
HB0390
Handbook

CorePCS v3.5

50200390. 7.0 11/17

Microsemi Corporate Headquarters
One Enterprise, Aliso Viejo,
CA 92656 USA
Within the USA: +1 (800) 713-4113
Outside the USA: +1 (949) 380-6100
Fax: +1 (949) 215-4996
Email: sales.support@microsemi.com
www.microsemi.com

© 2017 Microsemi Corporation. All
rights reserved. Microsemi and the
Microsemi logo are trademarks of
Microsemi Corporation. All other
trademarks and service marks are the
property of their respective owners.

Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of
its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the
application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have
been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any
performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all
performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not
rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer's responsibility to
independently determine suitability of any products and to test and verify the same. The information provided by Microsemi
hereunder is provided “as is, where is” and with all faults, and the entire risk associated with such information is entirely
with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP
rights, whether with regard to such information itself or anything described by such information. Information provided in this
document is proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this
document or to any products and services at any time without notice.

About Microsemi

Microsemi Corporation (Nasdaq: MSCC) offers a comprehensive portfolio of semiconductor and system solutions for
aerospace & defense, communications, data center and industrial markets. Products include high-performance and
radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and ASICs; power management products;
timing and synchronization devices and precise time solutions, setting the world's standard for time; voice processing
devices; RF solutions; discrete components; enterprise storage and communication solutions, security technologies and
scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs and midspans; as well as custom design
capabilities and services. Microsemi is headquartered in Aliso Viejo, California, and has approximately 4,800 employees
globally. Learn more at www.microsemi.com.

mailto:sales.support@microsemi.com
http://www.microsemi.com
http://www.microsemi.com
http://www.microsemi.com

HB0390 Handbook Revision 7.0 iii

Contents

1 Revision History . 1
1.1 Revision 7.0 . 1

1.2 Revision 6.0 . 1

1.3 Revision 5.0 . 1

1.4 Revision 4.0 . 1

1.5 Revision 3.0 . 1

1.6 Revision 2.0 . 1

1.7 Revision 1.0 . 1

2 Introduction . 2
2.1 CorePCS Blocks . 2

2.1.1 8B10B Encoding . 3
2.1.2 8B10B Decoding and Word Alignment . 3

2.2 Features . 4

2.3 Core Version . 4

2.4 Supported Families . 4

2.5 Supported Interface . 4

2.6 Device Utilization and Performance . 5

3 Functional Description . 6
3.1 Word Alignment Shift Option . 6

4 Interface . 8
4.1 Verilog/VHDL Parameters . 8

4.2 I/O Signals . 9

5 Timing Diagrams . 12
5.1 Transmitter Lane Timing . 12

5.2 Receiver Lane Timing . 12

6 Tool Flow . 13
6.1 License . 13

6.1.1 RTL . 13

6.2 SmartDesign . 13

6.3 Simulation Flows . 14

6.4 Synthesis in Libero . 14

6.5 Place-and-Route in Libero . 14

7 Testbench . 15
7.1 User Testbench . 15

HB0390 Handbook Revision 7.0 iv

Figures

Figure 1 CorePCS Block Diagram . 2
Figure 2 Last COMMA Characters Scenario 1 . 6
Figure 3 Last COMMA Characters Scenario 2 . 6
Figure 4 8B10B Decoder Result . 7
Figure 5 CorePCS I/O Signal Diagram . 9
Figure 6 Transmitter Lane Timing . 12
Figure 7 Receiver Lane Timing . 12
Figure 8 CorePCS Full I/O View . 13
Figure 9 CorePCS SmartDesign Configuration Window . 13
Figure 10 CorePCS User Testbench . 15

HB0390 Handbook Revision 7.0 v

Tables

Table 1 CorePCS Device Utilization and Performance for 16-bit mode . 5
Table 2 CorePCS Device Utilization and Performance for 32-bit mode . 5
Table 3 CorePCS Device Utilization and Performance for 64-bit mode . 5
Table 4 CorePCS Parameters/Generics Descriptions . 8
Table 5 CorePCS I/O Signal Descriptions . 9

Revision History

HB0390 Handbook Revision 7.0 1

1 Revision History

The revision history describes the changes that were implemented in the document. The changes are
listed by revision, starting with the most current publication.

1.1 Revision 7.0
Updated changes related to CorePCS v3.5.

1.2 Revision 6.0
Updated changes related to CorePCS v3.4.

1.3 Revision 5.0
Updated changes related to CorePCS v3.3.

1.4 Revision 4.0
Updated changes related to CorePCS v3.2.

1.5 Revision 3.0
Updated changes related to CorePCS v3.1.

1.6 Revision 2.0
Updated changes related to CorePCS v3.0.

1.7 Revision 1.0
Revision 1.0 was the first publication of this document. Created for CorePCS v2.0.

Introduction
2 Introduction

CorePCS provides the 8B10B function for the physical coding sublayer for Gigabit Ethernet as defined in
the IEEE 802.3z specification. The 8B10B is a marriage of two sub-blocks, the 5b6b and the 3b4b
encoder/decoders. The purpose of the encoder/decoders is to convert 8-bit data into a 10-bit code that
contains an equal number of 0’s and 1’s. In addition, the code is built so that no more than five
consecutive 0’s or 1’s is ever transmitted. CorePCS is designed to work directly with a variety of standard
transceiver devices. A set of generic signals provides a data and command interface to system logic.
CorePCS provides a user interface and a transceiver interface. The user interface consists of transmit
data, receive data, and several control and status signals used to qualify the data. The transceiver is
responsible for serializing transmit data and deserializing receive data. In addition, the transceiver is
designed to resynchronize the serial stream whenever it detects illegal coding errors. 8B10B is
commonly used in some protocols not supported by the Microsemi system-on-chip (SoC) high speed
serial/deserializer (SERDES) interface, so this core is ideal to use with unsupported protocols. The core
can be configured as a transmitter only, receiver only, or both transmitter and receiver. Word alignment
support is included in the receiver. The core can be configured to support 10-bit, 20-bit, 40-bit, or 80-bit
external physical coding sublayer (EPCS) data. The CorePCS block diagram is as shown in Figure 1,
page 2.

Figure 1 • CorePCS Block Diagram

2.1 CorePCS Blocks
CorePCS consists of three major blocks, as described below. All signals on the Tx Interface are clocked
using EPCS_TxCLK and all signals on the Rx interface are clocked using EPCS_RxCLK.

If the generic/parameter LANE_MODE is set to 0 or 2, the transmitter lane does the following:

Control
Interface

8B10
Encoding

Word
Alignment

8B10B
Decoding

EPCS
Interface

Control Signals

Rx InterfaceRx Interface

Tx Interface Tx Interface

User
Interface
HB0390 Handbook Revision 7.0 2

Introduction
2.1.1 8B10B Encoding
When generic/parameter EPCS_DWIDTH is set to 10-bit, the 8b10b transmitter converts 8-bit command
or data information into one 10-bit encoded values. Command and data information are qualified by the
TX_K_CHAR bus. The data on the TX_DATA bus is continuously registered into the transmitter. Because
of the pipe-lined nature of the transmitter, the first encoded data will be driven on the TX_DATA bus
several cycles after it is registered into the transmitter. All data input information is valid; however,
command possibilities are limited. If the transmitter detects a bad command, then it will assert the
INVALID_K signal. The core of the transmitter consists of a data encoder, a command encoder, and a
disparity calculator. Each encoder calculates a 4B and 6B code for the input data. The correct code,
command or data, is then selected based on the original input value of TX_K_CHAR. The disparity
calculator determines whether the encoded value needs to be inverted to maintain the correct running
disparity. The input FORCE_DISP can be used to force the data being registered into the transmitter to a
selected running disparity. The input DISP_SEL is used to select the running disparity. Finally, the code is
registered and sent to the transceiver on the TX_DATA bus.

When generic/parameter EPCS_DWIDTH is set to 20-bit or greater, the 8b10b transmitter is a pipe-lined
structure that converts parallel command or data information into parallel encoded values. Command and
data information are qualified by the TX_K_CHAR[IO_SIZE-1:0] bus. TX_K_CHAR[IO_SIZE-1]
corresponds to the upper data byte on TX_DATA[ENDEC_DWIDTH-1:0] and TX_K_CHAR[0] is for the
lower byte. The data on the TX_DATA bus is continuously registered into the transmitter. The transmitter
will encode and send the upper byte first followed by the lower bytes. Because of the pipe-lined nature of
the transmitter, the first encoded data will be driven on the TX_DATA bus several cycles after it is
registered into the transmitter. All data input information is valid; however, command possibilities are
limited. If the transmitter detects a bad command, then it will assert the INVALID_K signal. The core of
the transmitter consists of a data encoder, a command encoder, and a disparity calculator. Each encoder
calculates a 4B and 6B code for the input data. The correct code, command or data, is then selected
based on the original input value of TX_K_CHAR. The disparity calculator determines whether the
encoded value needs to be inverted to maintain the correct running disparity. The input
FORCE_DISP[IO_SIZE-1:0] can be used to forced the data being registered into the transmitter to a
selected running disparity. The input DISP_SEL[IO_SIZE-1:0] is used to select the running disparity.
FORCE_DISP [IO_SIZE-1] and DISP_SEL [IO_SIZE-1] corresponds to the upper data byte on TX_DATA
[ENDEC_DWIDTH-1:0] while FORCE_DISP [0] and DISP_SEL [0] is for the lower byte. Finally, the code
is registered and sent to the transceiver on the TX_DATA bus.

If generic/parameter LANE_MODE is set to 1 or 2 the receiver lane does the following:

2.1.2 8B10B Decoding and Word Alignment
When generic/parameter EPCS_DWIDTH is set to 10-bit, the 8b10b receiver converts one 10-bit
encoded values and converts it to 8-bit command or data information. Command information is indicated
by the RX_K_CHAR signal asserted high.

When generic/parameter EPCS_DWIDTH is set to 20-bit or greater, the 8b10b receiver is a pipe-lined
structure that converts parallel 10-bit encoded values and converts them to parallel command or data
information. Command information is indicated by the RX_K_CHAR [IO_SIZE-1:0] bus signals asserted
high. The data on the upper byte of the RX_DATA bus is the first decoded value in the sequence.
Receive data is first registered into parallel registers. The codes are decoded in parallel moving from
stage to stage.

Several signals qualify the validity of the information on RX_DATA. RX_DATA contains good information
whenever both the CODE_ERR_N is inactive (high) and ALIGNED is active (high). If ALIGNED is low or
CODE_ERR_N is low, then some problem exists in the transmission. Whenever the receiver loses sync
(ALIGNED is low) the transceiver will resynchronize the data on subsequent COMMA commands (K28.1
and/or K28.5 and/or K28.7). When sync is re-established, the ALIGNED will again be driven high after
the pipeline has been flushed of potentially bad data. The error check block monitors the incoming codes
and checks for illegal codes and bad running disparity. Whenever an error in the 8b10b code is detected,
the CODE_ERR_N is asserted. If several codes in a row are received with errors, then the 8b10b will
assume that synchronization with the transceiver has been lost and will deactivate ALIGNED and assert
the COMMA_DET_EN signal. The number of consecutive errors required to force a resynchronization is
HB0390 Handbook Revision 7.0 3

Introduction
fixed to 4. The transceiver will then resynchronize the data using COMMA codes. The 8b10b responds
by asserting ALIGNED indicating that the transceiver has reacquired sync.

The CorePCS supports word alignment for COMMA characters K28.1, K28.5, and K28.7. Word
alignment must be performed in the receiver before the data can make it through the core. Word
alignment is achieved by transmitting a burst of consecutive COMMA characters before transmitting the
data, however the number of consecutive COMMA characters is configurable when PROG_COMMA_EN
is enabled.

Note:

1. If parameter/generic PROG_COMMA_EN is disabled, an initial stream of 10 or more consecutive
COMMA characters will guarantee word alignment. If the receiver loses word alignment another
stream of 10 or more consecutive COMMA characters will re-align the receiver channel.

2. If parameter/generic PROG_COMMA_EN is enabled, the number of COMMAs required for word
alignment can be configured to a value between 1 and 2048. However, the word alignment is not
guaranteed when parameter/generic NO_OF_COMMAS is set to 1, so it is required that the user
has their own detection outside this core. This is due to the fact that bit boundary mismatch can
occur in multiple scenarios. Lower detection was added to allow support for protocols do not have a
stream of consecutive COMMA characters (For example, one COMMA character in a four symbol
idle pattern).

2.2 Features
Following are the key features:

• 8B10B encoding in the transmitter lane.
• Word alignment and 8B10B decoding in the receiver lane.
• EPCS data width of 10, 20, 40, or 80 bits can be selected, depending on the EPCS_DWIDTH

parameter/generic.
• The core can be configured as a transmitter only, receiver only, or both transmitter and receiver,

depending on the LANE_MODE parameter/generic.
• Supports 8, 16, 32, or 64 bit word alignment, depending on the SHIFT_EN parameter/generic.
• Fixed or configurable COMMA character detection options for word alignment.

2.3 Core Version
This handbook is for CorePCS version 3.5.

2.4 Supported Families
This version of CorePCS supports the following FPGA families:

• PolarFire™
• RTG4™
• IGLOO®2
• SmartFusion®2

2.5 Supported Interface
CorePCS includes the following interface:

• External PCS interface
HB0390 Handbook Revision 7.0 4

Introduction
2.6 Device Utilization and Performance
CorePCS has been implemented in several Microsemi device families. A summary of the implementation
data for CorePCS is listed in Table 1, page 5.

Table 1 • CorePCS Device Utilization and Performance for 16-bit mode

Family

Tiles Utilization

Performance MHzSequential Combinatorial Total Device Total %

PolarFire 795 936 1731 MPF300 0.58 300 MHz

RTG4 949 964 1,913 RTG4150 1.26 200 MHz

SmartFusion2 616 894 1,510 M2S050 2.7 250 MHz

IGLOO2 869 1,035 1,904 M2GL150T 1.3 250 MHz

Note:

1. Data in this table were achieved using synthesis and layout settings optimized for speed. Top-level
parameters/generics were left at their default values.

2. Performance results were achieved with speed grade -1, speed grade STD will achieve a lower
performance frequency.

Table 2 • CorePCS Device Utilization and Performance for 32-bit mode

Family

Tiles Utilization

Performance MHzSequential Combinatorial Total Device Total %

PolarFire 1620 1680 3300 MPF300 1.1 250 MHz

Table 3 • CorePCS Device Utilization and Performance for 64-bit mode

Family

Tiles Utilization

Performance MHzSequential Combinatorial Total Device Total %

PolarFire 2736 3893 6629 MPF300 2.21 210 MHz
HB0390 Handbook Revision 7.0 5

Functional Description
3 Functional Description

CorePCS, shown in Figure 1, page 2 consists of 8B10B encoding for the EPCS transmitter interface and
word alignment/8B10B decoding for the EPCS receiver interface.

3.1 Word Alignment Shift Option
Word alignment shift is controlled by the parameter/generic SHIFT_EN. It is required that word alignment
shift is enabled when CorePCS is configured for a 20-bit or greater EPCS received channel and it is
handling data from protocols with a continuous stream of COMMA characters for word alignment
followed by a stream of data which required the 16-bit data received to be in the upper and lower bytes
after the last COMMA characters is received. For protocols that do not have this requirement word
alignment shift should remain disabled.

For example, a 16-bit ADC transmits a continuous stream of COMMA characters for word alignment
followed by 16-bit data. There is no control over when the last COMMA character is received. There are
two scenarios for the position of the last COMMA character received will be.

Figure 2, page 6 shows the first scenario. In this case the last COMMA received in the lower position
followed by data in the upper position on the next clock tick. This is good for protocols that required 16-bit
data received to be in the upper and lower 8-bits after the last COMMA characters because on the next
clock tick D0u and D0l are in upper and lower position. This means the 16-bit data will be valid data.

Figure 2 • Last COMMA Characters Scenario 1

Figure 3, page 6 shows the second scenario. In this case the last COMMA received in the upper position
followed by data in the lower position on the same clock tick. This is bad for protocols that required 16-bit
data received to be in the upper and lower 8-bits after the last COMMA characters because on the next
clock tick D0l and D1u are in upper and lower position. This means the 16-bit data will always shifted by
a byte, making it invalid data.

Note: WA_DATA is an internal signal that is the word aligned data from EPCS_RxDATA

Figure 3 • Last COMMA Characters Scenario 2

The problem is that we have no control over when the last COMMA character is received so scenario 1
or 2 can happen anytime. This is where word alignment shift control solves this issue, if where have a
system that required 16-bit data received to be in the upper and lower 8-bits after the last COMMA
characters from word alignment then we would enabled word alignment shift.

With word alignment shift enabled no matter what position the last COMMA character received during
word alignment is the core will handle both scenarios and output the correct 16-bit data in the upper and
lower position. Figure 4, page 7 shows the position of the data on the output of the 8B10B decoder for
both scenarios when word alignment shift enabled.

Note: DATA_16B_OUT is an internal signal that is the decoded value WA_DATA

EPCS_RxCLK

WA_DATA[19:10]

WA_DATA[9:0]

1 2 3 4 5 6 7 8 9 10 11

K28.5

K28.5 D0I

D0u

D1I

D1u

D2I

D2u

D3I

D3u

D4I

D4u

EPCS_RxCLK

WA_DATA[19:10]

WA_DATA[9:0]

1 2 3 4 5 6 7 8 9 10 11

K28.5

K28.5 D1u

D0I

D2u

D1I

D3u

D2I

D4u

D3I

D5u

D4I

D0u
HB0390 Handbook Revision 7.0 6

Functional Description
Figure 4 • 8B10B Decoder Result

EPCS_RxCLK

WA_DATA[19:10]

WA_DATA[9:0]

1 2 3 4 5 6 7 8 9 10 11

K28.5

K28.5 D0I

D0u

D1I

D1u

D2I

D2u

D3I

D3u

D4I

D4u

K_OUT[1:0] 0X3 0X0
HB0390 Handbook Revision 7.0 7

Interface
4 Interface

4.1 Verilog/VHDL Parameters
CorePCS has parameters (Verilog) or generics (VHDL) for configuring the register transfer level (RTL)
code, described in Table 4, page 8. All parameters and generics are integer types.

Table 4 • CorePCS Parameters/Generics Descriptions

Parameter Name Valid Range Default Description

FAMILY 19 to 26 19 Must be set to the required FPGA family:
19: SmartFusion2
24: IGLOO2
25: RTG4
26: PolarFire

LANE_MODE 0 to 2 2 Option to use the core select 8B10B encoding and/or 8B10B
decoding:
0: Transmitter only
1: Receiver only
2: Transmitter and Receiver

EPCS_DWIDTH 10, 20, 40 or
80

20 The transmit/receive data bus on EPCS side. This
generic/parameter should be set to match the width of the EPCS
data width connected to CorePCS from the SERDES.

ENDEC_DWIDTH 8, 16, 32, or
64

16 This generic/parameter sets the width of the data on the user
interface side. The user cannot configure its value because it
depends on setting of EPCS_DWIDTH:
ENDEC_DWIDTH = (EPCS_DWIDTH/10) *8

IO_SIZE 1,2,4 or 8 2 This generic/parameter sets the width of the error and control
signals on the user interface side. Its value cannot be configure
because it depends on setting of EPCS_DWIDTH:
IO_SIZE = EPCS_DWIDTH/10

SHIFT_EN 0 0 This generic/parameter is only used when EPCS_DWIDTH is
20/40/80 bit. If enabled, it will shift the user data to the upper and
lower byte afterword alignment; this is useful if 16/32/64 bit data is
used.
0: Disabled
1: Enabled

Note: Connected to a 16-bit ADC is an example of when
this functionality should be enabled.

PROG_COMMA_EN 0 to 1 Enable for programmable COMMA pattern match:
0: Disabled
1: Enabled

NO_OF_COMMAS 1 to 2,048 When PROG_COMMA_EN is enabled, the value of this
parameter/generic determines the number of consecutive
COMMA character patterns is required follow word alignment.

Note: If set to 1, word alignment must be monitored by
some extern block from this core.
HB0390 Handbook Revision 7.0 8

Interface
4.2 I/O Signals
The port signals for the CorePCS macro are as shown in Figure 5, page 9 and defined in Table 5,
page 9.

Figure 5 • CorePCS I/O Signal Diagram

COMMA_DETECT_SEL 0 to 2 0 The COMMA character(s) used for word alignment:
0: K28.5
1: K28.1
2: K28.1 or K28.5 or K28.7
3: K28.7

Table 5 • CorePCS I/O Signal Descriptions

Port Name Type Description

Master Reset

RESET_N In Active low asynchronous reset. This is used to reset the core to its initial state.

8B10B Encoder Ports

TX_DATA In User data which is encoded before being transmitted through the EPCS interface.

TX_K_CHAR In Active High signal indicating that the TX_DATA contains command information. Bit 0
corresponds to the lower byte and IO_SIZE bit corresponds to the upper byte of TX_DATA.

FORCE_DISP In When asserted High the data on TX_DATA is encoded to the disparity encoding of
DISP_SEL Bit[0] corresponds to the lower byte and IO_SIZE bit corresponds to the upper
byte of TX_DATA.

Note: Only lower byte available when EPCS_DWIDTH = 10

Table 4 • CorePCS Parameters/Generics Descriptions

RESET_N

EPCS_TxRSTn

CorePCS

ALIGNED

WA_RSTn

TX_DATA[ENDEC_DWIDTH-1:0]
TX_K_CHAR[IO_SIZE:0]
INVALID_K[IO_SIZE:0]
FORCE_DISP[IO_SIZE:0]
DISP_SEL[IO_SIZE:0]

CODE_ERR_N[IO_SIZE:0]
RX_K_CHAR[IO_SIZE:0]
B_CERR[IO_SIZE:0]
RD_ERR[IO_SIZE:0]

RX_DATA[ENDEC_DWIDTH-1:0]

EPCS_TxCLK
EPCS_TxVAL

EPCS_TxDATA[EPCS_DWIDTH-1:0]

EPCS_READY
EPCS_PWRDN
EPCS_TXOOB

EPCS_RxIDLE
EPCS_RxERR
EPCS_RxRSTn
EPCS_RxCLK
EPCS_RxVAL

EPCS_RxDATA[EPCS_DWIDTH-1:0]

EPCS Tx
Channel

EPCS
Control
Signals

EPCS Rx
Channel

8B10B
Decoder
Signals

8B10B
Encoder
Signals

Word Aligner
Signals

Master Reset
HB0390 Handbook Revision 7.0 9

Interface
DISP_SEL In Only used when FORCE_DISP is asserted High.
0: Negative running disparity
1: Positive running disparity
Bit [0] corresponds to the lower byte and IO_SIZE bit corresponds to the upper byte of
TX_DATA.

Note: Only lower byte available when EPCS_DWIDTH = 10

INVALID_K Out Active High signal indicating that the transmitter has detected an invalid K character.

8B10B Decoder Ports

RX_DATA Out Decoded data received from the EPCS interface.

RX_K_CHAR Out Active high output from the decoder to the receiver indicating that the received data is a
command code. Bit 0 corresponds to the lower byte and IO_SIZE bit corresponds to the
upper byte of RX_DATA.

B_CERR Out This active high signal asserts when the received code group is not found in the 8B/10B
decoding table for either disparity. Bit 0 corresponds to the lower byte and IO_SIZE bit
corresponds to the upper byte of RX_DATA.

RD_ERR Out This active high signal asserts when the received code group exists in the 8B/10B
decoding table, but is not found in the proper column according to the current running
disparity. Bit 0 corresponds to the lower byte and IO_SIZE bit corresponds to the upper
byte of RX_DATA.

CODE_ERR_N Out Active low signal indicating that the decoder has detected an error in the received. Bit 0
corresponds to the lower byte and IO_SIZE bit corresponds to the upper byte of RX_DATA.

External PCS Control Interface

EPCS_READY In PHY ready signal. This signal is asserted when the PHY has completed the calibration
sequence for each specific lane. This signal can be used in order to release the reset for
the external PCS and controller, start transmitting data to the PMA or any other purpose.

EPCS_PWRDN Out PHY power-down signal. This signal is used to put the PMA in power-down state, where
Rx CDR PLL is bypassed and other low power features are applied to the PMA. When
exiting power down, no calibration is required and the link can be operational much faster
than using the EPCS_TxOOB or EPCS_RSTn signals.

External PCS Transmit Interface

EPCS_TxOOB Out PHY transmit out-of-band (OOB) signal. This signal is used to load Electrical Idle III in the
Tx driver of the PMA macro. It can be used for SATA as part of the sequencing for
transmitting very short OOB signaling.

EPCS_TxRSTn In PHY clean active low synchronous reset on Tx clock. This signal is a clean version of the
EPCS_RSTn signal, which has clean deassertion timing compared to EPCS_TxCLK.

EPCS_TxCLK In PHY transmit clock signal. This signal is the aTxClk signal generated by the PMA macro
and must be used by the external PCS logic to provide data on EPCS_TxDATA.

EPCS_TxDATA Out PHY transmit data signal. This output should match with the width of the EPCS receiver
channel on the SERDES.

EPCS_TxVAL Out PHY transmit valid signal. This signal is used to transmit valid data. If deasserted, the PMA
macro is put in Electrical Idle I. It can be used for protocols requiring Electrical Idle (SATA)
and must also be deasserted as long as EPCS_READY is not asserted. This must be
generated one clock cycle earlier than corresponding EPCS_TxDATA[] signals.

Table 5 • CorePCS I/O Signal Descriptions
HB0390 Handbook Revision 7.0 10

Interface
Note:

1. All signals are active High (logic 1) unless otherwise noted.
2. EPCS_RxIDLE, EPCS_RxERR, and EPCS_RxVAL are not used by the core but are added inputs to

complete the EPCS interface.

External PCS Receive Interface

EPCS_RxRSTn In PHY clean active low synchronous reset on Rx clock. This signal is a clean version of the
EPCS_RSTn signal, which has clean deassertion timing compared to EPCS_RxCLK.

EPCS_RxCLK In PHY receive clock signal This signal is the aRxClk signal generated by the PMA macro
and must be used by the external PCS logic to provide data on EPCS_RxDATA.

EPCS_RxDATA In PHY receive data signal. This input should match with the width of the EPCS receiver
channel on the SERDES.

EPCS_RxVAL In PHY receive valid data signal. This signal is used to signal receive valid data. It
corresponds to the two conditions completed by the PMA control logic:
 - Receiver detect incoming data (not in Electrical Idle)
 - CDR PLL is locked to input bitstream in fine grain state

Note: If PMA driven mode is used by the selected protocol (see the CDRPLL_DIS
register in reg00), this signal cannot be monitored and the EPCS_RxIDLE
signal must be used instead.

EPCS_RxIDLE In PHY Receive Idle signal. This signal is used to signal an Electrical Idle condition detected
by the PMA control logic. Note that this signal is generated on EPCS_TxCLK of the
selected lane.

EPCS_RxERR Out PHY Receive Error signal. This signal is used to report to PMA control logic that error data
has been detected by the external PCS logic.
This signal is used in PCS-driven mode of the CDR PLL to switch back to frequency lock
acquisition if too many errors are detected by the PMA control logic. This signal is unused
in PMA-driven mode and can also be hardwired to zero if the PCS should rely only on
Electrical Idle detection circuitry to switch the CDR PLL back into frequency lock state.

Word Aligner Signals

WA_RSTn In Active low synchronous reset for the word aligner on Rx clock, when asserted the word
aligner assumes a loss of alignment on the next clock tick and will start the re-alignment
process once de-assertion of this signal is detected.

ALIGNED Out When high indicates that the word aligner has achieved alignment. Alignment is achieved
by transmitting simultaneous K28.1, K28.5, or K28.7 character.

Table 5 • CorePCS I/O Signal Descriptions
HB0390 Handbook Revision 7.0 11

Timing Diagrams

HB0390 Handbook Revision 7.0 12

5 Timing Diagrams

5.1 Transmitter Lane Timing
CorePCS implements 8B10B encoding across the transmit lane to the external PCS interface.

Figure 6 • Transmitter Lane Timing

5.2 Receiver Lane Timing
CorePCS implements word alignment and 8B10B decoding across the receive lane from the external
PCS interface.

Figure 7 • Receiver Lane Timing

EPCS TxCLK

Tx DATA

EPCS TxDATA

DATA A DATA B DATA C DATA D DATA E

Symbol 1 Symbol 2 Symbol 3 Symbol 4 Symbol A

Symbol A Symbol B Symbol C Symbol D Symbol E Symbol F Symbol G Symbol H

EPCS RxCLK

EPCS Rx DATA

RxDATA DATA 1 DATA 2 DATA 3 DATA 4 DATA 5 DATA 6 DATA 7 DATA A

Tool Flow
6 Tool Flow

6.1 License
CorePCS is license free.

6.1.1 RTL
Complete RTL source code is provided for the core and testbenches.

6.2 SmartDesign
CorePCS is preinstalled in the SmartDesign IP Deployment design environment. The core should be
configured using the configuration GUI within SmartDesign, as shown in Figure 8, page 13. For
information on using the SmartDesign to instantiate and generate cores, refer to the Using DirectCore in
Libero SoC User Guide.

Figure 8 • CorePCS Full I/O View

Figure 9 • CorePCS SmartDesign Configuration Window
HB0390 Handbook Revision 7.0 13

http://www.actel.com/documents/libero_ug.pdf
http://www.actel.com/documents/libero_ug.pdf

Tool Flow
6.3 Simulation Flows
The User Testbench for CorePCS is included in all releases.

To run simulations, select the User Testbench flow within SmartDesign CorePCS configuration GUI,
right-click the canvas, and select Generate Design.

When SmartDesign generates the design files, it will install the user testbench files.

To run the user testbench, Set the design root to the CorePCS instantiation in the Libero® System-on-
Chip (SoC) design hierarchy pane and click the Simulation icon in the Libero SoC Design Flow window.
This will invoke ModelSim® and automatically run the simulation.

6.4 Synthesis in Libero
After setting the design root appropriately for your design, click Synthesis in the Libero SoC. The
Synthesis window appears, displaying the Synplicity® project. Set Synplicity to use the Verilog 2001
standard if Verilog is being used. To run Synthesis, click Run.

6.5 Place-and-Route in Libero
After setting the design root appropriately for the design, and after running Synthesis, click Layout in the
Libero SoC software to invoke Designer. CorePCS requires no special place-and-route settings.
HB0390 Handbook Revision 7.0 14

Testbench

HB0390 Handbook Revision 7.0 15

7 Testbench

7.1 User Testbench
The CorePCS user testbench gives an example of how to use the core with an external PCS. As shown
in Figure 10, page 15, the testbench instantiates a User Data Generation block and EPCS Data
Generation block to emulate using an external PCS.

Figure 10 • CorePCS User Testbench

The simulation testbench is as shown in Figure 10, page 15 includes an instantiation of the CorePCS
macro, user data generation, EPCS data generation, user data/EPCS monitors, and data checker. The
testbench transmits from user data to EPCS and/or receives from EPCS to user data.

User Data
Generation

UUT
(Core
PCS)

EPCS
 Data

Generation

User Data
Monitor

Checker EPCS
Monitor

	1 Revision History
	1.1 Revision 7.0
	1.2 Revision 6.0
	1.3 Revision 5.0
	1.4 Revision 4.0
	1.5 Revision 3.0
	1.6 Revision 2.0
	1.7 Revision 1.0

	2 Introduction
	2.1 CorePCS Blocks
	2.1.1 8B10B Encoding
	2.1.2 8B10B Decoding and Word Alignment

	2.2 Features
	2.3 Core Version
	2.4 Supported Families
	2.5 Supported Interface
	2.6 Device Utilization and Performance

	3 Functional Description
	3.1 Word Alignment Shift Option

	4 Interface
	4.1 Verilog/VHDL Parameters
	4.2 I/O Signals

	5 Timing Diagrams
	5.1 Transmitter Lane Timing
	5.2 Receiver Lane Timing

	6 Tool Flow
	6.1 License
	6.1.1 RTL

	6.2 SmartDesign
	6.3 Simulation Flows
	6.4 Synthesis in Libero
	6.5 Place-and-Route in Libero

	7 Testbench
	7.1 User Testbench

