memtype is array (127 downto 0) of
std _logic_vector (7 downto 0);

signal mem nemtype

begi n

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 199

RAM and ROM Inference Block RAM Inference

process(cl k)
begi n
if (clk'event and clk="1") then
q <= nen(a);
if (we="1") then
nen(a) <= d;
end if;
end if;
end process;
end rtl;

Dual-Port Block RAM Examples

The following example or HDL code results in simple dual-port block RAMs
being implemented in supported technologies.

Verilog Example: Dual-Port RAM

This Verilog example has two read addresses, both of which are registered,
and one address for write (same as a read address), which is unregistered. It
has two outputs for the RAM, which are unregistered. There is one clock for
the RAM and the addresses.

nmodul e dual portram (ql, g2, al, a2, d, we, cl k1) ;

output [7:0]ql, g2

input [7:0] d;

i nput [6:0]al, az;

i nput cl k1, we;

wire [7:0] qi;

reg [6:0] read_addrl, read_addr?2

reg[7:0] nem[127:0] /* synthesis syn ranstyle = "no_rw check" */;
assign gl = nem|[read_addrl1];

assign g2 = nenjread_addr2];

al ways @ (posedge cl k1) begin
read_addrl <= al;
read_addr2 <= a2;
if (we)
menj a2] <= d;
end

endnodul e

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
200 Synopsys Confidential Information June 2020

Block RAM Inference RAM and ROM Inference

VHDL Example: Dual-Port RAM

The following VHDL example is of READ_FIRST mode for a dual-port RAM:

Li brary | EEE ;

use | EEE std logic_1164.all ;

use |EEE. std logic arith.all ;
use | EEE std_ | ogi c_unsigned.all ;

entity Dual _Port ReadFirst is
generic (data width: integer :=4;
address_wi dth: integer :=10);

port (wite enable: in std | ogic;
wite_clk, read_clk: in std_logic;
data_in: in std_logic_vector (data w dth-1 downto 0);
data out: out std_logic_vector (data wi dth-1 downto 0);
wite address: in std | ogic_vector (address w dth-1 downto 0);
read_address: in std |ogic vector (address wi dth-1 downto 0)
),

end Dual _Port_ ReadFirst;

architecture behavioral of Dual _Port ReadFirst is

type menory is array (2**(address_width-1) downto 0) of
std_logic_vector (data w dth-1 downto 0);

signal mem: nenory;

signal reg_ wite address : std_|ogic_vector (address_w dth-1 downto 0);
signal reg_wite_enable: std_|logic;

attribute syn ramstyle : string;
attribute syn_ranstyle of nem: signal is "block rant;

begi n
regi ster_enabl e_and_wite_address:
process (wite clk,wite_enable,wite_address,data in)
begi n
if (rising_edge(wite clk)) then
reg_wite address <= wite_address;
reg wite enable <= wite_enabl e;
end if;
end process;

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 201

RAM and ROM Inference Block RAM Inference

wite:
process (read clk,wite _enabl e,wite address, data_in)
begi n
if (rising_edge(wite_clk)) then
if (wite_enable="1") then
men{conv_i nt eger (wite_address))<=data in;
end if;
end if;
end process;

read:
process (read clk,wite_enabl e, read address, wite_address)
begi n
if (rising_edge(read_clk)) then
if (reg_wite enable="1") and (read_address =
reg_wite_address) then data out <= "XXXX';
el se
dat a_out <=nen{ conv_i nt eger (read_address));
end if;
end if;
end process;

end behavi oral ;

True Dual-Port RAM Examples

You must use a registered read address when you code the RAM or have
writes to one process. If you have writes to multiple processes, you must use
the syn_ramstyle attribute to infer the RAM.

There are two situations which can result in this error message:

"@: MF216: ramv(29)| Found NRAM nem 1[7: 0] with multiple
pr ocesses"

* An nram with two clocks and two write addresses has syn_ramstyle set to a
value of registers. The software cannot implement this, because there is a
physical FPGA limitation that does not allow registers with multiple
writes.

* You have a registered output for an nram with two clocks and two write
addresses.

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
202 Synopsys Confidential Information June 2020

Block RAM Inference RAM and ROM Inference

Verilog Example: True Dual-Port RAM

The following HDL example shows the recommended coding style for true
dual-port block RAM. It is a Verilog example where the tool infers true
dual-port RAM from a design with multiple writes:

nmodul e ran(data0, datal, waddrO, waddrl, weO, wel,
cl kO, clkl, g0, ql);

paraneter d width = 8;

paraneter addr_wi dth = 8;

par anet er mem depth = 256;

input [d_width-1:0] dataO, datal;

i nput [addr_wi dth-1:0] waddrO, waddrl;

i nput weO, wel, clkO, clki,;

output [d width-1:0] g0, qi;

reg [addr_wi dth-1:0] reg_addrO, reg_addrl;

reg [d width-1:0] mem[nemdepth-1:0] /* synthesis

syn_ranstyl e="no_rw check" */;

assign g0 = nenjreg_addr0];

assign gl = menjreg_addr1];

al ways @ posedge cl k0)
begi n
reg_addr0 <= waddrO;
if (we0)
nmenf waddr 0] <= dat a0;
end

al ways @ posedge cl k1)
begi n
reg_addrl <= waddr1;
if (wel)
nenj waddr 1] <= datal;
end

endnodul e

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 203

RAM and ROM Inference Block RAM Inference

RTL View

| e

reg_ad dril [7:0] Lo
[T ==
[mem 7]
|'ra|-rll?7%:3 :| L—
] T
reg_addri [7:0] o

mem_1[70]

VHDL Example: True Dual-Port RAM

The following HDL example shows the recommended coding style for true
dual-port block RAM. It is a VHDL example where the tool infers true
dual-port RAM from a design with multiple writes:

library ieee;
use ieee.std _|logic_1164.all;
use ieee.nuneric_std.all;

entity one is

generic (data width : integer := 4;

address width :integer :=5);

port (data_a:in std_|ogic_vector(data wi dth-1 downto 0);

data b:in std_|l ogi c_vector(data_w dth-1 downto 0);
addr_a:in std_| ogic_vector(address_w dth-1 downto 0);
addr_b:in std_| ogi c_vector(address_w dth-1 downto 0);
wen_a:in std | ogic;

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
204 Synopsys Confidential Information June 2020

Block RAM Inference RAM and ROM Inference

wen_b:in std_|ogic;

clk:in std_| ogic;

g_a:out std |ogic vector(data width-1 downto 0);

g _b:out std |ogic_vector(data width-1 downto 0));
end one;

architecture rtl of oneis
type memarray is array(0 to 2**(address_w dth) -1) of
std_l ogi c_vector(data wi dth-1 downto 0);
signal mem: nemarray;
attribute syn ramstyle : string;
attribute syn ramstyle of nem: signal is "no rw check" ;
signal addr_a reg : std_logic_vector(address w dth-1 dowto 0);
signal addr_b reg : std_logic_vector(address_w dth-1 downto 0);
begi n
WRI TE RAM : process (cl k)
begi n
if rising_edge(clk) then
if (wen_a ="'1") then
men(to_i nt eger (unsi gned(addr_a))) <= data_a;
end if;
if (wen_b="1") then
nen(t o_i nt eger (unsi gned(addr_b))) <= data_b;
end if;
addr_a reg <= addr_a;
addr_b reg <= addr_b;
end if;
end process WR TE_RAM
g_a <= nen(to_integer(unsigned(addr_a regqg)));
g_b <= nen(to_integer(unsigned(addr b reg)));
end rtl;

Limitations to RAM Inference

RAM inference is only supported for synchronous RAMs.

/I Example 1: Verilog Asymmetric RAM Coding Style 1

nodul e asymretric_ram (cl kA, cl kB, weA, enA addrA addrB, diA

doB);
par arret er W DTHA = 2;
paraneter Sl ZEA = 16384;
Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.

June 2020 Synopsys Confidential Information 205

RAM and ROM Inference

Block RAM Inference

par amet er ADDRW DTHA = 14;
parameter W DTHB = 4;
paraneter Sl ZEB = 8192,

parameter ADDRWDIHB = 13;

i nput

i nput

i nput

i nput

i nput [ADDRW DTHA- 1: 0]
i nput [ADDRW DTHB- 1: 0]
i nput [WDTHA- 1: 0]
output reg [WDIHB- 1: 0]

cl kA
cl kB;
weA;
enA;
addr A;
addr B;
di A
doB;

“define max(a,b) {(a) > (b) ? (a) : (b)}
“define min(a,b) {(a) < (b) ? (a) : (b)}

function integer |og2;
i nput integer val ue;
reg [31:0] shifted,;
i nteger res;

begi n
if (value < 2)

| og2 = val ue;

el se
begi n

shifted = val ue-1;

© 2020 Synopsys, Inc.

206

Synplify Pro for Microchip Edition Reference Manual

Synopsys Confidential Information June 2020

Block RAM Inference RAM and ROM Inference

for (res=0; shifted>0; res=res+l)
shifted = shifted>>1,;
log2 = res;
end
end

endf uncti on

| ocal par am maxS| ZE “max(Sl ZEA, Sl ZEB);

*max(WDTHA, W DTHB) ;

| ocal par am maxW DTH

| ocal param m nW DTH “m n(WDTHA, W DTHB) ;
maxW DTH / m nW DTH,

| 0g2(RATI O ;

| ocal par am RATI O

| ocal param | 0g2RATI O

reg [MnNWDTH 1: 0] RAM[0: maxSl ZE-1];
reg [ADDRWDTHB- 1: 0] addrB reg;

genvar i;

al ways @ posedge cl kA)
begi n
if (enA & weA)
RAM addr A] <= di A

end

al ways @ posedge cl kB)
begi n
addrB reg <= addrB;

end

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 207

RAM and ROM Inference Block RAM Inference

generate for (i =0; i <RATIQ i =i+1)
begi n: ranread
| ocal param [l 0g2RATI O 1: 0] | sbaddr = i;
al ways @ posedge cl kB)
begi n
doB[(i +1) *m nW DTH 1:i *m nWDTH <= RAM
{addrB reg, |sbaddr}];
end
end

endgener at e

endnodul e

// Example 1: VHDL Asymmetric RAM Coding Style 1
library ieee;
use ieee.std |logic _1164.all;
use ieee.std | ogic_unsigned.all;

use ieee.std logic arith.all;

entity asymmetric_ramis

generic (
W DTHA . integer := 2;
Sl ZEA . integer := 16384,
ADDRW DTHA : integer := 14;
W DrHB : integer := 4
S| ZEB . integer := 8192,
© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual

208 Synopsys Confidential Information June 2020

Block RAM Inference RAM and ROM Inference

ADDRWDTHB : integer := 13
);

port (
clkA : in std_logic;
clkB : in std_|logic;
WeA :in std_|ogic;
enA : in std_logic;

addrA : in std_logic_vector(ADDRNDIHA-1 downto 0);

addrB : in std_logic_vector(ADDRWDTHB-1 downto O);
di A . in std_logic_vector(WDIHA-1 downto 0);

doB . out std_logic vector(WDIHB-1 downto 0)

);

end asymmetric_ram

architecture behavioral of asymmetric_ramis

function max(L, R INTEGER) return INTEGER i s
begi n
if L>Rthen
return L;
el se
return R
end if;

end;

function nmin(L, R INTEGER) return INTEGER i s

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 209

RAM and ROM Inference Block RAM Inference

begi n
if L<Rthen
return L;
el se
return R
end if;

end;

function log2 (val: INTEGER) return natural is
variable res : natural;
begi n
for i in0to 31 |oop
if (val <= (2**i)) then
res :=i;
exit;
end if;
end | oop;
return res;

end function Logz;

constant nmi nWDTH : integer m n(W DTHA, W DTHB) ;

constant naxWDTH : i nteger nmax(W DTHA, W DTHB) ;
max(Sl ZEA, Sl ZEB) ;

constant RATIO: integer := naxWDTH / m nWDTH

constant naxSIZE : integer

type ramlype is array (0 to maxSl ZE-1) of
std_| ogi c_vector (m nWDTH 1 downto 0);

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
210 Synopsys Confidential Information June 2020

Block RAM Inference RAM and ROM Inference

signal ram: ranfType := (others => (others => ‘0"));

signal addrB reg : std_logic_vector(ADDRWDTHB-1 downto 0);

begi n
process (clkA)
begi n
if rising_edge(cl kA then
if enA="'1 then
if weA ="'1" then
ram(conv_i nteger (addrA)) <= di A
end if;
end if;
end if;

end process;

process (cl kB)
begi n
if rising_edge(clkB) then
for i inOto RATIO1 |oop
doB((i +1)*m nWDIH 1 downto i*m nWDIH) <=
ran{conv_i nteger(addrB reg &
conv_std_| ogic_vector(i,log2(RATIO)));
addrB reg <= addrB;
end | oop;
end if;

end process;

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 21

RAM and ROM Inference Block RAM Inference

end behavi oral ;

I/l Example 1: Verilog Asymmetric RAM Coding Style 2

nmodul e asymmetric_ram (cl kA, cl kB, weA enA addrA addrB, diA
doB);

par amet er W DTHA = 2;

paraneter Sl ZEA = 1024;
paramet er ADDRWDIHA = 10;

par ameter WDTHB = 8§;

paranet er Sl ZEB = 256;
paraneter ADDRWDIHB = 8;

i nput cl kA
i nput cl kB;
i nput weA;

i nput enA

i nput [ADDRW DTHA- 1: 0] addr A
i nput [ADDRW DTHB- 1: 0] addr B;
i nput [WDTHA- 1: 0] di A
output reg [WDTHB- 1:0] doB;

“define max(a, b) {(a) > (b) ? (a) : (b)}
“define min(a,b) {(a) < (b) ?(a) : (b)}

| ocal par am maxS| ZE “max(Sl ZEA, Sl ZEB);

| ocal param maxW DTH = " max(W DTHA, W DTHB) ;

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
212 Synopsys Confidential Information June 2020

Block RAM Inference RAM and ROM Inference

| ocal param m nWDTH = " m n(WDITHA, WDTHB) ;
maxW DTH / m nW DTH;,

| ocal par am RATI O

reg [MnWDTH 1: 0] RAM[O0: maxSl ZE-1] ;
reg [ADDRWDTHB- 1: 0] addrB reg;

al ways @ posedge cl kA)
begi n
if (weh)
begi n
RAM addr A] <= di A
end

end

al ways @ posedge cl kB)

begi n
addrB reg <= addrB;
doB[4*m nWDTH 1: 3*m nWDTH <= RAM{addrB reg, 2'd3}];
doB[3*m nWDTH 1: 2*m nWDTH <= RAM{addrB reg, 2'd2}];
doB[2*m nW DTH 1: mi nW DTH| <= RAM {addrB reg, 2'd1}];

doB[m nW DTH 1: 0] <= RAM {addrB reg, 2'd0}];
end
endnodul e
Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.

June 2020 Synopsys Confidential Information 213

RAM and ROM Inference Block RAM Inference

// Example 1: VHDL Asymmetric RAM Coding Style 2
library ieee;
use ieee.std |logic _1164.all;
use ieee.std_|ogic_unsigned. all;

use ieee.std logic_arith.all;

entity asymmetric_ramis

generic (
W DTHA . integer := 2;
Sl ZEA : integer := 1024,

ADDRW DTHA : integer := 10;

W DTHB . integer :=8;
S| ZEB . integer := 256;
ADDRWDTHB : integer := 8
)
port (
clkA : in std_logic;
clkB : in std_|ogic;
WeA :in std_|ogic;
enA :in std_|ogic;

addrA : in std_|logic_vector(ADDRNDIHA-1 downto 0);

addrB : in std_logic_vector(ADDRWDTHB-1 downto O);
di A :in std_logic_vector(WDIHA-1 downto 0);
doB : out std |logic vector(WDITHB-1 downto 0)
)i
© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual

214 Synopsys Confidential Information June 2020

Block RAM Inference RAM and ROM Inference

end asymmetric_ram

architecture behavioral of asymmetric_ramis

function max(L, R INTEGER) return INTEGER i s
begi n
if L>Rthen
return L;
el se
return R
end if;

end;

function mn(L, R INTEGER) return INTEGER i s
begi n
if L <Rthen
return L;
el se
return R
end if;

end;

constant mnWDTH : integer m n(W DTHA, W DTHB) ;
max(W DTHA, W DTHB) ;

max(Sl ZEA, Sl ZEB) ;

constant maxWDTH : integer

constant naxSIZE : integer

constant RATIO: integer := naxWDIH / m nWDTH

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 215

RAM and ROM Inference Block RAM Inference

type ramlype is array (0 to maxSl ZE-1) of
std_| ogi c_vector (m nWDTH 1 downto 0);
signal ram: ranfType := (others => (others => ‘0"));

signal addrB reg : std_logic_vector (ADDRWDITHB-1 downto 0);

begi n
process (cl kA)
begi n
i f rising_edge(cl kA) then
if enA="'1 then
if weA ="'1 then
ran{conv_integer(addrA)) <= di A
end if;
end if;
end if;

end process;

process (cl kB)
begi n
if rising_edge(cl kB) then
addrB reg <= addr B;
doB(m nWDTH 1 downto 0) <=
ran{conv_i nt eger (addr B reg&conv_std_| ogi c_vector (0, 2)));
doB(2*m nWDTH 1 downto m nWDTH) <=
ran{conv_i nt eger (addr B reg&conv_std_| ogi c_vector(1,2)));
doB(3*m nWDTH 1 downto 2*ni nWDTH) <=

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
216 Synopsys Confidential Information June 2020

Block RAM Inference RAM and ROM Inference

ram(conv_i nt eger (addr B reg&conv_std | ogi c_vector(2,2)));
doB(4*m nWDITH 1 downto 3*m nWDIH) <=

ran{conv_i nt eger (addr B_reg&conv_std_l ogi c_vector(3,2)));
end if;

end process;

end behavi oral ;

/l Example 2: Verilog Asymmetric RAM Coding Style 1

nodul e v_asymmetric_ram (cl kA, cl kB, weB, addrA addrB, doA, diB);

par aret er W DTHA = 8;

paraneter Sl ZEA = 256;

par amet er ADDRWDTHA = §;

par amet er W DTHB = 32;

par aret er Sl ZEB = 64;

par aet er ADDRWDTHB = 6;

i nput cl kA;

i nput cl kB;

i nput weB;

i nput [ADDRW DTHA- 1: 0] addr A

i nput [ADDRW DTHB- 1: 0] addr B;

out put [WDTHA- 1: 0] doA;

i nput [WDTHB- 1: 0] di B;

reg [ADDRWN DTHA- 1: 0] addr A reg;
Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.

June 2020 Synopsys Confidential Information 217

RAM and ROM Inference Block RAM Inference

“define max(a,b) {(a) > (b) ? (a) : (b)}
“define mn(a,b) {(a) <(b) ? (a) : (b)}
function integer |og2;
i nput integer val ue;
reg [31:0] shifted;
i nteger res;
begi n
if (value < 2)
| 0g2 = val ue;
el se
begi n
shifted = val ue-1,;
for (res=0; shifted>0; res=res+l)
shifted = shifted>>1;
| 0og2 = res;
end
end

endf uncti on

| ocal param maxSl ZE “max(Sl ZEA, S| ZEB);

*max(WDTHA, W DTHB) ;

| ocal par am maxW DTH

| ocal param m nW DTH "mn(WDTHA, WDTHB) ;
| ocal par am RATI O = maxWDTH / m nWDTH,

| ocal param | 0g2RATI O = | 0g2(RATI O ;

reg [MnNWDTH 1: 0] RAM[O0: maxSl ZE- 1] ;
reg [WDTHB- 1: 0] readB;
genvar i;

al ways @ posedge cl kA)

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
218 Synopsys Confidential Information June 2020

Block RAM Inference RAM and ROM Inference

begi n
addr A reg <= addr A
end

assi gn doA = RAM addr A req];

generate for (i =0; i <RATIQ i =1i+])
begi n: ranread
| ocal param [| 0g2RATI O 1: 0] | sbaddr =i
al ways @ posedge cl kB)
begi n
if (weB)
RAM {addr B, |sbaddr}] <= di B[(i+1)
*m nWDTH 1:i *m nWDTH] ;
end
end

endgener at e

endnodul e

/I Example 2: VHDL Asymmetric RAM Coding Style 1
library ieee;
use ieee.std logic_1164. al |
use ieee.std | ogic_unsigned.all;

use ieee.std logic_arith.all;

entity asymmetric_ramis

generic (

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 219

RAM and ROM Inference Block RAM Inference

W DTHA i nteger := 8;

S| ZEA i nteger := 256;

ADDRW DTHA i nteger := 8;

W DTHB i nteger := 32;

S| ZEB i nteger := 64;

ADDRW DTHB integer := 6);

port (clkA : in std_logic;
clkB : in std_logic;
weB :in std_logic;
addrA : in std_|ogic_vector(ADDRWDIHA-1 downto 0);
addrB : in std_|ogic_vector(ADDRWDIHB-1 downto 0);
diB :in std_logic_vector(WDTHB-1 downto 0);
doA : out std_logic_vector(WDIHA-1 downto 0));

end asymmetric_ram
archi tecture behavioral of asymetric_ramis
function max(L, R INTEGER) return INTEGER is
begi n
if L>Rthen
return L;
el se
return R
end if;
end;
function mn(L, R INTEGER return INTEGER is
begi n
if L<Rthen

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
220 Synopsys Confidential Information June 2020

Block RAM Inference RAM and ROM Inference

return L;
el se
return R
end if;
end;
function log2 (val: INTEGER) return natural is
variable res : natural;
begi n
for i in0Oto 31 |oop
if (val <= (2**i)) then
res :=i;
exit;
end if;
end | oop;
return res;

end function Log2;

m n(W DTHA, W DTHB) ;
max(W DTHA, W DTHB) ;
max(Sl ZEA, Sl ZEB) ;
constant RATIO: integer := naxWDIH / m nWDTH,

constant mi nWDTH : i nteger

constant maxWDTH : integer

constant naxSIZE : integer

type ramlype is array (0 to maxSl ZE-1) of
std_logi c_vector(m nWDIH 1 downto 0);
shared variable ram: ranType := (others => (others => ‘0"));
signal addrA reg : std_|ogic_vector(ADDRWVDTHA-1 downto 0);
begi n

process (clkA)

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 221

RAM and ROM Inference Block RAM Inference

begi n
if rising_edge(clkA) then
addr A reg <= addr A
end if;
end process;

doA <= ran{conv_i nteger(addrA reg));

process (cl kB)
begi n
if rising_edge(clkB) then
if weB="'1 then
for i in0to RATIO1 | oop
ramn{ conv_i nt eger (
addrB & conv_std_| ogic_vector(i,log2(RATIO)))
= diB((i +1)*m nWDTH 1 downto i *m nWDTH);
end | oop;
end if;
end if;

end process;

end behavi oral ;

/l Example 2: Verilog Asymmetric RAM Coding Style 2
nmodul e asymmetric_ram (cl kA, cl kB, enA, enB, weA addrA,
addrB, di A, doB);
paranmeter WDTHA = 32;
paraneter Sl ZEA = 256;

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
222 Synopsys Confidential Information June 2020

Block RAM Inference RAM and ROM Inference

par anet er ADDRW DTHA = 8;
par aret er W DTHB= 16;
par anmeter Sl ZEB = 512;
par arret er ADDRW DTHB = 9;

i nput cl kA, cl kB, enA enB, weA;
i nput [ADDRW DTHA- 1: 0] addr A
i nput [ADDRW DTHB- 1: 0] addr B;
i nput [WDTHA-1: 0] di A;
output reg [WDTHB-1: 0] doB,;
reg [WDTHA-1: 0] nux;
reg [WDTHA 1: 0] RAM [SI ZEA-1: 0] ;
al ways @posedge cl kA)
begi n

i f(enA & weA)

RAM addr A] <= di A

end

al ways @ posedge cl kB)
begi n
nmux = RAM addr B[ADDRW DTHB- 1: 1]] ;
i f(enB)
if (addrB[0O])

begi n
doB <= nux[W DTHA- 1: W DTHB] ;
end
el se
Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.

June 2020 Synopsys Confidential Information 223

RAM and ROM Inference Block RAM Inference

begi n
doB <= nmux[WDTHB- 1: O] ;
end

end

endnodul e

// Example 2: VHDL Asymmetric RAM Coding Style 2
library ieee;
use ieee.std logic_1164.all;
use ieee.std | ogic_unsigned.all;

use ieee.std logic arith.all;

entity asymmetric_ramis

generic (
W DTHA . integer := 32
S| ZEA . integer := 256;
ADDRW DTHA : integer := 8;
W DTHB . integer := 16;
S| ZEB : integer := 512;
ADDRWDTHB : integer :=9

);

port (
clkA : in std_|logic;
clkB : in std_logic;
rst :in std_logic;

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual

224 Synopsys Confidential Information June 2020

Block RAM Inference RAM and ROM Inference

weA :in std_|ogic;

enA : in std_logic;

enB : in std_logic;

addrA : in std_logic_vector(ADDRWDTHA-1 downto O);
addrB : in std_|logic_vector(ADDRWDIHB-1 downto 0);
di A : in std_logic vector(WDIHA-1 downto 0);

doB . out std_|ogic vector(WDITHB-1 downto 0)

)

end asymmetric_ram

architecture behavioral of asymetric ramis
type ramfype is array (0 to Sl ZEA-1)

of std_|ogic vector (WDTHA-1 downto 0);
SHARED VARI ABLE ram : raniype;

begi n
process (clkA)
begi n
if rising_edge(cl kA then
if enA="1 then
if weA="'1 then
ram(conv_i nteger (addrA)) := di A
end if;
end if;
end if;

end process;

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 225

RAM and ROM Inference

Block RAM Inference

process (cl kB)

variable mux : std_|l ogic_vector(WDITHA-1 downto 0);

begi n
if rising_edge(cl kB) then
if enB="'1 then
if addrB(0) = ‘0’ then
mux : = ran{conv_int eger
(addr B(ADDRW DTHB-1 downto 1)));
doB <= mux (WDTHB-1 downto O);
el se
mux : = ran{conv_integer (
addr B(ADDRW DTHB- 1 downto 1)));
doB <= mux(WDTHA-1 downto WDTHB);
end if;
end if;
end if;

end process;

end behavi oral ;

/l Example - UltraRAM Inference

/!l sinple dual port, no_change ram single uram

//synthesis translate off
“define SIMLATICON 1

//synthesis transl ate_on

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual

226 Synopsys Confidential Information

June 2020

Block RAM Inference RAM and ROM Inference

“define ADDRSI ZE 12
“define DATASI ZE 72

“ifdef SI MLATION

“timescale 1 ps/1 ps

nmodul e rtl _ram(din, clk, we, waddr, raddr, dout);
el se

nmodul e synth_ram(din, clk, we, waddr, raddr, dout);

“endi f

i nput [~ DATASI ZE-1: 0] din;

i nput [ADDRSI ZE-1: 0] waddr;
i nput [~ ADDRSI ZE-1: 0] raddr;
i nput clk, we;

out put [DATASI ZE-1:0] dout;

reg [ADDRS| ZE-1: 0] raddr _reg;
reg [DATASI ZE-1: 0] reg2;
reg [DATASI ZE-1: 0] reg3;
reg [DATASI ZE- 1: 0] mem [(2**" ADDRSI ZE) - 1: 0] ;

al ways @ (posedge cl k)
begi n
if (we)
begi n
nenf waddr] <= din;

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 227

RAM and ROM Inference Block RAM Inference

end
raddr_reg <= raddr;
end

assign dout = nenfraddr_req];

endnodul e // top

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
228 Synopsys Confidential Information June 2020

Initial Values for RAMs RAM and ROM Inference

Initial Values for RAMs

You can specify initial values for a RAM in a data file and then include the
appropriate task enable statement, $readmemb or $readmemh, in the initial state-
ment of the HDL code for the module. The inferred logic can be different due
to the initial statement. The syntax for these two statements is as follows:

$readmemh ("fileName", memoryName [, startAddress [, stopAddress]]);

$readmemb ("fileName", memoryName [, startAddress [, stopAddress]]);

$readmemb Use this with a binary data file.
$readmemh Use this with a hexadecimal data file.
fileName Name of the data file that contains initial values. See

Initialization Data File , on page 232 for format examples.
memoryName The name of the memory.

startAddress Optional starting address for RAM initialization; if omitted,
defaults to first available memory location.

stopAddress Optional stopping address for RAM initialization;
startAddress must be specified

Also, see the following topics:
* Example 1: RAM Initialization, on page 229

* Example 2: Cross-Module Referencing for RAM Initialization, on
page 230

* Initialization Data File, on page 232

* Forward Annotation of Initial Values, on page 235

Example 1: RAM Initialization

This example shows a single-port RAM that is initialized using the $readmemb
binary task enable statement which reads the values specified in the binary
mem.ini file. See Initialization Data File, on page 232 for details of the binary
and hexadecimal file formats.

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 229

RAM and ROM Inference Initial Values for RAMs

nmodul e ram.inference (data, clk, addr, we, data_out);
i nput [27:0] data;
i nput clk, we;
i nput [10:0] addr;
output [27:0] data_out;
reg [27:0] nem[0:2000] /* synthesis syn ranstyle = "no_rw check" */;
reg [10: 0] addr_reg;
initial
begi n
$readnento ("nemini”, nem 2, 1900) /* Initialize RAMwth contents */
/* fromlocations 2 thru 1900*/;

end
al ways @ posedge cl k)
begi n

addr _reg <= addr;
end

al ways @ posedge cl k)
begi n
i f(we)
begi n
menj addr] <= dat a;
end
end

assign data_out = nmenjaddr_req];
endnodul e

Example 2: Cross-Module Referencing for RAM Initialization

The following example shows how a RAM using cross-module referencing
(XMR) can be accessed hierarchically and initialized with the

$readmemb /$readmemh statement which reads the values specified in the
mem.txt file from the top-level design.

Example2A: XMR for RAM lInitialization (Top-Level Module)

/1 Exanple 2A: XMR for RAM I nitialization
(Top-Level Modul e)
/1 Top

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
230 Synopsys Confidential Information June 2020

Initial Values for RAMs RAM and ROM Inference

nmodul e top (input[27:0] data, input clk, we, input[10:0] addr,
out put [27: 0] data_out);

raminference raminst (.*);

initial

begi n
$readmenb (“memtxt”, top.raminst.mem 0, 10);

end

endnodul e

This code example implements cross-module referencing of the RAM block
and is initialized with the $readmemb statement in the top-level module.

Example2B: XMR for RAM Initialization (RAM)
/!l Example 2B: XMR for RAM I nitialization (RAM

/1 RAM
nmodul e raminference (input[27:0] data, input clk, input[10:0]
addr, output[27:0] data out);
reg[27: 0] menj0: 2000] /*synthesis syn_ranmstyle = “no_rw check”*/;
reg [10:0] addr _reg;
al ways @ posedge cl k)
begi n
addr_reg <= addr;
end
al ways @ posedge cl k)
begi n
i f(we)
begi n
nmenjaddr] <= data

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 231

RAM and ROM Inference Initial Values for RAMs

end
end
assign data_out = nmenjaddr_req];
endnodul e

Here is the code example of the RAM block to be implemented for
cross-module referencing and initialized.

The following shows the HDL Analyst view of a RAM module that must be
accessed hierarchically to be initialized.

ram_inference _xme0(verilog)

WCEL

k3] ——

B3 11| ——

nst

RAM Initialization Limitations with XMR
XMR for RAM initialization requires that the following conditions be met:
* Variables must be recognized as inferred memories.

* Cross-module referencing of memory variables cannot occur between
HDL languages.

* Cross-module referencing paths must be static and cannot include an
index with a dynamic value.

Initialization Data File

The initialization data file, read by the $readmemb and $readmemh system
tasks, contains the initial values to be loaded into the memory array. This
initialization file can reside in the project directory or can be referenced by an
include path relative to the project directory. The system $readmemb or

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
232 Synopsys Confidential Information June 2020

Initial Values for RAMs RAM and ROM Inference

$readmemh task first looks in the project directory for the named file and, if
not found, searches for the file in the list of directories on the Verilog tab in
include-path order.

If the initialization data file does not contain initial values for every memory
address, the unaddressed memory locations are initialized to O. Also, if a
width mismatch exists between an initialization value and the memory width,
loading of the memory array is terminated; any values initialized before the
mismatch is encountered are retained.

Unless an internal address is specified (see Internal Address Format, on
page 234), each value encountered is assigned to a successive word element
of the memory. If no addressing information is specified either with the
$readmem task statement or within the initialization file itself, the default
starting address is the lowest available address in the memory. Consecutive
words are loaded until either the highest address in the memory is reached or
the data file is completely read.

If a start address is specified without a finish address, loading starts at the
specified start address and continues upward toward the highest address in
the memory. In either case, loading continues upward. If both a start address
and a finish address are specified, loading begins at the start address and
continues until the finish address is reached (or until all initialization data is
read).

For example:
initial
begi n
/1 $readmenh ("memini", rambankl)
/* Initialize RAMw th contents fromlocations O thru 31*/;

/1 $readmenh ("memini", rambankl, 0)
/* Initialize RAMwith contents fromlocations O thru 31*/;

$readnenh ("nemini", rambankl, 0, 31)
/* Initialize RAMwith contents fromlocations 0 thru 31*/;

$readnenh ("nemini", rambank2, 31, 0)
/* Initialize RAMwith contents fromlocations 31 thru 0*/;

The data initialization file can contain the following:
* White space (spaces, new lines, tabs, and form-feeds)

* Comments (both comment formats are allowed)

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 233

RAM and ROM Inference Initial Values for RAMs

* Binary values for the $readmemb task, or hexadecimal values for the
$readmemh tasks

In addition, the data initialization file can include any number of hexadecimal
addresses (see Internal Address Format, on page 234).

Binary File Format

The binary data file mem.ini that corresponds to the example in Example 1:
RAM Initialization, on page 229 looks like this:

111111111121211111111100110111 /* data for address 0 */
1111111111111111111101100111 /* data for address 1 */
111111111212211111111111000010
11111111121111111111100100001
111111111212211111111101110000
111111111212122111111011100110

/* continues until Address 1999 */

Hex File Format

If you use $readmemh instead of $readmemb, t he hexadecimal data file for the
example in Example 1: RAM Initialization, on page 229 looks like this:

FFFFF37 /* data for address 0 */
FFFFF63 /* data for address 1 */
FFFFFC2

FFFFF21

.../* continues until Address 1999 */

Internal Address Format

In addition to the binary and hex formats described above, the initialization
file can include embedded hexadecimal addresses. These hexadecimal
addresses must be prefaced with an at sign (@) as shown in the example
below.

FFFFF37 /* data for address 0 */
FFFFF63 /* data for address 1 */
@EA /[* menory address 234
FFFFFC2 [/* data for address 234*/
FFFFF21 /* data for address 235*/

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual

234

Synopsys Confidential Information June 2020

Initial Values for RAMs RAM and ROM Inference

@A? /* menory address 137
FFFFF77 [* data for address 137*/
FFFFF7A /* data for address 138*/

Either uppercase or lowercase characters can be used in the address. No
white space is allowed between the @ and the hex address. Any number of
address specifications can be included in the file, and in any order. When the
$readmemb or $readmemh system task encounters an embedded address speci-
fication, it begins loading subsequent data at that memory location.

When addressing information is specified both in the system task and in the
data file, the addresses in the data file must be within the address range
specified by the system task arguments; otherwise, an error message is
issued, and the load operation is terminated.

Forward Annotation of Initial Values

Initial values for RAMs and sequential shift components are forward
annotated to the netlist. The compiler currently generates netlist (srs) files
with seqgshift, ram1, ram2, and nram components. If initial values are specified in
the HDL code, the synthesis tool attaches an attribute to the component in
the srs file.

/I Example: Verilog Initial Values for Asymmetric RAM
/1
/!l Asymretric port RAM
/1 Port Ais 256x8-bit read-only
/1 Port Bis 64x32-bit wite-only

// Wite First nmode with no control signals on Address register.
D fferent cl ocks.

11!

nodul e v_asymretric_ram4 (cl kA, clkB, weB, addrA, addrB, doA,
di B);

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 235

RAM and ROM Inference

Initial Values for RAMs

par amet er W DTHA =
par anmet er Sl ZEA =
par amet er ADDRWDITHA =
par amet er W DTHB =

par anet er Sl ZEB
par amet er ADDRW DTHB

i nput

i nput

i nput

i nput [ADDRW DTHA- 1
i nput [ADDRW DTHB- 1.
out put [WDTHA- 1: 0]

i nput [WDTHB- 1: 0]
reg [ADDRW DTHA- 1:

“define nax(a,b) {(a) > (b) ? (a) :

“define nmn(a,b) {(a) <

function integer |og2;
i nput integer val ue;
reg [31:0] shifted;
i nteger res;
begi n
if (value < 2)
| og2 = val ue;

el se

© 2020 Synopsys, Inc.

256;
8;
32;
64;

0]
0]

0]

(b)

cl kA

cl kB;

weB;
addr A,
addr B;
doA;
di B;
addr A reg;

(b)}
? (a) : (b)}

Synplify Pro for Microchip Edition Reference Manual

236 Synopsys Confidential Information

June 2020

Initial Values for RAMs

RAM and ROM Inference

begi n
shifted = val ue-1,;
for (res=0; shifted>0; res=res+l)
shifted = shifted>>1;
| 0g2 = res;
end
end

endf uncti on

| ocal par am maxSl ZE “max(Sl ZEA, Sl ZEB);

| ocal par am maxW DTH “max(WDTHA, WDTHB) ;
| ocal param m nWDTH = "“nm n(WDIHA, WDTHB) ;
| ocal param RATI O maxW DTH / m nW DTH,
| ocal param | 0g2RATI O = | 0g2(RATI O ;

reg [WDTHB-1: 0] readB;
genvar i;
reg [MnNWDIH 1: 0] RAM[O0: naxSl ZE- 1] ;

[/ RAMinitialization
initial

$readnenb (“mem.init_256x8.dat”, RAM;

al ways @ posedge cl kA)
begi n

Synplify Pro for Microchip Edition Reference Manual

June 2020

Synopsys Confidential Information

© 2020 Synopsys, Inc.
237

RAM and ROM Inference Initial Values for RAMs

addrA reg <= addrA;
end

assi gn doA = RAM addr A regq];

generate for (i =0; i <RATIQ i =i+])
begi n: ranread
| ocal param [| 0g2RATI G- 1: 0] | sbaddr =i
al ways @ posedge cl kB)
begi n
if (weB)
RAM {addrB, |sbaddr}] <= diB[(i+1)*m nWDTH 1:i*m nWDTH];
end

end

endgener at e

endnodul e

// Example: VHDL Initial Values for Asymmetric RAM
library ieee;
use ieee.std logic_1164.all;
use ieee.std | ogi c_unsigned.all

use ieee.std logic_arith.all

entity asymmetric_ram4 is

generic (

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
238 Synopsys Confidential Information June 2020

Initial Values for RAMs RAM and ROM Inference

W DTHA :integer := 8§
Sl ZEA . integer := 256;
ADDRWDTHA : integer := 8;

W DTHB . integer := 32;
S| ZEB : integer := 64;
ADDRWDTHB : integer := 6
);
port (
clkA : in std_logic;
clkB : in std_logic;
reA : in std_logic;
weB :in std_|ogic;

addrA : in std_logic_vector(ADDRNDIHA-1 downto 0);

addrB : in std_logic_vector(ADDRWNDIHB-1 downto 0);
di B :in std_logic_vector(WDTHB-1 downto 0);
doA . out std_logic vector(WDIHA-1 downto 0)

);

end asymmetric_ram 4;

architecture behavioral of asymetric_ ram4 is

function max(L, R INTEGER) return INTECER is
begi n
if L>Rthen
return L;

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 239

RAM and ROM Inference Initial Values for RAMs

el se
return R
end if;

end;

function mn(L, R INTEGER) return INTEGER is
begi n
if L<Rthen
return L;
el se
return R
end if;

end;

function log2 (val: INTEGER) return natural is
variable res : natural;
begi n
for i in0Oto 31 |oop
if (val <= (2**i)) then
res :=i;
exit;
end if;
end | oop;
return res;

end function Logz;

constant minWDTH : integer := m n(WDTHA WDTHB);

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
240 Synopsys Confidential Information June 2020

Initial Values for RAMs RAM and ROM Inference

constant maxWDTH : integer := max(WDITHA WDTHB) ;
constant nmaxSIZE : integer := nmax(Sl ZEA Sl ZEB);
constant RATIO : integer := naxWDIH / m nWDTH,

type ramlype is array (0 to maxSl ZE-1) of
std_logi c_vector(m nWDIH 1 downto 0);

shared variable ram: ranfype := (others =>"11111111");

signal readA : std_|ogic_vector(WDITHA-1 downto 0):

1
—~

others => *0');

signal regA : std |ogic vector(WDTHA-1 downto 0):
(others => '0");

begi n

process (clkA)
begi n
i f rising_edge(clkA) then
if reA="'1 then
doA <= ran{conv_i nteger (addrA));
end if;
end if;

end process;

process (cl kB)
begi n
if rising_edge(clkB) then

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 241

RAM and ROM Inference RAM Instantiation with SYNCORE

if weB ="'1 then
for i inO0to RATIO 1 | oop
ran{conv_i nt eger (addrB &
conv_std logic vector(i,log2(RATIO)))
= diB((i +1)*m nWDITH 1 downto i *m nWDTH);
end | oop;
end if;
end if;

end process;

end behavi oral ;

RAM Instantiation with SYNCORE

The SYNCORE Memory Compiler in the IP Wizard helps you generate HDL
code for your specific RAM implementation requirements. For information on
using the SYNCORE Memory Compiler, see Chapter 7, SynCore IP Tool

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
242 Synopsys Confidential Information June 2020

ROM Inference RAM and ROM Inference

ROM Inference

As part of BEST (Behavioral Extraction Synthesis Technology) feature, the
synthesis tool infers ROMs (read-only memories) from your HDL source code,
and generates block components for them in the RTL view.

The data contents of the ROMs are stored in a text file named rom.info. To
quickly view rom.info in read-only mode, synthesize your HDL source code,
open an RTL view, then push down into the ROM component.

Generally, the Synopsys FPGA synthesis tool infers ROMs from HDL source
code that uses case statements, or equivalent if statements, to make 16 or
more signal assignments using constant values (words). The constants must
all be the same width.

Another requirement for ROM inference is that values must be specified for at
least half of the address space. For example, if the ROM has 5 address bits,
then the address space is 32 and at least 16 of the different addresses must
be specified.

Verilog Example

nmodul e rom(z, a);
output [3:0] z;

input [4:0] a;

reg [3:0] z;

al ways @a) begin

case (a)
5' b00000 : z = 4' b0001;
5' b00001 : z = 4' b0010;
5'b00010 : z = 4' b0110;
5' b00011 : z = 4' b1l010;
5' b00100 : z = 4' b1000;
5'b00101 : z = 4' b1001;
5'b00110 : z = 4' b000O;
5'b00111 : z = 4' b1110;
5' b01000 : z = 4' bl111;
5' b01001 : z = 4' b1110;
5' b01010 : z = 4' b0001;
5'b01011 : z = 4' b1000;
5'b01100 : z = 4' b1110;
5'b01101 : z = 4' b0011;
5'b01110 : z = 4' bl111;
Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.

June 2020 Synopsys Confidential Information 243

RAM and ROM Inference

ROM Inference

5' b01111 :
5' b10000 :
5' b10001 :
5' b10010 :

def aul t
endcase
end
endnodul e

VHDL Example

library ieee;
use ieee.std |

entity romt is
port (a : i

z . out std |ogic vector(3 downto 0));

end ron#;

architecture b
begi n
process(a)
begi n

if a="

zZ <=

elsif a

zZ <=

elsif a

zZ <=

elsif a

zZ <=

elsif a

zZ <=

elsif a

zZ <=

elsif a

zZ <=

elsif a

zZ <=

elsif a

zZ <=

elsif a

zZ <=

elsif a

zZ <=

elsif a

© 2020 Synopsys, Inc.

244

4' b1100;
4' b1000;
4' b000O;
4' b0011
z = 4' b0111;

N N N N
Inmnmnn

ogic_1164.all;

n std | ogi c_vector(4 downto 0);

ehave of rom# is

00000" t hen
"0001";

= "00001" then
"0010";

= "00010" then
"0110";

= "00011" then
"1010";

= "00100" then
"1000";

= "00101" then
"1001";

= "00110" then
"0000";

= "00111" then
"1110";

= "01000" then
"1111";

= "01001" then
"1110";

= "01010" then
"0001";

= "01011" then

Synplify Pro for Microchip Edition Reference Manual

Synopsys Confidential Information

June 2020

ROM Inference

RAM and ROM Inference

zZ <=
elsif a
zZ <=
elsif a
zZ <=
elsif a
zZ <=
elsif a
zZ <=
elsif a
zZ <=
elsif a
zZ <=
elsif a
zZ <=
el se
zZ <=
end if;

"1000";
= "01100"
"1110";
= "01101"
"0011";
= "01110"
"1111";
= "01111"
"1100";
= "10000"
"1000";
= "10001"
"0000" ;
= "10010"
"0011";

"0111";

end process;

end behave;

t hen
t hen
t hen
t hen
t hen
t hen

t hen

Synplify Pro for Microchip Edition Reference Manual

June 2020

Synopsys Confidential Information

© 2020 Synopsys, Inc.
245

RAM and ROM Inference

ROM Inference

ROM Table Data (rom.info File)

Note: This data is for view ng only.

ROM wor k. r on#t(behave) - z_1[3: 0]

address width: 5

data width: 4

i nput s:
0: a[0]
-1

ca[2]

:al 3]
;oal4]
ut put s:
0: z_1[0]
1: z_1[1]
2. z 1[2]
3.z 1[3]

1
2
3
4
o

dat a:

00000 ->
00001 ->
00010 ->
00011 ->
00100 ->
00101 ->
00110 ->
00111 ->
01000 ->
01001 ->
01010 ->
01011 ->
01100 ->
01101 ->
01110 ->
01111 ->
10000 ->
10001 ->
10010 ->

default -> 0111

© 2020 Synopsys, Inc.

246

0001
0010
0110
1010
1000
1001
0000
1110
1111
1110
0001
1000
1110
0011
0010
0010
0010
0010
0010

Synplify Pro for Microchip Edition Reference Manual

Synopsys Confidential Information

June 2020

ROM Inference RAM and ROM Inference

ROM Initialization with Generate Block

The software supports conditional ROM initialization with the generate block,
as shown in the following example:

generate
if (INT) begin
initial
begi n
$readmenb("init. hex", nem;
end
end
endgener at e

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 247

RAM and ROM Inference ROM Inference

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
248 Synopsys Confidential Information June 2020

SYNOPSYS

Silicon to Software

CHAPTER 7

SynCore IP Tool

This chapter describes the SYNCore IP functionality that is bundled with the
synthesis tool.

* SYNCore FIFO Compiler, on page 250

* SYNCore RAM Compiler, on page 281

* SYNCore Byte-Enable RAM Compiler, on page 303
* SYNCore ROM Compiler, on page 319

* SYNCore Adder/Subtractor Compiler, on page 334
* SYNCore Counter Compiler, on page 358

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 249

SynCore IP Tool SYNCore FIFO Compiler

SYNCore FIFO Compiler

The SYNCore synchronous FIFO compiler offers an IP wizard that generates
Verilog code for your FIFO implementation. This section describes the
following:

* Synchronous FIFO Overview, on page 250

* Specifying FIFOs with SYNCore, on page 251

* SYNCore FIFO Wizard, on page 256

* FIFO Read and Write Operations, on page 265
¢ FIFO Ports, on page 266

¢ FIFO Parameters, on page 269

¢ FIFO Status Flags, on page 271

¢ FIFO Programmable Flags, on page 274

Synchronous FIFO Overview

A FIFO is a First-In-First-Out memory queue. Different control logic manages
the read and write operations. A FIFO also has various handshake signals for
interfacing with external user modules.

The SYNCore FIFO compiler generates synchronous FIFOs with symmetric
ports and one clock controlling both the read and write operations. The FIFO
is symmetric because the read and write ports have the same width.

When the Write_enable signal is active and the FIFO has empty locations, data
is written into FIFO memory on the rising edge of the clock. A Full status flag
indicates that the FIFO is full and that no more write operations can be
performed. See FIFO Write Operation, on page 265 for details.

When the FIFO has valid data and Read_enable is active, data is read from the
FIFO memory and presented at the outputs. The FIFO Empty status flag
indicates that the FIFO is empty and that no more read operations can be
performed. See FIFO Read Operation, on page 266 for details.

The FIFO is not corrupted by an invalid request: for example, if a read request
is made while the FIFO is empty or a write request is received when the FIFO
is full. Invalid requests do not corrupt the data, but they cause the corre-

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
250 Synopsys Confidential Information June 2020

SYNCore FIFO Compiler SynCore IP Tool

sponding read or write request to be ignored and the Overflow or Underflow flags
to be asserted. You can monitor these status flags for invalid requests. These
and other flags are described in FIFO Status Flags, on page 271 and FIFO
Programmable Flags, on page 274.

At any point in time, Data count reflects the available data inside the FIFO. In
addition, you can use the Programmable Full and Programmable Empty status flags
for user-defined thresholds.

Specifying FIFOs with SYNCore

The SYNCore IP Wizard helps you generate Verilog code for your FIFO imple-
mentations. The following procedure shows you how to generate Verilog code
for a FIFO using the SYNCore IP wizard.

Note: The SYNCore FIFO model uses Verilog 2001. When adding a FIFO
model to a Verilog-95 design, be sure to enable the Verilog 2001 check
box on the Verilog tab of the Implementation Options dialog box or include
a set_option -vlog_std v2001 statement in your project file to prevent a
syntax error.

1. Start the wizard.

— From the synthesis tool GUI, select Run->Launch SYNCore or click the
Launch SYNCore icon to start the SYNCore IP wizard.

| SYNCore FIFO Model =

El- addnsub
addnsub model The SYNCore FIFO compiler helps you create FIFO models for your
E-counter designs. These FIFO models are written out in Verilog and can be
counter_model synthesized as well as simulated. Atestbench is generated far this
El- fifos purpose.
- sfifo

i For more information about the SYNCore FIFO compiler, refer to the

£ memories " | following:

El- byte_enable_ram o))
byte_en_ram_model * The built-in EIFO Compiler document. which you access from

El- ram the SyncFifo Info button.
ram_model * The Synplicity tool synthesis tool online help, where you can

- rom access information for the following from the online help
rom_model Contents:

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.

June 2020 Synopsys Confidential Information 251

SynCore IP Tool SYNCore FIFO Compiler

— In the window that opens, select sfifo_model and click Ok. This opens
the first screen of the wizard.

FIFO Parameters | Core Overview |

Sync Fifo Compiler

Componert Nams [

Directory [] | Browse._. |

Areset

Sync FIFO File Name [] | Browse |

Sync FIFO Size

Width Valid Range 1..256

Read_enabl Depth Valid Range 8..16384

Write_enabl

SynCore FIFC

| Back || MNext Page 1 0f 5

2. Specify the parameters you need in the five pages of the wizard. For
details, refer to Specifying SYNCore FIFO Parameters, on page 254.

The FIFO symbol on the left reflects the parameters you set.

3. After you have specified all the parameters you need, click the Generate
button (lower left).

The tool displays a confirmation message (TCL execution successful!) and
writes the required files to the directory you specified in the parameters.
The HDL code is in Verilog.

The FIFO generated is a synchronous FIFO with symmetric ports and
with the same clock controlling both the read and write operations. Data
is written or read on the rising edge of the clock. All resets are synchro-

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
252 Synopsys Confidential Information June 2020

SYNCore FIFO Compiler SynCore IP Tool

nous with the clock. All edges (clock, enable, and reset) are considered
positive.

SYNCore also generates a testbench for the FIFO that you can use for
simulation. The testbench covers a limited set of vectors for testing.

You can now close the SYNCore wizard.

4. Add the FIFO you generated to your design.

— Use the Add File command to add the Verilog design file that was
generated and the syncore_sfifo.v file to your project. These files are in
the directory for output files that you specified on page 1 of the
wizard.

— Use a text editor to open the instantiation_file.vin template file, which is
located in the same directory. Copy the lines that define the memory,
and paste them into your top-level module. The following shows a
template file (in red text) inserted into a top-level module.

modnle top |

input Clk,

input [15:0] Dacalmn,
input WrEn,

input RdEn,

output Full,

output Empty,

output [15:0] DataCut
)z

fifo 232 <instanceName> |
Clock(Clock)

Din (Din)

Write enable (Write enable)
.Eea d_E:'. ghle| _:.ea:l_eza]:'_ej template
Dout (Douc)
Full (Full)
Empty (Enpty)
)

endmrdule

¥
¥
¥
¥
¥
¥

5. Edit the template port connections so that they agree with the port
definitions in your top-level module as shown in the example below (the
updated connection names are shown in red). You can also assign a
unique name to each instantiation.

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 253

SynCore IP Tool SYNCore FIFO Compiler

nmodul e top (

i nput dKk,

i nput [15:0] Dataln,
i nput WEn,

i nput RdEnN,

output Full,
out put Enpty,
out put [15:0] DataCut

fifo_a32 busfifo(

. A ock(d k)

, . D n(Dat al n)

, - Wite_enabl e(WEn)
, . Read_enabl e(RdEN)
, . Dout (Dat aQut)

,.Full (Full)
S-Eerty(Ethy)
endnodul e

Note that currently, the FIFO models will not be implemented with the
dedicated FIFO blocks available in certain technologies.

Specifying SYNCore FIFO Parameters

The following elaborates on the parameter settings for SYNCore FIFOs. The
status, handshaking, and programmable flags are optional. For descriptions
of the parameters, see SYNCore FIFO Wizard, on page 256.

1. Start the SYNCore wizard, as described in Specifying FIFOs with
SYNCore, on page 251.

2. Do the following on page 1 of the FIFO wizard:
— In Component Name, specify a name for the FIFO. Do not use spaces.

— In Directory, specify a directory where you want the output files to be
written. Do not use spaces.

— In Filename, specify a name for the Verilog output file with the FIFO
specifications. Do not use spaces.

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
254 Synopsys Confidential Information June 2020

SYNCore FIFO Compiler SynCore IP Tool

— Click Next. The wizard opens another page where you can set
parameters.

3. For a FIFO with no status, handshaking, or programmable flags, use the
default settings. You can generate the FIFO, as described in Specifying
FIFOs with SYNCore, on page 251.

4. To set an almost full status flag, do the following on page 2 of the FIFO
wizard:
— Enable Almost Full.

— Set associated handshaking flags for the signal as desired, with the
Overflow Flag and Write Acknowledge options.

— Click Next when you are done.

S. To set an almost empty status flag, do the following on page 3:
— Enable Almost Empty.

— Set associated handshaking flags for the signal as desired, with the
Underflow Flag and Read Acknowledge options.

— Click Next when you are done.

6. To set a programmable full flag, do the following:

— Make sure you have enabled Full on page 2 of the wizard and set any
handshaking flags you require.

— Go to page 4 and enable Programmable Full.

— Select one of the four mutually exclusive configurations for
Programmable Full on page 4. See Programmable Full, on page 275 or
details.

— Click Next when you are done.

7. To set a programmable empty flag, do the following:

— Make sure you have enabled Empty on page 3 of the wizard and set
any handshaking flags you require.

— Go to page 5 and enable Programmable Empty.

— Select one of the four mutually exclusive configurations for
Programmable Empty on page 5. See Programmable Empty, on
page 277 or detalils.

You can now generate the FIFO and add it to the design, as described in
Specifying FIFOs with SYNCore, on page 251.

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 255

SynCore IP Tool SYNCore FIFO Compiler

SYNCore FIFO Wizard

The following describe the parameters you can set in the FIFO wizard, which
opens when you select sfifo_model:

* SYNCore FIFO Parameters Page 1, on page 256
* SYNCore FIFO Parameters Page 2, on page 257
* SYNCore FIFO Parameters Page 3, on page 259
* SYNCore FIFO Parameters Page 4, on page 261
* SYNCore FIFO Parameters Page 5, on page 263

SYNCore FIFO Parameters Page 1

The page 1 parameters define the FIFO. Data is written/read on the rising
edge of the clock.

Sync Fifo Compiler

Cornponent Marne []

Directory []| Browse,.. |

Filename []| Browse, .. |

Swnc FIFOD Size

width E | valid Range 1..258
Depth [18 | valid Range &..16384
Parameter Function
Component Name Specifies a name for the FIFO. This is the name that you

instantiate in your design file to create an instance of the
SYNCore FIFO in your design. Do not use spaces.

Directory Indicates the directory where the generated files will be
stored. Do not use spaces.

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
256 Synopsys Confidential Information June 2020

SYNCore FIFO Compiler SynCore IP Tool

Parameter Function
Filename Specifies the name of the generated file containing the HDL
description of the generated FIFO. Do not use spaces.
Width Specifies the width of the FIFO data input and output. It
must be within the valid range.
Depth Specifies the depth of the FIFO. It must be within the valid
range.

SYNCore FIFO Parameters Page 2

Sync Fifo Compiler

Sync FIFO Optional Flags

Write Control Handshaking Options
Full Flags

+| Full Flag
® Active Hich Ackive Low

Almosk Full Flag
(@) Ackive High () Ackive Low

Orverflow
Crverflow Flag

(® Active High () Active Low

WWrite Acknowledge
‘Write Acknowledge Flag

(® Active High () Active Low

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 257

SynCore IP Tool

SYNCore FIFO Compiler

The page 2 parameters let you specify optional handshaking flags for FIFO
write operations. When you specify a flag, the symbol on the left reflects your
choice. Data is written/read on the rising edge of the clock.

Parameter

Full Flag

Almost Full Flag

Overflow Flag

Write Acknowledge
Flag

Active High

Active Low

© 2020 Synopsys, Inc.
258

Function

Specifies a Full signal, which is asserted when the FIFO
memory queue is full and no more writes can be performed
until data is read.

Enabling this option makes the Active High and Active Low
options (FULL_FLAG_SENSE parameter) available for the
signal. See Full/Almost Full Flags , on page 271 and FIFO
Parameters , on page 269 for descriptions of the flag and
parameter.

Specifies an Almost_full signal, which is asserted to indicate
that there is one location left and the FIFO will be full after
one more write operation.

Enabling this option makes the Active High and Active Low
options available for the signal (AFULL_FLAG_SENSE
parameter). See Full/Almost Full Flags , on page 271 and
FIFO Parameters , on page 269 for descriptions of the flag
and parameter.

Specifies an Overflow signal, which is asserted to indicate
that the write operation was unsuccessful because the FIFO
was full.

Enabling this option makes the Active High and Active Low
options available for the signal (OVERFLOW_FLAG_SENSE
parameter). See Handshaking Flags , on page 272 f and
FIFO Parameters , on page 269 for descriptions of the flag
and parameter.

Specifies a Write_ack signal, which is asserted at the
completion of a successful write operation.

Enabling this option makes the Active High and Active Low
options (WACK_FLAG_SENSE parameter) available for the
signal. See Handshaking Flags , on page 272 and FIFO
Parameters , on page 269 for descriptions of the flag and
parameter.

Sets the specified signal to active high (1).

Sets the specified signal to active low (0).

Synplify Pro for Microchip Edition Reference Manual
Synopsys Confidential Information June 2020

SYNCore FIFO Compiler SynCore IP Tool

SYNCore FIFO Parameters Page 3

The page 3 parameters let you specify optional handshaking flags for FIFO
read operations. Data is written/read on the rising edge of the clock.

Sync Fifo Compiler

Sync FIFO Optional Flags

Read Control Handshaking Options
Empty Flag
« | Enpty Flag
® Active High Active Low

Almost Emply Flag
@) Active High () Active Low

Underflow
Underflow Flag

@) Active High () Active Low

Read Acknowledge

Read Acknowledge Flag

@) Active High () Active Low
Parameter Function
Empty Flag Specifies an Empty signal, which is asserted when the

memory queue for the FIFO is empty and no more reads
can be performed until data is written.

Enabling this option makes the Active High and Active Low
options (EMPTY_FLAG_SENSE parameter) available for the
signal. See Empty/Almost Empty Flags , on page 272 and
FIFO Parameters , on page 269 for descriptions of the flag
and parameter.

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 259

SynCore IP Tool

SYNCore FIFO Compiler

Parameter

Almost Empty Flag

Underflow Flag

Read Acknowledge
Flag

Active High

Active Low

© 2020 Synopsys, Inc.
260

Function

Specifies an Almost_empty signal, which is asserted when
there is only one location left to be read. The FIFO will be
empty after one more read operation.

Enabling this option makes the Active High and Active Low
options (AEMPTY_FLAG_SENSE parameter) available for the
signal. See Empty/Almost Empty Flags , on page 272 and
FIFO Parameters , on page 269 for descriptions of the flag
and parameter.

Specifies an Underflow signal, which is asserted to indicate
that the read operation was unsuccessful because the FIFO
was empty.

Enabling this option makes the Active High and Active Low
options (UNDRFLW_FLAG_SENSE parameter) available for the
signal. See Handshaking Flags , on page 272 and FIFO
Parameters , on page 269 for descriptions of the flag and
parameter.

Specifies a Read_ack signal, which is asserted at the
completion of a successful read operation.

Enabling this option makes the Active High and Active Low
options (RACK_FLAG_SENSE parameter) available for the
signal. See Handshaking Flags , on page 272 and FIFO
Parameters , on page 269 for descriptions of the flag and
parameter.

Sets the specified signal to active high (1).

Sets the specified signal to active low (0).

Synplify Pro for Microchip Edition Reference Manual
Synopsys Confidential Information June 2020

SYNCore FIFO Compiler SynCore IP Tool

SYNCore FIFO Parameters Page 4

Sync Fifo Compiler

Handshaking Options

Programmable Full Flag
Programmable Full Flag
[single Programmable Full Threshold Constant
Full Threshold Assert Constant Valid Range DEPTH[Z2. .max of DEPTH
[multiple Programmable Full Threshold Constant
Full Threshold Assert Constant ‘alid Range DEPTH/Z. .max of DEPTH
Full Threshold Megate Constant ‘alid Range DEPTH/Z. .max of DEPTH
[Single Programmable Full Threshold Input
[rMultiple Programmable Full Threshold Input

(® Active High () Active Low

The page 4 parameters let you specify optional handshaking flags for FIFO
programmable full operations. To use these options, you must have a Full
signal specified. See FIFO Programmable Flags, on page 274 for details and
FIFO Parameters, on page 269 for a list of the FIFO parameters. Data is
written /read on the rising edge of the clock.

Parameter Function
Programmable Full Specifies a Prog_full signal, which indicates that the FIFO
Flag has reached a user-defined full threshold.

You can only enable this option if you set Full Flag on page 2.
When it is enabled, you can specify other options for the
Prog_Full signal (PFULL_FLAG_SENSE parameter). See
Programmable Full , on page 275 and FIFO Parameters , on
page 269 for descriptions of the flag and parameter.

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 261

SynCore IP Tool

SYNCore FIFO Compiler

Parameter

Single Programmable
Full Threshold
Constant

Multiple Programmable
Full Threshold
Constant

Full Threshold Assert
Constant

Full Threshold Negate
Constant

Single Programmable
Full Threshold Input

Multiple Programmable
Full Threshold Input

Active High

Active Low

© 2020 Synopsys, Inc.
262

Function

Specifies a Prog_full signal with a single constant defining the
assertion threshold (PGM_FULL_TYPE=1 parameter). See
Programmable Full with Single Threshold Constant , on
page 275 for details.

Enabling this option makes Full Threshold Assert Constant
available.

Specifies a Prog_full signal (PGM_FULL_TYPE=2 parameter),
with multiple constants defining the assertion and
de-assertion thresholds. See Programmable Full with
Multiple Threshold Constants , on page 276 for details.

Enabling this option makes Full Threshold Assert Constant and
Full Threshold Negate Constant available.

Specifies a constant that is used as a threshold value for
asserting the Prog_full signal It sets the PGM_FULL_THRESH
parameter for PGM_FULL_TYPE=1 and the
PGM_FULL_ATHRESH parameter for PGM_FULL_TYPE=2.

Specifies a constant that is used as a threshold value for
de-asserting the Prog_full signal (PGM_FULL_NTHRESH
parameter).

Specifies a Prog_full signal (PGM_FULL_TYPE=3 parameter),
with a threshold value specified dynamically through a
Prog_full_thresh input port during the reset state. See
Programmable Full with Single Threshold Input , on
page 276 for details.

Enabling this option adds the Prog_full_thresh input port to
the FIFO.

Specifies a Prog_full signal (PGM_FULL_TYPE=4 parameter),
with threshold assertion and deassertion values specified
dynamically through input ports during the reset state.
See Programmable Full with Multiple Threshold Inputs , on
page 276 for details.

Enabling this option adds the Prog_full_thresh_assert and
Prog_full_thresh_negate input ports to the FIFO.

Sets the specified signal to active high (1).

Sets the specified signal to active low (0).

Synplify Pro for Microchip Edition Reference Manual
Synopsys Confidential Information June 2020

SYNCore FIFO Compiler SynCore IP Tool

SYNCore FIFO Parameters Page 5

These options specify optional handshaking flags for FIFO programmable
empty operations. To use these options, you first specify an Empty signal on
page 3. See FIFO Programmable Flags, on page 274 for details and FIFO Param-
eters, on page 269 for a list of the FIFO parameters. Data is written/read on
the rising edge of the clock.

Sync Fifo Compiler

Handshaking Options
Programmable Empty Flag

Programmable Empty Flag
[single Programmable Empty Threshald Constant
Emply Threshold Assert Constant ‘alid Range 1..max of DEPTH/Z
[Multiple Programmable Empty Threshold Constant
Empty Threshold Assert Constant Valid Range 1..max of DEPTH[2
Empty Threshold Megate Constant Valid Range 1..max of DEPTH[2

[single Programmahble Empty Threshald Input
[Multiple Programmable Empty Threshold Input

(@) Active High () Ackive Laow

Murnber of Words in FIFO

MNumber of valid Data in Fifo

Parameter Function

Programmable Empty Specifies a Prog_empty signal (PEMPTY_FLAG_SENSE

Flag parameter), which indicates that the FIFO has reached a
user-defined empty threshold. See Programmable Empty ,
on page 277 and FIFO Parameters , on page 269 for
descriptions of the flag and parameter.

Enabling this option makes the other options available to
specify the threshold value, either as a constant or through
input ports. You can also specify single or multiple
thresholds for each of these options.

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 263

SynCore IP Tool

SYNCore FIFO Compiler

Parameter

Single Programmable
Empty Threshold
Constant

Multiple Programmable
Empty Threshold
Constant

Empty Threshold
Assert Constant

Empty Threshold
Negate Constant

Single Programmable
Empty Threshold Input

Multiple Programmable
Empty Threshold Input

Active High

Active Low

© 2020 Synopsys, Inc.
264

Function

Specifies a Prog_empty signal (PGM_EMPTY_TYPE=1
parameter), with a single constant defining the assertion
threshold. See Programmable Empty with Single Threshold
Input , on page 279 for details.

Enabling this option makes Empty Threshold Assert Constant
available.

Specifies a Prog_empty signal (PGM_EMPTY_TYPE=2
parameter), with multiple constants defining the assertion
and de-assertion thresholds. See Programmable Empty with
Multiple Threshold Constants , on page 278 for details.

Enabling this option makes Empty Threshold Assert Constant
and Empty Threshold Negate Constant available.

Specifies a constant that is used as a threshold value for
asserting the Prog_empty signal. It sets the
PGM_EMPTY_THRESH parameter for PGM_EMPTY_TYPE=1
and the PGM_EMPTY_ATHRESH parameter for
PGM_EMPTY_TYPE=2.

Specifies a constant that is used as a threshold value for
de-asserting the Prog_empty signal (PGM_EMPTY_NTHRESH
parameter).

Specifies a Prog_empty signal (PGM_EMPTY_TYPE=3
parameter), with a threshold value specified dynamically
through a Prog_empty_thresh input port during the reset
state. See Programmable Empty with Single Threshold
Input , on page 279 for details.

Enabling this option adds the Prog_full_thresh input port to
the FIFO.

Specifies a Prog_empty signal (PGM_EMPTY_TYPE=4
parameter), with threshold assertion and deassertion
values specified dynamically through
Prog_empty_thresh_assert and Prog_empty_thresh_negate input
ports during the reset state. See Programmable Empty with
Multiple Threshold Inputs , on page 279 for details.

Enabling this option adds the input ports to the FIFO.
Sets the specified signal to active high (1).

Sets the specified signal to active low (0).

Synplify Pro for Microchip Edition Reference Manual
Synopsys Confidential Information June 2020

SYNCore FIFO Compiler SynCore IP Tool

Parameter Function
Number of Valid Data Specifies the Data_cnt signal for the FIFO output. This signal
in FIFO contains the number of words in the FIFO in the read
domain.

FIFO Read and Write Operations

This section describes FIFO behavior with read and write operations.

FIFO Write Operation

When write enable is asserted and the FIFO is not full, data is added to the
FIFO from the input bus (Din) and write acknowledge (Write_ack) is asserted. If
the FIFO is continuously written without being read, it will fill with data. The
status outputs are asserted when the number of entries in the FIFO is greater
than or equal to the corresponding threshold, and should be monitored to
avoid overflowing the FIFO.

When the FIFO is full, any attempted write operation fails and the overflow
flag is asserted.

The following figure illustrates the write operation. Write acknowledge
(Write_ack) is asserted on the next rising clock edge after a valid write opera-
tion. When Full is asserted, there can be no more legal write operations. This
example shows that asserting Write_enable when Full is high causes the asser-
tion of Overflow.

s U
Write_enable — {
Din j:@:bcj@:b::bd:}:b:ﬁ:i:bd:ﬁ':
Write_ack — ./ : T_I—I_ '. _._._._—!_!_!_
Overfiow ———+——+—— -
Ful —— e L
Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.

June 2020 Synopsys Confidential Information 265

SynCore IP Tool SYNCore FIFO Compiler

FIFO Read Operation

When read enable is asserted and the FIFO is not empty, the next data word
in the FIFO is driven on the output bus (Dout) and a read valid is asserted. If
the FIFO is continuously read without being written, the FIFO will empty. The
status outputs are asserted when the number of entries in the FIFO are less
than or equal to the corresponding threshold, and should be monitored to
avoid underflow of the FIFO. When the FIFO is empty, all read operations fail
and the underflow flag is asserted.

If read and write operation occur simultaneously during the empty state, the
write operation will be valid and empty, and is de-asserted at the next rising
clock edge. There cannot be a legal read operation from an empty FIFO, so
the underflow flag is asserted.

The following figure illustrates a typical read operation. If the FIFO is not
empty, Read_ack is asserted at the rising clock edge after Read_enable is
asserted and the data on Dout is valid. When Empty is asserted, no more read
operations can be performed. In this case, initiating a read causes the asser-
tion of Underflow on the next rising clock edge, as shown in this figure.

__L

1 1 L 1
Read_enable ! ! ! ' !

Dout 4—’_(—%&
Read_ack —

1
Underflow —! :
—1 1

Empty |

|_ [y . I— =, = !

Clock — -_n*.—q,,_! o il B /imuaVay J—H' W
|.'. 1 1 1 1

I I 1 1 1

}l
12

B i el . - |

FIFO Ports
The following figure shows the FIFO ports.

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
266 Synopsys Confidential Information June 2020

SYNCore FIFO Compiler SynCore IP Tool

Port Name Description

Almost_empty Almost empty flag output (active high). Asserted when the FIFO
is almost empty and only one more read can be performed. Can
be active high or active low.

Almost_full Almost full flag output (active high). Asserted when only one
more write can be performed into the FIFO. Can be active high or
active low.

AReset Asynchronous reset input. Resets all internal counters and FIFO
flag outputs.

Clock Clock input for write and read. Data is written/read on the
rising edge.

Data_cnt Data word count output. Indicates the number of words in the
FIFO in the read clock domain.

Din [width:0] Data input word to the FIFO.

Dout [width:0] Data output word from the FIFO.

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.

June 2020 Synopsys Confidential Information 267

SynCore IP Tool SYNCore FIFO Compiler

Port Name Description

Empty FIFO empty output (active high). Asserted when the FIFO is
empty and no additional reads can be performed. Can be active
high or active low.

Full FIFO full output (active high). Asserted when the FIFO is full and
no additional writes can be performed. Can be active high or
active low.

Overflow FIFO overflow output flag (active high). Asserted when the FIFO
is full and the previous write was rejected. Can be active high or
active low.

Prog_empty Programmable empty output flag (active high). Asserted when
the words in the FIFO exceed or equal the programmable empty
assert threshold. De-asserted when the number of words is more
than the programmable full negate threshold. Can be active high
or active low.

Prog_empty Programmable FIFO empty threshold input. User-programmable

thresh threshold value for the assertion of the Prog_empty flag. Set
during reset.

Prog_empty Programmable FIFO empty threshold assert input.

thresh_assert

Prog_empty
thresh_negate

Prog_full

Prog_full_thresh

Prog_full_thresh_

assert

Prog_full_thresh_

negate

© 2020 Synopsys, Inc.

268

User-programmable threshold value for the assertion of the
Prog_empty flag. Set during reset.

Programmable FIFO empty threshold negate input. User
programmable threshold value for the de-assertion of the
Prog_full flag. Set during reset.

Programmable full output flag (active high). Asserted when the
words in the FIFO exceed or equal the programmable full assert
threshold. De-asserted when the number of words is less than
the programmable full negate threshold. Can be active high or
active low.

Programmable FIFO full threshold input. User-programmable
threshold value for the assertion of the Prog_full flag. Set during
reset.

Programmable FIFO full threshold assert input.
User-programmable threshold value for the assertion of the
Prog_full flag. Set during reset.

Programmable FIFO full threshold negate input.
User-programmable threshold value for the de-assertion of the
Prog_full flag. Set during reset.

Synplify Pro for Microchip Edition Reference Manual
Synopsys Confidential Information June 2020

SYNCore FIFO Compiler

SynCore IP Tool

Port Name Description

Read_ack Read acknowledge output (active high). Asserted when valid data
is read from the FIFO. Can be active high or active low.

Read_enable Read enable output (active high). If the FIFO is not empty, data
is read from the FIFO on the next rising edge of the read clock.

Underflow FIFO underflow output flag (active high). Asserted when the
FIFO is empty and the previous read was rejected.

Write_ack Write Acknowledge output (active high). Asserted when there is a
valid write into the FIFO. Can be active high or active low.

Write_enable Write enable input (active high). If the FIFO is not full, data is

written into the FIFO on the next rising edge.

FIFO Parameters

Parameter

AEMPTY_FLAG_SENSE

AFULL_FLAG_SENSE

DEPTH
EMPTY_FLAG_SENSE

FULL_FLAG_SENSE

OVERFLOW_FLAG_
SENSE

Description

FIFO almost empty flag sense

O Active Low
1 Active High

FIFO almost full flag sense
O Active Low
1 Active High

FIFO depth

FIFO empty flag sense
O Active Low
1 Active High

FIFO full flag sense
0 Active LowOVERFLOW _
1 Active High

FIFO overflow flag sense
O Active Low
1 Active High

Synplify Pro for Microchip Edition Reference Manual

June 2020

Synopsys Confidential Information

© 2020 Synopsys, Inc.
269

SynCore IP Tool

SYNCore FIFO Compiler

Parameter

PEMPTY_FLAG_
SENSE

PFULL_FLAG_SENSE

PGM_EMPTY_
ATHRESH

PGM_EMPTY_
NTHRESH
PGM_EMPTY_THRESH

PGM_EMPTY_TYPE

PGM_FULL_ATHRESH

PGM_FULL_NTHRESH

PGM_FULL_THRESH
PGM_FULL_TYPE

RACK_FLAG_SENSE

Description

FIFO programmable empty flag sense
0 Active Low
1 Active High

FIFO programmable full flag sense
0 Active Low
1 Active High

Programmable empty assert threshold for
PGM_EMPTY_TYPE=2

Programmable empty negate threshold for
PGM_EMPTY_TYPE=2

Programmable empty threshold for
PGM_EMPTY_TYPE=1

Programmable empty type. See Programmable Empty ,
on page 277 for details.

1 Programmable empty with single threshold constant.

2 Programmable empty with multiple threshold
constant

3 Programmable empty with single threshold input
4 Programmable empty with multiple threshold input

Programmable full assert threshold for
PGM_FULL_TYPE=2

Programmable full negate threshold for
PGM_FULL_TYPE=2

Programmable full threshold for PGM_FULL_TYPE=1

Programmable full type. See Programmable Full , on
page 275 for details.

1 Programmable full with single threshold constant

2 Programmable full with multiple threshold constant
3 Programmable full with single threshold input

4 Programmable full with multiple threshold input

FIFO read acknowledge flag sense
0 Active Low
1 Active High

© 2020 Synopsys, Inc.
270 Synopsys Confidential Information

Synplify Pro for Microchip Edition Reference Manual
June 2020

SYNCore FIFO Compiler SynCore IP Tool

Parameter Description
UNDERFLOW_FLAG_ FIFO underflow flag sense
SENSE O Active Low

1 Active High

WACK_FLAG_SENSE FIFO write acknowledge flag sense
O Active Low
1 Active High

WIDTH FIFO data input and data output width

FIFO Status Flags

You can set the following status flags for FIFO read and write operations.
* Full/Almost Full Flags, on page 271
* Empty/Almost Empty Flags, on page 272
* Handshaking Flags, on page 272

* Programmable full and empty flags, which are described in Program-
mable Full, on page 275 and Programmable Empty, on page 277.

Full/Almost Full Flags

These flags indicate the status of the FIFO memory queue for write opera-
tions:

Full Indicates that the FIFO memory queue is full and no more writes can
be performed until data is read. Full is synchronous with the clock
(Clock). If a write is initiated when Full is asserted, the write does not
succeed and the overflow flag is asserted.

Almost_full The almost full flag (Almost_full) indicates that there is one location left
and the FIFO will be full after one more write operation. Almost full is
synchronous to Clock. This flag is guaranteed to be asserted when the
FIFO has one remaining location for a write operation.

The following figure displays the behavior of these flags. In this example,
asserting Wriite_enable when Almost_full is high causes the assertion of Full on
the next rising clock edge.

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 271

SynCore IP Tool SYNCore FIFO Compiler
coas SN 4 "ﬁ' il
Write_enable : /o /A

Din @j:cﬂd:d:d:¢ ICDI@_._

!

"J'I"I"I‘te ack —o—u. : ': 1 : S E— 1 1 1
A S N / AN ¥ A S e W S S S

Full — : i G ' ' ' ' . .
Almost full)1 oot i

-;'

Empty/Almost Empty Flags

These flags indicate the status of the FIFO memory queue for read operations:

Empty Indicates that the memory queue for the FIFO is empty and no more
reads can be performed until data is written. The output is active high
and is synchronous to the clock. If a read is initiated when the empty

flag is true, the underflow flag is asserted.

Almost_ Indicates that the FIFO will be empty after one more read operation.
empty Almost_empty is active high and is synchronous to the clock. The flag is
guaranteed to be asserted when the FIFO has one remaining location

for a read operation.

The following figure illustrates the behavior of the FIFO with one word

remaining.

l_'- 1 N
Clock & ') '

Almost_empty

cnsen 1t 4o i e e S e
Read ack. . & .+ /| | e —_— 1
1 1 1 1 1 1 1 1 1 1 1 1 1
. o : . . g : - . :
Empty ' 1 1 1 1 v 1 1 1 I 1 1 v
1

Handshaking Flags

You can specify optional Read_ack, Write_ack, Overflow, and Underflow

handshaking flags for the FIFO.

© 2020 Synopsys, Inc.
272 Synopsys Confidential Information

Synplify Pro for Microchip Edition Reference Manual

June 2020

SYNCore FIFO Compiler SynCore IP Tool

1
Write_en -/

Read_sn —
Din Oy T

e

[=]

&

-

o --F- -L:
| .
=

[

[

[

I
|

:
I

Write_ack
Read_ack .

o
5]
=%
-—-——-.—.-—--o-—-— { -
.- D_______

Read_ack Asserted at the completion of each successful read operation. It
indicates that the data on the Dout bus is valid. It is an optional port
that is synchronous with Clock and can be configured as active high or
active low.

Read_ack is deasserted when the FIFO is underflowing, which indicates
that the data on the Dout bus is invalid. Read_ack is asserted at the next
rising clock edge after read enable. Read_enable is asserted when the
FIFO is not empty.

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 273

SynCore IP Tool SYNCore FIFO Compiler

Write_ack Asserted at the completion of each successful write operation. It
indicates that the data on the Din port has been stored in the FIFO. It is
synchronous with the clock, and can be configured as active high or
active low.

Write_ack is deasserted for a write to a full FIFO, as illustrated in the
figure. Write_ack is deasserted one clock cycle after Full is asserted to
indicate that the last write operation was valid and no other write
operations can be performed.

Overflow Indicates that a write operation was unsuccessful because the FIFO
was full. In the figure, Full is asserted to indicate that no more writes
can be performed. Because the write enable is still asserted and the
FIFO is full, the next cycle causes Overflow to be asserted. Note that
Write_ack is not asserted when FIFO is overflowing. When the write
enable is deasserted, Overflow deasserts on the next clock cycle.

Underflow Indicates that a read operation was unsuccessful, because the read
was attempted on an empty FIFO. In the figure, Empty is asserted to
indicate that no more reads can be performed. As the read enable is
still asserted and the FIFO is empty, the next cycle causes Underflow to
be asserted. Note that Read_ack is not asserted when FIFO is
underflowing. When the read enable is deasserted, the Underflow flag
deasserts on the next clock cycle.

FIFO Programmable Flags

The FIFO supports completely programmable full and empty flags to indicate
when the FIFO reaches a predetermined user-defined fill level. See the
following:

Prog_full Indicates that the FIFO has reached a user-defined full threshold. See
Programmable Full , on page 275 for more information.

Prog_empty Indicates that the FIFO has reached a user-defined empty threshold.
See Programmable Empty , on page 277 for more information.
Both flags support various implementation options. You can do the following:
* Set a constant value

* Set dedicated input ports so that the thresholds can change dynamically
in the circuit

* Use hysteresis, so that each flag has different assert and negative values

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual

274

Synopsys Confidential Information June 2020

SYNCore FIFO Compiler SynCore IP Tool

Programmable Full

The Prog_full flag (programmable full) is asserted when the number of entries
in the FIFO is greater than or equal to a user-defined assert threshold. If the
number of words in the FIFO is less than the negate threshold, the flag is
de-asserted. The following is the valid range of threshold values:

Assert Depth/2 to Max of Depth

threshold For multiple threshold types, the assert value should always be
value larger than the negate value in multiple threshold types.
Negate Depth/2 to Max of Depth

threshold

value

Prog_full has four threshold types:
* Programmable Full with Single Threshold Constant, on page 275
* Programmable Full with Multiple Threshold Constants, on page 276
* Programmable Full with Single Threshold Input, on page 276
* Programmable Full with Multiple Threshold Inputs, on page 276

Programmable Full with Single Threshold Constant
PGM_FULL_TYPE =1

This option lets you set a single constant value for the threshold. It requires
significantly fewer resources when the FIFO is generated. This figure illus-
trates the behavior of Prog_full when configured as a single threshold constant
with a value of 6.

Clock WU
. 1 I T T I o _f" T \\ I Il T _.'I."l] I 1]) ST T
write en ——/ 11 A A Al
PR I I AR S S I
Data_ent T T DT S —
Prog_full o+ + + 0 T W N
Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.

June 2020 Synopsys Confidential Information 275

SynCore IP Tool

SYNCore FIFO Compiler

Programmable Full with Multiple Threshold Constants
PGM_FULL_TYPE =2

The programmable full flag is asserted when the number of words in the FIFO
is greater than or equal to the full threshold assert value. If the number of
FIFO words drops to less than the full threshold negate value, the program-
mable full flag is de-asserted. Note that the negate value must be set to a
value less than the assert value. The following figure illustrates the behavior
of Prog_full configured as multiple threshold constants with an assert value of
6 and a negate value of 4.

Bl aV el et alaiataiatls intaiataiainty
yo T F TR Ty 1 I‘I_I_.-'-‘—l—' 1 1 1 1 [
Write_en - : s Sy T : S
1 T T T T T o T T 1 1 1 1
Wite_ack v 1 ' 1 [[T A W T B 1 [1 1 1 1
Data_cnt’ - I:'_1I_I_2_I‘r_3ﬂl'_4_l'f :5 :‘;(I I 5;_-'- I :A_r:?‘- :'/_IE_IL"_E—-—:—
brog ful L L L b b e

Programmable Full with Single Threshold Input
PGM_FULL_TYPE =3

This option lets you specify the threshold value through an input port (Prog_-
full_thresh) during the reset state, instead of using constants. The following
figure illustrates the behavior of Prog_full configured as a single threshold
input with a value of 6.

Write_en ——/ !
Write_ack ——i/

I
Data_ent — Ty 1|1:_2:_'v:'_3:_':'i,j-'
1 I

Clock ™\ M TG

Prog_full —

Programmable Full with Multiple Threshold Inputs
PGM_FULL_TYPE =4

© 2020 Synopsys, Inc.
276

Synopsys Confidential Information

Synplify Pro for Microchip Edition Reference Manual
June 2020

SYNCore FIFO Compiler SynCore IP Tool

This option lets you specify the assert and negate threshold values dynami-
cally during the reset stage using the Prog_full_thresh_assert and Prog_full_-
thresh_negate input ports. You must set the negate value to a value less than
the assert value.

The programmable full flag is asserted when the number of words in the FIFO
is greater than or equal to the Prog_full_thresh_assert value. If the number of
FIFO words goes below Prog_full_thresh_negate value, the programmable full
flag is deasserted. The following figure illustrates the behavior of Prog_full
configured as multiple threshold inputs with an assert value of 6 and a
negate value of 4.

Cock WU WUy yyywywy
. P i R
wite en-—/ 1 1 1 A Ay e
Witeack LU T T T T LU T oA
Data_ent 0 YT ZY BN ENE X, G, B AT
Prog_full b1 L e
- T T T T T T T T 1 I 1 1 1 I 1

Programmable Empty

The programmable empty flag (Prog_empty) is asserted when the number of
entries in the FIFO is less than or equal to a user-defined assert threshold. If
the number of words in the FIFO is greater than the negate threshold, the flag
is deasserted. The following is the valid range of threshold values:

Assert 1 to Max of Depth/2

threshold For multiple threshold types, the assert value should always be
value lower than the negate value in multiple threshold types.
Negate 1 to Max of Depth/2

threshold

value

There are four threshold types you can specify:
* Programmable Empty with Single Threshold Constant, on page 278
* Programmable Empty with Multiple Threshold Constants, on page 278
* Programmable Empty with Single Threshold Input, on page 279

Synplify Pro for Microchip Edition Reference Manual
June 2020 Synopsys Confidential Information

© 2020 Synopsys, Inc.
277

SynCore IP Tool SYNCore FIFO Compiler

* Programmable Empty with Multiple Threshold Inputs, on page 279

Programmable Empty with Single Threshold Constant
PGM_EMPTY_TYPE =1

This option lets you specify an empty threshold value with a single constant.
This approach requires significantly fewer resources when the FIFO is gener-
ated. The following figure illustrates the behavior of Prog_empty configured as
a single threshold constant with a value of 3.

[T 1

Cluck_;"-_!:_'_l'_‘_f_'_f_'_:'_F—_J'_'J—J—J—fff'—'_f’_'_dr—'-—';_

1 1 1
Read_en . R T T e A AT |
I [} I I 1 ! 1 ! 1 1
Data_cnt @ ”‘Tz“ra"r—‘a—“ '_5"‘:('_'_' 8 N ENAN T A '

Prog_empty'i e S R : /— R

Programmable Empty with Multiple Threshold Constants
PGM_EMPTY_TYPE =2

This option lets you specify constants for the empty threshold assert value
and empty threshold negate value. The programmable empty flag asserts and
deasserts in the range set by the assert and negate values. The assert value
must be set to a value less than the negate value. When the number of words
in the FIFO is less than or equal to the empty threshold assert value, the
Prog_empty flag is asserted. When the number of words in FIFO is greater than
the empty threshold negate value, Prog_empty is deasserted.

The following figure illustrates the behavior of Prog_empty when configured as
multiple threshold constants with an assert value of 3 and a negate value of
S.

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
278 Synopsys Confidential Information June 2020

SYNCore FIFO Compiler SynCore IP Tool

coek 4 LU U U U Uy
SV N S S RN I5 o o e o N o
o SO T e e
GEUR I VI R

Programmable Empty with Single Threshold Input
PGM_EMPTY_TYPE =3

This option lets you specify the threshold value dynamically during the reset
state with the Prog_empty_thresh input port, instead of with a constant. The
Prog_empty flag asserts when the number of FIFO words is equal to or less
than the Prog_empty thresh value and deasserts when the number of FIFO
words is more than the Prog_empty thresh value. The following figure illus-
trates the behavior of Prog_empty when configured as a single threshold input
with a value of 3.

| e

sk LU U

1 1 1 3
", [
-
1
1

Read_en . : 1
I 1 1
I 1 1

1
1
1
Data_ent — g "y S S - LI sy e el e s

Il

S S SR AT S

Programmable Empty with Multiple Threshold Inputs
PGM_EMPTY_TYPE =4

This option lets you specify the assert and negate threshold values dynami-
cally during the reset stage using the Prog_empty_thresh_assert and Prog_empty_-
thresh_negate input ports instead of constants. The programmable empty flag
asserts and deasserts according to the range set by the assert and negate
values. The assert value must be set to a value less than the negate value.

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 279

SynCore IP Tool SYNCore FIFO Compiler

When the number of FIFO words is less than or equal to the empty threshold
assert value, Prog_empty is asserted. If the number of FIFO words is greater
than the empty threshold negate value, the flag is deasserted. The following
figure illustrates the behavior of Prog_empty configured as multiple threshold
inputs, with an assert value of 3 and a negate value of 5.

.
| | 1 | | 1 1 1 r 1 |
Clock 4 O W WYy iy Ty
1 1 1 I 1 M
| | | 1

Read_en .

“'.
Data_cnt _m'“I ET TE_TH T W'f'* (OEE o E

Prog_empty ;1 L 1 0 O\

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
280 Synopsys Confidential Information June 2020

SYNCore RAM Compiler SynCore IP Tool

SYNCore RAM Compiler

The SYNCore RAM Compiler generates Verilog code for your RAM implemen-
tation. This section describes the following:

* Specifying RAMs with SYNCore, on page 281
* SYNCore RAM Wizard, on page 289

* Single-Port Memories, on page 293

* Dual-Port Memories, on page 295

* Read/Write Timing Sequences, on page 299

Specifying RAMs with SYNCore

The SYNCore IP wizard helps you generate Verilog code for your RAM imple-
mentation requirements. The following procedure shows you how to generate
Verilog code for a RAM using the SYNCore IP wizard.

Note: The SYNCore RAM model uses Verilog 2001. When adding a RAM
model to a Verilog-95 design, be sure to enable the Verilog 2001 check
box on the Verilog tab of the Implementation Options dialog box or include
a set_option -vlog_std v2001 statement in your project file to prevent a
syntax error.

1. Start the wizard.

— From the synthesis tool GUI, select Run->Launch SYNCore or click the
Launch SYNCore icon to start the SYNCore IP wizard.

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 281

SynCore IP Tool SYNCore RAM Compiler

SYNCore RAM Model e

El- addnsub
addnsub model The SYNCore memaory compiler helps you create memory models for
B counter your designs. The models are written out in Verilog and can be
counter_model synthesized as well as simulated. Atestbench is generated for this
- fifos purpose.
= sfifo
sfifo_model For more information about the SYNCore memory compiler, refer to
B memories the following:
- byte_enable_ram o))
byte_en_ram_model * The built-in Memory Compiler document, which you access
El- ram from the RAM Info button.
iram_model * The Synplicity tool synthesis tool online help, where you can
- rom access information for the following from the online help
rom_model Contents:

— In the window that opens, select ram_model and click Ok. This opens
the first screen of the wizard.

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual

282 Synopsys Confidential Information June 2020

SYNCore RAM Compiler SynCore IP Tool

- —
RAM Parameaters | Core Overview |

Memory Compiler

Component Name |

Directory [] | Browse |
Filz Mame [] Browse...
—Memory Size

Data Width Valid Range 1..256
Address YWidth |8 alid Range 2..20

— How will you be using the RAM?

& Single Port Duzl Paort

Jyncore RAM

—Which clocking method do you want to use?

& Single Clock
() Separate Clocke For Each Port

| Back || MNext | Pagetofa

2.

Specify the parameters you need in the wizard.
— For details about the parameters for a single-port RAM, see
Specifying Parameters for Single-Port RAM, on page 286.

— For details about the parameters for a dual-port RAM, see Specifying
Parameters for Dual-Port RAM, on page 287. Note that dual-port
implementations are only supported for some technologies.

The RAM symbol on the left reflects the parameters you set.

The default settings for the tool implement a block RAM with synchro-
nous resets, and where all edges (clock, enable, and reset) are considered
positive.

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.

June 2020

Synopsys Confidential Information 283

SynCore IP Tool SYNCore RAM Compiler

3. After you have specified all the parameters you need, click the Generate
button in the lower left corner.

The tool displays a confirmation message is displayed (TCL execution
successfull) and writes the required files to the directory you specified in
the parameters. The HDL code is in Verilog.

SYNCore also generates a testbench for the RAM. The testbench covers a
limited set of vectors.

You can now close the SYNCore Memory Compiler.

4. Edit the RAM files if necessary.

— The default RAM has a no_rw_check attribute enabled. If you do not
want this, edit syncore_ram.v and comment out the “define
SYN_MULTI_PORT_RAM statement, or use "undef
SYN_MULTI_PORT_RAM.

— If you want to use the synchronous RAMs available in the target
technology, make sure to register either the read address or the
outputs.

S. Add the RAM you generated to your design.

— Use the Add File command to add the Verilog design file that was
generated and the syncore_ram.v file to your project. These files are in
the directory for output files that you specified on page 1 of the
wizard.

— Use a text editor to open the instantiation_file.vin template file, which is
located in the same directory. Copy the lines that define the memory,
and paste them into your top-level module. The following figure
shows a template file (in red text) inserted into a top-level module.

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual

284

Synopsys Confidential Information June 2020

SYNCore RAM Compiler

SynCore IP Tool

module top |

input ClkR,

input [7:0] Addrd,
input [15:0] Datalnh,
input WrEnk,

ontput [15:0] Datatmti
}:

Z'If'l}”_’aIlfLZ <InstancelName>

.PortACI kK (PorthClk)

r Porcasddr (Porcanddr)

r SPOrtADRCaIn(FortADataIn)

r CPOrtANriteEnable (PortAWriteEnzble)
r . Port@DataCut (PortADatalut)

endmoduls

template

6. Edit the template port connections so that they agree with the port
definitions in your top-level module as shown in the example below (the
updated connection names are shown in red). You can also assign a

unique name to each instantiation.

Synplify Pro for Microchip Edition Reference Manual

June 2020 Synopsys Confidential Information

© 2020 Synopsys, Inc.
285

SynCore IP Tool SYNCore RAM Compiler

nmodul e top (

i nput d KA,

input [7:0] AddrA,

i nput [15:0] Datal nA
i nput W EnA,

out put [15:0] DataCQutA

)

nyran® decoder r an(

. Port A k(Q kA)

, . Port AAddr (Addr A)

, . Port ADat al n(Dat al nA)

, . Port AWiteEnabl e(W EnA)
, . Port ADat aQut (Dat aCut A)

endnodul e

Specifying Parameters for Single-Port RAM

To create a single-port RAM with the SYNCore Memory Compiler, you need to
specify a single read /write address (single port) and a single clock. You only
need to configure Port A. The following procedure lists what you need to
specify. For descriptions of each parameter, refer to SYNCore RAM Wizard, on
page 289.

1. Start the SYNCore RAM wizard, as described in Specifying RAMs with
SYNCore, on page 281.
2. Do the following on page 1 of the RAM wizard:

— In Component Name, specify a name for the memory. Do not use
spaces.

— In Directory, specify a directory where you want the output files to be
written. Do not use spaces.

— In Filename, specify a name for the Verilog file that will be generated
with the RAM specifications. Do not use spaces.

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
286 Synopsys Confidential Information June 2020

SYNCore RAM Compiler SynCore IP Tool

— Enter data and address widths.

— Enable Single Port, to specify that you want to generate a single-port
RAM. This automatically enables Single Clock.

— Click Next. The wizard opens another page where you can set
parameters for Port A.

The RAM symbol dynamically updates to reflect the parameters you set.

3. Do the following on page 2 of the RAM wizard:
— Set Use Write Enable to the setting you want.
— Set Register Read Address to the setting you want.

— Set Synchronous Reset to the setting you want. Register Outputs is
always enabled

— Specify the read access you require for the RAM.

You can now generate the RAM by clicking Generate, as described in
Specifying RAMs with SYNCore, on page 281. You do not need to specify
any parameters on page 3, as this is a single-port RAM and you do not
need to specify Port B. All output files are in the directory you specified
on the first page of the wizard.

For details about setting dual-port RAM parameters, see Specifying
Parameters for Dual-Port RAM, on page 287. For read /write timing
diagrams, see Read/Write Timing Sequences, on page 299.

Specifying Parameters for Dual-Port RAM

The following procedure shows you how to set parameters for dual-port
memory in the SYNCore wizard. Dual-port RAMs are only supported for some
technologies. For information about generating single-port RAMs, see Speci-
fying Parameters for Single-Port RAM, on page 286. It shows you how to
generate these common RAM configurations:

* One read access and one write access
* Two read accesses and one write access

* Two read accesses and two write accesses

For the corresponding read/write timing diagrams, see Read/ Write Timing
Sequences, on page 299.

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 287

SynCore IP Tool SYNCore RAM Compiler

1. Start the SYNCore RAM wizard, as described in Specifying RAMs with
SYNCore, on page 281.
2. Do the following on page 1 of the RAM wizard:

— In Component Name, specify a name for the memory. Do not use
spaces.

— In Directory, specify a directory where you want the output files to be
written. Do not use spaces.

— In Filename, specify a name for the Verilog file that will be generated
with the RAM specifications. Do not use spaces.

— Enter data and address widths.

— Enable Dual Port, to specify that you want to generate a dual-port
RAM.

— Specify the clocks.

For a single clock ... Enable Single Clock.

For separate clocks for Enable Separate Clocks For Each Port.
each of the ports ...

— Click Next. The wizard opens another page where you can set
parameters for Port A.

3. Do the following on page 2 of the RAM wizard to specify settings for Port

A:
— Set parameters according to the kind of memory you want to
generate:
One read & one write Enable Read Only Access.
Two reads & one write Enable Read and Write Access.
Specify a setting for Use Write Enable.
Two reads & two writes Enable Read and Write Access.
Specify a setting for Use Write Enable.
Specify a read access option for Port A.
— Specify a setting for Register Read Address.
— Set Synchronous Reset to the setting you want. Register Outputs is
always enabled.
© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual

288 Synopsys Confidential Information June 2020

SYNCore RAM Compiler SynCore IP Tool

— Click Next. The wizard opens another page where you can set
parameters for Port B. The page and the parameters are identical to
the previous page, except that the settings are for Port B instead of
Port A.

4. Specify the settings for Port B on page 3 of the wizard according to the
kind of memory you want to generate:

One read & one write Enable Write Only Access.
Set Use Write Enable to the setting you want.

Two reads & one write Enable Read Only Access.
Specify a setting for Register Read Address.

Two reads & two writes Enable Read and Write Access.
Specify a setting for Use Write Enable.
Specify a setting for Register Read Address.
Set Synchronous Reset to the setting you want.
Note that Register Outputs is always enabled.
Select a read access option for Port B.

The RAM symbol on the left reflects the parameters you set. All output
files are written to the directory you specified on the first page of the
wizard.

You can now generate the RAM by clicking Generate, as described in
Specifying RAMs with SYNCore, on page 281, and add it to your design.

SYNCore RAM Wizard

The following describe the parameters you can set in the RAM wizard, which
opens when you select ram_model:

* SYNCore RAM Parameters Page 1, on page 290
* SYNCore RAM Parameters Pages 2 and 3, on page 292

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 289

SynCore IP Tool SYNCore RAM Compiler

SYNCore RAM Parameters Page 1

Memory Compiler

Companent Name []

Direckary [] | Browse. ., |
Filzname: [l | Browse. .. |
Mermoty Size
Data Width [18 | valid Range 1..256
Address width |8 | valid Range 2..256

How will wou be using the RAM?

® Single Port Dual Fort

‘Which clocking method do wou want bo use?

® Single Clock () Separate Clocks For Each Port

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
290 Synopsys Confidential Information June 2020

SYNCore RAM Compiler SynCore IP Tool

Component Specifies the name of the component. This is the name that you
Name instantiate in your design file to create an instance of the
SYNCore RAM in your design. Do not use spaces. For example:

rani0l <Conponent Name> (
. Port AQ k(Port A k)
, . Port AAddr (Port AAddr)
, . Port ADat al n(Port ADat al n)
, . Port AWiteEnabl e(Port AWit eEnabl e)
, . PortBDat al n(Port BDat al n)
, . Port BAddr (Port BAddr)
, .PortBWiteEnabl e(PortBwWiteEnabl e)
, . Port ADat aQut (Port ADat aQut)
, . Port BDat aCut (Por t BDat aQut)

)i
Directory Specifies the directory where the generated files are stored. Do
not use spaces. The following files are created:
* filelist.txt - lists files written out by SYNCore
¢ options.txt - lists the options selected in SYNCore
* readme.txt - contains a brief description and known issues

* syncore_ram.v - Verilog library file required to generate RAM
model

* testbench.v - Verilog testbench file for testing the RAM model
* instantiation_file.vin - describes how to instantiate the wrapper file
e component.v - RAM model wrapper file generated by SYNCore

Note that running the Memory Compiler wizard in the same
directory overwrites the existing files.

Filename Specifies the name of the generated file containing the HDL
description of the compiled RAM. Do not use spaces.

Data Width Is the width of the data you need for the memory. The unit used is
the number of bits.

Address Width Is the address depth you need for the memory. The unit used is
the number of bits.

Single Port When enabled, generates a single-port RAM.

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 291

SynCore IP Tool

SYNCore RAM Compiler

Dual Port
Single Clock

Separate Clocks
for Each Port

When enabled, generates a dual-port RAM.

When enabled, generates a RAM with a single clock for dual-port
configurations.

When enabled, generates separate clocks for each port in
dual-port RAM configurations.

SYNCore RAM Parameters Pages 2 and 3

The port implementation parameters on pages 2 and 3 are identical, but page
2 applies to Port A (single- and dual-port configurations), and page 3 applies
to Port B (dual-port configurations only). The following figure shows the
parameters on page 2 for Port A.

Memory Compiler

Zonfiguring Port A

Howe do ol want ko configure Part A

® Read And rite Access () Read Only Access () Wirite Only Access

Design Opkions For Port A

| Lse Write Enable

+ Register Read Address

Register Outputs

Synchronous Reset

Read Access Options For Park A

® Read before Write

Read and Write
Access

Read Only Access
Write Only Access
Use Write Enable

© 2020 Synopsys, Inc.
292

Read after Write Mo Read on Write

Specifies that the port can be accessed by both read and write
operations.

Specifies that the port can only be accessed by read operations.
Specifies that the port can only be accessed by write operations.

Includes write-enable control. The RAM symbol on the left
reflects the selections you make.

Synplify Pro for Microchip Edition Reference Manual
Synopsys Confidential Information June 2020

SYNCore RAM Compiler SynCore IP Tool

Register Read Adds registers to the read address lines. The RAM symbol on the
Address left reflects the selections you make.

Register Outputs Adds registers to the write address lines when you specify
separate read/write addressing. The register outputs are always
enabled. The RAM symbol on the left reflects the selections you

make.
Synchronous Individually synchronizes the reset signal with the clock when
Reset you enable Register Outputs. The RAM symbol on the left reflects

the selections you make.

Read before Write Specifies that the read operation takes place before the write
operation for port configurations with both read and write
access (Read And Write Access is enabled). For a timing diagram,
see Read Before Write , on page 300.

Read after Write Specifies that the read operation takes place after the write
operation for port configurations with both read and write
access (Read And Write Access is enabled). For a timing diagram,
see Write Before Read , on page 301.

No Read on Write Specifies that no read operation takes place when there is a
write operation for port configurations with both read and write
access (Read And Write Access is enabled). For a timing diagram,
see No Read on Write , on page 302.

Single-Port Memories

For single-port RAM, it is only necessary to configure Port A. The following
diagrams show the read-write timing for single-port memories. See Specifying
RAMs with SYNCore, on page 281 for a procedure.

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 293

SynCore IP Tool SYNCore RAM Compiler

Single-Port Read

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
294 Synopsys Confidential Information June 2020

SYNCore RAM Compiler SynCore IP Tool

Single-Port Write

Dual-Port Memories

SYNCore dual-port memory includes the following common configurations:
* One read access and one write access
* Two read accesses and one write access

* Two read accesses and two write accesses

The following diagrams show the read-write timing for dual-port memories.
See Specifying RAMs with SYNCore, on page 281 for a procedure to specify a
dual-port RAM with SYNCore.

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 295

SynCore IP Tool SYNCore RAM Compiler

Dual-Port Single Read

CLK

MEM1

MEMZ

MEM:

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
296 Synopsys Confidential Information June 2020

SYNCore RAM Compiler SynCore IP Tool

Dual-Port Single Write

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 297

SynCore IP Tool SYNCore RAM Compiler

Dual-Port Read

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
298 Synopsys Confidential Information June 2020

SYNCore RAM Compiler SynCore IP Tool

Dual-Port Write

DATA_A

MEM1 ;

KERMD

Read/Write Timing Sequences

The waveforms in this section describe the behavior of the RAM when both
read and write are enabled and the address is the same operation. The
waveforms show the behavior when each of the read-write sequences is
enabled. The waveforms are merged with the simple waveforms shown in the
previous sections. See the following:

* Read Before Write, on page 300

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 299

SynCore IP Tool SYNCore RAM Compiler

* Write Before Read, on page 301
* No Read on Write, on page 302

Read Before Write

DATA

aourT

MEMD

ME M1

ME M2

MEM3

ME M3

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
300 Synopsys Confidential Information June 2020

SYNCore RAM Compiler SynCore IP Tool

Write Before Read

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 301

SynCore IP Tool SYNCore RAM Compiler

No Read on Write

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
302 Synopsys Confidential Information June 2020

SYNCore Byte-Enable RAM Compiler SynCore IP Tool

SYNCore Byte-Enable RAM Compiler

The SYNCore byte-enable RAM compiler generates SystemVerilog code
describing byte-enabled RAMs. The data width of each byte is calculated by
dividing the total data width by the write enable width. The byte-enable RAM
compiler supports both single- and dual-port configurations.

This section describes the following:
* Functional Overview, on page 303
* Specifying Byte-Enable RAMs with SYNCore, on page 304
* SYNCore Byte-Enable RAM Wizard, on page 311
* Read/Write Timing Sequences, on page 314

* Parameter List, on page 317

Functional Overview

The SYNCore byte-enable RAM component supports bit/byte-enable RAM
implementations using block RAM and distributed memory. For each config-
uration, design optimizations are made for optimum use of core resources.
The timing diagram that follow illustrate the supported signals for
byte-enable RAM configurations.

Byte-enable RAM can be configured in both single- and dual-port configura-
tions. In the dual-port configuration, each port is controlled by different
clock, enable, and control signals. User configuration controls include
selecting the enable level, reset type, and register type for the read data
outputs and address inputs.

Reset applies only to the output read data registers; default value of read data
on reset can be changed by user while generating core. Reset option is
inactive when output read data is not registered.

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 303

SynCore IP Tool SYNCore Byte-Enable RAM Compiler

Specifying Byte-Enable RAMs with SYNCore

The SYNCore IP wizard helps you generate SystemVerilog code for your
byte-enable RAM implementation requirements. The following procedure
shows you how to generate SystemVerilog code for a byte-enable RAM using
the SYNCore IP wizard.

Note: The SYNCore byte-enable RAM model uses SystemVerilog. When
adding a byte-enable RAM to your design, be sure to enable the
System Verilog check box on the Verilog tab of the Implementation Options
dialog box or include a set_option -vlog_std sysv statement in your
project file to prevent a syntax error.

1. Start the wizard.

— From the FPGA synthesis tool GUI, select Run->Launch SYNCore or
click the Launch SYNCore icon to start the SYNCore IP wizard.

Flovst | SYNCore Byte-Enable RAM

El- addnsub
addnsub_model MOdEI
=~ counter
counter_model The SYNCore byte-enable RAM compiler helps you create byte-
El-fifos enable RAM models for your designs. These models are written out
- sfifo in SystemVerilog and can be synthesized as well as simulated. A
sfifo_model testbench is generated for this purpose.
EH memaories
E- byte_enable_ram For more information about the SYMNCare byte-enable RAM compiler,
byte_en_ram_model || refer to the following:
El- ram
ram_model ® The built-in Byte-Enable RAM Compiler document, which you
= rom can access from the BYTE ENABLE RAM Info button.
rom_model ® The tools anline help, where you can access information for
the following from the online help:

— In the window that opens, select byte_en_ram_model and click Ok to
open the first page (pagel) of the wizard.

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
304 Synopsys Confidential Information June 2020

SYNCore Byte-Enable RAM Compiler SynCore IP Tool

BYTE ENABLE RAM Faramealers | Core Ovendlow

Byte Enable Ram Compiler

Component Mama]
Directory [] | Browse... |
File Nama [] | Browse... |
Memory Size
SEENN| BYTE e ——— Address Width Valid Range 220
Data Width |2 | valid range 2. 256

Wiits Enabls Width |2 | Valid Hange 2 266
How will you be using the RAM?

. Single Port Dual Port

BynCore BYTE EMABLE RAM

| Back || Next | Page1of3

2. Specify the parameters you need in the wizard. For details about the
parameters, see Specifying Byte-Enable RAM Parameters, on page 308.
The BYTE ENABLE RAM symbol on the left reflects any parameters you
set.

3. After you have specified all the parameters you need, click the Generate
button in the lower left corner. The tool displays a confirmation message
(TCL execution successfull) and writes the required files to the directory you
specified on page 1 of the wizard. The HDL code is in SystemVerilog.

SYNCore also generates a test bench for the byte-enable RAM compo-
nent. The test bench covers a limited set of vectors. You can now close
the SYNCore byte-enable RAM compiler.

4. Edit the generated files for the byte-enable RAM component if necessary.

5. Add the byte-enable RAM that you generated to your design.

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 305

SynCore IP Tool SYNCore Byte-Enable RAM Compiler

— On the Verilog tab of the Implementation Options dialog box, make
sure that SystemVerilog is enabled.

— Use the Add File command to add the Verilog design file that was
generated (the filename entered on page 1 of the wizard) and the
syncore_*.v file to your project. These files are in the directory for
output files that you specified on page 1 of the wizard.

— Use a text editor to open the instantiation_file.vin template file. This file is
located in the same output files directory. Copy the lines that define
the byte-enable RAM and paste them into your top-level module.

— Edit the template port connections so that they agree with the port
definitions in the top-level module; also change the instantiation
name to agree with the component name entered on page 1. The
following figure shows a template file inserted into a top-level module
with the updated component name and port connections in red.

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
306 Synopsys Confidential Information June 2020

SYNCore Byte-Enable RAM Compiler SynCore IP Tool

module top
(input Clockh,
input [3:0] 2dda
input [31:0] Dataln
input WrEna,
input Reset
|outpu.t [31:0] DataCut
)

INST TAG

SP REM #

(.ADD WIDTH(4),
.WE_WIDTH(2),
.RADDR LTNCY &(1), // 0 — No Latency, 1 — 1 Cycle Latency
.RDATA LTNCY A(1l), // 0 - No Latency, 1 - 1 Cycle Latency
.RST TYPE A(1), // 0 - No Reset, 1 synchronous
.RST RDATA A({32{1"bl}}),
.DATA WIDTH(32)

)

4x32spram

(// Output Ports
.RBdDataa (DatalIn),
// Input Ports
WrDatad (DataCut) ,
WenA (WeEnk) ,
LAddra (Bdda) ,
.Reseth (Feset),
LCLER (ClockR)

Port List

Port A interface signals are applicable for both single-port and dual-port
configurations; Port B signals are applicable for dual-port configuration only.

Name Type Description
CIkA Input Clock input for Port A
WenA Input Write enable for Port A; present when Port
A is in write mode
AddrA Input Memory access address for Port A
Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.

June 2020 Synopsys Confidential Information 307

SynCore IP Tool

SYNCore Byte-Enable RAM Compiler

ResetA Input

WrDataA Input

RdDataA Output

ClkB Input

WenB Input

AddrB Input

ResetB Input

WrDataB Input

RdDataB Output

Reset for memory and all registers in core;
present with registered read data when
Reset is enabled; active low (cannot be
changed)

Write data to memory for Port A; present
when Port A is in write mode

Read data output for Port A; present when
Port A is in read or read/write mode

Clock input for Port B; present in
dual-port mode

Write enable for Port B; present in
dual-port mode when Port B is in write
mode

Memory access address for Port B; present
in dual-port mode

Reset for memory and all registers in core;
present in dual-port mode when read data
is registered and Reset is enabled; active
low (cannot be changed)

Write data to memory for Port B; present
in dual-port mode when Port B is in write
mode

Read data output for Port B; present in
dual-port mode when Port B is in read or
read /write mode

Specifying Byte-Enable RAM Parameters

When creating a single-port, byte-enable RAM with the SYNCore IP wizard,
you must specify a single read address and a single clock; you only need to
configure the Port A parameters on page 2 of the wizard.

When creating a dual-port, byte-enable RAM, you must additionally configure
the Port B parameters on page 3 of the wizard.

The following procedure lists the parameters you need to specify. For descrip-
tions of each parameter, refer to Parameter List, on page 317.

1. Start the SYNCore byte-enable RAM wizard as described in Specifying
Byte-Enable RAMs with SYNCore, on page 304.

© 2020 Synopsys, Inc.
308

Synplify Pro for Microchip Edition Reference Manual

Synopsys Confidential Information

June 2020

SYNCore Byte-Enable RAM Compiler SynCore IP Tool

2. Do the following on page 1 of the byte-enable RAM wizard:

Specify a name for the memory in the Component Name field; do not
use spaces.

Specify a directory name in the Directory field where you want the
output files to be written; do not use spaces.

Specify a name in the File Name field for the SystemVerilog file to be
generated with the byte-enable RAM specifications; do not use
spaces.

Enter a value for the address width of the byte-enable RAM; the
maximum depth of memory is limited to 2/256.

Enter a value for the data width for the byte-enable RAM; data width
values range from 2 to 256.

Enter a value for the write enable width; write-enable width values
range from 1 to 4.

Select Single Port to generate a single-port, byte-enable RAM or select
Dual Port to generate a dual-port, byte-enable RAM.

Click Next to open page 2 of the wizard.

The Byte Enable RAM symbol dynamically updates to reflect the param-
eters that you set.

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.

June 2020

Synopsys Confidential Information 309

SynCore IP Tool SYNCore Byte-Enable RAM Compiler

3. Do the following on page 2 (configuring Port A) of the wizard:

— Select the Port A configuration. Only Read and Write Access mode is
valid for single-port configurations; this mode is selected by default.

— Set Pipelining Address Bus and Output Data according to your
application. By default, read data is registered; you can register both
the address and data registers.

— Set the Configure Reset Options. Enabling the checkbox enables the
synchronous reset for read data. This option is enabled only when the
read data is registered. Reset is active low and cannot be changed.

— Configure output reset data value options under Specify output data
on reset; reset data can be set to default value of all '1' s or to a
user-defined decimal value. Reset data value options are disabled
when the reset is not enabled for Port A.

— Set Write Enable for Port A value; default for the write-enable level is
active high.

4. If you are generating a dual-port, byte-enable RAM, set the Port B
parameters on page 3 (note that the Port B parameters are only enabled
when Dual Port is selected on page 1).

The Port B parameters are identical to the Port A parameters on page 2.
When using the dual-port configuration, when one port is configured for
read access, the other port can only be configured for read /write access
or write access.

S. Generate the byte-enable RAM by clicking Generate. Add the file to your
project and edit the template file as described in Specifying Byte-Enable
RAMs with SYNCore, on page 304. For read/write timing diagrams, see
Read/ Write Timing Sequences, on page 299.

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
310 Synopsys Confidential Information June 2020

SYNCore Byte-Enable RAM Compiler SynCore IP Tool

SYNCore Byte-Enable RAM Wizard

The following describes the parameters you can set in the byte-enable RAM
wizard, which opens when you select byte_en_ram.

* SYNCore Byte-Enable RAM Parameters Page 1, on page 311
* SYNCore Byte-Enable RAM Parameters Pages 2 and 3, on page 312

SYNCore Byte-Enable RAM Parameters Page 1

Byte Enable Ram Compiler

Component Name [SP_RAM]

Directory ’C:,-’Designs]:l,l'cer‘t-ident,Ir] | Browse... |
File Name [4x325pram] | Browse... |
—Memaory Size
Address Width 4 | valid Range 1...256
Data Width |32 | valid range 1..256
Write Enable Width |2 | valid Range 1...256

—How will you be using the RAM?

® Single Port) Dual Port

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 31

SynCore IP Tool SYNCore Byte-Enable RAM Compiler

Component Specifies the name of the component. This is the name that you
Name instantiate in your design file to create an instance of the
SYNCore byte-enable RAM in your design. Do not use spaces.

Directory Specifies the directory where the generated files are stored. Do
not use spaces. The following files are created:

« filelist.txt - lists files written out by SYNCore
* options.txt - lists the options selected in SYNCore
e readme.txt - contains a brief description and known issues

e syncore_be_ram_sdp.v - SystemVerilog library file required to
generate single or simple dual-port, byte-enable RAM model

e syncore_be_ram_tdp.v - SystemVerilog library file required to
generate true dual-port byte-enable RAM model

* testbench.v - Verilog testbench file for testing the byte-enable
RAM model

« instantiation_file.vin - describes how to instantiate the wrapper file

* component.v - Byte-enable RAM model wrapper file generated by
SYNCore

Note that running the byte-enable RAM wizard in the same
directory overwrites the existing files.

Filename Specifies the name of the generated file containing the HDL
description of the compiled byte-enable RAM. Do not use spaces.

Address Width Specifies the address depth for Ports A and B. The unit used is
the number of bits; the default is 2.

Data Width Specifies the width of the data for Ports A and B. The unit used is
the number of bits; the default is 2.

Write Enable Specifies the write enable width for Ports A and B. The unit used

Width is the number of byte enables; the default is 2, the maximum is 4.

Single Port When enabled, generates a single-port, byte-enable RAM

(automatically enables single clock).

Dual Port When enabled, generates a dual-port, byte-enable RAM
(automatically enables separate clocks for each port).

SYNCore Byte-Enable RAM Parameters Pages 2 and 3

The port implementation parameters on pages 2 and 3 are identical, but page
2 applies to Port A (single- and dual-port configurations), and page 3 applies
to Port B (dual-port configurations only). The following figure shows the
parameters on page 2 for Port A.

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
312 Synopsys Confidential Information June 2020

SYNCore Byte-Enable RAM Compiler

SynCore IP Tool

Byte Enable Ram Compiler

Configuring Port A

—How do you want to configure Port A

® Read And Write Access () Read Only Access

O Write Only Access

—Pipelining Address Bus and Output Data
Register address bus AddrA
Register output data bus RdDataA

— Configure Reset Option

Reset for RdDataA

—Specify output data on reset

Default value of '1' for all bits

[0 Specify Reset value for RdDatas [| Valid Range 0...2~DATA_WIDTH

— Configure Write Enable Option
Write Enable for PORTA

@ Active High) Active Lows
Read and Write Specifies that the port can be accessed by both read and write
Access operations (only mode allowed for single-port configurations).

Read Only Access Specifies that the port can only be accessed by read operations
(dual-port mode only).

Write Only Access Specifies that the port can only be accessed by write operations
(dual-port mode only).

Register address Adds registers to the read address lines.

bus AddrA/B

Register output Adds registers to the read data lines. By default, the read data
data bus register is enabled.

RdDataA/B

Synplify Pro for Microchip Edition Reference Manual
June 2020 Synopsys Confidential Information

© 2020 Synopsys, Inc.
313

SynCore IP Tool SYNCore Byte-Enable RAM Compiler

Reset for Specifies the reset type for registered read data:

RdDataA/B * Reset type is synchronous when Reset for RdDataA/B is enabled
* Reset type is no reset when Reset for RdDataA/B is disabled

Specify output Specifies reset value for registered read data (applies only when

data on reset RdDataA/B is enabled):

¢ Default value of ‘1’ for all bits - sets read data to all 1’s on reset

» Specify Reset value for RdDataA/B - specifies reset value for read
data; when enabled, value is entered in adjacent field

Write Enable for Specifies the write enable level for Port A/B. Default is Active
Port A/B High.

Read/Write Timing Sequences

The waveforms in this section describe the behavior of the byte-enable RAM
for both read and write operations.

Read Operation

On each active edge of the clock when there is a change in address, data is
valid on the same clock or next clock (depending on latency parameter values
for read address and read data ports). Active reset ignores any change in
input address, and data and output data are initialized to user-defined values
set by parameters RST_RDATA_A and RST_RDATA_B for port A and port B,
respectively.

The following waveform shows the read sequence of the byte-enable RAM
component with read data registered in single-port mode.

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
314 Synopsys Confidential Information June 2020

SYNCore Byte-Enable RAM Compiler SynCore IP Tool

8 RST RDATA A[71]

& RADDFR_LTNCY_AEna]
B ROATA_LTHCY _A[31:0)
& RST_TYPE_A[31:0]

& WE_WIDTH[a1:0]

& AD0_WIDTH[Z1:0]

® DATA_WIDTH[31:0]

B daledri 5 10

= kA D)

B-WenA[1:0]

&= Wriatad[7:0]

© RdDetas(7:0]

o Ressta(00]

As shown in the above waveform, output read data changes on the same
clock following the input address changed. When the address changes from
'h00 to 'h01, read data changes to 50 on the same clock, and data will be
valid on the next clock edge.

The following waveform shows the read sequence with both the read data and
address registered in single-port mode.

® RST_RDATA_A[70)
& RADDR_LTHNCY_A[31:0]
@ RDATA_LTRCY_A[31:0]

& RST _TYPE_Af31:0]
& WE _WIDTH[31:0]

® ADD_WIDTH[21:10]
& DATA_WIDTH[31:0)
= AddrA[5a0]

= Cli[0:0]

== WenA[1:0)

= WrDataA[7:0]

© RdDatas[7-0]

& Feseta[n]

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 315

SynCore IP Tool SYNCore Byte-Enable RAM Compiler

As shown in the above waveform, output read data changes on the next clock
edge after the input address changes. When the address changes from '"h0O to
'h01, read data changes to 50 on the next clock, and data is valid on the next
clock edge.

Note: The read sequence for dual-port mode is the same as single port;
read /write conflicts occurring due to accessing the same location
from both ports are the user’s responsibility.

Write Operation

The following waveform shows a write sequence with read-after write in
single-port mode.

& RST_RDATA_A[7:0]

& RADDR_LTNGY_A[31:0]
© RDATA_LTNGY_A[31:0]
@ RST_TYPE_A[31:0]

& WE_WIDTH[31:0]

& ADD_WIDTH[31:0]

@ DATA_WIDTH[31:0)

o= AddrA[5:0] 00, 01 02 03 3f oD 01 02 03
&= Clka[0:0]
o-WenA[1:0]

o= 'WrDataA[7.0]
© RdDataa[7:0]
o= ResetA[0:0]

On each active edge of the clock when there is a change in address with an
active enable, data is written into memory on the same clock. When enable is
not active, any change in address or data is ignored. Active reset ignores any
change in input address and data.

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
316 Synopsys Confidential Information June 2020

SYNCore Byte-Enable RAM Compiler SynCore IP Tool

The width of the write enable is controlled by the WE_WIDTH parameter. Input
data is symmetrically divided and controlled by each write enable. For
example, with a data width of 32 and a write enable width of 4, each bit of the
write enable controls 8 bits of data (32/4=8). The byte-enable RAM compiler
will error for wrong combination data width and write enable values.

The above waveform shows a write sequence with all possible values for write
enable followed by a read:

* Value for parameter WE_WIDTH is 2 and DATA_WIDTH is 8 so each write
enable controls 4 bits of input data.

* WenA value changes from 1 to 2, 2 to O, and O to 3 which toggles all
possible combinations of write enable.

The first sequence of address, write enable changes to perform a write
sequence and the data patterns written to memory are 00, aa, ff. The read
data pattern reflects the current content of memory before the write.

The second address sequence is a read (WenA is always zero). As shown in the
read pattern, only the respective bits of data are written according to the write
enable value.

Note: The write sequence for dual-port mode is the same as single port;
conflicts occurring due to writing the same location from both
ports are the user’s responsibility.

Parameter List

The following table lists the file entries corresponding to the byte-enable RAM
wizard parameters.

Name Description Default Value [Range

ADDR_WIDTH Bit/byte enable RAM 2 multiples of 2
address width

DATA_WIDTH Data width for input 8 2 to 256
and output data,
common to both Port A
and Port B

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 317

SynCore IP Tool

SYNCore Byte-Enable RAM Compiler

WE_WIDTH Write enable width, 2
common to both Port A
and Port B
CONFIG_PORT Selects single/dual 1 (single port) 0 = dual-port
port configuration 1 = single-port
RST_TYPE_A/B Port A/B reset type 1 (synchronous) |0 = no reset

selection

1 = synchronous

RST_RDATA_A/B

Default data value for
Port A/B on active
reset

All 1's

decimal value

WEN_SENSE_A/B

Port A/B write enable
sense

1 (active high)

0 = active low
1 = active high

RADDR_LTNCY_A/B

Optional read address
register select Port
A/B

0 = no latency
1 = one cycle latency

RDATA_LTNCY_A/B

Optional read data
register select Port
A/B

0 = no latency
1 = one cycle latency

© 2020 Synopsys, Inc.

318

Synplify Pro for Microchip Edition Reference Manual

Synopsys Confidential Information

June 2020

SYNCore ROM Compiler SynCore IP Tool

SYNCore ROM Compiler

The SYNCore ROM Compiler generates Verilog code for your ROM implemen-
tation. This section describes the following:

Functional Overview, on page 319
Specifying ROMs with SYNCore, on page 321
SYNCore ROM Wizard, on page 326
Single-Port Read Operation, on page 330
Dual-Port Read Operation, on page 331

Parameter List, on page 331

Functional Overview

The SYNCore ROM component supports ROM implementations using block
ROM or logic memory. For each configuration, design optimizations are made
for optimum usage of core resources. Both single- and dual-port memory
configurations are supported. Single-port ROM allows read access to memory
through a single port, and dual-port ROM allows read access to memory
through two ports. The following figure illustrates the supported signals for
both configurations.

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.

June 2020

Synopsys Confidential Information 319

SynCore IP Tool SYNCore ROM Compiler

Clkay
EnA
Dakas

Addrd

Resetd,

Datan CIE

EnE
AddrE Datak

Reseth

In the single-port (Port A) configuration, signals are synchronized to CIKA;
ResetA can be synchronous or asynchronous depending on parameter selec-
tion. The read address (AddrA) and/or data output (DataA) can be registered to
increase memory performance and improve timing. In the dual-port configu-
ration, all Port A signals are synchronized to CIkA, and all PortB signals are
synchronized to CIkB. ResetA and ResetB can be synchronous or asynchronous
depending on parameter selection, and both data outputs can be registered
and are subject to the same clock latencies. Registering the data output is
recommended.

Note: When the data output is unregistered, the data is immediately
set to its predefined reset value concurrent with an active reset
signal.

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
320 Synopsys Confidential Information June 2020

SYNCore ROM Compiler SynCore IP Tool

Specifying ROMs with SYNCore

The SYNCore IP wizard helps you generate Verilog code for your ROM imple-
mentation requirements. The following procedure shows you how to generate
Verilog code for a ROM using the SYNCore IP wizard.

Note: The SYNCore ROM model uses Verilog 2001. When adding a ROM
model to a Verilog-95 design, be sure to enable the Verilog 2001 check
box on the Verilog tab of the Implementation Options dialog box or include
a set_option -vlog_std v2001 statement in your project file to prevent a
syntax error.

1. Start the wizard.

— From the FPGA synthesis tool GUI, select Run->Launch SYNCore or
click the Launch SYNCore icon to start the SYNCore IP wizard.

glea:i;tmetic | SYNcore Rom MOdEI B

El- addnsub
addnsub model The SYNCore Rom compiler helps you create Rom models for your
B counter designs. These Rom models are written out in Verilog and can be
counter_mode! synthesized as well as simulated. Atestbench is generated for this
El-fifos purpose.
E- sfifo
sfifo_model For more information about the SYNCore Rom compiler, refer to the
= memaries following:
El- byte_enable_ram o))
byte_en_ram_model * The built-in Rom Compiler document, which you access from
El- ram the ROM Info button.
ram_model * The Synplicity tool synthesis tool online help, where you can
= rom access information for the following from the online help
irom_model Contents:

— In the window that opens, select rom_model and click Ok to open page
1 of the wizard.

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 321

SynCore IP Tool SYNCore ROM Compiler

ROM Parameters [Core Overview

Rom Compiler

Component Name []

Directory [] | Browse... |
File Name [] | Browse. _. |
—ROM Size

Read Data width Valid Range 1..256

ROM address width Valid Range 2..20

- Configuring the ROM

® 5ingle Port Rom Dual Port Rom

SynCore ROM

| Back || Next Page 1 of 4

2. Specify the parameters you need in the wizard. For details about the
parameters, see Specifying ROM Parameters, on page 325. The ROM
symbol on the left reflects any parameters you set.

3. After you have specified all the parameters you need, click the Generate
button in the lower left corner. The tool displays a confirmation message
(TCL execution successfull) and writes the required files to the directory you
specified on page 1 of the wizard. The HDL code is in Verilog.

SYNCore also generates a testbench for the ROM. The testbench covers
a limited set of vectors.

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
322 Synopsys Confidential Information June 2020

SYNCore ROM Compiler SynCore IP Tool

You can now close the SYNCore ROM Compiler.

4. Edit the ROM files if necessary. If you want to use the synchronous
ROMs available in the target technology, make sure to register either the
read address or the outputs.

5. Add the ROM you generated to your design.

— Use the Add File command to add the Verilog design file that was
generated and the syncore_rom.v file to your project. These files are in
the directory for output files that you specified on page 1 of the
wizard.

— Use a text editor to open the instantiation_file.vin template file. This file
is located in the same output files directory. Copy the lines that
define the ROM, and paste them into your top-level module. The
following figure shows a template file (in red text) inserted into a
top-level module.

module test rom stylel(z,a,clk,en,rst);
input clk,en,rst;

output reg [3:0] =;

input [6:0] a;

mylstROM <InstanceNam=> |
// Output Ports
.DataA (Dataad),
// Input Ports template
L.ClEA(C1lkR),
LEnf (End)
.Beseth (Resetd) ,
Addra (Addra)

6. Edit the template port connections so that they agree with the port
definitions in your top-level module as shown in the example below (the
updated connection names are shown in red). You can also assign a
unique name to each instantiation.

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 323

SynCore IP Tool SYNCore ROM Compiler

nmodul e test_romstyle(z,a,clk,en,rst);
i nput clk, en,rst;

output reg [3:0] z;

input [6:0] a;

nylst ROM decode_ ron{
// Qutput Ports
. Dat aA(z),

/1 lnput Ports
. d kA(cl k),

. EnA(en),

. Reset A(rst),

. Addr A(a)

)

Port List

PortA interface signals are applicable for both single-port and dual-port
configurations; PortB signals are applicable for dual-port configuration only.

Name Type Description
CIkA Input Clock input for Port A
EnA Input Enable input for Port A
AddrA Input Read address for Port A
ResetA Input Reset or interface disable pin for Port A
DataA Output Read data output for Port A
ClkB Input Clock input for Port B
EnB Input Enable input for Port B
AddrB Input Read address for Port B
ResetB Input Reset or interface disable pin for Port B
DataB Output Read data output for Port B

© 2020 Synopsys, Inc.

Synplify Pro for Microchip Edition Reference Manual
Synopsys Confidential Information

June 2020

SYNCore ROM Compiler SynCore IP Tool

Specifying ROM Parameters

If you are creating a single-port ROM with the SYNCore IP wizard, you need to
specify a single read address and a single clock, and you only need to
configure the Port A parameters on page 2. If you are creating a dual-port
ROM, you must additionally configure the Port B parameters on page 3. The
following procedure lists what you need to specify. For descriptions of each
parameter, refer to SYNCore RAM Wizard, on page 289.

1. Start the SYNCore ROM wizard, as described in Specifying ROMs with
SYNCore, on page 321.

2. Do the following on page 1 of the ROM wizard:

— In Component Name, specify a name for the memory. Do not use
spaces.

— In Directory, specify a directory where you want the output files to be
written. Do not use spaces.

— In Filename, specify a name for the Verilog file that will be generated
with the ROM specifications. Do not use spaces.

— Enter values for Read Data width and ROM address width (minimum depth
value is 2; maximum depth of the memory is limited to 27256).

— Select Single Port Rom to indicate that you want to generate a
single-port ROM or select Dual Port Rom to generate a dual-port ROM.

— Click Next. The wizard opens page 2 where you set parameters for Port
A.

The ROM symbol dynamically updates to reflect any parameters you set.

3. Do the following on page 2 (Configuring Port A) of the RAM wizard:

— For synchronous ROMs, select Register address bus AddrA and/or
Register output data bus DataA to register the read address and/or the
outputs. Selecting either checkbox enables the Enable for Port A
checkbox which is used to select the Enable level.

— Set the Configure Reset Options. Enabling the checkbox enables the type
of reset (asynchronous or synchronous) and allows an output data
pattern (all 1’s or a specified pattern) to be defined on page 4.

4. If you are generating a dual-port ROM, set the port B parameters on
page 3 (the page 3 parameters are only enabled when Dual Port Rom is
selected on page 1).

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 325

SynCore IP Tool SYNCore ROM Compiler

S. On page 4, specify the location of the ROM initialization file and the data
format (Hexadecimal or Binary). ROM initialization is supported using
memory-coefficient files. The data format is either binary or hexadecimal
with each data entry on a new line in the memory-coefficient file
(specified by parameter INIT_FILE). Supported file types are t xt , mem dat ,
and init (recommended).

6. Generate the ROM by clicking Generate, as described in Specifying ROMs
with SYNCore, on page 321 and add it to your design. All output files are
in the directory you specified on page 1 of the wizard.

For read/write timing diagrams, see Read/ Write Timing Sequences, on
page 299.

SYNCore ROM Wizard

The following describe the parameters you can set in the ROM wizard, which
opens when you select rom_model:

* SYNCore ROM Parameters Page 1, on page 327
* SYNCore ROM Parameters Pages 2 and 3, on page 328
* SYNCore ROM Parameters Page 4, on page 330

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
326 Synopsys Confidential Information June 2020

SYNCore ROM Compiler SynCore IP Tool

SYNCore ROM Parameters Page 1

Zomponent Mame [BankDecndeROMZ]

Direckary [C:,l'majie,l'dsgns] | Browse. .. |
File Mame Ibdromz.v| I | Browse. .. |
—R.OM Size
Read Data width |2 | valid Range 1..256
ROM address width [10 | valid Range 2..256

~—Zonfiguring the ROM

@ Single Port Rom () Dual Port Rom

Component Name Specifies the name of the component. This is the name that
you instantiate in your design file to create an instance of
the SYNCore ROM in your design. Do not use spaces.

Directory Specifies the directory where the generated files are stored.
Do not use spaces. The following files are created:

filelist.txt - lists files written out by SYNCore
options.txt - lists the options selected in SYNCore
readme.txt - contains a brief description and known issues

syncore_rom.v - Verilog library file required to generate ROM
model

testbench.v - Verilog testbench file for testing the ROM model
instantiation_file.vin - describes how to instantiate the wrapper
file

component.v - ROM model wrapper file generated by SYNCore

Note that running the ROM wizard in the same directory
overwrites the existing files.

File Name Specifies the name of the generated file containing the HDL
description of the compiled ROM. Do not use spaces.

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 327

SynCore IP Tool

SYNCore ROM Compiler

Read Data Width

ROM address width

Single Port Rom

Dual Port Rom

Specifies the read data width of the ROM. The unit used is
the number of bits and ranges from 2 to 256. Default value
is 8. The read data width is common to both Port A and Port
B. The corresponding file parameter is DATA_WIDTH=n.

Specifies the address depth for the memory. The unit used
is the number of bits. Default value is 10. The
corresponding file parameter is ADD_WIDTH=n.

When enabled, generates a single-port ROM. The
corresponding file parameter is CONFIG_PORT="single".

When enabled, generates a dual-port ROM. The
corresponding file parameter is CONFIG_PORT="dual".

SYNCore ROM Parameters Pages 2 and 3

The port implementation parameters on pages 2 and 3 are the same; page 2
applies to Port A (single- and dual-port configurations), and page 3 applies to
Port B (dual-port configurations only).

—iZonfiguring Pork &

~Pipelining Address Bus and Output Data
[Register address bus Addra

Regisker output data bus Datad

~i_onfigure Reset Cptions
Reset for PORTA

(@ Asynchronous Reset () Synchronous Reset

~Configure Enable
Enable for PORTA

(@) Active High Enable () Active Low Enable

— Specify oukput data on reset

Default value of '1' for all bits

[Specify reset value for Datak :] walid F.ange 0...2DATA_WIDTH

© 2020 Synopsys, Inc.

328

Synplify Pro for Microchip Edition Reference Manual
Synopsys Confidential Information June 2020

SYNCore ROM Compiler

SynCore IP Tool

Register address bus
AddrA

Register output data
bus DataA

Asynchronous Reset

Synchronous Reset

Active High Enable

Active Low Enable

Default value of '1' for

all bits

Specify reset value for

Used with synchronous ROM configurations to register the
read address. When checked, also allows chip enable to be
configured.

Used with synchronous ROM configurations to register the
data outputs. When checked, also allows chip enable to be
configured.

Sets the type of reset to asynchronous (Configure Reset
Options must be checked). Configuring reset also allows
the output data pattern on reset to be defined. The
corresponding file parameter is
RST_TYPE_A=1/RST_TYPE_B=1.

Sets the type of reset to synchronous (Configure Reset Options
must be checked). Configuring reset also allows the output
data pattern on reset to be defined. The corresponding file
parameter is RST_TYPE_A=0/RST_TYPE_B=0.

Sets the level of the chip enable to high for synchronous
ROM configurations. The corresponding file parameter is
EN_SENSE_A=1/EN_SENSE_B=1.

Sets the level of the chip enable to low for synchronous ROM
configurations. The corresponding file parameter is
EN_SENSE_A=0/EN_SENSE_B=0.

Specifies an output data pattern of all 1’s on reset. The
corresponding file parameter is
RST_DATA_A={n{1'b1} }RST_DATA_B={n{1'b1} }.

Specifies a user-defined output data pattern on reset. The

DataA/DataB pattern is defined in the adjacent field. The corresponding
file parameter is RST_TYPE_A=pattern/RST_TYPE_B=pattern.
Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 329

SynCore IP Tool SYNCore ROM Compiler

SYNCore ROM Parameters Page 4

~ Inkialization of FOM

Select the type of the Inkial values

(@ Binary () Hexadecimal

Inkialization File IC:,I'DesignsSll'majie,l'rnm_init.txt I | Browse, .,

Binary Specifies binary-formatted initialization file.
Hexadecimal Specifies hexadecimal-formatted initial file.

Initialization File Specifies path and filename of initialization file. The
corresponding file parameter is INIT_FILE="filename".

Single-Port Read Operation

For single-port ROM, it is only necessary to configure Port A (see Specifying
ROMs with SYNCore, on page 321. The following diagram shows the read
timing for a single-port ROM.

On every active edge of the clock when there is a change in address with an
active enable, data will be valid on the same clock or next clock (depending on
latency parameter values). When enable is inactive, any address change is
ignored, and the data port maintains the last active read value. An active
reset ignores any change in input address and forces the output data to its
predefined initialization value. The following waveform shows the functional
behavior of control signals in single-port mode.

Cha | | | [I [I | | | | | | |
End I
Addra 5 I o iz T4 T3 &]
Resets |
Datah 170 J245 fzzz fes
© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual

330 Synopsys Confidential Information June 2020

SYNCore ROM Compiler SynCore IP Tool

When reset is active, the output data holds the initialization value (i.e., 255).
When reset goes inactive (and enable is active), data is read form the
addressed location of ROM. Reset has priority over enable and always sets
the output to the predefined initialization value. When both enable and reset
are inactive, the output holds its previous read value.

Note: In the above timing diagram, reset is synchronous.

Dual-Port Read Operation

Dual-port ROMs allow read access to memory through two ports. For
dual-port ROM, both port A and port B must be configured (see Specifying
ROMs with SYNCore, on page 321). The following diagram shows the read
timing for a dual-port ROM.

Clka | | | | | |

Resebd

End |

Addra B fio iz 14 i3 s jz0
Datad 170 745 fzzz 75

CIkE] | | | | | | | L
Reseth

EnE [

AddrE g iz 15 B g 124 27 J30
Dataf 157 Jz45 {143 1167 14

When either reset is active, the corresponding output data holds the initial-
ization value (i.e., 255). When a reset goes inactive (and its enable is active),
data is read form the addressed location of ROM. Reset has priority over
enable and always sets the output to the predefined initialization value. When
both enable and reset are inactive, the output holds its previous read value.

Note: In the above timing diagram, reset is synchronous.

Parameter List

The following table lists the file entries corresponding to the ROM wizard
parameters.

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 331

SynCore IP Tool

SYNCore ROM Compiler

Name

Description

Default Value

Range

ADD_WIDTH

IROM address width
value. Default
value is 10

10

DATA_WIDTH

Read Data width,
common to both
lPort A and Port B

2 to 256

CONFIG_PORT

Parameter to select
Single /Dual
configuration

dual (Dual Port)

dual (Dual), single (Single).

RST TYPE_A

Port A reset type
selection
(synchronous,
asynchronous)

1 - asynchronous

1(asyn), 0 (sync)

RST_TYPE_B

Port B reset type
selection
(synchronous,
asynchronous)

1 - asynchronous

1 (asyn), 0 (sync)

RST_DATA_A

Default data value
for Port A on active
Reset

‘1’ for all data bits

0 - 2"DATA_WIDTH -1

RST_DATA B

Default data value
for Port A on active
Reset

‘1’ for all data bits

0 - 2"DATA_WIDTH -1

EN_SENSE_A

[Port A enable sense

1 - active high

0 - active low, 1- active high

EN_SENSE_B

IPort B enable sense

1 - active high

0 - active low, 1- active high

ADDR_LTNCY_A

Optional address
register select Port
A

1- address registered

1(reg), 0(no reg)

ADDR_LTNCY_B

Optional address
register select Port
B

1- address registered

1(reg), 0(no reg)

© 2020 Synopsys, Inc.
332

Synplify Pro for Microchip Edition Reference Manual
Synopsys Confidential Information

June 2020

SYNCore ROM Compiler

SynCore IP Tool

DATA_LTNCY_A

Optional data
register select Port
A

1- data registered

1(reg), 0(no reg)

DATA_LTNCY_B

Optional data
register select Port
B

1- data registered

1(reg), 0(no reg)

INIT_FILE

Initial values file
name

init.txt

Synplify Pro for Microchip Edition Reference Manual
Synopsys Confidential Information

June 2020

© 2020 Synopsys, Inc.
333

SynCore IP Tool SYNCore Adder/Subtractor Compiler

SYNCore Adder/Subtractor Compiler

The SYNCore adder/subtractor compiler generates Verilog code for a parame-
trizable, pipelined adder/subtractor. This section describes the functionality
of this block in detail.

* Functional Description, on page 334

* Specifying Adder/Subtractors with SYNCore, on page 335
* SYNCore Adder/Subtractor Wizard, on page 343

* Adder, on page 346

* Subtractor, on page 349

* Dynamic Adder/Subtractor, on page 352

Functional Description

The adder/subtractor has a single clock that controls the entire pipeline
stages (if used) of the adder/subtractor.

As its name implies, this block just adds/subtracts the inputs and provides
the output result. One of the inputs can be configured as a constant. The
data inputs and outputs of the adder/subtractor can be pipelined; the
pipeline stages can be O or 1, and can be configured individually. The
individual pipeline stage registers include their own reset and enable ports.

The reset to all of the pipeline registers can be configured either as synchro-
nous or asynchronous using the RESET_TYPE parameter. The reset type of the
pipeline registers cannot be configured individually.

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
334 Synopsys Confidential Information June 2020

SYNCore Adder/Subtractor Compiler SynCore IP Tool

Pipeline Stage A

|: Pipeline Stage Out

PortA ‘ N

— X >
PortOut

[‘

PortB

Pipeline Stage B

PortCarryln

SYNCore adder/subtractor has ADD_N_SUB parameter, which can take three
values ADD, SUB, or DYNAMIC. Based on this parameter value, the
adder/subtractor can be configured as follows.

* Adder
* Subtractor

* Dynamic Adder and Subtractor

Specifying Adder/Subtractors with SYNCore

The SYNCore IP wizard helps you generate Verilog code for your
adder/subtractor implementation requirements. The following procedure

shows you how to generate Verilog code for an adder/subtractor using the
SYNCore IP wizard.

Note: The SYNCore adder/subtractor models use Verilog 2001. When
adding an adder/subtractor model to a Verilog-95 design, be sure to
enable the Verilog 2001 check box on the Verilog tab of the Implementation
Options dialog box or include a set_option -vlog_std v2001 statement in
your project file to prevent a syntax error.

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 335

SynCore IP Tool SYNCore Adder/Subtractor Compiler

1. Start the wizard.

— From the FPGA synthesis tool GUI, select Run->Launch SYNCore or
click the Launch SYNCore icon to start the SYNCore IP wizard.

Flevst | SYNCore AddnSub Model

El- addnsub
‘addnsub modei ! | The SYMNCore AddnSub compiler helps you create AddnSub models
- counter for your designs. These AddnSub models are written out in Verilog
counter_model and can be synthesized as well as simulated. A testbench is
£~ fifos generated for this purpose.
E- sfifo
sfifo model For more information about the SYNCore AddnSub compiler, refer to
S memories the fallowing:
El- byte_enable_ram L)]
byte_en_ram_model *® The built-in AddnSub Compiler document, which you access
El- ram from the ADDnSUB Info button.
ram_model ® The Synplicity tool synthesis tool online help, where you can
= rom access information for the following from the online help
rorm_model Contents:

— In the window that opens, select addnsub_model and click Ok to open
pagel of the wizard.

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
336 Synopsys Confidential Information June 2020

SYNCore Adder/Subtractor Compiler SynCore IP Tool

ADDnSUB Parameters | Core Overview |

AddnSub Compiler

Componert Name ||

Directory Browse. ..
[/| |

File Name [] | Browse._. |

~ Configure the Mode of Operation —

ADDNSUB PortOut e Adder
Subtractor
Adder/Subtractor
PortCarmyln
SynCore ADDNSUB
| Back || Next | Pagetof2

2. Specify the parameters you need in the wizard. For details about the
parameters, see Specifying Adder/ Subtractor Parameters, on page 341.
The ADDNnSUB symbol on the left reflects any parameters you set.

3. After you have specified all the parameters you need, click the Generate
button in the lower left corner.

The tool displays a confirmation message (TCL execution successful!)
and writes the required files to the directory you specified on page 1 of
the wizard. The HDL code is in Verilog.

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 337

SynCore IP Tool SYNCore Adder/Subtractor Compiler

The SYNCore wizard also generates a testbench for your
adder/subtractor. The testbench covers a limited set of vectors. You can
now close the wizard.

4. Add the adder/subtractor you generated to your design.
— Edit the adder/subtractor files if necessary.

— Use the Add File command to add the Verilog design file that was
generated and the syncore_addnsub.v file to your project. These files are
in the directory for output files that you specified on page 1 of the
wizard.

— Use a text editor to open the instantiation_file.v template file. This file is
located in the same output files directory. Copy the lines that define
the adder/subtractor and paste them into your top-level module. The
following figure shows a template file (in red text) inserted into a
top-level module.

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
338 Synopsys Confidential Information June 2020

SYNCore Adder/Subtractor Compiler

SynCore IP Tool

module top
output [15:0] Out,
input Clk,
input [15:0] &,
input CEA,
input RSTA,
input [15:0] B,
input CEB,
input RSTEB,
input CEOut,
input RETCOut,
input ADDNSUB,
input CarryIm };

My ADDnSUB <InstanceName> (

{// Output Ports
.PortOut (PortOut),

/) Input Ports
.PortClk (PortClk),
.PortA(Portl),
.PortCEL (PortCEA),
.PortRSTLE(PortRSTL),
.PortB (FPortBO,
.PortCEE (PortCEB},
.PortRETEG(PortRSTE),
.PortCEQut (Port CEOut) ,
.PortR3TCOut (FortRSTOut),
.PortADDnSUB (PortADDRSUB],
.PortCarryIn{PortCarryIn} };

endmodule

5. Edit the template port connections so that they agree with the port
definitions in your top-level module as shown in the example below (the
updated connection names are shown in red). You can also assign a

unique name to each instantiation.

nodul e top (
output [15 : 0] Qut,
i nput 4 Kk,
input [15 : 0] A
i nput CEA

Synplify Pro for Microchip Edition Reference Manual
June 2020 Synopsys Confidential Information

© 2020 Synopsys, Inc.

339

SynCore IP Tool SYNCore Adder/Subtractor Compiler

nput RSTA

nput [15 : 0] B,
nput CEB,

nput RSTB,

nput CEQut,
nput RSTQut,
nput ADDNSUB,
nput Carryln);

M/_ADDNSUB ADDNSUB i nst (
/1 Qutput Ports

.PortQut(Cut),
/1l Input Ports

.Portd k(dKk),

.Port A(A),

. Port CEA(CEA) ,

. Port RSTA(RSTA) ,

. PortB(B),

. Port CEB(CEB),

. Port RSTB(RSTB)

. Port CEQut (CEQuUt),

. Port RSTCQut (RSTQUL),

. Por t ADDnSUB(ADDnSUB) ,

.PortCarryln(Carryln));
endnodul e

Port List

The following table lists the port assignments for all possible configurations;
the third column specifies the conditions under which the port is available.

Port Name Description Required/Optional
PortA Data input for Always present
adder/subtractor

Parameterized width and
pipeline stages

PortB Data input for Not present if
adder/subtractor adder/subtractor is
Parameterized width and configured as a constant
pipeline stages adder/subtractor

PortClk Primary clock input; clocks all Always present

registers in the unit

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
340 Synopsys Confidential Information June 2020

SYNCore Adder/Subtractor Compiler

SynCore IP Tool

Port Name
PortRstA

PortRstB

PortADDnSUB

PortRstOut

PortCEA

PortCEB

PortCarryin

PortCEOut

PortOut

Description

Reset input for port A pipeline
registers (active high)

Reset input for port B pipeline
registers (active high)

Selection port for dynamic
operation

Reset input for output register
(active high)

Clock enable for port A
pipeline registers (active high)

Clock enable for port B
pipeline registers (active high)
Carry input for
adder/subtractor

Clock enable for output
register (active high)

Data output

Specifying Adder/Subtractor Parameters

Required/Optional

Not present if pipeline stage
for port Ais O

Not present if pipeline stage
for port B is O or for constant
adder/subtractor

Not present if
adder/subtractor configured
as standalone adder or
subtractor

Not present if output pipeline
stage is O

Not present if pipeline stage
for port Ais O

Not present if pipeline stage
for port B is O or for constant
adder/subtractor

Always present

Not present if output pipeline
stage is O

Always present

The SYNCore adder/subtractor can be configured as any of the following:

¢ Adder

* Subtractor

* Dynamic Adder/Subtractor

If you are creating a constant input adder, subtractor, or a dynamic
adder/subtractor with the SYNCore IP wizard, you must select Constant Value
Input and specify a value for port B in the Constant Value/Port B Width field on

page 2 of the parameters. The following procedure lists the parameters you

need to define when generating an adder/subtractor. For descriptions of each
parameter, see SYNCore Adder/ Subtractor Wizard, on page 343.

Synplify Pro for Microchip Edition Reference Manual
Synopsys Confidential Information

June 2020

© 2020 Synopsys, Inc.

341

SynCore IP Tool SYNCore Adder/Subtractor Compiler

1. Start the SYNCore adder/subtractor wizard as described in Specifying
Adder/ Subtractors with SYNCore, on page 335.
2. Enter the following on page 1 of the wizard:

— In the Component Name field, specify a name for your
adder/subtractor. Do not use spaces.

— In the Directory field, specify a directory where you want the output
files to be written. Do not use spaces.

— In the Filename field, specify a name for the Verilog file that will be
generated with the adder/subtractor definitions. Do not use spaces.

— Select the appropriate configuration in Configure the Mode of Operation.
3. Click Next. The wizard opens page 2 where you set parameters for port A
and port B.
4. Configure Port A and B.
— In the Configure Port A section, enter a value in the Port A Width field.

— If you are defining a synchronous adder/subtractor, check Register
Input A and then check Clock Enable for Register A and /or Reset for Register
A.

— To configure port B as a constant port, go to the Configure Port B
section and check Constant Value Input. Enter the constant value in the
Constant Value/Port B Width field.

— To configure port B as a dynamic port, go to the Configure Port B
section and check Enable Port B and enter the port width in the
Constant Value/Port B Width field.

— To define a synchronous adder/subtractor, check Register Input B and
then check Clock Enable for Register B and/or Reset for Register B.
5. In the Configure Output Port section:
— Enter a value in the Output port Width field.
— If you are registering the output port, check Register output Port.
— Ifyou are defining a synchronous adder/subtractor check Clock Enable

for Register PortOut and /or Reset for Register PortOut.

6. In the Configure Reset type for all Reset Signal section, click Synchronous Reset
or Asynchronous Reset as appropriate.

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
342 Synopsys Confidential Information June 2020

SYNCore Adder/Subtractor Compiler SynCore IP Tool

As you enter the page 2 parameters, the ADDnSUB symbol dynamically
updates to reflect the parameters you set.

7. Generate the adder/subtractor by clicking the Generate button as
described in Specifying Adder/ Subtractors with SYNCore, on page 335
and add it to your design. All output files are in the directory you
specified on page 1 of the wizard.

SYNCore Adder/Subtractor Wizard

The following describe the parameters you can set in the adder/subtractor
wizard, which opens when you select addnsub_model:

SYNCore Adder/Subtractor Parameters Page 1, on page 343

SYNCore Adder/Subtractor Parameters Page 2, on page 345

SYNCore Adder/Subtractor Parameters Page 1

e e

Component Name [adder_subtractorS]

Direckory [C;p’designsp’majie ” Browse, ., |

File Mame [add_sub4]l Browse. .. |

~Configure the Mode of Operation

() Adder
() subtractor

(@ Adder/Subtractor

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 343

SynCore IP Tool

SYNCore Adder/Subtractor Compiler

Component Name

Directory

Filename

Adder

Subtractor

Adder/Subtractor

© 2020 Synopsys, Inc.
344

Specifies a name for the adder/subtractor. This is the name
that you instantiate in your design file to create an instance
of the SYNCore adder/subtractor in your design. Do not use
spaces.

Indicates the directory where the generated files will be
stored. Do not use spaces. The following files are created:

* filelist.txt - lists files written out by SYNCore
* options.txt - lists the options selected in SYNCore
* readme.txt - contains a brief description and known issues

¢ syncore_ADDNnSUB.v - Verilog library file required to
generate adder/subtractor model

¢ testbench.v - Verilog testbench file for testing the
adder/subtractor model

¢ instantiation_file.vin - describes how to instantiate the
wrapper file

¢ component.v - adder/subtractor model wrapper file
generated by SYNCore

Note that running the wizard in the same directory
overwrites any existing files.

Specifies the name of the generated file containing the HDL
description of the generated adder/subtractor. Do not use
spaces.

When enabled, generates an adder (the corresponding file
parameter is ADD_N_SUB ="ADD").

When enabled, generates a subtractor (the corresponding
file parameter is ADD_N_SUB ="SUB").

When enabled, generates a dynamic adder/subtractor (the
corresponding file parameter is ADD_N_SUB ="DYNAMIC").

Synplify Pro for Microchip Edition Reference Manual
Synopsys Confidential Information June 2020

SYNCore Adder/Subtractor Compiler SynCore IP Tool
SYNCore Adder/Subtractor Parameters Page 2
~ Input and Cutput Porks Configurations
— onfigure Port A
Part A Width |
Reqgister Input &
Zlock Enable For Register A Reset for Regisker &
—onfigure Port B
[Constant Value Input Enable Port B
Constant YalueiPort B Width |
Reqister Input B
Zlock Enable For Register B Reset for Register B
— onfigure Cutput Pork
Quput port Wwidth [
Reqgister oukpuk PortCut
Clock Enable For Register PorkbOut Reset For Register Porbouk
— onfigure Reset bype for all Reset Signals
() Synchronous Reset (@ Asynchronous Reset
Port A Width Specifies the width of port A (the corresponding file
parameter is PORT_A_WIDTH=n).
Register Input A Used with synchronous adder/subtractor configurations to

register port A. When checked, also allows clock enable and
reset to be configured (the corresponding file parameter is

PORTA_PIPELINE_STAGE="0" or ‘1’).

Clock Enable for Specifies the enable for port A register.

Register A

Reset for Register A Specifies the reset for port A register.

Constant Value Input Specifies port B as a constant input when checked and
allows you to enter a constant value in the Constant Value/Port
B Width field (the corresponding file parameter is

CONSTANT_PORT =0).

Synplify Pro for Microchip Edition Reference Manual

June 2020 Synopsys Confidential Information

© 2020 Synopsys, Inc.
345

SynCore IP Tool SYNCore Adder/Subtractor Compiler
Enable Port B Specifies port B as an input when checked and allows you to
enter a port B width in the Constant Value/Port B Width field
(the corresponding file parameter is CONSTANT_PORT =1").
Constant Value/Port B Specifies either a constant value or port B width depending
Width on Constant Value Input and Enable Port B selection (the

Register Input B

Clock Enable for
Register B

Reset for Register B
Output port Width

Register output
PortOut

Clock Enable for
Register PortOut

Reset for Register
PortOut

Synchronous Reset

Asynchronous Reset

Adder

corresponding file parameters are CONSTANT_VALUE= n or
PORT_B_WIDTH=n).

Used with synchronous adder/subtractor configurations to
register port B. When checked, also allows clock enable and
reset to be configured (the corresponding file parameter is
PORTB_PIPELINE_STAGE="0"or ‘1’).

Specifies the enable for the port B register.

Specifies the reset for the port B register.

Specifies the width of the output port (the corresponding file
parameter is PORT_OUT_WIDTH=n).

Used with synchronous adder/subtractor configurations to
register the output port. When checked, also allows clock
enable and reset to be configured (the corresponding file
parameter is PORTOUT_PIPELINE_STAGE='0’ or ‘1’.

Specifies the enable for the output port register.

Specifies the reset for the output port register.

Sets the type of reset to synchronous (the corresponding file
parameter is RESET_TYPE=0).

Sets the type of reset to asynchronous (the corresponding
file parameter is RESET_TYPE="1’).

Based on the parameter CONSTANT_PORT, the adder can be configured in two

ways.

* CONSTANT_PORT='0'- adder with two input ports (port A and port B)
* CONSTANT_PORT='1"- adder with one constant port

© 2020 Synopsys, Inc.

Synplify Pro for Microchip Edition Reference Manual
June 2020

Synopsys Confidential Information

SYNCore Adder/Subtractor Compiler SynCore IP Tool

Adder with Two Input Ports (Port A and Port B)

In this mode, port A and port B values are added. Optional pipeline stages
can also be inserted at port A, port B or at both port A and port B. Optionally,
pipeline stages can also be added at the output port. Depending on pipeline
stages, a number of the adder configurations are given below.

Adder with No Pipeline Stages - In this mode, the port A and port B inputs
are added. The adder is purely combinational, and the output changes
immediately with respect to the inputs.

Parameters: PORTA_PIPELINE_STAGE= ‘0’
PortA 0 4 la [13 5 I1
PortB 0 I I3 5 2 5
PortOut 0 5 12 [18 17 l6

Adder with Pipeline Stages at Input Only - In this mode, the port A and
port B inputs are pipelined and added. Because there is no pipeline stage at
the output, the result is valid at each rising edge of the clock.

Parameters: PORTA_PIPELINE_STAGE= ‘1’
PORTB_PIPELINE_STAGE= ‘1’
PORTOUT_PIPELINE_STAGE= ‘0’

PortClk e

PortA 0 la 9 [13 5 [
PortB 0 1 E 5 2 5
PortOut 0 5 l12 l18 7 l6

Adder with Pipeline Stages at Input and Output - In this mode, the port A
and port B inputs are pipelined and added, and the result is pipelined. The
result is valid only on the second rising edge of the clock.

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 347

SynCore IP Tool SYNCore Adder/Subtractor Compiler

Parameters: PORTA_PIPELINE_STAGE= ‘1’
PORTB_PIPELINE_STAGE= ‘1’
PORTOUT_PIPELINE_STAGE= ‘1’

PorClk I N N

PortA 0 la 9 l13 5 1
PoriB 0 1 I3 5 2 5
PortOut 0 5 l12 l18 17

Adder with a Port Constant

In this mode, port A is added with a constant value (the constant value can be
passed though the parameter CONSTANT_VALUE). Optional pipeline stages can
also be inserted at port A, Optionally, pipeline stages can also be added at the
output port. Depending on the pipeline stages, a number of the adder config-
urations are given below (here CONSTANT_VALUE=" 3')

Adder with No Pipeline Stages - In this mode, input port A is added with a
constant value. The adder is purely combinational, and the output changes
immediately with respect to the input.

Parameters: PORTA_PIPELINE_STAGE= ‘0’
PORTOUT_PIPELINE_STAGE= ‘0’

PorA 0 la I la I3 [13
PortOut 3 7 la l12 6 l16

Adder with Pipeline Stage at Input Only - In this mode, input port A is
pipelined and added with a constant value. Because there is no pipeline stage
at the output, the result is valid at each rising edge of the clock.

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
348 Synopsys Confidential Information June 2020

SYNCore Adder/Subtractor Compiler SynCore IP Tool

Parameters: PORTA_PIPELINE_STAGE= ‘1’
PORTOUT_PIPELINE_STAGE= ‘0

PorClk e
PortA 0 la 1 la I3 [13
PortOut I3 7 la [12 6 l1g

Adder with Pipeline Stages at Input and Output - In this mode, input port
A is pipelined and added with a constant value, and the result is pipelined.
The result is valid only on the second rising edge of the clock.

Parameters: PORTA_PIPELINE_STAGE= ‘1’
PORTOUT_PIPELINE_STAGE= ‘1’

PortClk] |
PortA 0 la 1 la I3
PortOut I3 7 la [12

Subtractor

Based on the parameter CONSTANT_PORT, the subtractor can be configure in
two ways.

CONSTANT_PORT='0'" - subtractor with two input ports (port A and port B)
CONSTANT_PORT="1" - subtractor with one constant port

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 349

SynCore IP Tool SYNCore Adder/Subtractor Compiler

Subtractor with Two Input Ports (Port A and Port B)

In this mode, port B is subtracted from port A. Optional pipeline stages can
also be inserted at port A, port B, or both ports. Optionally, pipeline stages
can also be added at the output port. Depending on the pipeline stages, a
number of the subtractor configurations are given below.

Subtractor with No Pipeline Stages - In this mode, input port B is
subtracted from port A, and the subtractor is purely combinational. The
output changes immediately with respect to the inputs.

Parameters: PORTA_PIPELINE_STAGE= ‘0’
PORTB_PIPELINE_STAGE= ‘0’
PORTOUT_PIPELINE_STAGE= "0’

PorA 0 4 o 113 5
PortB 0 1 I 5 2
PortOut 0 I3 |6 8 I3

Subtractor with Pipeline Stages at Input Only - In this mode, input port B
and input PortA are pipelined and then subtracted. Because there is no
pipeline stage at the output, the result is valid at each rising edge of the
clock.

Parameters: PORTA_PIPELINE_STAGE= ‘1’
PORTB_PIPELINE_STAGE= ‘1’
PORTOUT_PIPELINE_STAGE= ‘0’

PortA
PoriB
PortOut

b= ==

PortClk | |] B
0 4
0
0

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual

Synopsys Confidential Information June 2020

SYNCore Adder/Subtractor Compiler SynCore IP Tool

Subtractor with Pipeline Stages at Input and Output - In this mode, input

PortA and PortB are pipelined and then subtracted, and the result is
pipelined. The result is valid only at the second rising edge of the clock.

Parameters: PORTA_PIPELINE_STAGE= ‘1’
PORTB_PIPELINE_STAGE= ‘1’
PORTOUT_PIPELINE_STAGE= ‘1’

PonClk]]

PortA 0 14 lo l13 5
PortB 0 I1 I3 5 12
PortOut 0 I3 6 I8

Subtractor with a Port Constant

In this mode, a constant value is subtracted from port A (the constant value
can be passed though the parameter CONSTANT_VALUE). Optional pipeline
stages can also be inserted at port A, Optionally, pipeline stages can also be

added at the output port. Depending on pipeline stages, a number of the
subtractor configurations are given below (here CONSTANT_VALUE="1").

Subtractor with No Pipeline Stages - In this mode, a constant value is
subtracted from port A. The subtractor is purely combinational, and the
output changes immediately with respect to the input.

Parameters: PORTA_PIPELINE_STAGE= ‘0
PORTOUT_PIPELINE_STAGE= ‘0’

PortA 0 a i o 3
PortOut 0 3 o I8 2
Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.

June 2020 Synopsys Confidential Information

351

SynCore IP Tool SYNCore Adder/Subtractor Compiler

Subtractor with Pipeline Stages at Input Only - In this mode, a constant
value is subtracted from pipelined input port A. Because there is no pipeline
stage at the output, the output is valid at each rising edge of the clock.

Parameters: PORTA_PIPELINE_STAGE= ‘1’
PORTOUT_PIPELINE_STAGE= "0’

PortA 4 1 9 I3
PortOut I3 lo 8 2

PorClk _ |
0
0

Subtractor with Pipeline Stages at Input and Output - In this mode, a
constant value is subtracted from pipelined port A, and the output is
pipelined. The result is valid only at the second rising edge of the clock.

Parameters: PORTA_PIPELINE_STAGE= ‘1’
PORTOUT_PIPELINE_STAGE= ‘1’

PortClk] | I

PorA 0 la I lo I3
PortOut 0 Iz o g

Dynamic Adder/Subtractor

In dynamic adder/subtractor mode, port PortADDnSUB controls
adder/subtractor operation.

PortADDnSUB='0" - adder operation
PortADDnSUB="1" - subtractor operation

Based on the parameter CONSTANT_PORT the dynamic adder/subtractor can
be configured in one of two ways:

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
352 Synopsys Confidential Information June 2020

SYNCore Adder/Subtractor Compiler

Synplify Pro for Microchip Edition Reference Manual
June 2020 Synopsys Confidential Information 353

CONSTANT_PORT='0" - dynamic adder/subtractor with two input ports
CONSTANT_PORT="1"' - dynamic adder/subtractor with one constant port

Dynamic Adder/Subtractor with Two Input Ports (Port A and Port B)

In this mode, the addition and subtraction is dynamic based on the value of
input port PortADDnSUB. Optional pipeline stages can also be inserted at Port
A, Port B, or both Port A and Port B. Optionally, pipeline stages can also be
added at the output port. Depending on pipeline stages, some of the dynamic
adder/subtractor configurations are given below.

Dynamic Adder/Subtractor with No Pipeline Registers - In this mode, the
dynamic adder/subtractor is a purely combinational, and output changes
immediately with respect to the inputs.

Parameters: PORTA_PIPELINE_STAGE= ‘0’
PORTB_PIPELINE_STAGE= ‘0’
PORTOUT_PIPELINE_STAGE= ‘0’

PortADDNSUB

PorA 5 l15 I8 [z
PoriB 7 2 3
PortOut [12 117 113 8

Dynamic Adder/Subtractor with Pipeline Stages at Input Only - In this
mode, input port A and port B are pipelined and then added/subtracted
based on the value of port PortADDnSUB. Because there is no pipeline stage at
the output port, the result immediately changes with respect to the PortADD-
nSUB signal.

Parameters: PORTA_PIPELINE_STAGE= ‘1’
PORTB_PIPELINE_STAGE= ‘1’
PORTOUT_PIPELINE_STAGE= ‘0

SynCore IP Tool

© 2020 Synopsys, Inc.

SynCore IP Tool SYNCore Adder/Subtractor Compiler

PortClk N [
PorADDNSUB

PortA 5 l15 s [13
PortB 17 12 5
PortOut l12 17 1z 3 s

Dynamic Adder/Subtractor with Pipeline Stages at Input and Output - In
this mode, input port A and port B are pipelined and then added/subtracted
based on the value of port PortADDNnSUB. Because the output port is pipelined,
the result is valid only on the second rising edge of the clock.

Parameters: PORTA_PIPELINE_STAGE= ‘1’
PORTB_PIPELINE_STAGE= ‘1’
PORTOUT_PIPELINE_STAGE= ‘1’

PoriClk | [[
PortADDRSUB

PorA 5 115 s [z
PorB 17 2 5
PortOut 0 l12 17 E

Dynamic Adder/Subtractor with a Port Constant

In this mode, a constant value is either added or subtracted from port A
based on input port value PortADDnSUB (the constant value can be passed
though the parameter CONSTANT_VALUE). Optional pipeline stages can also be
inserted at port A, Optionally, pipeline stages can also be added at the output
port. Depending on the pipeline stages, a number of the dynamic
adder/subtractor configurations are given below (here CONSTANT_VALUE=" 1").

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
354 Synopsys Confidential Information June 2020

SYNCore Adder/Subtractor Compiler SynCore IP Tool

Dynamic Adder/Subtractor with No Pipeline Registers - In this mode,
dynamic adder/subtractor is a purely combinational, and the output change
immediately with respect to the input.

Parameters: PORTA_PIPELINE_STAGE= ‘0’
PORTOUT_PIPELINE_STAGE= ‘0’

PortADDRSUB
PortA 13 o 5
PortOut 114 10 6 14

Dynamic Adder/Subtractor with Pipeline Stages at Input Only - In this
mode, a constant value is either added or subtracted from the pipelined
version of port A based on the value of port PortADDnSUB. Because there is no
pipeline stage on the output port, the result changes immediately with
respect to the PortADDnSUB signal.

Parameters: PORTA_PIPELINE_STAGE= ‘1’
PORTOUT_PIPELINE_STAGE= ‘0’

PortClk]
PortADDRSUB

PortA 113 l9 5

PortOut 0 114 l10 6 1a

Dynamic Adder/Subtractor with Pipeline Stages at Input and Output - In
this mode, a constant value is either added or subtracted from the pipelined
version of port A based on the value of port PortADDnSUB. Because the output
port is pipelined, the result is valid only on the second rising edge of the
clock.

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 355

SynCore IP Tool SYNCore Adder/Subtractor Compiler

Parameters: PORTA_PIPELINE_STAGE= ‘1’
PORTOUT_PIPELINE_STAGE= ‘1’

PortClk I |] [
PortADDRSUB i

PortA l13 9 5

PortOut 0 l14 l10 4

Dynamic Adder/Subtractor with Carry Input

The following waveform shows the behavior of the dynamic adder/subtractor
with a carry input (the carry input is assumed to be 0).

PortClk | |
8
5

PortA I l13 5 I
PortB |5 la 2 7
PontCarryln |
PortADDNSUB

PortOut 0 I7 I8

Dynamic Adder/Subtractor with Complete Control Signals

The following waveform shows the complete signal set for the dynamic
adder/subtractor. The enable and reset signals are always present in all of
the previous cases.

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
356 Synopsys Confidential Information June 2020

SYNCore Adder/Subtractor Compiler SynCore IP Tool

PortClk | | | | | | | [
PortA (
PorB lo

|

|

|

[

[

[

PortCEA
PortCEB
PortCEOut
FortRSTA
PortRSTB
PortRSTOut
PonCarryln L

PortADDNSUB

PortOut —o I7 I8

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 357

SynCore IP Tool SYNCore Counter Compiler

SYNCore Counter Compiler

The SYNCore counter compiler generates Verilog code for your up, down, and
dynamic (up/down) counter implementation. This section describes the
following:

¢ Functional Overview, on page 358

* Specifying Counters with SYNCore, on page 359
* SYNCore Counter Wizard, on page 365

¢ UP Counter Operation, on page 368

¢ Down Counter Operation, on page 369

* Dynamic Counter Operation, on page 369

Functional Overview

The SYNCore counter component supports up, down, and dynamic
(up/down) counter implementations using DSP blocks or logic elements. For
each configuration, design optimizations are made for optimum use of core
resources.

As its name implies, the COUNTER block counts up (increments) or down
(decrements) by a step value and provides an output result. You can load a
constant or a variable as an intermediate value or base for the counter. Reset
to the counter on the PortRST input is active high and can be can be config-
ured either as synchronous or asynchronous using the RESET_TYPE param-
eter. Count enable on the PortCE input must be value high to enable the
counter to increment or decrement.

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
358 Synopsys Confidential Information June 2020

SYNCore Counter Compiler SynCore IP Tool

Specifying Counters with SYNCore

The SYNCore IP wizard helps you generate Verilog code for your counter
implementation requirements. The following procedure shows you how to
generate Verilog code for a counter using the SYNCore IP wizard.

Note: The SYNCore counter model uses Verilog 2001. When adding a
counter model to a Verilog-95 design, be sure to enable the Verilog
2001 check box on the Verilog tab of the Implementation Options dialog box
or include a set_option -viog_std v2001 statement in your project file to
prevent a syntax error.

1. Start the wizard.

— From the FPGA synthesis tool GUI, select Run->Launch SYNCore or
click the Launch SYNCore icon to start the SYNCore IP wizard.

File List [«]
St | SYNCore Counter Model
El- addnsub
addnsub model The SYMNCore Counter compiler helps you create Counter models for
- counter B your designs. These Counter models are written out in Verilog and
counter_model can be synthesized as well as simulated. Atestbench is generated
£~ fifos for this purpose.
EH- sfifo
sfifo model For more information about the SYMNCore Counter compiler, refer to
= memories the following:
El- byte_enable_ram o))
byte_en_ram_model * The built-in Counter Compiler document, which you access
El- ram from the COUNTER Info button.
ram_model * The Synplicity tool synthesis tool online help, where you can
= rom access information for the following from the online help
rorm_model Contents:

— In the window that opens, select counter_model and click Ok to open
pagel of the wizard.

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 359

SynCore IP Tool SYNCore Counter Compiler

COUNTER Parameters | Core Overview |

Counter Compiler

Comparentame [|

PortClk Directory | | | Browse... |

File Name [] | Browse._. |

— Configure the Counter Parameters ——

Width of Counter | |
FPortCount
COUM
COUNTER Counter Step Vave [|

— Configure the Mode of Counter
® Lip Counter
Down Counter

UpDown Counter

synCore COUNTER [}

| Back || Next Page 1 of 2

2. Specify the parameters you need in the wizard. For details about the
parameters, see Specifying Counter Parameters, on page 364. The
COUNTER symbol on the left reflects any parameters you set.

3. After you have specified all the parameters you need, click the Generate
button in the lower left corner.

The tool displays a confirmation message (TCL execution successful!)
and writes the required files to the directory you specified on page 1 of
the wizard. The HDL code is in Verilog.

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
360 Synopsys Confidential Information June 2020

SYNCore Counter Compiler SynCore IP Tool

The SYNCore wizard also generates a testbench for your counter. The
testbench covers a limited set of vectors. You can now close the wizard.

4. Add the counter you generated to your design.
— Edit the counter files if necessary.

— Use the Add File command to add the Verilog design file that was
generated and the syncore_addnsub.v file to your project. These files are
in the directory for output files that you specified on page 1 of the
wizard.

— Use a text editor to open the instantiation_file.v template file. This file is
located in the same output files directory. Copy the lines that define
the counter and paste them into your top-level module. The following
figure shows a template file (in red text) inserted into a top-level
module.

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 361

SynCore IP Tool SYNCore Counter Compiler

module counter #(
parameter COUNT WIDTH = 5,
parameter STEFR = Z,
parameter RESET TYPE = 0,
parameter LOAD = 2,
parameter MODE = "Dynamic")

{
// Output Ports
output wire [WIDTH-1:0] Count,
// Input Ports
input wire Clock,
input wire Reset,
input wire Up Down,
input wire Load,
input wire [WIDTH-1:0] LoadvValue,
input wire Enable);

SynCoreCounter # (
. COUNT WIDTH (COUNT WIDTH) ,
.STEP (STEP) , N
.RESET TYPE (RESET TYPE),
.TORD (LOAD) ,
MODE (MODE))

) ; termplate
SynCoreCounter insl |

.PortCount (_;ortCount) P

PortClk (PortClock),

.PortRST {PortRST) ,

.PortUp nDown (PortUp nDown) »
PortLoad (PortLoad) ,
PortloadvValus (PortLoadloadvalues)
.PortCE (PortCE)) ;

endmodule

5. Edit the template port connections so that they agree with the port
definitions in your top-level module as shown in the example below (the
updated connection names are shown in red). You can also assign a
unique name to each instantiation. You can also assign a unique name
to each instantiation.

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
362 Synopsys Confidential Information June 2020

SYNCore Counter Compiler

SynCore IP Tool

nodu

p
p
p
p
p

| e counter #(
araneter COUNT_WDTH = 5,
araneter STEP = 2,

aranet er RESET_TYPE = 0,
araneter LOAD = 2,
arameter MCDE = "Dynam c")

(
[/l Qutput Ports

111

output wire [WDTIH 1: 0] Count,
nput Ports

i nput wire d ock,

i nput wire Reset,

i nput wire Up_Down,

i nput wire Load,

input wire [WDTH 1: 0] LoadVal ue,

i nput wire Enable);

SynCor eCount er #(
. COUNT_W DTH(COUNT_W DTH) ,
. STEP(STEP) ,
. RESET_TYPE(RESET_TYPE),
. LOAD(LQAD) ,
. MODE(MCDE))

SynCor eCount er _i ns1 (
. Port Count (Count),
. Portd k(d ock),
. Port RST(Reset),
. Port Up_nDown(Up_Down),
. Port Load(Load),
. Port LoadVal ue(LoadVal ue),
. Port CE(Enabl e)) ;

endnodul e

Port List

The following table lists the port assignments for all possible configurations;
the third column specifies the conditions under which the port is available.

Synplify Pro for Microchip Edition Reference Manual

June 2020

Synopsys Confidential Information

© 2020 Synopsys, Inc.
363

SynCore IP Tool SYNCore Counter Compiler
Port Name Description Required/Optional
PortCE Count Enable input pin with Always present
size one (active high)
PortClk Primary clock input Always present
PortLoad Load Enable input which Not present for parameter
loads the counter (active high). LOAD=0
PortLoadValue Load value primary input Not present for parameter
(active high) LOAD=0 and LOAD=1
PortRST Reset input which resets the Always present

PortUp_nDown

PortCount

counter (active high)

Primary input which
determines the counter mode.
0 = Up counter

1 = Down counter

Counter primary output

Specifying Counter Parameters

Present only for
MODE="Dynamic”

Always present

The SYNCore counter can be configured for any of the following functions:

© 2020 Synopsys, Inc.

¢ Up Counter
* Down Counter

* Dynamic Up/Down Counter

The counter core can have a constant or variable input load or no load value.
If you are creating a constant-load counter, you will need to select Enable Load
and Load Constant Value on page 2 of the wizard. If you are creating a
variable-load counter, you will need to select Enable Load and Use Variable Port
Load on page 2. The following procedure lists the parameters you need to
define when generating a counter. For descriptions of each parameter, see
SYNCore Counter Wizard, on page 365.

1. Start the SYNCore counter wizard, as described in Specifying Counters
with SYNCore, on page 359.

Synplify Pro for Microchip Edition Reference Manual
Synopsys Confidential Information June 2020

SYNCore Counter Compiler SynCore IP Tool

2. Enter the following on page 1 of the wizard:

In the Component Name field, specify a name for your counter. Do not
use spaces.

In the Directory field, specify a directory where you want the output
files to be written. Do not use spaces.

In the Filename field, specify a name for the Verilog file that will be
generated with the counter definitions. Do not use spaces.

Enter the width and depth of the counter in the Configure the Counter
Parameters section.

Select the appropriate configuration in the Configure the Mode of Counter
section.

3. Click Next. The wizard opens page 2 where you set parameters for
PortLoad and PortLoadValue.

Select Enable Load option and the required load option in Configure Load
Value section.

Select the required reset type in the Configure Reset type section.

The COUNTER symbol dynamically updates to reflect the parameters you
set.

4. Generate the counter core by clicking Generate button. All output files
are written to the directory you specified on pagel of the wizard.

SYNCore Counter Wizard

The following describe the parameters you can set in the ROM wizard, which
opens when you select counter_model:

* SYNCore Counter Parameters Page 1, on page 366

* SYNCore Counter Parameters Page 2, on page 367

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.

June 2020

Synopsys Confidential Information 365

SynCore IP Tool

SYNCore Counter Compiler

SYNCore Counter Parameters Page 1

Component Mame [up—down_cnunter

Directary [Z: /designs/majiefmanitor

] | Browse, ..

File Mame [udc2

] | Browse. ..

~— Configure the Counter Parameters

width of Counter |16

Counker Step Yalue [1

— onfigure the Mode of Counter

() Up Counter
() Doven Counker

@ UpDown Counter

Component Name

Directory

Filename

© 2020 Synopsys, Inc.
366

Specifies a name for the counter. This is the name that you
instantiate in your design file to create an instance of the
SYNCore counter in your design. Do not use spaces.

Indicates the directory where the generated files will be
stored. Do not use spaces. The following files are created:

* filelist.txt - lists files written out by SYNCore
* options.txt - lists the options selected in SYNCore
¢ readme.txt - contains a brief description and known issues

* syncore_counter.v - Verilog library file required to generate
counter model

* testbench.v - Verilog testbench file for testing the counter
model

* instantiation_file.vin - describes how to instantiate the
wrapper file

¢ component.v - counter model wrapper file generated by
SYNCore

Note that running the wizard in the same directory
overwrites any existing files.

Specifies the name of the generated file containing the HDL
description of the generated counter. Do not use spaces.

Synplify Pro for Microchip Edition Reference Manual
Synopsys Confidential Information June 2020

SYNCore Counter Compiler SynCore IP Tool

Width of Counter Determines the counter width (the corresponding file
parameter is COUNT_WIDTH=n).

Counter Step Value Determines the counter step value (the corresponding file
parameter is STEP=n).

Up Counter Specifies an up counter (the default) configuration (the
corresponding file parameter is MODE=Up).

Down Counter Specifies an down counter configuration (the
corresponding file parameter is MODE=Down).

UpDown Counter Specifies a dynamic up/down counter configuration (the
corresponding file parameter is MODE=Dynamic).

SYNCore Counter Parameters Page 2

—additional Configurations

~Configure Load options

Enable Load option

Configure Load Yalue

[] Load Constant value

Load Value Far constant lnad option | 1

Use the port PortLoadvValue to load Yalue

~Configure Reset type

(® Synchronous Reset () Asynchronous Reset

Enable Load option Enables the load options

Load Constant Value Load the constant value specified in the Load Value for constant
load option field; (the corresponding file parameter is LOAD=1).

Load Value for The constant value to be loaded.
constant load option

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 367

SynCore IP Tool

SYNCore Counter Compiler

Use the port
PortLoadValue to load
Value

Synchronous Reset

Asynchronous Reset

Loads variable value from PortLoadValue (the corresponding
file parameter is LOAD=2).

Specifies a synchronous (the default) reset input (the
corresponding file parameter is MODE=0).

Specifies an asynchronous reset input (the corresponding
file parameter is MODE=1).

UP Counter Operation

In this mode, the counter is incremented by the step value defined by the
STEP parameter. When reset is asserted (when PostRST is active high), the
counter output is reset to 0. After the assertion of PortCE, the counter starts
counting upwards coincident with the rising edge of the clock. The following
waveform is with a constant STEP value of 5 and no load value.

Parameters:

PortRST

MODE-= ‘Up’
LOAD= ‘0’

PortClk |
]

PorlCE

'PorCount (0

5 110 |15 J20 25 130 Js5 140 Ja5 J50 55 [60 Je5 j70 |75 0 8

Note: Counter core can be configured to use a constant or dynamic
load value in Up Counter mode (for the counter to load the Port-
LoadValue, PortCE must be active). This functionality is explained
in Dynamic Counter Operation, on page 369.

© 2020 Synopsys, Inc.
368

Synplify Pro for Microchip Edition Reference Manual
Synopsys Confidential Information June 2020

SYNCore Counter Compiler SynCore IP Tool

Down Counter Operation

In this mode, the counter is decremented by the step value defined by the
STEP parameter. When reset is asserted (when PostRST is active high), the
counter output is reset to 0. After the assertion of PortCE, the counter starts
counting downwards coincident with the rising edge of the clock. The
following waveform is with a constant STEP value of 5 and no load value.

Parameters: MODE= ‘Down’
LOAD= ‘0’

PoriClk

PorRST
PoriCE
PotCourt 53 M8 i3 8 13 |8 J3 8 13 B B

Note: Counter core can be configured to use a constant or dynamic
load value in Down Counter mode (for the counter to load the
PortLoadValue, PortCE must be active). This functionality is
explained in Dynamic Counter Operation, on page 369.

Dynamic Counter Operation

In this mode, the counter is incremented or decremented by the step value
defined by the STEP parameter; the count direction (up or down) is controlled
by the PortUp_nDown input (1 = up, O = down).

Dynamic Up/Down Counters with Constant Load Value*

On de-assertion of PortRST, the counter starts counting up or down based on
the PortUp_nDown input value. The following waveform is with STEP value of 5
and a LOAD_VALUE of 80. When PortLoad is asserted, the counter loads the
constant load value on the next active edge of clock and resumes counting in
the specified direction.

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 369

SynCore IP Tool SYNCore Counter Compiler

Parameters: MODE= ‘Dynamic’

PortClk
PortRST
PartlUp_nDown
PortCE
PortLoad
PorCaunt

LOAD= ‘1’

Uy
[

—

5 1o J15 J20 |5 J30 Jeo Jes Joo 185 T100 105 [110 J115 J120 J125 J130 J125 J120

Note: *For counter to load the PortLoadValue, PortCE must be active.

Dynamic Up/Down Counters with Dynamic Load Value*

On de-assertion of PortRST, the counter starts counting up or down based on
the PortUp_nDown input value. The following waveform is with STEP value of 5
and a LOAD_VALUE of 80. When PortLoad is asserted, the counter loads the
constant load value on the next active edge of clock and resumes counting in
the specified direction.

In this mode, the counter counts up or down based on the PortUp_nDown input
value. On the assertion of PortLoad, the counter loads a new PortLoadValue and
resumes up/down counting on the next active clock edge. In this example, a
variable PortLoadValue of 8 is used with a counter STEP value of 5.

Parameters: MODE-= ‘Dynamic’

© 2020 Synopsys, Inc.

370

LOAD= 2’

Synplify Pro for Microchip Edition Reference Manual
Synopsys Confidential Information June 2020

SYNCore Counter Compiler SynCore IP Tool

PortClk

PorRST l

Portup_nDown |
PorCE
PorLoadValue | |25 I3t

PortLoad
PortCount 05 10 15 20 [265 [260 [265 [270 1275 270 1265 [260 (255 [31 l26 21 116

Note: * For counter to load the PortLoadValue, PortCE should be active.

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 371

SynCore IP Tool SYNCore Counter Compiler

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
372 Synopsys Confidential Information June 2020

SYNOPSYsS

Silicon to Software

APPENDIX H

Designing with Microchip

This chapter discusses the following topics for synthesizing Microchip
designs:

* Basic Support for Microchip Designs, on page 374

* Microchip Components, on page 377

* Microchip RAM Implementations, on page 386

* Microchip Constraints and Attributes, on page 406

* Microchip Device Mapping Options, on page 409

* Microchip Output Files and Forward Annotation, on page 419
* Integration with Microchip Tools and Flows, on page 423

* Microchip Attribute and Directive Summary, on page 426

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 373

Designing with Microchip Basic Support for Microchip Designs

Basic Support for Microchip Designs
This section describes the uses of the tool with Microchip devices. Topics
include:
* Microchip Device-specific Support, on page 374
* Netlist Format, on page 374
* Microchip Features, on page 376

Microchip Device-specific Support

The tool creates technology-specific netlists for a number of Microchip
families of FPGAs. The following technologies are supported:

FPGAs Technology Families
Mixed-Signal SmartFusion2
Low-Power » PolarFireSoC

* PolarFire

* IGLOO2
Rad-Tolerant RTG4

New devices are added on an ongoing basis. For the most current list of

supported devices, check the Device panel of the Implementation Options
dialog box.

Netlist Format

The synthesis tool outputs EDIF or VM netlist files for use with the Microchip
place-and-route application. These files have edn and vmextensions.

After synthesis the tool generates a constraint file as well, which is forward
annotated as input into the Microchip place-and-route tool. These files have
the following extensions:

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
374 Synopsys Confidential Information June 2020

Basic Support for Microchip Designs Designing with Microchip

Vendor Support Forward Annotation Constraint File
Microchip (PolarFire) designName_vm.sdc

Microchip (SmartFusion2) designName_sdc.sdc and designName_vm.sdc
Microchip (All, except designName_sdc.sdc

PolarFire or SmartFusion?2)

On the Implementation Results tab of the Implementation Options dialog box, two file
formats: edi f and vm are available depending on your design’s device family.

You can also use the project Tcl command to specify the result file format.

project -result format edif/vm

Targeting Output for Microchip
You can generate output targeted for Microchip.
1. To specify the output, click the Implementation Options button.
2. Click the Implementation Results tab, and check the output files you need.

The following table summarizes the outputs to set for the different
devices, and shows the P&R tools for which the output is intended.

Vendor Support Output Netlist P&R Tool
Microchip (PolarFire) VM (.vm) Libero SoC
Microchip (SmartFusion2) EDIF/VM Libero SoC

(-edn or.vm

Microchip EDIF (. edn) Libero SoC or IDE

3. To generate mapped Verilog/VHDL netlists and constraint files, check
the appropriate boxes and click OK.

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 375

Designing with Microchip Basic Support for Microchip Designs

Customizing Netlist Formats

The following table lists some attributes for customizing your Microchip
output netlists:

For ... Use ...

Netlist formatting syn_netlist hierarchy
define_global_attribute syn_netlist_hierarchy {0}

Bus specification syn_noarrayports
define_global_attribute syn_noarrayports {1}

Microchip Forward Annotation

The synthesis tool generates Microchip-compliant constraint files from
selected constraints that are forward annotated (read in and then used) by
the Microchip Libero SoC or Libero IDE place-and-route software. The
Microchip constraint file uses the _vm sdc or _sdc. sdc extension. This
constraint file must be imported into the Microchip flow.

By default, Microchip constraint files are generated from the synthesis tool
constraints. You can then forward annotate these files to the place-and-route
tool. To disable this feature, deselect the Write Vendor Constraint File box (on the
Implementation Results tab of the Implementation Options dialog box).

Microchip Features
The synthesis tool contains the following Microchip-specific features:
* Direct mapping to Microchip c-modules and s-modules
* Timing-driven mapping, replication, and buffering
* Inference of counters, adders, and subtractors; module generation
* Automatic use of clock buffers for clocks and reset signals

* Automatic I/O insertion. See I/ O Insertion, on page 410 for more infor-
mation.

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
376 Synopsys Confidential Information June 2020

Microchip Components Designing with Microchip

Microchip Components

These topics describe how the synthesis tool handles various Microchip
components, and show you how to work with or manipulate them during
synthesis to get the results you need:

* Macros and Black Boxes in Microchip Designs, on page 377
* DSP Block Inference, on page 379

* Control Signals Extraction for Registers (SLE), on page 384
* Wide MUX Inference, on page 385

Macros and Black Boxes in Microchip Designs

You can instantiate Smartgen! macros or other Microchip macros like gates,
counters, flip-flops, or I/Os by using the supplied Microchip macro libraries
to pre-define the Microchip macro black boxes. For certain technologies, the
following macros are also supported:

* MACC and RAM Timing Models
* SmartFusion2 MACC Block
¢ SIMBUF Macro

For general information on instantiating black boxes, see Instantiating Black
Boxes in VHDL, on page 401, and Instantiating Black Boxes in Verilog, on
page 120. For specific procedures about instantiating macros and black
boxes and using Microchip black boxes, see the following sections in the User
Guide:

* Defining Black Boxes for Synthesis, on page 382
* Using Predefined Microchip Black Boxes, on page 424

* Using Smartgen Macros, on page 425

1. Smartgen macros now replace the ACTgen macros. ACTgen macros were available
in the previous Designer 6.x place-and-route tool.

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 377

Designing with Microchip

© 2020 Synopsys, Inc.

378

MACC and RAM Timing Models

MACC and RAM timing models are supported for PolarFire, RTG4, SmartFu-
sion2, and IGLOO2 devices. Timing analysis considers the timing arcs for RAM
and MACC.

SmartFusion2 MACC Block

SmartFusion2 devices support bit-signed 18x18 multiply-accumulate blocks.
This architecture provides dedicated components called SmartFusion2 MACC
blocks, for which DSP-related operations can be performed like multiplication
followed by addition, multiplication followed by subtraction, and multiplica-
tion with accumulate. For more information, see DSP Block Inference, on
page 379.

SIMBUF Macro

The synthesis software supports instantiation of the SIMBUF macro. The
SIMBUF macro provides the flexibility to probe signals without using physical
locations, as possible from the Identify tool. The Resource Summary will report
the number of SIMBUF instantiations in the 1O Tile section of the log file.

Microchip Components

Synplify Pro for Microchip Edition Reference Manual
Synopsys Confidential Information June 2020

Microchip Components Designing with Microchip

DSP Block Inference

This feature allows the synthesis tool to infer DSP or MATH18x18 blocks for
SmartFusion2 devices and MACC_PA block for PolarFire devices. The
following structures are supported for SmartFusion2 devices:

e DOTP Support

The MACC block is configured in DOTP mode when two independent
signed 9-bit x 9-bit multipliers are followed by addition. The sum of the
dual independent 9x9 multiplier (DOTP) result is stored in the upper 35
bits of the 44-bit output. In DOTP mode, the MACC block implements
the following equation:

P =D + (CARRYIN + C) + 512 * (AL * BH)+ (AH * BL)), when SUB = 0
P =D + (CARRYIN + C) - 512 * (AL * BH) + (AH * BL)), when SUB = 1

Below is an example RTL which infers MACC block in DOTP mode after
synthesis:

nodul e dotp_add_unsign_syn (ina, inb, inc, ind, ine, dout);
par amet er wi dt ha
par anet er w dt hb
par anet er w dt hc
par arret er wi dt hd ;
par anet er wi dt he 0;
paraneter w dth_out = 44;

7
7
8
3

i nput [w dtha-1:0] ina;
i nput [w dthb-1:0] inb;
i nput [wi dthc-1:0] inc;
i nput [wi dthd-1:0] ind;

i nput [wi dthe-1:0] ine;
output reg [width out-1:0] dout;
always @ina or inb or inc or ind or ine)
begi n
dout <= (ina * inb) + (inc * ind) + ine;
end
endnodul e

The MACC block does not support DOTP mode if the

— Width of the multiplier inputs is greater than 9-bits when signed.

— Width of the multiplier inputs is greater than 8-bits when unsigned.
— Width of the non-multiplier inputs is greater than 36-bits.

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 379

Designing with Microchip Microchip Components

* Multipliers

* Mult-adds — Multiplier followed by an Adder

* Mult-subs — Multiplier followed by a Subtractor
* Wide multiplier inference

A multiplier is treated as wide, if any of its inputs is larger than 18 bits
signed or 17 bits unsigned. The multiplier can be configured with only
one input that is wide, or else both inputs are wide. Depending on the
number of wide inputs for signed or unsigned multipliers, the synthesis
software uses the cascade feature to determine how many math blocks
to use and the number of Shift functions it needs.

* MATH block inferencing across hierarchy

This enhancement to MATH block inferencing allows packing input
registers, output registers, and any adders or subtractors into different
hierarchies. This helps to improve QoR by packing logic more efficiently
into MATH blocks.

By default, the synthesis software maps the multiplier to DSP blocks if all
inputs to the multiplier are more than 2-bits wide; otherwise, the multiplier is
mapped to logic. You can override this default behavior using the syn_multstyle
attribute. See syn_multstyle, on page 129 for details.

The following conditions also apply:
* Signed and unsigned multiplier inferencing is supported.

* Registers at inputs and outputs of multiplier/multiplier-adder/multi-
plier-subtractor are packed into DSP blocks.

* Synthesis software fractures multipliers larger than 18X18 (signed) and
17X17 (unsigned) into smaller multipliers and packs them into DSP
blocks.

* When multadd/multsub are fractured, the final adder/subtractor are
packed into logic.

The following structures are supported for PolarFire devices:
¢ Add-mult — Adder followed by a Multiplier
* Multipliers
* Mult-adds — Multiplier followed by an Adder

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
380 Synopsys Confidential Information June 2020

Microchip Components Designing with Microchip

* Mult-subs — Multiplier followed by a Subtractor

* Mult-acc — Multiplier followed by an Accumulator
* Wide multiplier inference

* MATH block inferencing across hierarchy

* DOTP Support

* Coefficient ROM

This section also includes the following topics:
* Packing Coefficient ROM in the DSP, on page 381
* DSP Cascade Chain Inference, on page 382
* Symmetric FIR Filter Packing in MACC_PA_BC_ROM, on page 382

* Multiplier-Accumulators (MACC) Inference, on page 383

Packing Coefficient ROM in the DSP

Packing the coefficient ROM in the DSP implements the coefficient ROM data
as one input to mult-add/add/sub, when inferring the MACC_PA_BC_ROM
macro. The MACC_PA_BC_ROM macro extends the functionality of the
MACC_PA macro to provide a 16x18 ROM at the A input. The USE_ROM pin
is available for the primitive to select the input data A or the ROM data at
ROM_ADDR.

Select operand A as follows:
* When USE_ROM = 0, select input data A.
* When USE_ROM = 1, select the ROM data at ROM_ADDR.

The RTL example below infers the MACC_PA_BC_ROM macro after synthesis:

nmodul e test(inl, romaddr, out);
paraneter data width = 17;
parareter romw dth = 17;
paraneter romdepth = 4;

i nput [data_width-1:0] inl,;
i nput [romdepth-1:0] rom addr;
output [47:0] out;

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 381

Designing with Microchip

Microchip Components

© 2020 Synopsys, Inc.

382

reg [romwi dth-1:0] nem[O0: 2**romdepth -1];

wire [romwi dth-1: 0] romdata;

initial
begi n

$readnenb("memdat”, nenj;
end

assign romdata = mem|[romaddr];
assign out = romdata * inl;
endnodul e

DSP Cascade Chain Inference

The MATH18x18 block cascade feature supports the implementation of
multi-input Mult-Add/Sub for devices with MATH blocks. The software packs
logic into MATH blocks efficiently using hard-wired cascade paths, which
improves the QoR for the design.

Prerequisites include the following requirements:

Symmetric FIR Filter Packing in MACC_PA_BC_ROM

The input size for multipliers is not greater than 18x18 bits (signed) and

17x17 bits (unsigned).

Signed multipliers have the proper sign-extension.

All multiplier output bits feed the adder.

Multiplier inputs and outputs can be registered or not.

PolarFire

The tool supports the packing of symmetric FIR filters though the inference of
MACC_PA BC_ROM blocks with shift chain.

Synopsys Confidential Information

Synplify Pro for Microchip Edition Reference Manual

June 2020

Microchip Components Designing with Microchip

Multiplier-Accumulators (MACC) Inference

The Multiplier-Accumulator structures use internal paths for adder feedback
loops inside the MATH18x18 block instead of connecting it externally.

Prerequisites include the following requirements:

* The input size for multipliers is not greater than 18x18 bits (signed) and
17x17 bits (unsigned).

* Signed multipliers have the proper sign-extension.
e All multiplier output bits feed the adder.
* The output of the adder must be registered.

* The registered output of the adder feeds back to the adder for accumula-
tion.

* Since the Microchip MATH block contains one multiplier, only Multi-
plier-Accumulator structures with one multiplier can be packed inside
the MATH block.

The other Multiplier-Accumulator structure supported is with Synchronous
Loadable Register.

Prerequisites include the following requirements:
* All the requirements mentioned above apply for this structure as well.

* For the Loading Multiplier-Accumulator structure, new Load data
should be passed to input C.

* The LoadEn signal should be registered.

DSP Limitations

Currently, DSP inferencing does not support the following functions:
* Overflow extraction

* Arithmetic right shift for operand C

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 383

Designing with Microchip Microchip Components

Note: For more information about Microchip DSP math blocks along
with a comprehensive set of examples, see the Inferring Microchip
RTAX-DSP MATH Blocks application note on the Synopsys
website.

Control Signals Extraction for Registers (SLE)

The synthesis software supports extraction of control signals, the enable,
synchronous set or reset, and asynchronous reset on the registers. The tool
packs the enable with the EN pin, synchronous set or reset using SLn pin
and asynchronous reset using ALn pin of the SLE.

When the fanout limit is 12, synchronous set or reset is packed using the SLn
pin. If the fanout limit is less than 12, the tool inserts extra logic for the
synchronous set or reset.

The tool supports packing of the enable signal, which has higher priority than
the reset signal (synchronous) of the SLE.

Initial Values for Registers (SLE)

Initial values are not supported on registers (SLE). If the initial value is
specified for a register in the RTL code, the tool ignores the value and issues a
warning. For the following Verilog code:

nodul e test

i nput clk,

input [7:0] a,

output [7:0] z);

reg [7:0] z_reg = 8 hfO0;
reg one = 1'di;

al ways@ posedge cl k)
Z_reg <= a + one;

assign z = z_reg;
endnodul e

The initial value for register z_reg is specified, so the tool issues a warning
message in the synthesis log report:

@W: FX1039|User-specified initial value defined for instance z_reg[7:0] is being ignored.

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
384 Synopsys Confidential Information June 2020

Microchip Components Designing with Microchip

Wide MUX Inference

Wide MUXs are implemented using ARI1 primitives and is supported for
PolarFire, RTG4, and SmartFusion2 technologies.

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 385

Designing with Microchip

Microchip RAM Implementations

Microchip RAM Implementations

Refer to the following topics for Microchip RAM implementations:

RAM for PolarFire

RAM for RTG4

RAM for SmartFusion2/IGLOO2

PolarFire Asymmetric RAM support

RAM Reporting

Low Power RAM Inference

URAM Inference for Sequential Shift Registers

Async Reset and Dynamic Offset in Seqgshifts

Packing of Enable Signal on the Read Address Register
Packing of INIT Value on LSRAM and URAM Blocks in PolarFire
PolarFire RAM Inference for ROM Support

Write Byte-Enable Support for RAM

RAMINDEX Support

RAM for PolarFire

The tool supports the following RAM primitives for the PolarFire device:

© 2020 Synopsys, Inc.

386

RAM1K20 (LSRAM) is supported for both inference and instantiation.

The following configurations are supported for inference:
— True dual-port configuration

— Dual-port ROM

— Two independent data ports

— Non-ECC—1Kx20, 2Kx10, 4Kx5, 8Kx2 or 16Kx1 on each port

— Two-port configuration

— Read from port A and write to port B

Synopsys Confidential Information

Synplify Pro for Microchip Edition Reference Manual

June 2020

Microchip RAM Implementations Designing with Microchip

— Non-ECC—512x40, 1Kx20, 2Kx10, 4Kx5, 8Kx2 or 16Kx1 on each
port

— ECC—512x33 on both ports
Generates SB_CORRECT and DB_DETECT flags

— Write operations

Three modes—simple write, write feed-through, read before write

— Asymmetric RAM is supported. See PolarFire Asymmetric RAM
support, on page 392.

RAM64x12 (USRAM) is supported for both inference and instantiation.

The following configurations are supported for inference:

— The RAM64x12 block contains 768 memory bits and is a two-port
memory, providing one write port and one read port. Write operations
for the RAM64x12 memory are synchronous. Read operations can be
asynchronous or synchronous to set up the address and read out the
data.

— Consists of one read-data port and one write-data port.

— Both read-data and write-data ports are configured to 64x12.

RAM for RTG4

The software supports the following RAM primitives for the RTG4 device:

RAM1K18_RT Maps to RAM1K18_RT for:

» Single-port, two-port, and dual-port synchronous read/write
memory.

* Read-before-write in dual-port mode for single-port and dual-
port synchronous memory.

e Read-enable extractionl.

RAM64X18_RT Maps to RAM64X18_RT for single-port, two-port, and three-port

synchronous/asynchronous read and synchronous write
memory.

1. Currently, read-enable extraction for wide RAM is not supported.

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.

June 2020

Synopsys Confidential Information 387

Designing with Microchip Microchip RAM Implementations

Read-before-write mode not supported for RAM1K18_RT primitive of
RTG4

Read-before-write mode is not supported for the RTG4 RAM1K18 RT RAM
primitive. By default, when Read/Write Check insertion is OFF, RAM1K18_RT
is inferred in the mode in which Read-data port holds the previous value,
with A_WMODE/B_WMODE set to 00.

When Read/Write Check insertion is ON, true dual-port RAM in Read-before-
write mode errors out due to multiple write clocks or is implemented as
registers if a single clock is present. Single-port RAM in Read-before-write
mode is inferred as RAM64x18_RT and logic.

RAM for SmartFusion2/IGLOO2

Two types of RAM macros are supported: RAM1K18 and RAM64X18. The
synthesis software extracts the RAM structure from the RTL and infers
RAM1K18 or RAM64X18 based on the size of the RAM.

The default criteria for specifying the macro is described in the table below for
the following RAM types.

True Dual-Port Synchronous The synthesis tool maps to RAM1K18, regardless of
Read Memory its memory size.
© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual

388

Synopsys Confidential Information June 2020

Microchip RAM Implementations Designing with Microchip

Simple Dual-Port or Single-Port If the size of the memory is:

Synchronous Memory * 4608 bits or greater, the synthesis tool maps to

RAMI1K18.

¢ Greater than 12 bits and less than 4608 bits, the
synthesis tool maps to RAM64X18.

* Less than or equal to 12 bits, the synthesis tool
maps to registers.

Simple Dual-Port or Single-Port When the size of the memory is 12 bits or greater,
Asynchronous Memory the synthesis tool maps to RAM64x18. Otherwise, it
maps to registers.

Three-Port RAM Inference This feature supports SmartFusion2 and IGLOO2
Support devices only.

* RAM64x18 is a 3-port memory that provides one
Write port and two Read ports.

e Write operation is synchronous, while read
operations can be asynchronous or synchronous.

The tool infers RAM64X18 for these structures.

You can override the default behavior by applying the syn_ramstyle attribute to
control how the memory gets mapped. To map to

* RAM1K18 set syn_ramstyle = "Isram"
* RAM64X18 set syn_ramstyle = "uram"

* Registers set syn_ramstyle = "registers"

The value you set for this attribute always overrides the default behavior.
Three-Port RAM Inference Support

Verilog Example 1: Three-Port RAM—Synchronous Read

nodul e raminferl5 rtl
(cl k, di nc, dout a, dout b, wr c, rda, r db, addr a, addr b, addr c) ;
i nput cl k;
i nput [17:0] dinc;
i nput wrc, rda, rdb;
i nput [5:0] addra, addrb, addrc;
output [17:0] douta, dout b;
reg [17:0] dout a, dout b;
reg [17:0] mem[0:63];

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 389

Designing with Microchip Microchip RAM Implementations

al ways@ posedge cl k)
begi n

i f(wc)

menj addrc] <= di nc;
end

al ways @ posedge cl k)
begi n

douta <= nenf addra] ;
end

al ways @ posedge cl k)
begi n

doutb <= nenfaddrb] ;
end

endnodul e

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
390 Synopsys Confidential Information June 2020

Microchip RAM Implementations

Designing with Microchip

RTL View:

ranil

-

- doutaf17:0])

mem{17:0]

rami

douth{17-0]

mem_1[17:0]

The tool infers one RAM64X18.

——— L e T EER =

> e o 17 0] =

VHDL Example 2: Three-Port RAM—Asynchronous Read

library ieee;

use ieee.std_| ogic_1164. al |

use ieee.std_| ogi c_unsigned. all;

entity ramsingl eport_noreg is

port (d : in std_logic_vector(7 dowto 0);
addw : in std_|ogic_vector(6 dowto 0);
addrl : in std |logic_vector(6 dowto 0);
addr2 : in std logic_vector(6 dowto 0);
we : in std_|ogic;

clk : in std_|ogic;

gl : out std logic_vector(7 dowto 0);
g2 : out std logic vector(7 dowto 0));
end ram si ngl eport_noreg

architecture rtl of ramsingleport _noreg is
type memtype is array (127 downto 0) of
std_logic_vector (7 downto 0);

signal mem nemtype

begi n

process (cl k)

begi n

if rising_edge(clk) then

if (we ="1") then

men(conv_i nteger (addw)) <= d;

end if;

Synplify Pro for Microchip Edition Reference Manual
June 2020 Synopsys Confidential Information

© 2020 Synopsys, Inc.
391

Designing with Microchip Microchip RAM Implementations

end if;

end process;

gl<= nmen{conv_i nteger (addrl));
g2<= men{conv_i nteger (addr2));

end rtl;
RTL View:
e raml
addr 1[6:10] —_—— et ==
e)] (177 0] -,
addw{E:0] — T —— BT[] .-.-__.-J_q-![? |
IE -
mem{7:0]
2 ram
e G — = 1 Ritea]
— : | p—ii? 0]
mem_1[7:0]

The tool infers one RAM64X18.

PolarFire Asymmetric RAM support

Synthesis of asymmetric simple dual-port RAM is supported. Asymmetric
RAM has different widths for read and write access ports. Read and write
widths on RAM1K20 are configured independent of each other.

Two-port mode is also supported. For example, for a read configuration of
1Kx20, the following write configurations are supported:

* Write width < read width (4Kx5, 2Kx10)
* Write width > read width (512x40) (two-port mode)

© 2020 Synopsys, Inc.

Synplify Pro for Microchip Edition Reference Manual
392

Synopsys Confidential Information June 2020

Microchip RAM Implementations

Designing with Microchip

Example 1—When Write Width < Read Width

In the RTL below, write access configuration is 2Kx8 and read access
configuration is 1Kx16.

nodul e asymram (din ,dout, addra, addrb, clk, wen);

input [7:0] din;
i nput wen;
i nput [10: 0] addra;
output reg [15:0] dout;
input [9:0] addrb
i nput cl k;
| ocal paramratio= 2;
| ocal par am max_dept h=2048;
| ocal param m n_wi dt h=8;
reg [10: 0] taddra;
reg [mn width-1:0] nemranjmax_depth-1:0];
al ways @ posedge cl k)
begi n

i f(wen)

mem r anf t addr a] <=di n;

t addr a<=addr a;
end

al ways @ posedge cl k)
begi n // manual concatenation

dout [m n_wi dt h*O+: mi n_wi dt h] <=mem ranf {0, addrb}]; // it can be

witten inside generate-|oop

dout [m n_wi dt h*1+: mi n_wi dt h] <=nem ranj {1, addrb}];

end
endnodul e

Synplify Pro for Microchip Edition Reference Manual

June 2020

Synopsys Confidential Information

© 2020 Synopsys, Inc.
393

Designing with Microchip Microchip RAM Implementations

RTL View
raml
Co RAGRIS)
[ETE = EATA]
S Do)
=== o
CLE
mem_ram15:g]
ramil
FADGRIE T
pataro]
WADDAE oou?a]
@ ol =k
1o a{10:0) un1_tacera{rofni-en_Li0] S

Technology View

miih i
(ST]

st i
[1T] L]

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
394 Synopsys Confidential Information June 2020

Microchip RAM Implementations Designing with Microchip

Example 2—When Write Width > Read Width

The code below implements asymmetric RAM with 1Kx16 write access and
2Kx8 read access configurations.

nodul e asymran(din, dout, addra, addrb, clk, we);
i nput [15:0] din;

i nput [9:0] addra;

output reg [7:0] dout;

i nput [10: 0] addrb;

i nput cl k;

i nput we;

| ocal par am max_dept h=2048;

| ocal param m n_wi dt h=8;

reg [mnwdth-1:0] nemranjmax_depth-1:0];

reg [9:0] taddra;

reg [10: 0] taddrb;

al ways @ posedge cl k)

begi n

dout <=nem r anj t addr b] ;

t addr b<=addr b;

end

al ways @ posedge cl k)

if (we)

begi n

mem ranf {0, addr a}] <=di n[m n_wi dt h*0+: m n_wi dt h] ;
mem ranf {1, addra}] <=di n[m n_w dt h*1+: m n_wi dt h] ;
end

endnodul e

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.

June 2020

Synopsys Confidential Information 395

Designing with Microchip Microchip RAM Implementations

RTL View

kil

RADDR{10.0] L}

B e SEERINSRE 2 o s

CLED .
WED dout(7:0]
W DD R0 0]
DATAD]T 0]
CLEY

WEL
WADDFL[10 O]

. | = -
[RifEras O] - - bt (15721/7.0]

Ee
yofiod oo
taddrb[10-0]

l\\.
i ik

mem_ram[7:0]

Technology View

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
396 Synopsys Confidential Information June 2020

Microchip RAM Implementations Designing with Microchip

Attributes

RAM attributes, like syn_ramstyle, are applied to control the inference.

Read Write Control Signals

Control signals are the same as that of symmetric RAM implementation:
* Enable read and write
* Synchronous and asynchronous reset on RAM registers
* RAM read-write mode (no change, write-first, read-first)

* Packing of RAM registers or pipelines

Limitations
* Initial value is not supported.
* Asymmetric true dual-port RAM is not supported.

* Read/write logic check creation is not supported. If the read /write check
option is enabled, then the RAM is implemented in symmetric mode.

RAM Reporting

A detailed report is generated in the {implname}_ram_rpt.txt file with details of
the LSRAM and URAMs inferred for a design.

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 397

Designing with Microchip Microchip RAM Implementations

Low Power RAM Inference
PolarFire, RTG4, SmartFusion2, and IGLOOZ2 Technologies

Enhanced RAM inference uses the BLK pin of the RAM for reducing power
consumption. By setting the global option low_power ram_decomp 1 in the
project file, the tool fractures the wide RAMs on the address width, using the
BLK pin of the RAM to reduce power consumption. By default, the tool
fractures wide RAMs by splitting the data width to improve timing.

This feature is supported for single-port, simple-dual port, and true-dual port
RAM modes.

URAM Inference for Sequential Shift Registers
PolarFire Technologies
URAM inference is supported for sequential shift registers.

By default, seqgshift is implemented using registers. The syn_sristyle attribute is
used to override the default behavior of seqshift implementation using URAM.
This attribute can be applied on the top-level module or on a segshift instance
in the RTL view, by dragging and dropping the instance to the SCOPE editor.

If the attribute is applied on the top-level module, the tool infers URAM for all
the seqgshifts in the design using the following threshold values:

Depth >= 4 and Depth*Width > 36
If the attribute is applied on the seqgshift instance, the tool infers URAM

irrespective of the threshold values.

syn_srlstyle Values

Value Description
Registers seqshifts are inferred as registers.
URAM segshift is inferred as RAM64X12.
© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual

398 Synopsys Confidential Information June 2020

Microchip RAM Implementations Designing with Microchip

syn_srlstyle Syntax

FDC define_attribute {object} syn_sristyle {registersjuram }

define_global_attribute syn_srlstyle {registers|juram }
Verilog object /* synthesis syn_sristyle = "registers | uram " */;
VHDL attribute syn_srlstyle : string;

attribute syn_sristyle of object : signal is "registers | uram ";

Example
The tool infers a seqgshift primitive for the following HDL:
nodul e p_seqgshift(clk, we, din, dout);

paraneter SRL_WDIH = 7,
par armet er SRL_DEPTH = 37,

i nput clk, we;

i nput [SRL_WDTH 1: 0] din;

output [SRL_WDTH 1: 0] dout;

reg [SRL_WDTH 1: 0] regBank[SR._DEPTH 1: 0]
/*synthesis syn srlstyle = "uram'*/;

integer i;

al ways @posedge cl k) begin
if (we) begin
for (i=SRL_DEPTH 1; i>0; i=i-1) begin
regBank[i] <= regBank[i-1];
end
regBank[0] <= din;
end
end

assi gn dout = regBank[SRL_DEPTH 1] ;
endnodul e

The segshift generated for the HDL above is shown in technology view.

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 399

Designing with Microchip Microchip RAM Implementations

seqshift
b RADDR[S.0]
dnﬁo];_‘_‘;_ | ||I
':_f _*; i L' -;.I:i DOUTIO 0| et IO UL 0]
regBank[6:0]
Limitations

Limitations include the following:
* Segshifts with both reset and set are inferred as registers.

* Segshifts with enable signal having higher priority than synchronous set
or synchronous reset are inferred as registers.

Async Reset and Dynamic Offset in Seqshifts

The tool supports the packing of async reset and dynamic offset logic in
seqgshifts through the inference of RAM blocks in PolarFire devices.

Packing of Enable Signal on the Read Address Register
PolarFire and RTG4 Technologies

The tool packs the enable signal on the read address register for the
following:

¢ PolarFire RAM1K20 and RAM64x12 Enhancements
* RTG4 RAM64x18, RAM64x18_RT, RAM1K18 RT Enhancements

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
400 Synopsys Confidential Information June 2020

Microchip RAM Implementations Designing with Microchip

PolarFire RAM1K20 and RAM64x12 Enhancements

The tool supports the packing of enable signal on the read address register into
RAM1K20 (A_REN) and RAM64x12 (R_ADDR_EN).

RTG4 RAM64x18, RAM64x18_RT, RAM1K18_RT Enhancements

Packing of enable signal on the read address register into RAM1K18_RT
(A_REN), RAM64x18 (A_ADDR_EN & B_ADDR_EN), and RAM64x18_RT (A_ADDR_EN
& B_ADDR_EN) is supported.

Packing of INIT Value on LSRAM and URAM Blocks in PolarFire

INIT value packing is supported for RAM1K20 and RAM64x12 RAM blocks in
the PolarFire device. Here is some sample code:

nmodul e test (clk,we, waddr, raddr, din, q);
i nput cl k, we;

input [addr_width - 1 : 0] waddr,raddr;
input [data width - 1 : 0] din;

output [data_width - 1 : 0] g;

reg [datawidth - 1 : 0] q;

reg [datawidth - 1 : 0] nem[(2**addr_width) - 1 : O];
initial $readmenb("nenl.dat", menj;

al ways @ (posedge cl k)

i f(we) nenfwaddr] <= din;

al ways @ (posedge clk)

if(we) g <=din;

else q <= nenjraddr];

endnodul e

PolarFire RAM Inference for ROM Support

By default, ROM is implemented using RAM1K20 and RAM64x12 depending on
the RAM threshold values. The RAM is inferred in non-low (speed) mode.
Asynchronous ROM is always mapped to RAM64x12.

Use the syn_romstyle attribute to override the default behavior of the ROM
implementation with RAM or logic.

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 401

Designing with Microchip Microchip RAM Implementations

The syn_romstyle attribute can be used to determine the implementation of the
ROM components as follows:

FDC define_attribute {object} syn_romstyle {logicluram|lsram}

define_global_attribute syn_romstyle {logic|uram|lsram}
Verilog object /* synthesis syn_romstyle = "logic | uram | Isram" */ ;
VHDL attribute syn_romstyle : string;

attribute syn_romstyle of object : signal is "logic | uram | Isram";

The syn_romstyle values are:

Value Description
logic ROM is inferred as registers or LUTs.
uram|lsram ROM is inferred as RAM1K20 or RAM64x12. Asynchronous
ROM is mapped to RAM64x12 even if the Isram attribute is
applied.
Example 1
nodul e test(clk, addr, dat aout) ;
i nput cl k;
paraneter addr_w dth = 10;
paraneter data w dth = 20;

i nput [addr_wi dth-1:0] addr

output [data_wi dth-1:0] dataout;

reg [data_w dth-1:0] dataout;

al ways @ (posedge clk)

case (addr)

10' dO : dataout <= 20' b01000110000010001100;
10'dl1 : dataout <= 20'b11100000110110011100;
10'd2 : dataout <= 20'b10110101101111011001;
10' d3 : dataout <= 20'b01111010011000000000;
10' d4 : dataout <= 20' b00110110100111111100;
10'd5 : dataout <= 20'b11110101000010001010;
10' d6 : dataout <= 20' b00010010110101000110;
10' d7 : dataout <= 20'b01001001010010100110;
10' d8 : dataout <= 20'b01110111000111111011
10'd9 : dataout <= 20'b10010101111110111110;

10 d1015 : dataout <= 20'b11011010000111111101;
10' d1016 : dataout <= 20' b11001000101001110111;
10' d1017 : dataout <= 20' b01010000111100100011;

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
402 Synopsys Confidential Information June 2020

Microchip RAM Implementations Designing with Microchip

10' d1018 : dat aout <= 20' b11000110011011011011
10' d1019 : dat aout <= 20' b10000000110101100110;
10' d1020 : dat aout <= 20' b11100101010001001011
10' d1021 : dataout <= 20' b10010011000110001010;
10' d1022 : dat aout <= 20' b00100000110010000101;
10' d1023 : dat aout <= 20' b10001010000011111010;
default : dataout <= 20' b0OOO00000000000000000;
endcase

endnodul e

The following ROM is displayed in the SRS view of the tool for the RTL above.
The tool infers RAM1K20 for the ROM below.

rom -

PAGIE0] et A[90] DOUT[190] DI19:0] QU90] peetpemememmefialaou150] >
dataout[19:0]

dataout_2[19:0]

Example 2

nmodul e test (addr, dataout);

paraneter addr_w dth =

paraneter data width = 10

input [addr_ width - 1 : 0] addr;

output [data width - 1 : 0] dataout;

reg [data width - 1 : 0] mem[(2**addr_width) - 1 : 0] ;
initial $readnenh("menk56x10_hex.list", men;

assi gn dataout = nenjaddr];

endnodul e

The following ROM is displayed in the SRS view of the tool for the RTL above.
Since this is an asynchronous ROM, the tool infers RAM64x12.

rom

ddr[7 0] = emm— [7 0] DOUT[9 0] feememmmemid ataout[9 0] ==

dataout_1[9:0]

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 403

Designing with Microchip Microchip RAM Implementations

Write Byte-Enable Support for RAM

For RAM with n write enables used to control writing of data into memory
locations, the compiler creates n sub-instances of the RAM with different
write enables. The mapper merges these multiple RAM blocks into single or
multiple block RAM, depending on the threshold and number of write
enables. The write byte-enable pin (A_WEN/B_WEN [1:0]) of the block RAM
primitives are configured to control the write operation for block RAMs.

Example

modul e ram (din, dout, addra, addrb, clk, wenl, wen2);
input [7:0] din;

i nput wenl;

i nput wen2

input [9:0] addra;

i nput cl k;

output reg [7:0] dout;

| ocal par am max_dept h=1024;

| ocal param m n_wi dt h=8;

reg [9:0] taddra;

reg [mnwdth-1:0] nemranjnax_depth-1:0];

al ways @ posedge cl k)
begi n
t addr a<=addr a;
i f(wenl)
nmem ranftaddra][3: 0] <=din[3:0];

i f(wen2)
memranftaddral [7: 4] <=din[7: 4] ;
end
al ways @ posedge cl k)
begi n
dout <= nemranjtaddra];
end
endnodul e

The compiler infers two ram1 shown in the SRS view below, which can be
combined and mapped into a single RAM1K18_RT or RAM1K20.

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
404 Synopsys Confidential Information June 2020

Microchip RAM Implementations Designing with Microchip

raml
taddra[9:0] i
[P dout[7:0]
L[5 L e T
mem{3:0]
raml
Wen2
memi7 :4]

RAMINDEX Support

The RAMINDEX attribute is supported for all inferred RAMs of RTG4,
SmartFusion2, IGLOO2 and PolarFire devices.

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 405

Designing with Microchip Microchip Constraints and Attributes

Microchip Constraints and Attributes

The synthesis tools let you specify timing constraints, general HDL attributes,
and Microchip-specific attributes to improve your design. You can manage
the attributes and constraints in the SCOPE interface. The following topics
explain how to implement constraints and attributes for Microchip designs.
Refer to:

* Global Buffer Promotion, on page 406
¢ The syn_maxfan Attribute in Microchip Designs, on page 407
* Radiation-tolerant Applications, on page 408

Global Buffer Promotion

PolarFire, RTG4, SmartFusion2, IGLOO2 Technologies

The synthesis software inserts the global buffer (CLKINT) on clock, asynchro-
nous set/reset, and data nets based on a threshold value. The supported
devices have specific threshold values that cannot be changed for the
different types of nets in the design. Inserting global buffers on nets with
fanout greater than the threshold can help reduce the route delay during
place and route.

Net Global buffer inserted for threshold value > or =

PolarFire Devices

Clock 2
Asynchronous Set/Reset 6
Data 5000

RTG4 Devices

Clock 2
Asynchronous Set/Reset 200000
Data 5000

SmartFusion2 and IGLOO2 Devices

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual

406

Synopsys Confidential Information June 2020

Microchip Constraints and Attributes Designing with Microchip

Net Global buffer inserted for threshold value > or =
Clock 2

Asynchronous Set/Reset 12

Data 5000

To override these default option settings you can:

* Use the syn_noclockbuf attribute on a net that you do not want a global
buffer inserted, even though fanout is greater than the threshold.

* Use syn_insert_buffer="CLKINT" so that the tool inserts a global buffer on
the particular net, which is less than the threshold value. You can only
specify CLKINT as a valid value for SmartFusion2 devices.

The syn_maxfan Attribute in Microchip Designs

The syn_maxfan attribute is used to control the maximum fanout of the design,
or an instance, net, or port. The limit specified by this attribute is treated as a
hard or soft limit depending on where it is specified. The following rules
described the behavior:

* Global fanout limits are usually specified with the fanout guide options
(Project->Implementation Options->Device), but you can also use the
syn_maxfan attribute on a top-level module or view to set a global soft
limit. This limit may not be honored if the limit degrades performance.
To set a global hard limit, you must use the Hard Limit to Fanout option.

* A syn_maxfan attribute can be applied locally to a module or view. In this
case, the limit specified is treated as a soft limit for the scope of the
module. This limit overrides any global fanout limits for the scope of the
module.

* When a syn_maxfan attribute is specified on an instance that is not of
primitive type inferred by Synopsys FPGA compiler, the limit is consid-
ered a soft limit which is propagated down the hierarchy. This attribute
overrides any global fanout limits.

* When a syn_maxfan attribute is specified on a port, net, or register (or any
primitive instance), the limit is considered a hard limit. This attribute
overrides any other global fanout limits. Note that the syn_maxfan attri-
bute does not prevent the instance from being optimized away and that

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 407

Designing with Microchip Microchip Constraints and Attributes

design rule violations resulting from buffering or replication are the
responsibility of the user.

Radiation-tolerant Applications

You can specify the radiation-resistant design technique to use on an object
for a design with the syn_radhardlevel attribute. This attribute can be applied to
a module/architecture or a register output signal (inferred register in VHDL),
and is used in conjunction with the Microchip macro files supplied with the
software.

Values for syn_radhardlevel are as follows:

Value Description
none Standard design techniques are used.

cc Combinational cells with feedback are used to implement storage rather
than flip-flop or latch primitives.

tmr Triple module redundancy or triple voting is used to implement registers.
Each register is implemented by three flip-flops or latches that “vote” to
determine the state of the register.

tmr_cc Triple module redundancy is used where each voting register is composed
of combinational cells with feedback rather than flip-flop or latch
primitives.

For details, see:
* Working with Microchip Radhard Designs, on page 542
* syn_radhardlevel, on page 195

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
408 Synopsys Confidential Information June 2020

Microchip Device Mapping Options Designing with Microchip

Microchip Device Mapping Options
To achieve optimal design results, set the correct implementation options.
Some options include the following:
* [/O Insertion, on page 410
* Update Compile Point Timing Data Option, on page 411
* Operating Condition Device Option, on page 412

See Also
* Microchip set_option Command Options, on page 415

* Microchip Tcl set_option Command Options, on page 416

Promote Global Buffer Threshold
The Promote Global Buffer Threshold option is used for both ports and nets.

The Tcl command equivalent is set_option -globalthreshold value, where the value
refers to the minimum number of fanout loads. The default value is 1.

Only signals with fanout loads larger than the defined value are promoted to
global signals. The synthesis tool assigns the available global buffers to drive
these signals using the following priority:

1. Clock
2. Asynchronous set/reset signal

3. Enable, data

SmartFusion2, IGLOO2, and RTG4 Global Buffer Promotion

The synthesis software inserts the global buffer (CLKINT) on clock, asynchro-
nous set/reset, and data nets based on a threshold value. SmartFusion2,
IGLOO2, and RTG4 devices have specific threshold values that cannot be
changed for the different types of nets in the design. Inserting global buffers
on nets with fanout greater than the threshold can help reduce the route
delay during place and route.

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 409

Designing with Microchip Microchip Device Mapping Options

The threshold values for SmartFusion2 and IGLOO2 devices are the

following:

Net Global buffer inserted for threshold value > or =
Clock 2

Asynchronous Set/Reset 12

Data 5000

The threshold values for RTG4 devices are the following:

Net Global buffer inserted for threshold value > or =
Clock 2

Asynchronous Set/Reset 200000

Data 5000

To override these default option settings you can:

* Use the syn_noclockbuf attribute on a net that you do not want a global
buffer inserted, even though fanout is greater than the threshold.

* Use syn_insert_buffer="CLKINT" so that the tool inserts a global buffer on
the particular net, which is less than the threshold value. You can
specify CLKINT, RCLKINT, CLKBUF, or CLKBIBUF as values for
SmartFusion2, RTG4, and IGLOO2 devices.

/0O Insertion

The Synopsys FPGA synthesis tool inserts I/O pads for inputs, outputs, and
bidirectionals in the output netlist unless you disable I/O insertion. You can
control I/O insertion with the Disable I/O Insertion option (Project->Implementation
Options->Device).

If you do not want to automatically insert any I/O pads, check the Disable I/O
Insertion box (Project->Implementation Options->Device). This is useful to see how
much area your blocks of logic take up, before synthesizing an entire FPGA. If
you disable automatic I/O insertion, you will not get any I/O pads in your
design unless you manually instantiate them yourself.

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
410 Synopsys Confidential Information June 2020

Microchip Device Mapping Options Designing with Microchip

If you disable I/O insertion, you can instantiate the Microchip I/O pads you
need directly. If you manually insert I/O pads, you only insert them for the
pins that require them.

Update Compile Point Timing Data Option
PolarFire, SmartFusion2, IGLOO2Technologies

The Update Compile Point Timing Data option used with the Synopsys FPGA
compile-point synthesis flow lets you break down a design into smaller
synthesis units, called compile points, making incremental synthesis
possible. See Synthesizing Compile Points, on page 455 in the User Guide.

The Update Compile Point Timing Data option controls whether or not changes to a
locked compile point force remapping of its parents, taking into account the
new timing model of the child.

Note: To simplify this description, the term child is used here to refer to
a compile point that is contained inside another; the term parent
is used to refer to the compile point that contains the child.
These terms are thus not used here in their strict sense of direct,
immediate containment: If a compile point A is nested in B,
which is nested in C, then A and B are both considered children
of C, and C is a parent of both A and B. The top level is consid-
ered the parent of all compile points.

Disabled

When the Update Compile Point Timing Data option is disabled (the default), only
(locked) compile points that have changed are remapped, and their remap-
ping does not take into account changes in the timing models of any of their
children. The old (pre-change) timing model of a child is used, instead, to
map and optimize its parents.

An exceptional case occurs when the option is disabled and the interface of a
locked compile point is changed. Such a change requires that the immediate
parent of the compile point be changed accordingly, so both are remapped. In
this exceptional case, however, the updated timing model (not the old model)
of the child is used when remapping this parent.

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 411

Designing with Microchip Microchip Device Mapping Options

Enabled

When the Update Compile Point Timing Data option is enabled, locked compile-
point changes are taken into account by updating the timing model of the
compile point and resynthesizing all of its parents (at all levels), using the
updated model. This includes any compile point changes that took place prior
to enabling this option, and which have not yet been taken into account
(because the option was disabled).

The timing model of a compile point is updated when either of the following is
true:

* The compile point is remapped, and the Update Compile Point Timing Data
option is enabled.

* The interface of the compile point is changed.

Automatic Compile Points
PolarFire Technology
This feature is enabled, by default, only for PolarFire devices.

The tool supports the Automatic Compile Points (ACP) flow. For details, see
The Automatic Compile Point Flow, on page 456 in the User Guide.

Operating Condition Device Option
You can specify an operating condition for certain Microchip technologies:
¢ PolarFire
* RTG4
¢ SmartFusion?2

¢ IGLOO2

Different operating conditions cause differences in device performance. The
operating condition affects the following:

* optimization, if you have timing constraints
* timing analysis
* timing reports

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
412 Synopsys Confidential Information June 2020

Microchip Device Mapping Options Designing with Microchip

To set an operating condition, select the value for Operating Conditions from the
menu on the Device tab of the Implementation Options dialog box.

Device
Technalogy: Part: Speed:
(=] [[] [:2 -]

Device Mapping Options

|Option Yalue
Annotated Properties For Analyst
Fanout Guide 12
Promote Global Buffer Threshold 50
Hard limit ta Fanout [l
Disable 1/ Insertion O
Retiming [l
Max number of critical paths in SDF 4000
Operating Conditions Default hd
Update Compile Point Timing Data =
COMWC-2
Zonservative Register Optimization COMWE-1
COMWCSTD
COMWC-F
COMTC-2
—Opkion Description EngE;I'D
COMTC-F
Click on an option For description COMBC.E @

To set an operating condition in a project or Tcl file, use the command:

set_option -opcond value

where value can be specified like the following typical operating conditions:

Default Typical timing
MIL-WC Worst-case Military timing
MIL-TC Typical-case Military timing
MIL-BC Best-case Military timing
Automotive-WC Worst-case Automotive timing
Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.

June 2020 Synopsys Confidential Information 413

Designing with Microchip Microchip Device Mapping Options

For Example

The Microchip operating condition can contain any of the following specifica-
tions:

* MIL—military
* COM—commercial
* IND—Industrial
* TGradel
¢ TGrade2
as well as, include one of the following designations:
¢ WC—worst case
* BC—best case

¢ TC—typical case

For specific operating condition values for your required technology, see the
Device tab on the Implementation Options dialog box.

Even when a particular operating condition is valid for a family, it may not be
applicable to every part/package/speed-grade combination in that family.
Consult Microchip's documentation or software for information on valid
combinations and more information on the meaning of each operating condi-
tion.

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual

414

Synopsys Confidential Information June 2020

Microchip Device Mapping Options Designing with Microchip

Microchip set_option Command Options

To select device mapping options for Microchip technologies, select Project ->
Implementation Options->Device and set the options.

Option For details, see ...

Automatic Read/Write Check Insertion for ~ Enabling this option automatically inserts

RAM bypass logic when required to prevent
simulation mismatch in read-during-
write scenarios. For asynchronous clocks,
the tool will not generate bypass logic
which can cause unintended CDC paths
between the clocks. For more information
about using this option in conjunction
with the syn_ramstyle attribute, see
syn_ramstyle , on page 199.

Conservative Register Optimization See the Microchip Tcl set_option
Command Options , on page 416 for more
information about the preserve_registers

option.
Disable I/O Insertion I/ O Insertion , on page 410.
Fanout Guide Setting Fanout Limits , on page 418 of the

User Guide and The syn_maxfan
Attribute in Microchip Designs , on

page 407.

Operating Conditions (certain technologies) Operating Condition Device Option , on
page 412

Promote Global Buffer Threshold Controlling Buffering and Replication , on

page 420 of the User Guide and Promote
Global Buffer Threshold , on page 409.

Resolve Mixed Drivers When a net is driven by a VCC or GND
and active drivers, enable this option to
connect the net to the VCC or GND driver.

Update Compile point Timing Data Update Compile Point Timing Data
Option , on page 411

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 415

Designing with Microchip Microchip Device Mapping Options

Microchip Tcl set_option Command Options

You can use the set_option Tcl command to specify the same device mapping
options as are available through the Implementation Options dialog box displayed
in the Project view with Project -> Implementation Options (see Implementation
Options Command, on page 346).

This section describes the Microchip-specific set_option Tcl command options.
These include the target technology, device architecture, and synthesis
styles.

The table below provides information on specific options for Microchip archi-
tectures. For a complete list of options for this command, refer to set_option,
on page 113. You cannot specify a package (-package option) for some Micro-
chip technologies in the synthesis tool environment. You must use the Micro-
chip back-end tool for this.

Option Description

-technology keyword Sets target technology for the implementation.
Keyword must be one of the following Microchip
architecture names:

IGLOO2, SmartFusion2, RTG4, PolarFire

-part partName Specifies a part for the implementation. Refer to
the Implementation Options dialog box for available
choices.

-package packageName RTG4 and PolarFire families

Specifies the package. Refer to Project->
Implementation Options->Device for available

choices.

-speed_grade value Sets speed grade for the implementation. Refer to
the Implementation Options dialog box for available
choices.

-disable_io_insertion 1|0 Prevents (1) or allows (0) insertion of I/O pads

during synthesis. The default value is false
(enable I/0 pad insertion). For additional
information about disabling I/O pads, see I/O
Insertion , on page 410.

-fanout_limit value Sets fanout limit guidelines for the current
project. For more information about fanout
limits, see The syn_maxfan Attribute in
Microchip Designs , on page 407.

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
416 Synopsys Confidential Information June 2020

Microchip Device Mapping Options

Designing with Microchip

Option

-globalthreshold value

-clock_globalthreshold value

-async_globalthreshold value

-opcond value

-preserve_registers 1|0

-resolve_multiple_driver
1|0

-rw_check_on_ram 1|0

Description

PolarFire, SmartFusion2, IGLOOZ2, RTG4

Sets fanout threshold for synchronous set/reset
and data nets to infer CLKINT. Default value is
5000. For more information, see Promote Global
Buffer Threshold , on page 409.

PolarFire, SmartFusion2, IGLOO2, RTG4

Sets fanout threshold for clock nets to infer
CLKINT. Default value is 2.

Sets fanout threshold for asynchronous
reset/set nets to infer CLKINT. Default value is 8
for RTG4 and 800 for PolarFire, SmartFusion2
and IGLOOZ2.

PolarFire, IGLOO2

Sets operating condition for device performance
in the areas of optimization, timing analysis, and
timing reports. Values are Default, MIL-WC, IND-
WC, COM-WC, and Automotive-WC. See Operating
Condition Device Option , on page 412 for more
information.

When enabled, the software uses less restrictive
register optimizations during synthesis if area is
not as great a concern for your device. The
default for this option is disabled (0).

When a net is driven by a VCC or GND and active
drivers, enable this option to connect the net to
the VCC or GND driver.

Enabling this option automatically inserts
bypass logic when required, to prevent
simulation mismatch in read-during-write
scenarios. For asynchronous clocks, the tool will
not generate bypass logic which can cause
unintended CDC paths between the clocks.

For more information about using this option in
conjunction with the syn_ramstyle attribute, see
syn_ramstyle , on page 199.

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 417

Designing with Microchip Microchip Device Mapping Options

Option Description

-update_models_cp 1|0 PolarFire, IGLOO2

When set to 1, the locked compile point changes
are taken into account, by updating the timing
model of the compile point and resynthesizing all
of its parents (at all levels), using the updated
model. See Update Compile Point Timing Data
Option , on page 411, for details.

-low_power_ram_decomp 0 |1 PolarFire, SmartFusion2, IGLOO2, RTG4

Enables use of BLK pins of the RAM for reducing
power consumption, by fracturing wide RAMs on
the address width. Default value is 0.

-segshift_to_uram 0 |1 PolarFire, SmartFusion2, IGLOO2, RTG4

Enables inference of URAM if the threshold is
met. Default value is 1.

-disable_ramindex 0 |1 PolarFire, SmartFusion2, IGLOO2, RTG4

Disables the generation of RAMINDEX for RAM
blocks if set to 1.

-microsemi_enhanced_flow 0 |1 PolarFire, SmartFusion2, IGLOO2, RTG4

Enables advanced constraint writer flow and
writes the forward annotation constraints in
Libero enhanced constraints format, when the
value is set to 1. The default is 1.

-rep_clkint_driver 0 |1 PolarFire, SmartFusion2, IGLOO2, RTG4

Enables replication of the register driving a
CLKINT as well as some other loads, for which
the fanout threshold is not met. Default value is
1.

-ternary_adder_decomp value PolarFire, SmartFusion2, IGLOO2, RTG4

Enables ternary adder implementation with the
limit of the adder output width set by default to
66. Ternary adder implementation can be turned
off by setting the value to 0.

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
418 Synopsys Confidential Information June 2020

Microchip Output Files and Forward Annotation Designing with Microchip

Microchip Output Files and Forward
Annotation

The following procedures show you how to pass information or files that
forward annotate information to the Microchip place-and-route tool. This
section describes the following:

* VM Flow Support, on page 419

* Specifying Pin Locations, on page 420

* Specifying Locations for Microchip Bus Ports, on page 421
* Specifying Macro and Register Placement, on page 422

* Synthesis Reports, on page 422

After synthesis, the software generates a log file and output files for forward
annotation to the Microchip P&R tool as described in some of the reports.

VM Flow Support

The tool generates a Verilog output netlist (.vm) for the PolarFire, SmartFu-
sion2, RTG4 and IGLOO2 devices for the P&R flow. After synthesis, the tool:

* Writes a separate SDC file (*_vm.sdc).

* Writes a separate TCL file (*_partition_vm.tcl) to forward annotate the
timestamps on instances in an incremental compile point flow.

* Forward annotates properties like RTL attributes in the .vm netlist and
constraints in an SDC file.

By default, the tool generates a .vm netlist. You can change the netlist from
Verilog to EDIF.

The tool now supports the Libero Enhanced constraint flow by default. To
disable this flow, the following switch needs to be added in the Synplify Pro
project .prj file:

set_option -mcrochi p_enhanced flow 0

To select a Verilog output netlist, go to Implementation Options->Implementation
Results->Result Format. Select vm from the drop-down menu, click OK and save
the project.

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 419

Designing with Microchip Microchip Output Files and Forward Annotation

Implementation Results

Implementation Name:
rev_1

Results Directory:

Csoftware\tutorial\rev_1

Result Base Name: Result Format:
eight_bit_uc vm 5

Optional Output File Options
Write Mapped Verilog Netlist
[| write Mapped VHDL Netlist
Write Vendor Constraint File

Specifying Pin Locations

In certain technologies you can specify pin locations that are forward-
annotated to the corresponding place-and-route tool. The following procedure
shows you how to specify the appropriate attributes. For information about
other placement properties, see Specifying Macro and Register Placement, on
page 422.

1. Start with a design using an appropriate Microchip technology.

2. Add the appropriate attribute to the port. For a bus, list all the bus pins,
separated by commas. To specify Microchip bus port locations, see
Specifying Locations for Microchip Bus Ports, on page 421.

— To add the attribute from the SCOPE interface, click the Attributes tab
and specify the appropriate attribute and value.

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
420 Synopsys Confidential Information June 2020

Microchip Output Files and Forward Annotation Designing with Microchip

— To add the attribute in the source files, use the appropriate attribute
and syntax. For details about the attributes in the tables, see the
Attribute Reference Manual.

Vendor Family Attribute and Value
Microchip syn_l oc {pi n_nunber}
or

al spi n {pi n_nunber}

Specifying Locations for Microchip Bus Ports

You can specify pin locations for Microchip bus ports. To assign pin numbers
to a bus port, or to a single- or multiple-bit slice of a bus port, do the
following:

1. Open the constraint file and add these attributes to the design.

2. Specify the syn_noarrayports attribute globally to bit blast all bus ports in
the design.

define_global _attribute syn noarrayports {1};

3. Use the alspin attribute to specify pin locations for individual bus bits.
This example shows locations specified for individual bits of bus
ADDRESSO.

define_attribute {ADDRESSO[4]} al spin {26}
define_attribute {ADDRESSO[3]} alspin {30}
define attribute {ADDRESSO[2]} al spin {33}
define attribute {ADDRESSO[1]} al spin {38}
define attribute {ADDRESSO[O0]} al spin {40}

The software forward-annotates these pin locations to the place-and-
route software.

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 421

Designing with Microchip Microchip Output Files and Forward Annotation

Specifying Macro and Register Placement

You can use attributes to specify macro and register placement in Microchip
designs. The information here supplements the pin placement information
described in Specifying Pin Locations, on page 420 and bus pin placement
information described in Specifying Locations for Microchip Bus Ports, on
page 421.

For ... Use ...
Relative placement of Microchip alsloc
macros and IP blocks define_attribute {u1} alsloc {R15C6}

Synthesis Reports

The synthesis tool generates a resource usage report, a timing report, and a
net buffering report for the Microchip designs that you synthesize.To view the
synthesis reports, click View Log.

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual

422

Synopsys Confidential Information June 2020

Integration with Microchip Tools and Flows Designing with Microchip

Integration with Microchip Tools and Flows

The following procedures provide Microchip-specific design tips.
* Compile Point Synthesis, on page 423
* Incremental Synthesis Flow, on page 424
* Using Predefined Microchip Black Boxes, on page 424
* Using Smartgen Macros, on page 425

* Microchip Place-and-Route Tools, on page 425

Compile Point Synthesis
Microchip PolarFire

Compile-point synthesis is available when you want to isolate portions of a
design in order to stabilize results and/or improve runtime performance
during placement and routing, the Synopsys FPGA The compile-point
synthesis flow lets you achieve incremental design and synthesis without
having to write and maintain sets of complex, error-prone scripts to direct
synthesis and keep track of design dependencies. See Synthesizing Compile
Points, on page 455 for a description, and Working with Compile Points, on
page 435 in the User Guide for a step-by-step explanation of the compile-
point synthesis flow.

In device technologies that can take advantage of compile points, you break
down your design into smaller synthesis units or compile points, in order to
make incremental synthesis possible. A compile point is a module that is
treated as a block for incremental mapping: When your design is resynthe-
sized, compile points that have already been synthesized are not resynthe-
sized, unless you have changed:

* the HDL source code in such a way that the design logic is changed,
* the constraints applied to the compile points, or

* the device mapping options used in the design.

(For details on the conditions that necessitate resynthesis of a compile point,
see Compile Point Basics, on page 436, and Update Compile Point Timing Data
Option, on page 411.)

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 423

Designing with Microchip Integration with Microchip Tools and Flows

Incremental Synthesis Flow
Microchip IGLOOZ2 and SmartFusion2 Technologies

The synthesis tool provides timestamps for each manual compile point in the
*_partition.tcl file. You can use the timestamps to check whether the compile
point was resynthesized in an incremental run of the tool.

To run this flow:

1. Define compile point constraint on the modules in the design. For
example:

define_conpil e_point {viewNane} -type {l ocked, partition}
-cpfile {fileNane}

2. Run the standard synthesis flow. The synthesis tool writes the
timestamps for each compile point in the designName_partition.tcl file. For
example:

set_partition_info -name partitionNane -timestanp tinestanp

For an incremental synthesis run, only affected compile points display
new timestamps, while unaffected compile points retain the same
timestamps.

Check the Compile Point Summary report available in the log file.

Using Predefined Microchip Black Boxes

The Microchip macro libraries contain predefined black boxes for Microchip
macros so that you can manually instantiate them in your design. For infor-
mation about using ACTGen macros, see Using Smartgen Macros, on

page 425. For general information about working with black boxes, see
Defining Black Boxes for Synthesis, on page 382.

To instantiate an Microchip macro, use the following procedure.

1. Locate the Microchip macro library file appropriate to your technology
and language (v or vhd) in one of these subdirectories under
installDirectory/ lib.

Microchip Macros for Microchip technologies.

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
424 Synopsys Confidential Information June 2020

Integration with Microchip Tools and Flows Designing with Microchip

Use the macro file that corresponds to your target architecture.

2. Add the Microchip macro library at the top of the source file list for your
synthesis project. Make sure that the library file is first in the list.

3. For VHDL, also add the appropriate library and use clauses to the top of
the files that instantiate the macros:

library family;
use family.components.all;

Specify the appropriate technology in family.

Using Smartgen Macros

The Smartgen macros replace the ACTgen macros, which were available in
the previous Designer 6.x place-and-route tool. The following procedure
shows you how to include Smartgen macros in your design. For information
about using Microchip macro libraries, see Using Predefined Microchip Black
Boxes, on page 424. For general information about working with black boxes,
see Defining Black Boxes for Synthesis, on page 382.

1. In Smartgen, generate the function you want to include.

2. For Verilog macros, do the following:

— Include the appropriate Microchip macro library file for your target
architecture in your the source files list for your project.

— Include the Verilog version of the Smartgen result in your source file
list. Make sure that the Microchip macro library is first in the source
files list, followed by the Smartgen Verilog files, followed by the other
source files.

3. Synthesize your design as usual.

Microchip Place-and-Route Tools

You can run place and route automatically after synthesis. For details on how
to set options, see Running P&R Automatically after Synthesis, on page 554 in
the User Guide.

For details about the place-and-route tools, refer to the Microchip documen-
tation.

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 425

Designing with Microchip

Microchip Attribute and Directive Summary

Microchip Attribute and Directive Summary

The following table summarizes the synthesis and Microchip-specific
attributes and directives available with the Microchip technology.

Attribute/Directive
alsloc

alspin

alspreserve

black_box_pad_pin (D)

black_box_tri_pins (D)

full_case (D)

loop_limit (D)

parallel case (D)

syn_allow_retiming

syn_black_box (D)

syn_direct_enable

syn_encoding

Description

Forward annotates the relative placements of
macros and IP blocks to Microchip Designer.

Assigns scalar or bus ports to Microchip I/O pin
numbers.

Specifies that a net be preserved, and prevents it
from being removed during place-and-route
optimization.

Specifies that a pin on a black box is an I/O pad. It
is applied to a component, architecture, or module,
with a value that specifies the set of pins on the
module or entity.

Specifies that a pin on a black box is a tristate pin. It
is applied to a component, architecture, or module,
with a value that specifies the set of pins on the
module or entity.

Specifies that a Verilog case statement has covered
all possible cases.

Specifies a loop iteration limit for for loops.

Specifies a parallel multiplexed structure in a Verilog
case statement, rather than a priority-encoded
structure.

Specifies whether registers can be moved during
retiming.

Defines a black box for synthesis.

Assigns clock enable nets to dedicated flip-flop
enable pins. It can also be used as a compiler
directive that marks flip-flops with clock enables for
inference.

Specifies the encoding style for state machines.

(D) indicates directives; all others are attributes.

© 2020 Synopsys, Inc.
426

Synopsys Confidential Information

Synplify Pro for Microchip Edition Reference Manual
June 2020

Microchip Attribute and Directive Summary

Designing with Microchip

Attribute/Directive

syn_enum_encoding (D)

syn_hier

syn_insert_buffer

syn_insert_pad

syn_isclock (D)

syn_keep (D)

syn_looplimit

syn_maxfan

syn_multstyle

syn_netlist_hierarchy

syn_noarrayports

syn_noclockbuf

syn_noprune (D)

syn_no_compile_point

syn_pad_type

Description

Specifies the encoding style for enumerated types
(VHDL only).

Controls the handling of hierarchy boundaries of a
module or component during optimization and
mapping.

Inserts a clock buffer according to the specified
value.

Removes an existing I/O buffer from a port or net
when I/O buffer insertion is enabled.

Specifies that a black-box input port is a clock, even
if the name does not indicate it is one.

Prevents the internal signal from being removed
during synthesis and optimization.

Specifies a loop iteration limit for while loops in the
design.

Overrides the default fanout guide for an individual
input port, net, or register output.

Determines how multipliers are implemented for
Microchip devices.

Determines whether the EDIF output netlist is flat or
hierarchical.

Prevents the ports in the EDIF output netlist from
being grouped into arrays, and leaves them as
individual signals.

Turns off the automatic insertion of clock buffers.

Controls the automatic removal of instances that
have outputs that are not driven.

Use this attribute with the Automatic Compile Point
(ACP) feature. If you do not want the software to
create a compile point for a particular view or
module, then apply this attribute.

Specifies an I/0O buffer standard.

(D) indicates directives; all others are attributes.

Synplify Pro for Microchip Edition Reference Manual

June 2020 Synopsys Confidential Information

© 2020 Synopsys,

Inc.
427

Designing with Microchip

Microchip Attribute and Directive Summary

Attribute/Directive

syn_preserve (D)

syn_probe

syn_radhardlevel

syn_ramstyle

syn_reference_clock

syn_replicate
syn_resources

syn_safe_case

syn_sharing (D)

syn_shift_resetphase

syn_state_machine (D)

syn_tco<n> (D)

syn_tpd<n> (D)

syn_tristate (D)

Description

Prevents sequential optimizations across a flip-flop
boundary during optimization, and preserves the
signal.

Adds probe points for testing and debugging.

Specifies the radiation-resistant design technique to
apply to a module, architecture, or register.

Specifies the implementation to use for an inferred
RAM. You apply syn_ramstyle globally, to a module,
or to a RAM instance.

Specifies a clock frequency other than that implied
by the signal on the clock pin of the register.

Controls replication.
Specifies resources used in black boxes.

Enables/disables the safe case option. When
enabled, the high reliability safe case option turns
off sequential optimizations for counters, FSM, and
sequential logic to increase the circuit’s reliability.

Specifies resource sharing of operators.

Allows you to remove the flip-flop on the inactive
clock edge, built by the reset recovery logic for an
FSM when a single event upset (SEU) fault occurs.

Determines if the FSM Compiler extracts a structure
as a state machine.

Defines timing clock to output delay through the
black box. The n indicates a value between 1 and 10.

Specifies timing propagation for combinational delay
through the black box. The n indicates a value
between 1 and 10.

Specifies that a black-box pin is a tristate pin.

(D) indicates directives; all others are attributes.

© 2020 Synopsys, Inc.
428

Synopsys Confidential Information

Synplify Pro for Microchip Edition Reference Manual
June 2020

Microchip Attribute and Directive Summary Designing with Microchip

Attribute/Directive Description

syn_tsu<n> (D) Specifies the timing setup delay for input pins,
relative to the clock. The n indicates a value between
1 and 10.

syn_useenables Generates clock enable pins for registers.

translate_off/translate_on Specifies sections of code to exclude from synthesis,
(D) such as simulation-specific code.

(D) indicates directives; all others are attributes.

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 429

Designing with Microchip Microchip Attribute and Directive Summary

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
430 Synopsys Confidential Information June 2020

Index

Symbols

_ta.srm file 155
.adc file 144
.areasrr file 152
fse file 152
.info file 152
.ini file 144
.prj file 144

.sap
annotated properties for analyst 154

.sar file 154
.sdc file 144
.srd file 154
.srm file 154

.srr file 157
watching selected information 37

.srs file 155
initial values (Verilog) 235

.sv file 145
SystemVerilog source file 145

.ta file
See timing report file 155

.v file 145

.vhd file 145
.vhm file 157
.vm file 157

A

ACTgen macros 425
adc file (analysis design constraint) 144

adder
SYNCore 334

adders
SYNCore 335

Allow Docking command 38

Synplify Pro for Microchip Edition Reference Manual
June 2020

alspin
bus port pin numbers 421
Alt key, selecting columns in Text Editor
47

analysis design constraint file (.adc) 144
Analyst toolbar 59
annotated properties for analyst

.sap 154

.timing annotated properties (.tap) 156
archive file (.sar) 154
areasrr file

hierarchical area report 172

arrow keys, selecting objects in
Hierarchy Browser 109

arrow pointers for push and pop 108
asynchronous clock report
description 170
attributes
inferring RAM 184
attributes (Microchip) 426
Attributes demo 50

auto constraints 141
Maximize option 74

B

black boxes
See also macros, macro libraries
Microchip 377

block RAM
dual-port RAM examples 200
inferring 187
modes 183
NO_CHANGE mode example 196
READ_FIRST mode example 195
single-port RAM examples 197
types 183
WRITE_FIRST mode example 193

block RAMs

© 2020 Synopsys, Inc.

Synopsys Confidential Information 431

syn_ramstyle attribute 428 report file 173

buttons and options, Project view 72 ftyles 112247
byte-enable RAMs ypes .
SYNCore 304 context help editor 48

context of filtered schematic, displaying

C

context sensitive help

cck.rpt file (constraint checking report) using the F1 key 18
152 copying

check boxes, Project view 72 for pasting 65
clock buffering report, log file (.srr) 159 counter compiler
clock groups SYNCore 358

Clock Relationships (timing report) 168 counters
clock pin drivers, selecting all 82 SYNCore 359
clock relationships, timing report 168 critical paths 119

clock report anal_yzing 120

asynchronous 162 finding 120
Clock Tree, HDL Analyst tool 82 cross-clock paths, timing analysis 168
cross-hair mouse pointer 55

clocks

asynchronous report 170 crossprobing 99

declared clock 164 definition 99

defining 82 Ctrl key

derived clock 165 avoiding docking 57

inferred clock 164 multiple selection 54

system clock 165 zooming using the mouse wheel 56
color coding cutting (for pasting) 58

Text Editor 47
commenting out code (Text Editor) 47 D
compile points

Microchip 423 declared clock 164
updating data (Microchip) 411 deleting
compiler report, log file (.srr) 158 See removing
Constraint Check command 173 derived clock 165
constraint checking report 173 design size, schematic sheet

constraint files 125 setting 102

sdc 144 device options (Microchip) 415
automatic. See auto constraints directives (Microchip) 426
fdc and sdc precedence order 128 Dissolve Instances command 117
constraint files (.sdc) docking 38
creating 58 avoiding 57
constraint priority 128 docking GUI entities
constraints toolbar 57
auto constraints. See auto constraints DSP blocks
non-DC 135

ority 128 inferencing 379
priority

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
432 Synopsys Confidential Information June 2020

dual-port RAM examples 200

dual-port RAMs
SYNCore parameters 287

E

editor view
context help 48

encoding
state machine
FSM Explorer 74

examples
Interactive Attribute Examples 50

Explorer, FSM
enabling 74

F

failures, timing (definition) 121
fanout
Microchip 407

fdc
constraint priority 128
precedence over sdc 128
fdc constraints 130
generation process 128
fdc file
relationship with other constraint files
125
feature comparison
FPGA tools 14

FIFO compiler
SYNCore 250

.info 152
.ini 144
.prj 144
.sar 154
.sdc 144
.srm 154, 155
.srr 157

watching selected information 37
.srs 155
.ta 155
.v 145
.vhd 145
.vhm 157
.vm 157
compiler output (.srs) 155
constraint (.adc) 144
constraint (.sdc) 144
creating 58
customized timing report (.ta) 155
design component info (.info) 152
initialization (.ini) 144
log (.srr) 157

watching selected information 37
mapper output (.srm) 154, 155
output

See output files
project (.prj) 144
RTL view (.srs) 155
srr 157

watching selected information 37
state machine encoding (.fse) 152
Synopsys archive file (.sar) 154
synthesis output 152
Technology view (.srm) 154, 155
Verilog (.v) 145
VHDL (.vhd) 145

files for synthesis 144

filtered schematic
compared with unfiltered 85

filtering 113
commands 113
compared with flattening 117
FSM states and transitions 85
FIFOs . paths from pins or ports 121
compiling with SYNCore 251 filtering critical paths 120

FIFO flags
empty/almost empty 272
full/almost full 271
handshaking 272
programmable 274
programmable empty 277
programmable full 275

files findin
.adc 144 ng 1 hs 12
.areasrr 152 prltlca pa ths 120 .
fde 144 information on synthesis tool 19
.fse 152 Gul 18

Synplify Pro for Microchip Edition Reference Manual © 2020 Synopsys, Inc.
June 2020 Synopsys Confidential Information 433

finite state machines
See state machines

Flatten Current Schematic command 117
Flatten Schematic command 117

flattening
commands 115
compared with filtering 117
selected instances 116

Float command
Watch window popup menu 38

floating
toolbar 57

floating toolbar popup menu 57

forward annotation
initial values 235

Forward Annotation of Initial Values
Verilog 235

frequency
cross-clock paths 168

Frequency (Mhz) option, Project view 73
fse file 152
FSM Compiler option, Project view 74

FSM Compiler, enabling and disabling
globally
with GUI 74

FSM encoding file (.fse) 152

FSM Explorer
enabling 74

FSM Explorer option, Project view 74
FSM toolbar 62
FSM Viewer 83

FSMs (finite state machines)
See state machines

G

generic technology library 149
graphical user interface (GUI), overview
21

GTECH library. See generic technology
library

gtech.v library 149

gui
synthesis software 17

© 2020 Synopsys, Inc.

434 Synopsys Confidential Information

GUI (graphical user interface), overview
21

H

HDL Analyst tool 77
accessing commands 86
analyzing critical paths 119
Clock Tree 82
crossprobing 99
filtering designs 113
finding objects 97
hierarchical instances. See hierarchical

instances

object information 88
preferences 102
push/pop mode 105
ROM table viewer 243
schematic sheet size 102
schematics, filtering 113
schematics, multiple-sheet 102
status bar information 88
title bar information 102

HDL Analyst toolbar
See Analyst toolbar

HDL Analyst views 78
See also RTL view, Technology view

HDL files, creating 58
header, timing report 163

help
online
accessing 18

hidden hierarchical instances 93
are not flattened 117

Hide command
floating toolbar popup menu 57
Log Watch window popup menu 38
Tcl Window popup menu 41

hierarchical area report 172
.areasrr file 172

hierarchical instances 91
compared with primitive 90
display in HDL Analyst 91
hidden 93
opaque 91
transparent 91

hierarchical schematic sheet, definition
102

Synplify Pro for Microchip Edition Reference Manual
June 2020

hierarchy
flattening
compared with filtering 117
pushing and popping 105
schematic sheets 102
Hierarchy Browser 109
changing size in view 78
Clock Tree 82
finding schematic objects 97
moving between objects 82
RTL view 78
symbols (legend) 83
Technology view 80
trees of objects 82

I/O insertion (Microchip) 410

Identify Instrumentor
launching 63

IEEE 1364 Verilog 95 standard 146
Implementation Directory 32
Implementation Results 32
indenting a block of text 47
indenting text (Text Editor) 47

inferencing
DSP blocks 379

inferred clock 164
info file (design component info) 152
ini file 144

initial value data file
Verilog 232

Initial Values
forward annotation 235

initial values
$readmemb 229
$readmemh 229

initial values (Verilog)

netlist file (.srs) 235
initialization file (.ini) 144
input files 144

.adc 144

.ini 144

.sdc 144

.sv 145

.v 145

Synplify Pro for Microchip Edition Reference Manual
June 2020

.vhd 145

inserting
bookmarks (Text Editor) 47

instances
hierarchical
dissolving 110
making transparent 110
hierarchical. See hierarchical instances
primitive. See primitive instances

Interactive Attribute Examples 50
interface information, timing report 169

IPs
SYNCore byte-enable RAMs 304
SYNCore counters 359
SYNCore FIFOs 251
SYNCore RAMs 281
SYNCore ROMs 321
SYNCore subtractors 335

isolating paths from pins or ports 121

K

keyboard shortcuts 64
arrow keys (Hierarchy Browser) 109
keyword completion, Text Editor 47

keywords
completing in Text Editor 47

L

latches
in timing analysis 119
Launch Identify Instrumentor icon 63
legacy sdc file. See sdc files, difference
between legacy and Synopsys
standard
lib2syn
using 150
libraries
general technology 148
macro, built-in 145
technology-independent 148
VHDL
attributes and constraints 146

linkerlog file 153

log file (.srr) 157
watching selected information 37

© 2020 Synopsys, Inc.

Synopsys Confidential Information 435

log file report 157
clock buffering 159
compiler 158
mapper 159
net buffering 159
resource usage 160
retiming 161
summary of compile points 160
timing 160
Log Watch Configuration dialog box 39

Log Watch window 37
Output Windows 45
positioning commands 38

macros
libraries 145
Microchip 377
SIMBUF 378

mapper output file (.srm) 154, 155

mapper report
log file (.srr) 159

margin, slack 120

message viewer
description 41

Messages Tab 41

Microchip
ACTgen macros 425
attributes 426
black boxes 377
compile point synthesis 423
compile point timing data 411
device options 415
directives 426
features 376
I/0O insertion 410
macro libraries 424
macros 377
Operating Condition Device Option 412
output netlist 375
pin numbers for bus ports 421
product families 374
reports 422
SIMBUF macro 378
Tcl implementation options 416

Microchip implementing RAM 386
mouse button operations 54

© 2020 Synopsys, Inc.

436 Synopsys Confidential Information

mouse operations 52
Mouse Stroke Tutor 53
mouse wheel operations 56

Move command
floating toolbar window 57
Log Watch window popup menu 38
Tcl window popup menu 41

moving between objects in the Hierarchy
Browser 82

moving GUI entities

toolbar 57
multiple-sheet schematics 102
multipliers

DSP blocks 379

multisheet schematics
transparent hierarchical instances 104

N

navigating
among hierarchical levels
by pushing and popping 105
with the Hierarchy Browser 109
among the sheets of a schematic 102
nesting design details (display) 110
net buffering report, log file 159
netlist file 157
initial values (Verilog) 235

netlists for different vendors 375

(0

object information
status bar, HDL Analyst tool 88
viewing in HDL Analyst tool 88

objects
crossprobing 99
dissolving 110
making transparent 110

objects, schematic
See schematic objects

Online help
F1 key 18

online help
accessing 18

opaque hierarchical instances 91

Synplify Pro for Microchip Edition Reference Manual
June 2020

are not flattened 117
options
Project view 72
Frequency (Mhz) 73
FSM Compiler 74
FSM Explorer 74
Resource Sharing 75
Retiming 75
options (Microchip) 416

output files 152
.areasrr 152
.info 152
.sar 154
.srm 154, 155
.srr 157

watching selected information 37
.srs 155
.ta 155
.vhm 157
.vm 157
netlist 157
See also files

Output Windows 45

Overview of the Synopsys FPGA
Synthesis Tools 12

P

parameters
SYNCore adder/subtractor 343
SYNCore byte-enable RAM 311
SYNCore counter 365
SYNCore FIFO 256
SYNCore RAM 289
SYNCore ROM 326
partitioning of schematics into sheets
102
pasting 58
performance summary, timing report 163
pins
displaying
on transparent instances 95
displaying on technology-specific
primitives 96
isolating paths from 121
pointers, mouse
cross-hairs 55
push/pop arrows 108

Synplify Pro for Microchip Edition Reference Manual
June 2020

popping up design hierarchy 105
popup menus
floating toolbar 57
Log Watch window 38, 39
Log Watch window positioning 38
Tcl window 41
precedence of constraint files 128
preferences
HDL Analyst tool 102
primitive instances 90
primitives
pin names in Technology view 96
prj file 144
Process View 33
project files (.prj) 144
project results
Implementation Directory 32
Process View 33
Project Status View 26
Project Results View 26
Project Status View 26
Project toolbar 57
Project view 22
buttons and options 72
options 72
Synplify Pro 22
Project window 22
project_name_cck.rpt file 173
push/pop mode, HDL Analyst tool 105

R

RAM implementations
Microchip 386
RAM inference 183
using attributes 184
RAMs
compiling with SYNCore 281
inferring block RAM 187
initial values (Verilog) 229
SYNCore 281
SYNCore, byte-enable 304
RAMs, inferring
advantages 182

© 2020 Synopsys, Inc.

Synopsys Confidential Information 437

reference manual, role in document set hierarchical (definition) 102

gy multiple-sheet 102
removing multiple-sheet. See also schematic
bookmark (Text Editor) 47 ~ sheets
window (view) 57 object information 88

partitioning into sheets 102

reports heet t 89
constraint checking (cck.rpt) 173 :hzztsconnec ors
hierarchical area report 172 navigating among 102

Resource Sharing option, Project view 75 size, setting 102

resource usage report, log file 160 size in view, changing 78

unfiltered 85
unfiltering 114

SCOPE
for legacy sdc 132

retiming

report, log file 161
Retiming option, Project view 75
ROM compiler

sdc
SYN(.Dore 319 fdc precedence 128
ROM inference examples 243 SCOPE for legacy files 132
ROM initialization sdc file
with rom.info file 246 difference between legacy and
with Verilog generate block 247 Synopsys standard 127
rom.info file 243 sdc2fdc utility 133
ROMs selecting
SYNCore 321 text column (Text Editor) 47
RTL view 78 selecting multiple objects using the Ctrl
displaying 60 key 54
file (.srs) 155 set_rtl_ff names 135
S sheet connectors 89
Shift key 57
schematic objects shortcuts
crossprobing 99 keyboard
dfeﬁniti.on 88 See keyboard shortcuts
dissolving 110 SIMBUF macro 378
finding 97 .
making transparent 110 single-port RAM examples 197
status bar information 88 single-port RAMs
schematic sheets 102 SYNCore parameters 286
hierarchical (definition) 102 slack
navigating among 102 cross-clock paths 169
setting size 102 defined 164
schematics margin

definition 121

configuring amount of logic on a sheet !
102 setting 120

crossprobing 99 source files
filtered 85 See also files
filtering commands 113 creating 58
flattening compared with filtering 117 srd file 154

flattening selectively 116

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
438 Synopsys Confidential Information June 2020

srm file 154, 155

srr file 157
watching selected information 37

srs file 155
initial values (Verilog) 235

standards, supported
Verilog 146
VHDL 146

state machines
encoding
displaying 85
FSM Explorer 74
encoding file (.fse) 152
filtering states and transitions 85
state encoding, displaying 85
status b8%r information, HDL Analyst tool

structural netlist file (.vhm) 157
structural netlist file (.vm) 157

subtractor
SYNCore 334

subtractors
SYNCore 335

summary of compile points report
log file (.srr) 160

supported standards
Verilog 146
VHDL 146

symbols
Hierarchy Browser (legend) 83

syn_maxfan
fanout limits (Microchip) 407

syn_noarrayports attribute
use with alspin 421

SYNCore
adder/subtractor 334
adder/subtractor parameters 343
adders 335
byte-enable RAM compiler
byte-enable RAM compiler
SYNCore 303
byte-enable RAM parameters 311
counter compiler 358
counter parameters 365
counters 359
FIFO compiler 250, 251

Synplify Pro for Microchip Edition Reference Manual
June 2020

FIFO parameters 256
RAM compiler

RAM compiler

SYNCore 281

RAM parameters 289
RAMs 281
RAMs, byte-enable 304
RAMs, dual-port parameters 287
RAMs, single-port parameters 286
ROM compiler 319
ROM parameters 326
ROMs 321
ROMs, parameters 325
subtractors 335

SYNCore adder/subtractor
adders 346
dynamic adder/subtractor 352
functional description 334
subtractors 349

SYNCore FIFOs
definition 250
parameter definitions 269
port list 266
read operations 266
status flags 271
write operations 265

SYNCore ROMs
dual-port read 331
parameter list 331
single-port read 330

Synopsys FPGA Synthesis Tools
overview 12

Synopsys standard sdc file. See sdc files,
difference between legacy and
Synopsys standard

Synplify Pro tool

Project view 22

user interface 17
Synplify tool

user interface 17
synthesis

log file (.srr) 157

watching selected information 37

synthesis software

gui 17
system clock 165
SystemVerilog keywords

context help 48

© 2020 Synopsys, Inc.

Synopsys Confidential Information 439

T

ta file (customized timing report) 155

Tcl commands
constraint files 131
pasting 41

Tcl Script window
Output Windows 45

Tcl shell command
sdc2fdc 133

Tcl window
popup menu commands 41
popup menus 41

Technology view 80
displaying 60
file (.srm) 154, 155

Text Editor
features 47
indenting a block of text 47
opening 46
selecting text column 47
view 45

text editor
completing keywords 47

Text Editor view 45

timing analysis of critical paths (HDL
Analyst tool) 119
timing analyst
cross-clock paths 168
timing annotated properties (.tap) 156

timing constraints
See also FPGA timing constraints
See constraints

timing failures, definition 121

timing report 162
clock relationships 168
customized (.ta file) 155
file (.ta) 155
header 163
interface information 169
performance summary 163
timing reports
asynchronous clocks 170
log file (.srr) 160

title bar information, HDL Analyst tool
102

© 2020 Synopsys, Inc.

440 Synopsys Confidential Information

toolbars 57
FSM 62
moving and docking 57

transparent hierarchical instances 92
lower-level logic on multiple sheets 104
operations resulting in 112
pins and pin names 95

trees of objects, Hierarchy Browser 82

trees, browser, collapsing and expanding
82

U

unfiltered schematic, compared with
filtered 85

unfiltering schematic 114
user interface

Synplify Pro tool 17
user interface, overview 21
using the mouse 52
utilities

lib2syn 150

sdc2fdc 133

Vv

v file 145

vendor technologies
Microchip 373

vendor-specific netlists 375

Verilog

Forward Annotation of Initial Values
235

generic technology library 149

initial value data file 232

initial values for RAMs 229

Microchip ACTgen macros 425

netlist file 157

ROM inference 243

source files (.v) 145

structural netlist file (.vm) 157

supported standards 146

Verilog 2001 146
Verilog 95 146

Verilog macro libraries
Microchip 424

Synplify Pro for Microchip Edition Reference Manual
June 2020

Verilog source file (.v) 145

vhd file 145

vhd source file 145

VHDL
libraries

attributes, supplied with synthesis
tool 146

macro libraries, Microchip 424
source files (.vhd) 145
structural netlist file (.vhm) 157
supported standards 146

VHDL source file (.vhd) 145
vhm file 157

views 36
FSM 83
Project 22
removing 57
RTL 78
Technology 80

vm file 157

w

Watch Window. See Log Watch window
window

Project 22
windows 36

closing 66

log watch 37

removing 57

y4

zoom
using the mouse wheel and Ctrl key 56

Synplify Pro for Microchip Edition Reference Manual
June 2020 Synopsys Confidential Information

© 2020 Synopsys, Inc.
441

© 2020 Synopsys, Inc. Synplify Pro for Microchip Edition Reference Manual
442 Synopsys Confidential Information June 2020

	Synplify Pro for Microchip Reference Manual
	Copyright Notice and Proprietary Information
	Free and Open-Source Licensing Notices
	Destination Control Statement
	Disclaimer
	Trademarks
	Third-Party Links

	Product Overview
	Overview of the Synthesis Tool
	Common Features

	Synopsys FPGA Tool Features
	Graphic User Interface
	Getting Help

	User Interface Overview
	The Project View
	Project Management View

	The Project Results View
	Project Status Tab
	Report Tab
	Implementation Directory
	Process View

	Other Windows and Views
	Dockable GUI Entities
	Watch Window
	Tcl Script and Messages Windows
	Tcl Script Window
	Message Viewer
	Output Windows (Tcl Script and Watch Windows)
	Text Editor View
	Context Help Editor Window
	Interactive Attribute Examples

	Using the Mouse
	Mouse Operation Terminology
	Using Mouse Strokes
	Using the Mouse Buttons
	Using the Mouse Wheel

	Toolbars
	Project Toolbar
	Analyst Toolbar
	Text Editor Toolbar
	FSM Viewer Toolbar
	Tools Toolbar

	Keyboard Shortcuts
	Buttons and Options

	HDL Analyst Tool
	HDL Analyst Views and Commands
	RTL View
	Technology View
	Hierarchy Browser
	FSM Viewer Window
	Filtered and Unfiltered Schematic Views
	Accessing HDL Analyst Commands

	Schematic Objects and Their Display
	Object Information
	Sheet Connectors
	Primitive and Hierarchical Instances
	Transparent and Opaque Display of Hierarchical Instances
	Hidden Hierarchical Instances
	Schematic Display

	Basic Operations on Schematic Objects
	Finding Schematic Objects
	Selecting and Unselecting Schematic Objects
	Crossprobing Objects
	Dragging and Dropping Objects

	Multiple-sheet Schematics
	Controlling the Amount of Logic on a Sheet
	Navigating Among Schematic Sheets
	Multiple Sheets for Transparent Instance Details

	Exploring Design Hierarchy
	Pushing and Popping Hierarchical Levels
	Navigating With a Hierarchy Browser
	Looking Inside Hierarchical Instances

	Filtering and Flattening Schematics
	Commands That Result in Filtered Schematics
	Combined Filtering Operations
	Returning to The Unfiltered Schematic
	Commands That Flatten Schematics
	Selective Flattening
	Filtering Compared to Flattening

	Timing Information and Critical Paths
	Timing Reports
	Critical Paths and the Slack Margin Parameter
	Examining Critical Path Schematics

	Constraint Guidelines
	Constraint Types
	Constraint Files
	Timing Constraints
	FDC Constraints
	Methods for Creating Constraints
	Constraint Translation
	sdc2fdc Conversion

	Constraint Checking
	Database Object Search
	Forward Annotation
	Auto Constraints

	Input and Result Files
	Input Files
	HDL Source Files

	Libraries
	Open Verification Library (Verilog)
	The Generic Technology Library
	ASIC Library Files

	Output Files
	Log File
	Timing Reports
	Timing Report Header
	Performance Summary
	Clock Pre-map Reports
	Clock Relationships
	Interface Information
	Asynchronous Clock Report

	Hierarchical Area Report
	Constraint Checking Report

	RAM and ROM Inference
	Guidelines and Support for RAM Inference
	Automatic RAM Inference
	Block RAM
	RAM Attributes

	Block RAM Inference
	Block RAM Examples

	Initial Values for RAMs
	Example 1: RAM Initialization
	Example 2: Cross-Module Referencing for RAM Initialization
	Initialization Data File
	Forward Annotation of Initial Values

	RAM Instantiation with SYNCORE
	ROM Inference

	SynCore IP Tool
	SYNCore FIFO Compiler
	Synchronous FIFO Overview
	Specifying FIFOs with SYNCore
	SYNCore FIFO Wizard
	FIFO Read and Write Operations
	FIFO Ports
	FIFO Parameters
	FIFO Status Flags
	FIFO Programmable Flags

	SYNCore RAM Compiler
	Specifying RAMs with SYNCore
	SYNCore RAM Wizard
	Single-Port Memories
	Dual-Port Memories
	Read/Write Timing Sequences

	SYNCore Byte-Enable RAM Compiler
	Functional Overview
	Specifying Byte-Enable RAMs with SYNCore
	SYNCore Byte-Enable RAM Wizard
	Read/Write Timing Sequences
	Parameter List

	SYNCore ROM Compiler
	Functional Overview
	Specifying ROMs with SYNCore
	SYNCore ROM Wizard
	Single-Port Read Operation
	Dual-Port Read Operation
	Parameter List

	SYNCore Adder/Subtractor Compiler
	Functional Description
	Specifying Adder/Subtractors with SYNCore
	SYNCore Adder/Subtractor Wizard
	Adder
	Subtractor
	Dynamic Adder/Subtractor

	SYNCore Counter Compiler
	Functional Overview
	Specifying Counters with SYNCore
	SYNCore Counter Wizard
	UP Counter Operation
	Down Counter Operation
	Dynamic Counter Operation

	Designing with Microchip
	Basic Support for Microchip Designs
	Microchip Device-specific Support
	Netlist Format
	Microchip Features

	Microchip Components
	Macros and Black Boxes in Microchip Designs
	DSP Block Inference
	Control Signals Extraction for Registers (SLE)
	Wide MUX Inference

	Microchip RAM Implementations
	RAM for PolarFire
	RAM for RTG4
	RAM for SmartFusion2/IGLOO2
	PolarFire Asymmetric RAM support
	RAM Reporting
	Low Power RAM Inference
	URAM Inference for Sequential Shift Registers
	Async Reset and Dynamic Offset in Seqshifts
	Packing of Enable Signal on the Read Address Register
	Packing of INIT Value on LSRAM and URAM Blocks in PolarFire
	PolarFire RAM Inference for ROM Support
	Write Byte-Enable Support for RAM
	RAMINDEX Support

	Microchip Constraints and Attributes
	Global Buffer Promotion
	The syn_maxfan Attribute in Microchip Designs
	Radiation-tolerant Applications

	Microchip Device Mapping Options
	Promote Global Buffer Threshold
	I/O Insertion
	Update Compile Point Timing Data Option
	Operating Condition Device Option
	Microchip set_option Command Options
	Microchip Tcl set_option Command Options

	Microchip Output Files and Forward Annotation
	VM Flow Support
	Specifying Pin Locations
	Specifying Locations for Microchip Bus Ports
	Specifying Macro and Register Placement
	Synthesis Reports

	Integration with Microchip Tools and Flows
	Compile Point Synthesis
	Incremental Synthesis Flow
	Using Predefined Microchip Black Boxes
	Using Smartgen Macros
	Microchip Place-and-Route Tools

	Microchip Attribute and Directive Summary
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Z

