HB0764

CoreJTAGDebug v3.1 Handbook
May 2019

& Microsemi

a A8\ MicrocHIP company




& Microsemi

a G\MICHOCHIP company

Microsemi Headquarters

One Enterprise, Aliso Viejo,

CA 92656 USA

Within the USA: +1 (800) 713-4113
Outside the USA: +1 (949) 380-6100
Sales: +1 (949) 380-6136

Fax: +1 (949) 215-4996

Email: sales.support@microsemi.com
Www.microsemi.com

©2019 Microsemi, a wholly owned
subsidiary of Microchip Technology Inc. All
rights reserved. Microsemi and the
Microsemi logo are registered trademarks of
Microsemi Corporation. All other trademarks
and service marks are the property of their
respective owners.

Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of
its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the
application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have
been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any
performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all
performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not
rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer’s responsibility to
independently determine suitability of any products and to test and verify the same. The information provided by Microsemi
hereunder is provided “as is, where is” and with all faults, and the entire risk associated with such information is entirely
with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP
rights, whether with regard to such information itself or anything described by such information. Information provided in this
document is proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this
document or to any products and services at any time without notice.

About Microsemi

Microsemi, a wholly owned subsidiary of Microchip Technology Inc. (Nasdaq: MCHP), offers a comprehensive portfolio of
semiconductor and system solutions for aerospace & defense, communications, data center and industrial markets.
Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and
ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world's
standard for time; voice processing devices; RF solutions; discrete components; enterprise storage and communication
solutions, security technologies and scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs and
midspans; as well as custom design capabilities and services. Learn more at www.microsemi.com.

51300764.3 5/19


mailto:sales.support@microsemi.com
http://www.microsemi.com

& Microsemi

a @Mlcno:mn company

Contents

Revision History . . ... ... 1
1.1 ReVISION 3.0 . ... 1
1.2 ReVISION 2.0 . ..o e e 1
1.3 ReVISION 1.0 . .o e 1
Introduction . . ... ... 2
21 OV BIVIBW . oo 2
2.2 Features . . .. 2
2.3 CorE VerSION . .o e 2
24 Supported Families . ... ... 2
25 Device Utilization and Performance . . . ... ... .. 3
Functional Description . ... ... .. . . 4
3.1 Device Chaining . ... ..ot 6

3.11 Through FlashPro Header . . . ... ... e 6

3.1.2  Through GPIO . ... . 7
Interface . . ... .. 10
4.1 Configuration Parameters . ... ... ... 10

411 Signal DescCriptions . ... ... i e 11
Register Map and Descriptions . . ... . 12
Tool FIoW . . . 13
6.1 LCBNSE . o o 13

6.1.1 R . 13

6.1.2 SMaA D ESIgN . . .o 13
6.2 Configuring CoreJTAGDebug in SmartDesign . .. .. ... ... e 14
6.3 Simulation FIOWS . . .. ... 15
6.4 Synthesis in Libero . .. ... 15
6.5 Place-and-Route in Libero . ... ... . e 15
System Integration . . . ... ... 16
71 System Level Design . .. ... 16

711 IGLOOZ / RT G4 . . ot e e e e 16
7.2 SMartFUSIONZ . . . 17
Design Constraints . . ......... . . . . 18

Revision 3 1



Figures

& Microsemi

a AS\MicrocHip company

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17

CoreJTAGDebug Block Diagram ... ... ... e e 4
Tunnel Packet Protocol . . . ... ... . 5
CoreJTAGDebug Serial Dataand Clocking .. .......... .. e 5
Multiple Processorsina Single Device . . . ... ... .. 6
Multiple Processors Across TWO DeVICES . .. ... .o it e e e 6
Debugger Configuration UJ_JTAG IRCODE ... ... ... ... e 7
Debugger Configuration GPIO . .. ... ... . . . . 7
Debugging over GPIO piNs .. . ... o 7
Device Chaining through GPIO pINS . . ... ... e 8
Debug Configuration . . ... ... .. 8
MIV Configuration File . .. ... ... . e 8
Example Debug System . . ... .. 9
SmartDesign CoreJTAGDebug Instance View using JTAGHeader . .. ..................... 13
SmartDesign CoreJTAGDebug Instance using GPIOpins . . . ......... ... .. 13
Configuring CoreJTAGDebug in SmartDesign . . ......... ... 14
RTG4/IGLOO2 JTAG Debug Design . .. ...t e e e 16
SmartFusion2 JTAG Debug Design . . ... ... it e 17

Revision 3 1



& Microsemi

a AS\MicrocHip company

Tables

Table 1 Device Utilization and Performance .. ........ ... .. . . i 3
Table 2 CoreJTAGDebug Configuration Options . .......... .. e 10
Table 3 CoreJTAGDebug /0 Signals . . . ... . 11

Revision 3



Revision History

& Microsemi

a AS\MicrocHip company

1 Revision History

The revision history describes the changes that were implemented in the document. The changes are
listed by revision, starting with the most current publication.

1.1 Revision 3.0
Updated for CoreJTAGDebug v3.1 release.

The major changes made in this release are:

*  Added BUFD macros to improve performance and Place-And-Route (PAR) timing for PolarFire
family.

* Removed CLKINT macros around uj_jtag module since these are now added automatically in Libero
SoC vi2.1.

1.2 Revision 2.0
Updated for CoreJTAGDebug v3.0 release.

The major changes made in this release are:

*  Support added for multiple JTAG devices through the FlashPro header and through GPIO. For more
information about Device Chaining, refer to Functional Description section.
+  Support added for multiple UJ_JTAG devices.

1.3 Revision 1.0

Revision 1.0 is released for CoreJTAGDebug v2.0.

Revision 3 1



HB0764: CoreJTAGDebug v3.1 Handbook

& Microsemi

a AS\MicrocHip company

2 Introduction

2.1 Overview

CoreJTAGDebug v3.1 facilitates the connection of JTAG (Joint Test Action Group) compatible soft core
processors to the JTAG header or GPIO pins for debugging. This core processors facilitates the
debugging of maximum 16 soft core processors within a single device, and also provides the debugging
support of four devices over GPIO.

2.2 Features

Following are the key features of CoreJTAGDebug:

«  Provides the fabric access to the JTAG interface through the JTAG header.
«  Configures the IR Code support for the JTAG tunneling.

»  Supports the linking of multiple devices through the dedicated JTAG header.
»  Supports the multi-processor debugging.

»  Promotes the s clock and reset signals to the low-skew routing resources.

+  Supports active-high target resetting.

*  Provides the fabric access to the JTAG interfaces through the GPIO pins.

*  Supports the multiple UJTAG devices.

2.3 Core Version
This Handbook applies to CoreJTAGDebug v3.1.

2.4 Supported Families

PolarFire®
« RTG4™
« |IGLOO®2

. SmartFusion®2
e SmartFusion

*  ProASIC3/3E/3L
« IGLOO

+ IGLOOe/+

Revision 3 2



HB0764: CoreJTAGDebug v3.1 Handbook

& Microsemi

a A8\ MicrocHiP company

2.5 Device Utilization and Performance

Utilization and performance data is listed in Table 1 for the supported device families. The data listed in
this table is only indicative. The overall device utilization and performance of the core is system
dependent.

Table 1 ¢ Device Utilization and Performance

Tiles Utilization

Performance
Family Sequential Combinatorial Total Device Total % (MHz)
PolarFire 17 116 299554 MPF300TS 0.04 111.111
RTG4 19 121 151824 RT4G150 0.09 50.00
SmartFusion2 17 120 56340 M2S050 0.24 69.47
IGLOO2 17 120 56340 M2GL050 0.24 68.76
SmartFusion 17 151 4608 A2F200M3F 3.65 63.53
IGLOO 17 172 3072 AFL125V5 6.15 69.34
ProASIC3 17 157 13824 A3P600 1.26 50.00

Note: Data in this table was achieved using the Verilog RTL with typical synthesis and layout settings on -1
parts. Top-level parameters or generics were left at default settings.

Revision 3 3



HBO0764: CoreJTAGDebug v3.1 Handbook

3

& Microsemi

a AS\MicrocHip company

Functional Description

Figure 1«

TD

CoreJTAGDebug uses the UJTAG hard macro to provide fabric access to the JTAG interface. The
UJTAG hard macro facilitates connecting to the output of the MSS or ASIC TAP controller from the fabric.

Only, one instance of the UJTAG macro is allowed in the fabric.

CoreJTAGDebug Block Diagram

MSS/ASIC

Bypass Register
I

L |

Shift Reg'sl:a’

TAP Controller

— 1|

== 18

R Code
U DRUPD,

E= B

uTo UDRSH, UREG[7-0] UTDO
UDRCAP
Fabric
CorglTAGDebug
S T ; I'l:
i\
r L k. T L b
uj_jtag tunne controller uj_jtag tunna controller
0 15
' | ' |
TET_TCK_Q, TGT_TCK_15,
TET_TRSTE_O, TGET_TRSTE_15,
TET_TMS O, TET_TDo. 8 TET_TMS_1S, TeTThO 13
TE1 I0LD IS LIS
L
Debug Target Debug Target
0 15

Revision 3




HB0764: CoreJTAGDebug v3.1 Handbook

Figure 2 »

& Microsemi

a AS\MicrocHip company

CoreJTAGDebug contains an instantiation of the uj_jtag tunnel controller, which implements a JTAG
tunnel controller to facilitate JTAG tunneling between a FlashPro programmer and a target softcore
processor.The softcore processor is connected through the dedicated JTAG header pins. IR scans from
the JTAG interface are inaccessible in the FPGA fabric. Hence, the tunnel protocol is required to facilitate
IR and DR scans to the debug target, which supports the industry standard JTAG interface. The tunnel
controller decodes the tunnel packet transferred as a DR scan and generates a resultant IR or DR scan,
based on the contents of the tunnel packet and the contents of the IR register provided through UIREG.
The tunnel controller also decodes the tunnel packet, when the contents of the IR register matches its IR
code.

Tunnel Packet Protocol

Emtry TMS Length | Emtry ThAS Data Fayload Data Fayload Data Data Exit TMS Length Exit TMS Data
[2:0]

[0-7) Length [5:0] [0-53] [20] [0-7)

Figure 3 »

A configuration parameter provides configuration of the IR code used by the tunnel controller. To facilitate
the debugging of multiple softcore processors inside a single design, the number of tunnel controllers
instantiated are configurable in the range 1-16, providing a JTAG compliant interface to each target
processor.These target processors are each addressable through a unique IR code set at instantiation
time.

A CLKINT or BFR buffer is instantiated on the TGT_TCK line of each target processor debug interface.

The URSTB line from the UJTAG macro (TRSTB) is promoted to a global resource within
CoreJTAGDebug. An optional inverter is placed on the TGT_TRST line within CoreJTAGDebug for
connection to a debug target, which is then expected to be connected to an active-high reset source. It is
configured when it is assumedthatthe incoming TRSTB signal from the JTAG TAP is active low. If this
configuration requires one or more debug targets, an additional global routing resource will be
consumed.

CoreJTAGDebug Serial Data and Clocking

1=

—CF

- |

Revision 3 5



HB0764: CoreJTAGDebug v3.1 Handbook

& Microsemi

a AS\MicrocHip company

3.1 Device Chaining

Read the FPGA Programming User Guides for the specific development board or family. Each
development board may operate at different voltages, and you may choose to verify if it is possible with
their development platforms. Also, if you are using multiple development boards, ensure that, they share
a common ground.

311 Through FlashPro Header

To support the chaining of multiple devices in the Fabric using the FlashPro header, multiple instances of
uj_jtag are required. This version of the core provides users with access of maximum 16 cores without
the need for manually instantiating uj_jtag. Each core has a unique IR Code (from 0x55 to 0x64) that will
provide access to the specific core matching the ID code.

Figure 4« Multiple Processors in a Single Device

FlzshPro
He=zdar
Device 0

[N

|l

1] Corel TAGDebug

LI

o

Target softcore Target softoore
Proces sor Processor
IR Code Dx55 IR Code 0x56

To use CoreJTAGDebug across multiple devices, one of the devices needs to become the master. This
device contains the CoreJTAGDebug core. Each processor is then connected as follows:

Figure 5+ Multiple Processors Across Two Devices

FlashPro
Header

Device D
| Device 1
JTAG pins

ad

0od Corel TAG Debug

C[C sProgrammer Targetsoftcore
[ Prrjeryss =or
— IR Coee 057

|

Target softcore Target softone
Processar Processor
IR Code G5 IR Conde 056

To debug a core on another board, the JTAG signals from CoreJTAGDebug are promoted to top level
pins in the SmartDesign. These are then connected to the JTAG signals directly on the processor. A
CoreJTAGDebug, in the second board design, is optional Note that the UJ_JTAG macro and the
FlashPro header are unused in the second board design.

Revision 3 6



HB0764: CoreJTAGDebug v3.1 Handbook

& Microsemi

a AS\MicrocHip company

To select a processor for debugging in SoftConsole, click the debug configurations, and then click the
Debugger tab.

The following command is used.
Figure 6 « Debugger Configuration UJ_JTAG_IRCODE

Config options: | -.command “set UJ_ITAG_IRCODE Ox57"
--file board/micrasemi-riscv.cfg

The UJ_JTAG_IRCODE can be changed depending on which processor you are debugging. For
example: to debug a processor in Device 0, the UJ_JTAG_IRCODE can be set to 0x55 or 0x56.

3.1.2 Through GPIO

To debug over GPIO, the parameter UJTAG _BYPASS is selected. One and four cores can be debugged
over GPIO headers or pins. To run a debug session using GPIOs from SoftConsole v5.3 or higher, the
Debug Configuration must be set up as follows:

Figure 7+ Debugger Configuration GPIO

Config options: | --command "set FPGA_TAP N
--file board/microsemi-riscv.cfg

Note: If you are debugging over GPIO, you cannot concurrently debug the processor through the FlashPro
Header or the Embedded FlashPro5, on the development boards. For example: FlashPro Header or
Embedded FlashPro 5 are available to facilitate debug using Identify or SmartDebug.

Figure 8+ Debugging over GPIO pins

Device O

Corel TAGDebug |

Target Processor 0

Device Chaining via GPIO Pins

To support the chaining of multiple devices through GPIO, the BYPASS_UJTAG parameter needs to be
selected. Then the TCK, TMS, and TRSTb signals can be promoted to top level ports. All target
processors have TCK, TMS, and TRSTb. These are not shown below.

Revision 3 7



HBO0764: CoreJTAGDebug v3.1 Handbook

& Microsemi

a @Mlcno:mn company

Figure 9« Device Chaining through GPIO pins

Dreewnc 0

|

oo 1 s 1

Tangae so fioore
Prccssor 0

Dewvice 1

il R Lore ITAG Debug

Tanget sofware
Pmcensor 2

[ 1 i 1]

Targt sofoore:
Prcessar 1

In a basic JTAG chain, the TDO of a processor connects to the TDI of another processor, and it continues
until all processors are chained, in this manner. The TDI of the first processor and the TDO of the last
processor connects to the JTAG programmer chaining all the processors. The JTAG signals from the
processors are routed to CoreJTAGDebug, where they can be chained. If the chaining across multiple
devices is completed, the device with CoreJTAGDebug becomes the master device.

In a GPIO debug scenario, where an IRCode isunallocated to each processor, a modified OpenOCD
script is used to select, which device is being debugged. An OpenOCD script is modified to select, which
device is debugged. For an Mi-V design, the file is found in the SoftConsole install location, under the
openocd/scripts/board/microsemi-riscv.cfg. For the other processors, the files are found in the same
openocd location. Note that, the Debug Configuration options also needs to be updated, if the file is
renamed.

Figure 10 « Debug Configuration

Config options: --command “set FPGA TAF N”

--file board/microsemi-riscv.cfg

Open username-riscv-gpio-chain.cfg, following is an example of what must be seen:

Figure 11 « MIV Configuration File
’______________________________________________________________________________

# Microsemi RISC-V board

# FlashPro
gource [find interface/microsemi-flashpro.cfygl

# Device
source [find target/microsemi-riscv.cfg]

$ Board specific initialization
proc do board reset init {} |{

}

The following settings works for a single device debugging over GPIO. For debugging a chain, additional
commands need to be added,so that the devicesthat are not debugged are put in the bypass mode.

For the MIV core, the following command is used:
jtag newtap IGHORE tap -irlen 5 -expected-id 0 -ignore-version

Revision 3 8



HBO0764: CoreJTAGDebug v3.1 Handbook O Mic em’

a AS\MicrocHip company

For a two processor in a chain, the following command in the example shown is used:

# Device
jtag newtap IGNCRE tap -irlen 5 -expected-id 0 -ignore-wversion
source [find target/microsemi-riscv.cfg]

This allows debugging of Target softcore Processor 1 by putting Target softcore Processor 0 into the
bypass mode. To debug the Target softcore Processor 0, the following command is used:

§ Device
source [find target/microsemi-riscv.cfg]
jtag newtap IGNORE tap -irlen 5 -expected-id 0 -ighore-version

Note: The only difference between these two configurations is that the source, which is calling the Microsemi

RISCV configuration file (microsemi-riscv.cfg) either comes first, when debugging Target softcore
Processor 0, or second, when debugging Target Softcore Processor 1. For more than two devices in the
chain, additional “jtag newtaps” is added. For example, if there are three processors in a chain, then the
following command is used:

§ Device

source [find target/microsemi-riscv.cfgl]

jtag newtap IGNORE tap -irlen 5 -expected-id 0 -ignore-wversion

jtag newtap IGNORE tap -irlen 5 -expected-id 0 -ignore-version

Figure 12 + Example Debug System

Flash Pro
Harzd ar
Device O
0
10
10 To FP CorelTAG Debug
11| \Programm es
L
3 a
E 2
Target softoone Target softoore
Pr ooas o Processor
L1 1

Revision 3 9



HB0764: CoreJTAGDebug v3.1 Handbook

& Microsemi

a A8\ MicrocHiP company

4 Interface

4.1 Configuration Parameters

The configurable options applies to CoreJTAGDebug are in Table 2. If a configuration except default is
required, use the Configuration dialog box in SmartDesign, to select the appropriate values for the
configurable options.

Table 2 « CoreJTAGDebug Configuration Options

Name Valid Range Default Description

NUM_DEBUG_TGTS 1-16 1 The number of available debug targets through Flash Pro
(UJTAG_DEBUG = 0) is 1 -16. The number of available debug
targets through GPIO (UJTAG_DEBUG = 1) is 1 -4.

IR_CODE_TGT_x 0X55-0X64 0X55 JTAG IR Code, one per debug target. The value specified must
be unique to this debug target. The tunnel controller associated
with this debug target interface only drives TDO and drives the
target debug interface, when the contents of the IR register
matches this IR code.

TGT_ACTIVE_HIGH 0-1 0 0: TGT_TRST_x output is connected to a global form of the
_RESET x active-low URSTB output of the UJITAG macro.
1: TGT_TRST output is internally connected to a global inverted
form of the active-low URSTB output of the UJTAG macro.
An extra global routing resource is consumed if this parameter is
set to 1 for any debug target.

UJTAG_BYPASS 0-1 0 0: GPIO Debug is disabled, Debug is available through the
FlashPro Header or Embedded FlashPro5.
1: GPIO Debug is enabled, Debug is available through auser
selected GPIO pins on the board.
Note: When you are Debugging through GPIO, the
following debug command is used:

“—command “set FPGA_TAP N™ must be used in SoftConsole
debug options.

Revision 3 10



HB0764: CoreJTAGDebug v3.1 Handbook

& Microsemi

a A8\ MicrocHiP company

411 Signal Descriptions

Signal descriptions for CoreJTAGDebug are listed in Table 3.

Table 3 « CoreJTAGDebug I/O Signals

Port Name Width Direction Description
JTAG TAG Ports

TDI 1 Input Test Data In. Serial data input from TAP.

TCK 1 Input Test Clock. Clock source to all sequential elements
within CoreJTAGDebug.

TMS 1 Input Test Mode Select.

TDO 1 Output Test Data out. Serial data output to TAP.

TRSTB 1 Input Test Reset. Active low reset input from TAP.

JTAG Target X Ports

TGT_TDO_x 1 Input Test data out from debug target x to the TAP. Connect
to the target TDO port.

TGT_TCK_x 1 Output Test Clock output to debug target x. TCK is promoted to
a global, low skew net internally within
CoreJTAGDebug.

TGT_TRSTB_x 1 Output Test Reset. Configurable active-high or active-low reset
output to debug target x.

TGT_TMS x 1 Output Test Mode Select output to debug target x.

TGT_TDI_x 1 Output Test Data In. Serial data input from debug target x.

UJTAG_BYPASS_TCK_x 1 Input Test Clock input to debug target x from GPIO pin.

UJTAG_BYPASS TMS x 1 Input Test Mode Select to debug target x from GPIO pin.

UJTAG_BYPASS_TDI_x 1 Input Test Data In, Serial data to debug target x from GPIO
pin.

UJTAG_BYPASS_TRSTB_x 1 Input Test Reset. Reset input to debug target x from GPIO
pin.

UJTAG_BYPASS _TDO_x 1 Output Test Data Out, Serial data from debug target x from
GPIO pin.

Note: All signals in the JTAG TAP ports list above must be promoted to top-level ports in SmartDesign.

Revision 3 1M



HBO0764: CoreJTAGDebug v3.1 Handbook O M. em’

a AS\MicrocHip company

5 Register Map and Descriptions

There are no registers for CoreJTAGDebug.

Revision 3 12



HBO0764: CoreJTAGDebug v3.1 Handbook

6

& Microsemi

a AS\MicrocHip company

Tool Flow

6.1

6.1.1

6.1.2

Figure 13 »

Figure 14 «

License

Alicense is not required to use this IP Core with Libero SOC.

RTL

Complete RTL code is provided for the core and test benches, allowing the core to be instantiated with
SmartDesign. Simulation, Synthesis, and Layout can be performed within Libero SoC.

SmartDesign
An example instantiated view of CoreJTAGDebug is shown in Figure 13.

For more information on using SmartDesign to instantiate and generate cores, refer to the Using
DirectCore in Libero® SoC User Guide.

SmartDesign CoreJTAGDebug Instance View using JTAG Header

COREJTAGDEBUG _1

BJTAG_HEADER  DEBUG_TARGET_0E
TRSTB TGT_TRSTB_O
TCK TGT_TCK 0
THS TGT_TMS_0
O TGT_TDLO
TDO TGT_TDO_0

@ w

SmartDesign CoreJTAGDebug Instance using GPIO pins

COREJTAGDEBUG_O

SEIUJTAG BYPASS 0 UJTAG BYPASS TDO 0O :

UJTAG BYPASS TCK 0 DEBUG TARGET 0B
UJTAG BYPASS TMS 0 TGT TRSTB 0
UJTAG BYPASS TDI 0 TGT TCK 0
> UJTAG BYPASS TRSTB 0 TGT_TMST0
| TGT TDI 0
TGT_TDO 0

#Fr!

Revision 3 13



HBO0764: CoreJTAGDebug v3.1 Handbook O M. em’

a AS\MicrocHip company

6.2 Configuring CoreJTAGDebug in SmartDesign

The core is configured using the configuration GUI in SmartDesign. An example of the GUI is shown in
Figure 15.

Figure 15 « Configuring CoreJTAGDebug in SmartDesign

Configuratian -1
. General Configuration i
i Number of Debug Targets |1
UITAG_BYPASS [
Debwg_Target_0
Target 0 IR Code |I'.'Ix55 Actre-high target resel Target 0 [
| Debisg_Target_1
Tearget 1 IR Code |"t':¢.- Actiog-high target reset Target 1 7
Debug_Target_2
Target 2 IR Code [a7 Active-high target reset Target 2
Debug_Target_3 ||
Target 3 IR Code |-:-~53 Active-high target reset Target 3
Debisg_Target_4
Target 4 IR Code |-:ncs~;~ Actre-high target reset Target 4 [
Debug_Target_5
Terget 5 IR Code |52 Active-high target reset Target 5
Debisg_Target_&
Target & IR Code [0 Active-high target reset Target &
' Dabug_Target_7
Target 7 IR Code |':'-':-: Active-high target reset Target 7 lI
Help v o | concel |

-
The Number of Debug Targets is configurable up to 16 debug targets,with UJTAG_BYPASS disabled
and up to 4 debug targets,with UJITAG_BYPASS enabled.

Revision 3 14



HB0764: CoreJTAGDebug v3.1 Handbook = .
& Microsemi
a AS\MicrocHip company

UJTAG_BYPASS selects debugging through UJTAG and the FlashPro header, and debugging through
GPIO pins.

The Target # IR Code is the JTAG IR Code given to the debug target. This must be a unique value within
the range specified in Table 2.

6.3 Simulation Flows
A user testbench is provided with CoreJTAGDebug.

To run simulations:

1. Select the user testbench flow within the SmartDesign.
2. Click Save and Generate in the Generate pane. Select the user testbench from the Core
Configuration GUI.

When SmartDesign generates the Libero project, it installs the user testbench files.
To run the user testbench:

1. Set the design root to the CoreJTAGDebug instantiation in the Libero design hierarchy pane.
2. Click Verify Pre-Synthesized Design ->Simulate in the Libero Design Flow window. This starts
ModelSim and automatically runs the simulation.

6.4 Synthesis in Libero
To run Synthesis:

1. Click the Synthesize icon in the Libero SoC Design Flow window to synthesize the core.
Alternatively, right-click on the Synthesize option in the Design Flow window, and select Open
Interactively. The Synthesis window displays the Synplify® project.

2. Click the Run icon.

6.5 Place-and-Route in Libero

Once the synthesis stage is completed, click the Place and Route icon in Libero SoC to start the
placement process.

Revision 3 15



HBO0764: CoreJTAGDebug v3.1 Handbook O M. em’

a AS\MicrocHip company

7 System Integration

71 System Level Design
711 IGLOO2 / RTG4

The Figure 16 shows the design requirements to perform JTAG debugging of a softcore processor,
located in the fabric from SoftConsole to the JTAG interface for IGLOO2 and RTG4 devices.

Figure 16 »+ RTG4/IGLOO2 JTAG Debug Design

FCB
ﬁ P IGLOD2IRTG 4
10 pin ITAG
PC FlashPro header
&y stam Controdiar

LEE A ._| | A - - ITAG TAR
| | Contmller

CoreJTa GDe bug
el
UPROM TG
sott - .
PIOCEEs O ot

Revision 3 16



HBO0764: CoreJTAGDebug v3.1 Handbook O M. em’

a AS\MicrocHip company

7.2 SmartFusion2

The Figure 17 shows the design requirements to perform JTAG debugging of a softcore processor,
located in fabric from SoftConsole to the JTAG interface for SmartFusion2 devices.

Figure 17 « SmartFusion2 JTAG Debug Design

PCE
20-pin BYI SmartFuslonz
hesder
Cortex-M3
ITAL
STAG JTAG TAF
Condraller
STE_BEL
- o] -+
ool 114G mux miX
10-pim - |-

- FlaanFro I haader Sy atem Controlef
JTRG JTAZ TAF
LER ST n Condraller

- AL
CareJTAGDekuY
ﬂ alvM & LUTAG
p i
3
San ITaL
Processor |~ ulftag

Revision 3 17



HB0764: CoreJTAGDebug v3.1 Handbook

8

& Microsemi

a A8\ MicrocHiP company

Design Constraints

The designs with CoreJTAGDebug require the application to follow the constraints, in the design flow, for
allowing timing analysis to be used on the TCK clock domain.

To add the constraints:

1. If the Enhanced Constraint flow in Libero v11.7 or higher is used, double-click Constraints >
Manage Constraints in the Design Flow window and click Timing tab.

2. In the Timing tab of the Constraint Manager window, click New to create a new SDC file, and
name the file. The Design constraints include the clock source constraints that can be entered in this
blank SDC file.

3. Ifthe Classic Constraint flows in Libero v11.7 or higher is used, right-click Create Constraints >
Timing Constraint, in the Design Flow window, and then click Create New Constraint. It creates a
new SDC file. The design constraints includes the clock source constraints, which is entered in this
blank SDC file.

4. Calculate the TCK period and half period. TCK is set to 6 MHz when debugging is done with
FlashPro, and is set to a maximum frequency of 30 MHz when debugging is supported by
FlashPro5. After you have completed this step, enter the following constraints in the SDC file:

create clock -name { TCK } \
-period TCK PERIOD \
-waveform { O TCK HALF PERIOD } \
[ get ports { TCK } ]
For example:, the following constraints is applied for a design that uses a TCK frequency of 6 MHz:
create clock -name { TCK } \
-period 166.67 \
-waveform { 0 83.33 } \
[ get ports { TCK } ]

5. Associate all the constraints files with the Synthesis, Place-and-Route, and Timing Verification
stages in the Constraint Manager > Timing tab.This is completed by selecting the related check
boxes for the SDC files in which the constraints were entered in.

Revision 3 18



