
CoreAI v3.0

Handbook

http://www.actel.com/survey/rating/?f=coreai_hb.pdf

Actel Corporation, Mountain View, CA 94043

© 2009 Actel Corporation. All rights reserved.

Printed in the United States of America

Part Number: 50200102-2

Release: February 2009

No part of this document may be copied or reproduced in any form or by any means without prior written
consent of Actel.

Actel makes no warranties with respect to this documentation and disclaims any implied warranties of
merchantability or fitness for a particular purpose. Information in this document is subject to change
without notice. Actel assumes no responsibility for any errors that may appear in this document.

This document contains confidential proprietary information that is not to be disclosed to any
unauthorized person without prior written consent of Actel Corporation.

Trademarks
Actel and the Actel logo are registered trademarks of Actel Corporation.

Adobe and Acrobat Reader are registered trademarks of Adobe Systems, Inc.

All other products or brand names mentioned are trademarks or registered trademarks of their respective
holders.

Table of Contents
Introduction . 5
Key Features . 5

Core Overview . 5

Supported Device Families . 7

Core Version . 7

Supported Interfaces . 7

Utilization and Performance . 8

1 Functional Block Description . 9

2 Tool Flows . 11
Licenses . 11

SmartDesign . 11

3 Interface Description . 17
Parameters/Generics . 17

Parameter Dependencies and Precedence . 23

Ports . 24

Analog Interfaces . 28

4 Register Maps . 29
APB Register Map . 29

ACM Interface . 36

5 ADC Operation . 41

6 Testbench Operation and Modification . 43
Simple Application Testbench . 43

7 System Operation . 45
Using CoreAI with Cortex-M1 . 45

Using CoreAI with Core8051s . 45

Using CoreAI with CoreABC . 46

Using CoreAI with ADC Results FIFO . 47

8 Ordering Information . 49
Ordering Codes . 49

A Product Support . 51
Customer Service . 51

Actel Customer Technical Support Center . 51

Actel Technical Support . 51

Website . 51
v3.0 3

Table of Contents CoreAI v3.0
Contacting the Customer Technical Support Center . 51

Index . 53
4 v3.0

Introduction

CoreAI (Analog Interface) allows for simple control of the analog peripherals within the Fusion device family. Control
may be implemented with an internal or external microprocessor or microcontroller such as CoreABC, Core8051s, or
Cortex-M1, etc., or with user-created custom logic within the FPGA fabric.

Key Features
CoreAI has the following features:

• Thin processor interface around Fusion AB (Analog Block) hard macro

• ADC conversions controlled by processor writes

• Internal logic interface for controlling the ACM (Analog Configuration MUX)

• Internal logic to divide clock for generating ACM clock

• Optional hardware-controlled inputs to directly control some AB functions

• Interrupt logic for various events (such as end of ADC conversions)

Core Overview
The industry-standard AMBA (Advanced Microcontroller Bus Architecture) APB (Advanced Peripheral Bus) slave
interface is used as the primary control mechanism within CoreAI.

CoreAI instantiates the AB (Analog Block) macro (see Figure 1). The AB macro includes the ACM (Analog
Configuration MUX) interface, Analog Quads, and RTC (Real-Time Counter). The ACM interface, within the AB
macro, is used to control configuration of the Analog Quads and RTC in the Fusion device.

CoreAI generates the control signals used by the ACM, including its clock signal, which is generated by an internal
clock divider. The ACM clock divider is used to ensure that the ACM interface is clocked at a frequency less than or
equal to 10 MHz (see “ACM Interface” on page 36 for details). For more details on the silicon features of the AB macro,
such as the Analog Quads, RTC, or ACM, refer to the Fusion datasheet (http://www.actel.com/products/fusion/
docs.aspx).
v3.0 5

http://www.actel.com/products/fusion/docs.aspx
http://www.actel.com/products/fusion/docs.aspx
http://www.actel.com/products/fusion/docs.aspx

Introduction CoreAI v3.0
Several aspects of CoreAI can be configured using top-level parameters (Verilog) or generics (VHDL). For a detailed
description of the parameters/generics, refer to Table 3-1 on page 17. The CoreAI block diagram is shown in Figure 1.
A typical application using CoreAI is shown in Figure 2.

Figure 1 · Core AI Block Diagram

CoreAI

AB
(Analog Block)

Analog Inputs

Analog Outputs

Analog Inputs used as
Digital Inputs

μProcessor I/F
Logic

RTC Inputs

RTC Outputs

APB I/F

Interrupt

ADC I/F
Logic

Status Outputs

ACM I/F
Logic

Optional
Hardware-Driven
AB Control Inputs
6 v3.0

CoreAI v3.0 Supported Device Families
Supported Device Families
Fusion

Core Version
This handbook applies to CoreAI v3.0.

Supported Interfaces
CoreAI is available with the APB (Advanced Peripheral Bus) slave interface and must be connected to an APB master
interface or to dedicated FPGA logic that implements an APB master interface.

Actel recommends that you use SmartDesign in the Libero® IDE Project Manager to connect and configure CoreAI in
a processor-based system, using Cortex-M1, Core8051s or CoreABC.

Figure 2 · Typical CoreAI Application

Fusion Device

CorePWM

Cortex-M1 Temperature Monitor
Bipolar Transistor

CoreAI
v3.0 7

Introduction CoreAI v3.0
Utilization and Performance
CoreAI has been implemented in the Actel Fusion device family. A summary of the data for CoreAI is listed in page 8
and Table 2. CoreAI can be used with any device in the Fusion family.

Note: Data in this table were achieved using typical synthesis and layout settings. Top-level parameters/generics that
differ from the default values were set as follows: PCLK_FREQUENCY = 40, CFG_VAREFSEL = 2,
CFG_MODE = 32, CFG_TVC = 512, CFG_STC = 512, CFG_ACx = 512, CFG_ATx = 512,
CFG_TMSTBINT = 2, CFG_GDx = 768, CFG_INTERRUPT = 3, APB_DWIDTH = 16.

Note: Data in this table were achieved using typical synthesis and layout settings. Top-level parameters/generics that
differ from the default values were set as follows: PCLK_FREQUENCY = 40, CFG_RTC = 1.

Table 1 · CoreAI Device Utilization and Performance (minimum configuration)

Family
Tiles Utilization

Performance
Sequential Combinatorial Total Device

Fusion 38 123 161 AFS090 7% up to 100 MHz

Table 2 · CoreAI Device Utilization and Performance (maximum configuration)

Family
Tiles Utilization

Performance
Sequential Combinatorial Total Device

Fusion 103 208 317 AFS600 2% up to 100 MHz
8 v3.0

1
Functional Block Description

CoreAI, shown in Figure 1 on page 6, consists of the microprocessor interface logic, ACM interface logic, and ADC
interface logic blocks. The microprocessor interface logic implements APB slave logic and generates a maskable
interrupt. The ACM interface block writes configuration data into the AB macro to control Analog Quad and RTC
settings. The ADC interface block sends control data to and receives status information from the ADC.
v3.0 9

2
Tool Flows

Licenses
CoreAI is licensed in two ways. Depending on your license type, tool flow functionality may be limited.

Obfuscated
Complete RTL code is provided for the core, allowing the core to be instantiated within SmartDesign. Simulation,
Synthesis and Layout can be performed within the Libero IDE. The RTL code for the core is obfuscated and some of
the testbench source files are not provided; they are pre-compiled into the compiled simulation library instead.

RTL
Complete RTL source code is provided for the core and testbenches.

SmartDesign
CoreAI is available for download to the SmartDesign IP Catalog via the Libero IDE web repository. The parameters/
generics of the core can be configured using the IP configuration GUI within SmartDesign as shown in Figure 2-1,
Figure 2-2, and Figure 2-3.The parameters/generics of the core are fully described in “Parameters/Generics” on page 17
and cross references to them are shown next to the IP configuration screenshots in Figure 2-1, Figure 2-2, and
Figure 2-3.

Note: If you are using an AFS090 (or AFS090 variant) or AFS250 (or AFS250 variant), you must make the correct
choice in the CoreAI IP configurator within SmartDesign via the Fusion Device selection box. For example, as
shown in Figure 2-1, the device selected is AFS090. If you are not using either an AFS090 or AFS250 (or variants
thereof), you must make the default choice of larger than AFS250 in the Fusion Device selection box.
v3.0 11

Tool Flows CoreAI v3.0
For information on using SmartDesign to instantiate, configure, connect, and generate cores, refer to the Libero IDE
online help. For a detailed tutorial on DirectCore IP flow using SmartDesign, refer to Using DirectCore in Libero IDE.

Figure 2-1 · CoreAI Configuration within SmartDesign

SHIFT_RESULT_BITS

AQ_DSBL_CFG

CFG_AB

APB_DWIDTH

PCLK_FREQUENCY

CFG_INTERRUPT

REMOVE_IREG_LOGIC

CFG_...CFG_...

CFG_AV0

CFG_AT0

CFG_AC0

CFG_CD0
12 v3.0

http://www.actel.com/documents/directcore_in_libero_tutorial_ug.pdf
http://www.actel.com/documents/directcore_in_libero_tutorial_ug.pdf

CoreAI v3.0 SmartDesign
Figure 2-2 · CoreAI Configuration within SmartDesign (continued)

CFG_... CFG_...
v3.0 13

Tool Flows CoreAI v3.0
Simulation Flows
To run simulations, select the user testbench in SmartDesign through the CoreAI IP configuration GUI. Generate the
design in SmartDesign. The appropriate test bench files are now installed.

To run the testbenches, set the design root to the CoreAI instantiation in the Libero IDE File Manager and click the
Simulation icon in the Project Flow tab. This invokes ModelSim® and automatically runs the simulation.

Synthesis in Libero IDE
To run Synthesis on the core with parameters set in SmartDesign, set the design root appropriately and click the
Synthesis icon in the Project Manager. The Synthesis window appears, displaying the Synplicity project. Set Synplicity
to use the Verilog 2001 standard if Verilog is being used. To perform synthesis, click the Run icon.

Figure 2-3 · CoreAI Configuration within SmartDesign (continued)

CFG_RTC

CFG_RTC_...
14 v3.0

CoreAI v3.0 SmartDesign
Place-and-Route in Libero IDE
After setting the design root appropriately and running Synthesis, click the Layout icon in the Project Manager to
invoke Designer. CoreAI requires no special place-and-route settings.
v3.0 15

3
Interface Description

CoreAI is available with an APB slave interface and is easily connected to an APB bus on the SmartDesign Canvas.

Parameters/Generics
CoreAI has parameters (Verilog) and generics (VHDL), described in Table 3-1. All parameters and generics are integer
types.

Table 3-1 · CoreAI Parameter/Generic Description

Name
Valid

Range
Description

FAMILY 17 Only the Fusion family is supported for this core.

AQ_DSBL_CFG 0 to 2

Disable Analog Quads based on Fusion device

0 - Disable use of Analog Quads 5 to 9 (AFS090 or AFS090 variants)

1 - Disable use of Analog Quads 6 to 9 (AFS250 or AFS250 variants)

2 - Do not disable use of any of the Analog Quads from 0 to 9 (default, used with devices
larger than the AFS250)

APB_DWIDTH 8, 16, or 32 Set this to the width of the APB data bus. Default is 8-bit width.

PCLK_FREQUENCY 1 to 100

Set this to the operating frequency in MHz of the PCLK input to the nearest integer,
rounded up. CoreAI needs to know this information to set the internal clock divider
correctly to communicate with the ACM interface within the AB macro. For example, if
the actual PCLK input frequency is 19.15 MHz, PCLK_FREQUENCY should be set to
20; if the actual PCLK input frequency is exactly 19.0 MHz, PCLK_FREQUENCY
should be set to 19.

SHIFT_RESULT_BITS 0, 2, or 4

This parameter/generic shifts the lower 12 bits in the ADC Status Register 11:0 bits

0 - ADC Status Register 11:0 connected to AB macro outputs RESULT[11:0] (default,
not shifted)

2 - ADC Status Register bits 11:10 tied low and bits 9:0 connected to AB macro outputs
RESULT[11:2]

4 - ADC Status Register bits 11:8 tied low and bits 7:0 connected to AB macro outputs
RESULT[11:4]

CFG_AB 0, 1, or 2

AB Macro Enable Configuration

0 - Legacy mode - no clock enable or associated logic for AB macro

1 - Add clock enable logic for AB macro, ADCRESET starts inactive (default)

2 - Add clock enable logic for AB macro, ADCRESET starts active

CFG_INTERRUPT 0 to 3

Interrupt Output Configuration

0 - Interrupt Active-high (default)

1 - Interrupt Active-low

2 - Interrupt disabled (statically tied low)

3 - Interrupt disabled (statically tied high)
v3.0 17

Interface Description CoreAI v3.0
REMOVE_IREG_LOGIC 0 or 1

Remove interrupt register logic

0 - All bits of the Interrupt Status Register are used (default)

1 - bits 6, 3:0 of the Interrupt Status Register are tied low

CFG_ADCRESET 0 or 1

ADC Reset Configuration

0 - Software-controlled by internal register (default)

1 - Hardware-controlled by HD_ADCRESET input

Note that if the ADCRESET is configured as being hardware-controlled by the
HD_ADCRESET input, it is the user's responsibility to activate and de-activate the
ADC reset condition to the AB block, whereas the de-activation of the software-
controlled reset condition is automatically handled within CoreAI (Refer to Table 10:
ADC Control Register 1 for description of the software-controlled ADCRESET bit).

CFG_PWRDWN 0 or 1

ADC Power Down Configuration

0 - Software-controlled by internal register (default)

1 - Hardware-controlled by HD_PWRDWN input

When hardware-controlled, the ADC will be powered up normally if the
HD_PWRDWN input is logic 0 and will be powered down if the HD_PWRDWN input
is logic 1.

CFG_VAREFSEL 0 to 3

ADC Reference Voltage Selection Configuration

0 - Software-controlled by internal register (default)

1 - Hardware-controlled by HD_VAREFSEL input

2 - Statically fixed at logic 0 to select internal VAREF as output

3 - Statically fixed at logic 1 to select external VAREF as input

(Refer to Table 10: ADC Control Register 1 for description of the software-controlled
VAREFSEL bit)

Table 3-1 · CoreAI Parameter/Generic Description (continued)

Name
Valid

Range
Description
18 v3.0

CoreAI v3.0 Parameters/Generics
CFG_MODE

0, 16, 32 to
34, 36 to
38, 40 to
42, 44 to
46

ADC Mode Selection Configuration (hexadecimal values shown)

This parameter/generic controls the connection to the MODE[3:0] input pins of the AB
macro (controls ADC resolution, etc.).

0x00 - Software-controlled by internal register (default)

0x10 - Hardware-controlled by HD_MODE[3:0] inputs

0x20 - Statically fixed to 0x0 (ADC 10-bit mode)

0x21 - Statically fixed to 0x1 (ADC 12-bit mode)

0x22 - Statically fixed to 0x2 (ADC 8-bit mode)

0x24 - Statically fixed to 0x4 (ADC 10-bit mode without internal power-down after
conversion)

0x25 - Statically fixed to 0x5 (ADC 12-bit mode without internal power-down after
conversion)

0x26 - Statically fixed to 0x6 (ADC 8-bit mode without internal power-down after
conversion)

0x28 - Statically fixed to 0x8 (ADC 10-bit mode without internal calibration)

0x29 - Statically fixed to 0x9 (ADC 12-bit mode without internal calibration)

0x2A - Statically fixed to 0xA (ADC 8-bit mode without internal calibration)

0x2C - Statically fixed to 0xC (ADC 10-bit mode without internal calibration and
without internal power-down after conversion)

0x2D - Statically fixed to 0xD (ADC 12-bit mode without internal calibration and
without internal power-down after conversion)

0x2E - Statically fixed to 0xE (ADC 8-bit mode without internal calibration and without
internal power-down after conversion)

CFG_TVC
0, 256, 512
to 767

ADC Clock Divider Configuration (hexadecimal values shown)

This parameter/generic controls the connection to the TVC[7:0] input pins of the AB
macro (controls ADC internal clock-divider that divides the PCLK frequency to generate
the internal ADC clock).

0x000 - Software-controlled by internal register (default)

0x100 - Hardware-controlled by HD_TVC[7:0] inputs

0x200 - Statically fixed to 0x00 (PCLK/4)

0x201 - Statically fixed to 0x01 (PCLK/8)

...

0x2FE - Statically fixed to 0xFE (PCLK/1020)

0x2FF - Statically fixed to 0xFF (PCLK/1024)

Table 3-1 · CoreAI Parameter/Generic Description (continued)

Name
Valid

Range
Description
v3.0 19

Interface Description CoreAI v3.0
CFG_STC
0, 256, 512
to 767

ADC Sample Time Control Configuration (hexadecimal values shown)

This parameter/generic controls the connection to the STC[7:0] input pins of the AB
macro (controls ADC sample time control).

0x000 - Software-controlled by internal register (default)

0x100 - Hardware-controlled by HD_STC[7:0] inputs

0x200 - Statically fixed to 0x00 (2 ADC clock periods)

0x201 - Statically fixed to 0x01 (3 ADC clock periods)

...

0x2FE - Statically fixed to 0xFE (256 ADC clock periods)

0x2FF - Statically fixed to 0xFF (257 ADC clock periods)

CFG_ADCSTART 0 or 1

ADC Start Conversion Configuration

0 - Software-controlled by internal register (default)

1 - Hardware-controlled by HD_ADCSTART input

CFG_CHNUMBER 0 or 1

ADC Channel Number Control Configuration

0 - Software-controlled by internal registers (default)

1 - Hardware-controlled by HD_CHNUMBER[4:0] inputs

CFG_CMSTB9,
CFG_CMSTB8,
CFG_CMSTB7,
CFG_CMSTB6,
CFG_CMSTB5,
CFG_CMSTB4,
CFG_CMSTB3,
CFG_CMSTB2,
CFG_CMSTB1,
CFG_CMSTB0

0 or 1

Current Monitor Strobes Configuration

These parameters/generics control the connection to the CMSTB9 down to CMSTB0
input pins, respectively, of the AB macro (control current monitor strobes).

0 - Software-controlled by internal register (default)

1 - Hardware-controlled by HD_CMSTBx input

For example, if CFG_CMSTB3 is set to 1, the HD_CMSTB3 input will control the
CMSTB3 input pin of the AB macro, instead of software-controlled writes to bit 3 of
ADC Control Register 3.

CFG_TMSTBINT 0 to 2

Internal Temperature Monitor Strobe Configuration

This parameter/generic controls the connection to the TMSTBINT input pin of the AB
macro (controls internal temperature monitor strobe).

0 - Software-controlled by internal register (default)

1 - Hardware-controlled by HD_TMSTBINT input

2 - Disabled (tied to logic 0 internally)

Table 3-1 · CoreAI Parameter/Generic Description (continued)

Name
Valid

Range
Description
20 v3.0

CoreAI v3.0 Parameters/Generics
CFG_TMSTB9,
CFG_TMSTB8,
CFG_TMSTB7,
CFG_TMSTB6,
CFG_TMSTB5,
CFG_TMSTB4,
CFG_TMSTB3,
CFG_TMSTB2,
CFG_TMSTB1,
CFG_TMSTB0

0 or 1

Temperature Monitor Strobes Configuration

These parameters/generics control the connection to the TMSTB9 down to TMSTB0
input pins, respectively, of the AB macro (control temperature monitor strobes).

0 - Software-controlled by internal register (default)

1 - Hardware-controlled by HD_TMSTBx input

For example, if CFG_TMSTB6 is set to 1, the HD_TMSTB6 input will control the
TMSTB6 input pin of the AB macro, instead of software-controlled writes to bit 6 of
ADC Control Register 4.

CFG_AV9,CFG_AV8,
CFG_AV7,CFG_AV6,
CFG_AV5,CFG_AV4,
CFG_AV3,CFG_AV2,
CFG_AV1,CFG_AV0

0 to 1,023

Configure AVx Inputs (hexadecimal values shown)

Each of these parameters/generics is used to configure the AV9 down to AV0 inputs,
respectively, connected to the AB macro. The lower 8 bits of each of these 10-bit integers
are reserved for generating firmware settings for the target processor used with CoreAI
and are ignored by the CoreAI hardware. The upper 2 bits are used to create the settings
for each AVx input.

0x000 to 0x0FF - Voltage Monitor (default)

0x100 to 0x1FF - Digital Input

0x200 to 0x2FF - Reserved (unused)

0x300 to 0x3FF - Disabled

For example, if CFG_AV5 is set to the value 0x000, the AV5 input will be used as an
analog voltage monitor input. If CFG_AV5 is set to the value 0x100, the AV5 input will
be used as a digital input, and the buffered DAVOUT5 output would be connected to the
user's own logic. If CFG_AV5 is set to the value 0x300, the AV5 input will be disabled; in
this case, the CoreAI AV5 input will not be used and the AV5 input of the AB macro will
be hardwired to logic 0 within CoreAI.

CFG_AC9,CFG_AC8,
CFG_AC7,CFG_AC6,
CFG_AC5,CFG_AC4,
CFG_AC3,CFG_AC2,
CFG_AC1,CFG_AC0

0 to 1,023

Configure ACx Inputs (hexadecimal values shown)

Each of these parameters/generics is used to configure the AC9 down to AC0 inputs,
respectively, connected to the AB macro. The lower 8 bits of each of these 10-bit integers
are reserved for generating firmware settings for the target processor used with CoreAI
and are ignored by the CoreAI hardware. The upper 2 bits are used to create the settings
for each ACx input.

0x000 to 0x0FF - Current Monitor (default)

0x100 to 0x1FF - Digital Input

0x200 to 0x2FF - Voltage Monitor

0x300 to 0x3FF - Disabled

For example, if CFG_AC7 is set to the value 0x000, the AC7 input will be used as an
analog current monitor input. If CFG_AC7 is set to the value 0x100, the AC7 input will
be used as a digital input, and the buffered DACOUT7 output would be connected to the
user's own logic. If CFG_AC7 is set to the value 0x200, the AC7 input will be used as an
analog voltage monitor input. If CFG_AC7 is set to the value 0x300, the AC7 input will
be disabled; in this case, the CoreAI AC7 input will not be used and the AC7 input of the
AB macro will be hardwired to logic 0 within CoreAI.

Table 3-1 · CoreAI Parameter/Generic Description (continued)

Name
Valid

Range
Description
v3.0 21

Interface Description CoreAI v3.0
CFG_AT9,CFG_AT8,
CFG_AT7,CFG_AT6,
CFG_AT5,CFG_AT4,
CFG_AT3,CFG_AT2,
CFG_AT1,CFG_AT0

0 to 1,023

Configure ATx Inputs (hexadecimal values shown)

Each of these parameters/generics is used to configure the AT9 down to AT0 inputs,
respectively, connected to the AB macro. The lower 8 bits of each of these 10-bit integers
are reserved for generating firmware settings for the target processor used with CoreAI
and are ignored by the CoreAI hardware. The upper 2 bits are used to create the settings
for each ATx input.

0x000 to 0x0FF - Temperature Monitor (default)

0x100 to 0x1FF - Digital Input

0x200 to 0x2FF - Voltage Monitor

0x300 to 0x3FF - Disabled

For example, if CFG_AT2 is set to the value 0x000, the AT2 input will be used as an
analog temperature monitor input. If CFG_AT2 is set to the value 0x100, the AT2 input
will be used as a digital input, and the buffered DATOUT2 output would be connected to
the user's own logic. If CFG_AT2 is set to the value 0x200, the AT2 input will be used as
an analog voltage monitor input. If CFG_AT2 is set to the value 0x300, the AT2 input
will be disabled; in this case, the CoreAI AT2 input will not be used and the AT2 input of
the AB macro will be hardwired to logic 0 within CoreAI.

CFG_GD9,CFG_GD8,
CFG_GD7,CFG_GD6,
CFG_GD5,CFG_GD4,CFG
_GD3,CFG_GD2,
CFG_GD1,CFG_GD0

0 to 1,023

Configure GDONx Gate Driver Control Inputs and AGx Gate Driver Outputs
(hexadecimal values shown)

Each of these parameters/generics is used to configure the GDON9 down to GDON0
inputs, respectively, connected to the AB macro, and the AG9 down to AG0 outputs,
respectively, that are connected to the AB macro. The lower 8 bits of each of these 10-bit
integers are reserved for generating firmware settings for the target processor used with
CoreAI and are ignored by the CoreAI hardware. The upper 2 bits are used to create the
settings for each GDONx input and AGx output.

0x000 to 0x0FF - GDONx/AGx Software-controlled by internal register (default)

0x100 to 0x1FF - GDONx/AGx Hardware-controlled by HD_GDONx input

0x200 to 0x2FF - Reserved (unused)

0x300 to 0x3FF - Disabled (GDONx and AGx)

For example, if CFG_GD1 is set to the value 0x00, the GDON1 input and AG1 gate-
driver output will be controlled by a software-controlled register within CoreAI (ADC
Control Register 5). If CFG_GD1 is set to the value 0x100, the HD_GDON1 input
(connected to the user's own logic) will be used to directly control the GDON1 input and
AG1 gate-driver output. If CFG_GD1 is set to the value 0x300, the GDON1 input and
AG1 output will be disabled; in this case, the CoreAI AG1 output will not be used and
the GDON1 input of the AB macro will be hardwired to logic 0 within CoreAI.

Table 3-1 · CoreAI Parameter/Generic Description (continued)

Name
Valid

Range
Description
22 v3.0

CoreAI v3.0 Parameter Dependencies and Precedence
Parameter Dependencies and Precedence
Some of the parameter settings can be ignored or used depending on the values of other parameters. The effect of this
can be seen when using the IP configurator GUI in SmartDesign: you will see that some of the fields are grayed out.
This graying out behavior prevents some parameter values being used based on settings of other parameters. For
example, if you are using an AFS090 device, and select this in the IP configurator, you will see that the configuration
dialogs are grayed out for analog quads 5 through 9, since an AFS090 device only has analog quads from 0 to 4.

The parameter AQ_DSBL_CFG has higher precedence than the CFG_AVx, CFG_ACx, CFG_ATx, and CFG_GDx
parameters. Also, the CFG_ACx parameters have higher precedence than the CFG_CMSTBx parameters, and the
CFG_ATx parameters have higher precedence than the CFG_TMSTBx parameters.

For example, if the AQ_DSBL_CFG parameter has the value 0 (AFS090 device), then the CFG_AV5 to CFG_AV9
parameter settings, the CFG_AC5 to CFG_AC9 parameter settings, the CFG_AT5 to CFG_AT9 parameter settings,
and the CFG_GD5 to CFG_GD9 parameter settings are ignored and effectively disabled, resulting in various IP
configurator dialogs being grayed out. Likewise, since the CFG_AC5 to CFG_AC9 and CFG_AT5 to CFG_AT9
parameters are disabled in this case, this means the CFG_CMSTB5 to CFG_CMSTB9 and CFG_TMSTB5 to
CFG_TMSTB9 parameters will also be disabled, since they are of lower precedence.

CFG_RTC 0 to 2

Configure use of RTC

This parameter/generic controls whether or not the RTC is used

0 - Not used (default)

1 - Used, the RTCPSMMATCH output is exposed on the SmartDesign canvas. You
must connect a Crystal Oscillator component and a Voltage Regulator component to your
design from the Libero IDE Catalog in the Fusion Peripherals category.

2 - Used, the RTCPSMMATCH output is not exposed on the SmartDesign canvas. You
must connect a Crystal Oscillator component to your design from the Libero IDE
Catalog in the Fusion Peripherals category.

Consult the Libero IDE online help for information on how to connect Fusion
peripherals to your design on the SmartDesign canvas.

CFG_RTC_COUNTER4,

CFG_RTC_COUNTER3,

CFG_RTC_COUNTER2,

CFG_RTC_COUNTER1,

CFG_RTC_COUNTER0

0 to 255

Configure ACM RTC Counter Registers

Each of these parameters/generics is used to configure the RTC COUNTER4 down to
COUNTER0 ACM registers, respectively, within the AB macro (see Table 18). Each of
these 8-bit integers are reserved for generating firmware settings for the target processor
used with CoreAI and are ignored by the CoreAI hardware.

CFG_RTC_MATCHREG4,

CFG_RTC_MATCHREG3,

CFG_RTC_MATCHREG2,
CFG_RTC_MATCHREG1,

CFG_RTC_MATCHREG0

0 to 255

Configure ACM RTC Match Registers

Each of these parameters/generics is used to configure the RTC MATCHREG4 down to
MATCHREG0 ACM registers, respectively, within the AB macro (see Table 18). Each
of these 8-bit integers are reserved for generating firmware settings for the target
processor used with CoreAI and are ignored by the CoreAI hardware.

CFG_RTC_CTRL_STAT 0 to 255

Configure ACM RTC Control/Status Register

This parameter/generic is used to configure the RTC CTRL_STAT ACM register within
the AB macro (see Table 18). This 8-bit integer is reserved for generating firmware
settings for the target processor used with CoreAI and is ignored by the CoreAI hardware.

Table 3-1 · CoreAI Parameter/Generic Description (continued)

Name
Valid

Range
Description
v3.0 23

Interface Description CoreAI v3.0
Ports
The port signals for the CoreAI macro are defined in Table 3-2 on page 24 and illustrated in Figure 3-1. CoreAI has
from 194 to 243 I/O signals, depending on the APB_DWIDTH parameter.

Note that vector notation is used in Figure 3-1 for the AV, AC, AT, ATRETURN, HD_GDON, HD_CMSTB,
HD_TMSTB, DAVOUT, DACOUT, DATOUT, and AG ports; however, these ports are actually split into individual
single-bit ports, as described in Table 3-2. For example, there are five individual input ports, ATRETURN4,
ATRETURN3, ATRETURN2, ATRETURN1, and ATRETURN0, rather than one vectored input port
ATRETURN[4:0].

Figure 3-1 · CoreAI I/O Signal Diagram

PCLK
PRESETN
PADDR[6:0]

PWDATA[APB_DWIDTH-1:0]
VAREF

AV[9:0]
AC[9:0]
AT[9:0]

AG[9:0]

RTCXTLMODE[1:0]
RTCXTLSEL
RTCMATCH

RTCCLK

ATRETURN[4:0]

PRDATA[APB_DWIDTH-1:0]

DAVOUT[9:0]
DACOUT[9:0]
DATOUT[9:0]

RTCPSMMATCH

PSEL
PENABLE
PWRITE

INTERRUPT

GNDREF

BUSY

AB_BUSY
AB_DATAVALID

AB_RESULT[11:0]
AB_CHNUMBER[11:0]

HD_ADCRESET
HD_PWRDWN
HD_VAREFSEL

HD_ADCSTART

HD_GDON[9:0]

HD_TMSTBINT

HD_MODE[3:0]
HD_TVC[7:0]
HD_STC[7:0]

HD_CHNUMBER[4:0]
HD_CMSTB[9:0]
HD_TMSTB[9:0]

AB_CALIBRATE

PREADY
PSLVERR

Table 3-2 · CoreAI Signal Description

Name Type Description

APB Interface

PCLK Input
APB System Clock: reference clock for all internal logic. The frequency of this input
clock signal must be set appropriately using the PCLK_FREQUENCY parameter/
generic in Table 3.

PRESETN Input APB active-low asynchronous reset

PADDR[6:0] Input APB address bus - This port is used to address internal CoreAI registers.

PSEL Input APB Slave Select - This signal selects CoreAI for reads or writes.

PENABLE Input APB Strobe - This signal indicates the second cycle of an APB transfer.

PWRITE Input
APB Write/Read - If high, a write will occur when an APB transfer to CoreAI takes
place; if low, a read from CoreAI will take place.
24 v3.0

CoreAI v3.0 Ports
PWDATA[APB_DWIDTH-1:0] Input
APB write data - This can be 8, 16, or 32 bits wide, depending on the setting of the
APB_DWIDTH parameter.

PRDATA[APB_DWIDTH-1:0] Output
APB read data - This can be 8, 16, or 32 bits wide, depending on the setting of the
APB_DWIDTH parameter.

PREADY Output APB ready - This signal is not used by CoreAI and is tied high internally.

PSLVERR Output APB slave error - This signal is not used by CoreAI and is tied low internally.

INTERRUPT Output

Microprocessor interrupt output - This interrupt signal is generated from 6 possible
interrupt sources, each of which can be masked or enabled via the INTENABLE
register. The polarity of this output is controlled via the CFG_INTERRUPT
parameter/generic.

Analog Interface

VAREF
Input or
Output

Voltage reference - If using the internal voltage reference, this signal will be an output; if
using an external voltage reference, this signal will be an input for this reference (see the
CFG_VAREFSEL parameter/generic in Table 3-1 on page 17). This signal must
always be brought to the top level of your design.

GNDREF Input
Ground reference - If external voltage reference is used, this signal must be connected to
the ground for the reference; otherwise this should be connected to digital ground (logic
0).

AV9,AV8,AV7,AV6,AV5,AV4,AV
3,AV2,AV1,AV0

Input

Analog Voltage Monitor inputs - These signals correspond to the AVx voltage monitor
inputs (AV9 through AV0) of the AB macro. Note: Unused AVx inputs need to be
disabled with the CFG_AVx parameters/generics and connected to logic 0. Note that
the setting of the AQ_DSBL_CFG parameter/generic affects which of these ports are
available for use, depending on which Analog Quads are available (available Analog
Quads vary for the smaller dies AFS090 and AFS250).

AC9,AC8,AC7,AC6,AC5,AC4,A
C3,AC2,AC1,AC0

Input

Analog Current Monitor inputs - These signals correspond to the ACx current monitor
inputs (AC9 through AC0) of the AB macro. Note: Unused ACx inputs need to be
disabled with the CFG_ACx parameters/generics and connected to logic 0. Note that
the setting of the AQ_DSBL_CFG parameter/generic affects which of these ports are
available for use, depending on which Analog Quads are available (available Analog
Quads vary for the smaller dies AFS090 and AFS250).

AT9,AT8,AT7, AT6,AT5,
AT4,AT3, AT2,AT1,AT0

Input

Analog Temperature Monitor inputs - These signals correspond to the ATx
temperature monitor inputs (AT9 through AT0) of the AB macro. Note: Unused ATx
inputs need to be disabled with the CFG_ATx parameters/generics and connected to
logic 0. Note that the setting of the AQ_DSBL_CFG parameter/generic affects which
of these ports are available for use, depending on which Analog Quads are available
(available Analog Quads vary for the smaller dies AFS090 and AFS250).

ATRETURN4,ATRETURN3,A
TRETURN2,ATRETURN1,
ATRETURN0

Input

Shared Analog Temperature Monitor Returns - These signals correspond to the shared
returns for the temperature monitor inputs ATRETURN89 down to ATRETURN01,
respectively, of the AB macro. Note that the setting of the AQ_DSBL_CFG parameter/
generic affects which of these ports are available for use, depending on which Analog
Quads are available (available Analog Quads vary for the smaller dies AFS090 and
AFS250).

Table 3-2 · CoreAI Signal Description

Name Type Description
v3.0 25

Interface Description CoreAI v3.0
DAVOUT9,DAVOUT8,
DAVOUT7,DAVOUT6,
DAVOUT5,DAVOUT4,
DAVOUT3,DAVOUT2,
DAVOUT1,DAVOUT0

Output

Digital AV outputs - These signals correspond to the digital AV outputs (DAVOUT9
through DAVOUT0) of the AB macro. If any of the AVx inputs are configured as
digital inputs rather than analog inputs, their corresponding buffered digital signals are
put out on these ports.

DACOUT9,DACOUT8,
DACOUT7,DACOUT6,
DACOUT5,DACOUT4,
DACOUT3,DACOUT2,
DACOUT1,DACOUT0

Output

Digital AC outputs - These signals correspond to the digital AC outputs (DACOUT9
through DACOUT0) of the AB macro. If any of the ACx inputs are configured as
digital inputs rather than analog inputs, their corresponding buffered digital signals are
put out on these ports.

DATOUT9,DATOUT8,
DATOUT7,DATOUT6,
DATOUT5,DATOUT4,
DATOUT3,DATOUT2,
DATOUT1,DATOUT0

Output

Digital AT outputs - These signals correspond to the digital AT outputs (DATOUT9
through DATOUT0) of the AB macro. If any of the ATx inputs are configured as
digital inputs rather than analog inputs, their corresponding buffered digital signals are
put out on these ports.

HD_GDON9,
HD_GDON8, HD_GDON7,
HD_GDON6, HD_GDON5,
HD_GDON4, HD_GDON3,
HD_GDON2, HD_GDON1,
HD_GDON0

Input

Hardware-Driven Gate Driver enables - These signals can control the corresponding
GDONx gate-driver enable inputs (GDON9 through GDON0) of the AB macro if the
CFG_GDx parameters/generics are set appropriately (refer to Parameters/Generics
section). If unused, these inputs should be tied off to static logic 0 or logic 1 values.

AG9,AG8,AG7AG6,
AG5,AG4,AG3,AG2, AG1,AG0

Output

Analog Gate Driver outputs - These signals correspond to the AGx gate driver outputs
(AG9 through AG0) of the AB macro. Note: If unused, each of these gate driver
outputs can be disabled via the CFG_GDx parameters/generics.

Note that the setting of the AQ_DSBL_CFG parameter/generic affects which of these
ports are available for use, depending upon which Analog Quads are available, which
vary for the smaller die (AFS090 and AFS250).

HD_ADCRESET Input

Hardware-Driven ADC Reset - This signal can optionally control the ADCRESET
input of the AB macro if the CFG_ADCRESET parameter/generic is set appropriately
(refer to Parameters/Generics section). If unused, this input should be tied off to static
logic 0 or logic 1.

HD_PWRDWN Input

Hardware-Driven ADC Power Down - This signal can optionally control the
PWRDWN input of the AB macro if the CFG_PWRDWN parameter/generic is set
appropriately (refer to Parameters/Generics section). If unused, this input should be tied
off to static logic 0 or logic 1.

HD_VAREFSEL Input

Hardware-Driven ADC Voltage Reference Select - This signal can optionally control
the VAREFSEL input of the AB macro if the CFG_VAREFSEL parameter/generic is
set appropriately (refer to Parameters/Generics section). If unused, this input should be
tied off to static logic 0 or logic 1.

HD_MODE[3:0] Input

Hardware-Driven ADC Mode Control - These signals can optionally control the
MODE[3:0] inputs of the AB macro if the CFG_MODE parameter/generic is set
appropriately (refer to Parameters/Generics section). If unused, these inputs should be
tied off to static logic 0 or logic 1 values.

Table 3-2 · CoreAI Signal Description

Name Type Description
26 v3.0

CoreAI v3.0 Ports
HD_TVC[7:0] Input

Hardware-Driven ADC Clock Divider Settings - These signals can optionally control
the TVC[7:0] inputs of the AB macro if the CFG_TVC parameter/generic is set
appropriately (refer to Parameters/Generics section). If unused, these inputs should be
tied off to static logic 0 or logic 1 values.

HD_STC[7:0] Input

Hardware-Driven ADC Sample Time Control - These signals can optionally control
the STC[7:0] inputs of the AB macro if the CFG_STC parameter/generic is set
appropriately (refer to Parameters/Generics section). If unused, these inputs should be
tied off to static logic 0 or logic 1 values.

HD_ADCSTART Input

Hardware-Driven ADC Start of Conversion - This signal can optionally control the
ADCSTART input of the AB macro if the CFG_ADCSTART parameter/generic is
set appropriately (refer to Parameters/Generics section). If unused, this input should be
tied off to static logic 0 or logic 1.

HD_CHNUMBER[4:0] Input

Hardware-Driven ADC Channel Number Control - These signals can optionally
control the CHNUMBER[4:0] inputs of the AB macro if the CFG_CHNUMBER
parameter/generic is set appropriately (refer to Parameters/Generics section). If unused,
these inputs should be tied off to static logic 0 or logic 1 values.

HD_CMSTB9,
HD_CMSTB8, HD_CMSTB7,
HD_CMSTB6, HD_CMSTB5,
HD_CMSTB4, HD_CMSTB3,
HD_CMSTB2, HD_CMSTB1,
HD_CMSTB0

Input

Hardware-Driven Current Monitor Strobes - These signals can optionally control the
CMSTB9 down to CMSTB0 inputs of the AB macro, respectively, if the
CFG_CHNUMBER parameter/generic is set appropriately (refer to Parameters/
Generics section). If unused, these inputs should be tied off to static logic 0 or logic 1
values.

HD_TMSTBINT Input

Hardware-Driven Internal Temperature Monitor Strobe - This signal can optionally
control the TMSTBINT input of the AB macro if the CFG_TMSTBINT parameter/
generic is set appropriately (refer to Parameters/Generics section). If unused, this input
should be tied off to static logic 0 or logic 1.

HD_TMSTB9,
HD_TMSTB8, HD_TMSTB7,
HD_TMSTB6, HD_TMSTB5,
HD_TMSTB4, HD_TMSTB3,
HD_TMSTB2, HD_TMSTB1,
HD_TMSTB0

Input

Hardware-Driven Temperature Monitor Strobes - These signals can optionally control
the TMSTB9 down to TMSTB0 inputs of the AB macro, respectively, if the
CFG_CHNUMBER parameter/generic is set appropriately (refer to Parameters/
Generics section). If unused, these inputs should be tied off to static logic 0 or logic 1
values.

AB_CALIBRATE Output
CALIBRATE Output from AB Macro - This direct output from the AB macro will be
high during calibration after the ADC is reset. If unused, this port should be left
unconnected.

AB_BUSY Output
BUSY Output from AB Macro - This direct output from the AB macro will be high
during an ADC conversion. If unused, this port should be left unconnected.

AB_DATAVALID Output
DATAVALID Output from AB Macro - This direct output from the AB macro will be
high after an ADC conversion has finished. If unused, this port should be left
unconnected.

AB_RESULT[11:0] Output
RESULT[11:0] Outputs from AB Macro - These direct outputs from the AB macro
will contain the digital conversion data after an ADC conversion has finished. If unused,
these ports should be left unconnected.

Table 3-2 · CoreAI Signal Description

Name Type Description
v3.0 27

Interface Description CoreAI v3.0
Analog Interfaces
CoreAI provides full access to the Fusion Analog interface; this interface is fully described in the Fusion datasheet,
available on the Actel website.

AB_CHNUMBER[4:0] Output

CHNUMBER[4:0] Inputs to AB Macro - These signals to the AB macro contain the
channel number for the current ADC conversion. These signals may be hardware-
controlled or software-controlled depending on the setting of the CFG_CHNUMBER
parameter/generic (refer to Parameters/Generics section). If unused, these ports should
be left unconnected.

BUSY Output
CoreAI Busy Output - This output will be high during any of the following events:
ADC calibration, ADC busy converting data, CoreAI is performing a write procedure
to the ACM, or CoreAI is performing a read procedure from the ACM.

RTC Interface

RTCCLK Input
RTC Clock input - If the RTC is used (via the CFG_RTC parameter/generic), this
input must come from the internal crystal oscillator (XTLOSC) CLKOUT pin; if the
RTC is not used, this pin should be tied low.

RTCXTLMODE[1:0] Output

RTC XTLOSC Mode outputs - If the RTC is used (via the CFG_RTC parameter/
generic), these output ports must be connected to the internal crystal oscillator
(XTLOSC) RTCMODE[1:0] pins; if the RTC is not used, these pins should be left
unconnected.

RTCXTLSEL Output

RTC XTLOSC Mode Selection output - If the RTC is used (via the CFG_RTC
parameter/ generic), this output port must be connected to the internal crystal oscillator
(XTLOSC) MODESEL pin; if the RTC is not used, this pin should be left
unconnected.

RTCMATCH Output
RTC Match output - If the RTC is used (via the CFG_RTC parameter/generic), this
output port indicates that a match event has occurred and can be connected to other
FPGA logic; if the RTC is not used, this pin should be left unconnected.

RTCPSMMATCH Output

RTC Match output - If you use the RTC (via the CFT_RTC parameter/generic), this
output port mimics the behavior of the RTCMATCH output, but can be used to
connect to the VRPSM pin of the on-chip voltage regulator to optionally turn it on
when a match occurs.

Table 3-2 · CoreAI Signal Description

Name Type Description
28 v3.0

4
Register Maps

APB Register Map
The internal register address map and reset values of each APB-accessible register for CoreAI are shown in Table 4-1 for
16-bit APB reads and writes (APB_DWIDTH=16), and in Table 4-2 for 8-bit APB reads and writes
(APB_DWIDTH=8). Note that if the APB_DWIDTH parameter/generic is set to 32, the results are the same as for
16-bit mode, with the upper 16 bits of PWDATA[31:0] ignored on writes, and the upper 16 bits of PRDATA[31:0]
returning logic 0 on reads.

Table 4-3 on page 31 through Table 4-13 on page 36 describes the various APB-accessible registers within CoreAI.
Unless otherwise stated, each register can be read from or written to by an internal or external microprocessor/
microcontroller.

When reading from register bits that are write-only or unused (reserved), logic 0 will be returned. When writing to
register bits that are read-only or unused (reserved), no action takes place.

The INTERRUPT output is generated as the logical OR of the interrupt enable bits (INTEN[6:0]) ANDed with the
interrupt status bits (INT[6:0]), as shown in Figure 4-1.

Note: After an APB read of the interrupt status registers has been performed, each INT[6:0] bit will be cleared if its
condition is no longer valid. If an APB read of the interrupt status registers has just occurred coincident with a
pending interrupt condition, the interrupt condition will have priority in order to prevent a missed interrupt.

Figure 4-1 · CoreAI Interrupt Logic

Table 4-1 · CoreAI Internal Register Address Map (16- or 32-bit Mode, APB_DWIDTH=16 or 32)

PADDR[6:0] Type Reset Value Description

0x00 R/W 0x0004 ACM Control/Status Register

0x04 R/W 0x0000 ACM Address Register

0x08 R/W 0x0000 ACM Data Register

0x0C R/W 0x0000 ADC Control Register 1

0x10 R/W 0x0000 ADC Control Register 2

0x14 R/W 0x0000 ADC Control Register 3

0x18 R/W 0x0000 ADC Control Register 4

0x1C R/W 0x0000 ADC Control Register 5

0x20 R 0x0000 ADC Status Register

INTEN[6]
INT[6]

INTEN[0]
INT[0]

INTERRUPT
v3.0 29

Register Maps CoreAI v3.0
Table notes: Values shown in hexadecimal format; type designations: R = read only; R/W = read/write

table notes: Values shown in hexadecimal format; type designations: R = read only; R/W = read/write

0x2C R/W 0x0000 Interrupt Enable Register

0x30 R 0x0000 Interrupt Status Register

Table 4-2 · CoreAI Internal Register Address Map (8-bit Mode, APB_DWIDTH=8)

PADDR[6:0] Type Reset Value Description

0x00 R/W 0x04 ACM Control/Status Register (low-order bits 7:0)

0x04 R/W 0x00 ACM Control/Status Register (high-order bits 15:8)

0x08 R/W 0x00 ACM Address Register

0x10 R/W 0x00 ACM Data Register

0x18 R/W 0x00 ADC Control Register 1 (low-order bits 7:0)

0x1C R/W 0x00 ADC Control Register 1 (high-order bits 15:8)

0x20 R/W 0x00 ADC Control Register 2 (low-order bits 7:0)

0x24 R/W 0x00 ADC Control Register 2 (high-order bits 15:8)

0x28 R/W 0x00 ADC Control Register 3 (low-order bits 7:0)

0x2C R/W 0x00 ADC Control Register 3 (high-order bits 15:8)

0x30 R/W 0x00 ADC Control Register 4 (low-order bits 7:0)

0x34 R/W 0x00 ADC Control Register 4 (high-order bits 15:8)

0x38 R/W 0x00 ADC Control Register 5 (low-order bits 7:0)

0x3C R/W 0x00 ADC Control Register 5 (high-order bits 15:8)

0x40 R 0x00 ADC Status Register (low-order bits 7:0)

0x44 R 0x00 ADC Status Register (high-order bits 15:8)

0x58 R/W 0x00 Interrupt Enable Register

0x60 R 0x00 Interrupt Status Register

Table 4-1 · CoreAI Internal Register Address Map (16- or 32-bit Mode, APB_DWIDTH=16 or 32)

PADDR[6:0] Type Reset Value Description
30 v3.0

CoreAI v3.0 APB Register Map
Table 4-3 · ACM Control/Status Register

Bits Name Function

15:5 Reserved Not used

4 ACMWRBUSY
ACM Write Cycle Busy (read-only)

If 1, the ACM is busy writing data into the AB block.

3 ACMRDBUSY
ACM Read Cycle Busy (read-only)

If 1, the ACM is busy reading data from the AB block.

2 ACMRESETBUSY
ACM Reset Cycle Busy (read-only)

If 1, the ACM is busy being reset.

1 ACMRDSTART

ACM Read Start (write-only)

1 - The ACM starts a read cycle from the ACM address in the ACMADDR[7:0]
bits of the ACM Address/Data register. Note that this write-only bit is active for
one ACM clock cycle (self-clearing), and that the resulting busy signal from the
ACM read taking place will be reflected in the ACMRDBUSY bit of this register.

0 - Normal (no operation or current ACM operation continues)

0 ACMRESET

ACM Reset (write-only)

1 - The ACM is put into a reset condition. Note that this write-only bit is active for
only one ACM clock cycle (self-clearing), and that the resulting busy signal from
the ACM reset taking place will be reflected in the ACMRESETBUSY bit of this
register.

0 - Normal (no operation or current ACM operation continues)

Table 4-4 · ACM Address Register

Bits Name Function

15:8 Reserved Not used

7:0 ACMADDR

ACM Address

These bits are connected to the ACMADDR[7:0] port of the AB macro.

(Refer to the Fusion datasheet for further information.)
v3.0 31

Register Maps CoreAI v3.0
Table 4-5 · ACM Data Register

Bits Name Function

15:8 Reserved Not used

7:0 ACMDATA

ACM Data

If this register is read from, the ACMRDATA[7:0] output port from the AB block
is returned.

If this register is written to, it will drive the ACMWDATA[7:0] input port of the
AB block.

Table 4-6 · ADC Control Register 1

Bits Name Function

15:8 TVC
ADC Clock Divider

(Refer to the Fusion datasheet for further information.)

7 ABENABLE

AB Macro Clock Enable

1 - Enable SYSCLK pin of the AB macro

0 - Disable the SYSCLK pin of the AB macro (default)

Note that the behavior of this register depends on the CFG_AB parameter/generic settings.

6 ADCRESET

ADC Reset (write-only)

1 - The ADC is given an active high pulse (connected to the ADCRESET pin of the AB
macro). Note that this write-only bit is active for only one PCLK clock cycle (self-clearing).

0 - Normal (no operation or current conversion continues)

5 PWRDWN

ADC Power Down

1 - The ADC is powered down.

0 - The ADC is powered up (normal operation).

4 VAREFSEL

ADC Voltage Reference Select

1 - Select external voltage reference (3.3 V max.) to be used (input on VAREF and
GNDREF ports)

0 - Select internal voltage reference (2.56 V) to be used (output on VAREF port)

3:0 MODE

ADC Mode Selection

The mode selection bits are used to select between 8-, 10-, and 12-bit ADC resolution.

(Refer to the Fusion datasheet for further information.)
32 v3.0

CoreAI v3.0 APB Register Map
Table 4-7 · ADC Control Register 2

Bits Name Function

15:14 Reserved Not used

13 ADCSTART

ADC Start Conversion (write-only)

1 - The ADC starts an analog-to-digital conversion on the selected channel.
Note that this write-only bit is high for only one PCLK clock cycle (self-
clearing).

0 - Normal (no operation or current conversion continues)

12:8 CHNUMBER

ADC Channel Number

This 5-bit value selects one of 32 analog channels that are fed to the analog
MUX within the AB macro.

(Refer to the Fusion datasheet for further information.)

7:0 STC
ADC Sample Time Control

(Refer to the Fusion datasheet for further information.)

Table 4-8 · ADC Control Register 3

Bits Name Function

15:10 Reserved Not used

9:0 CMSTB

Current Monitor Strobes

These bits are connected to the CMSTB9 down to CMSTB0 pins, respectively, of the
AB macro.

(Refer to the Fusion datasheet for further information.)

Table 4-9 · ADC Control Register 4

Bits Name Function

15:9 Reserved Not used

10 TMSTBINT

Internal Temperature Monitor Strobe

This bit is connected to the TMSTBINT pin of the AB macro.

(Refer to the Fusion datasheet for further information.)

9:0 TMSTB

Temperature Monitor Strobes

These bits are connected to the TMSTB9 down to TMSTB0 pins, respectively, of the
AB macro.

(Refer to the Fusion datasheet for further information.)
v3.0 33

Register Maps CoreAI v3.0
Table 4-10 · ADC Control Register 5

Bits Name Function

15:10 Reserved Not used

9:0 GDON

Gate Driver Enables

These bits are connected to the GDON9 down to GDON0 pins, respectively, of the
AB macro. Note that the CFG_GDx parameters/generics settings affect whether or
not these register bits are used.

(Refer to the Fusion datasheet for further information.)

Table 4-11 · ADC Status Register

Bits Name Function

15 CALIBRATE

ADC Calibrate

1 - The ADC is busy performing its calibration.

0 - The ADC is calibrated.

(Refer to the Fusion datasheet for further information.)

14 SAMPLE

ADC Sample

1 - The ADC is sampling the selected analog input.

0 - Normal (no operation or the ADC has finished the sampling phase)

(Refer to the Fusion datasheet for further information.)

13 BUSY

ADC Busy

1 - The ADC is busy performing an analog-to-digital conversion.

0 - The ADC is not busy.

(Refer to the Fusion datasheet for further information.)
34 v3.0

CoreAI v3.0 APB Register Map
12 DATAVALID

ADC Data Valid

1 - The ADC contains valid data from an analog-to-digital conversion on the
RESULT[11:0] outputs.

0 - Normal (no operation or current conversion continues)

(Refer to the Fusion datasheet for further information.)

11:0 RESULT

ADC Result

These bits come from the RESULT[11:0] bits of the AB macro.

(Refer to the Fusion datasheet for further information.)

Note that the actual assignments of these 12 status bits will change according to the value
of the SHIFT_RESULT_BITS parameter/generic.

If SHIFT_RESULT_BITS=0, these 12 bits will be the RESULT[11:0] bits from the AB
macro (default); if SHIFT_RESULT_BITS=2, these 12 bits will be "00", RESULT[11:2]
(suitable for reading results when the ADC is set for 10-bit resolution); if
SHIFT_RESULT_BITS=4, these 12 bits will be "0000", RESULT[11:4] (suitable for
reading results when the ADC is set for 8-bit resolution, and CoreAI is setup for 8-bit
APB mode).

Table 4-12 · Interrupt Enable Register

Bits Name Function

15:7 Reserved Not used

6:0 INTEN

Interrupt Enables

Each of these bits is ANDed with each of the bits in the Interrupt Status Register to
contribute to the ORed INTERRUPT output. To mask the contribution of the
corresponding bit in the Interrupt Status Register, set that bit to 0; to enable the
contribution, set that bit to 1. Note that the Interrupt Status Register bits only mask what
appears on the INTERRUPT output and that the Interrupt Status Register bits will
always be active to reflect current interrupt source conditions unless the
REMOVE_IREG_LOGIC parameter/generic is set to 1. If
REMOVE_IREG_LOGIC is set to 1, bits 6 and 3 down to 0 of this register will be
permanently tied to logic 0. See the Interrupt Status Register description for details on
which bits are disabled when the REMOVE_IREG_LOGIC parameter/generic is set to
1.

Table 4-11 · ADC Status Register

Bits Name Function
v3.0 35

Register Maps CoreAI v3.0
ACM Interface
The ACM interface is used to configure the analog quads and RTC within the AB macro. Various features of the analog
quads need to be set prior to correct operation of the ADC, including the pre-scaler circuits in each of the AV, AC, and
AT analog input ports that will be accessed in the user's design. The SmartDesign IP configuration GUI can be used to
configure the various pre-scaler settings for each quad, as well as the functions used (voltage monitor, current monitor,
temperature monitor, gate-driver output driver strengths, etc.). Consult the Fusion datasheet for details on how each
pre-scaler should be set, relative to the design-specific voltage, current, or temperature ranges used. The internal address
map of the ACM is shown in Table 4-14 on page 37.

Note that the ACM must operate with a clock frequency that is less than or equal to 10 MHz; to achieve this
requirement, the user must set the frequency of the PCLK input correctly via the PCLK_FREQUENCY parameter/
generic (refer to the PCLK_FREQUENCY parameter/generic in the Parameters/Generics section, and note that the
value entered must be rounded up to the nearest integer). An internal ACM clock divider circuit uses the value set in the

Table 4-13 · Interrupt Status Register

Bits Name Function

15:7 Reserved Not used

6 INT6

RTC Match Rising Edge

If 1, the RTCMATCH output has transitioned high, indicating that the RTC has reached the
desired count. Note that if the REMOVE_IREG_LOGIC parameter/generic is set to 1, this bit
will be permanently tied to logic 0.

5 INT5
ACM Read Done

If 1, an ACM read cycle has completed and valid data can be read from the ACM DATA register.

4 INT4
ACM Write Done

If 1, an ACM write cycle has completed and valid data has been written into the AB macro.

3 INT3

DATAVALID Rising Edge

If 1, the DATAVALID signal from the AB block has transitioned high, indicating that valid
converted data from the ADC is available on the RESULT[11:0] output port from the AB block.
Note that if the REMOVE_IREG_LOGIC parameter/generic is set to 1, this bit will be
permanently tied to logic 0.

2 INT2

BUSY Rising Edge

If 1, the BUSY signal from the AB block has transitioned high, indicating that the ADC has
begun an analog-to-digital conversion and is now busy performing that conversion. Note that if
the REMOVE_IREG_LOGIC parameter/generic is set to 1, this bit will be permanently tied to
logic 0.

1 INT1

CALIBRATE Falling Edge

If 1, the CALIBRATE signal from the AB block has transitioned low, indicating that the ADC
has finished its calibration procedure. Note that if the REMOVE_IREG_LOGIC parameter/
generic is set to 1, this bit will be permanently tied to logic 0.

0 INT0

CALIBRATE Rising Edge

If 1, the CALIBRATE signal from the AB block has transitioned high, indicating that the ADC
has started its calibration procedure. Note that if the REMOVE_IREG_LOGIC parameter/
generic is set to 1, this bit will be permanently tied to logic 0.
36 v3.0

CoreAI v3.0 ACM Interface
PCLK_FREQUENCY parameter/generic in order to correctly derive a frequency less than or equal to 10 MHz for the
ACM clock. For example, if the system clock frequency (PCLK) is 39.25 MHz, PCLK_FREQUENCY should be set
to 40. ACM reads and writes are synchronized to the internally generated ACM clock. Since the ACM clock is
operating at a lower frequency than the system clock (PCLK) used by CoreAI, various status and interrupt status
registers have been implemented to indicate when ACM read and write accesses are busy or completed (see Table 4-3 on
page 31 and Table 4-13 on page 36).

Table 4-14 · ACM Address Map for Configuring Analog Quads and RTC

ACMADDR[7:0] Name Description
Associated
Peripheral

0x00 - Reserved Unused

Analog Quad 0

0x01 AQ0 Byte 0 (AV0 control) Analog Quad

0x02 AQ0 Byte 1 (AC0 control) Analog Quad

0x03 AQ0 Byte 2 (AG0 control) Analog Quad

0x04 AQ0 Byte 3 (AT0 control) Analog Quad

Analog Quad 1

0x01 AQ0 Byte 0 (AV0 control) Analog Quad

0x02 AQ0 Byte 1 (AC0 control) Analog Quad

0x03 AQ0 Byte 2 (AG0 control) Analog Quad

0x04 AQ0 Byte 3 (AT0 control) Analog Quad

Analog Quad 1

0x05 AQ1 Byte 0 (AV1 control) Analog Quad

0x06 AQ1 Byte 1 (AC1 control) Analog Quad

0x07 AQ1 Byte 2 (AG1 control) Analog Quad

0x08 AQ1 Byte 3 (AT1 control) Analog Quad

…

Analog Quad 9

0x25 AQ9 Byte 0 (AV9 control) Analog Quad

0x26 AQ9 Byte 1 (AC9 control) Analog Quad

0x27 AQ9 Byte 2 (AG9 control) Analog Quad

0x28 AQ9 Byte 3 (AT9 control) Analog Quad

Real-Time Counter

0x40 COUNTER0 Counter bits 7:0 RTC

0x41 COUNTER1 Counter bits 15:8 RTC

0x42 COUNTER2 Counter bits 23:16 RTC

0x43 COUNTER3 Counter bits 31:24 RTC
v3.0 37

Register Maps CoreAI v3.0
Note: Table values shown in hexadecimal format.

ACM Reads
An example of reading data from the ACM is illustrated in Figure 4-2 on page 38. The steps for reading information
from the AB block via the ACM are:

1. Read the ACM Control/Status register to make sure that CoreAI is not busy processing an ACM read or write.

2. Write the desired ACM address to the ACM Address register.

3. Write a logic 1 to the ACMRDSTART bit of the ACM Control/Status register.

4. Keep reading (polling) the ACM Control/Status register until CoreAI is not busy processing the ACM read.
Alternatively, the BUSY output of CoreAI may be monitored during this operation.

5. Read the ACM Data register to read the byte of ACM data that is now available from the AB block.

0x44 COUNTER4 Counter bits 39:32 RTC

0x48 MATCHREG0 Match register bits 7:0 RTC

0x49 MATCHREG1 Match register bits 15:8 RTC

0x4A MATCHREG2 Match register bits 23:16 RTC

0x4B MATCHREG3 Match register bits 31:24 RTC

0x4C MATCHREG4 Match register bits 39:32 RTC

0x50 MATCHBITS0 Individual match bits 7:0 RTC

0x51 MATCHBITS1 Individual match bits 15:8 RTC

0x52 MATCHBITS2 Individual match bits 23:16 RTC

0x53 MATCHBITS3 Individual match bits 31:24 RTC

0x54 MATCHBITS4 Individual match bits 39:32 RTC

0x58 CTRL_STAT Control (write) / Status (read) register RTC

0x59 TEST_REG Test register RTC

Table 4-14 · ACM Address Map for Configuring Analog Quads and RTC

ACMADDR[7:0] Name Description
Associated
Peripheral

Figure 4-2 · ACM Read Procedure (8-bit APB reads shown)

PADDR[6:0]

PCLK

PWRITE

PSEL

0x00 0x08 0x00 0x10

PENABLE

PWDATA[7:0] ACMADDR[7:0] 0x02

PRDATA[7:0] 0x00 0x04 0x00 ACMDATA[7:0]
38 v3.0

CoreAI v3.0 ACM Interface
ACM Writes
An example of writing data into the ACM is illustrated in Figure 4-3. The steps for writing information into the AB
block via the ACM are:

1. Read the ACM Control/Status register to make sure that CoreAI is not busy processing an ACM read or write.

2. Write the desired ACM address to the ACM Address register.

3. Write the desired ACM data to the ACM Data register. At this point, internal logic within CoreAI begins the
process of transferring the contents of the ACM Data register to the ACM location that is addressed by the ACM
Address register. Since the act of writing data to the ACM Data register starts an ACM write procedure, no
equivalent to the ACMRDSTART bit, such as an "ACMWRSTART" bit is required.

4. Keep reading (polling) the ACM Control/Status register until CoreAI is not busy processing the ACM write.
Alternatively, the BUSY output of CoreAI may be monitored during this operation.

RTC Access
For detailed connection and operation of the 40-bit real-time counter block within the AB macro, refer to the Fusion
datasheet. The SmartGen software or CoreConsole IDP configuration GUI is used to configure the RTC. The internal
registers of the RTC are accessed via the ACM interface address map listed in Table 4-14 on page 37. The primary
control and status of the RTC is accomplished via writes and reads of the RTC CTRL_STAT (Control Status) register
at ACM address 0x58 (decimal 88) that is listed in Table 4-14. The bit descriptions of the RTC Control/Status register
are listed in Table 4-15.

Figure 4-3 · ACM Write Procedure (8-bit APB writes shown)

PADDR[6:0]

PCLK

PWRITE

PSEL

0x00 0x08 0x00

PENABLE

PWDATA[7:0] ACMADDR[7:0] ACMDATA[7:0]

PRDATA[7:0] 0x00 0x08 0x00

0x10

Table 4-15 · RTC Control/Status Register

Bit Name Description

7 rtc_rst

RTC Reset: Writing logic 1 to this bit causes an RTC reset. Reset of all RTC states (except
this Control/Status register) occurs asynchronously if VCC33UP = 0 or CTRL_STAT bit
7 (rtc_rst) is set to 1.

Writing a logic 0 to this bit will allow synchronous deassertion of reset after 2 ACM_CLK
cycles if VCC33UP = 1. Reset is removed synchronously after 2 rising edges of the
ACM_CLK, following both VCC33UP = 1 and rtc_rst = 1.

6 cntr_en

Counter Enable: Writing logic 1 in this bit will enable the counter if the RTC is not in
reset. It takes 64 RTCCLK positive edges (1/2 of the pre-scaler division factor), after reset
is removed and cntr_en = 1, before the counter is incremented. Writing logic 0 in this bit
resets the pre-scaler and therefore suspends incrementing the counter, but the counter is
not reset. Before writing to the COUNTER registers, the counter must be disabled.
v3.0 39

Register Maps CoreAI v3.0
5 vr_en_mat

Voltage Regulator Enable on Match: Writing logic 1 to this bit will allow the
RTCMATCH output port to go to logic 1 when a match occurs between the 40-bit
counter and the 40-bit match register. Logic 0 forces RTCMATCH to logic 0, to prevent
enabling the voltage regulator from the RTC.

4:3 xt_mode[1:0]
Crystal Oscillator Mode: These bits control the RTCXTLMODE[1:0] output ports that
are connected to the RTCMODE[1:0] input pins of the crystal oscillator pad. For 32.768
kHz crystal operation, this should be set to xt_mode[1:0] = "01".

2 rst_cnt_omat

Reset Counter on Match: Writing logic 1 to this bit allows the counter to clear itself when
a match occurs. In this situation, the 40-bit counter clears on the next rising edge of the
pre-scaled clock, approximately 4 ms after the match occurs (the pre-scaled clock toggles at
a rate of 256 Hz, given a 32.768 kHz external crystal). Writing logic 0 to this bit allows the
counter to increment indefinitely, while still allowing match events to occur.

1 rstb_cnt

Counter Reset: Writing logic 0 resets the 40-bit counter value to 0. Writing logic 1 allows
the counter to count.

Counter will first increment on the 64th rising edge of RTCCLK after all of the following
are true: reset is removed, the rstb_cnt bit is set to 1, and the cntr_en bit is set to 1; it will
then increment every 128 RTCCLK cycles

0 xtal_en

Crystal Oscillator Enable: This bit controls the RTCXTLSEL output port that is
connected to the SELMODE input pin of the crystal oscillator. If logic 0 is written to this
bit, only the FPGA fabric can be used to control the crystal oscillator EN and MODE[1:0]
inputs. If logic 1 is written to this bit, the RTC takes control of the XTAL oscillator; for
example, RTC mode bits (RTCXTLMODE[1:0]) configure the XTAL oscillator (not the
FPGA mode bits). This bit must be set to 1 to allow the RTC counter to function if the 1.5
V supply is off.

To enable sleep mode: set xtal_en to logic 0 so that the crystal is controlled from the FPGA
EN signal then, when the FPGA is powered down, the EN signal from the FPGA will be
logic 0, disabling the crystal oscillator.

Table 4-15 · RTC Control/Status Register

Bit Name Description
40 v3.0

5
ADC Operation

Control of the ADC within the AB macro in CoreAI is accomplished by APB reads and writes. After a power-up reset
condition, the ADC will come out of its reset state and commence with its internal calibration sequence. When this
calibration sequence has finished, the ADC will be ready to use for conversions. Read the INT[1:0] register bits to
obtain status information relevant to the ADC calibration.

You must configure the analog quads appropriately via the ACM interface to match the required design-specific
voltage, current, and temperature ranges prior to performing ADC conversions; failure to do so may result in damage to
the Fusion device. You can use the Catalog in the Project Manager to configure the analog quads and RTC.

ADC Control
A typical ADC analog-to-digital conversion is shown starting in Figure 5-1 and ending in Figure 5-2. The steps for
performing an ADC conversion are:

1. Read the ADC Status register to make sure that the ADC is not busy calibrating or performing a conversion.

2. Write the desired ADC settings to ADC Control register 1, including the voltage reference selection (internal or
external), mode selection (ADC resolution), and clock divider settings.

3. Write the desired ADC settings to ADC Control register 2, including the sample time control, channel number to
sample (1 of 32), and finally, set the start conversion bit to begin the conversion process.

4. If a current monitor or temperature monitor operation is used on a corresponding AC or AT input pin, respectively,
a write must be done to set the corresponding current monitor strobe or temperature monitor strobe high in ADC
Control register 3 or ADC Control register 4, respectively. Refer to the Fusion Datasheet for details on external
component connection requirements for current monitoring and temperature monitoring. Alternatively, if the
desired current or temperature monitor strobe is hardware-controlled (see the Parameters/Generics section), the
HD_CMSTBx or HD_TMSTBx may be controlled by hardware external to CoreAI to set the strobe high.

5. Keep reading the high-order ADC Status register until the ADC is not busy performing a conversion. Alternatively,
the BUSY output of CoreAI may be monitored during this operation.

6. If a current monitor or temperature monitor operation has completed using a corresponding AC or AT input pin,
respectively, a write must be done to set the corresponding current monitor strobe or temperature monitor strobe low
in ADC Control register 3 or ADC Control register 4, respectively. Alternatively, if the desired current or
temperature monitor strobe is hardware-controlled (see the Parameters/Generics section), the HD_CMSTBx or
HD_TMSTBx may be controlled by hardware external to CoreAI to set the strobe low.

7. For 8-bit APB mode (APB_DWIDTH=8), read the low-order ADC Status register to obtain the lower 8 bits of the
ADC result conversion data (the upper 4 bits of conversion data have already been read from the high-order ADC
Status register).

Figure 5-1 · ADC Start of Conversion

PADDR[6:0]

PCLK

PWRITE

PSEL

0x44 0x18

PENABLE

PWDATA[7:0] 0x00 0x01

PRDATA[7:0] 0x00

0x1C

ADC Conversion Starts

0x08 0x11

0x60

0x440x20 0x24
v3.0 41

ADC Operation CoreAI v3.0
Note: 8-bit APB reads and writes shown, "hi" refers to bits 15:8, "lo" refers to bits 7:0.

Note: 8-bit APB reads and writes shown, "hi" refers to bits 15:8, "lo" refers to bits 7:0

Figure 5-2 · ADC End of Conversion

PADDR[6:0]

PCLK

PWRITE

PSEL

0x44

PENABLE

PWDATA[7:0]

PRDATA[7:0]

ADC Conversion Ends

0x400x44

0x550x150x60 0x20
42 v3.0

6
Testbench Operation and Modification

Simple Application Testbench
An example user testbench is included with CoreAI. The user testbench is provided in pre-compiled ModelSim format
and in RTL source code for all releases (obfuscated and RTL), for you to examine and modify to suit your needs. The
source code for the user testbench is provided to ease the process of integrating the CoreAI macro into your design and
verifying according to your own custom needs. A block diagram of the user testbench is shown in Figure 6-1.

As shown in Figure 6-1, the user testbench instantiates an Actel DirectCore AMBA BFM (bus functional model)
module to emulate an APB master that controls the operation of CoreAI via reads and writes to access internal registers.

A BFM ASCII script source file with comments, is included in the directory <proj>/simulation; where <proj> represents
the path to your Libero IDE project. The BFM source file coreai_usertb_apb_master.bfm controls the APB master
processor. This BFM source file is automatically recompiled each time the simulation is invoked from Libero IDE by the
bfmtovec.exe executable, if running on a Windows platform, or by the bfmtovec.lin executable, if running on a Linux
platform. The coreai_usertb_apb_master.vec vector file, created by the bfmtovec executable, is read in by the BFM
module for simulation in ModelSim.

You may alter the BFM script, if desired. Refer to the Actel DirectCore AMBA BFM User's Guide for more
information.

The source code for the user testbench and BFM script is available with the CoreAI obfuscated and RTL releases. A
compiled ModelSim simulation library containing the BFM modules is available with the CoreAI obfuscated release.
Obfuscated RTL versions of the BFM modules are available with the CoreAI RTL release.

Figure 6-1 · CoreAI User Testbench

User Testbench

BFM_APB

APB Master BFM
Script

(.bfm file)

APB I/F

GP I/O

bfmtovec.exe
compiler

APB Master
Vectors

(.vec file)
File I/O

CoreAI

APB I/F

Misc I/O
v3.0 43

http://www.actel.com/ipdocs/coreamba_bfm_ug.pdf

7
System Operation

This chapter provides hints to ease the process of implementation and integration of CoreAI into your own design.

Using CoreAI with Cortex-M1
CoreAI can be used with Cortex-M1, Actel's soft IP version of the popular ARM® microprocessor that has been
optimized for the M1 Fusion flash-based FPGA devices. To create a design using Cortex-M1 and CoreAI you should
use SmartDesign. An example SmartDesign sub-system using Cortex-M1 and CoreAI is shown in Figure 7-1. Please
refer to the Libero IDE online help for information on creating a Cortex-M1-based design using SmartDesign.

Using CoreAI with Core8051s
CoreAI can also be used with Core8051s. An example FPGA design using Core8051s and CoreAI is shown in
Figure 7-2. For this example, the internal Flash memory is used for Core8051s program storage, and can be

Figure 7-1 · Example System Using CoreMP7 and CoreAI
v3.0 45

System Operation CoreAI v3.0
programmed independently from the FPGA fabric by use of the FlashPro software and hardware (refer to FlashPro
documentation for details on how to program the Flash memory within the Fusion devices).

Using CoreAI with CoreABC
CoreAI can also be used with CoreABC. An example FPGA design using CoreABC and CoreAI is shown in
Figure 7-3. CoreABC allows a simple set of APB read and write cycles that can be used to configure CoreAI and then to
read and compare the Analog values to turn the digital outputs on and off.

Figure 7-2 · Example System Using Core8051s and CoreAI

Fusion Device

Flash Memory
(Program Storage)

Voltage Monitor

Output Flags

Figure 7-3 · Example System using CoreABC and CoreAI

Fusion Device

Output Flags

Voltage Monitor
46 v3.0

CoreAI v3.0 Using CoreAI with ADC Results FIFO
Using CoreAI with ADC Results FIFO
CoreAI can be used with FIFO logic to store ADC results. An example FPGA design using Core8051s, CoreAI, and
the user's own custom logic controlling a FIFO instantiated using the Libero IDE is shown in Figure 7-4. In this
example design, a rising edge event on the AB_DATAVALID status signal is used to write valid data from the
AB_RESULT[11:0] signals as well as the AB_CHNUMBER[4:0] channel selection signals into the FIFO.

Figure 7-4 · Example Using CoreAI with FIFO Logic

Fusion Device

FIFO

DATA[16:0]
Q[16:0]

RDEN

WRCLK
EMPTY

FULL

RDCLK

RESETN

User’s Custom Logic

RDCLK

WRENDetect AB_DATAVALID Rising Edge
AB_CHNUMBER[4:0],AB_RESULT[11:0]

RDEN

RESETN

SYSCLK
v3.0 47

8
Ordering Information

Ordering Codes
CoreAI can be ordered through your local Actel sales representative. Order using the number scheme: CoreAI-XX,
where XX is listed in Table 8-1.

Note: CoreAI-OM is included free with a Libero IDE license.

Table 8-1 · Ordering Codes

XX Description

OM RTL for Obfuscated RTL - multiple-use license

RM RTL for RTL source - multiple-use license
v3.0 49

A
Product Support

Actel backs its products with various support services including Customer Service, a Customer Technical Support
Center, a web site, an FTP site, electronic mail, and worldwide sales offices. This appendix contains information about
contacting Actel and using these support services.

Customer Service
Contact Customer Service for non-technical product support, such as product pricing, product upgrades, update
information, order status, and authorization.

From Northeast and North Central U.S.A., call 650.318.4480
From Southeast and Southwest U.S.A., call 650. 318.4480
From South Central U.S.A., call 650.318.4434
From Northwest U.S.A., call 650.318.4434
From Canada, call 650.318.4480
From Europe, call 650.318.4252 or +44 (0) 1276 401 500
From Japan, call 650.318.4743
From the rest of the world, call 650.318.4743
Fax, from anywhere in the world 650.318.8044

Actel Customer Technical Support Center
Actel staffs its Customer Technical Support Center with highly skilled engineers who can help answer your hardware,
software, and design questions. The Customer Technical Support Center spends a great deal of time creating application
notes and answers to FAQs. So, before you contact us, please visit our online resources. It is very likely we have already
answered your questions.

Actel Technical Support
Visit the Actel Customer Support website (www.actel.com/custsup/search.html) for more information and support.
Many answers available on the searchable web resource include diagrams, illustrations, and links to other resources on
the Actel web site.

Website
You can browse a variety of technical and non-technical information on Actel’s home page, at www.actel.com.

Contacting the Customer Technical Support Center
Highly skilled engineers staff the Technical Support Center from 7:00 A.M. to 6:00 P.M., Pacific Time, Monday through
Friday. Several ways of contacting the Center follow:

Email
You can communicate your technical questions to our email address and receive answers back by email, fax, or phone.
Also, if you have design problems, you can email your design files to receive assistance. We constantly monitor the email
account throughout the day. When sending your request to us, please be sure to include your full name, company name,
and your contact information for efficient processing of your request.

The technical support email address is tech@actel.com.
v3.0 51

http://www.actel.com/custsup/search.html
http://www.actel.com/custsup/search.html
http://www.actel.com
http://www.actel.com
mailto:tech@actel.com

Product Support CoreAI v3.0
Phone
Our Technical Support Center answers all calls. The center retrieves information, such as your name, company name,
phone number and your question, and then issues a case number. The Center then forwards the information to a queue
where the first available application engineer receives the data and returns your call. The phone hours are from 7:00 A.M.
to 6:00 P.M., Pacific Time, Monday through Friday. The Technical Support numbers are:

650.318.4460
800.262.1060
Customers needing assistance outside the US time zones can either contact technical support via email (tech@actel.com)
or contact a local sales office. Sales office listings can be found at www.actel.com/contact/offices/index.html.
52 v3.0

http://www.actel.com/contact/offices/index.html
http://www.actel.com/contact/offices/index.html

v3.0 53

A
Actel

electronic mail 51
telephone 52
web-based technical support 51
website 51

C
contacting Actel

customer service 51
electronic mail 51
telephone 52
web-based technical support 51

core version 7
customer service 51

L
licenses

Obfuscated 11
RTL 11

P
product support 51–52

customer service 51
electronic mail 51
technical support 51
telephone 52
website 51

T
technical support 51

W
web-based technical support 51

Index

Actel Corporation • 2061 Stierlin Court • Mountain View, CA 94043 • USA
Phone 650.318.4200 • Fax 650.318.4600 • Customer Service: 650.318.1010 • Customer Applications Center: 800.262.1060

Actel Europe Ltd. • River Court, Meadows Business Park • Station Approach, Blackwater • Camberley Surrey GU17 9AB • United Kingdom
Phone +44 (0) 1276 609 300 • Fax +44 (0) 1276 607 540

Actel Japan • EXOS Ebisu Building 4F • 1-24-14 Ebisu Shibuya-ku • Tokyo 150 • Japan
Phone +81.03.3445.7671 • Fax +81.03.3445.7668 • http://jp.actel.com

Actel Hong Kong • Room 2107, China Resources Building • 26 Harbour Road • Wanchai • Hong Kong
Phone +852 2185 6460 • Fax +852 2185 6488 • www.actel.com.cn

50200102-2/X.XX

Actel is the leader in low-power and mixed-signal FPGAs and offers the most comprehensive portfolio of system
and power management solutions. Power Matters. Learn more at www.actel.com.

http://www.actel.com

	Introduction
	Key Features
	Core Overview
	Supported Device Families
	Core Version
	Supported Interfaces
	Utilization and Performance
	Table 1 · CoreAI Device Utilization and Performance (minimum configuration)
	Table 2 · CoreAI Device Utilization and Performance (maximum configuration)

	Functional Block Description
	Tool Flows
	Licenses
	Obfuscated
	RTL

	SmartDesign
	Simulation Flows
	Synthesis in Libero IDE
	Place-and-Route in Libero IDE

	Interface Description
	Parameters/Generics
	Table 3-1 · CoreAI Parameter/Generic Description

	Parameter Dependencies and Precedence
	Ports
	Table 3-2 · CoreAI Signal Description

	Analog Interfaces

	Register Maps
	APB Register Map
	Table 4-1 · CoreAI Internal Register Address Map (16- or 32-bit Mode, APB_DWIDTH=16 or 32)
	Table 4-2 · CoreAI Internal Register Address Map (8-bit Mode, APB_DWIDTH=8)
	Table 4-3 · ACM Control/Status Register
	Table 4-4 · ACM Address Register
	Table 4-5 · ACM Data Register
	Table 4-6 · ADC Control Register 1
	Table 4-7 · ADC Control Register 2
	Table 4-8 · ADC Control Register 3
	Table 4-9 · ADC Control Register 4
	Table 4-10 · ADC Control Register 5
	Table 4-11 · ADC Status Register
	Table 4-12 · Interrupt Enable Register
	Table 4-13 · Interrupt Status Register

	ACM Interface
	Table 4-14 · ACM Address Map for Configuring Analog Quads and RTC
	ACM Reads
	ACM Writes
	RTC Access
	Table 4-15 · RTC Control/Status Register

	ADC Operation
	ADC Control

	Testbench Operation and Modification
	Simple Application Testbench

	System Operation
	Using CoreAI with Cortex-M1
	Using CoreAI with Core8051s
	Using CoreAI with CoreABC
	Using CoreAI with ADC Results FIFO

	Ordering Information
	Ordering Codes
	Table 8-1 · Ordering Codes

	Product Support
	Customer Service
	Actel Customer Technical Support Center
	Actel Technical Support
	Website
	Contacting the Customer Technical Support Center
	Email
	Phone

	Index

