
HB0267

CoreFFT v7.0 Handbook
12 2016

HB0267: CoreFFT v7.0 Handbook

Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of its
products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the application or
use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have been subject to limited
testing and should not be used in conjunction with mission-critical equipment or applications. Any performance specifications are
believed to be reliable but are not verified, and Buyer must conduct and complete all performance and other testing of the products,
alone and together with, or installed in, any end-products. Buyer shall not rely on any data and performance specifications or
parameters provided by Microsemi. It is the Buyer’s responsibility to independently determine suitability of any products and to test
and verify the same. The information provided by Microsemi hereunder is provided “as is, where is” and with all faults, and the entire
risk associated with such information is entirely with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any
patent rights, licenses, or any other IP rights, whether with regard to such information itself or anything described by such
information. Information provided in this document is proprietary to Microsemi, and Microsemi reserves the right to make any
changes to the information in this document or to any products and services at any time without notice.

About Microsemi
Microsemi Corporation (Nasdaq: MSCC) offers a comprehensive portfolio of semiconductor and system solutions for aerospace &
defense, communications, data center and industrial markets. Products include high-performance and radiation-hardened analog
mixed-signal integrated circuits, FPGAs, SoCs and ASICs; power management products; timing and synchronization devices and precise
time solutions, setting the world's standard for time; voice processing devices; RF solutions; discrete components; enterprise storage
and communication solutions; security technologies and scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs
and midspans; as well as custom design capabilities and services. Microsemi is headquartered in Aliso Viejo, Calif., and has
approximately 4,800 employees globally. Learn more at www.microsemi.com.

©2016 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are registered trademarks of Microsemi
Corporation. All other trademarks and service marks are the property of their respective owners.

Microsemi Corporate Headquarters
One Enterprise, Aliso Viejo,
CA 92656 USA
Within the USA: +1 (800) 713-4113
Outside the USA: +1 (949) 380-6100
Sales: +1 (949) 380-6136
Fax: +1 (949) 215-4996
E-mail: sales.support@microsemi.com
www.microsemi.com

 50200267 Handbook Revision 9 2

http://www.microsemi.com/
mailto:sales.support@microsemi.com
http://www.microsemi.com/

HB0267: CoreFFT v7.0 Handbook

1 Revision History

The revision history describes the changes that were implemented in the document. The changes
are listed by revision, starting with the most current publication.

1.1 Revision 9.0
Removed Product Support section.

1.2 Revision 8.0
Updated changes related to CoreFFT v7.0 release.

1.3 Revision 7.0
Updated changes related to CoreFFT v6.4 release.

1.4 Revision 6.0
Updated changes related to CoreFFT v6.3 release.

1.5 Revision 5.0
Updated changes related to Supported Families section (SAR 47942).

1.6 Revision 4.0
Updated changes related to CoreFFT v6.1 release.

1.7 Revision 3.0
Updated changes related to CoreFFT v6.0 release. The release adds support for SmartFusion2 family
(In-Place architecture only).

1.8 Revision 2.0
Updated changes related to CoreFFT v5.0 release. This release adds a new architecture to the
existing In-place CoreFFT v4.0. The new architecture supports Streaming Forward and Inverse FFT
that transforms high speed stream of data.

1.9 Revision 1.0
Revision 1.0 was the first publication of this document. Created for CoreFFT v4.0.

 50200267 Handbook Revision 9 3

HB0267: CoreFFT v7.0 Handbook

Contents

1 Revision History .. 3
1.1 Revision 9.0 .. 3
1.2 Revision 8.0 .. 3
1.3 Revision 7.0 .. 3
1.4 Revision 6.0 .. 3
1.5 Revision 5.0 .. 3
1.6 Revision 4.0 .. 3
1.7 Revision 3.0 .. 3
1.8 Revision 2.0 .. 3
1.9 Revision 1.0 .. 3

2 Introduction ... 8
2.1 Overview .. 8
2.2 Features ... 8
2.3 Core Version ... 9
2.4 Supported Families .. 9
2.5 Device Utilization and Performance .. 10

2.5.1 In-Place FFT.. 10
2.5.2 Streaming FFT .. 12

3 Functional Description ... 14
3.1 Architecture Options .. 14
3.2 In-Place FFT .. 14
3.3 Streaming FFT .. 19
3.4 Natural Output Order .. 22

4 Interface ... 23
4.1 In-Place FFT .. 23

4.1.1 Configuration Parameters .. 23
4.1.2 Ports .. 24

4.2 Streaming FFT .. 25
4.2.1 Configuration Parameters .. 25
4.2.2 Ports .. 25

5 Timing Diagrams .. 27
5.1 In-Place FFT .. 27
5.2 Streaming FFT .. 28

5.2.1 RFS and START ... 28
5.2.2 OUTP_READY and DATAO_VALID ... 29

6 Tool Flow .. 30

 50200267 Handbook Revision 9 4

HB0267: CoreFFT v7.0 Handbook

6.1 License ... 30
6.2 SmartDesign ... 30
6.3 Configuring CoreFFT in SmartDesign ... 31
6.4 Simulation Flows .. 32
6.5 Synthesis in Libero ... 32
6.6 Place-and-Route in Libero .. 32

7 Testbench ... 33
7.1 User Test-bench ... 33

8 System Integration ... 34
8.1 In-Place FFT .. 34
8.2 Streaming FFT .. 35

9 Ordering Information ... 36
9.1 Ordering Codes .. 36

 50200267 Handbook Revision 9 5

HB0267: CoreFFT v7.0 Handbook

List of Figures

Figure 1 FFT-Based System Example ... 8
Figure 2 In-Place Radix-2 FFT Functional Block Diagram (Minimal Configuration).. 14
Figure 3 Minimal Configuration In-Place FFT Cycle ... 15
Figure 4 Buffered FFT Block Diagram... 16
Figure 5 Buffered Configuration FFT Cycles ... 17
Figure 6 Streaming Radix-22 256-pt FFT Functional Block Diagram .. 19
Figure 7 Streaming FFT Input Data Frames.. 19
Figure 8 Scale Schedule User Interface.. 22
Figure 9 CoreFFT I/O Ports ... 24
Figure 10 Streaming FFT I/O Ports ... 26
Figure 11 Loading Input Data... 27
Figure 12 Receiving Transformed Data .. 27
Figure 13 RFS Waits for START... 28
Figure 14 Transforming Streaming Data .. 28
Figure 15 START Leads the Data .. 29
Figure 16 Output Data and Handshake Signals ... 29
Figure 17 Streaming Output Data without Gaps ... 29
Figure 18 SmartDesign CoreFFT Instance View ... 30
Figure 19 Configuring CoreFFT in SmartDesign ... 31
Figure 20 CoreFFT User Test-bench ... 33
Figure 21 Example of the In-Place FFT System .. 34
Figure 22 Example of a Streaming FFT System .. 35

 50200267 Handbook Revision 9 6

HB0267: CoreFFT v7.0 Handbook

List of Tables

Table 1 Key Features Support .. 9
Table 2 In-Place FFT SmartFusion2 M2S050 Device Utilization and Performance (Minimal Memory

Configuration) .. 10
Table 3 In-Place FFT SmartFusion2 M2S050 Device Utilization and Performance (Buffered

Configuration) .. 10
Table 4 In-Place FFT PolarFire MPF300 Device Utilization and Performance (Minimal Memory

Configuration) .. 11
Table 5 In-Place FFT PolarFire MPF300 Device Utilization and Performance (Buffered

Configuration) .. 11
Table 6 In-Place FFT Utilization and Performance Configuration .. 11
Table 7 Streaming FFT SmartFusion2 M2S050T Speed grade -1 ... 12
Table 8 Streaming FFT PolarFire MPF300 Speed grade -1 ... 13
Table 9 Cutting Out Three Extra Bits in Scale Schedule Mode .. 21
Table 10 Streaming Unscaled FFT Max Input Data Bit Width .. 21
Table 11 Conservative Scale Schedules for Various FFT Sizes ... 22
Table 12 In-Place CoreFFT Parameter Descriptions ... 23
Table 13 In-Place CoreFFT Port Descriptions ... 24
Table 14 CoreFFT Streaming Architecture Parameter Descriptions .. 25
Table 15 Streaming FFT I/O Signal Descriptions .. 26
Table 16 Ordering Codes ... 36

 50200267 Handbook Revision 9 7

HB0267: CoreFFT v7.0 Handbook

2 Introduction

2.1 Overview
The Microsemi® fast Fourier transform (FFT) core implements the efficient Cooley-Tukey algorithm
for computing the discrete Fourier transform. CoreFFT is used in a broad range of applications such
as digital communications, audio, measurements, control, and biomedical. CoreFFT provides highly
parameterizable, area-efficient, and high performance MACC-based FFT. The core is available as a
register transfer level (RTL) code of the transform in Verilog and VHDL languages.

The N-point forward FFT (N is a power of 2) of a sequence x(0), x(1),…, x(N-1) is defined in the
following equation:

 x(k) = ∑ X(n)e−jnk2π/N N−1
n=0

where k = 0, 1… N-1

The N-point inverse FFT (N is a power of 2) of a sequence X(0), X(1),…, X(N-1) is defined in the
following equation:

x(n) = � X(k)e jnk2π/N
N−1

k=0

where n = 0, 1… N-1

Note: While performing an inverse FFT, the core does not apply division by N of EQ 2 (as the division
by a power of two is trivial).

An FFT-based system (Figure 1) consists of a data source, the FFT module, and a data sink which is
the transformed data recipient.

Figure 1 FFT-Based System Example

FFTData Source Transformed Data
Recipient

2.2 Features
CoreFFT supports the following two transform implementations:

• Radix-2 decimation-in-time in-place FFT
• Radix-22 decimation-in-frequency streaming FFT

 50200267 Handbook Revision 9 8

HB0267: CoreFFT v7.0 Handbook

The key features for each implementation are listed in Table 1.

Table 1 Key Features Support

Feature In-Place Streaming

Transform sizes, points 32, 64, 128, 256, 512, 1024, 2048, 4096,
8192, and 16384.
Note: The 16384-pt FFT is supported on
RTG4 and PolarFire parts only

16, 32, 64, 128, 256,
512, and 1024

Forward and inverse FFT Yes Yes

Input data bit width 8 – 32 8 – 32

Twiddle factor bit width 8 – 32 8 – 32

Input/output data format Two’s complement Two’s complement

Natural output sample order Yes Optional

Conditional block floating point scaling Yes No

Pre-defined scaling schedule or no scaling No Yes

Optional minimal or buffered memory
configurations

Yes No

Embedded RAM-block based twiddle look-up
table (LUT)

Yes Yes

Support for refreshing twiddle look-up tables Yes Yes

Handshake signals to facilitate easy interface to
the user circuitry

Yes Yes

Run-time forward/inverse transform
configuration

No Yes

2.3 Core Version
This handbook is for CoreFFT version 7.0.

2.4 Supported Families
• PolarFire
• RTG4™
• IGLOO®2
• SmartFusion®2

 50200267 Handbook Revision 9 9

HB0267: CoreFFT v7.0 Handbook

2.5 Device Utilization and Performance
CoreFFT has been implemented in the SmartFusion2 M2S050 device using speed grade –1 and
PolarFire MPF300 using speed grade -1. A summary of the implementation data is provided in Table
2 through Table 8.

2.5.1 In-Place FFT
Table 2 and Table 3 show utilization and performance for a variety of in-place FFT sizes and data
widths. The numbers were obtained from the configuration listed in Table 4.

Table 2 In-Place FFT SmartFusion2 M2S050 Device Utilization and Performance (Minimal Memory Configuration)

Core Parameters Fabric Resource Usage Blocks Performance

POINTS WIDTH DFF 4LUT Total LSRAM MACC Clock Rate FFT Time (µs)

256 18 972 938 1,910 3 4 352 3.1

512 18 1,007 1,239 2,246 3 4 352 6.8

1024 18 1,035 1,758 2,793 3 4 336 15.5

4096 18 1,118 3,468 4,586 12 4 336 73.5

Table 3 In-Place FFT SmartFusion2 M2S050 Device Utilization and Performance (Buffered Configuration)

Core Parameters Fabric Resource Usage Blocks Performance

POINTS WIDTH DFF 4LUT Total LSRAM MACC Clock Rate FFT Time (µs)

256 18 1,096 1,098 2,194 7 4 327 3.4

512 18 1,137 1,411 2,548 7 4 311 7.7

1024 18 1,171 1,916 3,087 7 4 315 16.6

4096 18 1,260 3,666 4,926 28 4 309 79.9
Notes:
• Data in Table 2and Table 3 were obtained using typical synthesis settings. The Synplify frequency (MHz) was set to 500.

• Layout settings were as follows:
Designer block creation enabled
High Effort Layout enabled

• The FFT time shown reflects the transformation time only. It does not account for data downloading or result uploading times.

 50200267 Handbook Revision 9 10

HB0267: CoreFFT v7.0 Handbook

Table 4 In-Place FFT PolarFire MPF300 Device Utilization and Performance (Minimal Memory Configuration)

Core Parameters Fabric Resource Usage Max Clock
Frequency

Transform
Time (uS) POINTS WIDTH uRAM

Depth
4LUT DFF uRAM LSRAM MACC

64 18 512 1072 1278 9 0 4 428 0.6

128 18 512 1162 1310 9 0 4 428 1.2

256 18 512 1562 1524 18 0 4 428 2.6

512 18 0 1613 1321 0 3 4 383 6.3

512 25 0 2542 2908 0 6 16 376 6.5

1024 25 0 3116 2949 0 6 16 371 14.2

4096 18 0 4192 1806 0 12 4 363 68.0

4096 25 0 6312 3406 0 15 16 362 68.4

16384 18 0 9506 3550 0 54 4 328 350.1

16384 25 0 16869 5820 0 75 16 284 404.6

Table 5 In-Place FFT PolarFire MPF300 Device Utilization and Performance (Buffered Configuration)

Core Parameters Fabric Resource Usage Max Clock
Frequency

Transform
Time (uS) POINTS WIDTH uRAM

Depth
4LUT DFF uRAM LSRAM MACC

64 18 512 1371 1591 21 0 4 428 0.6

256 18 512 2195 2101 42 0 4 428 2.6

512 18 512 3008 2946 84 0 4 396 6.0

1024 18 512 5092 4571 168 0 4 329 15.9

16384 18 0 12269 6301 0 126 4 290 396.0

Notes:
• Data in Table 4 and Table 5 were obtained using typical Libero SoC tool settings. The Timing constraint was set to 400 MHz.

• Place and Route was set for Timing-driven High Effort Layout
• The FFT time shown reflects the transformation time only. It does not account for data downloading or result uploading times.

Table 6 In-Place FFT Utilization and Performance Configuration

Parameter Value

INVERSE 0

SCALE 0

SCALE_EXP_ON 0

HDL type Verilog

 50200267 Handbook Revision 9 11

HB0267: CoreFFT v7.0 Handbook

2.5.2 Streaming FFT

Table 7 and Table 8 show the utilization and performance for a variety of streaming FFT
configurations.

Table 7 Streaming FFT SmartFusion2 M2S050T Speed grade -1

Core Parameters Resource Usage Blocks

Clock Rate

FF
T_

SI
ZE

DA
TA

_B
IT

S

TW
ID

_B
IT

S

O
rd

er

DF
F

4L
U

T

To
ta

l

LS
RA

M

uR
AM

M
AC

C

16 18 18 Reverse 1,576 1,446 3,022 - 4 4 290

16 18 18 Normal 1,740 1,621 3,361 - 8 4 290

32 18 18 Reverse 2,276 2,036 4,312 - 8 8 297

64 18 18 Reverse 2,725 2,560 5,285 - 10 8 286

128 18 18 Reverse 3,407 3,302 6,709 - 12 12 292

256 18 18 Reverse 4,059 3,848 7,907 2 12 12 284

256 18 18 Normal 4,219 3,956 8,175 4 12 12 287

256 24 25 Reverse 7,663 6,551 14,214 4 18 48 281

512 18 18 Reverse 4,513 5,251 9,764 4 12 16 292

512 18 24 Reverse 5,687 6,554 12,241 6 14 32 296

1,024 24 24 Reverse 10,017 10,828 20,845 11 18 64 260

1,024 24 25 Reverse 10,053 10,961 21,014 11 18 64 260
Notes:
• uRAM max depth was set at 64
• Data in Table 7 were achieved using typical synthesis settings. The Synplify frequency (MHz) was set to 500.

• Layout High effort mode was set

 50200267 Handbook Revision 9 12

HB0267: CoreFFT v7.0 Handbook

Table 8 Streaming FFT PolarFire MPF300 Speed grade -1

Core Parameters Resource Usage Clock Rate

FF
T_

SI
ZE

DA
TA

_B
IT

S

TW
ID

_B
IT

S

SC
AL

E

uR
AM

 D
ep

th

O
rd

er

4L
U

T

DF
F

uR
AM

LS
RA

M

M
AC

C

16 16 18 On 256 Reverse 1229 1614 6 0 4 410

16 16 18 On 256 Normal 1350 1721 12 0 4 428

32 16 18 On 256 Reverse 1795 2176 12 0 4 428

64 16 18 On 256 Reverse 2325 2769 15 0 8 413

128 20 18 On 256 Reverse 4003 4687 28 0 24 415

256 22 18 Off 256 Reverse 5441 6063 46 0 24 428

256 24 25 Off 256 Reverse 6980 8641 60 0 48 428

512 24 25 On 256 Reverse 8750 9780 15 14 64 414

1024 24 25 On 0 Reverse 11283 10826 0 21 64 394

1024 24 25 Off 64 Reverse 11378 11106 32 11 64 417
Notes:
• Data in Table 8 were obtained using typical Libero SoC tool settings. The Timing constraint was set to 400 MHz.

• Place and Route was set for Timing-driven High Effort Layout

 50200267 Handbook Revision 9 13

HB0267: CoreFFT v7.0 Handbook

3 Functional Description

3.1 Architecture Options
Depending on user configuration, CoreFFT generates one of the following transformation
implementations:

• In-Place FFT
• Streaming FFT

3.2 In-Place FFT
The architecture option loads a frame of N complex data samples in its in-place RAM, and processes
them sequentially, stage by stage using a single Radix-2 processor. It stores the results of every stage
back in the in-place RAM. The in-place FFT takes fewer chip resources than the streaming FFT, but
the transformation time is longer. Figure 2 shows a functional diagram of the in-ilace transform.

Figure 2 In-Place Radix-2 FFT Functional Block Diagram (Minimal Configuration)

In-place
Memory

Radix-2
Butterfly

RAM 0

RAM 1 R
ea

d
S
w

itc
h P

Q

Twiddle
LUT

W
ri
te

 S
w

itc
h

Complex
Input Data

Complex
Output Data

The input and output data are represented as 2*WIDTH-bit words comprised of real and imaginary
parts. Both parts are two’s complement numbers of WIDTH bits each. The module processes frames
(bursts) of data with a frame size of N complex words. The frame to be processed is loaded in the in-
place memory. The memory contains two identical RAM blocks, each is capable of storing N/2
complex words. The in-place memory supports double bandwidth, it can read and write two
complex words at the same time. Once the N complex data samples are loaded in the memory, FFT
computation starts automatically and the in-place memory is used for the computations.

 50200267 Handbook Revision 9 14

HB0267: CoreFFT v7.0 Handbook

The in-place FFT computational process occurs in a sequence of stages with the number of stages
equal to log2N. At every stage of the FFT data processing, the Radix-2 butterfly reads all the data
stored in the in-place memory, two complex words at a time. The read switch along with a read
address generator (not shown in Figure 2) helps the butterfly to obtain stored data in the order
required by the FFT algorithm. In addition to the data, the butterfly obtains twiddle factors
(sine/cosine coefficients) from the twiddle LUT. The butterfly writes intermediate results back to the
in-place memory through the write switch.

After the last computational stage, the in-place memory stores the fully transformed data. The
module puts out an N-word transformed data frame, one word at a time, provided the signal
READ_OUTP is active.

CoreFFT calculates the twiddle factors required by the FFT algorithm and writes them to the twiddle
LUT. This happens automatically on power-on when asynchronous global reset NGRST is asserted.

In-Place Memory Buffers

Minimal Configuration

The minimal configuration, as shown in Figure 2, is sufficient to accomplish the FFT because it has
the in-place RAM required by the FFT algorithm. But the minimal configuration does not utilize the
processing engine all the time. On the contrary, when data is loaded in the in-place memory, or the
transformed data are read out, the butterfly stays idle. Figure 3 shows the FFT cycle timeline. The
cycle consists of the following three phases:

1. Download a fresh input data frame in the in-place RAM

2. Perform the actual transformation

3. Upload the transformation result to free up the in-ilace RAM

Figure 3 Minimal Configuration In-Place FFT Cycle

FFT Cycle at Minimal Configuration

Download
Input Data Compute FFT Upload

Output Data

In the minimal configuration, the butterfly runs only during the computation phase. When the data
burst rate permits, the minimal configuration provides the best device resource utilization. In
particular, it saves a significant number of RAM blocks.

 50200267 Handbook Revision 9 15

HB0267: CoreFFT v7.0 Handbook

Buffered Configuration

In order to improve the butterfly utilization and consequently reduce the average transformation
time, additional memory buffers can be used. Figure 4 shows the buffered FFT block diagram.

Figure 4 Buffered FFT Block Diagram

RAM 0

RAM 1

Pong

Ping

Radix-2
Butterfly

RAM 0

RAM 1 R
ea

d
S
w

itc
h

Twiddle
LUT

W
ri
te

 S
w

itc
h

Complex
Input Data

Complex
Output Data

P

Q

In-Place
Memory Outer Buffer

The buffered option has two identical in-place memory banks implementing a ping-pong buffer and
one output buffer. Each bank is capable of storing N complex words and reading two complex words
at a time. The core state machine controls the ping-pong switching so that a data source sees only a
buffer that is ready to accept new data. The buffer that does not accepts the new data is used as an
in-place RAM by the FFT engine.

The ping-pong buffering architecture increases the efficiency of the FFT engine. While one of the
two input banks is involved in the current FFT computation, the other is available for downloading
the next input data frame. As a result, the FFT engine does not sit idle waiting for fresh data to fill
the input buffer. From the data source perspective, the core can receive a data burst anywhere
within the FFT computation period. When the engine has finished processing the current data frame
and the input buffer bank has been filled with another data frame, the state machine swaps the
ping-pong banks, and the data load and computation continues on the alternate memory banks.

The last stage of the FFT computation uses an out-of-place scheme. The FFT engine reads
intermediate data from the in-place memory but writes the final result in the output data buffer.
The final results remain in the output buffer until the FFT engine replaces them with the results of
the next data frame. From the data recipient perspective, the output data are available for reading
any time, except for the last FFT stage.

The buffered configuration FFT cycle is shown in Figure 5.

 50200267 Handbook Revision 9 16

HB0267: CoreFFT v7.0 Handbook

Figure 5 Buffered Configuration FFT Cycles

FFT Cycle i

Ping bank is busy

Pong bank is available for loading input data

Available for reading results of
cycle (i-1)

Ping-pong Input Buffer

Output Buffer
Accepts

FFT result

FFT Cycle i+1

Pong bank is busy

Ping bank is available for loading input data

Ping-pong Input Buffer

Output Buffer
Accepts

FFT resultAvailable for reading results of cycle i

Finite Word Length Considerations

At every stage of the in-place FFT algorithm, the butterfly takes two samples out of the in-place
memory and returns two processed samples to the same memory locations. The butterfly
calculation involves complex multiplication, addition, and subtraction. The returning samples may
have a larger data width than the samples picked from the memory. Precautions must be taken to
ensure that there are no data overflows.

To avoid risk of overflow, the core employs one of the following three methods:

• Input data scaling
• Unconditional block floating-point scaling
• Conditional block floating-point scaling

Input Data Scaling: The input data scaling requires pre-pending the input data samples with enough
extra sign bits, called guard bits. The number of guard bits necessary to compensate for the
maximum possible bit growth for an N-point FFT, is log2N + 1. For example, every input sample of a
256-point FFT must contain nine guard bits. Such a technique greatly reduces the effective FFT bit
resolution.

Unconditional Block Floating-Point Scaling: The second way to compensate for the FFT bit growth is
to scale the data down by a factor of two at every stage. Consequently, the final FFT results are
scaled down by a factor of 1/N. This approach is called unconditional block floating-point scaling.

The input data need to be scaled down by a factor of two to prevent overflow at the first stage. To
prevent the overflow in successive stages, the core scales down the results of every previous stage
by the factor of two by shifting the entire block of data (all results of the current stage) one bit to
the right. The total number of bits the data loses because of the bit shifting in the FFT calculation is
log2N.

The unconditional block floating-point results in the same number of lost bits as in the input data
scaling. However, it produces more precise results, as the FFT engine starts with more precise input
data.

Conditional Block Floating-Point Scaling: In the conditional block floating-point scaling, data is
shifted only if bit growth actually occurs. If one or more butterfly outputs grow, the entire block of
data is shifted to the right. The conditional block floating-point monitor checks every butterfly
output for growth. If shifting is necessary, it is performed after the entire stage is complete, at the
input of the next stage butterfly. This technique provides the least amount of distortion
(quantization noise) caused by finite word length.

 50200267 Handbook Revision 9 17

HB0267: CoreFFT v7.0 Handbook

In conditional block floating-point mode, the core can optionally calculate the actual scaling factor. It
does so if the parameter SCALE_EXP_ON is set to be 1. Then the calculated actual factor appears on
the SCALE_EXP port. The factor represents the number of right shifts the FFT engine applied to the
results. For example, the SCALE_EXP value of 4 (100) means the FFT results were shifted right
(downscaled) by 4 bits; that is, divided by 2SCALE_EXP = 16. The signal accompanies the FFT results and
is valid while OUTP_READY is asserted. To scale back the actual CoreFFT results, that is, to make
them comparable to floating point transformed bins, every FFT output sample needs to be
multiplied by 2SCALE_EXP:

FFT Result (Real) = DATAO_RE*2SCALE_EXP

FFT Result (Imaginary) = DATAO_IM*2SCALE_EXP

Note: The scale exponent calculator can be enabled in conditional block floating-point mode only.

The CoreFFT, by default, is configured to apply the conditional block floating-point scaling. In
conditional block floating-point mode, the input data is checked and downscaled by a factor of two
if necessary, prior to the first stage.

Transformation Time

The FFT computation takes (N/2 + L) x log2N + 2 clock cycles, where L is an implementation specific
parameter representing the aggregate latency of a memory bank, switches, and the butterfly. L does
not depend on transform size N. It only depends on the FFT bit resolution. L is equal to 10 at bit
resolutions 8 to 18, and L is equal to 16 at bit resolutions from 19 to 32.
For example, for a 256-point 16-bit FFT, the computation time = (256/2 + 10) x log2256 + 2 = 1,106
clock periods. For a 4,096-point 24-bit FFT, the computation time = (4096/2 + 16) x log24096 + 2 =
24,770 clock periods.

Memory Implementation

The core uses hard RAM blocks to implement the in-place memory, other memory buffers, and a
twiddle LUT. The FPGAs carry two hard RAM types: large (LSRAM) and micro-RAMs. The memory
implementation can be controlled by setting the URAM_MAXDEPTH parameter. CoreFFT uses micro-
RAMs if the required depth does not exceed the parameter value. For example, the
URAM_MAXDEPTH set to 64 utilizes micro-RAMs in any FFT size up to 128 points, as the required
depth is POINTS/2. Setting the parameter value to 0 prevents the core from using the micro-RAMs at
all, so that they can be used elsewhere.

The parameter URAM_MAXDEPTH is accessible through the core user interface.

 50200267 Handbook Revision 9 18

HB0267: CoreFFT v7.0 Handbook

3.3 Streaming FFT
Streaming FFT supports continuous complex data processing, one complex input data sample per
clock period. The streaming architecture has as many Radix-22 processors, RAM blocks, and LUT’s as
necessary to support streaming data transformation. Figure 6 shows a functional diagram of the
256-point streaming transform.

Figure 6 Streaming Radix-22 256-pt FFT Functional Block Diagram

BF2I
x(n)

Delay
128

BF2II

Delay
64

BF2I

Delay
32

BF2II

Delay
16

BF2I

Delay 8

BF2II

Delay 4

BF2I

Delay 2

BF2II

Delay 1

X(k)

Stage 1 Twiddle
Factor LUT

W1(n)

Stage 3 Twiddle
Factor LUT

Stage 5 Twiddle
Factor LUT

W3(n) W5(n)

COMPLEX COMPLEX COMPLEX

Radix-22 Butterfly 1 Radix-22 Butterfly 2 Radix-22 Butterfly 3 Radix-22 Butterfly 4

The input and output data are represented as (2 x DATA_BITS)-bit words comprised of real and
imaginary parts. Both parts are two’s complementary numbers of DATA_BITS bits each. The module
processes frames of data with a frame size equal to the transform size of N complex words. The
frame to be processed comes to the x(n) input as a sequence of the complex data words, one
(2 x DATA_BITS)-bit word per clock interval. The next frame can start immediately after the last data
word of a current frame or at any time later on.

Figure 7 shows an example of frame i+1 immediately following frame i, and the frame i+2 coming
after an arbitrary gap. The input data samples within a frame must come at every clock interval, thus
a frame lasting exactly N clock intervals. There is a substantial latency associated with the streaming
algorithm. The output data frames appear at the same order, clock rate, and with the same gaps (if
any) between the output frames, as those between the input frames.

Figure 7 Streaming FFT Input Data Frames

2m-bit
complex word

Frame i: N
complex data words

Frame i+1: N
complex data words

Frame i+2: N
complex data words

Arbitrary gap

The number of FFT butterflies equals log2(N), thus every stage being processed by a separate
butterfly. As a result, all stages are processed in parallel.

CoreFFT calculates the twiddle factors required by the FFT algorithm. At power-up, the core
automatically uploads the twiddle factors in on-chip RAMs that become the twiddle LUTs. User
action is not required to make it happen. Upon completion of the uploading, the core activates the

 50200267 Handbook Revision 9 19

HB0267: CoreFFT v7.0 Handbook

RFS signal, letting a data source know that the core is ready to start FFT processing. The LUT
contents can be refreshed at any time by issuing a one clock wide signal, REFRESH.

Streaming FFT Latency

The streaming FFT latency is primarily defined by the transform size, N. The implementation adds up
a number of pipeline delays that depend on the FFT size and data path bit width. In other words the
FFT results are delayed regarding the input data by not less than N data intervals for the bit-reversed
outputs. The ordered output latency is about two times larger.

Streaming FFT Memory Implementation

Similarly to the in-place architecture, the streaming FFT uses hard RAM blocks to implement the
required memories, LUTs and delay lines. The memory implementation can be controlled by setting
the URAM_MAXDEPTH parameter. CoreFFT uses micro RAMs if the depth of the memory does not
exceed the parameter value. For example, the URAM_MAXDEPTH parameter set to 128 utilizes
micro-RAMs to create memories of depth of 128 and less. Setting the parameter value to 0 prevents
the core from using the micro RAMs at all, so that they can be used elsewhere.

Finite Word Length Considerations

Unscaled and Scale Schedule Modes

The butterfly calculation involves addition and subtraction. These operations can cause the butterfly
data width to grow from input to output. Every butterfly, BF2I or BF2II (see Figure 6), can introduce
an extra bit to the data width. In addition, the multiplications can add one bit to the result. The
overall potential bit growth = log2(N)+1 bits. Precautions must be taken to ensure that there are no
data overflows.

To avoid or reduce a risk of overflow, the core employs one of two techniques:

• Unscaled mode builds data path wide enough to accommodate the bit growth. The data path
width grows from stage to stage to fully accommodate the algorithm bit growth so that data
overflow never happens. The real or imaginary output bit width is log2(N)+1 bits wider than the
input one. The design is entirely safe from the overflow point of view.

• Configurable scale schedule. This technique provides a user with control over scaling down
(truncation of) every intermediate result that can cause overflow. The output bit width equals
the input bit width. The technique is overflow-safe only when the scaling schedule matches the
actual bit growth, which is not easy to achieve. Cautious approach to the configurable scaling
often leads to extra down scaling. But if the nature of the transformed signal is known to be
overflow-safe with some or all stages omitting the extensive downscaling, the technique is
beneficial both from signal-to-noise ratio and chip resource utilization standpoints. When
configured for the scale schedule mode, the core generates an overflow flag if the overflow
happened.

The Radix-22 butterfly can introduce 3-bit growth: butterflies BF2I, BF2II and a multiplier each can
add a bit. But only one multiplication out of all FFT stages can add the bit. Since it is unknown
upfront, at which stage the multiplier induces the extra bit if any, the FFT engine in the unscaled
mode extends the data path by the bit starting at the first stage.

In the scale schedule mode, again every Radix-22 stage can introduce 3-bit growth. The data path
within the stage grows accordingly, that is, the stage output is three bits wider than the stage input.
The engine cuts out the three extra bits after the stage result is calculated, that is, the stage output
gets truncated by three bits before it goes to the next stage. Such approach eliminates the need of
guessing the sub-stage at which downscaling needs to be applied.

 50200267 Handbook Revision 9 20

HB0267: CoreFFT v7.0 Handbook

Table 9 explains the three bits that get cut out in the scale schedule mode depending on the 2-bit
schedule value for a particular stage.

Table 9 Cutting Out Three Extra Bits in Scale Schedule Mode

Scale Schedule for a Given Radix-22 Stage Bits the Core Cuts Out

00 Cut out three MSB’s

01 Cut out two MSB’s and round one LSB

10 Cut out one MSB and round two LSB’s

11 Round three LSB’s

The FFT/IFFT of the sizes 32, 128, or 512 that are not a power-of-four, in addition to the Radix-22
butterflies, utilize a single Radix-2 butterfly. The one applies to the last processing stage and cuts out
a single extra bit.

The core automatically invokes overflow detection in the scale schedule mode. The overflow flag
(OVFLOW_FLAG) appears as soon as the core detects the actual overflow. The flag stays active until
the end of an output frame where the overflow was detected.

Unscaled Mode Input Bit Width Limitations

The unscaled mode limits the maximal input sample bit width handled by the core. Table 10 lists the
max bit widths for every FFT size.

Table 10 Streaming Unscaled FFT Max Input Data Bit Width

FFT Size Max Input Width

16 32

32 30

64 30

128 28

256 28

512 26

1024 26

 50200267 Handbook Revision 9 21

HB0267: CoreFFT v7.0 Handbook

Entering Scale Schedule

The scale schedule identifies the downscaling factor for every streaming FFT stage. Every Radix-22
stage scaling factor is controlled by dedicated two bits of the scale schedule, and the Radix-2 stage
used in the non-power-of-four FFTs is controlled by a single bit. Figure 8 depicts an example of a
scale schedule user interface for 1024-pt FFT. A pair of checkboxes corresponds to a specific Radix-22
stage and presents two bits of the downscaling factor. The actual downscaling factor at a particular
stage is calculated as 22*Bit1+Bit0 and takes one of the following values: 1, 2, 4, 8. The checkboxes
shown in the Figure 8 correspond to the binary scale schedule value of 10 10 10 10 11. This value
presents a conservative scale schedule that does not cause the overflow.

Figure 8 Scale Schedule User Interface

Table 11 shows the conservative scale schedules for every FFT size that is completely overflow safe.

Table 11 Conservative Scale Schedules for Various FFT Sizes

FFT Size Radix-22 Stage

4 3 2 1 0

1024 1 0 1 0 1 0 1 0 1 1

512 x 1 1 0 1 0 1 0 1 1

256 x x 1 0 1 0 1 0 1 1

128 x x x 1 1 0 1 0 1 1

64 x x x x 1 0 1 0 1 1

32 x x x x x 1 1 0 1 1

16 x x x x x x 1 0 1 1

3.4 Natural Output Order
The output results obtained from the Radix-2 and Radix-22 FFT algorithms are in the bit-reversed
order. The in-place implementation however, internally performs the sample ordering. Therefore,
the core puts the results out in a natural order. The Streaming FFT supports both bit-reversed and
natural output orders. The bit-reversed option utilizes fewer chip resources and provides smaller
latency.

 50200267 Handbook Revision 9 22

HB0267: CoreFFT v7.0 Handbook

4 Interface

4.1 In-Place FFT

4.1.1 Configuration Parameters
CoreFFT has parameters (Verilog) or generics (VHDL) for configuring the RTL code. These parameters
and generics are described in Table 12. All parameters and generics are integer types.

Table 12 In-Place CoreFFT Parameter Descriptions

Parameter Valid Range Default Description

INVERSE 0 – 1 0 0: Forward Fourier transform
1: Inverse Fourier transform

SCALE 0 – 1 0 0: Conditional block floating point scaling
1: Unconditional block floating point scaling
To apply the input data scaling, set the SCALE parameter to 0 and
prepend the proper number of guard bits to the input data. Then the
conditional block floating point will have no effect.

POINTS 32, 64, 128, 256,
512, 1024, 2048,
4096, 8192, 16384

256 Transform size.
Note: the 16384-pt FFT is supported on RTG4 and PolarFire parts only

WIDTH 8 – 32 18 Data and twiddle factor bit width.

MEMBUF 0 – 1 0 0: Minimal (no buffer) configuration
1: Buffered configuration

SCALE_EXP_ON 0 – 1 0 0: Does not build the conditional block floating-point exponent
calculator
1: Builds the calculator

URAM_MAXDEPTH 0, 4, 8, 16, 32, 64,
128, 256, 512

 The largest RAM depth to be implemented with the micro-RAM
available on the SmartFusion2, IGLOO2, RTG4 and PolarFire parts.
When the RAM depth required for a user-selected transform size
POINTS exceeds the URAM_MAXDEPTH, large LSRAM blocks are used.

 50200267 Handbook Revision 9 23

HB0267: CoreFFT v7.0 Handbook

4.1.2 Ports

Figure 9 shows the port signals for the in-place CoreFFT architecture. Table 13 describes the port
signals.

Figure 9 CoreFFT I/O Ports

CLK

NGRST

DATAI_IM

DATAI_VALID

DATAO_IM

READ_OUTP OUTP_READY

CoreFFT

PONG

DATAI_RE DATAO_RE

DATAO_VALID

BUF_READY

SCALE_EXP

Table 13 In-Place CoreFFT Port Descriptions

Port Name In/Out Port Width Bits Description

DATAI_IM In WIDTH Imaginary input data to be transformed

DATAI_RE In WIDTH Real input data to be transformed

DATAI_VALID In 1 Input complex word valid. The signal accompanies valid input complex words
present on inputs DATAI_IM, DATAI_RE. When the signal is active, the input
complex word is loaded into the core memory provided the BUF_READY signal has
been asserted.

READ_OUTP In 1 Read transformed data. Normally the module puts out FFT results, once they are
ready, in a single burst of N complex words. The transformed data recipient can
insert arbitrary breaks in the burst by deasserting the READ_OUTP signal.

DATAO_IM Out WIDTH Imaginary output data

DATAO_RE Out WIDTH Real output data

DATAO_VALID Out 1 Output complex word valid. The signal accompanies valid output complex words
present on DATAO_IM and DATAO_RE outputs.

BUF_READY Out 1 The FFT accepts fresh data. The core asserts the signal when it is ready to accept
data. The signal stays active until the core memory is full. In other words, the signal
stays active until POINTS complex input samples are loaded.

OUTP_READY Out 1 FFT results ready. The core asserts the signal when the FFT results are ready for the
transformed data recipient to read. The signal stays active while the transformed
data frame is being read. Normally it lasts for POINTS clock intervals unless the
READ_OUTP signal is deasserted.

SCALE_EXP Out 1 Conditional block floating-point scaling exponent. This optional output can be
enabled by setting the SCALE_EXP_ON parameter. The output can be enabled when
the core is in conditional block floating-point scaling mode only (the parameter
SCALE = 0).

 50200267 Handbook Revision 9 24

HB0267: CoreFFT v7.0 Handbook

Port Name In/Out Port Width Bits Description

PONG Out 1 Pong bank of the input memory buffer is being used by the FFT engine as a working
in-place memory. This optional signal is valid only in the buffered configuration.

CLK In 1 Clock. Rising edge active. The core master clock.

NGRST In 1 Asynchronous reset. Active low.

Note: All signals are active high (logic 1) unless otherwise specified.

4.2 Streaming FFT

4.2.1 Configuration Parameters
CoreFFT has parameters (Verilog) or generics (VHDL) for configuring the RTL code. These parameters
and generics are described in Table 14. All parameters and generics are integer types.

Table 14 CoreFFT Streaming Architecture Parameter Descriptions

Parameter Name Valid Range Default Description

FFT_SIZE 16, 32, 64, 128,
256, 512, 1024

256 Transform size points. The core processes frames of complex data with
every frame containing FFT_SIZE complex samples. The transformed data
frames are of the same size.

SCALE_ON 0 – 1 1 1 – Enable configurable scale schedule. When the option is enabled, the
core applies the configurable scale factor, SCALE_SCH after every
butterfly.
0 – Unscaled mode

SCALE_SCH 0 Scale schedule. If the SCALE_ON parameter equals 1, SCALE_SCH is used
to define the scaling factor for every processing stage.

DATA_BITS 8 – 32 18 Input data bit width of real or imaginary parts.

TWID_BITS 8 – 32 18 Twiddle factor bit width of its real or imaginary parts.

ORDER 0 – 1 0 0: Output data in bit-reversed order
1: Output data in normal order

URAM_MAXDEPTH 0, 4, 8, 16, 32,
64, 128, 256,
512

0 The largest RAM depth to be implemented with micro-RAM available on
the SmartFusion2, IGLOO2, RTG4 or PolarFire parts. When the RAM depth
required for a user-selected transform size POINTS exceeds the
URAM_MAXDEPTH, large LSRAM blocks will be used

4.2.2 Ports
The port signals for the Streaming CoreFFT macro are shown in Figure 10 and described in Table 15.

 50200267 Handbook Revision 9 25

HB0267: CoreFFT v7.0 Handbook

Figure 10 Streaming FFT I/O Ports

DATAI_RE

DATAI_IM

START

CoreFFT

INVERSE_STRM

CLK

CLKEN

DATAO_RE

DATAO_IM

DATAO_VALID

OUTP_READY

OVFLOW_FLAG

RST

NGRST

RFS

REFRESH

Table 15 Streaming FFT I/O Signal Descriptions

Port Name In/Out Port Width, bits Description

DATAI_IM In DATA_BITS Imaginary input data to be transformed.

DATAI_RE In DATA_BITS Real input data to be transformed.

START In 1 Transformation start signal. Signifies the moment the first sample of an input
data frame of N complex samples enters the core.
If it comes when the previous input data frame has not been completed, the
signal will be ignored

INVERSE In 1 Inverse transformation. When the signal is asserted, the core computes inverse
FFT of the following data frame, otherwise forward FFT.

REFRESH In 1 Reload the twiddle coefficient LUTs in the corresponding RAM blocks.

DATAO_IM Out DATA_BITS Imaginary output data.

DATAO_RE Out DATA_BITS Real output data.

OUTP_READY Out 1 FFT results are ready. The core asserts the signal when it is about to output a
frame of N FFTed data. The width of the signal is one clock interval.

DATAO_VALID Out 1 Output frame is valid. Accompanies valid output data frame. After it is started,
the signal lasts N clock cycles.
If the input data are coming continuously with no gaps in between frames, the
DATAO_VALID will last indefinitely.

OVFLOW_FLAG Out 1 Arithmetic overflow flag. CoreFFT asserts the flag if the FFT/IFFT computation
overflows. The flag starts as soon as the core detects overflow. The flag ends
when the current output data frame ends.

RFS Out 1 Request for start. The core asserts the signal when it is ready for the next input
data frame. The signal starts as soon as the core is ready for the next frame. The
signal ends when the core gets the requested START signal.

CLK In 1 Rising-edge clock signal.

CLKEN In 1 Optional clock enable signal. After deasserting the signal, the core stops
generating valid results.

NGRST In 1 Asynchronous reset signal. Active low.

RST In 1 Optional synchronous reset signal. Active high.

Note: All signals are active high (logic 1) unless otherwise specified.

 50200267 Handbook Revision 9 26

HB0267: CoreFFT v7.0 Handbook

5 Timing Diagrams

5.1 In-Place FFT
When the in-place FFT asserts the BUF_READY signal, a data source starts supplying the data
samples to be transformed. Imaginary and real halves of the input data sample must be supplied
simultaneously and accompanied with the validity bit DATAI_VALID. The data source can supply the
sample at every clock cycle or at an arbitrary slower rate (refer to Figure 11). Once the FFT module
receives N input samples, it lowers the BUF_READY signal.

The FFT engine starts processing the data automatically after it is ready. In the minimal memory
configuration, the processing phase starts immediately after data loading is complete. In the
buffered configuration, the FFT engine can wait until a previous data burst is processed. Then the
engine starts automatically.

Figure 11 Loading Input Data

CLOCK

BUF_READY

DATAI_VALID

DATAI_IM,
DATAI_RE

do not
care

do not
care

do not
care

do not
care

32 5410 N-1N-2N-3N-4

Upon completing the transformation, the FFT module asserts the OUTP_READY signal and starts
generating the FFT results. The imaginary and real halves of the output samples appear
simultaneously on DATAO_IM and DATAO_RE multi-bit outputs. Every output sample is
accompanied by the DATAO_VALID bit. The data receiver can accept the transformed data either at
every clock cycle or at an arbitrary slower rate. The FFT module keeps providing data output while
the READ_OUTP signal is asserted. To control the output sample rate, the receiver must deassert the
READ_OUTP signal as and when needed (as shown in Figure 12).

Figure 12 Receiving Transformed Data

OUTP_READY

0 N-
2

N-
11 2

CLOCK

READ_OUTP

DATAO_VALID

DATAO_IM,
DATAO_RE

 50200267 Handbook Revision 9 27

HB0267: CoreFFT v7.0 Handbook

When using the READ_OUTP signal to control reading rate, possible FFT cycle growth needs to be
considered. In the minimal memory configuration, any prolongation of the read (upload) time
extends the FFT cycle as shown in Figure 3. In the buffered configuration, the FFT cycle grows when
the actual upload time exceeds the dedicated interval shown in Figure 4 as “Available for reading
results of cycle i.”. Also, in the buffered configuration, the output buffer starts accepting the fresh
FFT results even if the older results have not been read out, thus overwriting the older ones. In this
case the core deasserts the OUTP_READY and DATAO_VALID signals when they are no longer valid.

5.2 Streaming FFT

5.2.1 RFS and START
The core generates the RFS signal to let a data source know that it is ready for the next frame of the
input data samples. After it is asserted, the RFS stays active until the data source responds with the
START signal.

Figure 13 shows an example when the FFT engine waits for the data source to supply the START
signal. Once the core gets the START, it deasserts the RFS signal and starts receiving the input data
frame. After N clock intervals, the data frame reception is completed, and the RFS signal goes active
again.

Figure 13 RFS Waits for START

RFS

CLK

START

Figure 14 shows another example where the input data come indefinitely without gaps between the
frames. The START signal has a permanent active value, and the core starts receiving another input
frame right after the end of a previous frame.

It is optional for the data source to watch for the RFS signal. It can assert the START signal at any
time, and the core starts accepting another input frame as soon as it can. In the situation of the
Figure 13, a new frame loading starts immediately after the START signal. If the START signal comes
when a previous input frame is being loaded, the core waits until the frame ends and then starts
loading another frame.

Figure 14 Transforming Streaming Data

RFS

CLK

START

The START signal leads the actual input frame by one clock interval, as shown in Figure 15.

 50200267 Handbook Revision 9 28

HB0267: CoreFFT v7.0 Handbook

Figure 15 START Leads the Data

START

CLK

0 1 2 N-2 N-1Input samples

5.2.2 OUTP_READY and DATAO_VALID
These two signals serve to notify a data receiver when the FFT results are ready. The OUTP_READY is
a clock-wide pulse. The core asserts when the output data frame is about to output. The core asserts
the DATAO_VALID signal while generating the output frame. The DATAO_VALID signal trails the
OUTP_READY signal by one clock interval. Figure 16 shows the timing relations between the two
signals and the FFTed data frame.

Figure 16 Output Data and Handshake Signals

OUTP_READY

CLK

0 1 2 N-2 N-1Output samples

DATAO_VALID

In case of streaming data with no gaps between the frames, the DATAO_VALID is permanently active
(as shown in Figure 17).

Figure 17 Streaming Output Data without Gaps

0 1 2 N-2 N-1 0 1 2 N-2 N-1 0 1N-2 N-1

Frame i-1 Frame i Frame i+1 Frame i+2

Output samples

DATAO_VALID

OUTP_READY

 50200267 Handbook Revision 9 29

HB0267: CoreFFT v7.0 Handbook

6 Tool Flow

6.1 License
CoreFFT is distributed along with Libero. Source code and a testbench are provided for the core.

6.2 SmartDesign
CoreFFT is available for download in the Libero IP catalog through the web repository. After it is
listed in the catalog, the core can be instantiated using the SmartDesign flow. For information on
using SmartDesign to configure, connect, and generate cores, refer to the Libero Online Help.

After configuring and generating the core instance, the basic functionality can be simulated using
the test-bench supplied with the CoreFFT. The testbench parameters automatically adjust to the
CoreFFT configuration. The CoreFFT can be instantiated as a component of a larger design.

Note: CoreFFT is compatible with both Libero integrated design environment (IDE) and Libero SoC.
Unless specified otherwise, this document uses the name Libero to identify both Libero IDE and
Libero SoC.

Figure 18 SmartDesign CoreFFT Instance View

 50200267 Handbook Revision 9 30

HB0267: CoreFFT v7.0 Handbook

6.3 Configuring CoreFFT in SmartDesign
The core can be configured using the configuration GUI within SmartDesign. An example of the GUI
for the SmartFusion2 family is shown in Figure 19.

Figure 19 Configuring CoreFFT in SmartDesign

 50200267 Handbook Revision 9 31

HB0267: CoreFFT v7.0 Handbook

6.4 Simulation Flows
The user testbench for CoreFFT is included in the release.

To run simulations, select the User Testbench flow within SmartDesign. The User Testbench is
selected using the Core Configuration window.

When SmartDesign generates the core, it installs the user testbench files.

To run the user testbench, set the design root to the CoreFFT instantiation in the Libero design
hierarchy pane and run pre-synthesis design simulation.

Note: When simulating the VHDL version of the core you might want to get rid of the
IEEE.NUMERIC_STD library warnings. To do so, add the following two lines to the automatically
generated run.do file:

• set NumericStdNoWarnings 1

• set StdArithNoWarnings 1

6.5 Synthesis in Libero
To run synthesis on the CoreFFT, set the design root to the IP component instance, and run the
synthesis tool from the Libero design flow pane.

6.6 Place-and-Route in Libero
After the design is synthesized, run the compilation and then place-and-route the tools. CoreFFT
requires no special place-and-route settings.

 50200267 Handbook Revision 9 32

HB0267: CoreFFT v7.0 Handbook

7 Testbench

A unified test-bench is used to verify and test CoreFFT called as user test-bench.

7.1 User Test-bench
Figure 20 shows the testbench block diagram. The golden behavioral FFT implements the finite

precision calculations shown in x(k) = n = 0N-1X(n)e−jnk2π/N

EQ 1 or EQ 2. Both the golden FFT and CoreFFT are configured identically and receive the same test
signal. The testbench compares the output signals of the golden module and the actual CoreFFT.

Figure 20 CoreFFT User Test-bench

CoreFFT

Golden Behavioral
FFT

Test Data
Generator User Configuration Compare

The testbench provides examples of how to use a generated FFT module. The testbench can be
modified according to the requirements.

 50200267 Handbook Revision 9 33

HB0267: CoreFFT v7.0 Handbook

8 System Integration

8.1 In-Place FFT
Figure 21 shows an example of using the core. When the in-place FFT asserts the BUF_READY signal,
a data source starts supplying the data samples to be transformed. Imaginary and real halves of the
input data sample must be supplied simultaneously and accompanied with the validity bit-
DATAI_VALID. The data source can supply the sample at every clock cycle or at an arbitrary slower
rate (refer to Figure 11). After the FFT module receives N input samples, it lowers the BUF_READY
signal.

Figure 21 Example of the In-Place FFT System

Data
Source

Data
Receiver

CLK

NGRST

DATAI_IM

DATAI_VALID

DATAO_IM

READ_OUTP

OUTP_READY

CoreFFT

PONG

DATAI_RE DATAO_RE

DATAO_VALID

BUF_READY

Keep
Supplying Data

Global Reset

Master Clock

(Output Another FFTed Sample)

Imaginary
Input Data

Real
Input Data

Input Data
Valid

Imaginary
Output Data

Real
Output Data

FFT Result
Valid

FFT Results
Available

(1-bit Data
ID)

The FFT engine starts processing the data automatically after it is ready. In the minimal memory
configuration, the processing phase starts immediately after data loading is complete. In the
buffered configuration, the FFT engine can wait until a previous data burst is processed. Then the
engine starts automatically.

 50200267 Handbook Revision 9 34

HB0267: CoreFFT v7.0 Handbook

8.2 Streaming FFT
Streaming CoreFFT can process infinite complex data streams, as shown in Figure 22. The core
performs forward FFT over the data coming at every clock cycle. The data source keeps supplying
the data while the data receiver permanently receives the FFT-ed results and monitors the overflow
flag if necessary. The optional input START signal and the output RFS signal can be used if processing
of data frames is required. The data source generates the START signal to mark the beginning of
another frame, and the data receiver uses the RFS signal to mark the beginning of the output frame.

Figure 22 Example of a Streaming FFT System

CoreFFT

DATAI_RE

DATAI_IM

START

INVERSE_STRM

REFRESH

CLK

CLKEN

RST

NGRST

DATAO_RE

DATAO_IM

OUTP_READY

DATAO_VALID

OVFLOW_FLAG

RFS

Overflow Flag

Data
Source

Data
Receiver

Vcc

Global Asynchronous Reset

Clock

Imaginary Input Data

Real Input Data Real Output Data

Imaginary Output Data

 50200267 Handbook Revision 9 35

HB0267: CoreFFT v7.0 Handbook

9 Ordering Information

9.1 Ordering Codes
CoreFFT can be ordered through your local Microsemi sales representative. It should be ordered
using the following number scheme: CoreFFT -XX, where XX is listed in the following table.

Table 16 Ordering Codes

XX Description

RM RTL for RTL source - multiple-use license.

 50200267 Handbook Revision 9 36

	1 Revision History
	1.1 Revision 9.0
	1.2 Revision 8.0
	1.3 Revision 7.0
	1.4 Revision 6.0
	1.5 Revision 5.0
	1.6 Revision 4.0
	1.7 Revision 3.0
	1.8 Revision 2.0
	1.9 Revision 1.0

	2 Introduction
	2.1 Overview
	2.2 Features
	2.3 Core Version
	2.4 Supported Families
	2.5 Device Utilization and Performance
	2.5.1 In-Place FFT
	2.5.2 Streaming FFT

	3 Functional Description
	3.1 Architecture Options
	3.2 In-Place FFT
	In-Place Memory Buffers
	Buffered Configuration
	Finite Word Length Considerations
	Transformation Time
	Memory Implementation

	3.3 Streaming FFT
	Streaming FFT Latency
	Streaming FFT Memory Implementation
	Finite Word Length Considerations
	Unscaled and Scale Schedule Modes
	Unscaled Mode Input Bit Width Limitations
	Entering Scale Schedule

	3.4 Natural Output Order

	4 Interface
	4.1 In-Place FFT
	4.1.1 Configuration Parameters
	4.1.2 Ports

	4.2 Streaming FFT
	4.2.1 Configuration Parameters
	4.2.2 Ports

	5 Timing Diagrams
	5.1 In-Place FFT
	5.2 Streaming FFT
	5.2.1 RFS and START
	5.2.2 OUTP_READY and DATAO_VALID

	6 Tool Flow
	6.1 License
	6.2 SmartDesign
	6.3 Configuring CoreFFT in SmartDesign
	6.4 Simulation Flows
	6.5 Synthesis in Libero
	6.6 Place-and-Route in Libero

	7 Testbench
	7.1 User Test-bench

	8 System Integration
	8.1 In-Place FFT
	8.2 Streaming FFT

	9 Ordering Information
	9.1 Ordering Codes

