
Synopsys Confidential Information

Verification Continuum™

Synopsys 
Synplify Pro for Microsemi 
Edition User Guide

January 2020



LO

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
2 Synopsys Confidential Information January 2020

Copyright Notice and Proprietary Information
© 2020 Synopsys, Inc. All rights reserved. This software and documentation 
contain confidential and proprietary information that is the property of 
Synopsys, Inc. The software and documentation are furnished under a 
license agreement and may be used or copied only in accordance with the 
terms of the license agreement. No part of the software and documentation 
may be reproduced, transmitted, or translated, in any form or by any means, 
electronic, mechanical, manual, optical, or otherwise, without prior written 
permission of Synopsys, Inc., or as expressly provided by the license agree-
ment.

Free and Open-Source Licensing Notices
If applicable, Free and Open-Source Software (FOSS) licensing notices are 
available in the product installation.

Destination Control Statement
All technical data contained in this publication is subject to the export 
control laws of the United States of America. Disclosure to nationals of other 
countries contrary to United States law is prohibited. It is the reader’s 
responsibility to determine the applicable regulations and to comply with 
them.

Disclaimer
SYNOPSYS, INC., AND ITS LICENSORS MAKE NO WARRANTY OF ANY 
KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, 
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.



Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 3

Trademarks
Synopsys and certain Synopsys product names are trademarks of Synopsys, 
as set forth at
http://www.synopsys.com/Company/Pages/Trademarks.aspx.
All other product or company names may be trademarks of their respective 
owners.

Third-Party Links
Any links to third-party websites included in this document are for your 
convenience only. Synopsys does not endorse and is not responsible for such 
websites and their practices, including privacy practices, availability, and 
content. 

Synopsys, Inc.
690 East Middlefield Road
Mountain View, CA 94043
www.synopsys.com

January 2020

http://www.synopsys.com/Company/Pages/Trademarks.aspx


LO

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
4 Synopsys Confidential Information January 2020



Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 5

Contents

Chapter 1: Introduction
Synopsys FPGA and Prototyping Products  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

FPGA Implementation Tools  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Synphony Model Compiler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Rapid Prototyping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Starting the Synthesis Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Logic Synthesis Overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Synthesizing Your Design  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

User Interface Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Chapter 2: FPGA Synthesis Design Flows
Logic Synthesis Design Flow  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Chapter 3: Preparing the Input
Setting Up HDL Source Files  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Creating HDL Source Files  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Using the Context Help Editor  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Checking HDL Source Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Editing HDL Source Files with the Built-in Text Editor . . . . . . . . . . . . . . . . . . . . 36
Setting Editing Window Preferences  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Using an External Text Editor  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Using Library Extensions for Verilog Library Files . . . . . . . . . . . . . . . . . . . . . . . 42

Using Mixed Language Source Files  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Using the Structural Verilog Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Structural Verilog Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Working with Constraint Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
When to Use Constraint Files over Source Code  . . . . . . . . . . . . . . . . . . . . . . . 52
Tcl Syntax Guidelines for Constraint Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Checking Constraint Files  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54



LO

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
6 Synopsys Confidential Information January 2020

Chapter 4: Setting Up a Logic Synthesis Project
Setting Up Project Files  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Creating a Project File  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Opening an Existing Project File  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Making Changes to a Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Setting Project View Display Preferences  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Updating Verilog Include Paths in Older Project Files  . . . . . . . . . . . . . . . . . . . . 64

Managing Project File Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Creating Custom Folders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Manipulating Custom Project Folders  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Manipulating Custom Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Setting Up Implementations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Working with Multiple Implementations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Setting Logic Synthesis Implementation Options  . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Setting Device Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Setting Optimization Options  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Specifying Global Frequency and Constraint Files  . . . . . . . . . . . . . . . . . . . . . . 79
Specifying Result Options  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Specifying Timing Report Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Setting Verilog and VHDL Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Specifying Attributes and Directives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Specifying Attributes and Directives in VHDL  . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Specifying Attributes and Directives in Verilog . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Specifying Attributes Using the SCOPE Editor  . . . . . . . . . . . . . . . . . . . . . . . . . 92
Specifying Attributes in the Constraints File . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Handling Properties with Attributes or Directives . . . . . . . . . . . . . . . . . . . . . . . . 96

Searching Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Identifying the Files to Search  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Filtering the Files to Search  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Initiating the Search  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Search Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Archiving Files and Projects  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Archive a Project  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Un-Archive a Project  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Copy a Project  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Support for Hierarchical Include Paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

Chapter 5: Specifying Constraints
Using the SCOPE Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114



Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 7

Creating Constraints in the SCOPE Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Creating Constraints With the FDC Template Command  . . . . . . . . . . . . . . . . 118

Specifying SCOPE Constraints  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Entering and Editing SCOPE Constraints  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Setting Clock and Path Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Defining Input and Output Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Specifying Standard I/O Pad Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
Using the TCL View of SCOPE GUI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
Guidelines for Entering and Editing Constraints . . . . . . . . . . . . . . . . . . . . . . . . 129

Specifying Timing Exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
Defining From/To/Through Points for Timing Exceptions . . . . . . . . . . . . . . . . . 132
Defining Multi-cycle Paths  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
Defining False Paths  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

Finding Objects with Tcl find and expand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
Specifying Search Patterns for Tcl find  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
Refining Tcl Find Results with -filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
Using the Tcl Find Command to Define Collections . . . . . . . . . . . . . . . . . . . . . 142
Using the Tcl expand Command to Define Collections  . . . . . . . . . . . . . . . . . . 143
Checking Tcl find and expand Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
Using Tcl find and expand in Batch Mode  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

Using Collections  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
Comparison of Methods for Defining Collections . . . . . . . . . . . . . . . . . . . . . . . 147
Creating and Using SCOPE Collections  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
Creating Collections Using Tcl Commands  . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
Viewing and Manipulating Collections with Tcl Commands . . . . . . . . . . . . . . . 154

Converting SDC to FDC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

Using the SCOPE Editor (Legacy)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
Entering and Editing SCOPE Constraints (Legacy) . . . . . . . . . . . . . . . . . . . . . 163
Specifying SCOPE Timing Constraints (Legacy) . . . . . . . . . . . . . . . . . . . . . . . 164
Entering Default Constraints  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
Setting Clock and Path Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
Defining Clocks  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
Defining Input and Output Constraints (Legacy)  . . . . . . . . . . . . . . . . . . . . . . . 175
Defining False Paths (Legacy) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
Using a Text Editor for Constraint Files (Legacy) . . . . . . . . . . . . . . . . . . . . . . . 178

Chapter 6: Synthesizing and Analyzing the Results
Synthesizing Your Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

Running Logic Synthesis  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180



LO

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
8 Synopsys Confidential Information January 2020

Using Up-to-date Checking for Job Management  . . . . . . . . . . . . . . . . . . . . . . 180

Checking Log File Results  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
Viewing and Working with the Log File  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
Accessing Specific Reports Quickly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
Accessing Results Remotely  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
Analyzing Results Using the Log File Reports . . . . . . . . . . . . . . . . . . . . . . . . . 194
Using the Watch Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
Checking Resource Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
Querying Metrics for a Design  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

Handling Messages  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
Checking Results in the Message Viewer  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
Filtering Messages in the Message Viewer  . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
Filtering Messages from the Command Line  . . . . . . . . . . . . . . . . . . . . . . . . . . 204
Automating Message Filtering with a Tcl Script . . . . . . . . . . . . . . . . . . . . . . . . 205
Log File Message Controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
Working with Downgradable Errors and Critical Warnings . . . . . . . . . . . . . . . . 210

Using Continue on Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
Using Continue on Error for Compile Point Synthesis  . . . . . . . . . . . . . . . . . . . 213

Chapter 7: Analyzing with HDL Analyst
Working in the Schematic   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

Opening the Views . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
Cloning Schematics  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
Viewing Object Properties  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
Viewing Objects with Constant Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
Viewing Objects in a Source File  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
Selecting Objects in the Schematic  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
Grouping Objects in the Schematic  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
Moving Between Views in a Schematic Window  . . . . . . . . . . . . . . . . . . . . . . . 235
Setting Schematic Preferences  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

Exploring Design Hierarchy  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
Traversing Design Hierarchy with the Hierarchy Browser  . . . . . . . . . . . . . . . . 239
Exploring Object Hierarchy with Push/Pop Commands . . . . . . . . . . . . . . . . . . 242

Finding Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
Browsing to Find Objects in HDL Analyst Views  . . . . . . . . . . . . . . . . . . . . . . . 247
Using Wildcards with the Find Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

Crossprobing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
Crossprobing within a View  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
Crossprobing from an HDL Analyst View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259



Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 9

Crossprobing to the Source Code  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
Crossprobing from the Text Editor Window  . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
Crossprobing from the Log File  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

Analyzing With the HDL Analyst Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
Viewing Design Hierarchy and Context  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
Filtering Schematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
Expanding Pin and Net Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
Dissolving and Partial Dissolving of Buses and Pins . . . . . . . . . . . . . . . . . . . . 279
Dissolving of Ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
Flattening Schematic Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
Using the FSM Viewer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285

Working in the Standard Schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
Differentiating Between the HDL Analyst Views . . . . . . . . . . . . . . . . . . . . . . . . 290
Opening the Views . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
Viewing Object Properties  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
Selecting Objects in the RTL/Technology Views  . . . . . . . . . . . . . . . . . . . . . . . 296
Working with Multisheet Schematics  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
Moving Between Views in a Schematic Window  . . . . . . . . . . . . . . . . . . . . . . . 299
Setting Schematic Preferences  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300
Managing Windows  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301

Exploring Design Hierarchy (Standard)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
Traversing Design Hierarchy with the Hierarchy Browser  . . . . . . . . . . . . . . . . 303
Exploring Object Hierarchy by Pushing/Popping  . . . . . . . . . . . . . . . . . . . . . . . 304
Exploring Object Hierarchy of Transparent Instances  . . . . . . . . . . . . . . . . . . . 309

Finding Objects (Standard) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
Browsing to Find Objects in HDL Analyst Views  . . . . . . . . . . . . . . . . . . . . . . . 311
Using Find for Hierarchical and Restricted Searches . . . . . . . . . . . . . . . . . . . . 313
Using Wildcards with the Find Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316
Combining Find with Filtering to Refine Searches . . . . . . . . . . . . . . . . . . . . . . 320
Using Find to Search the Output Netlist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321

Crossprobing (Standard)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324
Crossprobing within an RTL/Technology View . . . . . . . . . . . . . . . . . . . . . . . . . 324
Crossprobing from the RTL/Technology View  . . . . . . . . . . . . . . . . . . . . . . . . . 325
Crossprobing from the Text Editor Window  . . . . . . . . . . . . . . . . . . . . . . . . . . . 327
Crossprobing from the Tcl Script Window  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330
Crossprobing from the FSM Viewer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331

Analyzing With the Standard HDL Analyst Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . 332
Viewing Design Hierarchy and Context  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333
Filtering Schematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336
Expanding Pin and Net Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338



LO

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
10 Synopsys Confidential Information January 2020

Expanding and Viewing Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342
Flattening Schematic Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343
Minimizing Memory Usage While Analyzing Designs . . . . . . . . . . . . . . . . . . . . 348

Using the FSM Viewer (Standard)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348

Chapter 8: Analyzing Timing
Analyzing Timing in Schematic Views  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356

Viewing Timing Information  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356
Annotating Timing Information in the Schematic Views . . . . . . . . . . . . . . . . . . 357
Analyzing Clock Trees in the RTL View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359
Viewing Critical Paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359
Handling Negative Slack  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362

Generating Custom Timing Reports with STA  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363

Using Analysis Design Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366
Scenarios for Using Analysis Design Constraints  . . . . . . . . . . . . . . . . . . . . . . 367
Creating an ADC File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368
Using Object Names Correctly in the adc File  . . . . . . . . . . . . . . . . . . . . . . . . . 372

Using Auto Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373
Results of Auto Constraints  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375

Chapter 9: Inferring High-Level Objects
Defining Black Boxes for Synthesis  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378

Instantiating Black Boxes and I/Os in Verilog . . . . . . . . . . . . . . . . . . . . . . . . . . 378
Instantiating Black Boxes and I/Os in VHDL  . . . . . . . . . . . . . . . . . . . . . . . . . . 380
Adding Black Box Timing Constraints  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382
Adding Other Black Box Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386

Defining State Machines for Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387
Defining State Machines in Verilog  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387
Defining State Machines in VHDL  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388
Specifying FSMs with Attributes and Directives . . . . . . . . . . . . . . . . . . . . . . . . 389

Initializing RAMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391
Initializing RAMs in Verilog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391
Initializing RAMs in VHDL  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392

Chapter 10: Specifying Design-Level Optimizations
Tips for Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398

General Optimization Tips  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398
Optimizing for Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399



Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 11

Optimizing for Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400

Retiming  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402
Controlling Retiming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402
Retiming Example  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404
Retiming Report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405
How Retiming Works  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 406

Preserving Objects from Being Optimized Away  . . . . . . . . . . . . . . . . . . . . . . . . . . 409
Using syn_keep for Preservation or Replication  . . . . . . . . . . . . . . . . . . . . . . . 410
Controlling Hierarchy Flattening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413
Preserving Hierarchy  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413

Optimizing Fanout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415
Setting Fanout Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415
Controlling Buffering and Replication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417

Sharing Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419
Inserting I/Os  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 420

Optimizing State Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421
Deciding when to Optimize State Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . 421
Running the FSM Compiler  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423
Running the FSM Explorer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426

Inserting Probes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429
Specifying Probes in the Source Code  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429
Adding Probe Attributes Interactively . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 430

Chapter 11: Working with Compile Points
Compile Point Basics  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434

Advantages of Compile Point Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434
Manual Compile Points  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 436
Nested Compile Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 437
Compile Point Types  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439

Compile Point Synthesis Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443
Compile Point Constraint Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443
Interface Logic Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 446
Interface Timing for Compile Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 446
Compile Point Synthesis  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449
Incremental Compile Point Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451
Forward-annotation of Compile Point Timing Constraints  . . . . . . . . . . . . . . . . 452

Synthesizing Compile Points  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 452
The Manual Compile Point Flow  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453



LO

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
12 Synopsys Confidential Information January 2020

Creating a Top-Level Constraints File for Compile Points . . . . . . . . . . . . . . . . 455
Defining Manual Compile Points  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 456
Setting Constraints at the Compile Point Level  . . . . . . . . . . . . . . . . . . . . . . . . 459
Analyzing Compile Point Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 461

Using Compile Points with Other Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 464
Combining Compile Points with Multiprocessing  . . . . . . . . . . . . . . . . . . . . . . . 464

Resynthesizing Incrementally . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 465
Resynthesizing Compile Points Incrementally . . . . . . . . . . . . . . . . . . . . . . . . . 465

Chapter 12: Working with IP Input
The Synopsys FPGA IP Encryption Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 470

Overview of the Synopsys FPGA IP Encryption Flow  . . . . . . . . . . . . . . . . . . . 470
Encryption and Decryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 471
Preparing and Encrypting IP  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 476
Preparing the IP Package  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 477

Working with IEEE 1735 Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 481
Encrypting IP Using IEEE 1735-2014  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 482
Including IEEE 1735-Encrypted IP in a Synthesis Flow . . . . . . . . . . . . . . . . . . 486

Encrypting IP Using OpenIP (encryptIP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 487
Encrypting IP with the OpenIP Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 487

Working with Synenc-encrypted IP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 491

Using Hyper Source  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493
Using Hyper Source for Prototyping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493
Using Hyper Source for IP Designs  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493
Threading Signals Through the Design Hierarchy of an IP  . . . . . . . . . . . . . . . 494

Chapter 13: Optimizing Processes for Productivity
Using Batch Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500

Running Batch Mode on a Project File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500
Running Batch Mode with a Tcl Script . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 501
Queuing Licenses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 502

Working with Tcl Scripts and Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 506
Using Tcl Commands and Scripts  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 506
Generating a Job Script  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 507
Setting Number of Parallel Jobs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 507
Creating a Tcl Synthesis Script  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 508
Using Tcl Variables to Try Different Clock Frequencies . . . . . . . . . . . . . . . . . . 510
Using Tcl Variables to Try Several Target Technologies . . . . . . . . . . . . . . . . . 512



Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 13

Running Bottom-up Synthesis with a Script . . . . . . . . . . . . . . . . . . . . . . . . . . . 513

Automating Flows with synhooks.tcl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 514
synhooks File Syntax  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 516

Invoking Third-Party Vendor Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 519
Configuring Tool Tags  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 519
Invoking a Third-Party Tool  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 520

Chapter 14: Improving Runtime
Multiprocessing With Compile Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 524

Setting Maximum Parallel Jobs  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 524
Specifying Licenses for Multiprocessing  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 525

Chapter 15: Handling High-Reliability Designs
Working with Microsemi Radhard Designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 528

Specifying syn_radhardlevel in the Source Code . . . . . . . . . . . . . . . . . . . . . . . 529

Specifying Safe FSMs  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 531
Implementing Safe Encoding FSMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 531
Implementing Safe Case FSMs  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 532
 Specifying ECC for RAMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 536

Error Monitoring for High Reliability Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 538
Error Monitoring Procedure  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 538
Error Monitoring Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 539

Chapter 16: Running Post-Synthesis Operations
Running P&R Automatically after Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 542

Integrating Synthesis and Place and Route in One Run  . . . . . . . . . . . . . . . . . 542
Running Place and Route Using a Custom Script  . . . . . . . . . . . . . . . . . . . . . . 542
Releasing the Synthesis License During Place and Route  . . . . . . . . . . . . . . . 543

Working with the Identify Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 545
Launching from the Tool  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 545
Handling Problems with Launching Identify . . . . . . . . . . . . . . . . . . . . . . . . . . . 550
Using the Identify Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 551
Using Compile Points with the Identify Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . 552

Simulating with the VCS Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 554



LO

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
14 Synopsys Confidential Information January 2020



Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 15

C H A P T E R  1

Introduction

This document provides an overview of the Synopsys® FPGA synthesis tool.

• Synopsys FPGA and Prototyping Products, on page 16

• Starting the Synthesis Tool, on page 19

• Logic Synthesis Overview, on page 21

• User Interface Overview, on page 26



LO

Chapter 1: Introduction Synopsys FPGA and Prototyping Products

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
16 Synopsys Confidential Information January 2020

Synopsys FPGA and Prototyping Products
The following describe the Synopsys FPGA and Prototyping family of 
products.

FPGA Implementation Tools
The Synplify Pro and Synplify Premier products are synthesis tools especially 
designed for FPGAs (field programmable gate arrays) and CPLDs (complex 
programmable logic devices). 

Synplify Pro Synthesis Software
The Synplify Pro FPGA synthesis software is the de facto industry standard 
for producing high-performance, cost-effective FPGA designs. Its unique 
Behavior Extracting Synthesis Technology® (B.E.S.T.) algorithms, perform 
high-level optimizations before synthesizing the HDL code into specific FPGA 
logic. This approach allows for superior optimizations across the FPGA, fast 
runtimes, and the ability to handle very large designs. The Synplify Pro 
software supports the latest VHDL and Verilog language constructs including 
SystemVerilog and VHDL 2008. The tool is technology independent allowing 
quick and easy retargeting between FPGA devices and vendors from a single 
design project.

Synplify Premier Synthesis Software
The Synplify Premier functionality is a superset of the Synplify Pro tool, 
providing the ultimate FPGA implementation and debug environment. It 
includes a comprehensive suite of tools and technologies for advanced FPGA 
designers, and also serves as the synthesis engine for ASIC prototypers 
targeting single FPGA-based prototypes. 

The Synplify Premier product offers both FPGA designers and ASIC proto-
typers targeting single FPGAs with the most efficient method of design imple-
mentation and debug. On the design implementation side, it includes 
functionality for timing closure, logic verification, IP usage, ASIC compati-
bility, and DSP implementation, as well as a tight integration with FPGA 
vendor back-end tools. On the debug side, it provides for in-system verifi-
cation of FPGAs which dramatically accelerates the debug process, and also 
includes a rapid and incremental method for finding elusive design problems. 



Synopsys FPGA and Prototyping Products Chapter 1: Introduction

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 17

The Synplify Premier product offers FPGA designers and ASIC prototypers, 
targeting single FPGA-based prototypes, with the most efficient method of 
design implementation and debug. The Synplify Premier software provides 
in-system verification of FPGAs, dramatically accelerates the debug process, 
and provides a rapid and incremental method for finding elusive design 
problems. Features exclusively supported in the Synplify Premier tool are the 
following:

• Design Planning (Optional)

• DesignWare Support

• Distributed Processing

• Unified Power Format (UPF)

Identify Tool Set
The Identify® tool set allows you to debug an operating FPGA directly in the 
HDL source code. The Identify software is used to verify your design in 
hardware as you would in simulation, however much faster and with 
in-system stimulus. Designers and verification engineers are able to navigate 
the design graphically and debug signals directly in HDL with which they are 
familiar, as probes or sample triggers. After synthesis, results are viewed 
embedded in the HDL source code or in a waveform. Design iterations are 
rapidly performed using incremental place and route. Identify software is 
closely integrated with synthesis and routing tools to create a seamless devel-
opment environment.

Synphony Model Compiler
Synphony Model Compiler is a language and model-based high-level 
synthesis technology that provides an efficient path from algorithm concept 
to silicon. Designers can construct high-level algorithm models from math 
languages and IP model libraries, then use the Synphony Model Compiler 
engine to synthesize optimized HDL implementations for FPGA and ASIC 
architectural exploration and rapid prototyping. In addition, Synphony Model 
Compiler generates high performance C-models for system validation and 
early software development in virtual platforms. Key features for this product 
include:

• MATLAB Language Synthesis

• Automated Fixed-point Conversion Tools



LO

Chapter 1: Introduction Synopsys FPGA and Prototyping Products

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
18 Synopsys Confidential Information January 2020

• Synthesizable Fixed-point High Level IP Model Library

• High Level Synthesis Optimizations and Transformations

• Integrated FPGA and ASIC Design Flows

• HDL Testbench Generation

• C-model Generation for Software Development and System Validation

Rapid Prototyping
The Certify® and Identify products are tightly integrated with the HAPS and 
ChipIT® hardware tools.

Certify Product
The Certify software is the leading implementation and partitioning tool for 
ASIC designers using FPGA-based prototypes to verify their designs. The tool 
provides a quick and easy method for partitioning large ASIC designs into 
multi-FPGA prototyping boards. Powerful features allow the tool to adapt 
easily to existing device flows, therefore, speeding up the verification process 
and helping with the time-to-market challenges. Key features include the 
following:

• Graphical User Interface (GUI) Flow Guide

• Manual Partitioning

• Synopsys Design Constraints Support for Timing Management

• Multi-core Parallel Processing Support for Faster Runtimes

• Support for Most Current FPGA Devices

• Industry Standard Synplify Premier Synthesis Support

• Compatible with HAPS Boards Including HSTDM



Starting the Synthesis Tool Chapter 1: Introduction

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 19

Starting the Synthesis Tool
Before you can start the synthesis tool, you must install it and set up the 
software license appropriately. You can then start the tool interactively or in 
batch mode. How you start the tool depends on your environment. For 
details, see the installation instructions for the tool.

Starting the Synthesis Tool in Interactive Mode
You can start interactive use of the synthesis tool in any of the following 
ways:

• To start the synthesis tool from the Microsoft® Windows® operating 
system, choose 

– Start->Synopsys->Synplify Pro version

• To start the tool from a DOS command line, specify the executable:

– installDirectory\bin\synplify_pro.exe

The executable name is the name of the product followed by an exe file 
extension.

• To start the synthesis tool from a Linux platform, type the appropriate 
command at the system prompt:

– synplify_pro
For information about using the synthesis tool in batch mode, see Starting 
the Tool in Batch Mode, on page 19.

Starting the Tool in Batch Mode
The command to start the synthesis tool from the command line includes a 
number of command line options. These options control tool action on 
startup and, in many cases, can be combined on the same command line. To 
start the synthesis tool, use the following syntax:

toolName [-option ... ] [projectFile]

In the syntax statement, toolName is the specified synthesis tool: 

• synplify_pro



LO

Chapter 1: Introduction Starting the Synthesis Tool

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
20 Synopsys Confidential Information January 2020

For complete syntax details, refer to synplify, synplify_pro, synplify_premier, 
synplify_premier_dp, on page 205 in the Command Reference.



Logic Synthesis Overview Chapter 1: Introduction

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 21

Logic Synthesis Overview
When you run the synthesis tool, it performs logic synthesis. This consists of 
two stages: 

• Logic compilation (HDL language synthesis) and optimization

• Technology mapping 

Logic Compilation 
The synthesis tool first compiles input HDL source code, which describes the 
design at a high level of abstraction, to known structural elements. Next, it 
optimizes the design in two phases, making it as small as possible to improve 
circuit performance. These optimizations are technology independent. The 
final result is an srs database, which can be graphically represented in the 
schematic view. 



LO

Chapter 1: Introduction Logic Synthesis Overview

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
22 Synopsys Confidential Information January 2020

The following figure summarizes the stages of the standard compiler flow:

You can also run the compiler incrementally. 

Technology Mapping
During this stage, the tool optimizes the logic for the target technology, by 
mapping it to technology-specific components. It uses architecture-specific 
techniques to perform additional optimizations. Finally, it generates a design 
netlist for placement and routing.



Logic Synthesis Overview Chapter 1: Introduction

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 23

Synthesizing Your Design
The synthesis tool accepts high-level designs written in industry-standard 
hardware description languages (Verilog and VHDL) and uses Behavior 
Extracting Synthesis Technology® (BEST) algorithms to keep the design at 
a high level of abstraction for better optimization. See BEST Algorithms, on 
page 24.

The tool can also write VHDL and Verilog netlists after synthesis, which you 
can simulate to verify functionality.

You perform the following actions to synthesize your design. 

1. Access your design project: open an existing project or create a new one. 
See Projects and Implementations, on page 25.

2. Specify the input source files to use. Right-click the project name in the 
Project view, then choose Add Source Files. 

– Select the desired Verilog, VHDL, or IP files, then click OK. (See the 
examples in the directory installation_dir/examples, where installation_dir 
is the directory where the product is installed.) 

– You can also add source files in the Project view by dragging and 
dropping them there from a Windows® Explorer folder (Microsoft® 
Windows® operating system only). 

– Top-level file: The last file compiled is the top-level file. You can 
designate a new top-level file by moving the desired file to the bottom 
of the source files list in the Project view, or by using the Implementation 
Options dialog box. 

3. Add design constraints. Use the SCOPE spreadsheet to assign 
system-level and circuit-path timing constraints that can be 
forward-annotated.

See SCOPE Tabs, on page 102, for details on the SCOPE spreadsheet.

4. Choose Project->Implementation Options, then define the following:

– Target architecture and technology specifications

– Optimization options and design constraints

– Outputs

For an initial run, use the default options settings for the technology, 
and no timing goal (Frequency = 0 MHz). 



LO

Chapter 1: Introduction Logic Synthesis Overview

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
24 Synopsys Confidential Information January 2020

5. Synthesize the design by clicking the Run button. 

This step performs logic synthesis. While synthesizing, the synthesis 
tool displays the status (Compiling... or Mapping...). You can monitor 
messages by checking the log file (View->View Log File) or in the Tcl 
window (View->Tcl Window). The log file contains reports with information 
on timing, usage, and net buffering.

If synthesis is successful, you see the message Done! or Done (warnings). If 
processing stops because of syntax errors or other design problems, you 
see the message Errors! displayed, along with the error status in the log 
file of the Tcl window. If the tool displays Done (warnings), there might be 
potential design problems to investigate.

6. After synthesis, do one of the following:

– If there were no synthesis warnings or error messages (Done!), analyze 
your results in the HDL Analyst view. You can then resynthesize with 
different implementation options, or use the synthesis results to 
simulate or place-and-route your design. 

– If there were synthesis warnings (Done (warnings)) or error messages 
(Errors!), check them in the log file. From the log file, you can jump to 
the corresponding source code or display information on the specific 
error or warning. Correct all errors and any relevant warnings and 
then rerun synthesis. 

BEST Algorithms
The Behavior Extracting Synthesis Technology (BEST) feature is the under-
lying proprietary technology that the synthesis tool uses to extract and imple-
ment your design structures. 

During synthesis, the BEST algorithms recognize high-level abstract struc-
tures like RAMs, ROMs, finite state machines (FSMs), and arithmetic opera-
tors, and maintain them, instead of converting the design entirely to the gate 
level. The BEST algorithms automatically map these high-level structures to 
technology-specific resources using module generators. For example, the 
algorithms map RAMs to target-specific RAMs, and adders to carry chains. 
The BEST algorithms also optimize hierarchy automatically.



Logic Synthesis Overview Chapter 1: Introduction

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 25

Projects and Implementations
Projects and implementations are available for the synthesis tool.

Projects contain information about the synthesis run, including the names of 
design files, constraint files (if used), and other options you have set. A project 
file (prj) is in Tcl format. It points to all the files you need for synthesis and 
contains the necessary optimization settings. In the Project view, a project 
appears as a folder.

An implementation is one version (also called a revision) of a project, run with 
certain parameter or option settings. You can synthesize again, with a 
different set of options, to get a different implementation. In the Project view, 
an implementation is shown in the folder of its project; the active implemen-
tation is highlighted. You can display multiple implementations in the same 
Project view. The output files generated for the active implementation are 
displayed in the Implementation Results view on the right. 

A Place and Route implementation, located in the project implementation 
hierarchy, is created automatically for supported technologies. To view the 
P&R implementation, select the plus sign to expand the project implementa-
tion hierarchy. To add, remove, or set options, right-click on the P&R imple-
mentation. You can create multiple P&R implementations for each project 
implementation. Select a P&R implementation to activate it.



LO

Chapter 1: Introduction User Interface Overview

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
26 Synopsys Confidential Information January 2020

User Interface Overview
The graphical user interface (GUI) consists of a main window, called the 
Project view, and specialized windows or views for different tasks. For details 
about each of the features, see Chapter 2, User Interface Overview of the 
Synopsys FPGA Synthesis Reference Manual. 

Synplify Pro Standard Interface
Button Panel Toolbars Project view Status Implementation Results view

Tabs to access 
views

Watch WindowTcl Script/Messages Window



Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 27

C H A P T E R  2

FPGA Synthesis Design Flows

This chapter describes the Logic Synthesis Design Flow, on page 28.



LO

Chapter 2: FPGA Synthesis Design Flows Logic Synthesis Design Flow

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
28 Synopsys Confidential Information January 2020

Logic Synthesis Design Flow
The Synopsys FPGA tool synthesize logic by first compiling the source code 
into technology-independent logic structures, and then optimizing and 
mapping the logic to technology-specific resources. After logic synthesis, the 
tool generates a vendor-specific netlist and constraint file that you can use as 
inputs to the place-and-route (P&R) tool. 

The following figure shows the phases and the tools used for logic synthesis 
and some of the major inputs and outputs. The interactive timing analysis 
step that is shown in gray is optional. Although the flow shows the vendor 
constraint files as direct inputs to the P&R tool, you should add these files to 
the synthesis project for timing black boxes.

Logic Synthesis Procedure
The following steps summarize the procedure for synthesizing the design, 
which is also illustrated in the figure that follows. 

1. Create a project. 

2. Add the source files to the project. 

3. Set attributes and constraints for the design. 

Place & Route 

Vendor Tool

RTL Compilation

Logic Synthesis

RTL

FDC

Synthesis constraints

Synopsys FPGA Tool

Vendor constraints

Synthesized netlist



Logic Synthesis Design Flow Chapter 2: FPGA Synthesis Design Flows

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 29

4. Set options for the implementation in the Implementation Options dialog 
box. 

5. Click Run to run logic synthesis.

6. Analyze the results, using tools like the log file, the HDL Analyst 
schematic views, the Message window and the Watch Window. 

After you have completed the design, you can use the output files to run 
place-and-route with the vendor tool and implement the FPGA.

The following figure lists the main steps in the flow:

 Add Source Files

Set Constraints

Run the Software

Create Project

Analyze Results

Place and Route

Set Options

Goals Met?
Yes

No



LO

Chapter 2: FPGA Synthesis Design Flows Logic Synthesis Design Flow

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
30 Synopsys Confidential Information January 2020



Chapter 3: Preparing the Input

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 31

C H A P T E R  3

Preparing the Input

When you synthesize a design, you need to set up two kinds of files: HDL files 
that describe your design, and project files to manage the design. This 
chapter describes the procedures to set up these files and the project. It 
covers the following:

• Setting Up HDL Source Files, on page 32

• Using Mixed Language Source Files, on page 45

• Using the Structural Verilog Flow, on page 50

• Working with Constraint Files, on page 52



LO

Chapter 3: Preparing the Input Setting Up HDL Source Files

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
32 Synopsys Confidential Information January 2020

Setting Up HDL Source Files
This section describes how to set up your source files; project file setup is 
described in Setting Up Project Files, on page 56. Source files can be in 
Verilog or VHDL. This section discusses the following topics:

• Creating HDL Source Files, on page 32

• Using the Context Help Editor, on page 34

• Checking HDL Source Files, on page 35

• Editing HDL Source Files with the Built-in Text Editor, on page 36

• Setting Editing Window Preferences, on page 39

• Using an External Text Editor, on page 41

• Using Library Extensions for Verilog Library Files, on page 42

Creating HDL Source Files
This section describes how to use the built-in text editor to create source 
files, but does not go into details of what the files contain. If you already have 
source files, you can use the text editor to check the syntax or edit the file 
(see Checking HDL Source Files, on page 35 and Editing HDL Source Files 
with the Built-in Text Editor, on page 36).

You can use Verilog or VHDL for your source files. The files have v (Verilog) or 
vhd (VHDL) file extensions, respectively. You can use Verilog and VHDL files 
in the same design. For information about using a mixture of Verilog and 
VHDL input files, see Using Mixed Language Source Files, on page 45.

1. To create a new source file either click the HDL file icon ( ) or do the 
following:

– Select File->New or press Ctrl-n. 

– In the New dialog box, select the kind of source file you want to create, 
Verilog or VHDL. Note that you can use the Context Help Editor for 
Verilog designs that contain SystemVerilog constructs in the source 
file. For more information, see Using the Context Help Editor, on 
page 34.

If you are using Verilog 2001 format or SystemVerilog, make sure to 
enable the Verilog 2001 or System Verilog option before you run synthesis 



Setting Up HDL Source Files Chapter 3: Preparing the Input

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 33

(Project->Implementation Options->Verilog tab). The default Verilog file 
format for new projects is SystemVerilog.

– Type a name and location for the file and Click OK. A blank editing 
window opens with line numbers on the left. 

2. Type the source information in the window, or cut and paste it. See 
Editing HDL Source Files with the Built-in Text Editor, on page 36 for 
more information on working in the Editing window. 

For the best synthesis results, check the Reference Manual and ensure 
that you are using the available constructs and vendor-specific attri-
butes and directives effectively. 

3. Save the file by selecting File->Save or the Save icon ( ). 

Once you have created a source file, you can check that you have the right 
syntax, as described in Checking HDL Source Files, on page 35. 



LO

Chapter 3: Preparing the Input Setting Up HDL Source Files

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
34 Synopsys Confidential Information January 2020

Using the Context Help Editor
When you create or open a design file, use the Context Help button displayed at 
the bottom of the window to help you code with Verilog/SystemVerilog/VHDL 
constructs in the source file or Tcl constraint commands into your Tcl file. 

To use the Context Help Editor:

1. Click the Context Help button to display this text editor.

2. When you select a construct in the left-side of the window, the online 
help description for the construct is displayed. If the selected construct 
has this feature enabled, the online help topic is displayed on the top of 
the window and a generic code or command template for that construct 
is displayed at the bottom. 

3. The Insert Template button is also enabled. When you click the Insert 
Template button, the code or command shown in the template window is 



Setting Up HDL Source Files Chapter 3: Preparing the Input

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 35

inserted into your file at the location of the cursor. This allows you to 
easily insert the code or command and modify it for the design that you 
are going to synthesize. 

4. If you want to copy only parts of the template, select the code or 
command you want to insert and click Copy. You can then paste it into 
your file. 

Checking HDL Source Files
The software automatically checks your HDL source files when it compiles 
them, but if you want to check your source code before synthesis, use the 
following procedure. There are two kinds of checks you do in the synthesis 
software: syntax and synthesis. 

1. Select the source files you want to check.

– To check all the source files in a project, deselect all files in the 
project list, and make sure that none of the files are open in an active 
window. If you have an active source file, the software only checks the 
active file. 

– To check a single file, open the file with File->Open or double-click the 
file in the Project window. If you have more than one file open and 
want to check only one of them, put your cursor in the appropriate 
file window to make sure that it is the active window. 

2. To check the syntax, select Run->Syntax Check or press Shift+F7. 

The software detects syntax errors such as incorrect keywords and 
punctuation and reports any errors in a separate log file (syntax.log). If 
no errors are detected, a successful syntax check is reported at the 
bottom of this file.

3. To run a synthesis check, select Run->Synthesis Check or press Shift+F8. 

The software detects hardware-related errors such as incorrectly coded 
flip-flops and reports any errors in a separate log file (syntax.log). If there 
are no errors, a successful syntax check is reported at the bottom of this 
file.

4. Review the errors by opening the syntax.log file when prompted and use 
Find to locate the error message (search for @E). Double-click the 5-
character error code or click the message text and push F1 to display 
online error message help.



LO

Chapter 3: Preparing the Input Setting Up HDL Source Files

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
36 Synopsys Confidential Information January 2020

5. Locate the portion of code responsible for the error by double-clicking on 
the message text in the syntax.log file. The Text Editor window opens the 
appropriate source file and highlights the code that caused the error.

6. Repeat steps 4 and 5 until all syntax and synthesis errors are corrected.

Messages can be categorized as errors, warnings, or notes. Review all 
messages and resolve any errors. Warnings are less serious than errors, but 
you must read through and understand them even if you do not resolve all of 
them. Notes are informative and do not need to be resolved.

Editing HDL Source Files with the Built-in Text Editor
The built-in text editor makes it easy to create your HDL source code, view it, 
or edit it when you need to fix errors. If you want to use an external text 
editor, see Using an External Text Editor, on page 41. 

1. Do one of the following to open a source file for viewing or editing:

– To automatically open the first file in the list with errors, press F5. 

– To open a specific file, double-click the file in the Project window or 
use File->Open (Ctrl-o) and specify the source file.

The Text Editor window opens and displays the source file. Lines are 
numbered. Keywords are in blue, and comments in green. String values 
are in red. If you want to change these colors, see Setting Editing 
Window Preferences, on page 39. 

2. To edit a file, type directly in the window.



Setting Up HDL Source Files Chapter 3: Preparing the Input

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 37

This table summarizes common editing operations you might use. You 
can also use the keyboard shortcuts instead of the commands.

3. To cut and paste a section of a PDF document, select the T-shaped Text 
Select icon, highlight the text you need and copy and paste it into your 
file. The Text Select icon lets you select parts of the document. 

4. To create and work with bookmarks in your file, see the following table. 

Bookmarks are a convenient way to navigate long files or to jump to 
points in the code that you refer to often. You can use the icons in the 

To... Do...

Cut, copy, and paste; 
undo, or redo an action

Select the command from the popup (hold down 
the right mouse button) or Edit menu.

Go to a specific line Press Ctrl-g or select Edit->Go To, type the line 
number, and click OK. 

Find text Press Ctrl-f or select Edit ->Find. Type the text you 
want to find, and click OK.

Replace text Press Ctrl-h or select Edit->Replace. Type the text you 
want to find, and the text you want to replace it 
with. Click OK.

Complete a keyword Type enough characters to uniquely identify the 
keyword, and press Esc.

Indent text to the right Select the block, and press Tab.

Indent text to the left Select the block, and press Shift-Tab.

Change to upper case Select the text, and then select Edit->Advanced
->Uppercase or press Ctrl-Shift-u.

Change to lower case Select the text, and then select Edit->Advanced
->Lowercase or press Ctrl-u.

Add block comments Put the cursor at the beginning of the comment 
text, and select Edit->Advanced->Comment Code or 
press Alt-c. 

Edit columns Press Alt, and use the left mouse button to select 
the column. On some platforms, you have to use 
the key to which the Alt functionality is mapped, 
like the Meta or diamond key. 



LO

Chapter 3: Preparing the Input Setting Up HDL Source Files

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
38 Synopsys Confidential Information January 2020

Edit toolbar for these operations. If you cannot see the Edit toolbar on the 
far right of your window, resize some of the other toolbars. 

5. To fix errors or review warnings in the source code, do the following:

– Open the HDL file with the error or warning by double-clicking the file 
in the project list. 

– Press F5 to go to the first error, warning, or note in the file. At the 
bottom of the Editing window, you see the message text.

– To go to the next error, warning, or note, select Run->Next Error/Warning 
or press F5. If there are no more messages in the file, you see the 
message “No More Errors/Warnings/Notes” at the bottom of the 
Editing window. Select Run->Next Error/Warning or press F5 to go to the 
the error, warning, or note in the next file.

– To navigate back to a previous error, warning, or note, select
Run->Previous Error/Warning or press Shift-F5. 

To... Do...

Insert a 
bookmark

Click anywhere in the line you want to bookmark. 
Select Edit->Toggle Bookmarks, press Ctrl-F2, or select the 
first icon in the Edit toolbar.
The line number is highlighted to indicate that there is a 
bookmark at the beginning of that line.

Delete a 
bookmark

Click anywhere in the line with the bookmark. 
Select Edit->Toggle Bookmarks, press Ctrl-F2, or select the 
first icon in the Edit toolbar.
The line number is no longer highlighted after the 
bookmark is deleted.

Delete all 
bookmarks

Select Edit->Delete all Bookmarks, press Ctrl-Shift-F2, or select 
the last icon in the Edit toolbar.
The line numbers are no longer highlighted after the 
bookmarks are deleted.

Navigate a file 
using 
bookmarks

Use the Next Bookmark (F2) and Previous Bookmark (Shift-F2) 
commands from the Edit menu or the corresponding icons 
from the Edit toolbar to navigate to the bookmark 
you want.



Setting Up HDL Source Files Chapter 3: Preparing the Input

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 39

6. To bring up error message help for a full description of the error, 
warning, or note:

– Open the text-format log file (click View Log) and either double click on 
the 5-character error code or click on the message text and press F1.

– Open the HTML log file and click on the 5-character error code.

– In the Tcl window, click the Messages tab and click on the 5-character 
error code in the ID column.

7. To crossprobe from the source code window to other views, open the 
view and select the piece of code. See Crossprobing from the Text Editor 
Window, on page 327 for details. 

8. When you have fixed all the errors, select File->Save or click the Save icon 
to save the file. 

Setting Editing Window Preferences
You can customize the fonts and colors used in a Text Editing window. 

1. Select Options->Editor Options and either Synopsys Editor or External Editor. For 
more information about the external editor, see Using an External Text 
Editor, on page 41.

2. Then depending on the type of file you open, you can to set the 
background, syntax coloring, and font preferences to use with the text 
editor. 

Note: Thereafter, text editing preferences you set for this file will apply 
to all files of this file type.

The Text Editing window can be used to set preferences for project files, 
source files (Verilog/VHDL), log files, Tcl files, constraint files, or other 
default files from the Editor Options dialog box.

3. You can set syntax colors for some common syntax options, such as 
keywords, strings, and comments. For example in the log file, warnings 
and errors can be color-coded for easy recognition.

Click in the Foreground or Background field for the corresponding object in 
the Syntax Coloring field to display the color palette.



LO

Chapter 3: Preparing the Input Setting Up HDL Source Files

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
40 Synopsys Confidential Information January 2020

You can select basic colors or define custom colors and add them to 
your custom color palette. To select your desired color click OK.

4. To set font and font size for the text editor, use the pull-down menus.

5. Check Keep Tabs to enable tab settings, then set the tab spacing using 
the up or down arrow for Tab Size.

6. Click OK on the Editor Options form. 



Setting Up HDL Source Files Chapter 3: Preparing the Input

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 41

Using an External Text Editor
You can use an external text editor like vi or emacs instead of the built-in text 
editor. Do the following to enable an external text editor. For information 
about using the built-in text editor, see Editing HDL Source Files with the 
Built-in Text Editor, on page 36. 

1. Select Options->Editor Options and turn on the External Editor option. 

2. Select the external editor, using the method appropriate to your 
operating system. 

– If you are working on a Windows platform, click the ...(Browse) button 
and select the external text editor executable.

– From a UNIX or Linux platform for a text editor that creates its own 
window, click the ... Browse button and select the external text editor 
executable. 

– From a UNIX platform for a text editor that does not create its own 
window, do not use the ... Browse button. Instead type xterm -e 
editor. The following figure shows VI specified as the external editor.

– From a Linux platform, for a text editor that does not create its own 
window, do not use the ... Browse button. Instead, type gnome-
terminal -x editor. To use emacs for example, type gnome-terminal 
-x emacs. 



LO

Chapter 3: Preparing the Input Setting Up HDL Source Files

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
42 Synopsys Confidential Information January 2020

The software has been tested with the emacs and vi text editors. 

3. Click OK. 

Using Library Extensions for Verilog Library Files
Library extensions can be added to Verilog library files included in your 
design for the project. When you provide search paths to the directories that 
contain the Verilog library files, you can specify these new library extensions 
as well as the Verilog and SystemVerilog (.v and .sv) file extensions.

To do this:

1. Select the Verilog tab of the Implementation Options panel.

2. Specify the locations of the Library Directories for the Verilog library files to 
be included in your design for the project.

3. Specify the Library Extensions.

Any library extensions can be specified, such as .av, .bv, .cv, .xxx, .va, 
.vas (separate library extensions with a space).

The following figure shows you where to enter the library extensions on 
the dialog box.



Setting Up HDL Source Files Chapter 3: Preparing the Input

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 43

The Tcl equivalent for this example is the following command: 

set_option -libext .av .bv .cv .dv .ev 
For details, see set_option, on page 112 in the Command Reference.

4. After you compile the design, you can verify in the log file that the library 
files with these extensions were loaded and read. For example:

@N: Running Verilog Compiler in SystemVerilog mode
@I::”C:\dir\top.v"
@N: CG1180 :"C:\dir\top.v":8:0:8:3|Loading file 
C:\dir\lib1\sub1.av from specified library directory 
C:\dir\lib1
@I::"C:\dir\lib1\sub1.av"
@N: CG1180 :"C:\dir\top.v":10:0:10:3|Loading file 
C:\dir\lib2\sub2.bv from specified library directory 
C:\dir\lib2
@I::"C:\dir\lib2\sub2.bv"
@N: CG1180 :"C:\dir\top.v":12:0:12:3|Loading file 



LO

Chapter 3: Preparing the Input Setting Up HDL Source Files

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
44 Synopsys Confidential Information January 2020

C:\dir\lib3\sub3.cv from specified library directory 
C:\dir\lib3
@I::"C:\dir\lib3\sub3.cv"
@N: CG1180 :"C:\dir\top.v":14:0:14:3|Loading file 
C:\dir\lib4\sub4.dv from specified library directory 
C:\dir\lib4
@I::"C:\dir\lib4\sub4.dv"
@N: CG1180 :"C:\dir\top.v":16:0:16:3|Loading file 
C:\dir\lib5\sub5.ev from specified library directory 
C:\dir\lib5
@I::"C:\dir\lib5\sub5.ev"
Verilog syntax check successful!



Using Mixed Language Source Files Chapter 3: Preparing the Input

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 45

Using Mixed Language Source Files
With the synthesis software, you can use a mixture of VHDL and Verilog 
input files in your project. For examples of the VHDL and Verilog files, see the 
Reference Manual.

1. Remember that Verilog does not support unconstrained VHDL ports and 
set up the mixed language design files accordingly.

2. If you want to organize the Verilog and VHDL files in different folders, 
select Options->Project View Options and toggle on the View Project Files in 
Folders option. 

When you add the files to the project, the Verilog and VHDL files are in 
separate folders in the Project view.

3. When you open a project or create a new one, add the Verilog and VHDL 
files as follows:

– Select the Project->Add Source File command or click the Add File button.

– On the form, set Files of Type to HDL Files (*.vhd, *.vhdl, *.v).

– Select the Verilog and VHDL files you want and add them to your 
project. Click OK. For details about adding files to a project, see 
Making Changes to a Project, on page 60. 



LO

Chapter 3: Preparing the Input Using Mixed Language Source Files

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
46 Synopsys Confidential Information January 2020

The files you added are displayed in the Project view. This figure shows 
the files arranged in separate folders. 

4. When you set device options (Implementation Options button), specify the 
top-level module. For more information about setting device options, see 
Setting Logic Synthesis Implementation Options, on page 75. 

– If the top-level module is Verilog, click the Verilog tab and type the 
name of the top-level module.

– If the top-level module is VHDL, click the VHDL tab and type the name 
of the top-level entity. If the top-level module is not located in the 
default work library, you must specify the library where the compiler 
can find the module. For information on how to do this, see VHDL 
Panel, on page 354.



Using Mixed Language Source Files Chapter 3: Preparing the Input

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 47

You must explicitly specify the top-level module, because it is the 
starting point from which the mapper generates a merged netlist. 

5. Select the Implementation Results tab on the same form and select one 
output HDL format for the output files generated by the software. For 
more information about setting device options, see Setting Logic 
Synthesis Implementation Options, on page 75. 

– For a Verilog output netlist, select Write Verilog Netlist.
– For a VHDL output netlist, select Write VHDL Netlist. 

– Set any other device options and click OK. 

You can now synthesize your design. The software reads in the mixed 
formats of the source files and generates a single srs file that is used for 
synthesis. 

6. If you run into problems, see Troubleshooting Mixed Language Designs, 
on page 48 for additional information and tips. 



LO

Chapter 3: Preparing the Input Using Mixed Language Source Files

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
48 Synopsys Confidential Information January 2020

Troubleshooting Mixed Language Designs
This section provides tips on handling specific situations that might come up 
with mixed language designs. 

VHDL File Order
Correct file order is important, especially for VHDL files. 

• Make sure the files are ordered correctly. To re-order files from the UI, 
drag files to their correct locations in the order. Alternatively, use the 
add_file command in the project file to add the input files in the correct 
sequence. See Ordering Input Files, on page 111 for details about the 
order sequence for Verilog and VHDL.

• In the Project view, check that the last file in the Project view is the top-
level source file. Alternatively, you can specify the top-level file when you 
set the device options.

An example of correct file order for a design that consists of one top module 
(top.v) and two sub module files (module1.v and module2.v):

add_file -verilog -lib work module1.v
add_file -verilog -lib work module2.v
add_file -verilog -lib work top.v

For more information about the file order, see Ordering Input Files, on 
page 111.

VHDL Global Signals
Currently, you cannot have VHDL global signals in mixed language designs, 
because the tool only implements these signals in VHDL-only designs. 

Passing VHDL Boolean Generics to Verilog Parameters
The tool infers a black box for a VHDL component with Boolean generics, if 
that component is instantiated in a Verilog design. This is because Verilog 
does not recognize Boolean data types, so the Boolean value must be repre-
sented correctly. If the value of the VHDL Boolean generic is TRUE and the 
Verilog literal is represented by a 1, the Verilog compiler interprets this as a 
black box. 



Using Mixed Language Source Files Chapter 3: Preparing the Input

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 49

To avoid inferring a black box, the Verilog literal for the VHDL Boolean 
generic set to TRUE must be 1’b1, not 1. Similarly, if the VHDL Boolean generic 
is FALSE, the corresponding Verilog literal must be 1’b0, not 0. The following 
example shows how to represent Boolean generics so that they correctly pass 
the VHDL-Verilog boundary, without inferring a black box. 

Passing VHDL Generics Without Inferring a Black Box
In the case where a Verilog component parameter, (for example [0:0] RSR = 
1'b0) does not match the size of the corresponding VHDL component generic 
(RSR : integer := 0), the tool infers a black box. 

You can work around this by removing the bus width notation of [0:0] in the 
Verilog files. You must use a VHDL generic of type integer because the other 
types do not allow for the proper binding of the Verilog component.

VHDL Entity Declaration Verilog Instantiation

Entity abc is
Generic
(
Number_Bits       : integer  := 0;
Divide_Bit        : boolean  := False;

);

abc #(
.Number_Bits (16),
.Divide_Bit (1'b0)

)



LO

Chapter 3: Preparing the Input Using the Structural Verilog Flow

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
50 Synopsys Confidential Information January 2020

Using the Structural Verilog Flow
The synthesis tool accepts structural Verilog files as input for your design 
project. The structural Verilog compiler performs syntax semantic checks 
using its light-weight parser to improve runtime. This compiler does not 
perform complex hardware extractions or RTL optimization operations, so the 
software runs fast compilation of the structural Verilog files. The software can 
read these generated structural Verilog files, if they contain:

• Instantiations of technology primitives 

• Simple assign statements

• Attributes specified in Verilog 2001 and older formats 

• All constructs, except attributes must be specified in Verilog 95 format 

To use structural Verilog input files: 

1. You must specify the structural Verilog files to include in your design. 
To do this, add the file to the project using one of the following methods:

– Project->Add Source File or the Add File button in the Project view

– Tcl command: add_file -structver fileName
This flow can contain only structural Verilog files or mixed HDL files 
(Verilog/VHDL/EDF/SRS) along with structural Verilog netlist files. 
However, Verilog/VHDL/EDF/SRS instances are not supported within a 
structural Verilog module.

2. The structural Verilog files are added to the Structural Verilog folder in the 
Project view. You can also add files to this directory, when you perform 
the following:

– Select the structural Verilog file.

– Right-click and select File Options.
– Choose Structural Verilog from the File Type drop-down menu.



Using the Structural Verilog Flow Chapter 3: Preparing the Input

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 51

3. Run synthesis.

The synthesis tool generates a vm or edf netlist file depending on the 
technology specified. This process is similar to the default synthesis 
flow.

Structural Verilog Limitations
The structural Verilog flow does not support the following:

• RTL instances for any other file types 

• Hierarchical project management (HPM) flows

• Complex assignments

• Compiler-specific modes and switches



LO

Chapter 3: Preparing the Input Working with Constraint Files

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
52 Synopsys Confidential Information January 2020

Working with Constraint Files
Constraint files are text files that are automatically generated by the SCOPE 
interface (see Specifying SCOPE Constraints, on page 210), or which you 
create manually with a text editor. They contain Tcl commands or attributes 
that constrain the synthesis run. Alternatively, you can set constraints in the 
source code, but this is not the preferred method.

This section contains information about

• When to Use Constraint Files over Source Code, on page 52

• Tcl Syntax Guidelines for Constraint Files, on page 53

• Checking Constraint Files, on page 54

When to Use Constraint Files over Source Code
You can add constraints in constraint files (generated by SCOPE interface or 
entered in a text editor) or in the source code. In general, it is better to use 
constraint files, because you do not have to recompile for the constraints to 
take effect. It also makes your source code more portable. See Using the 
SCOPE Editor, on page 114 for more information.

However, if you have black box timing constraints like syn_tco, syn_tpd, and 
syn_tsu, you must enter them as directives in the source code. Unlike attri-
butes, directives can only be added to the source code, not to constraint files. 
See Specifying Attributes and Directives, on page 88 for more information on 
adding directives to source code. 



Working with Constraint Files Chapter 3: Preparing the Input

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 53

Tcl Syntax Guidelines for Constraint Files
This section covers general guidelines for using Tcl for constraint files:

• Tcl is case-sensitive.

• For naming objects: 

– The object name must match the name in the HDL code.

– Enclose instance and port names within curly braces { }. 

– Do not use spaces in names. 

– Use the dot (.) to separate hierarchical names.

– In Verilog modules, use the following syntax for instance, port, and 
net names: 

v:cell [prefix:]object_name

Where cell is the name of the design entity, prefix is a prefix to identify 
objects with the same name, object_name is an instance path with the 
dot (.) separator. The prefix can be any of the following:

– In VHDL modules, use the following syntax for instance, port, and net 
names in VHDL modules: 

v:cell [.view] [prefix:]objectName

Where v: identifies it as a view object, lib is the name of the library, cell 
is the name of the design entity, view is a name for the architecture, 
prefix is a prefix to identify objects with the same name, and objectName 
is an instance path with the dot (.) separator. View is only needed if 
there is more than one architecture for the design. See the table above 
for the prefixes of objects.

Prefix (Lower-case) Object

i: Instance names 

p: Port names (entire port)

b: Bit slice of a port

n: Net names 



LO

Chapter 3: Preparing the Input Working with Constraint Files

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
54 Synopsys Confidential Information January 2020

• Name matching wildcards are * (asterisk matches any number of 
characters) and ? (question mark matches a single character). These 
characters do not match dots used as hierarchy separators. For 
example, the following string identifies all bits of the statereg instance in 
the statemod module:

i:statemod.statereg[*]

Checking Constraint Files
You can check syntax and other pertinent information for your constraint 
files using the Constraint Check command. To generate a constraint report, do 
the following: 

1. Create a constraint file and add it to your project.

2. Select Run->Constraint Check.

This command generates a report that checks the syntax and applica-
bility of the timing constraints in the FPGA synthesis constraint files for 
your project. The report is written to the projectName_cck.rpt file and lists 
the following information:

– Constraints that are not applied 

– Constraints that are valid and applicable to the design

– Wildcard expansion on the constraints

– Constraints on objects that do not exist

For details on this report, see Constraint Checking Report, on page 171 of 
the Reference Manual. 



Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 55

C H A P T E R  4

Setting Up a Logic Synthesis Project

When you synthesize a design with the Synopsys FPGA synthesis tool, you 
must set up a project for your design. The following describe the procedures 
for setting up a project for logic synthesis: 

• Setting Up Project Files, on page 56

• Managing Project File Hierarchy, on page 65

• Setting Up Implementations, on page 72

• Setting Logic Synthesis Implementation Options, on page 75

• Specifying Attributes and Directives, on page 88

• Searching Files, on page 96

• Archiving Files and Projects, on page 100



LO

Chapter 4: Setting Up a Logic Synthesis Project Setting Up Project Files

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
56 Synopsys Confidential Information January 2020

Setting Up Project Files
This section describes the basics of how to set up and manage a project file 
for your design, including the following information:

• Creating a Project File, on page 56

• Opening an Existing Project File, on page 59

• Making Changes to a Project, on page 60

• Setting Project View Display Preferences, on page 61

• Updating Verilog Include Paths in Older Project Files, on page 64

Creating a Project File
You must set up a project file for each project. A project contains the data 
needed for a particular design: the list of source files, the synthesis results 
file, and your device option settings. The following procedure shows you how 
to set up a project file using individual commands.

1. Start by selecting one of the following: File->Build Project, File->Open Project, 
or the P icon. Click New Project. 

The Project window shows a new project. Click the Add File button, press 
Shift F4, or select the Project->Add Source File command. The Add Files to 
Project dialog box opens.

2. Add the source files to the project.

– Make sure the Look in field at the top of the form points to the right 
directory. The files are listed in the box. If you do not see the files, 
check that the Files of Type field is set to display the correct file type. If 
you have mixed input files, follow the procedure described in Using 
Mixed Language Source Files, on page 45. 



Setting Up Project Files Chapter 4: Setting Up a Logic Synthesis Project

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 57

– To add all the files in the directory at once, click the Add All button on 
the right side of the form. To add files individually, click on the file in 
the list and then click the Add button, or double-click the file name. 

You can add all the files in the directory and then remove the ones 
you do not need with the Remove button. 

If you are adding VHDL files, select the appropriate library from the 
the VHDL Library popup menu. The library you select is applied to all 
VHDL files when you click OK in the dialog box. 

Your project window displays a new project file. If you click the plus sign 
next to the project and expand it, you see the following:

– A folder (two folders for mixed language designs) with the source files. 
If your files are not in a folder under the project directory, you can set 
this preference by selecting Options->Project View Options and checking 
the Project Files in Type Folders box. This separates one kind of file from 
another in the Project view by putting them in separate folders. 



LO

Chapter 4: Setting Up a Logic Synthesis Project Setting Up Project Files

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
58 Synopsys Confidential Information January 2020

– The implementation, named rev_1 by default. Implementations are 
revisions of your design within the context of the synthesis software, 
and do not replace external source code control software and 
processes. Multiple implementations let you modify device and 
synthesis options to explore design options. Each implementation 
has its own synthesis and device options and its own project-related 
files.

3. Add any libraries you need, using the method described in the previous 
step to add the Verilog or VHDL library file. 

– For vendor-specific libraries, add the appropriate library file to the 
project. Note that for some families, the libraries are loaded 
automatically and you do not need to explicitly add them to the 
project file. 

To add a third-party VHDL package library, add the appropriate .vhd 
file to the design, as described in step 2. Right click the file in the 
Project view and select File Options, or select Project-> Set VHDL library. 
Specify a library name that is compatible with the simulators. For 
example, MYLIB. Make sure that this package library is before the top-
level design in the list of files in the Project view.

For information about setting Verilog and VHDL file options, see 
Setting Verilog and VHDL Options, on page 83. You can also set these 
file options later, before running synthesis. 

For additional information about using vendor macro libraries and 
black boxes, see Optimizations for Microsemi Designs, on page 387. 

– For generic technology components, you can either add the 
technology-independent Verilog library supplied with the software 
(install_dir/lib/generic_ technology/gtech.v) to your design, or add your 



Setting Up Project Files Chapter 4: Setting Up a Logic Synthesis Project

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 59

own generic component library. Do not use both together as there 
may be conflicts. 

4. Check file order in the Project view. File order is important for all HDL 
files. 

– Make sure the files are ordered correctly. To re-order files from the UI, 
drag files to their correct locations in the order. Alternatively, use the 
add_file command in the project file to add the input files in the correct 
sequence. See Ordering Input Files, on page 63 for details about the 
order sequence for Verilog and VHDL files.

– In the Project view, check that the last file in the Project view is the 
top-level source file. Alternatively, you can specify the top-level file 
when you set the device options.

An example of correct file order for a design that consists of one top 
module (top.v) and two sub module files (module1.v and module2.v):

add_file -verilog -lib work module1.v
add_file -verilog -lib work module2.v
add_file -verilog -lib work top.v

5. Select File->Save, type a name for the project, and click Save. The Project 
window reflects your changes.

6. To close a project file, select the Close Project button or File->Close Project. 

Opening an Existing Project File
There are two ways to open a project file: the Open Project and the generic File
->Open command. 

1. If the project you want to open is one you worked on recently, you can 
select it directly: File->Recent Projects-> projectName.

2. Use one of the following methods to open any project file:



LO

Chapter 4: Setting Up a Logic Synthesis Project Setting Up Project Files

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
60 Synopsys Confidential Information January 2020

The project opens in the Project window. 

Making Changes to a Project
Typically, you add, delete, or replace files.

1. To add source or constraint files to a project, select the Add Files button 
or Project->Add Source File to open the Select Files to Add to Project dialog box. 
See Creating a Project File, on page 56 for details. 

2. To delete a file from a project, click the file in the Project window, and 
press the Delete key.

3. To replace a file in a project, 

– Select the file you want to change in the Project window.

– Click the Change File button, or select Project->Change File.

– In the Source File dialog box that opens, set Look In to the directory 
where the new file is located. The new file must be of the same type as 
the file you want to replace. 

– If you do not see your file listed, select the type of file you need from 
the Files of Type field. 

– Double-click the file. The new file replaces the old one in the project 
list. 

4. To specify how project files are saved in the project, right click on a file 
in the Project view and select File Options. Set the Save File option to either 
Relative to Project or Absolute Path.

Open Project Command File->Open Command

Select File->Open Project, click the 
Open Project button on the left side of 
the Project window, or click the 
P icon. 
To open a recent project, double-
click it from the list of recent 
projects. 
Otherwise, click the Existing Project 
button to open the Open dialog box 
and select the project.

Select File->Open. 
Specify the correct directory in the Look 
In: field. 
Set File of Type to Project Files (*.prj). The 
box lists the project files. 
Double-click the project you want to 
open. 



Setting Up Project Files Chapter 4: Setting Up a Logic Synthesis Project

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 61

5. To check the time stamp on a file, right click a file in the Project view and 
select File Options. Check the time that the file was last modified. Click 
OK. 

Setting Project View Display Preferences
You can customize the organization and display of project files.

1. Select Options->Project View Options.

The Project View Options form opens. 

2. To organize different kinds of input files in separate folders, check View 
Project Files in Folders.

Checking this option creates separate folders in the Project view for 
constraint files and source files.



LO

Chapter 4: Setting Up a Logic Synthesis Project Setting Up Project Files

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
62 Synopsys Confidential Information January 2020

3. Control file display with the following:

– Automatically display all the files, by checking Show Project Library. If 
this is unchecked, the Project view does not display files until you 
click the plus symbol and expand the files in a folder. 

– Check one of the boxes in the Project File Name Display section of the 
form to determine how filenames are displayed. You can display just 
the filename, the relative path, or the absolute path. 

4. To view project files in customized custom folders, check View Project Files 
in Custom Folders. For more information, see Creating Custom Folders, on 
page 65. Type folders are only displayed if there are multiple types in a 
custom folder.

Custom
Folders



Setting Up Project Files Chapter 4: Setting Up a Logic Synthesis Project

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 63

5. To open more than one implementation in the same Project view, check 
Allow Multiple Projects to be Opened. 

6. Control the output file display with the following:

– Check the Show all Files in Results Directory box to display all the output 
files generated after synthesis. 

– Change output file organization by clicking in one of the header bars 
in the Implementation Results view. You can group the files by type 
or sort them according to the date they were last modified. 

7. To view file information, select the file in the Project view, right-click, 
and select File Options. For example, you can check the date a file was 
modified. 

Ordering Input Files
Correct file order is important for all HDL designs, to ensure that the 
packages are compiled quickly. Incorrect file order causes unwanted 
errors/warnings and longer run times. The general rule is to instantiate 
macros or packages that are referenced by other files and list them before the 
files that instantiate them. The top-level file must be last on the list.

Do the following to correctly arrange VHDL files:

• To automatically arrange the VHDL files, select the Run->Arrange VHDL 
option from the menu. Run this command only once.

• To manually arrange the VHDL files, make sure to list the package files 
first because they must be compiled. Then follow this file order for big 
designs spread out over multiple FPGAs: entity file, then the architec-
ture file and lastly the configuration file.

Follow this file order when specifying Verilog files for a design:

Project 2

Project 1



LO

Chapter 4: Setting Up a Logic Synthesis Project Setting Up Project Files

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
64 Synopsys Confidential Information January 2020

• For Verilog designs, list package files first because they are compiled 
before use. After that, list the corresponding HDL files, and list the top-
level source file last.

• For SystemVerilog designs, ensure that package, macro, and component 
files are listed first. Next add the files that instantiate the packages and 
macros. For example: 

– Package1.sv (package file)

– Test.sv (import Package1.sv)

– Top.sv (instantiates Test.sv)

Do the following to arrange files for mixed designs:

• Arrange Verilog/System Verilog files are described above

• Use the Run->Arrange VHDL option from the menu for VHDL files.

Updating Verilog Include Paths in Older Project Files
If you have a project file created with an older version of the software (prior to 
8.1), the Verilog include paths in this file are relative to the results directory or 
the source file with the `include statements. In releases after 8.1, the project 
file `include paths are relative to the project file only. The GUI in the more 
recent releases does not automatically upgrade the older prj files to conform 
to the newer rules. To upgrade and use the old project file, do one of the 
following:

• Manually edit the prj file in a text editor and add the following on the 
line before each set_option -include_path:

    set_option -project_relative_includes 1 
• Start a new project with a newer version of the software and delete the 

old project. This will make the new prj file obey the new rule where 
includes are relative to the prj file. 



Managing Project File Hierarchy Chapter 4: Setting Up a Logic Synthesis Project

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 65

Managing Project File Hierarchy
The following sections describe how you can create and manage customized 
folders and files in the Project view:

• Creating Custom Folders

• Manipulating Custom Project Folders

• Manipulating Custom Files

Creating Custom Folders
You can create logical folders and customize files in various hierarchy group-
ings within your Project view. These folders can be specified with any name or 
hierarchy level. For example, you can arbitrarily match your operating 
system file structure or HDL logic hierarchy. Custom folders are distin-
guished by their blue color.

There are several ways to create custom folders and then add files to them in 
a project. Use one of the following methods:

1. Right-click a project file or another custom folder and select Add Folder 
from the popup menu. Then perform any of the following file operations:

– Right-click a file or files and select Place in Folder. A sub-menu displays 
so that you can either select an existing folder or create a new folder. 



LO

Chapter 4: Setting Up a Logic Synthesis Project Managing Project File Hierarchy

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
66 Synopsys Confidential Information January 2020

Note that you can arbitrarily name the folder, however do not use the 
character (/) because this is a hierarchy separator symbol.

– To rename a folder, right-click on the folder and select Rename from 
the popup menu. The Rename Folder dialog box appears; specify a new 
name.

2. Use the Add Files to Project dialog box to add the entire contents of a folder 
hierarchy, and optionally place files into custom folders corresponding 
to the OS folder hierarchies listed in the dialog box display.

– To do this, select the Add File button in the Project view.

– Select the requested folder(s) such as dsp from the dialog box, then 
click the Add button. This places all the files from the dsp hierarchy 
into the custom folder you just created.



Managing Project File Hierarchy Chapter 4: Setting Up a Logic Synthesis Project

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 67

– To automatically place the files into custom folders corresponding to 
the OS folder hierarchy, check the option called Add Files to Custom 
Folders on the dialog box.

– By default, the custom folder name is the same name as the folder 
containing files or folder to be added to the project. However, you can 
modify how folders are named, by clicking on the Folders Option 
button. The following dialog box is displayed.

To use:

– Only the folder containing files for the folder name, click on Use OS 
Folder Name.

– The path name to the selected folder to determine the level of 
hierarchy reflected for the custom folder path.



LO

Chapter 4: Setting Up a Logic Synthesis Project Managing Project File Hierarchy

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
68 Synopsys Confidential Information January 2020

3. You can drag and drop files and folders from an OS Explorer application 
into the Project view. This feature is available on Windows and Linux 
desktops running KDE. 

– When you drag and drop a file, it is immediately added to the project. 
If no project is open, the software creates a project.

– When you drag and drop a file over a folder, it will be placed in that 
folder. Initially, the Add Files to Project dialog box is displayed asking 
you to confirm the files to be added to the project. You can click OK to 
accept the files. If you want to make changes, you can click the 
Remove All button and specify a new filter or option.

Note: To display custom folders in the Project view, select the
Options->Project View Options menu, then enable/disable the check 
box for View Project Files in Custom Folders on the dialog box.

Manipulating Custom Project Folders
The following procedure describes how you can remove files from folders, 
delete folders, and change the folder hierarchy.

1. To remove a file from a custom folder, either:

– Drag and drop it into another folder or onto the project.

– Highlight the file, right-click and select Remove from Folder from the 
popup menu. 

Do not use the Delete (DEL) key, as this removes the file from the 
project.

2. To delete a custom folder, highlight it then right-click and select Delete 
from the popup menu or press the DEL key. When you delete a folder, 
make one of the following choices:

– Click Yes to delete the folder and the files contained in the folder from 
the project.

– Click No to just delete the folder.



Managing Project File Hierarchy Chapter 4: Setting Up a Logic Synthesis Project

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 69

3. To change the hierarchy of the custom folder:

– Drag and drop the folder within another folder so that it is a sub-
folder or over the project to move it to the top-level.

– To remove the top-level hierarchy of a custom folder, drag and drop 
the desired sub-level of hierarchy over the project. Then delete the 
empty root directory for the folder.

For example, if the existing custom folder directory is:

/Examples/Verilog/HDL 
Suppose you want a single-level HDL hierarchy only, then drag and 
drop RTL over the project. Thereafter, you can delete the 
/Examples/Verilog directory.

Manipulating Custom Files
Additionally, you can perform the following types of custom file operations:

1. To suppress the display of files in the Type folders, right-click in the 
Project view and select Project View Options or select Options->Project View 
Options. Disable the option View Project Files in Type Folders on the dialog 
box. 

2. To display files in alphabetical order instead of project order, check the 
Sort Files button in the Project view control panel. Click the down arrow 
key in the bottom-left corner of the panel to toggle the control panel on 
and off.



LO

Chapter 4: Setting Up a Logic Synthesis Project Managing Project File Hierarchy

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
70 Synopsys Confidential Information January 2020

Control Panel Toggle



Managing Project File Hierarchy Chapter 4: Setting Up a Logic Synthesis Project

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 71

3. To change the order of files in the project:

– Make sure to disable custom folders and sorting files.

– Drag and drop a file to the desired position in the list of files.

4. To change the file type, drag and drop it to the new type folder. The 
software will prompt you for verification.



LO

Chapter 4: Setting Up a Logic Synthesis Project Setting Up Implementations

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
72 Synopsys Confidential Information January 2020

Setting Up Implementations
An implementation is a version of a project, implemented with a specific set of 
constraints and other settings. A project can contain multiple implementa-
tions, each one with its own settings. 

Working with Multiple Implementations
The Synplify Pro tool lets you create multiple implementations of the same 
design and then compare results. This lets you experiment with different 
settings for the same design. Implementations are revisions of your design 
within the context of the synthesis software, and do not replace external 
source code control software and processes.

1. Click the Add Implementation button or select Project->New Implementation 
and set new device options (Device tab), new options (Options tab), or a 
new constraint file (Constraints tab). 

The software creates another implementation in the project view. The 
new implementation has the same name as the previous one, but with a 
different number suffix. The following figure shows two implementa-
tions, rev1 and rev2, with the current (active) implementation highlighted. 

The new implementation uses the same source code files, but different 
device options and constraints. It copies some files from the previous 
implementation: the tlg log file, the srs RTL netlist file, and the 
design_fsm.fdc file generated by FSM Explorer. The software keeps a 
repeatable history of the synthesis runs. 



Setting Up Implementations Chapter 4: Setting Up a Logic Synthesis Project

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 73

2. Run synthesis again with the new settings. 

– To run the current implementation only, click Run.

– To run all the implementations in a project, select Run->Run All 
Implementations. 

You can use multiple implementations to try a different part or experi-
ment with a different frequency. See Setting Logic Synthesis Implemen-
tation Options, on page 75 for information about setting options.

The Project view shows all implementations with the active implementa-
tion highlighted and the corresponding output files generated for the 
active implementation displayed in the Implementation Results view on 
the right; changing the active implementation changes the output file 
display. The Watch window monitors the active implementation. If you 
configure this window to watch all implementations, the new implemen-
tation is automatically updated in the window. 

3. Compare the results. 

– Use the Watch window to compare selected criteria. Make sure to set 
the implementations you want to compare with the Configure Watch 
command. See Using the Watch Window, on page 194 for details. 

– To compare details, compare the log file results. 

4. To rename an implementation, click the right mouse button on the 
implementation name in the project view, select Change Implementation 
Name from the popup menu, and type a new name. 

Note that the current UI overwrites the implementation; releases prior to 
9.0 preserve the implementation to be renamed.

5. To copy an implementation, click the right mouse button on the 
implementation name in the project view, select Copy Implementation from 
the popup menu, and type a new name for the copy.



LO

Chapter 4: Setting Up a Logic Synthesis Project Setting Up Implementations

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
74 Synopsys Confidential Information January 2020

6. To delete an implementation, click the right mouse button on the 
implementation name in the project view, and select Remove 
Implementation from the popup menu. 



Setting Logic Synthesis Implementation Options Chapter 4: Setting Up a Logic Synthesis Project

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 75

Setting Logic Synthesis Implementation Options
You can set global options for your synthesis implementations, some of them 
technology-specific. This section describes how to set global options like 
device, optimization, and file options with the Implementation Options command. 
For information about setting constraints for the implementation, see Speci-
fying Timing Exceptions, on page 132. For information about overriding 
global settings with individual attributes or directives, see Specifying Attri-
butes and Directives, on page 88. 

This section discusses the following topics:

• Setting Device Options, on page 75

• Setting Optimization Options, on page 78

• Specifying Global Frequency and Constraint Files, on page 79

• Specifying Result Options, on page 81

• Specifying Timing Report Output, on page 82

• Setting Verilog and VHDL Options, on page 83

Setting Device Options
Device options are part of the global options you can set for the synthesis 
run. They include the part selection (technology, part and speed grade) and 
implementation options (I/O insertion and fanouts). 

1. Open the Implementation Options form by clicking the Implementation Options 
button or selecting Project->Implementation Options, and click the Device tab 
at the top if it is not already selected.

2. Select the technology, part, package, and speed. Available options vary, 
depending on the technology you choose. 



LO

Chapter 4: Setting Up a Logic Synthesis Project Setting Logic Synthesis Implementation Options

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
76 Synopsys Confidential Information January 2020

3. Set the device mapping options. The options vary, depending on the 
technology you choose. 

– If you are unsure of what an option means, click the option to see a 
description in the box below. For full descriptions of the options, click 
F1 or see the vendor chapter in the Reference Manual. 

– To set an option, type in the value or check the box to enable it. 

For more information about setting fanout limits and retiming, see 
Setting Fanout Limits, on page 415, and Retiming, on page 402, respec-
tively.



Setting Logic Synthesis Implementation Options Chapter 4: Setting Up a Logic Synthesis Project

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 77

4. Set other implementation options as needed (see Setting Logic Synthesis 
Implementation Options, on page 75 for a list of choices). Click OK.

5. Click the Run button to synthesize the design. The software compiles 
and maps the design using the options you set. 

6. To set device options with a script, use the set_option Tcl command. The 
following table contains an alphabetical list of the device options on the 
Device tab mapped to the equivalent Tcl commands. Because the options 
are technology- and family-based, all the options may not apply to your 
design. All commands begin with set_option, followed by the syntax in the 
column as shown. Check the Reference Manual for the most 
comprehensive list of options for your vendor. 

The following table shows typical device options. 

Option Tcl Command (set_option ...)

Annotated Properties for Analyst -run_prop_extract {1|0}
Disable I/O Insertion -disable_io_insertion {1|0}
Disable Sequential Optimizations -no_sequential_opt {1|0}
Fanout Guide -fanout_limit fanout_value
Package -package pkg_name
Part -part part_name
Resolve Mixed Drivers -resolve_multiple_driver {1|0}
Speed -speed_grade speed_grade
Technology -technology keyword
Update Compile Point Timing Data -update_models_cp {0|1}



LO

Chapter 4: Setting Up a Logic Synthesis Project Setting Logic Synthesis Implementation Options

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
78 Synopsys Confidential Information January 2020

Setting Optimization Options
Optimization options are part of the global options you can set for the imple-
mentation. This section tells you how to set options like frequency and global 
optimization options like resource sharing. You can also set some of these 
options with the appropriate buttons on the UI. 

1. Open the Implementation Options form by clicking the Implementation 
Options button or selecting Project->Implementation Options, and click the 
Options tab at the top.

2. Click the optimization options you want, either on the form or in the 
Project view. Your choices vary, depending on the technology. If an 
option is not available for your technology, it is greyed out. Setting the 
option in one place automatically updates it in the other.



Setting Logic Synthesis Implementation Options Chapter 4: Setting Up a Logic Synthesis Project

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 79

For details about using these optimizations refer to the following 
sections:

The equivalent Tcl set_option command options are as follows:

3. Set other implementation options as needed (see Setting Logic Synthesis 
Implementation Options, on page 75 for a list of choices). Click OK.

4. Click the Run button to run synthesis. 

The software compiles and maps the design using the options you set. 

Specifying Global Frequency and Constraint Files
This procedure tells you how to set the global frequency and specify the 
constraint files for the implementation. 

1. To set a global frequency, do one of the following:

– Type a global frequency in the Project view.

– Open the Implementation Options form by clicking the Implementation 
Options button or selecting Project->Implementation Options, and click the 
Constraints tab.

FSM Compiler Optimizing State Machines, on page 585

FSM Explorer Running the FSM Explorer, on page 590
Note: Use the Project->Implementation Options->Options panel 
to determine if this option is supported for the device 
you specify in your tool.

Resource Sharing Sharing Resources, on page 582

Retiming Retiming, on page 564 

Option set_option Tcl Command Option

FSM Compiler -symbolic_fsm_compiler {1|0}
FSM Explorer -use_fsm_explorer {1|0}
Resource Sharing -resource_sharing {1|0}
Retiming -retiming {1|0}



LO

Chapter 4: Setting Up a Logic Synthesis Project Setting Logic Synthesis Implementation Options

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
80 Synopsys Confidential Information January 2020

The equivalent Tcl set_option command is -frequency frequencyValue. 

You can override the global frequency with local constraints, as 
described in Specifying Timing Exceptions, on page 132. In the Synplify 
Pro tool, you can automatically generate clock constraints for your 
design instead of setting a global frequency. See Using Auto Constraints, 
on page 373 for details. 

2. To specify constraint files for an implementation, do one of the following: 

– Select Project->Implementation Options->Constraints. Check the constraint 
files you want to use in the project.

– From the Implementation Options->Constraints panel, you can also click to 
add a constraint file.

Project View

Global Frequency and Constraints

Implementation Options->Constraints



Setting Logic Synthesis Implementation Options Chapter 4: Setting Up a Logic Synthesis Project

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 81

– With the implementation you want to use selected, click Add File in the 
Project view, and add the constraint files you need. 

To create constraint files, see Specifying SCOPE Constraints, on 
page 121. 

3. To remove constraint files from an implementation, do one of the 
following: 

– Select Project->Implementation Options->Constraints. Click off the checkbox 
next to the file name.

– In the Project view, right-click the constraint file to be removed and 
select Remove from Project. 

This removes the constraint file from the implementation, but does not 
delete it.

4. Set other implementation options as needed (see Setting Logic Synthesis 
Implementation Options, on page 75 for a list of choices). Click OK.

When you synthesize the design, the software compiles and maps the 
design using the options you set. 

Specifying Result Options
This section shows you how to specify criteria for the output of the synthesis 
run. 

1. Open the Implementation Options form by clicking the Implementation Options 
button or selecting Project->Implementation Options, and click the 
Implementation Results tab at the top.



LO

Chapter 4: Setting Up a Logic Synthesis Project Setting Logic Synthesis Implementation Options

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
82 Synopsys Confidential Information January 2020

2. Specify the output files you want to generate. 

– To generate mapped netlist files, click Write Mapped Verilog Netlist or Write 
Mapped VHDL Netlist.

– To generate a vendor-specific constraint file for forward annotation, 
click Write Vendor Constraint File. 

3. Set the directory to which you want to write the results. 

4. Set the format for the output file. The equivalent Tcl command for 
scripting is project -result_format format.

You might also want to set attributes to control name-mapping. For 
details, refer to the appropriate vendor chapter in the Reference Manual. 

5. Set other implementation options as needed (see Setting Logic Synthesis 
Implementation Options, on page 75 for a list of choices). Click OK.

When you synthesize the design, the software compiles and maps the 
design using the options you set. 

Specifying Timing Report Output
You can determine how much is reported in the timing report by setting the 
following options. 



Setting Logic Synthesis Implementation Options Chapter 4: Setting Up a Logic Synthesis Project

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 83

1. Selecting Project->Implementation Options, and click the Timing Report tab.

2. Set the number of critical paths you want the software to report.

3. Specify the number of start and end points you want to see reported in 
the critical path sections.

4. Set other implementation options as needed (see Setting Logic Synthesis 
Implementation Options, on page 75 for a list of choices). Click OK.

When you synthesize the design, the software compiles and maps the 
design using the options you set. 

Setting Verilog and VHDL Options
When you set up the Verilog and VHDL source files in your project, you can 
also specify certain compiler options. 

Setting Verilog File Options
You set Verilog file options by selecting either Project->Implementation Options-> 
Verilog, or Options->Configure Verilog Compiler. 



LO

Chapter 4: Setting Up a Logic Synthesis Project Setting Logic Synthesis Implementation Options

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
84 Synopsys Confidential Information January 2020

1. Specify the Verilog format to use.

– To set the compiler globally for all the files in the project, select 
Project->Implementation Options->Verilog. If you are using Verilog 2001 or 
SystemVerilog, check the Reference Manual for supported constructs. 

– To specify the Verilog compiler on a per file basis, select the file in the 
Project view. Right-click and select File Options. Select the appropriate 
compiler. The default Verilog file format for new projects is 
SystemVerilog. 

2. Specify the top-level module if you did not already do this in the Project 
view. 

3. To extract parameters from the source code, do the following:



Setting Logic Synthesis Implementation Options Chapter 4: Setting Up a Logic Synthesis Project

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 85

– Click Extract Parameters.
– To override the default, enter a new value for a parameter. 

The software uses the new value for the current implementation only. 
Note that parameter extraction is not supported for mixed designs.

4. Type in the directive in Compiler Directives, using spaces to separate the 
statements.

You can type in directives you would normally enter with 'ifdef and ‘define 
statements in the code. For example, ABC=30 results in the software 
writing the following statements to the project file:

set_option -hdl_define -set "ABC=30"

5. In the Include Path Order, specify the search paths for the include 
commands for the Verilog files that are in your project. Use the buttons 
in the upper right corner of the box to add, delete, or reorder the paths.



LO

Chapter 4: Setting Up a Logic Synthesis Project Setting Logic Synthesis Implementation Options

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
86 Synopsys Confidential Information January 2020

6. In the Library Directories or Files, specify the path to the directory which 
contains the library files for your project. Use the buttons in the upper 
right corner of the box to add, delete, or reorder the paths or files.

7. Set other implementation options as needed (see Setting Logic Synthesis 
Implementation Options, on page 75 for a list of choices). Click OK.

When you synthesize the design, the software compiles and maps the 
design using the options you set. 

Setting VHDL File Options
You set VHDL file options by selecting either Project->Implementation 
Options->VHDL, or Options->Configure VHDL Compiler.

For VHDL source, you can specify the options described below. 

1. Specify the top-level module if you did not already do this in the Project 
view. If the top-level module is not located in the default work library, you 
must specify the library where the compiler can find the module. For 
information on how to do this, see VHDL Panel, on page 354.



Setting Logic Synthesis Implementation Options Chapter 4: Setting Up a Logic Synthesis Project

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 87

You can also use this option for mixed language designs or when you 
want to specify a module that is not the actual top-level entity for HDL 
Analyst displaying and debugging in the schematic views.

2. For user-defined state machine encoding, do the following:

– Specify the kind of encoding you want to use.

– Disable the FSM compiler.

When you synthesize the design, the software uses the compiler direc-
tives you set here to encode the state machines and does not run the 
FSM compiler, which would override the compiler directives. Alterna-
tively, you can define state machines with the syn_encoding attribute, as 
described in Defining State Machines in VHDL, on page 388. 

3. To extract generics from the source code, do this:

– Click Extract Generic Constants.

– To override the default, enter a new value for a generic. 

The software uses the new value for the current implementation only. 
Note that you cannot extract generics if you have a mixed language 
design. 

4. To push tristates across process/block boundaries, check that Push 
Tristates is enabled. For details, see Push Tristates Option, on page 361 in 
the Reference Manual.



LO

Chapter 4: Setting Up a Logic Synthesis Project Specifying Attributes and Directives

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
88 Synopsys Confidential Information January 2020

5. Determine the interpretation of the synthesis_on and synthesis_off 
directives:

– To make the compiler interpret synthesis_on and synthesis_off directives 
like translate_on/translate_off, enable the Synthesis On/Off Implemented as 
Translate On/Off option. 

– To ignore the synthesis_on and synthesis_off directives, make sure that 
this option is not checked. See translate_off/translate_on, on 
page 138 in the Reference Manual for more information. 

6. Set other implementation options as needed (see Setting Logic Synthesis 
Implementation Options, on page 75 for a list of choices). Click OK.

When you synthesize the design, the software compiles and maps the 
design using the options you set. 

Specifying Attributes and Directives
Attributes and directives are specifications that you assign to design objects 
to control the way your design is analyzed, optimized, and mapped. 

Attributes control mapping optimizations and directives control compiler 
optimizations. Because of this difference, you must specify directives in the 
source code or the compiler directives file. This table describes the methods 
that are available to create attribute and directives specifications: 

It is better to specify attributes in the SCOPE editor or the constraints file, 
because you do not have to recompile the design first. For directives, you 
must compile the design for them to take effect. 

If SCOPE/constraints file and the HDL source code are specified for a design, 
the constraints has the highest priority when there are conflicts. 

Attributes Directives

VHDL Yes Yes

Verilog Yes Yes

SCOPE Editor Yes No

Constraints File Yes No



Specifying Attributes and Directives Chapter 4: Setting Up a Logic Synthesis Project

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 89

For further details, refer to the following:

• Specifying Attributes and Directives in VHDL, on page 90

• Specifying Attributes and Directives in Verilog, on page 91

• Specifying Attributes Using the SCOPE Editor, on page 92

• Specifying Attributes in the Constraints File, on page 95

• Handling Properties with Attributes or Directives, on page 96



LO

Chapter 4: Setting Up a Logic Synthesis Project Specifying Attributes and Directives

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
90 Synopsys Confidential Information January 2020

Specifying Attributes and Directives in VHDL
You can use other methods to add attributes to objects, as listed in Specifying 
Attributes and Directives, on page 88. However, you can specify directives only 
in the source code. There are two ways of defining attributes and directives in 
VHDL: 

• Using the predefined attributes package

• Declaring the attribute each time it is used

For details of VHDL attribute syntax, see VHDL Attribute and Directive 
Syntax, on page 373in the Reference Manual. 

Using the Predefined VHDL Attributes Package
The advantage to using the predefined package is that you avoid redefining 
the attributes and directives each time you include them in source code. The 
disadvantage is that your source code is less portable. The attributes package 
is located in installDirectory/lib/vhd/synattr.vhd. 

1. To use the predefined attributes package included in the software 
library, add these lines to the syntax: 

library synplify;
use synplify.attributes.all;

2. Add the attribute or directive you want after the design unit declaration.

declarations ;
attribute attribute_name of objectName : objectType is value;

For example:

entity simpledff is
port (q: out bit_vector(7 downto 0);

 d : in bit_vector(7 downto 0);
clk : in bit); 

attribute syn_noclockbuf of clk : signal is true;
For details of the syntax conventions, see VHDL Attribute and Directive 
Syntax, on page 373 in the Reference Manual. 

3. Add the source file to the project. 



Specifying Attributes and Directives Chapter 4: Setting Up a Logic Synthesis Project

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 91

Declaring VHDL Attributes and Directives
If you do not use the attributes package, you must redefine the attributes 
each time you include them in source code. 

1. Every time you use an attribute or directive, define it immediately after 
the design unit declarations using the following syntax:

design_unit_declaration;
attribute attributeName  :  dataType;
attribute attributeName of objectName : objectType is value;

For example:

entity simpledff is
port (q: out bit_vector(7 downto 0);

 d : in bit_vector(7 downto 0);
clk : in bit); 

attribute syn_noclockbuf : boolean;
attribute syn_noclockbuf of clk :signal is true;

2. Add the source file to the project. 

Specifying Attributes and Directives in Verilog
You can use other methods to add attributes to objects, as described in Speci-
fying Attributes and Directives, on page 88. However, you can specify direc-
tives only in the source code. 

Verilog does not have predefined synthesis attributes and directives, so you 
must add them as comments. The attribute or directive name is preceded by 
the keyword synthesis. Verilog files are case sensitive, so attributes and direc-
tives must be specified exactly as presented in their syntax descriptions. For 
syntax details, see Verilog Attribute and Directive Syntax, on page 113 in the 
Reference Manual. 

1. To add an attribute or directive in Verilog, use Verilog line or block 
comment (C-style) syntax directly following the design object. Block 
comments must precede the semicolon, if there is one.

Verilog Block Comment Syntax Verilog Line Comment Syntax

/* synthesis attributeName  = value */
/* synthesis directoryName  =  value */

// synthesis attributeName = value
// synthesis directoryName = value



LO

Chapter 4: Setting Up a Logic Synthesis Project Specifying Attributes and Directives

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
92 Synopsys Confidential Information January 2020

For details of the syntax rules, see Verilog Attribute and Directive 
Syntax, on page 113 in the Reference Manual. The following are 
examples:

module fifo(out, in) /* synthesis syn_hier = "hard“ */;
module b_box(out, in); // synthesis syn_black_box

2. To attach multiple attributes or directives to the same object, separate 
the attributes with white spaces, but do not repeat the synthesis keyword. 
Do not use commas. For example:

case state /* synthesis full_case parallel_case */;
3. If multiple registers are defined using a single Verilog reg statement and 

an attribute is applied to them, then the synthesis software only applies 
the last declared register in the reg statement. For example:

reg [5:0] q, q_a, q_b, q_c, q_d /* synthesis syn_preserve=1 */;
The syn_preserve attribute is only applied to q_d. This is the expected 
behavior for the synthesis tools. To apply this attribute to all registers, 
you must use a separate Verilog reg statement for each register and 
apply the attribute.

Specifying Attributes Using the SCOPE Editor
The SCOPE window provides an easy-to-use interface to add any attribute. 
You cannot use it for adding directives, because they must be added to the 
source files. (See Specifying Attributes and Directives in VHDL, on page 90 or 
Specifying Attributes and Directives in Verilog, on page 91). The following 
procedure shows how to add an attribute directly in the SCOPE window.

1. Start with a compiled design and open the SCOPE window. To add the 
attributes to an existing constraint file, open the SCOPE window by 
clicking on the existing file in the Project view. To add the attributes to a 
new file, click the SCOPE icon and click Initialize to open the SCOPE 
window. 

2. Click the Attributes tab at the bottom of the SCOPE window.

You can either select the object first (step 3) or the attribute first (step 4).



Specifying Attributes and Directives Chapter 4: Setting Up a Logic Synthesis Project

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 93

3. To specify the object, do one of the following in the Object column. If you 
already specified the attribute, the Object column lists only valid object 
choices for that attribute.

– Select the type of object in the Object Filter column, and then select an 
object from the list of choices in the Object column. This is the best 
way to ensure that you are specifying an object that is appropriate, 
with the correct syntax. 

– Drag the object to which you want to attach the attribute from the 
RTL or Technology views to the Object column in the SCOPE window. 
For some attributes, dragging and dropping may not select the right 
object. For example, if you want to set syn_hier on a module or entity 
like an and gate, you must set it on the view for that module. The 
object would have this syntax: v:moduleName in Verilog, or 
v:library.moduleName in VHDL, where you can have multiple libraries. 

– Type the name of the object in the Object column. If you do not know 
the name, use the Find command or the Object Filter column. Make 
sure to type the appropriate prefix for the object where it is needed. 
For example, to set an attribute on a view, you must add the v: prefix 
to the module or entity name. For VHDL, you might have to specify 
the library as well as the module name. 

4. If you specified the object first, you can now specify the attribute. The 
list shows only the valid attributes for the type of object you selected. 
Specify the attribute by holding down the mouse button in the Attribute 
column and selecting an attribute from the list. 



LO

Chapter 4: Setting Up a Logic Synthesis Project Specifying Attributes and Directives

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
94 Synopsys Confidential Information January 2020

If you selected the object first, the choices available are determined by 
the selected object and the technology you are using. If you selected the 
attribute first, the available choices are determined by the technology. 

When you select an attribute, the SCOPE window tells you the kind of 
value you must enter for that attribute and provides a brief description 
of the attribute. If you selected the attribute first, make sure to go back 
and specify the object. 

5. Fill out the value. Hold down the mouse button in the Value column, and 
select from the list. You can also type in a value.

6. Save the file.

The software creates a Tcl constraint file composed of define_attribute 
statements for the attributes you specified.

7. Add it to the project, if it is not already in the project. 

– Choose Project -> Implementation Options.

– Go to the Constraints panel and check that the file is selected. If you 
have more than one constraint file, select all those that apply to the 
implementation.



Specifying Attributes and Directives Chapter 4: Setting Up a Logic Synthesis Project

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 95

The software saves the SCOPE information in a Tcl constraint file, using 
define_attribute statements. When you synthesize the design, the software 
reads the constraint file and applies the attributes. 

Specifying Attributes in the Constraints File
When you use the SCOPE window (Specifying Attributes Using the SCOPE 
Editor, on page 92), the attributes are automatically written to a constraint 
file using the Tcl define_attribute syntax. This is the preferred method for 
defining constraints as the syntax is determined for you.

However, the following procedure explains how you can specify attributes 
directly in the constraint file. 

1. Open a file in a text editor.

2. Enter the desired attributes. For example,

define_attribute {objectName} attributeName value 

For commands and syntax, see Summary of Attributes and Directives, on 
page 13 in the Attribute Reference Manual. 



LO

Chapter 4: Setting Up a Logic Synthesis Project Searching Files

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
96 Synopsys Confidential Information January 2020

3. Save the constraints in a file using the FDC file extension.

Handling Properties with Attributes or Directives
Any property added to an object (i.e. net or instance) that is preserved or kept 
during the flow will be annotated in the netlist. Only properties for the syn_* 
attributes/directives are processed by the tool; while all other properties are 
simply annotated in the netlist when the object is available in the flow. 

Examples
Suppose top_property_handling.v contains MyProp=Value, which is associated 
with out and is annotated in the netlist. If you apply the property on the net 
intermediate_net, then the property is not annotated in the netlist since this net 
is not preserved/kept in the flow. 

Using the syn_keep Attribute
The syn_keep attribute helps preserve the specified net. If top_syn_keep.v 
applies syn_keep on the net intermediate_net, then this same net is kept.

Using Properties with the syn_keep Attribute
For this example, top.v applies the syn_keep to the net intermediate_net where 
the MyProp=Value is associated with intermediate_net. In this case, the property 
is annotated in the netlist since syn_keep instructs the tool to preserve/keep 
the net in the flow.

Searching Files
A find-in-files feature is available to perform string searches within a speci-
fied set of files. Advantages to using this feature include:

• Ability to restrict the set of files to be searched to a project or implemen-
tation.

• Ability to crossprobe the search results.



Searching Files Chapter 4: Setting Up a Logic Synthesis Project

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 97

The find-in-files feature uses a dialog box to specify the search pattern, the 
criteria for selecting the files to be searched, and any search options such as 
match case or whole word. The files that meet the criteria are searched for the 
pattern, and a list of the files containing the search pattern are displayed at 
the bottom of the dialog box.

To use the find-in-files feature, open the Find in Files dialog box by selecting 
Edit->Find in Files and enter the search pattern in the Find what field at the top of 
the dialog box.

Identifying the Files to Search
The Find In section at the top of the dialog box identifies the files to be 
searched:

• Project Files – searches the files included in the selected project (use the 
drop-down menu to select the project). By default, the files in the active 
project are searched. The files can reside anywhere on the disk; any 
project ‘include files are also searched.

• Implementation Directory – searches all files in the specified implemen-
tation directory (use the drop-down menu to select the implementation). 
By default, the files in the active implementation are searched. You can 



LO

Chapter 4: Setting Up a Logic Synthesis Project Searching Files

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
98 Synopsys Confidential Information January 2020

search all implementations by selecting <All Implementations> from the 
drop-down menu. If Include sub-folders for directory searches is also selected, 
all files in the implementation directory hierarchy are searched.

• Directory – searches all files in the specified directory (use the browser 
button to select the directory). If Include sub-folders for directory searches is 
also selected, all files in the directory hierarchy are searched.

All of the above selection methods can be applied concurrently when 
searching for a specified pattern.

The Result Window selection is used after any of the above selection methods to 
search the resulting list of files for a subsequent subpattern.

Filtering the Files to Search
A file filter allows the file set to be searched to be further restricted based on 
the matching of patterns entered into the File filter field.

• A pattern without a wildcard or a “.” (period) is interpreted as a filename 
extension. For example, fdc restricts the search to only constraint files.

• Multiple patterns can be specified using a semicolon delimiter. For 
example, v;vhd restricts the files searched to only Verilog and VHDL files.

• Wildcard characters can be used in the pattern to match file names. For 
example, a*.vhd restricts the files searched to VHDL files that begin with 
an “a” character.

• Leaving the File filter field empty searches all files that meet the Find In 
criteria.

• The Match Case, Whole Word, and Regular Expressions search options can be 
used to further restrict searches.

Initiating the Search
After entering the search criteria, click the Find button to initiate the search. 
All matches found are listed in the results area at the bottom of the dialog 
box; the status line just below the Find button reports the number of matches 
found in the indicated number of files and the total number of files searched. 



Searching Files Chapter 4: Setting Up a Logic Synthesis Project

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 99

While the find operation is running, the status line is continually updated 
with how many matches are found in how many files and how many files are 
being searched. 

Search Results
The search results are displayed is the results window at the bottom of the 
dialog box. For each match found, the entire line of the file is the displayed in 
the following format:

fullpath_to_file(lineNumber): matching_line_text

For example, the entry

C:\Designs\leon\dcache.vhd(487): wdata := r.wb.data1; 
indicates that the search pattern (data1) was found on line 487 of the 
dcache.vhd file.

To open the target file at the specified line, double-click on the line in the 
results window.



LO

Chapter 4: Setting Up a Logic Synthesis Project Archiving Files and Projects

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
100 Synopsys Confidential Information January 2020

Archiving Files and Projects
Use the archive utility to archive, extract (unarchive), or copy design projects. 
Archived files are in a proprietary format and saved to a file name using the 
sar extension. The archive utility is available through the Project menu in the 
GUI or using the project command in the Tcl window. 

This document provides a description of how to use the utility. 

• Archive a Project

• Un-Archive a Project

• Copy a Project

Archive a Project
Use the archive utility to store the files for a design project into a single 
archive file in a proprietary format (sar). You can archive an entire project or 
selected files from a project. If you want to create a copy of a project without 
archiving the files, see Copy a Project, on page 106. 

Here are the steps to create an archive: 

1. In the Project view, select Project->Archive Project to bring up the wizard.

The Tcl command equivalent is project -archive. For a complete description 
of the project Tcl command options for archiving, see project, on page 83 
of the Reference Manual. 



Archiving Files and Projects Chapter 4: Setting Up a Logic Synthesis Project

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 101

The archive utility automatically runs a syntax check on the active 
project (Run->Syntax Check command) to ensure that a complete list of 
project files is generated. If you have Verilog 'include files in your project, 
the utility includes the complete list of Verilog files. It also checks the 
syntax automatically for each implementation in the project to ensure 
that the file list is complete for each implementation as well. The wizard 
displays the name of the project to archive, the top-level directory where 
the project file is located (root directory), and other information.

2. Do the following on the first page of the wizard:

– Fill in Destination File with a location for the archive file.

– Set Archive Style. You can archive all the project files with all the 
implementations or selectively archive files and implementations 

– To archive only the active implementation, enable Active Implementation.

– To selectively archive files, enable Customized file list, click Next and use 
the check boxes to include files in or exclude files from the 
archive.Use the Add Extra Files button on this page to include 
additional files in the project. 



LO

Chapter 4: Setting Up a Logic Synthesis Project Archiving Files and Projects

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
102 Synopsys Confidential Information January 2020

3. Click Next.

If you did not select Customized file list, the tool summary displays all the 
files in the archive and shows the full uncompressed file size as shown 
in step 5 (the actual size is smaller after the archiving operation as there 
is no duplication of files). When you select Customized file list, the following 
interim menu is displayed to allow you to exclude specific file from the 
archive.

4. Click next to advance to the next screen (step 3). 

5. Verify that the current archive contains the files that you want, then 
click Archive which creates the project archive sar file. If the list of files is 
incorrect, click Back and include/exclude any desired files.

6. Click Archive if you are finished. The synthesis tool reports the archive 
success and the path location of the archive file. 



Archiving Files and Projects Chapter 4: Setting Up a Logic Synthesis Project

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 103

Un-Archive a Project 
Use this procedure to extract design project files from an archive file (sar). 

1. In the Project view, select Project->Un-Archive Project to display the wizard

The Tcl command equivalent is project -unarchive. For a complete descrip-
tion of the project Tcl command options for archiving, see project, on 
page 83 of the Reference Manual. 

2. In the wizard, enter the following:

– Name of the sar file containing the project files.

– Name of project to extract (un-archive). This field is automatically 
extracted from the sar file and cannot be changed.

– Pathname of directory in which to write the project files (destination.

– Click Next.



LO

Chapter 4: Setting Up a Logic Synthesis Project Archiving Files and Projects

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
104 Synopsys Confidential Information January 2020

3. Make sure all the files that you want to extract are checked and 
references to these files are resolved.

– If there are files in the list that you do not want to include when the 
project is un-archived, uncheck the box next to the file. The un-
checked files will be commented out in the project file (prj) when 
project files are extracted.

– If you need to resolve a file in the project before un-archiving, click 
the Resolve button and fill out the dialog box.

– If you want to replace a file in the project, click the Change button and 
fill out the dialog box. Put the replacement files in the directory you 
specify in Replace directory. You can replace a single file, any 
unresolved files, or all the files. You can also undo the replace 
operation. 



Archiving Files and Projects Chapter 4: Setting Up a Logic Synthesis Project

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 105

4. Click Next and verify that the project files you want are displayed in the 
Un-Archive Summary.

5. If you want to load this project in the UI after files have been extracted, 
enable the Load project into Synplify Pro after un-archiving option. 

6. When the Add extra input path to project file option is enabled, the archive 
utility finds all include files and copies them into a directory called 
extra_input. This directory is added to the unarchived project file. 

The Tcl command equivalent is set_option -include_path "./extra_input/".



LO

Chapter 4: Setting Up a Logic Synthesis Project Archiving Files and Projects

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
106 Synopsys Confidential Information January 2020

If the archive files contain relative or absolute include paths, the 
_SEARCHFILENAMEONLY_ directive can have the compiler remove the 
relative/absolute paths from the 'include and search only for the file 
names. To use the _SEARCHFILENAMEONLY_ directive, all include files 
must have unique names. For details, see __SEARCHFILENAMEON-
LY__, on page 300.

7. Click Un-Archive.

A message dialog box is displayed while the files are being extracted. 

8. If the destination directory already contains project files with the same 
name as the files you are extracting, you are prompted so that the 
existing files can be overwritten by the extracted files.

Copy a Project
Use this utility to create an unarchived copy of a design project. You can copy 
an entire project or just selected files from the project. However, if you want 
to create an archive of the project, where the entire project is stored as a 
single file, see Archive a Project, on page 100. 

Here are the steps to create a copy of a design project:

1. From the Project view, select Project->Copy Project.

The Tcl command equivalent is project -copy. For a complete description of 
the project Tcl command options for archiving, see project, on page 83 of 
the Reference Manual. 

This command automatically runs a syntax check on the active project 
(Run->Syntax Check command) to ensure that a complete list of project 
files is generated. If you have Verilog include files in your project, they 
are included. The utility runs this check for each implementation in the 
project to ensure that the file list is complete for each implementation 



Archiving Files and Projects Chapter 4: Setting Up a Logic Synthesis Project

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 107

and then displays the wizard, which contains the name of the project 
and other information. 

2. Do the following in the wizard:

– Specify the destination directory where you want to copy the files.

– Select the files to copy. You can choose to copy all the project files; 
one or more individual files, input files only, or customize the list to 
be copied. 

– To specify a custom list of files, enable Customized file list. Use the check 
boxes to include or exclude files from the copy. Enable SRS if you 
want to copy all srs files (RTL schematics). You cannot enable the 
Source Files option if you select this. Use the Add Extra Files button to 
include additional files in the project.



LO

Chapter 4: Setting Up a Logic Synthesis Project Archiving Files and Projects

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
108 Synopsys Confidential Information January 2020

– Click Next.



Archiving Files and Projects Chapter 4: Setting Up a Logic Synthesis Project

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 109

3. Do the following:

– Verify the copy information.

– Enter a destination directory. If the directory does not exist it will be 
created.

– Click Copy.

This creates the project copy.

Support for Hierarchical Include Paths
The archive utility can support various forms of include path hierarchies to 
locate files for a project. For example:

• The include path can be relative to the location of the source file.

block_a/
block_a.v -> `include "block_a.h"



LO

Chapter 4: Setting Up a Logic Synthesis Project Archiving Files and Projects

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
110 Synopsys Confidential Information January 2020

• The include path can be a relative path outside of the project.

block_b.v -> `include "../../block_b.h"
The archive utility can determine the absolute path for the file from the 
relative path as shown below:

remote/sbg_pe/tests/feature_flow/include/block_b.h
After unarchiving the project, you can see the directory structure for the 
equivalent absolute path relative to the project.

"./remote/sbg_pe/tests/feature_flow/include/block_b.h"
• The file location can be specified by include_path in the project file.

block_c/
block_c.v -> `include "block_c.h"
Where this file is located in the directory /include1/.

• The include path can be an absolute path outside of the project.

block_d/
block_d.v -> `include "/slowfs/sbg/tests/include2/block_d.h"
When you archive the project, the absolute path becomes a relative 
path. After unarchiving the project, you can see the directory structure 
for the relative path to the project.

"./slowfs/sbg/tests/include2/block_d.h"
• The file location can be specified by include_path in the project file.

top_block/
top_block.v -> `include "top_block.h"
Where the top_block.v file is located in the directory /include2/.

• Any additional search paths specified in the project file are copied and 
included as relative paths to the project.

After you archive and unarchive the project, the relative paths in the original 
project become absolute paths in the new unarchived project. In the project 
file, the set_option -include_path preserves the original search order for the files.



Archiving Files and Projects Chapter 4: Setting Up a Logic Synthesis Project

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 111

Using the __SEARCHFILENAMEONLY__ Compiler Directive
Whenever you have a SAR file that contains relative or absolute include paths 
for the files in the project, you can also use the _SEARCHFILENAMEONLY_ 
directive to have the compiler remove the relative/absolute paths from the 
'include and search only for the file names. Otherwise, you may have problems 
using the archive utility. For details, see __SEARCHFILENAMEONLY__, on 
page 300.



LO

Chapter 4: Setting Up a Logic Synthesis Project Archiving Files and Projects

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
112 Synopsys Confidential Information January 2020



Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 113

C H A P T E R  5

Specifying Constraints

This chapter describes how to specify constraints for your design. It covers 
the following:

• Using the SCOPE Editor, on page 114

• Specifying SCOPE Constraints, on page 121

• Specifying Timing Exceptions, on page 132

• Finding Objects with Tcl find and expand, on page 138

• Using Collections, on page 147

• Converting SDC to FDC, on page 159

• Using the SCOPE Editor (Legacy), on page 161

See Also:

• For an overview about constraints, see Chapter 4, Constraint Guidelines.

• For a description of the SCOPE editor, see Chapter 4, Constraint 
Commands.



LO

Chapter 5: Specifying Constraints Using the SCOPE Editor

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
114 Synopsys Confidential Information January 2020

Using the SCOPE Editor
The SCOPE (Synthesis Constraints OPtimization Environment®) presents a 
spreadsheet-like editor with a number of panels for entering and managing 
timing constraints and synthesis attributes. The SCOPE GUI is good for 
editing most constraints, but there are some constraints (like black box 
constraints) which can only be entered as directives in the source files. The 
SCOPE GUI also includes an advanced text editor that can help you edit 
constraints easily. 

These constraints are saved to the FPGA Design Constraint (FDC) file. The 
FDC file contains Synopsys SDC Standard timing constraints (for example, 
create_clock, set_input_delay, and set_false_path), along with the non-timing 
constraints (design constraints) (for example, define_attribute, define_scope_col-
lection, and define_io_standard). When working with these constraints, use the 
following processes:

• For existing designs, run the sdc2fdc script to translate legacy SDC 
constraints and create a constraint file that contains Synopsys SDC 
standard timing constraints and design constraints. For details about 
this script, see Converting SDC to FDC, on page 159.

• For new designs, use the SCOPE editor. See Creating Constraints in the 
SCOPE Editor, on page 114 for more information.

Creating Constraints in the SCOPE Editor
The following procedure shows you how to use the SCOPE editor to create 
constraints for the FDC constraint file.

1. To create a new constraint file, follow these steps:

– Compile the design (F7).

– Open the SCOPE window by:

Clicking the SCOPE icon in the toolbar ( ). 

This brings up the New Constraint File dialog box.

OR

Pressing Ctrl-n or selecting File -> New. This brings up the New dialog 
box. Specify a new file name.



Using the SCOPE Editor Chapter 5: Specifying Constraints

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 115

2. To open an existing file, do one of the following:

– Double-click the file from the project window.

– Press Ctrl-o or select File->Open. In the dialog box, set the kind of file 
you want to open to Constraint Files (SCOPE) (*.fdc), and double-click to 
select the file from the list. 

An empty SCOPE spreadsheet window opens. The tabs along the bottom 
of the SCOPE window list the different kinds of constraints you can add. 
For each kind of constraint, the columns contain specific data.



LO

Chapter 5: Specifying Constraints Using the SCOPE Editor

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
116 Synopsys Confidential Information January 2020

3. Select if you want to apply the constraint to the top-level or for modules 
from from the Current Design option drop-down menu located at the top of 
the SCOPE editor. 

4. You can enter or edit the following types of constraints:

– Timing constraints—on the Clocks, Generated Clocks, Inputs/Outputs, or 
Delay Paths tab. 

– Design constraints—on the Collections, Attributes, I/O Standards, or 
Compile Points tab. 



Using the SCOPE Editor Chapter 5: Specifying Constraints

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 117

For details about these constraints, see Specifying SCOPE Constraints, 
on page 121.

For information about ways to enter constraints within the SCOPE 
editor, see Guidelines for Entering and Editing Constraints, on 
page 129.

5. The free form constraint editor is located in the TCl View tab, which is the 
last tab in SCOPE. The text editor has a help window on the right-hand 
side. For more information about this text editor, see Using the TCL 
View of SCOPE GUI, on page 126.

6. Click the Check Constraints button to run the constraint checker. The 
output provides information on how the constraints are interpreted by 
the tool.

All constraint information is saved in the same FPGA Design Constraint file 
(FDC) with clearly marked beginning and ending for each section. Do not 
manually modify these pre-defined SCOPE sections. 

The following example shows the contents of an FDC file.



LO

Chapter 5: Specifying Constraints Using the SCOPE Editor

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
118 Synopsys Confidential Information January 2020

Creating Constraints With the FDC Template Command
Use the Tcl command create_fdc_template to create an initial constraint file (fdc) 
for your specific design. This command lets you specify port clocks, I/O 
delays, and initial set_clock_groups for the clocks for which text headers are 
generated that can help guide you when creating this constraint. 



Using the SCOPE Editor Chapter 5: Specifying Constraints

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 119

The following procedure shows you how to create constraints in the FDC 
constraints file with the create_fdc_template command:

1. Create a project for your design.

2. Compile the design.

3. At the command line, for example, you can specify the following:

create_fdc_template -period 10 -out_delay 1.5
The command automatically updates your project to reflect the new 
constraint file(s). Do Ctrl+s to save the new settings.

4. If you open the SCOPE editor, you can check that the clock period and 
output delay values were added to the constraint file as shown in the 
following figure.

5. Each port clock includes a set_clock_groups header with details displayed 
in the TCL View, which can help you determine whether clocks have been 
optimized away or if there are any derived clocks.



LO

Chapter 5: Specifying Constraints Using the SCOPE Editor

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
120 Synopsys Confidential Information January 2020

However, if there is only one clock port and no derived clocks, no explicit 
clock groups are created since they are not needed, as shown below.

For details about the command syntax, see create_fdc_template, on 
page 35.

6. You can continue using the SCOPE editor to create other constraints.

7. Save the constraint file.



Specifying SCOPE Constraints Chapter 5: Specifying Constraints

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 121

Specifying SCOPE Constraints
Timing constraints define the performance goals for a design. The FPGA 
synthesis tool supports a subset of the Synopsys SDC Standard timing 
constraints (for example, create_clock, set_input_delay, and set_false_path). For 
additional support, see Synopsys Standard Timing Constraints, on page 122.

Design constraints let you add attributes, define collections and specify 
constraints for them, and select specific I/O standard pad types for your 
design. 

You can define both timing and design constraints in the SCOPE editor. For 
the different types of constraints, see the following topics:

• Entering and Editing SCOPE Constraints

• Setting Clock and Path Constraints

• Defining Input and Output Constraints

• Specifying Standard I/O Pad Types

To set constraints for timing exceptions like false paths and multicycle paths, 
see Specifying Timing Exceptions, on page 132.

For information about collections, see Using Collections, on page 147.

Entering and Editing SCOPE Constraints
This section contains a description of the timing and design constraints you 
can enter in the SCOPE GUI that are saved to an FDC file. The SCOPE timing 
constraint panels include:

SCOPE Panel See... Tcl Commands

Clocks Clocks create_clock
set_clock_groups
set_clock_latency
set_clock_uncertainty

Generated Clocks Generated Clocks create_generated_clock

Collections Collections define_scope_collection



LO

Chapter 5: Specifying Constraints Specifying SCOPE Constraints

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
122 Synopsys Confidential Information January 2020

Synopsys Standard Timing Constraints
The FPGA synthesis tools support Synopsys standard timing constraints for a 
subset of the clock definition (Clocks and Generated Clocks), I/O delay 
(Inputs/Outputs), and timing exception constraints (Delay Paths). 

Inputs/Outputs Inputs/Outputs set_input_delay
set_output_delay

Delay Paths Delay Paths set_false_path
set_max_delay
set_multicycle_path

Attributes Attributes define_attribute
define_global_attribute

Compile Points Compile Points define_compile_point
define_current_design

TCL View TCL View --

SCOPE Panel See... Tcl Commands



Specifying SCOPE Constraints Chapter 5: Specifying Constraints

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 123

Setting Clock and Path Constraints
The following table summarizes how to set different clock and path 
constraints from the SCOPE window. 

Defining Input and Output Constraints
To define... Pane Do this to set the constraint...

Clocks Clock Select the clock object (Clock).
Specify a clock name (Clock Alias), if required.
Type a period (Period). 
Change the rise and fall edge times for the clock 
waveforms of the clock in nanoseconds, if needed. 
Change the default clock group, if needed
Check the Enabled box. 
See Defining Clocks, on page 168 for information 
about clock attributes. 

Generated 
Clocks

Generated 
Clocks

Select the generated clock object.
Specify the master clock source (a clock source pin in 
the design).
Specify whether to use invert for the generated clock 
signal.
Specify whether to use: edges, divide_by, or multiply_by.
Check the Enabled box. 

Input/output 
delays

Inputs/
Outputs

See Defining Input and Output Constraints (Legacy), 
on page 175 for information about setting I/O 
constraints. 

Maximum 
path delay

Delay Paths Select the Delay Type path of Max Delay.
Select the start/from point for either a port or register 
(From/Through). See Defining From/To/Through Points 
for Timing Exceptions, on page 132 for more 
information. 
Select the end/to point for either an output port or 
register. Specify a through point for a net or 
hierarchical port/pin (To/Through).
Set the delay value (Max Delay).
Check the Enabled box.

Multicycle 
paths

Delay Paths See Defining Multi-cycle Paths, on page 136. 



LO

Chapter 5: Specifying Constraints Specifying SCOPE Constraints

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
124 Synopsys Confidential Information January 2020

In addition to setting I/O delays in the SCOPE window as described in Setting 
Clock and Path Constraints, on page 165, you can also set the Use clock period 
for unconstrained IO option. 

• Open the SCOPE window, click Inputs/Outputs, and select the port (Port). 
You can set the constraint for 

– All inputs and outputs (globally in the top-level netlist)

– For a whole bus

– For single bits

You can specify multiple constraints for the same port. The software 
applies all the constraints; the tightest constraint determines the worst 
slack. If there are multiple constraints from different levels, the most 
specific overrides the more global. For example, if there are two bit 
constraints and two port constraints, the two bit constraints override 
the two port constraints for that bit. The other bits get the two port 
constraints. 

False paths Delay Paths See Defining False Paths, on page 137 for details.

Global 
attributes

Attributes Set Object Type to <global>.
Select the object (Object).
Set the attribute (Attribute) and its value (Value).
Check the Enabled box. 

Attributes Attributes Do either of the following:
• Select the type of object (Object Type).

Select the object (Object).
Set the attribute (Attribute) and its value (Value).
Check the Enabled box. 

• Set the attribute (Attribute) and its value (Value).
Select the object (Object).
Check the Enabled box. 

To define... Pane Do this to set the constraint...



Specifying SCOPE Constraints Chapter 5: Specifying Constraints

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 125

• Specify the constraint value in the SCOPE window: 

– Select the type of delay: input or output (Type).

– Type a delay value (Value).

– Check the Enabled box, and save the constraint file in the project. 

Make sure to specify explicit constraints for each I/O path you want to 
constrain. 

• To determine how the I/O constraints are used during synthesis, do the 
following: 

– Select Project->Implementation Options, and click Constraints. 

– To use only the explicitly defined constraints disable Use clock period for 
unconstrained IO. 

– To synthesize with all the constraints, using the clock period for all 
I/O paths that do not have an explicit constraint enable Use clock 
period for unconstrained IO.

– Synthesize the design. When you forward-annotate the constraints, 
the constraints used for synthesis are forward-annotated for place-
and-route.

• Input or output ports with explicitly defined constraints, but without a 
reference clock (-ref option) are included in the System clock domain and 
are considered to belong to every defined or inferred clock group.

• If you do not meet timing goals after place-and-route and you need to 
adjust the input constraints; do the following:

– Open the SCOPE window with the input constraint. 

– Use the set_clock_route_delay command to translate the -route option for 
the constraint, so that you can specify the actual route delay in 
nanoseconds, as obtained from the place-and-route results. Adding 
this constraint is equivalent to putting a register delay on the input 
register. Use it as a fudge factor to force the synthesis engine to 
accommodate a routing delay that is larger than expected. 

– Resynthesize your design. 



LO

Chapter 5: Specifying Constraints Specifying SCOPE Constraints

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
126 Synopsys Confidential Information January 2020

Specifying Standard I/O Pad Types
You can specify a standard I/O pad type to use in the design. The equivalent 
Tcl command is define_io_standard. 

1. Open the SCOPE window and go to the I/O Standard tab. 

2. In the Port column, select the port. This determines the port type in the 
Type column.

3. Enter an appropriate I/O pad type in the I/O Standard column. The 
Description column shows a description of the I/O standard you selected. 

For details of supported I/O standards, see Industry I/O Standards, on 
page 239. 

4. Where applicable, set other parameters like drive strength, slew rate, 
and termination.

You cannot set these parameter values for industry I/O standards 
whose parameters are defined by the standard. 

The software stores the pad type specification and the parameter values 
in the syn_pad_type attribute. When you synthesize the design, the I/O 
specifications are mapped to the appropriate I/O pads within the 
technology. 

Using the TCL View of SCOPE GUI
The TCL View of the SCOPE GUI is an advanced text file editor used for FPGA 
timing and design constraints. This text editor provides the following capabil-
ities:

• Uses dynamic keyword expansion and tool tips for commands that

– Automatically completes the command from a popup list 

– Displays complete command syntax as a tool tip

– Displays parameter options for the command from a popup list

– Includes a keyword command syntax help



Specifying SCOPE Constraints Chapter 5: Specifying Constraints

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 127

• Checks command syntax and uses color indicators that

– Validates commands and command syntax

– Distinguishes between FPGA design constraints and SCOPE legacy 
constraints

• Allows for standard editor commands, such as copy, paste, 
comment/un-comment a group of lines, and highlighting of keywords

To use the TCL View of the SCOPE GUI:

1. Click on the TCL View of the SCOPE GUI.

2. You can specify FPGA design constraints as follows:

– Type the command; after you type three characters a popup menu 
displays the design constraint command list. Select a command.

– When you type a dash (-), the options popup menu list is displayed. 
Select an option.

– When you hover over a command, a tool tip is displayed for the 
selected commands.



LO

Chapter 5: Specifying Constraints Specifying SCOPE Constraints

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
128 Synopsys Confidential Information January 2020

3. You can also specify a command by using the constraints browser that 
displays a constraints command list and associated syntax.

– Double-click the specified constraint to add the command to the 
editor window.

– Use the constraint syntax window to help you specify the options for 
this command.

– Click the Hide Syntax Help button at the bottom of the editor window to 
close the syntax help browser.



Specifying SCOPE Constraints Chapter 5: Specifying Constraints

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 129

4. When you save this file, the constraint file is added to your project in the 
Constraint directory if the Add to Project option is checked on the New 
dialog box. Thereafter, you can double-click the FDC constraint file to 
open it in the text editor.

Guidelines for Entering and Editing Constraints 
1. Enter or edit constraints as follows: 

– For attribute cells in the spreadsheet, click in the cell and select from 
the pull-down list of available choices. 

– For object cells in the spreadsheet, click in the cell and select from 
the pull-down list. When you select from the list, the objects 
automatically have the proper prefixes in the SCOPE window. 



LO

Chapter 5: Specifying Constraints Specifying SCOPE Constraints

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
130 Synopsys Confidential Information January 2020

Alternatively, you can drag and drop an object from an HDL Analyst 
view into the cell, or type in a name. If you drag a bus, the software 
enters the whole bus (busA). To enter busA[3:0], select the appropriate 
bus bits before you drag and drop them. If you drag and drop or type 
a name, make sure that the object has the proper prefix identifiers:

– For cells with values, type in the value or select from the pull-down 
list. 

– Click the check box in the Enabled column to enable the constraint or 
attribute. 

– Make sure you have entered all the essential information for that 
constraint. Scroll horizontally to check. For example, to set a clock 
constraint in the Clocks tab, you must fill out Enabled, Clock, Period, 
and Clock Group. The other columns are optional. For details about 
setting different kinds of constraints, go to the appropriate section 
listed in Specifying SCOPE Constraints, on page 121. 

2. For common editing operations, refer to this table:

Prefix Identifiers Description for...

v:design_name hierarchies or “views” (modules)

c:clock_name clocks

i:instance_name instances (blocks)

p:port_name ports (off-chip)

t:pin_name hierarchical ports, and pins of instantiated cells

b:name bits of a bus (port)

n:net_name internal nets

To... Do...

Cut, copy, paste, 
undo, or redo

Select the command from the popup (hold down the 
right mouse button to get the popup) or from the 
Edit menu.



Specifying SCOPE Constraints Chapter 5: Specifying Constraints

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 131

3. Edit your constraint file if needed. If your naming conventions do not 
match these defaults, add the appropriate command specifying your 
naming convention to the beginning of the file, as shown in these 
examples: 

Copy the same value 
down a column

Select Fill Down (Ctrl-d) from the Edit or popup menus. 

Insert or delete rows Select Insert Row or Delete Rows from the Edit or 
popup menus. 

Find text Select Find from the Edit or popup menus. Type the text 
you want to find, and click OK.

Default You use Add this to your file

Hierarchy separator A.B Slash: A/B set_hierarchy_separator {/}

Naming bit 5 of bus ABC ABC[5] Underscore bus_naming_style {%s_%d}

Naming row 2 bit 3 of 
array ABC [2x16]

ABC [2] [3] Underscore
ABC[2_3]

bus_dimension_separator_style {_}

To... Do...



LO

Chapter 5: Specifying Constraints Specifying Timing Exceptions

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
132 Synopsys Confidential Information January 2020

Specifying Timing Exceptions
You can specify the following timing exception constraints, either from the 
SCOPE interface or by manually entering the Tcl commands in a file: 

• Multicycle Paths—Paths with multiple clock cycles. 

• False Paths—Clock paths that you want the synthesis tool to ignore 
during timing analysis and assign low (or no) priority during optimiza-
tion. 

• Max Delay Paths—Point-to-point delay constraints for paths. 

The following show you how to specify timing exceptions in the SCOPE GUI. 
For the equivalent Tcl syntax, see Chapter 13, Optimizing Processes for 
Productivity in the Reference Manual. 

• Defining From/To/Through Points for Timing Exceptions, on page 132

• Defining Multi-cycle Paths, on page 136

• Defining False Paths, on page 137

For information about resolving timing exception conflicts, see Conflict 
Resolution for Timing Exceptions, on page 255 in the Reference Manual.

Defining From/To/Through Points for Timing Exceptions
For multi-cycle path, false path, and maximum path delay constraints, you 
must define paths with a combination of From/To/Through points. Whenever the 
tool encounters a conflict in the way timing-exception constraints are written, 
see Conflict Resolution for Timing Exceptions, on page 255 to determine how 
resolution occurs based on the priorities defined.



Specifying Timing Exceptions Chapter 5: Specifying Constraints

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 133

The following guidelines provide details for defining these constraints. You 
must specify at least one From, To, or Through point. 

• In the From field, identify the starting point for the path. The starting 
point can be a clock, input or bidirectional port, or register. Only black 
box output pins are valid. To specify multiple starting points:

– Such as the bits of a bus, enclose them in square brackets: A[15:0] or 
A[*]. 

– Select the first start point from the HDL Analyst view, then drag and 
drop this instance into the From cell in SCOPE. For each subsequent 
instance, press the Shift key as you drag and drop the instance into 
the From cell in SCOPE. For example, valid Tcl command format 
include:

set_multicycle_path -from {i:aq i:bq} 2
set_multicycle_path -from [i:aq i:bq} -through {n:xor_all} 2

• In the To field, identify the ending point for the path. The ending point 
can be a clock, output or bidirectional port, or register. Only black box 
input pins are valid. To specify multiple ending points, such as the bits 
of a bus, enclose them in square brackets: B[15:0].

• A single through point can be a combinational net, hierarchical port or 
instantiated cell pin. To specify a net:

– Click in the Through field and click the arrow. This opens the Product of 
Sums (POS) interface.

– Either type the net name with the n: prefix in the first cell or drag the 
net from an HDL Analyst view into the cell. 

– Click Save. 

For example, if you specify n:net1, the constraint applies to any path 
passing through net1. 

• To specify an OR when constraining a list of through points, you can type 
the net names in the Through field or you can use the POS UI. To do this:

– Click in the Through field and click the arrow. This opens the Product of 
Sums interface. 

– Either type the first net name in a cell in a Prod row or drag the net 
from an HDL Analyst view into the cell. Repeat this step along the 
same row, adding other nets in the Sum columns. The nets in each 
row form an OR list.



LO

Chapter 5: Specifying Constraints Specifying Timing Exceptions

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
134 Synopsys Confidential Information January 2020

– Alternatively, select Along Row in the SCOPE POS interface. In an HDL 
Analyst view, select all the nets you want in the list of through points. 
Drag the selected nets and drop them into the POS interface. The tool 
fills in the net names along the row. The nets in each row form an OR 
list. 

– Click Save. 



Specifying Timing Exceptions Chapter 5: Specifying Constraints

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 135

The constraint works as an OR function and applies to any path passing 
through any of the specified nets. In the example shown in the previous 
figure, the constraint applies to any path that passes through net1 or 
net2. 

• To specify an AND when constraining a list of through points, type the 
names in the Through field or do the following: 

– Open the Product of Sums interface as described previously. 

– Either type the first net name in the first cell in a Sum column or drag 
the net from an HDL Analyst view into the cell. Repeat this step down 
the same Sum column. 

– Alternatively, select Down Column in the SCOPE POS interface. In an 
HDL Analyst view, select all the nets you want in the list of through 
points. Drag the selected nets and drop them into the POS interface. 
The tool fills in the net names down the column. 

The constraint works as an AND function and applies to any path 
passing through all the specified nets. In the previous figure, the 
constraint applies to any path that passes through net1 and net3. 

• To specify an AND/OR constraint for a list of through points, type the 
names in the Through field (see the following figure) or do the following: 

– Create multiple lists as described previously. 

– Click Save. 



LO

Chapter 5: Specifying Constraints Specifying Timing Exceptions

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
136 Synopsys Confidential Information January 2020

In this example, the synthesis tool applies the constraint to the paths 
through all points in the lists as follows:

net1 AND net3 
OR net1 AND net4 
OR net2 AND net3
OR net2 AND net4 

Defining Multi-cycle Paths
To define a multi-cycle path constraint, use the Tcl set_multicycle_path 
command, or select the SCOPE Delay Paths tab and do the following; 

1. From the Delay Type pull-down menu, select Multicycle.

2. Select a port or register in the From or To columns, or a net in the Through 
column. You must set at least one From, To, or Through point. You can use 
a combination of these points. See Defining From/To/Through Points 
for Timing Exceptions, on page 132 for more information. 

3. Select another port or register if needed (From/To/Through). 

4. Type the number of clock cycles or nets (Cycles).

5. Specify the clock period to use for the constraint by going to the Start/End 
column and selecting either Start or End. 

If you do not explicitly specify a clock period, the software uses the end 
clock period. The constraint is now calculated as follows: 

multicycle_distance = clock_distance + (cycles -1) * reference_clock_period

In the equation, clock_distance is the shortest distance between the 
triggering edges of the start and end clocks, cycles is the number of 



Specifying Timing Exceptions Chapter 5: Specifying Constraints

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 137

clock cycles specified, and reference_clock_period is either the specified 
start clock period or the default end clock period. 

6. Check the Enabled box.

Defining False Paths
You define false paths by setting constraints explicitly on the Delay Paths tab 
or implicitly on the Clock tab. See Defining From/To/Through Points for 
Timing Exceptions, on page 132 for object naming and specifying through 
points. 

• To define a false path between ports or registers, select the SCOPE Delay 
Paths tab, and do the following:

– From the Delay Type pull-down menu, select False.

– Use the pull-down to select the port or register from the appropriate 
column (From/To/Through). 

– Check the Enabled box.

The software treats this as an explicit false constraint and assigns it the 
highest priority. Any other constraints on this path are ignored. 

• To define a false path between two clocks, select the SCOPE Clocks tab, 
and assign the clocks to different clock groups:

The software implicitly assumes a false path between clocks in different 
clock groups. This false path constraint can be overridden by a 
maximum path delay constraint, or with an explicit constraint. 

• To set an implicit false path on a path to/from an I/O port, do the 
following: 

– Select Project->Implementation Options->Constraints.
– Disable Use clock period for unconstrained IO.



LO

Chapter 5: Specifying Constraints Finding Objects with Tcl find and expand

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
138 Synopsys Confidential Information January 2020

Finding Objects with Tcl find and expand
The Tcl find and expand commands are powerful search tools that you can use 
to quickly identify the objects you want. The following sections describe how 
to use these commands effectively:

• Specifying Search Patterns for Tcl find, on page 138

• Refining Tcl Find Results with -filter, on page 140

• Using the Tcl Find Command to Define Collections, on page 142

• Using the Tcl expand Command to Define Collections, on page 143

• Checking Tcl find and expand Results, on page 144

• Using Tcl find and expand in Batch Mode, on page 145

Once you have located objects with the find or expand commands, you can 
group them into collections, as described in Using Collections, on page 147, 
and apply constraints to all the objects in the collection at the same time. 

Specifying Search Patterns for Tcl find
The usage tips in the following table apply for Tcl find search patterns, regard-
less of whether you specify the find command in the SCOPE window or as a 
Tcl command. For full details of the command syntax, refer to find, on 
page 31 of the Reference Manual. 



Finding Objects with Tcl find and expand Chapter 5: Specifying Constraints

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 139

Case rules Use the case rules for the language from which the object 
was generated: 
• VHDL: case-insensitive
• Verilog: case-sensitive. Make sure that the object name 

you type in the SCOPE window matches the Verilog 
name.

For mixed language designs, use the case rules for the 
parent module. The top level for this example is VHDL, 
so the following command finds any object in the current 
view that starts with either a or A: 

find {a*} -nocase
Pattern matching You have two pattern-matching choices:

• Specify the -regexp argument, and then use regular 
expressions for pattern matching. 

• Do not specify -regexp, and use only the * and ? 
wildcards for pattern matching. 

For hierarchical instance names that use dots as 
separators, the dots must be escaped with a backward 
slash (\). For example: abc\.d. 

Scope of the search The scope of the search varies, depending on where you 
enter the command. If you enter it in the SCOPE 
environment, the scope of the search is the entire 
database, but if it is entered in the Tcl window, the 
default scope of the search is the current HDL Analyst 
view. See Comparison of Methods for Defining 
Collections, on page 147 for a list of the differences. 
To set the scope to include the hierarchical levels below 
the current view in HDL Analyst, use the -hier argument. 
This example finds all objects below the current view that 
begin with a:

find {a*} -hier



LO

Chapter 5: Specifying Constraints Finding Objects with Tcl find and expand

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
140 Synopsys Confidential Information January 2020

Refining Tcl Find Results with -filter
The -filter option of the find command lets you further refine the objects located 
by the find command, according to their properties. When used with other 
commands, it can be a powerful tool for generating statistics and for evalua-
tion. To filter your find results, follow these steps: 

1. Enable property annotation.

– Select Project->Implementation Options. On the Device tab, enable Annotated 
Properties for Analyst. Alternatively, use the equivalent Tcl command: 
set_option -run_prop_extract 1. 

Restricting search by 
type of object

Use the -object_type argument. The following command 
finds all nets that contain syn:

find -net {*syn*}
Restricting search by 
object property

Use the -filter option, as described in Refining Tcl Find 
Results with -filter, on page 140. 

Extending search 
through the hierarchy 

Use the -flat option. With this option, the * wildcard 
matches hierarchy separators as well as regular 
characters. In the following example, the command finds 
all instances that include fft_stages in their name, 
whether it just matches an instance name 
(inst1_fft_stages_2) or matches a hierarchical name that 
includes the hierarchy separator (a1.fft_stages_xy): 

find -seq -flat *fft_stages* -print



Finding Objects with Tcl find and expand Chapter 5: Specifying Constraints

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 141

– Compile or synthesize the design. After compilation, the tool 
annotates the design with properties that you can specify with the 
-filter option, like clock pins. 

2. Specify the command using the find pattern as usual, and then specify 
the -filter option as the last argument:

find searchPattern -filter expression
find searchPattern -filter !expression

With this command, the tool first finds objects that match the find search-
Pattern, and then further filters the found objects the according to the 
property criteria specified in -filter expression. Use the ! character before 
expression if you want to select objects that do not match the properties 
specified in the filter expression. 

expression can be a property name, specified as @propertyName, or a 
property name and value pair, specified as @propertyName operator value. 

The following example finds registers in the current view that are 
clocked by myclk:

find -seq {*} -filter {@clock==myclk}
For further information about the command, see the following:

For ... See

Tips on using find search 
patterns

Specifying Search Patterns for Tcl find, on 
page 138

find syntax details find, on page 31 in the Reference Manual 

find -filter syntax details find -filter, on page 39in the Reference Manual



LO

Chapter 5: Specifying Constraints Finding Objects with Tcl find and expand

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
142 Synopsys Confidential Information January 2020

Examples of Useful Find -filter Commands

Using the Tcl Find Command to Define Collections
It is recommended that you use the SCOPE window rather than the Tcl 
window described here to specify the find command, for the reasons described 
in Comparison of Methods for Defining Collections, on page 147. 

The Tcl find command returns a collection of objects. If you want to create a 
collection of connectivity-based objects, use the Tcl expand command instead 
of find (Specifying Search Patterns for Tcl find, on page 138). This section lists 
some tips for using the Tcl find command. 

1. Create a collection by typing the set command and assigning the results 
to a variable. The following example finds all instances with a primitive 
type DFF and assigns the collection to the variable $result: 

set result [find -hier -inst {*} -filter @ view == DFF]
The result is a random number like s:49078472, which is the collection of 
objects found. The following table lists some usage tips for specifying the 
find command. For full details of the syntax, refer to find, on page 31 of 
the Reference Manual. 

2. Check your find constraints. See Checking Tcl find and expand Results, 
on page 144. 

To find ... Use a command like this example ...

Instances by slack value set slack [find -hier -inst {*} -filter @slack <= {-1.000}]

Instances with negative slack set negFF [find -hier -inst {*} -filter @slack <= {0.0}]

Instances within a slack range set slackRange [find -hier -inst {*} -filter @slack <=
{-1.000} && @slack >= {+1.000}]

Instances within a particular 
hierarchy

find *fft_stages* -hier -filter  @is_sequential -print

Pins by fanout value set pinResult [find -pin *.CE -hier -filter {@fanout > 15
&& @slack < 0.0} -print]

Sequential elements within a 
clock domain

set clk1FF [find -hier -seq * -filter {@clock==clk1]

Sequential components by 
primitive type 

set fdrse [find -hier -seq {*} -filter @view=={FDRSE}



Finding Objects with Tcl find and expand Chapter 5: Specifying Constraints

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 143

3. Once you have defined the collection, you can view the objects in the 
collection, using one of the following methods, which are described in 
more detail in Viewing and Manipulating Collections with Tcl 
Commands, on page 154:

– Print the collection using the -print option to the find command. 

– Print the collection without carriage returns or properties, using c_list.
– Print the collection in columns, with optional properties, using c_print.

4. To manipulate the objects in the collection, use the commands 
described in Viewing and Manipulating Collections with Tcl Commands, 
on page 154. 

5. Combine the Tcl find command with other commands: 

Using the Tcl expand Command to Define Collections
The Tcl expand command returns a list of objects that are logically connected 
between the specified expansion points. This section contains tips on using 
the Tcl expand command to generate a collection of objects that are related by 
their connectivity. For the syntax details, refer to expand, on page 47 in the 
Command Reference Manual.

1. Specify at least one from, to, or thru point as the starting point for the 
command. You can use any combination of these points. 

The following example expands the cone of logic between reg1 and reg2. 

expand -from {i:reg1} -to {i:reg2}
If you only specify a thru point, the expansion stops at sequential 
elements. The following example finds all elements in the transitive 
fanout and transitive fanin of a clock-enable net:

expand -thru {n:cen}

To ... Combine with ...

Create or copy objects; create collections set 
define_collection 

Generate reports for evaluation c_list 
c_print 

Generate statistics c_info



LO

Chapter 5: Specifying Constraints Finding Objects with Tcl find and expand

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
144 Synopsys Confidential Information January 2020

2. To specify the hierarchical scope of the expansion, use the -hier 
argument. 

If you do not specify this argument, the command only works on the 
current view. The following example expands the cone of logic to reg1, 
including instances below the current level:

expand -hier -to {i:reg1}
If you only specify a thru point, you can use the -level argument to specify 
the number of levels of expansion. The following example finds all 
elements in the transitive fanout and transitive fanin of a clock-enable 
net across one level of hierarchy:

expand -thru {n:cen} -level 1
3. To restrict the search by type of object, use the -object_type argument.

The following command finds all pins driven by the specified pin. 

expand -pin -from {t:i_and3.z}
4. To print a list of the objects found, either use the -print argument to the 

expand command, or use the c_print or c_list commands (see Creating 
Collections Using Tcl Commands, on page 150). 

Checking Tcl find and expand Results
You must check the validity of the find constraints you set. Use the methods 
described below. 

1. Run the Constraints Checker, either from the UI or at the command 
line:

– From the UI, select Run->Constraint Check. 
– At the command line specify the -run constraint_check option to the 

synthesis tool command. For example: synplify_pro -batch design.prj -run 
constraint_check.

– If there are issues, the tool reports them in the design_cck.rpt report 
file. Check the Summary and Inapplicable Constraints sections in this file. 

2. To list objects selected by the find or expand commands, use one of these 
methods: 

– List the results by specifying the -print option to the command. 



Finding Objects with Tcl find and expand Chapter 5: Specifying Constraints

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 145

– List the results with the c_list command. 

– Print out the results one item per line, using the c_print command. 

3. To visually validate the objects selected by the find or expand commands, 
do the following: 

– Run the command and save the results as a collection. 

– On the SCOPE Collections tab, select the collection. 

– Right-click and choose Select in Analyst. The objects in the collection 
are highlighted in the RTL view. The example below shows high 
fanout nets that drive more than 20 destinations.

Using Tcl find and expand in Batch Mode
When you use the Tcl find command in batch mode, you must specify the 
open_design command before the find or expand commands. 



LO

Chapter 5: Specifying Constraints Finding Objects with Tcl find and expand

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
146 Synopsys Confidential Information January 2020

1. Create the Tcl file to be run in batch mode, making sure that the 
open_design command precedes the find/expand commands you want. 

This batch script uses the find command to find DSPs and negative 
slack, and then writes out the results to separate text files:

open_design implementation_a/top.srm
set find_DSPs [find -hier -inst{*} -filter @view == {DSP*}]
set find_negslack [find -hier -seq -inst {*} -filter @slack 

< {-0.0}]
c_print $find_MATH18X18s -file DSPs.txt
c_print -prop slack -prop view $find_negslack -file negslack.txt 
You cannot include the Tcl find command in Timing Analyzer scripts. 
Instead, run Tcl Find to TXT command and use the results. 

2. Run the script at the command line. For example, if the file created in 
step 1 was called analysis.tcl, specify it at the command line, as shown 
below:

synplify_pro -batch analysis.tcl
The tool generates two text files as specified, with the results of the two 
searches. The DSPs.txt file lists the DSPs, and the negslack.txt file lists the 
instances with negative slack. 



Using Collections Chapter 5: Specifying Constraints

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 147

Using Collections
A collection is a defined group of objects. The advantage offered by collections 
is that you can operate on all the objects in the collection at the same time. A 
collection can consist of a single object, multiple objects, or even other collec-
tions. You can either define collections in the SCOPE window or type the 
commands in the Tcl script window. 

• Creating and Using SCOPE Collections, on page 148

• Creating Collections Using Tcl Commands, on page 150

• Viewing and Manipulating Collections with Tcl Commands, on page 154

Comparison of Methods for Defining Collections
The find and expand Tcl commands that are used to define collections in the 
Synplify Pro software can either be entered in the Tcl script window or in the 
SCOPE window. It is recommended that you use the SCOPE interface for 
reasons outlined below:

In the design shown below, if you push down into B, and then type find 
-hier a* in the Tcl window, the command finds a3 and a4. However if you cut 
and paste the same command into the SCOPE Collections tab, your results 
would include a1, a2, a3, and a4, because the SCOPE interface uses the top-
level database and searches the entire hierarchy. 

SCOPE Window Tcl Window

Database 
used

Top level; includes all 
objects. 
See the example below. 

Current Analyst view, which might be a 
lower-level view. If the current view is the 
Technology view after mapping, objects 
might be renamed, replicated, or removed. 

Persistence Collection saved in 
project file.

Collection only valid for the current 
session; you must redefine it the next time 
you open the project. 

Constraints Can apply to collection. Cannot apply to collection.



LO

Chapter 5: Specifying Constraints Using Collections

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
148 Synopsys Confidential Information January 2020

Creating and Using SCOPE Collections
A collection is a defined group of objects. Grouping objects let you operate on 
all the objects in the collection at the same time. A collection can consist of a 
single object, multiple objects, or even other collections. The following proce-
dure shows you how to define collections in the SCOPE window. The SCOPE 
method is preferred over typing the commands in the Tcl window (Creating 
Collections Using Tcl Commands, on page 150) for the reasons described in 
Comparison of Methods for Defining Collections, on page 147. 

1. Define a collection by doing the following:

– Open the SCOPE window and click the Collections tab.

– In the Collection Name column, type a name for the collection. 

– In the Command column, enter the command. See the Command 
Reference for complete syntax details. Additional information about 
specifying search patterns is described in Specifying Search Patterns 
for Tcl find, on page 138.

You can also paste in a command. If you cut and paste a Tcl Find 
command from the Tcl window into the SCOPE Collections tab, 
remember that the SCOPE interface works on the top-level database, 

a2

Top B

a1

a3a4



Using Collections Chapter 5: Specifying Constraints

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 149

while the find command in the Tcl window works on the current level 
displayed in the HDL Analyst view. 

Objects in a collection do not have to be of the same type. The 
collections shown in the preceding figure do the following:

The collections you define appear in the SCOPE pull-down object 
lists, so you can use them to define constraints. 

– To crossprobe the objects selected by the find and expand commands, 
click Select in the Select in Analyst column. The schematic views 
highlight the objects located by these commands. For other viewing 
operations, see Viewing and Manipulating Collections with Tcl 
Commands, on page 154. 

Note: Using collections with Tcl control constructs (such as if, for, 
foreach, and while) can produce unexpected synthesis results. 
Avoid defining constraints for collections with control constructs, 
especially since the constraint checker does not recognize these 
built-in Tcl commands.

2. To create a collection that is made up of other collections, do this:

– Define the collections as described in the previous step. These 
collections must be defined before you can concatenate them or add 
them together in a new collection. 

– To concatenate collections or add to collections, type a name for the 
new collection in the Collection Name column. Type the appropriate 
operator command like c_union or c_diff in the Command column. See 
Creating Collections Using Tcl Commands, on page 150 for a list of 
available commands and the Reference Manual for the complete 
syntax. 

Collection Finds ...

find_all All components in the module endpMux

find_reg All registers in the module endpMux

find_comb All combinational components under endpMux



LO

Chapter 5: Specifying Constraints Using Collections

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
150 Synopsys Confidential Information January 2020

– Click Run Commands. The software runs through the commands in 
sequence, so you must first define collections before doing any group 
or comparative operations. 

The software saves the information in the constraint file for the project. 

3. To apply constraints to a collection do the following:

– Define a collection as described in the previous steps.

– Go to the appropriate SCOPE tab and specify the collection name 
where you would normally specify the object name. Collections 
defined in the SCOPE interface are available from the pull-down 
object lists. The following figure shows the collections defined in step 
1 available for setting a false path constraint. 

– Specify the rest of the constraint as usual. The software applies the 
constraint to all the objects in the collection. 

Creating Collections Using Tcl Commands
This section describes how to use the Tcl collection commands at the 
command line or in a script instead of entering them in the SCOPE window 
(Creating and Using SCOPE Collections, on page 148). There are differences 
in operation depending on where the collection commands are entered, and it 
is recommended that you use the SCOPE window, for the reasons described 
in Comparison of Methods for Defining Collections, on page 147. 

For details of the syntax for the commands described here, refer to Collection 
Commands, on page 169 in the Reference Manual.

1. To create a collection, name it with the set command and assign it to a 
variable. 



Using Collections Chapter 5: Specifying Constraints

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 151

A collection can consist of individual objects, Tcl lists (which can have 
single elements as arguments), or other collections. Use the Tcl find and 
expand commands to locate objects for the collection (see Using the Tcl 
Find Command to Define Collections, on page 142 and Using the Tcl 
expand Command to Define Collections, on page 143). The following 
example creates a collection called my_collection which consists of all the 
modules (views) found by the find command. 

set my_collection [find -view {*} ]
2. To create collections derived from other collections, do the following:

– Define a new variable for the collection.

– Create the collection with one of the operator commands from this 
table:

3. If your Tcl collection includes instances that have special characters 
make sure to use extra curly braces or use a backslash to escape the 
special character.

To... Use this command...

Add objects to a collection c_union. See Examples: c_union 
Command, on page 153

Concatenate collections c_union. See Examples: c_union 
Command, on page 153. 

Isolate differences between 
collections

c_diff. See Examples: c_diff Command, on 
page 153. 

Find common objects between 
collections

c_intersect. See Examples: c_intersect 
Command, on page 153.

Find objects that belong to just 
one collection

c_symdiff. See Examples: c_symdiff 
Command, on page 154.

Curly Braces{} define_scope_collection GRP_EVENT_PIPE2 {find -seq
{EventMux\[2\].event_inst?_sync[*]} -hier} 

define_scope_collection mytn {find -inst {i:count1.co[*]}}

Backslash Escape 
Character (\)

define_scope_collection mytn {find -inst i:count1.co\[*\]} 



LO

Chapter 5: Specifying Constraints Using Collections

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
152 Synopsys Confidential Information January 2020

Once you have created a collection, you can do various operations on the 
objects in the collection (see Viewing and Manipulating Collections with Tcl 
Commands, on page 154), but you cannot apply constraints to the collection. 



Using Collections Chapter 5: Specifying Constraints

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 153

Examples: c_union Command
This example adds the reg3 instance to collection1, which contains reg1 and 
reg2 and names the new collection sumCollection. 

set sumCollection [c_union $collection1 {i:reg3}]
c_list $sumCollection

{"i:reg1" "i:reg2" "i:reg3"}
If you added reg2 and reg3 with the c_union command, the command removes 
the redundant instances (reg2) so that the new collection would still consist of 
reg1, reg2, and reg3. 

This example concatenates collection1and collection2 and names the new collec-
tion combined_collection:

set combined_collection [c_union $collection1 $collection2]

Examples: c_diff Command
This example compares a list to a collection (collection1) and creates a new 
collection called subCollection from the list of differences:

set collection1 {i:reg1 i:reg2}
set subCollection [c_diff $collection1 {i:reg1}]
c_print $subCollection

"i:reg2"
You can also use the command to compare two collections: 

set reducedCollection [c_diff $collection1 $collection2]

Examples: c_intersect Command
This example compares a list to a collection (collection1) and creates a new 
collection called interCollection from the objects that are common:

set collection1 {i:reg1 i:reg2}
set interCollection [c_intersect $collection1 {i:reg1 i:reg3}]
c_print $interCollection

"i:reg1"
You can also use the command to compare two collections: 

set common_collection [c_intersect $collection1 $collection2]



LO

Chapter 5: Specifying Constraints Using Collections

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
154 Synopsys Confidential Information January 2020

Examples: c_symdiff Command
This example compares a list to a collection (collection1) and creates a new 
collection called diffCollection from the objects that are different. In this case, 
reg1 is excluded from the new collection because it is in the list and collection1. 

set collection1 {i:reg1 i:reg2}
set diffCollection [c_symdiff $collection1 {i:reg1 i:reg3}]
c_list $diffCollection

{"i:reg2" "i:reg3"}
You can also use the command to compare two collections: 

set symdiff_collection [c_symdiff $collection1 $collection2]

Examples: Names with Special Characters
Your instance names might include special characters, as for example when 
your HDL code uses a generate statement. If your instance names have special 
characters, do the following:

Make sure that you include extra curly braces {}, as shown below:

define_scope_collection GRP_EVENT_PIPE2 {find -seq 
{EventMux\[2\].event_inst?_sync[*]} -hier}

define_scope_collection mytn {find -inst {i:count1.co[*]}}
Alternatively, use a backslash to escape the special character:

define_scope_collection mytn {find -inst i:count1.co\[*\]} 

Viewing and Manipulating Collections with Tcl Commands
The following section describes various operations you can do on the collec-
tions you defined. For full details of the syntax, see Collection Commands, on 
page 169 in the Reference Manual. 

1. To view the objects in a collection, use one of the methods described in 
subsequent steps:

– Select the collection in an HDL Analyst view (step 2). 

– Print the collection without carriage returns or properties (step 3).

– Print the collection in columns (step 4).

– Print the collection in columns with properties (step 5).



Using Collections Chapter 5: Specifying Constraints

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 155

2. To select the collection in an HDL Analyst view, type select <collection>. 

For example, select $result highlights all the objects in the $result collec-
tion. 

3. To print a simple list of the objects in the collection, uses the c_list 
command, which prints a list like the following: 

{i:EP0RxFifo.u_fifo.dataOut[0]} {i:EP0RxFifo.u_fifo.dataOut[1]} 
{i:EP0RxFifo.u_fifo.dataOut[2]} ...
The c_list command prints the collection without carriage returns or 
properties. Use this command when you want to perform subsequent 
Tcl commands on the list. See Example: c_list Command, on page 157. 

4. To print a list of the collection objects in column format, use the c_print 
command. For example, c_print $result prints the objects like this: 

{i:EP0RxFifo.u_fifo.dataOut[0]}
{i:EP0RxFifo.u_fifo.dataOut[1]}
{i:EP0RxFifo.u_fifo.dataOut[2]}
{i:EP0RxFifo.u_fifo.dataOut[3]}
{i:EP0RxFifo.u_fifo.dataOut[4]}
{i:EP0RxFifo.u_fifo.dataOut[5]}

5. To print a list of the collection objects and their properties in column 
format, use the c_print command as follows:

– Annotate the design with a full list of properties by selecting
Project->Implementation Options, going to the Device tab, and enabling 
Annotated Properties for Analyst. Synthesize the design. If you do not 
enable the annotation option, properties like clock pins will not be 
annotated as properties. 

– Check the properties available by right-clicking on the object in the 
HDL Analyst view and selecting Properties from the popup menu. You 
see a window with a list of the properties that can be reported. 

– In the Tcl window, type the c_print command with the -prop option. For 
example, typing c_print -prop slack -prop view -prop clock $result lists the 
objects in the $result collection, and their slack, view and clock 
properties. 

Object Name                     slack  view  clock 
{i:EP0RxFifo.u_fifo.dataOut[0]} 0.3223 "FDE" clk
{i:EP0RxFifo.u_fifo.dataOut[1]} 0.3223 "FDE" clk
{i:EP0RxFifo.u_fifo.dataOut[2]} 0.3223 "FDE" clk
{i:EP0RxFifo.u_fifo.dataOut[3]} 0.3223 "FDE" clk



LO

Chapter 5: Specifying Constraints Using Collections

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
156 Synopsys Confidential Information January 2020

{i:EP0RxFifo.u_fifo.dataOut[4]} 0.3223 "FDE" clk
{i:EP0RxFifo.u_fifo.dataOut[5]} 0.3223 "FDE" clk
{i:EP0RxFifo.u_fifo.dataOut[6]} 0.3223 "FDE" clk
{i:EP0RxFifo.u_fifo.dataOut[7]} 0.3223 "FDE" clk
{i:EP0TxFifo.u_fifo.dataOut[0]} 0.1114 "FDE" clk
{i:EP0TxFifo.u_fifo.dataOut[1]} 0.1114 "FDE" clk
– To print out the results to a file, use the c_print command with the -file 

option. For example, c_print -prop slack -prop view -prop clock $result -file 
results.txt writes out the objects and properties listed above to a file 
called results.txt. When you open this file, you see the information in a 
spreadsheet format. 

6. You can do a number of operations on a collection, as listed in the 
following table. For details of the syntax, see Collection Commands, on 
page 169 in the Reference Manual. 

To... Do this...

Copy a collection Create a new variable for the copy and copy the original 
collection to it with the set command. When you make 
changes to the original, it does not affect the copy, and 
vice versa. 

set my_collection_copy $my_collection

List the objects in a 
collection

Use the c_print command to view the objects in a 
collection, and optionally their properties, in column 
format: 

"v:top"
"v:block_a"
"v:block_b"

Alternatively, you can use the -print option to an 
operation command to list the objects. 

Generate a Tcl list 
of the objects in a 
collection

Use the c_list command to view a collection or to convert 
a collection into a Tcl list. You can manipulate a Tcl list 
with standard Tcl commands. In addition, the Tcl 
collection commands work on Tcl lists. 
This is an example of c_list results:

{"v:top" "v:block_a" "v:block_b"}
Alternatively, you can use the -print option to an 
operation command to list the objects. 



Using Collections Chapter 5: Specifying Constraints

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 157

Example: c_list Command
The following provides a practical example of how to use the c_list command. 
This example first finds all the CE pins with a negative slack that is less than 
0.5 ns and groups them in a collection:

set get_components_list [c_list [find -hier -pin {*.CE} -filter 
@slack < {0.5}]]

The c_list command returns a list: 

{t:EP0RxFifo.u_fifo.dataOut[0].CE} 
{t:EP0RxFifo.u_fifo.dataOut[1].CE} 
{t:EP0RxFifo.u_fifo.dataOut[2].CE} ..

You can use the list to find the terminal (pin) owner: 

proc terminal_to_owner_instance {terminal_name terminal_type} {
regsub -all $terminal_type$ $terminal_name {} suffix
regsub -all {^t:} $suffix {i:} prefix
return $prefix
}

foreach get_component $get_components_list {
append owner [terminal_to_owner_instance $get_component {.CE}] 

" "
}

Iterate through a 
collection

Use the foreach command. This example iterates through 
all the objects in the collection:
foreach port c_list[[find -port *]] {
set_false_path -from $port }
You can also modify foreach_in_collection loops from 
PrimeTime or Design Compiler to work with the FPGA 
synthesis tools. 
foreach_in_collection x $col_1 {
…
}
You can convert the foreach_in_collection loop shown 
above to the following:
foreach x [c_list $col_1] {
…
}

To... Do this...



LO

Chapter 5: Specifying Constraints Using Collections

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
158 Synopsys Confidential Information January 2020

puts "terminal owner is $owner"
This returns the following, which shows that the terminal (pin) has been 
converted to the owning instance: 

terminal owner is i:EP0RxFifo.u_fifo.dataOut[0] 
i:EP0RxFifo.u_fifo.dataOut[1] i:EP0RxFifo.u_fifo.dataOut[2]



Converting SDC to FDC Chapter 5: Specifying Constraints

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 159

Converting SDC to FDC 
The sdc2fdc Tcl shell command translates legacy FPGA timing constraints to 
Synopsys FPGA timing constraints. From the Tcl command line in the 
synthesis tool, the sdc2fdc command scans the input SDC files and attempts 
to convert constraints for the implementation.

To run the sdc2fdc Tcl shell command:

1. Load your Project file.

2. From the Tcl command line, type:

sdc2fdc
3. Check the constraint results directory for details about this translation.

4. The new constraints file is automatically updated for your project. Save 
the new settings.

The constraint results directory is created at

projectDir/FDC_constraints/implName
This directory includes the following results files:

– topLevel_translated.fdc – Contains the Synopsys FPGA design 
constraints (FPGA design constraints and the Synopsys standard 
timing constraints)

– topLevel|compilePoint_translate.log – Contains details about the 
translation. Translation error messages explain issues and how to fix 
them. Any translation errors not addressed when you run synthesis 
appear in the SRR log file, but does not stop synthesis from running.

5. Open the FDC file resulting from translation in the FPGA SCOPE editor 
to check these constraints and make any changes to them.

6. Run the constraints checker.

7. Save this version of the FDC to run synthesis.

For information about the FDC file, see FDC Constraints, on page 131.

For details about the translated files and troubleshooting guidelines, see 
sdc2fdc, on page 110.



LO

Chapter 5: Specifying Constraints Converting SDC to FDC

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
160 Synopsys Confidential Information January 2020



Using the SCOPE Editor (Legacy) Chapter 5: Specifying Constraints

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 161

Using the SCOPE Editor (Legacy)
You can use the Legacy SCOPE editor for the SDC constraint files created 
before release version G-2012.09. However, it is recommended that you 
translate your SDC files to FDC files to enable the latest version of the SCOPE 
editor and to utilize the enhanced timing constraint handling in the tool. The 
latest version of the SCOPE editor automatically formats timing constraints 
using Synopsys Standard syntax (such as create_clock, and set_multicyle_path). 

To do this, add your SDC constraint files to your project and run the following 
at the command line:

% sdc2fdc
This feature translates all SDC files in your project. 

If you choose to do so, the following procedure shows you how to use the 
legacy SCOPE editor to create constraints for the constraint file (SDC).

1. Open an existing file for editing.

– Make sure you have closed the SCOPE window, or you could 
overwrite previous constraints. 

– Double-click on an existing constraint file (sdc) in the project.

– Select File->Open, set the Files of Type filter to Constraint Files (sdc) and 
open the file you want. 

2. Enter the timing or design constraints you need. 

Use SCOPE... To Define...

Clocks Clock frequencies
define_clock. See Defining Clocks, on page 168 
for additional information.

Clock frequency other than the one implied by 
the signal on the clock pin
syn_reference_clock (attribute). See Defining 
Clocks, on page 168 for additional information 

Clock domains with asymmetric duty cycles
define_clock. See Defining Clocks, on page 168 
for additional information 



LO

Chapter 5: Specifying Constraints Using the SCOPE Editor (Legacy)

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
162 Synopsys Confidential Information January 2020

Clock to Clock Edge-to-edge clock delays
define_clock_delay. See Defining Clocks, on 
page 168 for additional information 

Collections Set constraints for a group of objects you have 
defined as a collection with the Tcl command.

Inputs/Outputs Speed up paths feeding into a register
define_reg_input_delay. 

Speed up paths coming from a register
define_reg_output_delay. 

Registers Input delays from outside the FPGA
define_input_delay. See Defining Input and 
Output Constraints (Legacy), on page 175 for 
additional information 

Output delays from your FPGA
define_output_delay. See Defining Input and 
Output Constraints (Legacy), on page 175 for 
additional information 

Delay Paths Paths with multiple clock cycles
define_multicycle_path. See Defining Multi-cycle 
Paths, on page 136 for additional information 

False paths (certain technologies)
define_false_path. See Defining False Paths 
(Legacy), on page 176 for additional 
information. 

Path delays 
define_path_delay. See Defining 
From/To/Through Points for Timing 
Exceptions, on page 132 for additional 
information 

Attributes Assign attributes for objects specifying their 
values

Use SCOPE... To Define...



Using the SCOPE Editor (Legacy) Chapter 5: Specifying Constraints

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 163

Entering and Editing SCOPE Constraints (Legacy)
Enter constraints directly in the SCOPE window. You can use the Initialize 
Constraint panel to enter default constraints, and then use the direct method 
to modify, add, or delete constraints. 

The tool also lets you add constraints automatically. For information about 
auto constraints, see Using Auto Constraints, on page 494. 

1. Click the appropriate tab at the bottom of the window to enter the kind 
of constraint you want to create:

I/O Standards Define an I/O standard for ports 

Compile Points Specify compile points for your design

Other Enter newly-supported constraints for advanced 
users. 

To define... Click...

Clock frequency for a clock signal output of clock divider logic
A specific clock frequency that overrides the global frequency

Clocks

Edge-to-edge clock delay that overrides the automatically 
calculated delay.

Clock to 
Clock

Constraints for a group of objects you have defined as a 
collection with the Tcl command. For details, see Creating and 
Using SCOPE Collections, on page 148.

Collections

Input/output delays that model your FPGA input/output 
interface with the outside environment

Inputs/
Outputs

Delay constraints for paths feeding into/out of registers Registers

Paths that require multiple clock cycles Delay Paths

Paths to ignore for timing analysis (false paths) Delay Paths

Maximum delay for paths Delay Paths

Attributes, like syn_reference_clock, that were not entered in the 
source files

Attributes

Use SCOPE... To Define...



LO

Chapter 5: Specifying Constraints Using the SCOPE Editor (Legacy)

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
164 Synopsys Confidential Information January 2020

The SCOPE window displays columns appropriate to the kind of 
constraint you picked. You can now enter constraints using the wizard, 
or work directly in the SCOPE window. 

2. Save the file by clicking the Save icon and naming the file.

The software creates a TCL constraint file (sdc). See Working with 
Constraint Files, on page 52 for information about the commands in this 
file. 

3. To apply the constraints to your design, you must add the file to the 
project now or later. 

– Add it immediately by clicking Yes in the prompt box that opens after 
you save the constraint file.

– Add it later, following the procedure for adding a file described in 
Making Changes to a Project, on page 60.

Specifying SCOPE Timing Constraints (Legacy)
You can define timing constraints in the SCOPE interface, which automati-
cally generates a Tcl constraints file, or manually with a text editor, as 
described in Checking Constraint Files, on page 54.

The SCOPE interface is much easier to use, and you can define various 
timing constraints in it. For the equivalent Tcl syntax, see 
Chapter 13, Optimizing Processes for Productivityin the Reference Manual. See 
the following for different timing constraints:

• Entering Default Constraints, on page 165

I/O standards for certain technologies of the Microsemi devices 
for any port in the I/O Standard panel of the SCOPE window.

/O Standard

Compile points in a top-level constraint file. See Synthesizing 
Compile Points, on page 452 for more information about 
compile points.

Compile 
Points

Place and route tool constraints
Other constraints not used for synthesis, but which are passed 
to other tools. For example, multiple clock cycles from a 
register or input pin to a register or output pin

Other

To define... Click...



Using the SCOPE Editor (Legacy) Chapter 5: Specifying Constraints

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 165

• Setting Clock and Path Constraints, on page 165

• Defining Clocks, on page 168

• Defining Input and Output Constraints (Legacy), on page 175

• Defining False Paths (Legacy), on page 176

To set constraints for timing exceptions like false paths and multicycle paths, 
see Specifying Timing Exceptions, on page 132. 

Entering Default Constraints
To edit or set individual constraints, or to create constraints in the Other tab, 
work directly in the SCOPE window (Setting Clock and Path Constraints, on 
page 165). For auto constraints, see Using the SCOPE Editor (Legacy), on 
page 161. To apply the constraints, add the file to the project according to the 
procedure described in Making Changes to a Project, on page 60. The 
constraints file has an fdc extension. See Working with Constraint Files, on 
page 52 for more information about constraint files. 

Setting Clock and Path Constraints
The following table summarizes how to set different clock and path 
constraints from the SCOPE window. For information about setting compile 
point constraints or attributes, see Synthesizing Compile Points, on page 452 
for more information about compile points and Specifying Attributes Using 
the SCOPE Editor, on page 92. For information about setting default 
constraints, see Entering Default Constraints, on page 165. 



LO

Chapter 5: Specifying Constraints Using the SCOPE Editor (Legacy)

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
166 Synopsys Confidential Information January 2020

To define... Pane Do this to set the constraint...

Clocks Clock Select the clock object (Clock).
Specify a clock name (Clock Alias), if required.
Type a frequency value (Frequency) or a period (Period). 
Change the default Duty Cycle or set Rise/Fall At, if 
needed. 
Change the default clock group, if needed
Check the Enabled box. 
See Defining Clocks, on page 168 for information 
about clock attributes. 

Virtual 
clocks

Clock Set the clock constraints as described for clocks, above.
Check the Virtual Clock box.

Route delay Clock
Inputs/
Outputs
Registers

Specify the route delay in nanoseconds. Refer to 
Defining Clocks, on page 168, Defining Input and 
Output Constraints (Legacy), on page 175 and the 
Register Delays section of this table details. 

Edge-to-edge 
clock delay

Clock to 
Clock

Select the starting edge for the delay constraint (From 
Clock Edge).
Select the ending edge for the constraint (To Clock Edge).
Enter a delay value.
Mark the Enabled check box. 

Input/output 
delays

Inputs/
Outputs

See Defining Input and Output Constraints (Legacy), 
on page 175 for information about setting I/O 
constraints. 

Register 
delays

Registers Select the register (Register).
Select the type of delay, input or output (Type).
Type a delay value (Value).
Check the Enabled box. 
If you do not meet timing goals after place-and-route, 
adjust the clock constraint as follows:
• In the Route column for the constraint, specify the 

actual route delay (in nanoseconds), as obtained from 
the place-and-route results. Adding this constraint is 
equivalent to putting a register delay on that input 
register. 

• Resynthesize your design. 



Using the SCOPE Editor (Legacy) Chapter 5: Specifying Constraints

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 167

Maximum 
path delay

Delay Path Select the Delay Type path of Max Delay.
Select the port or register (From/Through). See Defining 
From/To/Through Points for Timing Exceptions, on 
page 132 for more information. 
Select another port or register if needed (To/Through).
Set the delay value (Max Delay).
Check the Enabled box.

Multi-cycle 
paths

Delay Paths See Defining Multi-cycle Paths, on page 136. 

False paths Delay Paths
Clock to 
Clock

See Defining False Paths, on page 137 for details.

Global 
attributes

Attributes Set Object Type to <global>.
Select the object (Object).
Set the attribute (Attribute) and its value (Value).
Check the Enabled box. 

Attributes Attributes Do either of the following:
• Select the type of object (Object Type).

Select the object (Object).
Set the attribute (Attribute) and its value (Value).
Check the Enabled box. 

• Set the attribute (Attribute) and its value (Value).
Select the object (Object).
Check the Enabled box. 

Other Other Type the TCL command for the constraint (Command).
Enter the arguments for the command (Arguments).
Check the Enabled box. 

To define... Pane Do this to set the constraint...



LO

Chapter 5: Specifying Constraints Using the SCOPE Editor (Legacy)

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
168 Synopsys Confidential Information January 2020

Defining Clocks
Clock frequency is the most important timing constraint, and must be set 
accurately. If you are planning to auto constrain your design (Using the 
SCOPE Editor (Legacy), on page 161), do not define any clocks. The following 
procedures show you how to define clocks and set clock groups and other 
constraints that affect timing:

• Defining Clock Frequency, on page 168

• Constraining Clock Enable Paths, on page 172

• Defining Other Clock Requirements, on page 174

Defining Clock Frequency
This section shows you how to define clock frequency either through the GUI 
or in a constraint file. See Defining Other Clock Requirements, on page 174 
for other clock constraints. If you want to use auto constraints, do not define 
your clocks. 

1. Define a realistic global frequency for the entire design, either in the 
Project view or the Constraints tab of the Implementation Options dialog box.

This target frequency applies to all clocks that do not have specified 
clock frequencies. If you do not specify any value, a default value of 1 
MHz (or 1000 ns clock period) applies to all timing paths whenever the 
clock associated with both start and end points of the path is not speci-
fied. Each clock that uses the global frequency is assigned to its own 
clock group. See Defining Other Clock Requirements, on page 174 for 
more information about clock group settings. 

The global frequency also applies to any purely combinatorial paths. The 
following figure shows how the software determines constraints for 
specified and unspecified start or end clocks on a path:



Using the SCOPE Editor (Legacy) Chapter 5: Specifying Constraints

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 169

2. Define frequency for individual clocks on the Clocks tab of the SCOPE 
window (define_clock constraint). 

– Specify the frequency as either a frequency in the Frequency column 
(-freq Tcl option) or a time period in the Period column (-period Tcl 
option). When you enter a value in one column, the other is 
calculated automatically. 

– For asymmetrical clocks, specify values in the Rise At (-rise) and Fall At 
(-fall) columns. The software automatically calculates and fills out the 
Duty Cycle value. 

The software infers all clocks, whether declared or undeclared, by 
tracing the clock pins of the flip-flops. However, it is recommended that 
you specify frequencies for all the clocks in your design. The defined 

If clkA is... And clkB is... The effect for logic C is...

Undefined Defined The path is unconstrained unless you specify that 
clkB be constrained to the inferred clock domain for 
clkA

Defined Undefined The path is unconstrained unless you specify that 
clkA be constrained to the inferred clock domain for 
clkB.

Defined Defined For related clocks in the same clock group, the 
relationship between clocks is calculated; all other 
paths between the clocks are treated as false paths.

Undefined Undefined The path is unconstrained.



LO

Chapter 5: Specifying Constraints Using the SCOPE Editor (Legacy)

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
170 Synopsys Confidential Information January 2020

frequency overrides the global frequency. Any undefined clocks default 
to the global frequency. 

3. Define internal clock frequencies (clocks generated internally) on the 
SCOPE Clocks tab (define_clock constraint). Apply the constraint 
according to the source of the internal clock.

4. For signals other than clocks, define frequencies with the 
syn_reference_clock attribute. You can add this attribute on the SCOPE 
Attributes tab, as follows:

– Define a dummy clock on the Clocks tab (define_clock constraint).

– Add the syn_reference_clock attribute (Attributes tab) to the affected 
registers to apply the clock. In the constraint file, you can use the Find 
command to find all registers enabled by a particular signal and then 
apply the attribute: 

define_clock -virtual dummy -period 40.0 
define_attribute {find –seq * -hier –filter @(enable == en40)} 

syn_reference_clock dummy
In earlier releases, limited clocking resources might have forced you to 
use an enable signal as a clocking signal, and use the syn_reference_clock 
attribute to define an enable frequency. However, because of changes in 
the reporting of clock start and end points, it is recommended that you 
use a multicycle path constraint instead for designs that use an enable 
signal and a global clock, and where paths need to take longer than one 
clock cycle. See Constraining Clock Enable Paths, on page 172 for a 
detailed explanation.

Note: This method is often used for designs that have an enable signal 
and a global clock, and where paths need to take longer than one clock 
cycle. The registers in the design are actually connected to the global 

Source Add SCOPE constraint/define_clock to...

Register Register.

Instance, like a PLL 
or clock DLL

Instance. If the instance has more than one clock 
output, apply the clock constraints to each of the 
output nets, making sure to use the n: prefix (to 
signify a net) in the SCOPE table. 

Combinatorial logic Net. Make sure to use the n: prefix in the SCOPE 
interface. 



Using the SCOPE Editor (Legacy) Chapter 5: Specifying Constraints

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 171

clock; however, the tool treats the registers as having a virtual clock at 
the frequency of the enable signal.

Using this method to constrain paths for technologies with clock buffer 
delays requires careful analysis with the Timing Analysis Reports (STA). 
The virtual clock does not include clock buffer delays. However, non-
virtual clocks that pass through clock buffers do include clock buffer 
delays. The register that generates the enable signal is on the non-
virtual clock domain, whereas the registers connected to the enable 
signal are on the virtual clock domain. Timing analysis shows that the 
enable signal is on the path between the non-virtual and virtual clock 
domains. For the actual design, the enable signal is on a path in the 
non-virtual clock domain. Any paths between virtual and non-virtual 
clocks are reported with a clock buffer delay on the non-virtual clock. 
This may result in the critical path reporting negative slack.

In the following example, the path comes from a register on a non-
virtual clock and goes to a register on a virtual clock.

Path information for path number 1:
Requested Period:3.125
- Setup time: 0.229
= Required time: 2.896

- Propagation time: 1.448 
- Clock delay at starting point: 1.857 
= Slack (critical: -0.409

Number of logic level(s): 0 
Starting point:  SourceFlop / Q
Ending point:  DestinationFlop / CE
The start point is clocked by Non-VirtualClock [rising] on pin C
The end point is clocked by VirtualClock [rising] on pin C

The path is reported with a negative slack of -0.49.
Timing analysis specifies a Clock delay at starting point that is the delay in 
the clock buffers of the non-virtual clock, but not a Clock delay at ending 
point. In the actual design, this delay exists at the end point. Since the 
clock end point is a virtual clock, the clock buffer delay creates a 
negative slack that does not exist in the actual design.

It is recommended that you use a multicycle path constraint instead to 
constrain all registers driven by the enable signal in the design.



LO

Chapter 5: Specifying Constraints Using the SCOPE Editor (Legacy)

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
172 Synopsys Confidential Information January 2020

5. After synthesis, check the Performance Summary section of the log file for a 
list of all the defined and inferred clocks in the design. 

6. If you do not meet timing goals after place-and-route, adjust the clock 
constraint as follows:

– Open the SCOPE window with the clock constraint. 

– In the Route column for the constraint, specify the actual route delay 
(in nanoseconds), as obtained from the place-and-route results. 
Adding this constraint is equivalent to putting a register delay on all 
the input registers for that clock. 

– Resynthesize your design. 

Constraining Clock Enable Paths
You might use an enable signal as a clocking signal if you have limited 
clocking resources. If the enable is slower than the clock, you can ensure 
more accuracy by defining the enable frequency separately, instead of 
slowing down the clock frequency. If you slow down the clock frequency, it 
affects all other registers driven by the clock, and can result in longer run 
times as the tool tries to optimize a non-critical path. 

There are two ways to define clock enables:

• By setting a multicycle path constraint to constrain all flip-flops driven 
by the clock enable signal (see Defining Multi-cycle Paths, on page 136). 
This is the recommended method. 

• Using the syn_reference_clock attribute, as described in step 4 of Defining 
Clock Frequency, on page 168. Although this method was used in earlier 
releases, it is not recommended any more because of changes in the way 
the clock start and end points are reported. An explanation of the clock 
start and end points reporting follows. 

Clock Domains for Clock Enables Defined with syn_reference_clock
When you use the syn_reference_clock attribute to constrain an enable signal, 
you are telling the tool to treat the flip-flops as if they had a virtual clock at 
the frequency of the enable signal, when the flip-flops are actually connected 
to the global clock. This could result in critical paths being reported with 
negative slack. 



Using the SCOPE Editor (Legacy) Chapter 5: Specifying Constraints

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 173

The flip-flop that generates the enable signals is in the non-virtual clock 
domain.The flip-flops that are connected to the enable signal are in the 
virtual clock domain. The timing analyst considers the enable signal to be on 
a path that goes between a non-virtual clock domain and a virtual clock 
domain. In the actual circuit, the enable signal is on a path within a non-
virtual clock domain. The timing analyst reports any paths between virtual 
and non-virtual clocks with a clock buffer delay on the non-virtual clock. This 
is why critical paths might be reported with negative slack. 

If you use this method to constrain paths in a technology that includes clock 
buffer delays, you must carefully analyze the timing analysis reports. The 
virtual clock does not include clock buffer delays, but any non-virtual clock 
that passes through clock buffers will include clock buffer delays. 

The following is an example report of a path from a clock enable, starting 
from a flip-flop on a non-virtual clock to a flip-flop on a virtual clock. The 
path is reported with a negative slack of -0.49.

Path information for path number 1:
Requested Period: 3.125
- Setup time: 0.229
= Required time:2.896
- Propagation time:  1.448
- Clock delay at starting point:     1.857
= Slack (critical) :  -0.409
Number of logic level(s):     0
Starting point:SourceFlop/ Q
Ending point:DestinationFlop / CE

The start point is clocked by Non-VirtualClock [rising]on pin C
The end   point is clocked by VirtualClock  [rising] on pin C

This timing analysis report includes a Clock delay at starting point, but does not 
include Clock delay at ending point. The clock delay at the starting point is the 
delay in the clock buffers of the non-virtual clock. In the actual circuit, this 
delay would also be at the ending point and not affect the calculation of slack. 
However as the ending clock is a virtual clock, the clock buffer delay ends up 
creating a negative slack that does not exist in the actual circuit.

This report is a result of defining the clock enables with the syn_reference_clock 
attribute. This is why it is recommended that you use multicycle paths to 
constrain all the flip-flops driven by the enable signal.



LO

Chapter 5: Specifying Constraints Using the SCOPE Editor (Legacy)

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
174 Synopsys Confidential Information January 2020

Defining Other Clock Requirements
Besides clock frequency (described in Defining Clock Frequency, on 
page 168), you can also set other clock requirements, as follows: 

• If you have limited clock resources, define clocks that do not need a 
clock buffer by attaching the syn_noclockbuf attribute to an individual 
port, or the entire module/architecture. 

• Define the relationship between clocks by setting clock domains. By 
default, each clock is in a separate clock group named default_clkgroup<n> 
with a sequential number suffix.

– On the SCOPE Clocks tab, group related clocks by putting them into 
the same clock group. Use the Clock Group field to assign all related 
clocks to the same clock group. 

– Make sure that unrelated clocks are in different clock groups. If you 
do not, the software calculates timing paths between unrelated clocks 
in the same clock group, instead of treating them as false paths. 

– Input and output ports that belong to the System clock domain are 
considered a part of every clock group and will be timed. See Defining 
Input and Output Constraints (Legacy), on page 175 for more 
information.

The software does not check design rules, so it is best to define the 
relationship between clocks as completely as possible. 

• Define all gated clocks with the define_clock constraint. 

Avoid using gated clocks to eliminate clock skew. If possible, move the 
logic to the data pin instead of using gated clocks. If you do use gated 
clocks, you must define them explicitly, because the software does not 
propagate the frequency of clock ports to gated clocks. 

To define a gated clock, attach the define_clock constraint to the clock 
source, as described above for internal clocks. To attach the constraint 
to a keepbuf (a keepbuf is a placeholder instance for clocks generated from 
combinatorial logic), do the following:

– Attach the syn_keep attribute to the gated clock to ensure that it 
retains the same name through changes to the RTL code. 

– Attach the define_clock constraint to the net or pin connected to the 
keepbuf instance generated for the gated clock. 



Using the SCOPE Editor (Legacy) Chapter 5: Specifying Constraints

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 175

• Specify edge-to-edge clock delays on the Clock to Clock tab (define_-
clock_delay). 

After synthesis, check the Performance Summary section of the log file for a list 
of all the defined and inferred clocks in the design. 

Defining Input and Output Constraints (Legacy)
In addition to setting I/O delays in the SCOPE window as described in Setting 
Clock and Path Constraints, on page 165, you can also set the Use clock period 
for unconstrained IO option. 

• Open the SCOPE window, click Inputs/Outputs, and select the port (Port). 
You can set the constraint for 

– All inputs and outputs (globally in the top-level netlist)

– For a whole bus

– For single bits

You can specify multiple constraints for the same port. The software 
applies all the constraints; the tightest constraint determines the worst 
slack. If there are multiple constraints from different levels, the most 
specific overrides the more global. For example, if there are two bit 
constraints and two port constraints, the two bit constraints override 
the two port constraints for that bit. The other bits get the two port 
constraints. 

• Specify the constraint value in the SCOPE window: 

– Select the type of delay: input or output (Type).

– Type a delay value (Value).

– Check the Enabled box, and save the constraint file in the project. 

Make sure to specify explicit constraints for each I/O path you want to 
constrain. 

• To determine how the I/O constraints are used during synthesis, do the 
following: 

– Select Project->Implementation Options, and click Constraints. 
– To use only the explicitly defined constraints disable Use clock period for 

unconstrained IO. 



LO

Chapter 5: Specifying Constraints Using the SCOPE Editor (Legacy)

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
176 Synopsys Confidential Information January 2020

– To synthesize with all the constraints, using the clock period for all 
I/O paths that do not have an explicit constraint enable Use clock 
period for unconstrained IO.

– Synthesize the design. When you forward-annotate the constraints, 
the constraints used for synthesis are forward-annotated for place-
and-route.

• Input or output ports with explicitly defined constraints, but without a 
reference clock (-ref option) are included in the System clock domain and 
are considered to belong to every defined or inferred clock group.

• If you do not meet timing goals after place-and-route and you need to 
adjust the input constraints; do the following:

– Open the SCOPE window with the input constraint. 

– In the Route column for the input constraint, specify the actual route 
delay in nanoseconds, as obtained from the place-and-route results. 
Adding this constraint is equivalent to putting a register delay on the 
input register. 

– Resynthesize your design. 

Defining False Paths (Legacy)
You define false paths by setting constraints explicitly on the Delay Paths tab 
or implicitly on the Clock and Clock to Clock tabs. See Defining 
From/To/Through Points for Timing Exceptions, on page 132 for object 
naming and specifying through points. 

• To define a false path between ports or registers, select the SCOPE Delay 
Paths tab, and do the following:

– From the Delay Type pull-down menu, select False.

– Use the pull-down to select the port or register from the appropriate 
column (From/To/Through). 

– Check the Enabled box.

The software treats this as an explicit false constraint and assigns it the 
highest priority. Any other constraints on this path are ignored. 



Using the SCOPE Editor (Legacy) Chapter 5: Specifying Constraints

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 177

• To define a false path between two clocks, select the SCOPE Clocks tab, 
and assign the clocks to different clock groups:

The software implicitly assumes a false path between clocks in different 
clock groups. This false path constraint can be overridden by a 
maximum path delay constraint, or with an explicit constraint. 

• To define a false path between two clock edges, select the SCOPE Clock to 
Clock tab, and do the following:

– Specify one clock as the starting clock edge (From Clock Edge).

– Specify the other clock as the ending clock edge (To Clock Edge).

– Click in the Delay column, and select false.

– Mark the Enabled check box.

Use this technique to specify a false path between any two clocks, 
regardless of clock groups. This constraint can be overridden by a 
maximum delay constraint on the same path.

• To override an implicit false path between any two clocks described 
previously, set an explicit constraint between the clocks by selecting the 
SCOPE Clock to Clock tab, and doing the following:

– Specify the starting (From Clock Edge) and ending clock edges (To Clock 
Edge).

– Specify a value in the Delay column.

– Mark the Enabled check box.

The software treats this as an explicit constraint. You can use this 
method to constrain a path between any two clocks, regardless of 
whether they belong to the same clock group.

• To set an implicit false path on a path to/from an I/O port, do the 
following: 

– Select Project->Implementation Options->Constraints.
– Disable Use clock period for unconstrained IO.



LO

Chapter 5: Specifying Constraints Using the SCOPE Editor (Legacy)

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
178 Synopsys Confidential Information January 2020

Using a Text Editor for Constraint Files (Legacy)
You can use the Legacy SCOPE editor for the SDC constraint files created 
before release version G-2012.09. However, it is recommended that you 
translate your SDC files to FDC files to enable the latest version of the SCOPE 
editor and to utilize the enhanced timing constraint handling in the tool. 

If you choose to use the legacy SCOPE editor, this section shows you how to 
manually create a Tcl constraint file. The software automatically creates this 
file if you use the legacy SCOPE editor to enter the constraints. The Tcl 
constraint file only contains general timing constraints. Black box 
constraints must be entered in the source code. For additional information, 
see When to Use Constraint Files over Source Code, on page 90. 

1. Open a file for editing.

– Make sure you have closed the SCOPE window, or you could 
overwrite previous constraints. 

– To create a new file, select File->New, and select the Constraints File 
(SCOPE) option. Type a name for the file and click OK.

– To edit an existing file, select File->Open, set the Files of Type filter to 
Constraint Files (sdc) and open the file you want. 

2. Follow the syntax guidelines in Tcl Syntax Guidelines for Constraint 
Files, on page 90.

3. Enter the timing constraints you need. For the syntax, see the Reference 
Manual. If you have black box timing constraints, you must enter them 
in the source code. 

4. You can also add vendor-specific attributes in the constraint file using 
define_attribute. See Specifying Attributes in the Constraints File, on 
page 146 for more information. 

5. Save the file.

6. Add the file to the project as described in Making Changes to a Project, 
on page 106, and run synthesis. 



Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 179

C H A P T E R  6

Synthesizing and Analyzing the Results

This chapter describes how to run synthesis, and how to analyze the log file 
generated after synthesis. See the following:

• Synthesizing Your Design, on page 180

• Checking Log File Results, on page 185

• Handling Messages, on page 200

• Using Continue on Error, on page 213



LO

Chapter 6: Synthesizing and Analyzing the Results Synthesizing Your Design

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
180 Synopsys Confidential Information January 2020

Synthesizing Your Design
Once you have set your constraints, options, and attributes, running 
synthesis is a simple one-click operation. See the following:

• Running Logic Synthesis, on page 180

• Using Up-to-date Checking for Job Management

Running Logic Synthesis
When you run logic synthesis, the tool compiles the design and then maps it 
to the technology target you selected. 

1. If you want to compile your design without mapping it, select Run-> 
Compile Only or press F7. 

A compiled design has the RTL mapping, and you can view the RTL view. 
You might want to just compile the design when you are not ready to 
synthesize the design, but when you need to use a tool that requires a 
compiled design, like the SCOPE interface. 

2. To synthesize the logic, set all the options and attributes you want, and 
then click Run. 

Using Up-to-date Checking for Job Management
Synthesis is becoming more complex and consists of running many jobs. 
Often, part or all of the job flow is already up-to-date and rerunning the job 
may not be necessary. For large designs that may take hours to run, up-to-
date checking can reduce the time for rerunning jobs.

Up-to-date checking is run for all synthesis design flows. However, for the 
Hierarchical Project Management flows, up-to-date checking is an essential 
feature. For example, if a project contains four sub-projects and only one 
project is modified, then the other three projects do not need to be rerun. This 
saves in overall runtime. 

Up-to-date checking includes the following: 

• The GUI launches mapper modules (pre-mapping and technology 
mapping) and saves the intermediate netlists and log files in the synwork 
and synlog folders, respectively.



Synthesizing Your Design Chapter 6: Synthesizing and Analyzing the Results

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 181

• After each individual module run completes, the GUI optionally copies 
the contents of these intermediate log files from the synlog folder and 
adds them to the Project log file (rev_1/projectName.srr). To set this option, 
see Copy Individual Job Logs to the SRR Log File, on page 182.

• If you re-synthesize the design and there are no changes to the inputs 
(HDL, constraints, and Project options):

– The GUI does not rerun pre-mapping and technology mapping and no 
new netlist files are created.

– In the HTML log file, the GUI adds a link that points to the existing 
pre-mapping and mapping log files from the previous run. Double-
click on this link (@L: indicates the link) to open the new text file 
window.

If you open the text log file, the link is a relative path to the 
implementation folder for the pre-mapping and mapping log files from 
the previous run.

Note: Also, the GUI adds a note that indicates mapping will not be re-
run and to use the Run->Resynthesize All option in the Project view 
to force synthesis be run again.



LO

Chapter 6: Synthesizing and Analyzing the Results Synthesizing Your Design

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
182 Synopsys Confidential Information January 2020

As the job is running, you can click in the job status field of the Project view 
to bring up the Job Status display. When you rerun synthesis, the job status 
identifies which modules (pre-mapping or mapping) are up-to-date.

See also:

• Copy Individual Job Logs to the SRR Log File

• Limitations and Risks

Copy Individual Job Logs to the SRR Log File
By default, up-to-date checking uses links in the log file (srr) to individual job 
logs. To change this option so that individual job logs are always appended to 
the main log file (srr), do the following:

1. Select Options->Project View Options from the Project menu.

2. On the Project View Options dialog box, scroll down to the Use links in SRR log 
file to individual job logs option.

3. Use the pull-down menu, and select off.

Job Status for Re-synthesis Run



Synthesizing Your Design Chapter 6: Synthesizing and Analyzing the Results

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 183



LO

Chapter 6: Synthesizing and Analyzing the Results Synthesizing Your Design

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
184 Synopsys Confidential Information January 2020

Limitations and Risks
Up-to-date checking limitations and risks include the following:

• Compiler up-to-date checks are done internally by the compiler and with 
no changes to the compiler reporting structure.

• GUI up-to-date checks use timestamp information of its input files to 
decide when mapping is re-run. Be aware that:

– The GUI uses netlist files (srs and srd) from the synwork folder for 
timestamp checks. If you delete an srs file from the implementation 
folder, this does not trigger compiler or mapper re-runs. You must 
delete netlist files from the synwork folder instead.

– The copy command behaves differently on Windows and Linux. On 
Windows, the timestamp does not change if you copy a file from one 
directory to another. But on Linux (and MKS shell), the timestamp 
information gets changed.

• When running a design, the up-to-date checking feature automatically 
determines if the design needs to be re-synthesized. However, when you 
modify constraints in a Tcl file sourced within the constraints file, the 
software is not aware of these changes and does not force the design to 
be re-synthesized.



Checking Log File Results Chapter 6: Synthesizing and Analyzing the Results

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 185

Checking Log File Results
You can check the log file for information about the synthesis run. In 
addition, the Synplify Pro interface has a Tcl Script window, that echoes each 
command as it is run. The following describe different ways to check the 
results of your run:

• Viewing and Working with the Log File, on page 185

• Accessing Specific Reports Quickly, on page 188

• Accessing Results Remotely, on page 191

• Analyzing Results Using the Log File Reports, on page 194

• Using the Watch Window, on page 194

• Checking Resource Usage, on page 196

• Querying Metrics for a Design, on page 198

Viewing and Working with the Log File
The log file contains the most comprehensive results and information about a 
synthesis run. The default log file is in HTML format, but there is a text 
version available too. 

For users who only want to check a few critical performance criteria, it is 
easier to use the Watch Window (seeUsing the Watch Window, on page 194) 
instead of the log file. For details, read through the log file. 

1. To open the log file, use one of these listed methods, according to the 
format you want: 

HTML • Select View->Log File. 
• Click the View Log button in the Project window. 
• Double-click the designName.htm file in the Implementation Results 

view. 

Text Double-click the designName.srr file in the Implementation Results 
view. 
To set the text file version to open by default instead of the HTML 
version, select Options->Project View Options, and toggle off the View log 
file in HTML option. 



LO

Chapter 6: Synthesizing and Analyzing the Results Checking Log File Results

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
186 Synopsys Confidential Information January 2020

The log file lists the compiled files, details of the synthesis run, color-
coded errors, warnings and notes, and a number of reports. For infor-
mation about the reports, see Analyzing Results Using the Log File 
Reports, on page 194.

2. Navigate the log file to view specific pieces of information. 

For quicker access to specific log information, use alternative access 
methods, described in Accessing Specific Reports Quickly, on page 188 
instead of the ones described here. 

– Use the panel on the left of the HTML log file to navigate to the section 
you want. You can use the Find button and the search field at the 
bottom of this panel to search the headings. 



Checking Log File Results Chapter 6: Synthesizing and Analyzing the Results

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 187

– To search the body of the log file, use Control-f or the Edit->Find 
command. See Viewing and Working with the Log File, on page 185 
for details. 

– To add bookmarks or for general information about working in an 
editing window, see Editing HDL Source Files with the Built-in 
Text Editor, on page 36. 

The areas of the log file that are most important are the warning 
messages and the timing report. The log file includes a timing report 
that lists the most critical paths. The Synplify Pro product also lets you 
generate a report for a path between any two designated points, see 
Generating Custom Timing Reports with STA, on page 363. The 
following table lists places in the log file you can use when searching for 
information. 

3. Resolve any errors and check all warnings. 

To find... Search for...

Notes @N or look for blue text

Warnings and errors @W and @E, or look for purple 
and red text respectively

Performance summary Performance Summary

The beginning of the timing report START TIMING REPORT

Detailed information about slack times, 
constraints, arrival times, etc. 

Interface Information

Resource usage Resource Usage Report



LO

Chapter 6: Synthesizing and Analyzing the Results Checking Log File Results

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
188 Synopsys Confidential Information January 2020

You must fix errors, because you cannot synthesize a design with errors. 
Check the warnings and make sure you understand them. See Checking 
Results in the Message Viewer, on page 200 for information. Notes are 
informational and usually can be ignored. For details about 
crossprobing and fixing errors, see Handling Messages, on page 200, 
Editing HDL Source Files with the Built-in Text Editor, on page 36, and 
Crossprobing from the Text Editor Window, on page 327. 

If you see Automatic dissolve at startup messages, you can usually ignore 
them. They indicate that the mapper has optimized away hierarchy 
because there were only a few instances at the lower level. 

4. If you are trying to find and resolve warnings, you can bookmark them 
as shown in this procedure:

– Select Edit->Find or press Ctrl-f. 
– Type @W as the criteria on the Find form and click Mark All. The 

software inserts bookmarks at every line with a warning. You can 
now page through the file from bookmark to bookmark using the 
commands in the Edit menu or the icons in the Edit toolbar. For more 
information on using bookmarks, see Editing HDL Source Files with 
the Built-in Text Editor, on page 36.

5. To crossprobe from the log file to the source code, click on the file name 
in the HTML log file or double-click on the warning text (not the ID code) 
in the ASCII text log file. 

Accessing Specific Reports Quickly
The log file contains all the results from the synthesis run, but you might 
want to hone in on specific information. Instead of browsing the log file to find 
the information you need, you can use the techniques described below: 

1. To quickly view specific pieces of log information, go to the Project Status 
window and click the appropriate links to display the corresponding 
reports or specific parts of the log file. 

Timing reports Click Detailed Report or Timing Report View in the Timing 
Summary panel.

Log at different stages Click Detailed Report in the Run Status panel.



Checking Log File Results Chapter 6: Synthesizing and Analyzing the Results

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 189

The Detailed Report links display parts of the log file, and the other links 
go to special view windows for different kinds of reports. See The Project 
Results View, on page 39 for more information about different reports 
that can be accessed from the Project Results view. 

2. To view timing information:

– Set important timing parameters to monitor in the Watch window, 
like slack and frequency. See Using the Watch Window, on page 194 
for details. 

– Click View Log in the Project view and navigate to the appropriate 
section in the log file. 

3. To view messages, use any of the following methods

– From the Run Status panel in the Project Status window, click the link 
that lists the number of errors, warnings, or notes at different design 
stages. The Message window opens. Click the message ID to get more 
information about the error and how to fix it. 

Area reports Click Detailed Report or Hierarchical Area Report in the 
Area Summary panel.

High reliability reports Click Detailed Report in the High Reliability Report panel.

Optimizations Click Detailed Report in the Optimizations Summary panel. 



LO

Chapter 6: Synthesizing and Analyzing the Results Checking Log File Results

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
190 Synopsys Confidential Information January 2020

This is the quickest method to narrow down the list of messages and 
access the one you want. 

The numbers of notes, errors, and warnings reported in the Run Status 
panel might not match the numbers displayed in the Messages 
window if the design contains compile points. The numbers reported 
are for the top level. 

– Click the Messages tab at the bottom of the Project view to open a 
window with a list of all the notes, errors and warnings. See Checking 
Results in the Message Viewer, on page 200 for more information 
about using this window. 



Checking Log File Results Chapter 6: Synthesizing and Analyzing the Results

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 191

– Open the log file, locate the message, and click the message ID. The 
log file includes all the results from the run, so it could be harder to 
locate the message you want. 

Accessing Results Remotely
You can access the log file results remotely from various mobile devices. For 
example, you can use this feature to run synthesis for jobs with long run 
times and then check the results of the synthesis run later from anywhere. 
The Project Status report files can be accessed from any browser without 
bringing up the synthesis tool. 

To access the log file remotely, do the following: 

1. Select Options->Project Status Page Location from the Project menu and 
select the implementation for which you want the reports.



LO

Chapter 6: Synthesizing and Analyzing the Results Checking Log File Results

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
192 Synopsys Confidential Information January 2020

2. Set the location for storing the project status page, using either of these 
methods:

– Enable Save to different location and specify a path for the location of the 
status page. This allows you to save the status reports in different 
locations.

– Use an environment variable by enabling Use Environment Variable 
SYNPLIFY_REMOTE_REPORT_LOCATION. 

If you use this option, you must restart the tool the first time, since 
the environment variable is not applied dynamically. This option 

Windows Enable Use Environment Variable SYNPLIFY_REMOTE_REPORT_LOCATION. 
Specify the variable name SYNPLIFY_REMOTE_REPORT_LOCATION 
and the location you want from the Control Panel on the Edit User 
Variable dialog box. 

Linux Specify setenv SYNPLIFY_REMOTE_REPORT_LOCATION pathLocation 
in the .cshrc file. 
Enable Use Environment Variable SYNPLIFY_REMOTE_REPORT_LOCATION. 



Checking Log File Results Chapter 6: Synthesizing and Analyzing the Results

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 193

always saves the status report to the location indicated by the 
variable. 

3. Click OK.

4. Run synthesis.

The status reports are saved to the location you specified for your 
project. For example:

C:\synResults\tutorial\rev_1
5. Access the location you set up from any browser on a mobile device (for 

example, a smart phone or tablet).

– Access the location you set in the previous steps. 

– Open the projectName/implementationName/index.html file with any 
browser. 

Your company may need to set up a location on its internal internet, 
where the status reports can be saved and later accessed with a URL 
address.



LO

Chapter 6: Synthesizing and Analyzing the Results Checking Log File Results

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
194 Synopsys Confidential Information January 2020

Analyzing Results Using the Log File Reports
The log file contains technology-appropriate reports like timing reports, 
resource usage reports, and net buffering reports, in addition to any notes, 
errors, and warning messages. 

1. To analyze timing results, do the following: 

– View the Timing Report (Performance Summary section of the log file) 
and check the slack times. See Handling Negative Slack, on page 482 
for details. 

– Check the detailed information for the critical paths, including the 
setup requirements at the end of the detailed critical path 
description. You can crossprobe and view the information graphically 
and determine how to improve the timing. 

– In the HTML log file, click the link to open up the HDL Analyst view 
for the path with the worst slack. 

To generate timing information for a path between any two designated 
points, see Generating Custom Timing Reports with STA, on page 363. 

2. To check buffers, do the following:

– Check the report by going to the Net Buffering Report section of the log 
file. 

– Check the number of buffers or registers added or replicated and 
determine whether this fits into your design optimization strategy.

3. To check logic resources, check the Resource Usage Report section at the 
end of the log file, as described in Checking Resource Usage, on 
page 196. 

Using the Watch Window
The Synplify Pro Watch window provides a more convenient viewing 
mechanism than the log file for quickly checking key performance criteria or 
comparing results from different runs. Its limitation is that it only displays 
certain criteria. If you need details, use the log file, as described in Viewing 
and Working with the Log File, on page 185. 

1. Open the Watch window, if needed, by checking View->Watch Window. 



Checking Log File Results Chapter 6: Synthesizing and Analyzing the Results

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 195

If you open an existing project, the Watch window shows the parameters 
set the last time you opened the window.

2. If you need a larger window, either resize the window or move the Watch 
Window as described below. 

– Hold down Ctrl or Shift, click the window, and move it to a position you 
want. This makes the Watch window an independent window, 
separate from the Project view. 

– To move the window to another position within the Project view, right-
click in the window border and select Float in Main Window. Then move 
the window to the position you want, as described above. 

See Watch Window, on page 34 in the Reference Manual for information 
about the popup menu commands.

3. Select the log parameter you want to monitor by clicking on a line and 
selecting a parameter from the resulting popup menu.

The software automatically fills in the appropriate value from the last 
synthesis run. You can check the clock requested and estimated 
frequencies, the clock requested and estimated periods, the slack, and 
some resource usage criteria.

4. To compare the results of two or more synthesis runs, do the following:

– If needed, resize or move the window as described above. 

– Click the right mouse button in the window and select Configure Watch 
from the popup. 

– Click Watch Selected Implementations and either check the 
implementations you want to compare or click Watch All 
Implementations. Click OK. The Watch window now shows a column for 
each implementation you selected. 



LO

Chapter 6: Synthesizing and Analyzing the Results Checking Log File Results

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
196 Synopsys Confidential Information January 2020

– In the Watch window, set the parameters you want to compare.

The software shows the values for the selected implementations side by 
side. For more information about multiple implementations, see Tips for 
Optimization, on page 398. 

Checking Resource Usage
Each FPGA architecture has a certain number of dedicated FPGA resources. 
Use the Resource Usage section of the log file to check whether you are 
exceeding the available resources. 

1. Go to the Resource Usage report at the end of the log file (.srr).

2. Check the number and types of components used to determine if you 
have used too much of your resources.

The following is an example: 

Resource Usage Report for top
Mapping to part: ice5lp1kcm36 

I/O Register bits: 0
Register bits not including I/Os:   279 of 1000 (27%) 

RAM/ROM usage summary
Block Rams: 1 of 16 (6%) 

Mapping Summary:
Total LUTs: 619 (61%)

3. For technology-specific designs, you can also check the hierarchical area 
report (projectName.areasrr). 

This file contains the percentage utilization for various elements in the 
design. See Hierarchical Area Report, on page 213 in the Reference 
Manual for more about this file. 



Checking Log File Results Chapter 6: Synthesizing and Analyzing the Results

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 197

If your design is overutilized, you can manage usage with resource-specific 
attributes like syn_ramstyle, syn_dspstyle, and so on. For hierarchical designs 
you can set limits with attributes like syn_allowed_resources or the Allocate 
Timing and Resource Budgets command. 



LO

Chapter 6: Synthesizing and Analyzing the Results Checking Log File Results

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
198 Synopsys Confidential Information January 2020

Querying Metrics for a Design
Keeping track of metrics is important for measuring and tuning the QoR of a 
design. Metrics include data from various steps in the design flow; the data is 
saved and can be retrieved anytime. The design metrics you can query 
include the number of LUTs, the runtime for each process step, the worst 
slack, the slack for specific clocks, and the number of unconverted gated 
clocks

1. Start from the Tcl window and make sure you are located in the current 
implementation directory.

2. To find the names of the metrics available for the design, use one of the 
following command:

3. Use the metric names with one of the following commands, according to 
the level of detail you want to see.

Metrics can be global for the entire design, or specific to an object, such 
as a clock, module, or net. The command returns values in the default 
output format shown below: 

Use the Command ... To ...

dump_metrics Show metrics and values available for the 
current implementation of a design.

query_available_metrics Show metrics that can be queried for the 
design. You should use this command primarily 
for scripting, since it returns a Tcl list.

Use the Command ... To ...

query_metric Query specific QoR metrics. For example:
% query_metric runtime.realtime -jobname 
compiler
3.154000

query_metric_details Query information about a QoR metric. For 
example:
% query_metric_details 
clock_conversion.clean_clock_pins -jobname 
fpga_mapper
271 {} {Number of clock pins driven by non-
gated/non-generated clock trees}



Checking Log File Results Chapter 6: Synthesizing and Analyzing the Results

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 199

For example, clock conversion metrics can be specified as follows:

The following is an example of reported metrics: 

clock_conversion.global: instances_converted = 0 from fpga_mapper
//Number of sequential instances converted

runtime.global: realtime = 4.160000 seconds from compiler
runtime.global: cputime = 3.073220 seconds from compiler

Table Metric Name Description

clock_conversion clean_clock_trees Number of non-gated/non-generated 
clock trees

clock_conversion clean_clock_pins Number of clock pins driven by non-
gated/non-generated clock trees

clock_conversion gated_clock_trees Number of gated/generated clock trees

clock_conversion instances_converte
d

Number of sequential instances 
converted

clock_conversion instances_notconve
rted

Number of sequential instances left 
unconverted



LO

Chapter 6: Synthesizing and Analyzing the Results Handling Messages

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
200 Synopsys Confidential Information January 2020

Handling Messages 
This section describes how to work with the error messages, notes, and 
warnings that result after a run. See the following for details: 

• Checking Results in the Message Viewer, on page 200

• Filtering Messages in the Message Viewer, on page 202

• Filtering Messages from the Command Line, on page 204

• Automating Message Filtering with a Tcl Script, on page 205

• Log File Message Controls, on page 207

• Working with Downgradable Errors and Critical Warnings, on page 210

Checking Results in the Message Viewer
The Tcl Script window includes a Message Viewer. By default, the Tcl window 
is in the lower left corner of the main window. This procedure shows you how 
to check results in the message viewer. 

1. If you need a larger window, either resize the window or move the Tcl 
window. Click in the window border and move it to a position you want. 
You can float it outside the main window or move it to another position 
within the main window. 

2. Click the Messages tab to open the message viewer.

The window lists the errors, warnings, and notes in a spreadsheet 
format. See Message Viewer, on page 39 in the Reference Manual for a 
full description of the window.



Handling Messages Chapter 6: Synthesizing and Analyzing the Results

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 201

3. To reduce the clutter in the window and make messages easier to find 
and understand, use the following techniques:

– Use the color cues. For example, when you have multiple synthesis 
runs, messages that have not changed from the previous run are in 
black; new messages are in red. 

– Enable the Group Common IDs option in the upper right. This option 
groups all messages with the same ID and puts a plus symbol next to 
the ID. You can click the plus sign to expand grouped messages and 
see individual messages. 

There are two types of message groups:

- The same warning or note ID appears in multiple source files 
indicated by a dash in the source files column.

- Multiple warnings or notes in the same line of source code indicated 
by a bracketed number.

– Sort the messages. To sort by a column header, click that column 
heading. For example, click Type to sort the messages by type. For 
example, you can use this to organize the messages and work 
through the warnings before you look at the notes. 

– To find a particular message, type text in the Find field. The tool finds 
the next occurrence. You can also click the F3 key to search forward, 
and the Shift-F3 key combination to search backwards. 



LO

Chapter 6: Synthesizing and Analyzing the Results Handling Messages

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
202 Synopsys Confidential Information January 2020

4. To filter the messages, use the procedure described in Filtering 
Messages in the Message Viewer, on page 202. Crossprobe errors from 
the message window:

– If you need more information about how to handle a particular 
message, click the message ID in the ID column. This opens the 
documentation for that message. 

– To open the corresponding source code file, click the link in the Source 
Location column. Correct any errors and rerun synthesis. For 
warnings, see Handling Messages, on page 200. 

– To view the message in the context of the log file, click the link in the 
Log Location column.

Filtering Messages in the Message Viewer
The Message viewer lists all the notes, warnings, and errors. The following 
procedure shows you how to filter out the unwanted messages from the 
display, instead of just sorting it as described in Checking Results in the 
Message Viewer, on page 200. For the command line equivalent of this 
procedure, see Filtering Messages from the Command Line, on page 204. 

1. Open the message viewer by clicking the Messages tab in the Tcl window 
as previously described. 

2. Click Filter in the message window. 

The Warning Filter spreadsheet opens, where you can set up filtering 
expressions. Each line is one filter expression. 

3. Set your display preferences.

– To hide your filtered choices from the list of messages, click Hide Filter 
Matches in the Warning Filter window. 



Handling Messages Chapter 6: Synthesizing and Analyzing the Results

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 203

– To display your filtered choices, click Show Filter Matches. 

4. Set the filtering criteria.

– Set the columns to reflect the criteria you want to filter. You can 
either select from the pull-down menus or type your criteria. If you 
have multiple synthesis runs, the pull-down menu might contain 
selections that are not relevant to your design. 

The first line in the following example sets the criteria to show all 
warnings (Type column) with message ID FA188 (ID). The second set of 
criteria displays all notes that begin with MF. 

– Use multiple fields and operators to refine filtering. You can use 
wildcards in the field, as in line 2 of the example. Wildcards are case-
sensitive and space-sensitive. You can also use ! as a negative 
operator. For example, if you set the ID in line 2 to !MF*, the message 
list would show all notes except those that begin with MF. 

– Click Apply when you have finished setting the criteria. This 
automatically enables the Apply Filter button in the messages window, 
and the list of messages is updated to match the criteria. 

The synthesis tool interprets the criteria on each line in the Warning 
Filter window as a set of AND operations (Warning and FA188), and the 
lines as a set of OR operations (Warning and FA188 or Note and MF*). 

– To close the Warning Filter window, click Close. 

5. To save your message filters and reuse them, do the following: 

– Save the project. The synthesis tool generates a Tcl file called 
projectName.pfl (Project Filter Log) in the same location as the main 
project file. The following is an example of the information in this file:



LO

Chapter 6: Synthesizing and Analyzing the Results Handling Messages

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
204 Synopsys Confidential Information January 2020

log_filter -hide_matches
log_filter -field type==Warning 

-field message==*Una* 
-field source_loc==sendpacket.v 
-field log_loc==usbHostSlave.srr 
-field report=="Compiler Report"

log_filter -field type==Note
log_filter -field id==BN132
log_filter -field id==CL169
log_filter -field message=="Input *"
log_filter -field report=="Compiler Report"

– When you want to reuse the filters, source the projectName.pfl file.

You can also include this file in a synhooks Tcl script to automate your 
process. 

Filtering Messages from the Command Line
The following procedure shows you how to use Tcl commands to filter out 
unwanted messages. If you want to use the GUI, see Filtering Messages in the 
Message Viewer, on page 202. 

1. Type your filter expressions in the Tcl window using the log_filter 
command. For details of the syntax, see log_filter, on page 73 in the 
Reference Manual.

For example, to hide all the notes and print only errors and warnings, 
type the following: 

log_filter –enable
log_filter –hide_matches
log_filter –field type==Note

2. To save and reuse the filter commands, do the following:

– Type the log_filter commands in a Tcl file. 

– Source the file when you want to reuse the filters you set up. 

3. To print the results of the log_filter commands to a file, add the log_report 
command at the end of a list of log_filter commands.

log_report -print filteredMsg.txt



Handling Messages Chapter 6: Synthesizing and Analyzing the Results

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 205

This command prints the results of the preceding log_filter commands to 
the specified text file, and puts the file in the same directory as the main 
project file. The file contains the filtered messages, for example: 

@N MF138 Rom slaveControlSel_1 mapped in logic. Mapper Report 
wishbonebi.v (156) usbHostSlave.srr (819) 05:22:06 Mon Oct 18

@N(2) MO106 Found ROM, 'slaveControlSel_1', 15 words by 1 bits 
Mapper Report wishbonebi.v (156) usbHostSlave.srr (820)
05:22:06 Mon Oct 18

@N MO106 Found ROM, 'slaveControlSel_1', 15 words by 1 bits Mapper 
Report wishbonebi.v (156) usbHostSlave.srr (820) 05:22:06 Mon 
Oct 18

@N MF138 Rom hostControlSel_1 mapped in logic. Mapper Report 
wishbonebi.v (156) usbHostSlave.srr (821) 05:22:06 Mon Oct 18

@N MO106 Found ROM, 'hostControlSel_1', 15 words by 1 bits Mapper
Report wishbonebi.v (156) usbHostSlave.srr (822) 05:22:06 Mon
Oct 18

@N Synthesizing module writeUSBWireData Compiler Report 
writeusbwiredata.v (59) usbHostSlave.srr (704) 05:22:06 Mon Oct 18

Automating Message Filtering with a Tcl Script
The following example shows you how to use a synhooks Tcl script to automat-
ically load a message filter file when a project opens and to send email with 
the messages after a run.

1. Create a message filter file like the following. (See Filtering Messages in 
the Message Viewer, on page 202 or Filtering Messages from the 
Command Line, on page 204 for details about creating this file.)

log_filter -clear
log_filter -hide_matches
log_filter -field report=="ProASIC3E MAPPER"
log_filter -field type==NOTE
log_filter -field message=="Input *"
log_filter -field message=="Pruning *"
puts "DONE!"

2. Copy the synhooks.tcl file and set the environment variable as described 
in Automating Flows with synhooks.tcl, on page 514.

3. Edit the synhooks.tcl file so that it reads like the following example. For 
syntax details, see synhooks File Syntax, on page 516 in the Reference 
Manual.



LO

Chapter 6: Synthesizing and Analyzing the Results Handling Messages

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
206 Synopsys Confidential Information January 2020

– The following loads the message filter file when the project is opened. 
Specify the name of the message filter file you created in step 1. Note 
that you must source the file. 

proc syn_on_open_project {project_path} {
set filter filterFilename
puts "FILTER $filter IS BEING APPLIED"
source d:/tcl/filters/$filterFilename
}

– Add the following to print messages to a file after synthesis is done:

proc syn_on_end_run {runName run_dir implName} {
set warningFileName "messageFilename"
if {$runName == "synthesis"} {

puts "Mapper Done!"
log_report -print $warningFileName

set f [open [lindex $warningFileName] r]
set msg "" 
while {[gets $f warningLine]>=0} {

puts $warningLine
append msg $warningLine\n
}

close $f
– Continue by specifying that the messages be sent in email. You can 

obtain the smtp email packages off the web. 

source "d:/tcl/smtp_setup.tcl"
proc send_simple_message {recipient email_server subject body}{

set token [mime::initialize -canonical text/plain -string
$body]

mime::setheader $token Subject $subject
smtp::sendmessage $token -recipients $recipient -servers

$email_server
mime::finalize $token

}
puts "Sending email..."
send_simple_message {address1,address2} 

yourEmailServer subjectText> emailText
}

}
When the script runs, an email with all the warnings from the synthesis 
run is automatically sent to the specified email addresses. 



Handling Messages Chapter 6: Synthesizing and Analyzing the Results

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 207

Log File Message Controls
The log file message control feature allows messages in the current session to 
be elevated in severity (for example, promoted to an error from a warning), 
lowered in severity (for example, demoting a warning to a note), or suppressed 
from the log file after the next run through the Log File Filter dialog box. This 
dialog box is displayed by selecting Set Filter from the Messages window and 
clicking Log File Filter from the GUI.

Log File Filter Dialog Box
The Log File Filter dialog box is the primary control for changing a message 
priority or suppressing a message. When you initially open the dialog box, all 
of the messages from the log (srr) file for the active implementation are 
displayed in the upper section and the lower section is empty. To use the dialog 
box:

1. Select (highlight) the message to be promoted, demoted, or suppressed 
from the messages displayed in the upper section. 



LO

Chapter 6: Synthesizing and Analyzing the Results Handling Messages

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
208 Synopsys Confidential Information January 2020

2. Select the Suppress Message, Make Error, Make Warning, or Make Note button 
to move the selected message from the upper section to the lower 
section. The selected message is repopulated in the lower section with 
the Override column reflecting the disposition of the message according 
to the button selected.

Allowed Severity Changes
Allowed severity levels and preference settings for warning, note, and 
advisory messages are:

• Promote – warning to error, note to warning, note to error

• Demote – warning to note

• Suppress – suppress warning, suppress note, suppress advisory

Note: Normal error messages (messages generated by default) cannot 
be suppressed or changed to a lesser severity level. 

When using the dialog box:

• Use the control and shift keys to select multiple messages.

• If an srr file is not present (for example, if you are starting a new project) 
the table will be empty. Run the design at least once to generate an srr 
file.

• Clicking the OK button saves the message status changes to the project-
Name.pfl file in the project directory.

Message Reporting
The compiler and mapper must be rerun before the impact of the message 
status changes can be seen in the updated log file. 

When a projectName.pfl input file is present at the start of the run, the 
message-status changes in the file are forwarded to the mapper and compiler 
which generate an updated log file. Depending on the changes specified:

• If an ID is promoted to an error, the mapper/compiler stops execution at 
the first occurrence of the message and prints the message in the 
@E:msgID :messageText format



Handling Messages Chapter 6: Synthesizing and Analyzing the Results

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 209

• If an ID is promoted to a warning, the mapper/compiler prints the 
message in the @W:msgID :messageText format.

• If an ID is demoted to a note, the mapper/compiler prints the message 
in the @N:msgID :messageText format.

• If an ID is suppressed, the mapper/compiler excludes the message from 
the srr file.

Note: The online, error-message help documentation is unchanged by 
any message modification performed by the filtering mechanism. 
If a message is initially categorized as a warning in the synthesis 
tool, it continues to be reported as a warning in error-message 
help irrespective its promotion/demotion status.

Updating the projectName.pfl file
The projectName.pfl file in the top-level project directory stores the user 
message filter settings from the Log File Filter dialog box for that project. This 
file can be edited with a text editor. The file entry syntax is:

message_override -suppress ID [ID ...] | -error ID [ID ...] | -warning ID [ID ...] 
| -note ID [ID ...]

For example, to override the default message definition for note FX702 as a 
warning, enter:

message_override -warning FX702
You can also limit the number of occurrences for specified message IDs with 
the following syntax:

message_override [-limit value] [-count value]

For example, limit messages with IDs FX214 and FX271 to 100 each in each 
log file as follows:

message_override -limit {FX214 FX271} -count 100
Then, select the message filter file (.pfl) to be read for the project with the Read 
Message File option.



LO

Chapter 6: Synthesizing and Analyzing the Results Handling Messages

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
210 Synopsys Confidential Information January 2020

Note: After editing the pfl file, close and reopen the project to update 
the overrides.

messagefilter.txt File
A messagefilter.txt file in the implementation/syntmp directory lists any changes 
made to message priority or suppression through the Log File Filter dialog box. 
This file, which is only generated when changes are made to the default 
status of a message, can be accessed outside of the GUI without consuming a 
license.

Working with Downgradable Errors and Critical Warnings
You can temporarily change the classification for certain kinds of messages: 

You can downgrade or upgrade these messages from the GUI or through a Tcl 
command. 

Downgrading or Upgrading Messages from the GUI
1. Open the log file.

2. Right click within the log file and select Log File Message Filter from the 
pop-up menu to display the Log File Filter dialog box. 

3. Highlight the DE or CW message from the list of messages displayed at 
the top of the dialog box. You can only downgrade messages with a DE 
prefix, or upgrade messages with a CE prefix.

4. Depending on the message type selected:

Downgradable errors
(@DE) 

Can be downgraded to warnings. This is a small set of non-
fatal errors where you can temporarily postpone addressing 
the error and continue with the design flow and verification 
of other aspects of the design. 

Critical warnings
(@CW) 

Can be upgraded to errors. This small set of warnings 
represent critical problems. Elevating them to errors 
ensures that they are recognized and dealt with, because 
the error status forces the tool to stop. 



Handling Messages Chapter 6: Synthesizing and Analyzing the Results

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 211

– Click the Make Warning button to downgrade the error to a warning. 
This action moves the message from the top section of the message 
filter to the bottom section. The Override column in the bottom section 
displays the updated status for the message (Warning).

– Click the Make Error button to upgrade the critical warning to an error. 
This action moves the message from the top section of the message 
filter to the bottom section. The Override column in the bottom section 
displays the updated status for the message (Error).

5. To see the changes reflected, click the Run button. You can verify that 
the message is now treated as:

– A warning (the mapping operation continues past the initial point of 
the error condition)

– An error (the operation stops at the initial point of the error).

6. To revert the DE or CW message:

– Click on one of the downgraded DE warning IDs in the report and 
select Log File Message Filter from the pop-up menu to display the Log 
File Filter dialog box. This reverts the warning message to an error.

– Click on one of the upgraded CW warning IDs in the report and select 
Log File Message Filter from the pop-up menu to display the Log File Filter 
dialog box. This reverts the error message to a warning.

7. From the dialog box, highlight the DE or CW message from the list of 
messages displayed at the top of the dialog box. Click either the: 

– Make Error button to return the message to its original error status.

– Make Warning button to return the message to its original critical 
warning status.

Modifying the status of a message does not affect the message string. A 
message originally categorized as an error continues to be reported as an 
error regardless of its user-assigned status.

Downgrading or Upgrading Messages with a Tcl Command
Type the message_override command in the Tcl script window to change the 
classification of DE and CW messages. 

1. To downgrade DE errors or upgrade CW warnings, use the appropriate 
message_override command: 



LO

Chapter 6: Synthesizing and Analyzing the Results Handling Messages

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
212 Synopsys Confidential Information January 2020

message_override -warning DEmessageID
message_override -error CWmessageID

Enter the message ID without the @ prefix, as shown above. 

2. To see the changes reflected, rerun the state from the database where 
you changed the message classification. 

After you have fixed the cause of the upgraded warning (critical warning) 
or completed the rest of the flow (downgradable error), you must change 
the message classification back to its original status. 

3. To revert the messages back to their original status, use the appropriate 
message_override command: 

message_override -error DEmessageID
message_override -warning CWmessageID

4. Rerun again to confirm that the message status has reverted to the 
original. 



Using Continue on Error Chapter 6: Synthesizing and Analyzing the Results

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 213

Using Continue on Error 
The Continue on Error (CoE) feature significantly reduces the overall synthesis 
runtime by reducing the number of synthesis iterations. This can be a signif-
icant advantage in prototyping and the handling of large designs.

Using Continue on Error for Compile Point Synthesis
By default, the tool stops the synthesis process if it encounters an error 
within a compile point. If you enable the Continue on Error feature on a compile 
point design, the tool black-boxes any compile points with errors and 
continues to synthesize the rest of the design without generating an error. 

The following procedure describes the details, which varies according to the 
synthesis tool used. 

1. Enable Continue on Error for compile-point synthesis in one of the following 
ways: 

– Enable Continue on Error on the Options tab of the Implementation Options 
dialog box.

– Enable Continue on Error on the left side of the Project view.

– Enter a set_option -continue_on_error option with a value of 1 at the Tcl 
script prompt. 

– Select Options->Configure Compile Point Process from the top menu and 
enable the Continue on Error checkbox. 



LO

Chapter 6: Synthesizing and Analyzing the Results Using Continue on Error

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
214 Synopsys Confidential Information January 2020

2. Compile the design and ensure it is error-free before continuing. 

The Synplify Pro CoE functionality does not extend to ignoring compiler 
errors, but only affects technology mapping. You must identify and fix 
compiler errors before running synthesis with CoE. 

3. Synthesize the design. The CoE functionality differs, according to the 
tool used for synthesis. 

– With Synplify Pro logic synthesis, the CoE functionality only affects 
the mapper, not the compiler. 

After compilation, the synthesis tools black-box compile points with 
errors and continue to synthesize other compile points. The following 
figure shows the black_box property attached to a compile point. 



Using Continue on Error Chapter 6: Synthesizing and Analyzing the Results

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 215

The tool reports warnings like the following in the log file for the 
ignored errors:

@W:: m1.v(1) | Mapping of compile point m1 - Unsuccessful 
@W:: m1.v(1) | Converting compile point m1 as black_box - 

as continue_on_error is set 
Information about converted compile points is also reported in the 
Compile Points Summary: 

4. Identify and fix errors before re-synthesizing the design. 

Here are some techniques to continue synthesizing your design: 

– Designate the error modules as compile points and re-run synthesis.

– In a hierarchical design, export the error module as a sub-project and 
fix the problem in isolation. 

– In a hierarchical design, designate the error module as a compile 
point or a black box in the parent project. 



LO

Chapter 6: Synthesizing and Analyzing the Results Using Continue on Error

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
216 Synopsys Confidential Information January 2020



Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 217

C H A P T E R  7

Analyzing with HDL Analyst 

This chapter describes how to analyze logic in the HDL Analyst and FSM 
Viewer. 

See the following for detailed procedures:

• Working in the Schematic, on page 218

• Exploring Design Hierarchy, on page 239

• Finding Objects, on page 247

• Crossprobing, on page 258

• Analyzing With the HDL Analyst Tool, on page 266

• Working in the Standard Schematic, on page 289

• Exploring Design Hierarchy (Standard), on page 303

• Finding Objects (Standard), on page 311

• Crossprobing (Standard), on page 324

• Analyzing With the Standard HDL Analyst Tool, on page 332

• Using the FSM Viewer (Standard), on page 348



LO

Chapter 7: Analyzing with HDL Analyst Working in the Schematic

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
218 Synopsys Confidential Information January 2020

Working in the Schematic 
The HDL Analyst tool includes single-page schematics, which can help you 
graphically analyze and navigate your entire design easier. This section 
describes basic procedures you use in the schematics. These procedures 
include the following topics:

• Clone Schematic – See Cloning Schematics, on page 221

• Instance Groups – See Grouping Objects in the Schematic, on page 231

• Partial Dissolve – See Grouping Objects in the Schematic, on page 231

• Net Based Filtering – See Filtering Schematics, on page 271

• Unfilter – See Filtering Schematics, on page 271

• Multi-threaded Find – See Browsing to Find Objects in HDL Analyst 
Views, on page 247

• New Mouse Strokes with Cancel Display– See Mouse Stroke Conven-
tions, on page 221

• New Push View Tab – See Cloning Schematics, on page 221

• Peek – See Viewing Design Hierarchy and Context, on page 266

• Improved Bus Display and Handling – See Dissolving and Partial 
Dissolving of Buses and Pins, on page 279

For information on specific tasks like analyzing critical paths, see the 
following sections:

• Traversing Design Hierarchy with the Hierarchy Browser, on page 239

• Exploring Object Hierarchy with Push/Pop Commands, on page 242

• Crossprobing, on page 258

• Analyzing With the HDL Analyst Tool, on page 266

Opening the Views
The procedure for opening a view is the same at different design stages; the 
main difference is the content that is available at the different design 
database states. 



Working in the Schematic Chapter 7: Analyzing with HDL Analyst

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 219

1. Start at the database state you want. 

2. To enable the new HDL Analyst tool, use one of the following methods:

– From the UI, Select HDL Analyst->Use New HDL Analyst option.

– From the UI: Select Options->Use New HDL Analyst option.

By default, this option is enabled.

3. Open the schematic using one of the following commands:

All schematic views have the schematic on the right and a pane on the left 
that contains a hierarchical list of the objects in the design. This pane is 
called the Hierarchy Browser. 

RTL view Start with a compiled design.

Technology view Start with a mapped (synthesized) design.

Hierarchical RTL or 
Technology view 

Use one of these methods: 
• Select HDL Analyst->RTL->Hierarchical View. 
• Click the RTL View icon ( ) (a plus sign inside a 

circle).
• Double-click the srs file in the Implementation 

Results view.
To open a flattened RTL view, select HDL Analyst->RTL-
>Flattened View. 

Hierarchical 
Technology view 

Use one of these methods: 
• Select HDL Analyst ->Technology->Hierarchical View. 
• Click the Technology View icon (AND gate icon ). 
• Double-click the srm file in the Implementation 

Results view.

Flattened RTL or 
Technology view 

Select HDL Analyst->RTL->Flattened View or HDL Analyst-> 
Technology->Flattened View



LO

Chapter 7: Analyzing with HDL Analyst Working in the Schematic

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
220 Synopsys Confidential Information January 2020

Dataflow View
Both the compiled and mapped views have a Dataflow View. Use this view to 
display objects from a left to right datapath flow as shown above. You can 
display a Clock View as well.

Clock View
To display all sequential elements connected to clock nets and debug the 
clocks in the design use the view selector. Select Clocks View from the drop-
down menu in the upper right corner of the schematic view. Clock nets are 
displayed with the color green.



Working in the Schematic Chapter 7: Analyzing with HDL Analyst

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 221

Mouse Stroke Conventions
Use the mouse strokes to control navigation and the display, which are listed 
at the bottom of the schematic window. They include:

• Zoom – Ctrl-scroll wheel

• Zoom Area – Ctrl-drag

• Pan – Middle-click drag or Alt-drag

• Push – Double-click

• Pop – Double-click on an empty space

• Cancel Display – Press Esc
(For large designs, you can cancel displaying the netlist but still use the 
netlist from the hierarchy browser, Tcl window, and Find dialog box.)

Cloning Schematics
Most operations performed in any of the HDL Analyst views ( Clock View or 
Dataflow View) are displayed in the current view. To create a new view of the 
netlist, use the clone commands.

1. To clone the current view displayed, right-click and select Clone Schematic 
from the drop-down menu. This view opens in a new window. You can 
open multiple clone views.



LO

Chapter 7: Analyzing with HDL Analyst Working in the Schematic

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
222 Synopsys Confidential Information January 2020

Tcl equivalent: analyst clone_view

To close a clone view: analyst close_design designID. 
For example: analyst close_design d:3

2. To push into an object and create a new view, select an object then 
right-click and Push in New Tab from the drop-down menu. For more 
information, see Exploring Object Hierarchy with Push/Pop Commands, 
on page 242.

3. To filter objects and create a new view, select the objects then right-click 
and select Filter in a New Tab from the drop-down menu. For more 
information, see Filtering Schematics, on page 271.

Viewing Object Properties
There are a few ways in which you can view the properties of objects.

1. To temporarily display the properties of a particular object, hold the 
cursor over the object.

2. Select the object, right-click, and select Properties. The properties and 
their values are displayed in a table. 

For example, you can view the properties for instances and ports as 
shown below.



Working in the Schematic Chapter 7: Analyzing with HDL Analyst

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 223

Similarly, you can view the properties for pins and nets.



LO

Chapter 7: Analyzing with HDL Analyst Working in the Schematic

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
224 Synopsys Confidential Information January 2020

3. You can copy any number of fields from the Properties dialog box and 
paste the properties to the Tcl window or a text file from within the tool. 

For example, use this field with the collection commands to identify 
groups of objects in the schematic.



Working in the Schematic Chapter 7: Analyzing with HDL Analyst

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 225

Viewing Objects with Constant Values
You can display constants and view their constant values. Individual 
functions of the constant are displayed. Use tool tips to see the full value for 
the constant.



LO

Chapter 7: Analyzing with HDL Analyst Working in the Schematic

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
226 Synopsys Confidential Information January 2020

Viewing Objects in a Source File
The HDL Analyst view provides various ways to view objects in a source file. 
For example:

1. Select an object in the schematic view. 

2. Then, right-click and select one of the following:



Working in the Schematic Chapter 7: Analyzing with HDL Analyst

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 227

– View Instance in Source – Opens the RTL source file and finds the 
instantiated instance selected.

– View Module in Source – Opens the RTL source file and finds the 
instantiated module selected.



LO

Chapter 7: Analyzing with HDL Analyst Working in the Schematic

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
228 Synopsys Confidential Information January 2020

– View dependent source file list – A source file (moduleName_source.txt) 
containing the specified module is created in the dm directory of the 
Implementation Results directory.

– View source file list – A source file (designName_source.txt) containing the 
specified modules for the design is created in the dm directory of the 
Implementation Results directory.



Working in the Schematic Chapter 7: Analyzing with HDL Analyst

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 229

Selecting Objects in the Schematic
For mouse selection, standard object selection rules apply:

To select ... Do this ...

Single objects Click the object in the schematic, or click the object name in the 
Hierarchy Browser. 
Tcl equivalent: select {i:instanceName}
For a net: select {n:netName}
For a pin: select {t:pinName}
For a port: select {p:portName)

Multiple objects Use one of these methods:
• Draw a rectangle around the objects. 
• Select an object, press Ctrl, and click other objects you want to 

select.
• Select multiple objects in the Hierarchy Browser. See 

Browsing With the Hierarchy Browser, on page 247. 
• Use Find to select the objects you want. See Finding Objects, 

on page 247.
Tcl equivalent: select {{i:instance1} {i:instance2}} 
• Select all instances in the current view or press Ctrl+A:
Tcl equivalent: select -instances
• Select all primitives in the current view or press Ctrl+Alt+A:
Tcl equivalent: select -primitives

Objects by type 
(instances, 
ports, nets)

Use Find to select the objects (see Browsing With the Find 
Command, on page 313), or use the Hierarchy Browser, which 
lists objects by type. 



LO

Chapter 7: Analyzing with HDL Analyst Working in the Schematic

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
230 Synopsys Confidential Information January 2020

The HDL Analyst view highlights selected objects in red. If you have other 
windows that are cloned, the selected object is highlighted in the other 
windows as well (crossprobing).

Selecting a Sequence of Objects in the Schematic
You can select a series of objects in the schematic, then traverse back and 
forth through these selections in the order they were chosen. Use the 
backwards and forwards icons ( ) to move between each selection. This 
is handy to help you undo or redo any changes with your selections. Once 
you select an operation, the selection becomes unavailable unless the view 
does not change.

When an object is selected in the schematic, you can use the following 
command to print the name of the object (instance, port, pin, or net):

analyst get_selected [-inst] [-net] [-port] [-pin]

In the following example, two instances are selected. Specify the following 
command to display their names in the Tcl window:

% analyst get_selected -inst
{i:dmux} {i:special_regs}

This command returns a Tcl list of selected objects in the current view.

No objects 
(deselect all 
currently 
selected objects)

Click the left mouse button in a blank area of the schematic. 
Deselected objects are no longer highlighted.
Tcl equivalent: select -clear

To select ... Do this ...



Working in the Schematic Chapter 7: Analyzing with HDL Analyst

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 231

Zooming in on Selected Objects
Once you have selected objects in the schematic view, you can automatically 
zoom in on these objects. To do this, highlight the required objects, then 
right-click and select Zoom Selected from the drop-down menu.

Grouping Objects in the Schematic
You can group objects in the schematic. Sometimes the HDL Analyst tool 
automatically determines groups shown with the color purple below. When 
you push into the group block, the content of its objects is displayed.



LO

Chapter 7: Analyzing with HDL Analyst Working in the Schematic

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
232 Synopsys Confidential Information January 2020

The HDL Analyst tool automatically groups instances with similar names at 
all levels of hierarchy, when you enable the Allow Automatic Grouping option on 
the HDL Analyst Options dialog box. For example, suppose there are three regis-
ters with the names out_reg[1], out_reg[2], and out_reg[3]. A group will be created 
with the registers having the name out_reg[3:1].

To create your own groups:

1. Select the specified objects in the view.

2. Right-click and select the Group option from the pop-up menu.

This creates a dummy hierarchy that groups the objects together, which 
is only displayed in the HDL Analyst GUI. It does not generate any 
hierarchical changes to the design.



Working in the Schematic Chapter 7: Analyzing with HDL Analyst

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 233

3. Specify a group name in the dialog box that pops up.

This forms a group of objects in group1 that is displayed with the purple 
block. 



LO

Chapter 7: Analyzing with HDL Analyst Working in the Schematic

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
234 Synopsys Confidential Information January 2020

4. Push into the purple block to see the grouped objects.

5. To ungroup selections, right-click and select Dissolve from the drop-down 
menu.



Working in the Schematic Chapter 7: Analyzing with HDL Analyst

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 235

6. To remove individual instances of a group, right-click and select Partial 
Dissolve from drop-down menu. A dialog box is displayed where you can 
select the items to remove.

7. User-created groups are not saved when you close and re-open the same 
netlist.

Moving Between Views in a Schematic Window
When you filter or expand your design, you move through a number of 
different design views in the same schematic window. For example, you might 
start with a view of the entire design, then filter an object and finally expand a 
connection in the filtered view, for a total of three views. You can also move 
back after flattening a view.

1. To move back to the previous view, click the Back icon ( ).

The software displays the last view.



LO

Chapter 7: Analyzing with HDL Analyst Working in the Schematic

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
236 Synopsys Confidential Information January 2020

2. To move forward again, click the Forward icon ( ). 

The software displays the next view in the display history. 

Setting Schematic Preferences
You can set various preferences for the schematic from the user interface. 

1. Select either:

– HDL Analyst->Schematic Options
– Options->Schematics Options 

For a description of all the options on this form, see HDL Analyst 
Options Command, on page 424  in the Command Reference Manual.

– Also, for your convenience you can simply select the Schematic Options 
button from the top of the HDL Analyst view.



Working in the Schematic Chapter 7: Analyzing with HDL Analyst

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 237

2. The table details the following operations: 

3. Enable the Show design out of date popup message option to ensure that the 
correct version of the HDL Analyst view is being displayed. You might be 

To ... Do this ...

Specify how you want the 
schematic to display.

Select Clock View or Dataflow View (default).

Specify how the tool determines 
the detailed routing for the 
design.

Select Standard (default) or Quick (direct 
connection).

Show names for the view, 
instances, ports, and pins.

Enable any of the following:
• Show View Names
• Show Instance Names
• Show Port Names
• Show Pin Names

Show the out of date popup 
message for the design.

When enabled, shows the design out of date 
popup message if the design file has 
changed while the HDL Analyst view was 
opened.

Specify limits when displaying 
or expanding instances.

Set the limit and select Enabled.

Specify a zoom factor for labels 
displayed in the schematic 
view.

Select a value between 1 and 10, where 
labels are shown increasing in size 
respectively. Changes will appear in the next 
opened schematic view. The default is 2.

Determine if you want 
automatic grouping for the 
design.

When Allow Automatic Grouping is enabled, the 
tool automatically groups instances with 
similar names at every level in the design.



LO

Chapter 7: Analyzing with HDL Analyst Working in the Schematic

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
238 Synopsys Confidential Information January 2020

looking at inconsistent results, if the design netlist file (srs) has changed. 
You can choose to close the current HDL Analyst view and reload the 
updated version.

When you select this option, the following warning message is displayed 
at the bottom of this dialog box.



Exploring Design Hierarchy Chapter 7: Analyzing with HDL Analyst

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 239

Exploring Design Hierarchy 
Schematics generally have a certain amount of design hierarchy. You can 
move between hierarchical levels using the Hierarchy Browser mode. For 
additional information, see Analyzing With the HDL Analyst Tool, on 
page 266. See Traversing Design Hierarchy with the Hierarchy Browser, on 
page 239.

Traversing Design Hierarchy with the Hierarchy Browser
The Hierarchy Browser is the list of objects on the left side of the schematic 
view. It is best used to get an overview, or when you need to browse and find 
an object. If you want to move between design levels of a particular object, 
using the Push command is more direct. Refer to Exploring Object Hierarchy 
with Push/Pop Commands, on page 242 for details.

The hierarchy browser allows you to traverse and select the following:

• Instances or Groups

• Ports

• Internal nets

The browser lists the objects by type. Use the expand ( ) and collapse ( ) 
signs to ascend or descend the hierarchy.



LO

Chapter 7: Analyzing with HDL Analyst Exploring Design Hierarchy

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
240 Synopsys Confidential Information January 2020

1. You can perform some similar operations as done in the schematic view, 
such as filtering an object from the Hierarchy Browser. For example, 
highlight an instance, then right-click and select Filter as shown below.



Exploring Design Hierarchy Chapter 7: Analyzing with HDL Analyst

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 241

2. You can also crossprobe to instances and modules in the source file 
from the Hierarchy Browser. Right-click and select either:

– View Instance in Source
– View Module in Source

For information about analyzing timing details, see 
Chapter 8, Analyzing Timing. 

To extract logic for a partially dissolved net:

– Select a partially selected net from the hierarchy browser.

– Right-click and select Extract Net from the drop-down menu in the HDL 
Analyst view.



LO

Chapter 7: Analyzing with HDL Analyst Exploring Design Hierarchy

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
242 Synopsys Confidential Information January 2020

Exploring Object Hierarchy with Push/Pop Commands
To view the internal hierarchy of a specific instance, use the Push/Pop 
commands from the drop-down menu or mouse strokes. When combined 
with other commands like filtering and expansion commands, Push/Pop can 
be a very powerful tool for isolating and analyzing logic. See Filtering 
Schematics, on page 271 and Expanding Pin and Net Logic, on page 273 for 
details about filtering and expansion. See the following sections for informa-
tion about pushing down and popping up in hierarchical design objects:

– Pushing into Objects, on page 243

– Popping up a Hierarchical Level, on page 245



Exploring Design Hierarchy Chapter 7: Analyzing with HDL Analyst

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 243

Pushing into Objects
In the schematic, you can push into instances and view the lower-level 
hierarchy. You can use a mouse stroke or the command to push into objects:

1. To move down a level (push into an object) with a mouse stroke, put 
your cursor near the top of the object, hold down the right mouse 
button, and draw a vertical stroke from top to bottom. You can push 
into the following objects; see step 3 for examples of pushing into 
different types of objects.

– Hierarchical instances. They can be displayed as pale yellow boxes 
(opaque instances).

– Technology-specific primitives. The primitives are listed in the 
Hierarchy Browser in the schematic, under i:instanceNames -
>Primitives.

– Instances formed into a group.

The remaining steps show you how to use the icon or command to push 
into an object. 

2. Enable the Push/Pop command by doing one of the following:

– Double-click the object.

– Right-click in the view and select Push/Pop from the drop-down menu.

– Use the mouse strokes.



LO

Chapter 7: Analyzing with HDL Analyst Exploring Design Hierarchy

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
244 Synopsys Confidential Information January 2020

After pushing into an instance, the following schematic is displayed. 
Notice the purple block that groups gates with similar names together. 
You can push into this block as well.

3. To push (descend) into an object, double-click the hierarchical object. 
The following figure shows the result of pushing into a ROM.



Exploring Design Hierarchy Chapter 7: Analyzing with HDL Analyst

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 245

Popping up a Hierarchical Level
1. To move up a level (pop up a level), put your cursor anywhere in the 

design, 

– Use the Pop Hierarchy icon ( ).

– Hold down the right mouse button, and draw a vertical mouse stroke, 
moving from the bottom upwards.



LO

Chapter 7: Analyzing with HDL Analyst Exploring Design Hierarchy

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
246 Synopsys Confidential Information January 2020

The software moves up a level, and displays the next level of hierarchy. 

2. Alternatively, you can double-click on any whitespace in the view to pop 
up a level from where you pushed into the hierarchy.



Finding Objects Chapter 7: Analyzing with HDL Analyst

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 247

Finding Objects 
In the schematics, you can use the Hierarchy Browser or the Find command 
to find objects, as explained in these sections:

• Browsing to Find Objects in HDL Analyst Views, on page 247

• Using Wildcards with the Find Command, on page 257

Browsing to Find Objects in HDL Analyst Views
You can always zoom in to find an object in the schematic. Use Zoom Fit to 
quickly fit all objects into the schematic. The following procedure shows you 
how to browse through design objects and find an object at any level of the 
design hierarchy. You can use the Hierarchy Browser or the Find command to 
do this. If you are familiar with the design hierarchy, the Hierarchy Browser 
can be the quickest method to locate an object. The Find command is best 
used to graphically browse and locate the object you want. 

Browsing With the Hierarchy Browser
1. In the Hierarchy Browser, click the name of the net, port, or instance 

you want to select. 

The object is highlighted in the schematic. 

2. To select a range of objects, you can press and hold the Shift key while 
clicking the selected objects in the range.

The software selects and highlights all the objects in the range. 

3. If the object is on a lower hierarchical level, do either of the following:

– Expand the appropriate higher-level object by clicking the collapsed 
symbol next to it, and then select the object you want. 

– Push down into the higher-level object, and then select the object 
from the Hierarchy Browser. 

The selected object is highlighted in the schematic. However, you may 
have to filter the object to view it in the design hierarchy.

4. To select all objects of the same type, select them from the Hierarchy 
Browser. For example, you can find all the nets in your design. 



LO

Chapter 7: Analyzing with HDL Analyst Finding Objects

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
248 Synopsys Confidential Information January 2020

Browsing With the New Hierarchy Browser
Beta

Using the HDL Analyst tool, you can display a hierarchy of design objects in 
the Hierarchy Browser. Typically, the time taken to display a design hierarchy 
depends on the size of the design. 

To speed up this process, the new Hierarchy Browser traverses the entire 
(text-based) netlist to quickly extract hierarchical instance data. This helps to 
display the entire netlist hierarchy quickly and also facilitates the viewing of 
custom instances on demand, instead of traversing down the design 
hierarchy. This flow is advantageous in large designs, to display the hierarchy 
and view any instance, quickly.

To enable the new Hierarchy Browser, follow these steps:

1. To set preference in the schematic from the user interface, select one of 
the following:

– HDL Analyst->Schematic Options

– Options->Schematics Options 

The HDL Analyst Options dialog box is displayed.

2. Enable the [BETA] Use new hierarchy browser option on the HDL Analyst 
Options dialog box. A warning is displayed, as shown below:



Finding Objects Chapter 7: Analyzing with HDL Analyst

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 249

When you enable the Use new hierarchy browser option in the HDL Analyst 
Options dialog box, the HDL Analyst tool displays the RTL schematic at 
the instance level (Instance Hierarchy tab) and design level (Design View tab), 
when the next schematic displayed.

The Instance Hierarchy tab is visible only when the Use new hierarchy browser 
option is enabled in the Schematic Options (HDL Analyst Options) dialog box.

3. Click OK to close the dialog box. Now each design you view will follow the 
updated option settings.

4. Select the RTL View icon or select RTL->Hierarchical View from the HDL-
Analyst menu, to view the RTL view of the design.



LO

Chapter 7: Analyzing with HDL Analyst Finding Objects

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
250 Synopsys Confidential Information January 2020

5. Open the instance by one of these methods:

– Double-click on the instance.

– Right-click and select Open Instance View.



Finding Objects Chapter 7: Analyzing with HDL Analyst

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 251

Browsing an Object by Filtering or Loading
1. To filter a particular instance, type the instance name into the text box 

available below the Hierarchy Browser pane as shown below: 

The instance names become visible in the drop-down as you continue to 
type.

2. Choose the instance and click Filter to display the instance in the RTL 
schematic view.

3. To search through a hierarchical path, select From Top. If this is not 
checked, the command searches the entire design.

4. To load an instance from the Hierarchy Browser, right-click on the 
desired instance and select the Open Instance option. 

The instance is displayed in the RTL schematic view.

The Instance Hierarchy tab is visible only when the Use new hierarchy browser 
option is enabled in the Schematic Options (HDL Analyst Options) dialog box.



LO

Chapter 7: Analyzing with HDL Analyst Finding Objects

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
252 Synopsys Confidential Information January 2020

New Hierarchy Browser Limitations:
Consider these limitations before using the new Hierarchy Browser flow:

• Currently, usable only with compiled-stage/mapped-stage netlists.

• In map designs, primitives and black boxes appear in the hierarchy but 
not in the RTL view.



Finding Objects Chapter 7: Analyzing with HDL Analyst

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 253

Certain view options while filtering or loading an instance from the new 
Hierarchy Browser do not work correctly.Browsing With Find Command

1. In a schematic, select the search icon ( ) or press Ctrl-f to open the Find 
dialog box. 

2. Do the following in the dialog box:

– Select the type of objects to find: instances, nets, ports, pins, and/or 
symbols.

– Specify how you want the search to occur: for all hierarchies and/or 
with the * wildcard to search across the hierarchy separator.

– Specify whether to search using case-sensitive designations for 
objects.

– Start the search either from the top level or current level of the 
schematic view. Use the tool tip in this dialog box to display the 
current level starting point.

When searching, note the following:

– Double-click on a selected object from the dialog box to filter it in the 
schematic view. 

– Use the Space separated patterns field to search for multiple patterns, 
specifying the patterns with spaces in the search field.

– Once multiple objects have been select from the dialog box, you can 
highlight them, then copy and paste them to the Tcl window or in a 
text file.



LO

Chapter 7: Analyzing with HDL Analyst Finding Objects

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
254 Synopsys Confidential Information January 2020

3. Select on an object displayed in the dialog box below, then click the 
Select button. Click the Filter button, to select the specified objects and 
filter them in the HDL Analyst view. 

Click the Close button to end the Find search. Then, you can use the Filter 
command to display the objects.

When the search style options (Search all hierarchies and ".",can cross the 
hierarchy separator) are not enabled, the software searches for objects at 
the top level.

4. You can filter on the results found for objects based on the Property Filter 
field and using the search patterns specified in the Space separated 
patterns field. For example, suppose you want to search for the 
@is_hierarchical property for the design. Specify the pattern as shown in 
the following dialog box and click Find. The results are displayed below:



Finding Objects Chapter 7: Analyzing with HDL Analyst

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 255

Select and filter as needed.

5. If you enable the Append option, objects selected in the current display 
window are appended to each other when you click the Select or Select All 
button. Otherwise, objects will be overridden after each selection.



LO

Chapter 7: Analyzing with HDL Analyst Finding Objects

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
256 Synopsys Confidential Information January 2020

6. You can also search for multiple patterns, then filter them in the 
schematic view by clicking the Filter button.

7. If you determine that the search is taking too long to run, notice that the 
Find button changes to Stop. Click Stop.



Finding Objects Chapter 7: Analyzing with HDL Analyst

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 257

The multi-threaded Find command can be interrupted and canceled once 
the search term has been identified. If you let the search complete, you 
will see Finishing and Done appearing under the display window.

Using Wildcards with the Find Command
Use the following wildcards when you search the schematics:

* The asterisk matches any sequence of characters. 

? The question mark matches any single character, but not the hierarchy 
separator by default.

. The dot explicitly matches a hierarchy separator, so type one dot for each level 
of hierarchy. To use the dot as a pattern and not a hierarchy separator, type a 
backslash before the dot: \.



LO

Chapter 7: Analyzing with HDL Analyst Crossprobing

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
258 Synopsys Confidential Information January 2020

Crossprobing 
Crossprobing is the process of selecting an object in one view and having the 
object or the corresponding logic automatically highlighted in other views. 
Crossprobing helps you visualize where coding changes or timing constraints 
might help to reduce area or improve performance. 

This section describes how to crossprobe from different views. It includes the 
following:

• Crossprobing within a View, on page 258

• Crossprobing from an HDL Analyst View, on page 259

• Crossprobing to the Source Code, on page 261

• Crossprobing from the Text Editor Window, on page 263

• Crossprobing from the Log File, on page 265

Crossprobing within a View
Selecting an object name in the Hierarchy Browser highlights the object in 
the schematic, and vice versa. 

In this example, when you select the DECODE module in the Hierarchy 
Browser, the DECODE module is automatically selected in the view.

Selected Object Highlighted Object

Instance in schematic (single-click) Module icon in Hierarchy Browser

Net in schematic Net icon in Hierarchy Browser

Port in schematic Port icon in Hierarchy Browser

Logic icon in Hierarchy Browser Instance in schematic

Net icon in Hierarchy Browser Net in schematic

Port icon in Hierarchy Browser Port in schematic



Crossprobing Chapter 7: Analyzing with HDL Analyst

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 259

Crossprobing from an HDL Analyst View
To crossprobe from the schematic to other open views or the source code 
files, select the object by clicking on it.

The software automatically highlights the object in all open views. If the open 
view is a schematic, the software highlights the object in the Hierarchy 
Browser on the left as well as in the schematic. If the highlighted object is in 
another hierarchy of a schematic, the view does not automatically track to 
the hierarchy. You may have to filter the schematic.

Crossprobing Description

Between HDL Analyst views You can crossprobe:
• Between the compiled and mapped views
• Between the compiled/mapped and hierarchy 

browser views

To the source code For details, see Crossprobing to the Source Code, 
on page 261

From the text editor For details, see Crossprobing from the Text 
Editor Window, on page 263

From the log file For details, see Crossprobing from the Log File, 
on page 265



LO

Chapter 7: Analyzing with HDL Analyst Crossprobing

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
260 Synopsys Confidential Information January 2020

To crossprobe from the schematic to a source file when the source file is not 
open, the instance names must be the same. Notice that when you hover over 
an instance name in the schematic, it turns blue. You can click on this link, 
to automatically open the editor window of the source code file and highlight 
the appropriate code as shown below. A message is generated if a match 
cannot be found.



Crossprobing Chapter 7: Analyzing with HDL Analyst

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 261

Crossprobing to the Source Code 
You can easily crossprobe instances or modules in the HDL Analyst view to 
the source code. To do this, choose either to:

• Highlight an instance in the HDL Analyst view, then right-click and 
select View Instance in Source from the drop-down menu. The tool 
automatically crossprobes to this instance in the source code.



LO

Chapter 7: Analyzing with HDL Analyst Crossprobing

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
262 Synopsys Confidential Information January 2020

• Highlight a module in the HDL Analyst view, then right-click and select 
View Module in Source from the drop-down menu. The tool automatically 
crossprobes to this module in the source code.



Crossprobing Chapter 7: Analyzing with HDL Analyst

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 263

Note that you can crossprobe to instances and modules in the source code 
from the Hierarchy Browser as well. Highlight an object, then right-click and 
select View Instance in Source or View Module in Source from the drop-down menu.

Crossprobing from the Text Editor Window
To crossprobe source in the text editor window or from the log file to a 
schematic, use this procedure. You can use this method to crossprobe from 
any text file with objects that have the same instance names as in the 
synthesis software. 

1. Open the schematic to which you want to crossprobe. 

2. Select the appropriate portion of text in the Text Editor window. In some 
cases, it may be necessary to select an entire block of text to crossprobe.



LO

Chapter 7: Analyzing with HDL Analyst Crossprobing

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
264 Synopsys Confidential Information January 2020

3. You can choose either to:

– Highlight the objects in the path, right-click and select Filter in Analyst 
from the drop-down menu. The tool automatically filters the 
schematic so that you see just the selected objects in the view.

– Highlight the objects in the path, right-click and select Select in Analyst 
from the drop-down menu. You might have to filter the selected 
objects to see them displayed in the schematic.

For example:



Crossprobing Chapter 7: Analyzing with HDL Analyst

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 265

Crossprobing from the Log File
The log file contains handy links, such as, clock trees driving clock pins of 
sequential elements and worst paths for the design to the HDL Analyst view. 
For example:

• Click on the View Worst Path in Analyst link in the log file.

• The schematic for this critical path is automatically displayed in the 
mapped view shown below.



LO

Chapter 7: Analyzing with HDL Analyst Analyzing With the HDL Analyst Tool

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
266 Synopsys Confidential Information January 2020

Analyzing With the HDL Analyst Tool
The HDL Analyst tool is a graphical productivity tool that helps you visualize 
your synthesis results. It displays schematics of the design at different 
stages, allowing you to graphically view and analyze your design. At an early 
design stage, the schematic displays high-level structures like RAM, ROM, 
operators, and FSM as abstractions. Later in the cycle, these structures are 
converted to gates and mapped to technology-specific resources.

To analyze information or compare views with the log file, the FSM view, and 
the source code, you can use techniques like crossprobing, flattening, and 
filtering. See the following for more information about analysis techniques. 

• Viewing Design Hierarchy and Context, on page 266

• Filtering Schematics, on page 271

• Expanding Pin and Net Logic, on page 273

• Dissolving and Partial Dissolving of Buses and Pins, on page 279

• Flattening Schematic Hierarchy, on page 283

• Using the FSM Viewer, on page 285

For additional information about navigating the HDL Analyst views or using 
other techniques like crossprobing, see the following:

• Working in the Schematic, on page 218

• Exploring Design Hierarchy, on page 239

• Finding Objects, on page 247

• Crossprobing, on page 258

Viewing Design Hierarchy and Context
Most large designs are hierarchical, so the software provides tools that help 
you view hierarchy details or put the details in context. Alternatively, you can 
browse and navigate hierarchy with the Push/Pop command, or flatten the 
design to view internal hierarchy.



Analyzing With the HDL Analyst Tool Chapter 7: Analyzing with HDL Analyst

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 267

This section describes how to use interactive hierarchical viewing operations 
to better analyze your design. Automatic hierarchy viewing operations that 
are built into other commands are described in the context in which they 
appear. 

1. To view the internal logic of instances in your design, do either of the 
following:

– To view the logic of an individual instance, push into it. This 
generates a new schematic with the internal details. Click the Back 
icon to return to the previous view. 

– To view the logic of all instances in the design, select all the required 
instances and right-click then select Peek. This command lets you see 
internal logic in content, by adding the internal details to the current 
schematic. If the view is too cluttered with this option on, filter the 
view (see Filtering Schematics, on page 271) or push into the 
primitive. Click the Back icon to return to the previous view after 
filtering or pushing into the object.

The following figure compares these two methods:



LO

Chapter 7: Analyzing with HDL Analyst Analyzing With the HDL Analyst Tool

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
268 Synopsys Confidential Information January 2020

2. Suppose you just used the peek option to see the internal logic of an 
instance. To return back to the schematic state before using peek and 
while the peek objects are still highlighted, right-click and select Hide 
Contents from the drop-down menu.



Analyzing With the HDL Analyst Tool Chapter 7: Analyzing with HDL Analyst

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 269

3. To view the internal logic of a hierarchical instance, you can push into 
the instance, dissolve the selected instance with the Dissolve command, 
or flatten the design.

Pushing into 
an instance

Generates a view that shows only the internal logic. You do not 
see the internal hierarchy in context. To return to the previous 
view, click Back. See Exploring Object Hierarchy with 
Push/Pop Commands, on page 242 for details. 

Flattening 
the entire 
design

Opens a view where the entire design is flattened. Large 
flattened designs can be overwhelming. See Flattening 
Schematic Hierarchy, on page 283 for details about flattening 
designs. 

Flattening 
an instance 
by dissolving

Generates a view where the hierarchy of the selected instances 
is flattened, but the rest of the design is unaffected. This 
provides context. See Flattening Schematic Hierarchy, on 
page 283 for details about dissolving instances. 



LO

Chapter 7: Analyzing with HDL Analyst Analyzing With the HDL Analyst Tool

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
270 Synopsys Confidential Information January 2020

The following schematic shows an instance that has been dissolved in 
the view.

4. The software automatically traces a critical path through different 
hierarchical levels using hollow boxes with nested internal logic 
(transparent instances) to indicate levels in hierarchical instances. 



Analyzing With the HDL Analyst Tool Chapter 7: Analyzing with HDL Analyst

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 271

Filtering Schematics
Filtering is a useful first step in analysis, because it focuses analysis on the 
relevant parts of the design. Some commands, like the Expand commands, 
automatically generate filtered views; this procedure only discusses manual 
filtering, where you use the Filter command to isolate selected objects. 

This table lists the advantages of using filtering over flattening:

1. Select the objects that you want to isolate. For example, you can select 
two connected objects. 

2. Select the Filter command, using one of these methods:

– Right-click and select Filter from the popup menu.

– Click the Filter icon (buffer gate) ( ). 

The software filters the design and displays the selected objects in a 
filtered view. These objects are isolated in the schematic displayed. 
Select Unfilter to take you back to the view where objects are at the same 
level.

Filter Schematic Command Flatten Commands

Loads part of the design; better 
memory usage

Loads entire design

Combine filtering with the 
Push/Pop command, and history 
buttons (Back and Forward) to 
move freely between hierarchical 
levels

You can use the Back arrow or Show Top View 
icon to return to previous view that has been 
flattened.



LO

Chapter 7: Analyzing with HDL Analyst Analyzing With the HDL Analyst Tool

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
272 Synopsys Confidential Information January 2020

You can now analyze the problem, and do operations like the following: 

3. To return to the previous schematic, click the Back arrow. If you 
flattened the hierarchy, right-click and select the Back arrow or the Show 
Top View icon to return to the top-level unflattened view. 

For additional information about filtering schematics, see Filtering 
Schematics, on page 271 and Flattening Schematic Hierarchy, on page 283.

Trace paths, build up logic See Expanding Pin and Net Logic, on page 273

Filter further Select objects and filter again

Find objects See Finding Objects, on page 247

Flatten See Flattening Schematic Hierarchy, on 
page 283. You can hide transparent or opaque 
instances. 

Crossprobe from filtered 
view

See Crossprobing from an HDL Analyst View, 
on page 259



Analyzing With the HDL Analyst Tool Chapter 7: Analyzing with HDL Analyst

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 273

Expanding Pin and Net Logic
When you are working in a filtered view, you might need to include more logic 
in your selected set to debug your design.

Use the Expand commands with the Filter and Flatten commands to isolate just 
the logic that you want to examine. Filtering isolates logic, flattening removes 
hierarchy. See Filtering Schematics, on page 271 and Flattening Schematic 
Hierarchy, on page 283 for details. 

1. To expand logic from a pin hierarchically across boundaries, use the 
following commands.

To ... Do this ...

See the first-level cells 
connected to a pin in the 
same hierarchy

Select a pin and select Expand. See 
Expanding Filtered Logic Example, on 
page 274.

See the first-level cells 
connected to a pin at any level 
of hierarchy

Select a pin and select Hierarchical Expand.

See all cells until a register or 
port is connected to the 
selected pin at the same level 
of hierarchy

Select a pin and select Expand to Reg/Port.

See internal cells connected to 
a pin

Select a pin and select Expand Inwards. The 
software filters the schematic and displays 
the internal cells closest to the port. See 
Expanding Inwards Example, on page 274.

Select only one object 
connected to a port or pin

Select a pin or port and select Expand to One 
Object. 

See all cells until a register or 
port is connected to the 
selected pin at any level of 
hierarchy

Select a pin and select Hierarchical Expand to 
Reg/Port.



LO

Chapter 7: Analyzing with HDL Analyst Analyzing With the HDL Analyst Tool

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
274 Synopsys Confidential Information January 2020

Expanding Filtered Logic Example

Expanding Inwards Example



Analyzing With the HDL Analyst Tool Chapter 7: Analyzing with HDL Analyst

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 275

Expand to One Object

Expanding Hierarchically

2. To expand logic from a net, do the following:

– Use the commands shown in the following table.

– Select a net, then right-click and select the command from the right-
click options. 



LO

Chapter 7: Analyzing with HDL Analyst Analyzing With the HDL Analyst Tool

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
276 Synopsys Confidential Information January 2020

The following figures illustrate this. 

To ... Do this ...

See all instances connected to the 
selected net being filtered

Select a net and select Filter by Nets. 

Select the instances in the same 
hierarchy connected to the 
selected net

Select a net and select Expand Nets. 

Select and show instances 
connected to the selected net at 
any level of hierarchy. The 
instance that drives the net and 
the instance which is driven by 
the net are shown.

Select a net and select Hierarchical Expand Nets. 

Select and show instances 
connected to the selected net at 
any level of hierarchy. Instances 
that are not connected are 
removed from the view.

Select a net, then Filter by Net, and select 
Hierarchical Expand Nets.



Analyzing With the HDL Analyst Tool Chapter 7: Analyzing with HDL Analyst

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 277

Filter by Nets

Expand Nets



LO

Chapter 7: Analyzing with HDL Analyst Analyzing With the HDL Analyst Tool

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
278 Synopsys Confidential Information January 2020

Hierarchical Expand Nets

3. You can also isolate the paths to generate a schematic for a path 
between objects. To display connections to and from the selected 
instance, highlight it then right-click and select Isolate Paths from the 
drop-down menu.



Analyzing With the HDL Analyst Tool Chapter 7: Analyzing with HDL Analyst

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 279

Dissolving and Partial Dissolving of Buses and Pins
The HDL Analyst tool has options for handling buses and pins in the display 
that can help you analyze your design easier. You can expand logic from a 
bus port or specific bits of a port. 

1. To expand logic for all nets of a bus:

– Select a bus.

– Right-click and select Dissolve from the drop-down menu.

– Filter by net and choose an operation to expand as needed; see 
Expanding Pin and Net Logic, on page 273. 

2. To expand logic from nets of a bus: 

– Select a bus.

– Right-click and select Partial Dissolve from the drop-down menu. 

– Select the net (port_int_c[7]) to be removed.



LO

Chapter 7: Analyzing with HDL Analyst Analyzing With the HDL Analyst Tool

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
280 Synopsys Confidential Information January 2020

– Click OK.

The selected net is now removed from the bus.

– Choose an operation to expand as needed; see Expanding Pin and Net 
Logic, on page 338.

3. To expand logic for all the pins of a bus pin:

– Select a bus pin.

– Right-click and select Dissolve from the drop-down menu.

– Choose an operation to expand as needed; see Expanding Pin and Net 
Logic, on page 338.



Analyzing With the HDL Analyst Tool Chapter 7: Analyzing with HDL Analyst

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 281

4. To expand logic from specific bits pins of a bus pin:

– Select a bus pin.

– Right-click and select Partial Dissolve Pin from the drop-down menu.

– Select the pin to be removed.

– Click OK.

The selected pin is removed from the bus pin.

– Choose an operation to expand as needed; see Expanding Pin and Net 
Logic, on page 338.



LO

Chapter 7: Analyzing with HDL Analyst Analyzing With the HDL Analyst Tool

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
282 Synopsys Confidential Information January 2020

Dissolving of Ports
The HDL Analyst tool has options for handling ports in the display that can 
help you analyze your design easier. You can expand logic for all bits of a 
port.

To expand logic for a port:

– Select a port.

– Right-click and select Dissolve from the drop-down menu.

– Choose an operation to expand as needed; see Expanding Pin and Net 
Logic, on page 273.



Analyzing With the HDL Analyst Tool Chapter 7: Analyzing with HDL Analyst

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 283

Flattening Schematic Hierarchy
Flattening removes hierarchy so you can view the logic without hierarchical 
levels. In most cases, you do not have to flatten your hierarchical schematic 
to debug and analyze your design, because you can use a combination of 
filtering and expanding to view logic at different levels. However, if you must 
flatten the design use the following techniques, which include flattening and 
dissolving instances. 

1. To flatten any level of hierarchy to logic cells below the current level, 
right-click and select Flatten Schematic from the drop-down menu.

The software flattens the design hierarchy and displays it in the window. 
To return to the previous level, select the Back arrow. 

2. To selectively flatten some hierarchical instances in your design by 
dissolving them, do the following:

– Select the instances to be flattened. 

– Right-click and select Dissolve. 

The results differ slightly, depending on the kind of view from which you 
dissolve instances.



LO

Chapter 7: Analyzing with HDL Analyst Analyzing With the HDL Analyst Tool

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
284 Synopsys Confidential Information January 2020

The following figure illustrates this. 

Starting View Software Generates a ...

Filtered Filtered view with the internal logic of dissolved instances 
displayed within hollow bounding boxes (transparent 
instances), and the hierarchy of the rest of the design 
unchanged. If the transparent instance does not display 
internal logic, use one of the alternatives described in step 4 
of Viewing Design Hierarchy and Context, on page 266. Use 
the Back button to return to the undissolved view. 

Unfiltered New, flattened view with the dissolved instances flattened in 
place (no nesting) to Boolean logic, and the hierarchy of the 
rest of the design unchanged. You can use the Back button to 
return to previous or the top-level views.



Analyzing With the HDL Analyst Tool Chapter 7: Analyzing with HDL Analyst

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 285

Use this technique if you only want to flatten part of your design while 
retaining the hierarchical context. If you want to flatten most of the 
design, use the technique described in the previous step. Instead of 
dissolving instances, you can use a combination of the filtering 
commands and the Push/Pop command. 

Using the FSM Viewer
The FSM viewer displays state transition bubble diagrams for FSMs in the 
design, along with additional information about the FSM. You can use this 
viewer to view state machines.



LO

Chapter 7: Analyzing with HDL Analyst Analyzing With the HDL Analyst Tool

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
286 Synopsys Confidential Information January 2020

1. To start the FSM viewer, open the compiled view and highlight the FSM 
instance, click the right mouse button and select View State Machine from 
the popup menu.

The FSM viewer opens. The viewer consists of a transition bubble 
diagram and a table for the encodings and transitions. If you used 
Verilog to define the FSMs, the viewer displays binary values for the 
state machines if you defined them with the ‘define keyword, and actual 
names if you used the parameter keyword. 

2. The following table summarizes basic viewing operations.

To view ... Do ...

from and to states, and conditions 
for each transition

Click the Transitions tab at the 
bottom of the table.



Analyzing With the HDL Analyst Tool Chapter 7: Analyzing with HDL Analyst

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 287

This figure shows you the mapping information for a state machine. The 
Transitions tab shows you simple equations for conditions for each state. 
The RTL Encodings tab has a State column that shows the state names in 
the source code, and a Registers column for the corresponding RTL 
encoding. The Mapped Encoding tab shows the state names in the code 
mapped to actual values. 

3. To view just one selected state,

– Select the state by clicking on its bubble. The state is highlighted. 

– Click the right mouse button and select the filtering criteria from the 
popup menu: output, input, or any transition.

The transition diagram now shows only the filtered states you set. The 
following figure shows filtered views for output and input transitions for 
one state.

the correspondence between the 
states and the FSM registers in the 
RTL view

Click the RTL Encoding tab.

the correspondence between the 
states and the registers in the 
Technology View

Click the Mapped Encodings tab 
(available after synthesis).

only the transition diagram without 
the table

Select View->FSM table or click the 
FSM Table icon. You might have to 
scroll to the right to see it.

To view ... Do ...



LO

Chapter 7: Analyzing with HDL Analyst Analyzing With the HDL Analyst Tool

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
288 Synopsys Confidential Information January 2020

Similarly, you can check the relationship between two or more states by 
selecting the states, filtering them, and checking their properties. 

4. To view the properties for a state,

– Select the state. 

– Click the right mouse button and select Properties from the popup 
menu. A form shows you the properties for that state. 

To view the properties for the entire state machine like encoding style, 
number of states, and total number of transitions between states, 
deselect any selected states, click the right mouse button outside the 
diagram area, and select Properties from the popup menu. 



Working in the Standard Schematic Chapter 7: Analyzing with HDL Analyst

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 289

Working in the Standard Schematic
The HDL Analyst includes the RTL and Technology views, which are 
schematics used to graphically analyze your design. The RTL view is available 
after a design is compiled; the Technology view is available after a designed 
has been synthesized and contains technology-specific primitives. 

For detailed descriptions of these views, see Chapter 2 of the Reference 
Manual. This section describes basic procedures you use in the RTL and 
Technology views. The information is organized into these topics:

• Differentiating Between the HDL Analyst Views, on page 290

• Opening the Views, on page 290

• Viewing Object Properties, on page 291

• Selecting Objects in the RTL/Technology Views, on page 296

• Working with Multisheet Schematics, on page 297

• Moving Between Views in a Schematic Window, on page 299

• Setting Schematic Preferences, on page 300

• Managing Windows, on page 301

For information on specific tasks like analyzing critical paths, see the 
following sections:

• Exploring Object Hierarchy by Pushing/Popping, on page 304

• Exploring Object Hierarchy of Transparent Instances, on page 309

• Browsing to Find Objects in HDL Analyst Views, on page 311

• Crossprobing (Standard), on page 324

• Analyzing With the Standard HDL Analyst Tool, on page 332



LO

Chapter 7: Analyzing with HDL Analyst Working in the Standard Schematic

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
290 Synopsys Confidential Information January 2020

Differentiating Between the HDL Analyst Views

Opening the Views
The procedure for opening an RTL or Technology view is similar; the main 
difference is the design stage at which these views are available. 

1. Start at the appropriate design stage:

2. Open the view as described in this table: 

RTL View Technology View

Generated after compilation. Generated after mapping.

Technology-independent components at a 
high level of abstraction, like adders, 
registers, large muxes, and state machines. 

Technology-specific primitives like 
look-up tables, cascade and carry 
chains, muxes and flip-flops.

srs database (Synopsys proprietary). srm database (Synopsys proprietary).

RTL view Start with a compiled design.

Technology view Start with a mapped (synthesized) design.

Hierarchical RTL or 
Technology view 

Use one of these methods: 
• Select HDL Analyst->RTL->Hierarchical View. 
• Click the RTL View icon ( ) (a plus sign inside a 

circle).
• Double-click the srs file in the Implementation 

Results view.
To open a flattened RTL view, select HDL Analyst->RTL-
>Flattened View. 

Hierarchical 
Technology view 

Use one of these methods: 
• Select HDL Analyst ->Technology->Hierarchical View. 
• Click the Technology View icon (NAND gate icon ). 
• Double-click the srm file in the Implementation 

Results view.

Flattened RTL or 
Technology view 

Select HDL Analyst->RTL->Flattened View or HDL Analyst-> 
Technology->Flattened View



Working in the Standard Schematic Chapter 7: Analyzing with HDL Analyst

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 291

All RTL and Technology views have the schematic on the right and a pane on 
the left that contains a hierarchical list of the objects in the design. This pane 
is called the Hierarchy Browser. The bar at the top of contains additional 
information. See Hierarchy Browser, on page 81 in the Reference Manual for a 
description of the Hierarchy Browser. 

Viewing Object Properties
There are a few ways in which you can view the properties of objects.

1. To temporarily display the properties of a particular object, hold the 
cursor over the object. A tooltip temporarily displays the information at 
the cursor and in the status bar at the bottom of the tool window. 

RTL View

Technology View



LO

Chapter 7: Analyzing with HDL Analyst Working in the Standard Schematic

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
292 Synopsys Confidential Information January 2020

2. Select the object, right-click, and select Properties. The properties and 
their values are displayed in a table. 

If you select an instance, you can view the properties of the associated 
pins by selecting the pin from the list. Similarly, if you select a port, you 
can view the properties on individual bits. 

3. To flag objects by property, follow these steps:

– Open an RTL or Technology view.

– Select Options->HDL Analyst Options->Visual Properties, and select the 
properties you want to view from the pull-down list. Some properties 
are only available in certain views. 

Set this field to the pin 
name to see pin properties



Working in the Standard Schematic Chapter 7: Analyzing with HDL Analyst

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 293

– Close the HDL Analyst Options dialog box. 

– Enable View->Visual Properties. If you do not enable this, the software 
does not display the property flags in the schematics. The tool uses a 
rectangular flag with the property name and value to annotate all 
objects in the current view that have the specified property. Different 
properties use different colors, so you can enable and view many 
properties at the same time.

Example: Slow and New Properties
The slow property is useful for analyzing your critical path, because it denotes 
objects that do not meet the timing criteria. The following figure shows a 
filtered view of a critical path, with slow instances flagged in blue. 



LO

Chapter 7: Analyzing with HDL Analyst Working in the Standard Schematic

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
294 Synopsys Confidential Information January 2020

The New property helps with debugging because it quickly identifies objects 
that have been added to the current schematic with commands like Expand. 
You can step through successive filtered views to determine what was added 
at each step. 

The next figure expands one of the pins from the previous filtered view. The 
new instance added to the view has two flags: new and slow.

Slow property



Working in the Standard Schematic Chapter 7: Analyzing with HDL Analyst

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 295

Using the orig_inst_of Property for Parameterized Modules 
The compiler automatically uniquifies parameterized modules or instances. 
Properties are available to identify the RTL names of both uniquified and 
original modules or instances. 

• inst_of property – identifies module or instance by uniquified name

• orig_inst_of property – identifies module or instance by its original name 
before it was uniquified

In the following example, the top-level module (top) instantiates the module 
sub multiple times using different parameter values. The compiler uniquifies 
the module sub as sub_3s, sub_1s, and sub_4s.

Top.v
module top (input clk, [7:0] din, output [7:0] dout);

sub #(.W(3)) UUT1 (.clk, .din(din[2:0]), .dout(dout[2:0]));
sub #(.W(1)) UUT2 (.clk, .din(din[3]), .dout(dout[3]));
sub #(.W(4)) UUT3 (.clk, .din(din[7:4]), .dout(dout[7:4]));

endmodule

module sub #(parameter W = 0) (
input clk,
input [W-1:0] din,
output logic [W-1:0] dout );

always@(posedge clk) 
begin

dout <= din;
end

endmodule
RTL View



LO

Chapter 7: Analyzing with HDL Analyst Working in the Standard Schematic

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
296 Synopsys Confidential Information January 2020

TCL Command Example
Use the get_prop command with the orig_inst_of property to identify the 
original RTL name for the module:

% get_prop -prop orig_inst_of {v:sub_3s}
sub

% get_prop -prop orig_inst_of {i:UUT3}
sub

Selecting Objects in the RTL/Technology Views
For mouse selection, standard object selection rules apply: In selection mode, 
the pointer is shaped like a crosshair.

To select... Do this...

Single objects Click on the object in the RTL or Technology schematic, or click 
the object name in the Hierarchy Browser. 



Working in the Standard Schematic Chapter 7: Analyzing with HDL Analyst

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 297

The HDL Analyst view highlights selected objects in red. If the object you 
select is on another sheet of the schematic, the schematic tracks to the 
appropriate sheet. If you have other windows open, the selected object is 
highlighted in the other windows as well (crossprobing), but the other 
windows do not track to the correct sheet. Selected nets that span different 
hierarchical levels are highlighted on all the levels. See Crossprobing 
(Standard), on page 324 for more information about crossprobing. 

Some commands affect selection by adding to the selected set of objects: the 
Expand commands, the Select All commands, and the Select Net Driver and Select 
Net Instances commands.

Working with Multisheet Schematics
The title bar of the RTL or Technology view indicates the number of sheets in 
that schematic. In a multisheet schematic, nets that span multiple sheets are 
indicated by sheet connector symbols, which you can use for navigation.

Multiple objects Use one of these methods:
• Draw a rectangle around the objects. 
• Select an object, press Ctrl, and click other objects you want to 

select.
• Select multiple objects in the Hierarchy Browser. See 

Browsing With the Hierarchy Browser, on page 311. 
• Use Find to select the objects you want. See Using Find for 

Hierarchical and Restricted Searches, on page 313.

Objects by type 
(instances, 
ports, nets)

Use Edit->Find to select the objects (see Browsing With the Find 
Command, on page 313), or use the Hierarchy Browser, which 
lists objects by type. 

All objects of a 
certain type 
(instances, 
ports, nets)

To select all objects of a certain type, do either of the following:
• Right-click and choose the appropriate command from the 

Select All Schematic/Current Sheet popup menus. 
• Select the objects in the Hierarchy Browser.

No objects 
(deselect all 
currently 
selected objects)

Click the left mouse button in a blank area of the schematic or 
click the right mouse button to bring up the pop-up menu and 
choose Unselect All. Deselected objects are no longer 
highlighted.

To select... Do this...



LO

Chapter 7: Analyzing with HDL Analyst Working in the Standard Schematic

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
298 Synopsys Confidential Information January 2020

1. To reduce the number of sheets in a schematic, select Options->HDL 
Analyst Options and increase the values set for Sheet Size Options - Instances 
and Sheet Size Options - Filtered Instances. To display fewer objects per sheet 
(increase the number of sheets), increase the values.

These options set a limit on the number of objects displayed on an unfil-
tered and filtered schematic sheet, respectively. A low Filtered Instances 
value can cause lower-level logic inside a transparent instance to be 
displayed on a separate sheet. The sheet numbers are indicated inside 
the empty transparent instance. 

2. To navigate through a multisheet schematic, refer to this table. It 
summarizes common operations and ways to navigate. 

To view... Use one of these methods...

Next sheet or 
previous sheet

Select View->Next/Previous Sheet. 
Press the right mouse button and draw a horizontal mouse 
stroke (left to right for next sheet, right to left for previous 
sheet).
Click the icons: Next Sheet ( ) or Previous Sheet ( ) 
Press Shift-right arrow (Next Sheet) or Shift-left arrow (Previous sheet).
Navigate with View->Back and View ->Forward if the next/previous 
sheets are part of the display history. 

A specific sheet 
number

Select View->View Sheets and select the sheet. 
Click the right mouse button, select View Sheets from the popup 
menu, and then select the sheet you want. 
Press Ctrl-g and select the sheet you want.

Lower-level logic 
of a transparent 
instance on 
separate sheets

Check the sheet numbers indicated inside the empty 
transparent instance. Use the sheet navigation commands like 
Next Sheet or View Sheets to move to the sheet you need. 

All objects of a 
certain type

To highlight all the objects of the same type in the schematic, 
right-click and select the appropriate command from the Select 
All Schematic popup menu. 
To highlight all the objects of the same type on the current 
sheet, right-click and select the appropriate command from the 
Select All Sheet popup menu. 

Selected items 
only

Filter the schematic as described in Filtering Schematics, on 
page 336. 



Working in the Standard Schematic Chapter 7: Analyzing with HDL Analyst

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 299

Moving Between Views in a Schematic Window
When you filter or expand your design, you move through a number of 
different design views in the same schematic window. For example, you might 
start with a view of the entire design, zoom in on an area, then filter an object, 
and finally expand a connection in the filtered view, for a total of four views. 

1. To move back to the previous view, click the Back icon or draw the 
appropriate mouse stroke.

The software displays the last view, including the zoom factor. This does 
not work in a newly generated view (for example, after flattening) 
because there is no history. 

2. To move forward again, click the Forward icon or draw the appropriate 
mouse stroke. 

The software displays the next view in the display history. 

A net across 
sheets

If there are no sheet numbers displayed in a hexagon at the 
end of the sheet connector, select Options ->HDL Analyst Options 
and enable Show Sheet Connector Index. Right-click the sheet 
connector and select the sheet number from the popup as 
shown in the following figure. 

To view... Use one of these methods...

Sheet Connector Symbol

Sheet connector with multisheet popup menuConnected sheet numbers



LO

Chapter 7: Analyzing with HDL Analyst Working in the Standard Schematic

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
300 Synopsys Confidential Information January 2020

Setting Schematic Preferences
You can set various preferences for the RTL and Technology views from the 
user interface. 

1. Select Options->HDL Analyst Options. For a description of all the options on 
this form, see Standard HDL Analyst Options Command, on page 433 in 
the Reference Manual.

2. The following table details some common operations: 

Some of these options do not take effect in the current view, but are 
visible in the next schematic you open. 

3. To view hierarchy within a cell, enable the General->Show Cell Interiors 
option. 

To... Do this...

Display the Hierarchy Browser Enable Show Hierarchy Browser (General tab). 

Control crossprobing from an 
object to a P&R text file

Enable Enhanced Text Crossprobing. (General 
tab)

Determine the number of 
objects displayed on a sheet. 

Set the value with Maximum Instances on the 
Sheet Size tab. Increase the value to display 
more objects per sheet. 

Determine the number of 
objects displayed on a sheet in 
a filtered view.

Set the value with Maximum Filtered Instances 
on the Sheet Size tab. Increase the number to 
display more objects per sheet. You cannot 
set this option to a value less than the 
Maximum Instances value. 

Show Cell Interior off Show Cell Interior on



Working in the Standard Schematic Chapter 7: Analyzing with HDL Analyst

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 301

4. To control the display of labels, first enable the Text->Show Text option, 
and then enable the Label Options you want. The following figure 
illustrates the label that each option controls. 

For a more detailed information about some of these options, see 
Schematic Objects and Their Display, on page 86 in the Reference 
Manual. 

5. Click OK on the HDL Analyst Options form.

The software writes the preferences you set to the ini file, and they 
remain in effect until you change them.

Managing Windows
As you work on a project, you open different windows. For example, you 
might have two Technology views, an RTL view, and a source code window 
open. The following guidelines help you manage the different windows you 
have open. For information about cycling through the display history in a 
single schematic, see Moving Between Views in a Schematic Window, on 
page 299. 

1. Toggle on View->Workbook Mode.

Below the Project view, you see tabs like the following for each open 
view. The tab for the current view is on top. The symbols in front of the 
view name on the tab help identify the kind of view.

Show Instance Name

Show Symbol Name

Show Pin Name
Show Conn Name

Show Port Name



LO

Chapter 7: Analyzing with HDL Analyst Working in the Standard Schematic

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
302 Synopsys Confidential Information January 2020

2. To bring an open view to the front, if the window is not visible, click its 
tab. If part of the window is visible, click in any part of the window. 

If you previously minimized the view, it will be in minimized form. 
Double-click the minimized view to open it. 

3. To bring the next view to the front, click Ctrl-F6 in that window.

4. Order the display of open views with the commands from the Window 
menu. You can cascade the views (stack them, slightly offset), or tile 
them horizontally or vertically.

5. To close a view, press Ctrl-F4 in that window or select File->Close.



Exploring Design Hierarchy (Standard) Chapter 7: Analyzing with HDL Analyst

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 303

Exploring Design Hierarchy (Standard)
Schematics generally have a certain amount of design hierarchy. You can 
move between hierarchical levels using the Hierarchy Browser or Push/Pop 
mode. For additional information, see Analyzing With the Standard 
HDL Analyst Tool, on page 332. The topics include:

• Traversing Design Hierarchy with the Hierarchy Browser, on page 303

• Exploring Object Hierarchy by Pushing/Popping, on page 304

• Exploring Object Hierarchy of Transparent Instances, on page 309

Traversing Design Hierarchy with the Hierarchy Browser
The Hierarchy Browser is the list of objects on the left side of the RTL and 
Technology views. It is best used to get an overview, or when you need to 
browse and find an object. If you want to move between design levels of a 
particular object, Push/Pop mode is more direct. Refer to Exploring Object 
Hierarchy by Pushing/Popping, on page 304 for details.

The hierarchy browser allows you to traverse and select the following:

• Instances and submodules

• Ports

• Internal nets

• Clock trees (in an RTL view)

The browser lists the objects by type. A plus sign in a square icon indicates 
that there is hierarchy under that object and a minus sign indicates that the 
design hierarchy has been expanded. To see lower-level hierarchy, click the 
plus sign for the object. To ascend the hierarchy, click the minus sign.



LO

Chapter 7: Analyzing with HDL Analyst Exploring Design Hierarchy (Standard)

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
304 Synopsys Confidential Information January 2020

Refer to Hierarchy Browser Symbols, on page 82 in the Reference Manual for 
an explanation of the symbols.

Exploring Object Hierarchy by Pushing/Popping
To view the internal hierarchy of a specific object, it is best to use Push/Pop 
mode or examine transparent instances, instead of using the Hierarchy 
Browser described in Traversing Design Hierarchy with the Hierarchy 
Browser, on page 303. You can access Push/Pop mode with the Push/Pop 
Hierarchy icon, the Push/Pop Hierarchy command, or mouse strokes. 

When combined with other commands like filtering and expansion 
commands, Push/Pop mode can be a very powerful tool for isolating and 
analyzing logic. See Filtering Schematics, on page 336, Expanding Pin and 
Net Logic, on page 338, and Expanding and Viewing Connections, on 
page 342 for details about filtering and expansion. See the following sections 
for information about pushing down and popping up in hierarchical design 
objects:

– Pushing into Objects, on page 305, next

– Popping up a Hierarchical Level, on page 308

Click to expand and see
lower-level hierarchy

Click to collapse list



Exploring Design Hierarchy (Standard) Chapter 7: Analyzing with HDL Analyst

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 305

Pushing into Objects
In the schematic, you can push into objects and view the lower-level 
hierarchy. You can use a mouse stroke, the command, or the icon to push 
into objects:

1. To move down a level (push into an object) with a mouse stroke, put 
your cursor near the top of the object, hold down the right mouse 
button, and draw a vertical stroke from top to bottom. You can push 
into the following objects; see step 3 for examples of pushing into 
different types of objects.

– Hierarchical instances. They can be displayed as pale yellow boxes 
(opaque instances) or hollow boxes with internal logic displayed 
(transparent instances). You cannot push into a hierarchical instance 
that is hidden with the Hide Instance command (internal logic is 
hidden). 

– Technology-specific primitives. The primitives are listed in the 
Hierarchy Browser in the Technology view, under Instances - Primitives. 

– Inferred ROMs and state machines. 

The remaining steps show you how to use the icon or command to push 
into an object. 

Hierarchical object Press right mouse button and draw downward 
to push into an object



LO

Chapter 7: Analyzing with HDL Analyst Exploring Design Hierarchy (Standard)

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
306 Synopsys Confidential Information January 2020

2. Enable Push/Pop mode by doing one of the following:

– Select View->Push/Pop Hierarchy.

– Right-click in the Technology view and select Push/Pop Hierarchy from 
the popup menu.

– Click the Push/Pop Hierarchy icon ( ) in the toolbar (two arrows 
pointing up and down).

– Press F2.

The cursor changes to an arrow. The direction of the arrow indicates the 
underlying hierarchy, as shown in the following figure. The status bar at 
the bottom of the window reports information about the objects over 
which you move your cursor.

3. To push (descend) into an object, click the hierarchical object. For a 
transparent instance, you must click the pale yellow border. The 
following figure shows the result of pushing into a ROM.

When you descend into a ROM, you can push into it one more time to 
see the ROM data table. The information is in a view-only text file called 
rom.info.



Exploring Design Hierarchy (Standard) Chapter 7: Analyzing with HDL Analyst

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 307

Similarly, you can push into a state machine. When you push into an 
FSM from the RTL view, you open the FSM viewer where you can graph-
ically view the transitions. For more information, see Using the FSM 
Viewer (Standard), on page 348. If you push into a state machine from 
the Technology view, you see the underlying logic. 



LO

Chapter 7: Analyzing with HDL Analyst Exploring Design Hierarchy (Standard)

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
308 Synopsys Confidential Information January 2020

Popping up a Hierarchical Level
1. To move up a level (pop up a level), put your cursor anywhere in the 

design, hold down the right mouse button, and draw a vertical mouse 
stroke, moving from the bottom upwards.



Exploring Design Hierarchy (Standard) Chapter 7: Analyzing with HDL Analyst

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 309

The software moves up a level, and displays the next level of hierarchy. 

2. To pop (ascend) a level using the commands or icon, do the following:

– Select the command or icon if you are not already in Push/Pop mode. 
See Pushing into Objects, on page 305 for details.

– Move your cursor to a blank area and click. 

3. To exit Push/Pop mode, do one of the following:

– Click the right mouse button in a blank area of the view.

– Deselect View->Push/Pop Hierarchy.

– Deselect the Push/Pop Hierarchy icon.

– Press F2.

Exploring Object Hierarchy of Transparent Instances
Examining a transparent instance is one way of exploring the design 
hierarchy of an object. The following table compares this method with 
pushing (described in Exploring Object Hierarchy by Pushing/Popping, on 
page 304).

Press the right mouse button 
and draw an upward stroke to 
pop up a level



LO

Chapter 7: Analyzing with HDL Analyst Exploring Design Hierarchy (Standard)

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
310 Synopsys Confidential Information January 2020

Pushing Transparent Instance

User 
control

You initiate the operation 
through the command or 
icon. 

You have no direct control; the transparent 
instance is automatically generated by 
some commands that result in a filtered 
view. 

Design 
context

Context lost; the lower-
level logic is shown in a 
separate view

Context maintained; lower-level logic is 
displayed inside a hollow yellow box at the 
hierarchical level of the parent. 



Finding Objects (Standard) Chapter 7: Analyzing with HDL Analyst

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 311

Finding Objects (Standard)
In the schematic, you can use the Hierarchy Browser or the Find command to 
find objects, as explained in these sections:

• Browsing to Find Objects in HDL Analyst Views, on page 311

• Using Find for Hierarchical and Restricted Searches, on page 313

• Using Wildcards with the Find Command, on page 316

• Using Find to Search the Output Netlist, on page 321

For information about the Tcl Find command, which you use to locate objects, 
and create collections, see find, on page 152 in the Reference Manual. 

Browsing to Find Objects in HDL Analyst Views
You can always zoom in to find an object in the RTL and Technology 
schematics. The following procedure shows you how to browse through 
design objects and find an object at any level of the design hierarchy. You can 
use the Hierarchy Browser or the Find command to do this. If you are familiar 
with the design hierarchy, the Hierarchy Browser can be the quickest method 
to locate an object. The Find command is best used to graphically browse and 
locate the object you want. 

Browsing With the Hierarchy Browser
1. In the Hierarchy Browser, click the name of the net, port, or instance 

you want to select. 

The object is highlighted in the schematic. 

2. To select a range of objects, select the first object in the range. Then, 
scroll to display the last object in the range. Press and hold the Shift key 
while clicking the last object in the range.

The software selects and highlights all the objects in the range. 

3. If the object is on a lower hierarchical level, do either of the following:

– Expand the appropriate higher-level object by clicking the plus 
symbol next to it, and then select the object you want. 



LO

Chapter 7: Analyzing with HDL Analyst Finding Objects (Standard)

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
312 Synopsys Confidential Information January 2020

– Push down into the higher-level object, and then select the object 
from the Hierarchy Browser. 

The selected object is highlighted in the schematic. The following 
example shows how moving down the object hierarchy and selecting an 
object causes the schematic to move to the sheet and level that contains 
the selected object. 

4. To select all objects of the same type, select them from the Hierarchy 
Browser. For example, you can find all the nets in your design. 

Expand Instances 
and select an 
object on a lower 
hierarchical level.

Schematic pushes 
down to the correct 
level to show the 
selected object.



Finding Objects (Standard) Chapter 7: Analyzing with HDL Analyst

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 313

Browsing With the Find Command
1. In a schematic view, select HDL Analyst->Find or press Ctrl-f to open the 

Object Query dialog box. 

2. Do the following in the dialog box:

– Select objects in the selection box on the left. You can select all the 
objects or a smaller set of objects to browse. If length makes it hard to 
read a name, click the name in the list to cause the software to 
display the entire name in the field at the bottom of the dialog box. 

– Click the arrow to move the selected objects over to the box on the 
right.

The software highlights the selected objects.

3. In the Object Query dialog box, click on an object in the box on the right. 

The software tracks to the schematic page with that object. 

Using Find for Hierarchical and Restricted Searches
You can always zoom in to find an object in the RTL and Technology 
schematics or use the Hierarchy Browser (see Browsing to Find Objects in 
HDL Analyst Views, on page 311). This procedure shows you how to use the 
Find command to do hierarchical object searches or restrict the search to the 
current level or the current level and its underlying hierarchy. 

Note that Find only adds to the current selection; it does not deselect anything 
that is already selected. you can use successive searches to build up exactly 
the selection you need, before filtering.

1. If needed, restrict the range of the search by filtering the view. 

See Viewing Design Hierarchy and Context, on page 333 and Filtering 
Schematics, on page 336 for details. With a filtered view, the software 
only searches the filtered instances, unless you set the scope of the 
search to Entire Design, as described below, in which case Find searches 
the entire design. 

You can use the filtering technique to restrict your search to just one 
schematic sheet. Select all the objects on one sheet and filter the view. 
Continue with the procedure.



LO

Chapter 7: Analyzing with HDL Analyst Finding Objects (Standard)

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
314 Synopsys Confidential Information January 2020

2. To further restrict the range of the search, hide instances you do not 
need. 

You can do this in addition to filtering the view, or instead of filtering the 
view. Hidden instances and their hierarchy are excluded from the 
search. When you have finished the search, use the Unhide Instances 
command to make the hierarchy visible again. 

3. Open the Object Query dialog box.

– Do one of the following: right click in the RTL or Technology view and 
select Find from the popup menu, press Ctrl-f, or click the Find icon 
( ). 

– Reposition the dialog box so you can see both your schematic and the 
dialog box. 

4. Select the tab for the type of object. The Unhighlighted box on the left lists 
all objects of that type (instances, symbols, nets, or ports). 

For fastest results, search by Instances rather than Nets. When you select 
Nets, the software loads the whole design, which could take some time. 

5. Click one of these buttons to set the hierarchical range for the search: 
Entire Design, Current Level & Below, or Current Level Only, depending on the 
hierarchical level of the design to which you want to restrict your search.



Finding Objects (Standard) Chapter 7: Analyzing with HDL Analyst

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 315

The range setting is especially important when you use wildcards. See 
Effect of Hierarchy and Range on Wildcard Searches, on page 317 for 
details. Current Level Only or Current Level & Below are useful for searching 
filtered schematics or critical path schematics. 

Note that the lower-level details of a transparent instance appear at the 
current level and are included in the search when you set it to Current 
Level Only. To exclude them, temporarily hide the transparent instances, 
as described in step 2. 

Use Entire Design to hierarchically search the whole design. For large 
hierarchical designs, reduce the scope of the search by using the 
techniques described in the first step. 

The Unhighlighted box shows available objects within the scope you set. 
Objects are listed in alphabetical order, not hierarchical order. 

6. To search for objects in the mapped database or the output netlist, set 
the Name Space option. 

The name of an object might be changed because of synthesis optimiza-
tions or to match the place-and-route tool conventions, so that the 
object name may no longer match the name in the original netlist. 
Setting the Name Space option ensures that the Find command searches 
the correct database for the object. For example, if you set this option to 
Tech View, the tool searches the mapped database (srm) for the object 
name you specify. For information about using this feature to find 
objects from an output netlist, see Using Find to Search the Output 
Netlist, on page 321.

7. Do the following to select objects from the list. To use wildcards in the 
selection, see the next step.

– Click on the objects you want from the list. If length makes it hard to 
read a name, click the name in the list to cause the software to 
display the entire name in the field at the bottom of the dialog box.

– Click Find 200 or Find All. The former finds the first 200 matches, and 
then you can click the button again to find the next 200. 

– Click the right arrow to move the objects into the box on the right, or 
double-click individual names.

The schematic displays highlighted objects in red.

8. Do the following to select objects using patterns or wildcards. 



LO

Chapter 7: Analyzing with HDL Analyst Finding Objects (Standard)

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
316 Synopsys Confidential Information January 2020

– Type a pattern in the Highlight Wildcard field. See Using Wildcards with 
the Find Command, on page 316 for a detailed discussion of 
wildcards. 

The Unhighlighted list shows the objects that match the wildcard 
criteria. If length makes it hard to read a name, click the name in the 
list to cause the software to display the entire name in the field at the 
bottom of the form. 

– Click the right arrow to move the selections to the box on the right, or 
double-click individual names. The schematic displays highlighted 
objects in red.

You can use wildcards to avoid typing long pathnames. Start with a 
general pattern, and then make it more specific. The following example 
browses and uses wildcards successively to narrow the search.

Note that there are some differences when you specify the find command 
in the RTL view, Technology view, or the fdc file. 

9. You can leave the dialog box open to do successive Find operations. Click 
OK or Cancel to close the dialog box when you are done. 

For detailed information about the Find command and the Object Query 
dialog box, see Find Command (HDL Analyst), on page 315 of the Reference 
Manual.

Using Wildcards with the Find Command
Use the following wildcards when you search the schematics:

Find all instances three levels down *.*.*
Narrow search to find instances that begin with i_ i_*.*.*
Narrow search to find instances that begin with un2 after the 
second hierarchy separator

i_*.*.un2*

* The asterisk matches any sequence of characters. 

? The question mark matches any single character.

. The dot explicitly matches a hierarchy separator, so type one dot for each level 
of hierarchy. To use the dot as a pattern and not a hierarchy separator, type a 
backslash before the dot: \.



Finding Objects (Standard) Chapter 7: Analyzing with HDL Analyst

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 317

Effect of Hierarchy and Range on Wildcard Searches
The asterisk and question mark wildcards do not cross hierarchical bound-
aries, but search each level of hierarchy individually with the search pattern. 
This default is affected by the following:

• Hierarchical separators

Dots match hierarchy separators, unless you use the backslash escape 
character in front of the dot (\.). Hierarchical search patterns with a dot 
(l*.*) are repeated at each level included in the scope. If you use the *.* 
pattern with Current Level, the software matches non-hierarchical names 
at the current level that include a dot. 

• Search range

The scope of the search determines the starting point for the searches. 
Some times the starting point might make it appear as if the wildcards 
cross hierarchical boundaries. If you are at 2A in the following figure 
and the scope of the search is set to Current Level and Below, separate 
searches start at 2A, 3A1, and 3A2. Each search does not cross hierar-
chical boundaries. If the scope of the search is Entire Design, the wildcard 
searches run from each hierarchical point (1, 2A, 2B, 3A1, 3A2, 3B1, 
3B2, and 3B3). The result of an asterisk search (*) with Entire Design is a 
list of all matches in the design, regardless of the current level. 

See Wildcard Search Examples, on page 318 for examples. 

2A

1

2B

3B33B23B13A23A1

Entire Design

Current 
Level and 
Below

Current 
Level



LO

Chapter 7: Analyzing with HDL Analyst Finding Objects (Standard)

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
318 Synopsys Confidential Information January 2020

How a Wildcard Search Works
1. The starting point of a wildcard search depends on the range set for the 

search.

2. The software applies the wildcard pattern to all applicable objects within 
the range. For Current Level and Current Level and Below, the current level 
determines the starting point. 

Dots match hierarchy separators, unless you use the backslash escape 
character in front of the dot (\.). Hierarchical search patterns with a dot 
(l*.*) are repeated at each level included in the scope. See Effect of 
Hierarchy and Range on Wildcard Searches, on page 317 and Wildcard 
Search Examples, on page 318 for details and examples, respectively. If 
you use the *.* pattern with Current Level, the software matches non-
hierarchical names at the current level that include a dot. 

Wildcard Search Examples
The figure shows a design with three hierarchical levels, and the table shows 
the results of some searches on this design. 

Entire Design Starts at top level and uses the pattern to search from that 
level. It then moves to any child levels below the top level and 
searches them. The software repeats the search pattern at 
each hierarchical point in the design until it searches the 
entire design. 

Current Level Starts at the current hierarchical level and searches that level 
only. A search started at 2A only covers 2A.

Current Level 
and Below

Starts at the current hierarchical level and searches that level. 
It then moves to any child levels below the starting point and 
conducts separate searches from each of these starting points. 



Finding Objects (Standard) Chapter 7: Analyzing with HDL Analyst

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 319

Scope Pattern Starting 
Point

Finds Matches in...

Entire 
Design

* 3A1 1, 2A, 2B, 3A1, 3A2, 3B1, 3B2, and 3B3 (* at all 
levels)

*.* 2B 2A and 2B (*.* from 1)
3A1, 3A2, 3B1, 3B2, and 3B3 (*.* from 2A and 
2B)
No matches in 1 (because of the hierarchical dot), 
unless a name includes a non-hierarchical dot. 

Current 
Level

* 1 1 only (no hierarchical boundary crossing)

*.* 2B 2B only. No search of lower levels even though 
the dot is specified, because the scope is Current 
Level. No matches, unless a 2B name includes a 
non-hierarchical dot. 

Current 
Level and 
Below

* 2A 2A only (no hierarchical boundary crossing)

*.* 1 2A and 2B (*.* from 1)
3A1, 3A2, 3B1, 3B2, and 3B3 (*.* from 2A and 
2B)
No matches from 1, because the dot is specified. 

*.* 2B 3B1, 3B2, and 3B3 (*.* from 2B)

*.* 3A2 No matches (no hierarchy below 3A2)

*.*.* 1 3A1, 3A2, 3B1, 3B2, and 3B3 (*.*.* from 1)
Search ends because there is no hierarchy two 
levels below 2A and 2B. 

2A

1

2B

3B33B23B13A23A1



LO

Chapter 7: Analyzing with HDL Analyst Finding Objects (Standard)

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
320 Synopsys Confidential Information January 2020

Difference from Tcl Search
The FPGA synthesis tool and Synopsys TimeQuest and Design Compiler 
products confine the simple search to within one level of hierarchy. The 
following command searches each level of hierarchy individually for the speci-
fied pattern:

find –hier *abc*addr_reg[*]
If you want to go through the hierarchy, you must add the hierarchy separa-
tors to the search pattern: 

find {*.*.abc.*.*.addr_reg[*]}

Find Command Differences in HDL Analyst Views and Constraint File
There are some slight differences when you use the Find command in the RTL 
view, Technology view, and the constraint files:

• You cannot use find to search for bit registers of a bit array in the RTL or 
Technology views, but you can specify it in a constraint file, where the 
following command will work: 

find –seq {i:modulex_inst.qb[7]}
In a HDL Analyst view, you cannot find {i:modulex_inst.qb[7]}, but you can 
specify and find {i:modulex_inst.qb[7:0]}.

• By default, the following Tcl command does not find objects in the RTL 
view, although it does find objects in the Technology view:

–hier –seq * -filter @clock == clk75
To make this work in an RTL view, you must turn on Annotated Properties 
for Analyst in the Device tab of the Implementation Options dialog box, recom-
pile the design, and then open a new RTL view.

Combining Find with Filtering to Refine Searches
You can combine the Find command with the filtering commands to better 
effect. Depending on what you want to do, use the Find command first, or a 
filtering command. 

1. To limit the range of a search, do the following:

– Filter the design.



Finding Objects (Standard) Chapter 7: Analyzing with HDL Analyst

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 321

– Use the Find command on the filtered view, but set the search range 
to Current Level Only. 

2. Select objects for a filtered view. 

– Use the Find command to browse and select objects. 

– Filter the objects to display them. 

Using Find to Search the Output Netlist
When the synthesis tool creates an output netlist like an edf file, some names 
are optimized for use in the P&R tool. When you debug your design for place 
and route looking for a particular object, use the Name Space option in the 
Object Query dialog box to locate the optimized names in the output netlist. 
The following procedure shows you how to locate an object, highlight and 
filter it in the Technology view, and crossprobe to the source code for editing.

1. Select the output netlist file option in the Implementations Results tab of the 
Implementation Options dialog box. 

2. After you synthesize your design, open your output netlist file and select 
the name of the object you want to find. 

3. Copy the name and open a Technology view. 

Copy Name



LO

Chapter 7: Analyzing with HDL Analyst Finding Objects (Standard)

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
322 Synopsys Confidential Information January 2020

4. In the Technology view, press Ctrl-f or select Edit->Find to open the Object 
Query dialog box and do the following: 

– Paste the object name you copied into the Highlight Search field. 

– Set the Name Space option to Netlist and click Find All. 

If you leave the Name Space option set to the default of Tech View, the 
tool does not find the name because it is searching the mapped 
database instead of the output netlist. 

– Double click the name to move it into the Highlighted field and close the 
dialog box.

In the Technology view, the name is highlighted in the schematic. 

5. Select HDL Analyst->Filter Schematic to view only the highlighted portion of 
the schematic.

Search by Tech View Search by Netlist



Finding Objects (Standard) Chapter 7: Analyzing with HDL Analyst

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 323

The tooltip shows the equivalent name in the Technology view.

6. Double click on the filtered schematic to crossprobe to the 
corresponding code in the HDL file.

compare_output_NE0(C_0)
slow

Alias: compare_output_NE0_cZ

Filtered View



LO

Chapter 7: Analyzing with HDL Analyst Crossprobing (Standard)

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
324 Synopsys Confidential Information January 2020

Crossprobing (Standard)

Crossprobing is the process of selecting an object in one view and having the 
object or the corresponding logic automatically highlighted in other views. 
Highlighting a line of text, for example, highlights the corresponding logic in 
the schematic views. Crossprobing helps you visualize where coding changes 
or timing constraints might help to reduce area or improve performance. 

You can crossprobe between the RTL view, Technology view, the FSM Viewer, 
the log file, the source files, and some external text files from place-and-route 
tools. However, not all objects or source code crossprobe to other views, 
because some source code and RTL view logic is optimized away during the 
compilation or mapping processes. 

This section describes how to crossprobe from different views. It includes the 
following:

• Crossprobing within an RTL/Technology View, on page 324

• Crossprobing from the RTL/Technology View, on page 325

• Crossprobing from the Text Editor Window, on page 327

• Crossprobing from the Tcl Script Window, on page 330

• Crossprobing from the FSM Viewer, on page 331

Crossprobing within an RTL/Technology View
Selecting an object name in the Hierarchy Browser highlights the object in 
the schematic, and vice versa. 

Selected Object Highlighted Object

Instance in schematic (single-click) Module icon in Hierarchy Browser

Net in schematic Net icon in Hierarchy Browser

Port in schematic Port icon in Hierarchy Browser

Logic icon in Hierarchy Browser Instance in schematic

Net icon in Hierarchy Browser Net in schematic

Port icon in Hierarchy Browser Port in schematic



Crossprobing (Standard) Chapter 7: Analyzing with HDL Analyst

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 325

In this example, when you select the DECODE module in the Hierarchy 
Browser, the DECODE module is automatically selected in the RTL view.

Crossprobing from the RTL/Technology View
1. To crossprobe from an RTL or Technology views to other open views, 

select the object by clicking on it.

The software automatically highlights the object in all open views. If the 
open view is a schematic, the software highlights the object in the 
Hierarchy Browser on the left as well as in the schematic. If the 
highlighted object is on another sheet of a multi-sheet schematic, the 
view does not automatically track to the page. If the crossprobed object 
is inside a hidden instance, the hidden instance is highlighted in the 
schematic. 

If the open view is a source file, the software tracks to the appropriate 
code and highlights it. The following figure shows crossprobing between 
the RTL, Technology, and Text Editor (source code) views. 



LO

Chapter 7: Analyzing with HDL Analyst Crossprobing (Standard)

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
326 Synopsys Confidential Information January 2020

2. To crossprobe from the RTL or Technology view to the source file when 
the source file is not open, double-click on the object in the RTL or 
Technology view. 

Double-clicking automatically opens the appropriate source code file 
and highlights the appropriate code. For example, if you double-click an 
object in a Technology view, the HDL Analyst tool automatically opens 
an editor window with the source code and highlights the code that 
contains the selected register.

The following table summarizes the crossprobing capability from the RTL or 
Technology view.

RTL View

Technology View

Text Editor



Crossprobing (Standard) Chapter 7: Analyzing with HDL Analyst

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 327

Crossprobing from the Text Editor Window
To crossprobe from a source code window or from the log file to an RTL, 
Technology, or FSM view, use this procedure. You can use this method to 
crossprobe from any text file with objects that have the same instance names 
as in the synthesis software. For example, you can crossprobe from place-
and-route files. See Example of Crossprobing a Path from a Text File, on 
page 328 for a practical example of how to use crossprobing. 

1. Open the RTL, FSM, or Technology view to which you want to 
crossprobe.

2. To crossprobe from an error, warning, or note in the html log file, click 
on the file name to open the corresponding source code in another Text 
Editor window; to crossprobe from a text log file, double-click on the text 
of the error, warning, or note.

3. To crossprobe from a third-party text file (not source code or a log file), 
select Options->HDL Analyst Options->General, and enable Enhanced text 
crossprobing. 

From To Procedure

RTL Source code Double-click an object. If the source code file is not 
open, the software opens the Text Editor window to 
the appropriate section of code. If the source file is 
already open, the software scrolls to the correct 
section of the code and highlights it.

RTL Technology The Technology view must be open. Click the object 
to highlight and crossprobe. 

RTL FSM Viewer The FSM view must be open. The state machine 
must be coded with a onehot encoding style. Click 
the FSM to highlight and crossprobe.

Technology Source code If the source code file is already, open, the software 
scrolls to the correct section of the code and 
highlights it. 
If the source code file is not open, double-click an 
object in the Technology view to open the source 
code file. 

Technology RTL The RTL view must be open. Click the object to 
highlight and crossprobe.



LO

Chapter 7: Analyzing with HDL Analyst Crossprobing (Standard)

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
328 Synopsys Confidential Information January 2020

4. Select the appropriate portion of text in the Text Editor window. In some 
cases, it may be necessary to select an entire block of text to crossprobe.

The software highlights the objects corresponding to the selected code in 
all the open windows. For example, if you select a state name in the 
code, it highlights the state in the FSM viewer. If an object is on another 
schematic sheet or on another hierarchical level, the highlighting might 
not be obvious. If you filter the RTL or schematic view (right-click in the 
source code window with the selected text and select Filter Schematic from 
the popup menu), you can isolate the highlighted objects for easy 
viewing. 

Example of Crossprobing a Path from a Text File
This example selects a path in a log file and crossprobes it in the Technology 
view. You can use the same technique to crossprobe from other text files like 
place-and-route files, as long as the instance names in the text file match the 
instance names in the synthesis tool. 

1. Open the log file, the RTL, and Technology views.

2. Select the path objects in the log file.

– Select the column by pressing Alt and dragging the cursor to the end 
of the column. On the Linux platform, use the key to which the Alt 
function is mapped; this is usually the Ctrl-Alt key combination. 

– To select all the objects in the path, right-click and choose Select in 
Analyst from the popup menu. Alternatively, you can select certain 
objects only, as described next. 

The software selects the objects in the column, and highlights the path 
in the open RTL and Technology views. 



Crossprobing (Standard) Chapter 7: Analyzing with HDL Analyst

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 329

– To further filter the objects in the path, right-click and choose Select 
From from the popup menu. On the form, check the objects you want, 
and click OK. Only the corresponding objects are highlighted. 

Technology View

Text Editor



LO

Chapter 7: Analyzing with HDL Analyst Crossprobing (Standard)

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
330 Synopsys Confidential Information January 2020

3. To isolate and view only the selected objects, do this in the Technology 
view: press F12, or right-click and select the Filter Schematic command 
from the popup menu. 

You see just the selected objects. 

Crossprobing from the Tcl Script Window
Crossprobing from the Tcl script window is useful for debugging error 
messages. 

To crossprobe from the Tcl Script window to the source code, double-click a 
line in the Tcl window. To crossprobe a warning or error, first click the 
Messages tab and then double-click the warning or error. The software opens 
the relevant source code file and highlights the corresponding code. 



Crossprobing (Standard) Chapter 7: Analyzing with HDL Analyst

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 331

Crossprobing from the FSM Viewer
You can crossprobe to the FSM Viewer if you have the FSM view open. You 
can crossprobe from an RTL, Technology, or source code window.

To crossprobe from the FSM Viewer, do the following:

1. Open the view to which you want to crossprobe: RTL/Technology view, 
or the source code file. 

2. Do the following in the open FSM view:

– For FSMs with a onehot encoding style, click the state bubbles in the 
bubble diagram or the states in the FSM transition table. 

– For all other FSMs, click the states in the bubble diagram. You 
cannot use the transition table because with these encoding styles, 
the number of registers in the RTL or Technology views do not match 
the number of registers in the FSM Viewer. 

The software highlights the corresponding code or object in the open 
views. You can only crossprobe from a state in the FSM table if you used 
a onehot encoding style. 



LO

Chapter 7: Analyzing with HDL Analyst Analyzing With the Standard HDL Analyst Tool

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
332 Synopsys Confidential Information January 2020

Analyzing With the Standard HDL Analyst 
Tool

The HDL Analyst tool is a graphical productivity tool that helps you visualize 
your synthesis results. It consists of RTL-level and technology-primitive level 
schematics that let you graphically view and analyze your design. 

• RTL View
Using BEST® (Behavior Extracting Synthesis Technology) in the RTL 
view, the software keeps a high-level of abstraction and makes the RTL 
view easy to view and debug. High-level structures like RAMs, ROMs, 
operators, and FSMs are kept as abstractions in this view instead of 
being converted to gates. You can examine the high-level structure, or 
push into a component and view the gate-level structure. 

• Technology View
The software uses module generators to implement the high-level struc-
tures from the RTL view, and maps them to technology-specific 
resources.

To analyze information, compare the current view with the information in the 
RTL/Technology view, the log file, the FSM view, and the source code, you 
can use techniques like crossprobing, flattening, and filtering. See the 
following for more information about analysis techniques. 

• Viewing Design Hierarchy and Context, on page 333

• Filtering Schematics, on page 336

• Expanding Pin and Net Logic, on page 338

• Expanding and Viewing Connections, on page 342

• Flattening Schematic Hierarchy, on page 343

• Minimizing Memory Usage While Analyzing Designs, on page 348

For additional information about navigating the HDL Analyst views or using 
other techniques like crossprobing, see the following:

• Working in the Standard Schematic, on page 289

• Exploring Design Hierarchy (Standard), on page 303

• Finding Objects (Standard), on page 311

• Crossprobing (Standard), on page 324



Analyzing With the Standard HDL Analyst Tool Chapter 7: Analyzing with HDL Analyst

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 333

Viewing Design Hierarchy and Context
Most large designs are hierarchical, so the synthesis software provides tools 
that help you view hierarchy details or put the details in context. Alterna-
tively, you can browse and navigate hierarchy with Push/Pop mode, or flatten 
the design to view internal hierarchy.

This section describes how to use interactive hierarchical viewing operations 
to better analyze your design. Automatic hierarchy viewing operations that 
are built into other commands are described in the context in which they 
appear. For example, Viewing Critical Paths, on page 359 describes how the 
software automatically traces a critical path through different hierarchical 
levels using hollow boxes with nested internal logic (transparent instances) to 
indicate levels in hierarchical instances. 

1. To view the internal logic of primitives in your design, do either of the 
following:

– To view the logic of an individual primitive, push into it. This 
generates a new schematic view with the internal details. Click the 
Back icon to return to the previous view. 

– To view the logic of all primitives in the design, select Options->HDL 
Analyst Options->General, and enable Show Cell Interior. This command 
lets you see internal logic in context, by adding the internal details to 
the current schematic view and all subsequent views. If the view is 
too cluttered with this option on, filter the view (see Filtering 
Schematics, on page 336) or push into the primitive. Click the Back 
icon to return to the previous view after filtering or pushing into the 
object. 

The following figure compares these two methods:

Result of pushing into a primitive (new view 
of lower-level logic) Result of enabling Show Cell Interior 

option (same view with internal logic)



LO

Chapter 7: Analyzing with HDL Analyst Analyzing With the Standard HDL Analyst Tool

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
334 Synopsys Confidential Information January 2020

2. To hide selected hierarchy, select the instance whose hierarchy you 
want to exclude, and then select Hide Instances from the HDL Analyst menu 
or the right-click popup menu in the schematic view.

You can hide opaque (solid yellow) or transparent (hollow) instances. 
The software marks hidden instances with an H in the lower left. Hidden 
instances are like black boxes; their hierarchy is excluded from filtering, 
expanding, dissolving, or searching in the current window, although 
they can be crossprobed. An instance is only hidden in the current view 
window; other view windows are not affected. Temporarily hiding unnec-
essary hierarchy focuses analysis and saves time in large designs. 

Before you save a design with hidden instances, select Unhide Instances 
from the HDL Analyst menu or the right-click popup menu and make the 
hidden internal hierarchy accessible again. Otherwise, the hidden 
instances are saved as black boxes, without their internal logic. 
Conversely, you can use this feature to reduce the scope of analysis in a 
large design by hiding instances you do not need, saving the reduced 
design to a new name, and then analyzing it. 

3. To view the internal logic of a hierarchical instance, you can push into 
the instance, dissolve the selected instance with the Dissolve Instances 
command, or flatten the design. You cannot use these methods to view 
the internal logic of a hidden instance. 

‘H’ indicates a 
hidden instance



Analyzing With the Standard HDL Analyst Tool Chapter 7: Analyzing with HDL Analyst

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 335

4. If the result of filtering or dissolving is a hollow box with no internal 
logic, try either of the following, as appropriate, to view the internal 
hierarchy: 

– Select Options->HDL Analyst Options->Sheet Size and increase the value of 
Maximum Filtered Instances. Use this option if the view is not too 
cluttered. 

– Use the sheet navigation commands to go to the sheets indicated in 
the hollow box. 

If there is too much internal logic to display in the current view, the 
software puts the internal hierarchy on separate schematic sheets. It 
displays a hollow box with no internal logic and indicates the schematic 
sheets that contain the internal logic. 

5. To view the design context of an instance in a filtered view, select the 
instance, right-click, and select Show Context from the popup menu.

The software displays an unfiltered view of the hierarchical level that 
contains the selected object, with the instance highlighted. This is useful 
when you have to go back and forth between different views during 
analysis. The context differs from the Expand commands, which show 
connections. To return to the original filtered view, click Back. 

Pushing into 
an instance

Generates a view that shows only the internal logic. You do not 
see the internal hierarchy in context. To return to the previous 
view, click Back. See Exploring Object Hierarchy by 
Pushing/Popping, on page 304 for details. 

Flattening 
the entire 
design

Opens a new view where the entire design is flattened, except 
for hidden hierarchy. Large flattened designs can be 
overwhelming. See Flattening Schematic Hierarchy, on 
page 343 for details about flattening designs. 
Because this is a new view, you cannot use Back to return to 
the previous view. To return to the top-level unflattened 
schematic, right-click in the view and select Unflatten Schematic. 

Flattening 
an instance 
by dissolving

Generates a view where the hierarchy of the selected instances 
is flattened, but the rest of the design is unaffected. This 
provides context. See Flattening Schematic Hierarchy, on 
page 343 for details about dissolving instances. 



LO

Chapter 7: Analyzing with HDL Analyst Analyzing With the Standard HDL Analyst Tool

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
336 Synopsys Confidential Information January 2020

Filtering Schematics
Filtering is a useful first step in analysis, because it focuses analysis on the 
relevant parts of the design. Some commands, like the Expand commands, 
automatically generate filtered views; this procedure only discusses manual 
filtering, where you use the Filter Schematic command to isolate selected 
objects. See Chapter 3 of the Reference Manual for details about these 
commands.

This table lists the advantages of using filtering over flattening:

1. Select the objects that you want to isolate. For example, you can select 
two connected objects. 

If you filter a hidden instance, the software does not display its internal 
hierarchy when you filter the design. The following example illustrates 
this. 

2. Select the Filter Schematic command, using one of these methods:

– Select Filter Schematic from the HDL Analyst menu or the right-click 
popup menu.

Filter Schematic Command Flatten Commands

Loads part of the design; better 
memory usage

Loads entire design

Combine filtering with Push/Pop 
mode, and history buttons (Back 
and Forward) to move freely 
between hierarchical levels

Must use Unflatten Schematic to return to top 
level, and flatten the design again to see lower 
levels. Cannot return to previous view if the 
previous view is not the top-level view.



Analyzing With the Standard HDL Analyst Tool Chapter 7: Analyzing with HDL Analyst

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 337

– Click the Filter Schematic icon (buffer gate) ( ). 

– Press F12.

– Press the right mouse button and draw a narrow V-shaped mouse 
stroke in the schematic window. See Help->Mouse Stroke Tutor for 
details.

The software filters the design and displays the selected objects in a 
filtered view. The title bar indicates that it is a filtered view. Hidden 
instances have an H in the lower left. The view displays other hierar-
chical instances as hollow boxes with nested internal logic (transparent 
instances). For descriptions of filtered views and transparent instances, 
see Filtered and Unfiltered Schematic Views, on page 84 and Trans-
parent and Opaque Display of Hierarchical Instances, on page 90 in the 
Reference Manual. If the transparent instance does not display internal 
logic, use one of the alternatives described in Viewing Design Hierarchy 
and Context, on page 333, step 4. 

3. If the filtered view does not display the pin names of technology 
primitives and transparent instances that you want to see, do the 
following:

– Select Options->HDL Analyst Options->Text and enable Show Pin Name. 

– To temporarily display a pin name, move the cursor over the pin. The 
name is displayed as long as the cursor remains over the pin. 
Alternatively, select a pin. The software displays the pin name until 
you make another selection. Either of these options can be applied to 

Filtered view



LO

Chapter 7: Analyzing with HDL Analyst Analyzing With the Standard HDL Analyst Tool

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
338 Synopsys Confidential Information January 2020

individual pins. Use them to view just the pin names you need and 
keep design clutter to a minimum. 

– To see all the hierarchical pins, select the instance, right-click, and 
select Show All Hier Pins. 

You can now analyze the problem, and do operations like the following: 

4. To return to the previous schematic view, click the Back icon. If you 
flattened the hierarchy, right-click and select Unflatten Schematic to return 
to the top-level unflattened view. 

For additional information about filtering schematics, see Filtering 
Schematics, on page 336 and Flattening Schematic Hierarchy, on page 343.

Expanding Pin and Net Logic
When you are working in a filtered view, you might need to include more logic 
in your selected set to debug your design. This section describes commands 
that expand logic fanning out from pins or nets; to expand paths, see 
Expanding and Viewing Connections, on page 342. 

Use the Expand commands with the Filter Schematic, Hide Instances, and Flatten 
commands to isolate just the logic that you want to examine. Filtering 
isolates logic, flattening removes hierarchy, and hiding instances prevents 
their internal hierarchy from being expanded. See Filtering Schematics, on 
page 336 and Flattening Schematic Hierarchy, on page 343 for details. 

1. To expand logic from a pin hierarchically across boundaries, use the 
following commands.

Trace paths, build up logic See Expanding Pin and Net Logic, on page 338 
and Expanding and Viewing Connections, on 
page 342

Filter further Select objects and filter again

Find objects See Finding Objects (Standard), on page 311

Flatten, or hide and flatten See Flattening Schematic Hierarchy, on 
page 343. You can hide transparent or opaque 
instances. 

Crossprobe from filtered 
view

See Crossprobing from the RTL/Technology 
View, on page 325



Analyzing With the Standard HDL Analyst Tool Chapter 7: Analyzing with HDL Analyst

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 339

The software expands the logic as specified, working on the current level 
and below or working up the hierarchy, crossing hierarchical bound-
aries as needed. Hierarchical levels are shown nested in hollow 
bounding boxes. The internal hierarchy of hidden instances is not 
displayed. 

For descriptions of the Expand commands, see HDL Analyst Menu, on 
page 405 of the Reference Manual. 

2. To expand logic from a pin at the current level only, do the following:

– Select a pin, and go to the HDL Analyst->Current Level menu or the right-
click popup menu->Current Level. 

– Select Expand or Expand to Register/Ports. The commands work as 
described in the previous step, but they do not cross hierarchical 
boundaries. 

3. To expand logic from a net, use the commands shown in the following 
table.

– To expand at the current level and below, select the commands from 
the HDL Analyst->Hierarchical menu or the right-click popup menu.

– To expand at the current level only, select the commands from the 
HDL Analyst->Current Level menu or the right-click popup menu->Current 
Level. 

To... Do this (HDL Analyst->Hierarchical/Popup menu)...

See all cells connected 
to a pin

Select a pin and select Expand. See Expanding 
Filtered Logic Example, on page 340.

See all cells that are 
connected to a pin, 
up to the next register

Select a pin and select Expand to Register/Port. See 
Expanding Filtered Logic to Register/Port 
Example, on page 341. 

See internal cells 
connected to a pin

Select a pin and select Expand Inwards. The software 
filters the schematic and displays the internal cells 
closest to the port. See Expanding Inwards 
Example, on page 341.



LO

Chapter 7: Analyzing with HDL Analyst Analyzing With the Standard HDL Analyst Tool

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
340 Synopsys Confidential Information January 2020

Expanding Filtered Logic Example

To... Do this...

Select the driver of 
a net

Select a net and select Select Net Driver. The result is a 
filtered view with the net driver selected (Selecting the Net 
Driver Example, on page 342).

Trace the driver, across 
sheets if needed

Select a net and select Go to Net Driver. The software shows 
a view that includes the net driver. 

Select all instances on 
a net

Select a net and select Select Net Instances. You see a filtered 
view of all instances connected to the selected net.



Analyzing With the Standard HDL Analyst Tool Chapter 7: Analyzing with HDL Analyst

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 341

Expanding Filtered Logic to Register/Port Example

Expanding Inwards Example



LO

Chapter 7: Analyzing with HDL Analyst Analyzing With the Standard HDL Analyst Tool

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
342 Synopsys Confidential Information January 2020

Selecting the Net Driver Example

Expanding and Viewing Connections
This section describes commands that expand logic between two or more 
objects; to expand logic out from a net or pin, see Expanding Pin and Net 
Logic, on page 338. You can also isolate the critical path or use the Timing 
Analyst to generate a schematic for a path between objects, as described in 
Analyzing Timing in Schematic Views, on page 356.

Use the following path commands with the Filter Schematic and Hide Instances 
commands to isolate just the logic that you want to examine. The two 
techniques described here differ: Expand Paths expands connections between 
selected objects, while Isolate Paths pares down the current view to only 
display connections to and from the selected instance. 

For detailed descriptions of the commands mentioned here, see Commands 
That Result in Filtered Schematics, on page 112 in the Reference Manual.

1. To expand and view connections between selected objects, do the 
following:

– Select two or more points. 

– To expand the logic at the current level only, select HDL Analyst-> 
Current Level->Expand Paths or popup menu->Current Level Expand Paths. 

– To expand the logic at the current level and below, select HDL Analyst-> 
Hierarchical->Expand Paths or popup menu->Expand Paths. 



Analyzing With the Standard HDL Analyst Tool Chapter 7: Analyzing with HDL Analyst

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 343

2. To view connections from all pins of a selected instance, right-click and 
select Isolate Paths from the popup menu.

Unlike the Expand Paths command, the connections are based on the 
schematic used as the starting point; the software does not add any 
objects that were not in the starting schematic. 

Flattening Schematic Hierarchy
Flattening removes hierarchy so you can view the logic without hierarchical 
levels. In most cases, you do not have to flatten your hierarchical schematic 
to debug and analyze your design, because you can use a combination of 

Starting Point The Filtered View Traces Paths (Forward and Back) From All 
Pins of the Selected Instance...

Filtered view Traces through all sheets of the filtered view, up to the next 
port, register, hierarchical instance, or black box.

Unfiltered view Traces paths on the current schematic sheet only, up to the 
next port, register, hierarchical instance, or black box.



LO

Chapter 7: Analyzing with HDL Analyst Analyzing With the Standard HDL Analyst Tool

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
344 Synopsys Confidential Information January 2020

filtering, Push/Pop mode, and expanding to view logic at different levels. 
However, if you must flatten the design, use the following techniques., which 
include flattening, dissolving, and hiding instances. 

1. To flatten an entire design down to logic cells, use one of the following 
commands:

– For an RTL view, select HDL Analyst->RTL->Flattened View. This flattens 
the design to generic logic cells. 

– For a Technology view, select Flattened View or Flattened to Gates View 
from the HDL Analyst->Technology menu. Use the former command to 
flatten the design to the technology primitive level, and the latter 
command to flatten it further to the equivalent Boolean logic. 

The software flattens the top-level design and displays it in a new 
window. To return to the top-level design, right-click and select Unflatten 
Schematic. 

Unless you really require the entire design to be flattened, use Push/Pop 
mode and the filtering commands (Filtering Schematics, on page 336) to 
view the hierarchy. Alternatively, you can use one of the selective 
flattening techniques described in subsequent steps. 

2. To selectively flatten transparent instances when you analyze critical 
paths or use the Expand commands, select Flatten Current Schematic from 
the HDL Analyst menu, or select Flatten Schematic from the right-click 
popup menu. 

The software generates a new view of the current schematic in the same 
window, with all transparent instances at the current level and below 
flattened. RTL schematics are flattened down to generic logic cells and 
Technology views down to technology primitives. To control the number 
of hierarchical levels that are flattened, use the Dissolve Instances 
command described in step 4. 

If your view only contains hidden hierarchical instances or pale yellow 
(opaque) hierarchical instances, nothing is flattened. If you flatten an 
unfiltered (usually the top-level design) view, the software flattens all 
hierarchical instances (transparent and opaque) at the current level and 
below. The following figure shows flattened transparent instances.



Analyzing With the Standard HDL Analyst Tool Chapter 7: Analyzing with HDL Analyst

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 345

Because the flattened view is a new view, you cannot use Back to return 
to the unflattened view or the views before it. Use Unflatten Schematic to 
return to the unflattened top-level view. 

3. To selectively flatten the design by hiding instances, select hierarchical 
instances whose hierarchy you do not want to flatten, right-click, and 
select Hide Instances. Then flatten the hierarchy using one of the Flatten 
commands described above.

Use this technique if you want to flatten most of your design. If you want 
to flatten only part of your design, use the approach described in the 
next step.

When you hide instances, the software generates a new view where the 
hidden instances are not flattened, but marked with an H in the lower 
left corner. The rest of the design is flattened. If unhidden hierarchical 
instances are not flattened by this procedure, use the Flattened View or 
Flattened to Gates View commands described in step 1 instead of the Flatten 

Flatten 
Schematic 
flattens 

Hidden transparent 
instance is not 
flattened.

Flatten 
Schematic 
flattens 

Opaque hierarchical 
instance is unaffected.



LO

Chapter 7: Analyzing with HDL Analyst Analyzing With the Standard HDL Analyst Tool

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
346 Synopsys Confidential Information January 2020

Current Schematic command described in step 2, which only flattens trans-
parent instances in filtered views. 

You can select the hidden instances, right-click, and select Unhide 
Instances to make their hierarchy accessible again. To return to the 
unflattened top-level view, right-click in the schematic and select 
Unflatten Schematic. 

4. To selectively flatten some hierarchical instances in your design by 
dissolving them, do the following:

– If you want to flatten more than one level, select Options->HDL Analyst 
Options and change the value of Dissolve Levels. If you want to flatten 
just one level, leave the default setting. 

– Select the instances to be flattened. 

– Right-click and select Dissolve Instances. 

The results differ slightly, depending on the kind of view from which you 
dissolve instances.

The following figure illustrates this. 

Starting View Software Generates a...

Filtered Filtered view with the internal logic of dissolved instances 
displayed within hollow bounding boxes (transparent 
instances), and the hierarchy of the rest of the design 
unchanged. If the transparent instance does not display 
internal logic, use one of the alternatives described in step 4 
of Viewing Design Hierarchy and Context, on page 333. Use 
the Back button to return to the undissolved view. 

Unfiltered New, flattened view with the dissolved instances flattened in 
place (no nesting) to Boolean logic, and the hierarchy of the 
rest of the design unchanged. Select Unflatten Schematic to 
return to the top-level unflattened view. You cannot use the 
Back button to return to previous views because this is a new 
view. 



Analyzing With the Standard HDL Analyst Tool Chapter 7: Analyzing with HDL Analyst

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 347

Use this technique if you only want to flatten part of your design while 
retaining the hierarchical context. If you want to flatten most of the 
design, use the technique described in the previous step. Instead of 
dissolving instances, you can use a combination of the filtering 
commands and Push/Pop mode. 

Dissolve

Dissolved logic for prgmcntr shown nested when started from filtered view



LO

Chapter 7: Analyzing with HDL Analyst Using the FSM Viewer (Standard)

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
348 Synopsys Confidential Information January 2020

Minimizing Memory Usage While Analyzing Designs
When working with large hierarchical designs, use the following techniques 
to use memory resources efficiently. 

• Before you do any analysis operations such as searching, flattening, 
expanding, or pushing/popping, hide (HDL Analyst->Hide Instances) the 
hierarchical instances you do not need. This saves memory resources, 
because the software does not load the hierarchy of the hidden 
instances. 

• Temporarily divide your design into smaller working files. Before you do 
any analysis, hide the instances you do not need. Save the design. The 
srs and srm files generated are smaller because the software does not 
save the hidden hierarchy. Close any open HDL Analyst windows to free 
all memory from the large design. In the Implementation Results view, 
double-click one of the smaller files to open the RTL or Technology 
schematic. Analyze the design using the smaller, working schematics. 

• Filter your design instead of flattening it. If you must flatten your design, 
hide the instances whose hierarchy you do not need before flattening, or 
use the Dissolve Instances command. See Flattening Schematic Hierarchy, 
on page 343 for details. For more information on the Expand Paths and 
Isolate Paths commands, see RTL View and Technology View Popup Menu 
Commands, on page 496 of the Reference Manual. 

• When searching your design, search by instance rather than by net. 
Searching by net loads the entire design, which uses memory. 

• Limit the scope of a search by hiding instances you do not need to 
analyze. You can limit the scope further by filtering the schematic in 
addition to hiding the instances you do not want to search. 

Using the FSM Viewer (Standard)
The FSM viewer displays state transition bubble diagrams for 
FSMs in the design, along with additional information about the FSM. You 
can use this viewer to view state machines implemented by either the FSM 
Compiler or the FSM Explorer. For more information, see Running the FSM 
Compiler, on page 423 and Running the FSM Explorer, on page 426, respec-
tively. 



Using the FSM Viewer (Standard) Chapter 7: Analyzing with HDL Analyst

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 349

1. To start the FSM viewer, open the RTL view and either

– Select the FSM instance, click the right mouse button and select View 
FSM from the popup menu.

– Push down into the FSM instance (Push/Pop icon). 

The FSM viewer opens. The viewer consists of a transition bubble 
diagram and a table for the encodings and transitions. If you used 
Verilog to define the FSMs, the viewer displays binary values for the 
state machines if you defined them with the ‘define keyword, and actual 
names if you used the parameter keyword. 

2. The following table summarizes basic viewing operations.



LO

Chapter 7: Analyzing with HDL Analyst Using the FSM Viewer (Standard)

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
350 Synopsys Confidential Information January 2020

This figure shows you the mapping information for a state machine. The 
Transitions tab shows you simple equations for conditions for each state. 
The RTL Encodings tab has a State column that shows the state names in 
the source code, and a Registers column for the corresponding RTL 
encoding. The Mapped Encoding tab shows the state names in the code 
mapped to actual values. 

To view... Do...

from and to states, and conditions 
for each transition

Click the Transitions tab at the 
bottom of the table.

the correspondence between the 
states and the FSM registers in the 
RTL view

Click the RTL Encoding tab.

the correspondence between the 
states and the registers in the 
Technology View

Click the Mapped Encodings tab 
(available after synthesis).

only the transition diagram without 
the table

Select View->FSM table or click the 
FSM Table icon. You might have to 
scroll to the right to see it.



Using the FSM Viewer (Standard) Chapter 7: Analyzing with HDL Analyst

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 351

3. To view just one selected state,

– Select the state by clicking on its bubble. The state is highlighted. 

– Click the right mouse button and select the filtering criteria from the 
popup menu: output, input, or any transition.

The transition diagram now shows only the filtered states you set. The 
following figure shows filtered views for output and input transitions for 
one state.

States and Conditions

Mapped Encoding RTL Encoding



LO

Chapter 7: Analyzing with HDL Analyst Using the FSM Viewer (Standard)

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
352 Synopsys Confidential Information January 2020

Similarly, you can check the relationship between two or more states by 
selecting the states, filtering them, and checking their properties. 

4. To view the properties for a state,

– Select the state. 

– Click the right mouse button and select Properties from the popup 
menu. A form shows you the properties for that state. 

To view the properties for the entire state machine like encoding style, 
number of states, and total number of transitions between states, 
deselect any selected states, click the right mouse button outside the 
diagram area, and select Properties from the popup menu. 

5. To view the FSM description in text format, select the state machine in 
the RTL view and View FSM Info File from the right mouse popup. This is 
an example of the FSM Info File, statemachine.info. 

State Machine: work.Control(verilog)-cur_state[6:0]
No selected encoding - Synplify will choose
Number of states: 7
Number of inputs: 4
Inputs:

0: Laplevel
1: Lap
2: Start
3: Reset
Clock: Clk

CountCont state filtered by output transitions

CountCont state filtered by input transitions



Using the FSM Viewer (Standard) Chapter 7: Analyzing with HDL Analyst

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 353

Transitions: (input, start state, destination state)
-100 S0 S6 
--10 S0 S2 
---1 S0 S0 
-00- S0 S0 
--10 S1 S3 
-100 S1 S2 
-000 S1 S1 
---1 S1 S0 
--10 S2 S5 
-000 S2 S2 
-100 S2 S1 
---1 S2 S0 
-100 S3 S5 
-000 S3 S3
--10 S3 S1
---1 S3 S0 
-000 S4 S4 
--1- S4 S0
-1-- S4 S0 
---1 S4 S0
-000 S5 S5 
-100 S5 S4 
--10 S5 S2 
---1 S5 S0
1--0 S6 S6 
---1 S6 S0
0--- S6 S0



LO

Chapter 7: Analyzing with HDL Analyst Using the FSM Viewer (Standard)

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
354 Synopsys Confidential Information January 2020



Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 355

C H A P T E R  8

Analyzing Timing

This chapter describes typical analysis tasks. It describes graphical analysis 
with the HDL Analyst tool as well as interpretation of the text log file. It covers 
the following:

• Analyzing Timing in Schematic Views, on page 356

• Generating Custom Timing Reports with STA, on page 363

• Using Analysis Design Constraints, on page 366

• Using Auto Constraints, on page 373



LO

Chapter 8: Analyzing Timing Analyzing Timing in Schematic Views

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
356 Synopsys Confidential Information January 2020

Analyzing Timing in Schematic Views
You can use the HDL Analyst and Timing Analyst functionality to analyze 
timing. This section describes the following:

• Viewing Timing Information, on page 356

• Annotating Timing Information in the Schematic Views, on page 357

• Analyzing Clock Trees in the RTL View, on page 359

• Viewing Critical Paths, on page 359

• Handling Negative Slack, on page 362

• Generating Custom Timing Reports with STA, on page 363

Viewing Timing Information
Some commands, like Show Critical Path, Hierarchical Critical Path, Flattened Critical 
Path, automatically enable Show Timing Information and display the timing infor-
mation. The following procedure shows you how to do so manually.

1. To analyze timing, enable HDL Analyst->Show Timing Information. 

This displays the timing numbers for all instances in a Technology view. 
It shows the following: 

Delay This is the first number displayed. 
• Combinational logic

This first number is the cumulative path delay to the output of 
the instance, which includes the net delay of the output. 

• Flip-flops
This first number is the path delay attributed to the flip-flop. The 
delay can be associated with either the input or output path, 
whichever is worse, because the flip-flop is the end of one path 
and the start of another. 

Slack 
Time 

This is the second number, and it is the slack time of the worst 
path that goes through the instance. A negative value indicates 
that timing constraints can not be met. 



Analyzing Timing in Schematic Views Chapter 8: Analyzing Timing

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 357

Annotating Timing Information in the Schematic Views
You can annotate the schematic views with timing information for the compo-
nents in the design. Once the design is annotated, you can search for these 
properties and their associated instances. 

1. On the Device tab of the Implementation Options dialog box, enable Annotated 
Properties for Analyst. 

For each synthesis implementation and each place-and-route implementa-
tion, the tool generates properties and stores them in two files located in the 
project folder:

2. To view the annotated timing, open an RTL or Technology view. 

3. To view the timing information from another associated implementation, 
do the following: 

– Open an RTL or Technology view. It displays the timing information 
for that implementation. 

– Select HDL Analyst->Select Timing, and select another implementation 
from the list. The list contains the main implementation and all 

.sap Synplify Annotated Properties
Contains the annotated design properties generated after compilation, 
like clock pins. 

.tap Timing Annotated Properties
Contains the annotated timing properties generated after compilation.



LO

Chapter 8: Analyzing Timing Analyzing Timing in Schematic Views

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
358 Synopsys Confidential Information January 2020

associated place-and-route implementations. The timing numbers in 
the current Analyst view change to reflect the numbers from the 
selected implementation. 

In the following example, an RTL View shows timing data from the test 
implementation and the test/pr_1 (place and route) implementation.

4. Once you have annotated your design, you can filter searches using 
these properties with the find command.

– Use the find -filter {@propName>=propValue} command for the searches. 
See Find Filter Properties, on page 160 in the Reference Manual for a 
list of properties. For information about the find command, see find, 
on page 152 in the Reference Manual.

– Precede the property name with the @ symbol. 

For example, to find fanouts larger than 60, specify find -filter 
{@fanout>=60}. 



Analyzing Timing in Schematic Views Chapter 8: Analyzing Timing

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 359

Analyzing Clock Trees in the RTL View
To analyze clock trees in the RTL view, do the following:

1. In the Hierarchy Browser, expand Clock Tree, select all the clocks, and 
filter the design.

The Hierarchy Browser lists all clocks and the instances that drive them 
under Clock Tree. The filtered view shows the selected objects.

2. If necessary, use the filter and expand commands to trace clock 
connections back to the ports and check them. 

For details about the commands for filtering and expanding paths, see 
Filtering Schematics, on page 336, Expanding Pin and Net Logic, on 
page 338 and Expanding and Viewing Connections, on page 342. 

3. Check that your defined clock constraints cover the objects in the 
design.

If you do not define your clock constraints accurately, you might not get 
the best possible synthesis optimizations. 

Viewing Critical Paths
The HDL Analyst tool makes it simple to find and examine critical paths and 
the relevant source code. The following procedure shows you how to filter and 
analyze a critical path. You can also use the procedure described in Gener-
ating Custom Timing Reports with STA, on page 363 to view this and other 
paths.

1. If needed, set the slack time for your design. 

– Select HDL Analyst->Set Slack Margin.

– To view only instances with the worst-case slack time, enter a zero.

– To set a slack margin range, type a value for the slack margin, and 
click OK. The software gets a range by subtracting this number from 
the slack time, and the Technology view displays instances within 
this range. For example, if your slack time is -10 ns, and you set a 
slack margin of 4 ns, the command displays all instances with slack 
times between -6 ns and -10 ns. If your slack margin is 6 ns, you see 
all instances with slack times between -4 ns and -10 ns. 



LO

Chapter 8: Analyzing Timing Analyzing Timing in Schematic Views

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
360 Synopsys Confidential Information January 2020

2. Display the critical path using one of the following methods. The 
Technology view displays a hierarchical view that highlights the 
instances and nets in the most critical path of your design. 

– To generate a hierarchical view of the critical path, click the Show 
Critical Path icon (stopwatch icon ( ), select HDL Analyst->Technology-
>Hierarchical Critical Path, or select the command from the popup menu. 
This is a filtered view in the same window, with hierarchical logic 
shown in transparent instances. History commands apply, so you 
can return to the previous view by clicking Back. 

– To flatten the hierarchical critical path described above, right-click 
and select Flatten Schematic. The software generates a new view in the 
current window, and flattens only the transparent instances needed 
to show the critical path; the rest of the design remains hierarchical. 
Click Back to go the top-level design. 

– To generate a flattened critical path in a new window, select HDL 
Analyst->Technology->Flattened Critical Path. This command uses more 
memory because it flattens the entire design and generates a new 
view for the flattened critical path in a new window. Click Back in this 
window to go to the flattened top-level design or to return to the 
previous window.

3. Use the timing numbers displayed above each instance to analyze the 
path. If no numbers are displayed, enable HDL Analyst->Show Timing 
Information. Interpret the numbers as follows:

Flattened Critical Path

Hierarchical Critical Path



Analyzing Timing in Schematic Views Chapter 8: Analyzing Timing

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 361

4. View instances in the critical path that have less than the worst-case 
slack time. For additional information on handling slack times, see 
Handling Negative Slack, on page 362. 

If necessary change the slack margin and regenerate the critical path.

5. Crossprobe and check the RTL view and source code. Analyze the code 
and the schematic to determine how to address the problem. You can 
add more constraints or make code changes. 

6. Click the Back icon to return to the previous view. If you flattened your 
design during analysis, select Unflatten Schematic to return to the top-level 
design. 

There is no need to regenerate the critical path, unless you flattened 
your design during analysis or changed the slack margin. When you 
flatten your design, the view is regenerated so the history commands do 
not apply and you must click the Critical Path icon again to see the critical 
path view. 

7. Rerun synthesis, and check your results. 

If you have fixed the path, the window displays the next most critical 
path when you click the icon. 

Repeat this procedure and fix the design for the remaining critical paths. 
When you are within 5-10 percent of your desired results, place and 
route your design to see if you meet your goal. If so, you are done. If your 
vendor provides timing-driven place and route, you might improve your 
results further by adding timing constraints to place and route.

8.8, 1.2

Delay
For combinational logic, it is the cumulative delay to 
the output of the instance, including the net delay of 
the output. For flip-flops, it is the portion of the path 
delay attributed to the flip-flop. The delay can be 
associated with either the input path or output path, 
whichever is worse, because the flip-flop is the end of 
one path and the start of another. 

Slack time
Slack of the worst path that 
goes through the instance. A 
negative value indicates that 
timing has not been met.



LO

Chapter 8: Analyzing Timing Analyzing Timing in Schematic Views

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
362 Synopsys Confidential Information January 2020

Handling Negative Slack
Positive slack time values (greater than or equal to 0 ns) are good, while 
negative slack time values (less than 0 ns) indicate the design has not met 
timing requirements. The negative slack value indicates the amount by which 
the timing is off because of delays in the critical paths of your design.

The following procedure shows you how to add constraints to correct negative 
slack values. Timing constraints can improve your design by 10 to 20 
percent.

1. Display the critical path in a filtered Technology view.

– For a hierarchical critical path, either click the Critical Path icon, select 
HDL Analyst->Show Critical Path, or select HDL Analyst->Technology-> 
Hierarchical Critical Path. 

– For a flat path, select HDL Analyst->Technology->Flattened Critical Path. 

2. Analyze the critical path.

– Check the end points of the path. The start point can be a primary 
input or a flip-flop. The end point can be a primary output or a flip-
flop. 

– Examine the instances. Use the commands described in Expanding 
Pin and Net Logic, on page 338 and Expanding and Viewing 
Connections, on page 342. For more information on filtering 
schematics, see Filtering Schematics, on page 336.

3. Determine whether there is a timing exception, like a false or multicycle 
path. If this is the cause of the negative slack, set the appropriate timing 
constraint.

If there are fewer start points, pick a start point to add the constraint. If 
there are fewer end points, add the constraint to an end point.

4. If your design does not meet timing by 20 percent or more, you may 
need to make structural changes. You could do this by doing either of 
the following:

– Enabling options like retiming (Retiming, on page 402), FSM 
exploration (Running the FSM Explorer, on page 426), or resource 
sharing (Sharing Resources, on page 419). 

– Modifying the source code.

5. Rerun synthesis and check your results.



Generating Custom Timing Reports with STA Chapter 8: Analyzing Timing

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 363

Generating Custom Timing Reports with STA
The log file generated after synthesis includes a timing report and default 
timing information. Use the stand-alone timing analyst (STA) when you need 
to generate a customized timing report (ta) for the following situations:

• You need more details about a specific path

• You want results for paths other than the top five timing paths (log file 
default)

• You want to modify constraints and analyze, without resynthesizing. See 
Using Analysis Design Constraints, on page 366 for details. 

The following procedure shows you how to generate a custom report:

1. Select Analysis->Timing Analyst or click on the Timing Analyst icon( ).

2. Fill in the parameters. 

– You can type in the from/to or through points, or you can cut and paste 
or drag and drop valid objects from the Technology view (not the RTL 
view) into the fields. See Timing Report Generation Parameters, on 
page 394 in the Reference Manual for details on timing analysis 
parameters and how they can be filtered.

– Set options for clock reports as needed. 

– Specify a name for the output timing report (ta). 



LO

Chapter 8: Analyzing Timing Generating Custom Timing Reports with STA

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
364 Synopsys Confidential Information January 2020

3. Click Generate to run the report.

The software generates a custom report file called projectName.ta, located 
in the implementation directory (the directory you specified for synthesis 
results). The software also generates a corresponding output netlist file, 
with an srm extension. 

4. Analyze results. 

– View the report (Open Report) in the Text Editor. The following figure is 
a sample report showing analysis results based on maximum delay 
for the worst paths. 



Generating Custom Timing Reports with STA Chapter 8: Analyzing Timing

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 365

– View the netlist (View Critical Path) in a Technology view. This 
Technology view, labeled Timing View in the title bar, shows only the 
paths you specified in the Timing Analyst dialog box. Note that the 
Timing Analyst and Show Critical Path commands (and equivalent icons 
and shortcuts) are disabled whenever the Timing View is active.



LO

Chapter 8: Analyzing Timing Using Analysis Design Constraints

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
366 Synopsys Confidential Information January 2020

Using Analysis Design Constraints
Besides generating custom timing reports (see Generating Custom Timing 
Reports with STA, on page 363), you can also use the Stand-alone Timing 
Analyst to create constraints in an adc file. You can use these constraints to 
experiment with different timing values, or to add or modify timing 
constraints.

The advantage to using analysis design constraints (ADC) is that you do not 
have to resynthesize the whole design. This reduces debugging time because 
you can get a quick estimate, or try out different values. The Standalone 
Timing Analyst (STA) puts these constraints in an Analysis Design 
Constraints file (adc). The process for using this file is summarized in the 
following flow diagram:

See the following for details:

• Scenarios for Using Analysis Design Constraints, on page 367

• Creating an ADC File, on page 368

• Using Object Names Correctly in the adc File, on page 372



Using Analysis Design Constraints Chapter 8: Analyzing Timing

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 367

Scenarios for Using Analysis Design Constraints
The following describe situations where you can effectively use adc 
constraints to debug, explore options or modify constraints. For details about 
creating these constraints, see Creating an ADC File, on page 368. 

• What-if analysis of design performance
If your design meets the target frequency, you can use adc constraints to 
analyze higher target frequencies, or analyze performance of a module in 
a different design/technology/target device.

• Constraints on enable registers
Similarly, you can apply syn_reference_clock on enable registers to analyze 
if the enables have a regular pattern like clock, or if they operate on a 
frequency other than clock. For example:

• Adding additional timing exceptions 
When you analyze the results of the first synthesis run, you often find 
functional or clock-to-clock timing exceptions, and you can handle these 
with adc constraints. For example: 

– Applying false paths on synchronization circuitry 

– Adding false paths between clocks belonging to different clock groups 

You must add these constraints to see more critical paths in the design. 
The adc constraints let you add these constraints on the fly, and helps 
you debug designs faster. 

• Modifying timing exceptions that were previously applied
For example you might want to set a multicycle path constraint for a 
path that was defined as a false path in the constraint file or vice versa. 
To modify the timing exception, you must first ignore or reset the timing 
exception that was set in the constraint file, as described in Using 
Analysis Design Constraints, on page 366, step 3. 

FDC create_clock {clk} –name {clk} –freq 100 –clockgroup 
clk_grp_0

ADC define_attribute  {n:en} syn_reference_clock {clk2} 
create_clock {clk2} –name {clk2} –freq 50 –clockgroup 
clk_grp_1



LO

Chapter 8: Analyzing Timing Using Analysis Design Constraints

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
368 Synopsys Confidential Information January 2020

Creating an ADC File 
The following procedure explains how to create an adc file. 

1. Select File->New.

2. Do the following in the dialog box that opens:

– Select Analysis Constraint File. 

– Type a name and location for the file. The tool automatically assigns 
the adc extension to the filename. 

– Enable Add to Project, and click OK. This opens the text editor where 
you can specify the new constraints. 

3. Type in the constraints you want and save the file. Remember the 
following when you enter the constraints: 



Using Analysis Design Constraints Chapter 8: Analyzing Timing

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 369

– Keep in mind that the original constraint file has already been applied 
to the design. Any timing exception constraints in this file must not 
conflict with constraints that are already in effect. For example, if 
there is a conflict when multiple timing exceptions (false path, path 
delay, and multicycle timing constraints) are applied to the same 
path, the tool uses this order to resolve conflicts: false path, 
multicycle path, max delay. See Conflict Resolution for Timing 
Exceptions, on page 255 for details about how the tool prioritizes 
timing exceptions.

– The object names must be mapped object names, so use names from 

the Technology view, not names from the RTL view. Unlike the 
constraint file (RTL view), the adc constraints apply to the mapped 
database because the database is not remapped with this flow. For 
more information, see Using Object Names Correctly in the adc File, 
on page 372. 

– If you want to modify an existing constraint for a timing exception, 
you must first reset the original fdc constraint, and then apply the 
new constraint. In the following example the multicycle path 
constraint was changed to 3: 

– When you are done, save and close the file. This adds the file to your 
project.

Original FDC set_multicycle_path –to [get_cells{a_reg*}] 2

ADC reset_path –to {get_cells{a_reg*}]
set_multicycle_path –to [get_cells{a_reg*}] 3



LO

Chapter 8: Analyzing Timing Using Analysis Design Constraints

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
370 Synopsys Confidential Information January 2020

– You can create multiple adc files for different purposes. For example, 
you might want to keep timing exception constraints, I/0 constraints, 
and clock constraints in separate files. If you have an existing adc file, 
use the Add File command to add this file to your project. Select 
Analysis Design Constraint Files (*.adc) as the file type.

4. Run timing analysis. 

– Select Analysis->Timing Analyst or click the Timing Analyst icon ( ). 
The Timing Analyst window will look like the example below, with 
pointers to the srm file, the original fdc and the new adc files you 
created. 



Using Analysis Design Constraints Chapter 8: Analyzing Timing

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 371

– If you have multiple adc files, enable the ones you want. 

– If you have a previous run and want to save that report, type a new 
name for the output ta file. If you do not specify a name, the tool 
overwrites the previous report. 

– Fill in other parameters as appropriate, and click Generate. 

The tool runs static timing analysis in the same implementation direc-
tory as the original implementation. The tool applies the adc constraints 
on top of the fdc constraints. Therefore, adc constraints affect timing 
results only if there are no conflicts with constraints. 

The tool generates a timing report called *_adc.ta and an *_adc.srm file by 
default. It does not change any synthesis outputs, like the output netlist 
or timing constraints for place and route (edf).   



LO

Chapter 8: Analyzing Timing Using Analysis Design Constraints

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
372 Synopsys Confidential Information January 2020

5. Analyze the results in the timing report and *_adc.srm file. 

6. If you need to resynthesize after analysis, add the adc constraints as an 
fdc file to the project and rerun synthesis. 

Using Object Names Correctly in the adc File
Constraints and collections applied in the constraint file reference the RTL-
level database. Synthesis optimizations such as retiming and replication can 
change object names during mapping, because objects may be merged. 

The standalone timing analyst does not map objects. It just reads the gate-
level object names from the post-mapping database; this is reflected in the 
Technology view. Therefore, you must define objects either explicitly or with 
collections from the Technology view when you enter constraints into the adc 
file. Do not use RTL names when you create these constraints (see Creating 
an ADC File, on page 368 for details of that process). 

Example
Assume that register en_reg is replicated during mapping to reduce fanout. 
Further, registers en_reg and en_reg_rep2 connect to register dataout[31:0]. In 
this case, if you define the following false path constraint in the adc file, the 
standalone timing analyzer does not automatically treat paths from the repli-
cated register en_reg_rep2 as false paths. 

set_false_path -from {{i:en_reg}} -to {{i:dataout[31:0]}}
Unlike constraints in the fdc file, you must specify this replicated register 
explicitly or as a collection. Only then are all paths properly treated as false 
paths. So in this example, you must define the following constraints in the 
adc file:

set_false_path  -from {{i:en_reg}}  -to {{i:dataout[31:0]}}
set_false_path  -from {{i:en_reg_rep2}}  

-to {{i:dataout[31:0]}}
or 

define_scope_collection  en_regs {find -seq {i:en_reg*} 
-filter (@name == en_reg || @name == en_reg_rep2)}

set_false_path  -from {{$en_regs}}  -to {{i:dataout[31:0]}}



Using Auto Constraints Chapter 8: Analyzing Timing

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 373

Using Auto Constraints
Auto constraining lets you synthesize with automatic constraints as a first 
step to get an idea of what you can achieve. Automatic constraints generate 
the fastest design implementation, so they force the timing engine to work 
harder. Based on the results from auto-constraining, you can refine the 
constraints manually later. For an explanation of how auto constraints work, 
see Results of Auto Constraints, on page 375. 

1. To automatically constrain your design, first do the following:

– Set your device to a technology that supports auto-constraining. With 
supported technologies, the Auto Constrain button under Frequency in 
the Project view is available. 

– Do not define any clocks. If you define clocks using the SCOPE 
window or a constraint file, or set the frequency in the Project view, 
the software uses the user-defined create_clock constraints instead of 
auto constraints.

– Make sure any multi-cycle or false path constraints are specified on 
registers. 

2. Enable the Auto Constrain button on the left side of the Project view. 
Alternatively, select Project->Implementation Options->Constraints, and enable 
the Auto Constrain option there. 



LO

Chapter 8: Analyzing Timing Using Auto Constraints

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
374 Synopsys Confidential Information January 2020

3. If you want to auto constrain I/O paths, select Project->Implementation 
Options->Constraints and enable Use Clock Period for Unconstrained IO.

If you do not enable this option, the software only auto constrains flop-
to-flop paths. Even when the software auto constrains the I/O paths, it 
does not generate these constraints for forward-annotation. 

4. Synthesize the design. 

The software puts each clock in a separate clock group and adjusts the 
timing of each clock individually. At different points during synthesis it 
adjusts the clock period of each clock to be a target percentage of the 
current clock period, usually 15% - 25%. 

After the clocks, the timing engine constrains I/O paths by setting the 
default combinational path delay for each I/O path to be one clock 
period. 

The software writes out the generated constraints in a file called AutoCon-
straint_designName.fdc in the run directory. It also forward-annotates 
these constraints to the place-and-route tools. 

5. Check the results in AutoConstraint_designName.fdc and the log file. To 
open the constraint file as a text file, right-click on the file in the 
Implementation Results view and select Open as Text. 



Using Auto Constraints Chapter 8: Analyzing Timing

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 375

The flop-to-flop constraints use syntax like the following:

create_clock -name {c:leon|clk} -period 13.327 -clockgroup 
Autoconstr_clkgroup_0 -rise 0.000 -fall 6.664 -route 0.000

6. You can now add this generated constraint file to the project and rerun 
synthesis with these constraints. 

Results of Auto Constraints
This section contains information about the following:

• Stages of the Auto Constrain Algorithm, on page 375

• I/O Constraints and Timing Exceptions, on page 375

• Reports and Forward-annotation, on page 376

• Repeatability of Results, on page 376

Stages of the Auto Constrain Algorithm
To auto constrain, do not define any clocks. When you enable the Auto 
Constrain option, the synthesis software goes through these stages:

1. It infers every clock in the design.

2. It puts each clock in its own clock group.

3. For each clock, including the system clock, the software maintains a 
negative slack of between 15 and 25 percent of the requested frequency. 

I/O Constraints and Timing Exceptions
The auto constrain algorithm infers all the clocks, because none are defined. 
It handles the following timing situations as described below:

• I/O constraints

You can auto constrain I/O paths as well as flop-to-flop paths by 
selecting Project->Implementation Options->Constraints and enabling Use Clock 
Period for Unconstrained IO. The software does not write out these I/O 
constraints. 



LO

Chapter 8: Analyzing Timing Using Auto Constraints

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
376 Synopsys Confidential Information January 2020

• Timing exceptions like multicycle and false paths

The auto constraint algorithm honors SCOPE multicycle and false path 
constraints that are specified as constraints on registers. 

Auto Constrain Limitations
The Auto Constrain feature over constrains designs with output critical paths.

Reports and Forward-annotation
In the log file, the software reports the Requested and Estimated Frequency or 
Requested and Estimated Period and the negative slack for each clock it infers. 
The log file contains all the details. 

The software also generates a constraint file in the run directory called 
AutoConstraint_designName.sdc, which contains the auto constraints generated. 
The following is an example of an auto constraint file:

#Begin clock constraint
create_clock -name {c:leon|clk} -period 13.327 -rise 0.000 -fall 
6.664 
#End clock constraint

The software forward-annotates the create_clock constraints, writing out the 
appropriate file for the place-and-route tool. 

Repeatability of Results
If you use the requested frequency resulting from the Auto constrain option as 
the requested frequency for a regular synthesis run, you might not get the 
same results as you did with auto constraints. This is because the software 
invokes the mapper optimizations in stages when it auto constrains. The 
results from a previous stage are used to drive the next stage. As the interim 
optimization results vary, there is no guarantee that the final results will stay 
the same.



Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 377

C H A P T E R  9

Inferring High-Level Objects

This chapter contains guidelines on how to structure your code or attach 
attributes so that the synthesis tools can automatically infer high-level 
objects like RAMs. See the following for more information:

• Defining Black Boxes for Synthesis, on page 378

• Defining State Machines for Synthesis, on page 387

• Initializing RAMs, on page 391



LO

Chapter 9: Inferring High-Level Objects Defining Black Boxes for Synthesis

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
378 Synopsys Confidential Information January 2020

Defining Black Boxes for Synthesis
Black boxes are predefined components for which the interface is specified, 
but whose internal architectural statements are ignored. They are used as 
place holders for IP blocks, legacy designs, or a design under development. 

This section discusses the following topics:

• Instantiating Black Boxes and I/Os in Verilog, on page 378

• Instantiating Black Boxes and I/Os in VHDL, on page 380

• Adding Black Box Timing Constraints, on page 382

• Adding Other Black Box Attributes, on page 386

Instantiating Black Boxes and I/Os in Verilog 
Verilog black boxes for macros and I/Os come from two sources: commonly-
used or vendor-specific components that are predefined in Verilog macro 
libraries, or black boxes that are defined in another input source like a 
schematic. For information about instantiating black boxes in VHDL, see 
Instantiating Black Boxes and I/Os in VHDL, on page 380. 

The following process shows you how to instantiate both types as black 
boxes. Refer to the installDirectory/examples directory for examples of instantia-
tions of low-level resources.

1. To instantiate a predefined Verilog module as a black box:

– Select the library file with the macro you need from the 
installDirectory/lib/technology directory. Files are named technology.v. 
Most vendor architectures provide macro libraries that predefine the 
black boxes for primitives and macros.

– Make sure the library macro file is the first file in the source file list 
for your project. 

2. To instantiate a module that has been defined in another input source 
as a black box:

– Create an empty macro that only contains ports and port directions.



Defining Black Boxes for Synthesis Chapter 9: Inferring High-Level Objects

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 379

– Put the syn_black_box synthesis directive just before the semicolon in 
the module declaration. 

module myram (out, in, addr, we) /* synthesis syn_black_box */;
output [15:0] out;
input [15:0] in;
input [4:0] addr;
input we;

endmodule
– Make an instance of the stub in your design.

– Compile the stub along with the module containing the instantiation 
of the stub. 

– To simulate with a Verilog simulator, you must have a functional 
description of the black box. To make sure the synthesis software 
ignores the functional description and treats it as a black box, use 
the translate_off and translate_on constructs. For example:

module adder8(cout, sum, a, b, cin);
// Code that you want to synthesize
/* synthesis translate_off */
// Functional description.
/* synthesis translate_on */
// Other code that you want to synthesize.
endmodule

3. To instantiate a vendor-specific (black box) I/O that has been defined in 
another input source: 

– Create an empty macro that only contains ports and port directions.

– Put the syn_black_box synthesis directive just before the semicolon in 
the module declaration. 

– Specify the external pad pin with the black_box_pad_pin directive, as in 
this example:

module BBDLHS(D,E,GIN,GOUT,PAD,Q)
/* synthesis syn_black_box black_box_pad_pin="PAD"

– Make an instance of the stub in your design.

– Compile the stub along with the module containing the instantiation 
of the stub. 



LO

Chapter 9: Inferring High-Level Objects Defining Black Boxes for Synthesis

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
380 Synopsys Confidential Information January 2020

4. Add timing constraints and attributes as needed. See Adding Black Box 
Timing Constraints, on page 382 and Adding Other Black Box 
Attributes, on page 386. 

5. After synthesis, merge the black box netlist and the synthesis results file 
using the method specified by your vendor. 

Instantiating Black Boxes and I/Os in VHDL 
VHDL black boxes for macros and I/Os come from two sources: commonly-
used or vendor-specific components that are predefined in VHDL macro 
libraries, or black boxes that are defined in another input source like a 
schematic. For information about instantiating black boxes in VHDL, see 
Instantiating Black Boxes and I/Os in Verilog, on page 378.

The following process shows you how to instantiate both types as black 
boxes. Refer to the installDirectory/examples directory for examples of instantia-
tions of low-level resources.

1. To instantiate a predefined VHDL macro (for a component or an I/O),

– Select the library file with the macro you need from the 
installDirectory/lib/vendor directory. Files are named family.vhd. Most 
vendor architectures provide macro libraries that predefine the black 
boxes for primitives and macros. 

– Add the appropriate library and use clauses to the beginning of your 
design units that instantiate the macros. 

library family ;
use family.components.all;

2. To create a black box for a component from another input source:

– Create a component declaration for the black box.

– Declare the syn_black_box attribute as a boolean attribute.

– Set the attribute to true. 

library synplify;
use synplify.attributes.all;
entity top is 

port (clk, rst, en, data: in bit; q: out bit);
end top;



Defining Black Boxes for Synthesis Chapter 9: Inferring High-Level Objects

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 381

architecture structural of top is
component bbox

port(Q: out bit; D, C, CLR: in bit);
end component;
attribute syn_black_box of bbox: component is true;
...

– Instantiate the black box and connect the ports. 

begin
my_bbox: bbox port map (

Q => q,
D => data,
C => clk,
CLR => rst);

– To simulate with a VHDL simulator, you must have the functional 
description of a black box. To make sure the synthesis software 
ignores the functional description and treats it as a black box, use 
the translate_off and translate_on constructs. For example:

architecture behave of ram4 is
begin

synthesis translate_off
stimulus: process (clk, a, b)
-- Functional description

end process;
synthesis translate_on
-- Other source code you WANT synthesized

3. To create a vendor-specific (black box) I/O for an I/O defined in another 
input source:

– Create a component declaration for the I/O.

– Declare the black_box_pad_pin attribute as a string attribute.

– Set the attribute value on the component to be the external pin name 
for the pad. 

library synplify;
use synplify.attributes.all;
...



LO

Chapter 9: Inferring High-Level Objects Defining Black Boxes for Synthesis

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
382 Synopsys Confidential Information January 2020

component mybuf
port(O: out bit; I: in bit);

end component;
attribute black_box_pad_pin of mybuf: component is "I";

– Instantiate the pad and connect the signals.

begin
data_pad: mybuf port map (

O => data_core,
I => data);

4. Add timing constraints and attributes. See Adding Black Box Timing 
Constraints, on page 382 and Adding Other Black Box Attributes, on 
page 386.

Adding Black Box Timing Constraints
A black box does not provide the software with any information about 
internal timing characteristics. You must characterize black box timing 
accurately, because it can critically affect the overall timing of the design. To 
do this, you add constraints in the source code or in the SCOPE interface. 

You attach black box timing constraints to instances that have been defined 
as black boxes. There are three black box timing constraints, syn_tpd, syn_tsu, 
and syn_tco. 

1. Define the instance as a black box, as described in Instantiating Black 
Boxes and I/Os in Verilog, on page 378 or Instantiating Black Boxes and 
I/Os in VHDL, on page 380.

Black Box

D

syn_tpd

syn_tsu

syn_tco

Q

clk



Defining Black Boxes for Synthesis Chapter 9: Inferring High-Level Objects

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 383

2. Determine the kind of constraint for the information you want to specify:

3. In VHDL, use the following syntax for the constraints. 

– Use the predefined attributes package by adding this syntax

library synplify;
use synplify.attributes.all;
In VHDL, you must use the predefined attributes package. For each 
directive, there are ten predeclared constraints in the attributes 
package, from directive_name1 to directive_name10. If you need more 
constraints, declare the additional constraints using integers greater 
than 10. For example: 

attribute syn_tco11 : string;
attribute syn_tco12 : string;

– Define the constraints in either of these ways:

The following table shows the appropriate syntax for att_value. See the 
Reference Manual for complete syntax information. 

To define... Use...

Propagation delay through the black box syn_tpd

Setup delay (relative to the clock) for input pins syn_tsu

Clock-to-output delay through the black box syn_tco

VHDL 
syntax

attribute attributeName<n> : "att_value"

Verilog-style 
notation

attribute attributeName<n> of bbox_name : 
component is "att_value"



LO

Chapter 9: Inferring High-Level Objects Defining Black Boxes for Synthesis

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
384 Synopsys Confidential Information January 2020

The following is an example of black box attributes, using VHDL 
signal notation:

architecture top of top is 
component rcf16x4z port(

ad0, ad1, ad2, ad3 : in std_logic;
di0, di1, di2, di3 : in std_logic;
wren, wpe : in std_logic;
tri : in std_logic;
do0, do1, do2 do3 : out std_logic;

end component
attribute syn_tpd1 of rcf16x4z : component is

"ad0,ad1,ad2,ad3 -> do0,do1,do2,do3 = 2.1";
attribute syn_tpd2 of rcf16x4z : component is

"tri -> do0,do1,do2,do3 = 2.0";
attribute syn_tsu1 of rcf16x4z : component is

"ad0,ad1,ad2,ad3 -> ck = 1.2";
attribute syn_tsu2 of rcf16x4z : component is

"wren,wpe,do0,do1,do2,do3 -> ck = 0.0";
4. In Verilog, add the directives as comments, as shown in the following 

example. For explanations about the syntax, see the table in the 
previous step or the Reference Manual. 

module ram32x4 (z, d, addr, we, clk)
/* synthesis syn_black_box
syn_tpd1="addr[3:0]->z[3:0]=8.0"
syn_tsu1="addr[3:0]->clk=2.0"
syn_tsu2="we->clk=3.0" */;

output [3:0[ z;

Attribute Value Syntax

syn_tsu<n> bundle -> [!]clock = value

syn_tco<n> [!]clock -> bundle = value

syn_tpd<n> bundle -> bundle = value

• <n> is a numerical suffix. 
• bundle is a comma-separated list of buses and scalar signals, with no 

intervening spaces. For example, A,B,C. 
• ! indicates (optionally) a negative edge for a clock.
• value is in ns. 



Defining Black Boxes for Synthesis Chapter 9: Inferring High-Level Objects

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 385

input [3:0] d;
input [3:0] addr;
input we;
input clk;
endmodule

5. To add black box attributes through the SCOPE interface, do the 
following: 

– Open the SCOPE spreadsheet and select the Attributes panel.

– In the Object column, select the name of the black-box module or 
component declaration from the pull-down list. Manually prefix the 
black box name with v: to apply the constraint to the view.

– In the Attribute column, type the name of the timing attribute, followed 
by the numerical suffix, as shown in the following table. You cannot 
select timing attributes from the pull-down list.

– In the Value column, type the appropriate value syntax, as shown in 
the table in step 3. 

– Save the constraint file, and add it to the project. 

The resulting constraint file contains syntax like this:

define_attribute v:{blackboxModule} attribute<n> {attributeValue}

6. Synthesize the design, and check black box timing. 



LO

Chapter 9: Inferring High-Level Objects Defining Black Boxes for Synthesis

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
386 Synopsys Confidential Information January 2020

Adding Other Black Box Attributes
Besides black box timing constraints, you can also add other attributes to 
define pin types on the black box. You cannot use the attributes for all 
technologies. Check the Reference Manual for details about which technolo-
gies are supported.

1. To specify that a clock pin on the black box has access to global clock 
routing resources, use syn_isclock.

Depending on the technology, different clock resources are inserted. For 
Microsemi it inserts CLKBUF. 

2. To specify that the software need not insert a pad for a black box pin, 
use black_box_pad_pin. 

Use this for technologies that automatically insert pad buffers for the 
I/Os, like Microsemi technologies.

3. To define a tristate pin so that you do not get a mixed driver error when 
there is another tristate buffer driving the same net, use 
black_box_tri_pins. 

Pad

Clk

Clk buffer

syn_isclock

black_box_tri_pins

Black Box

black_box_pad_pin



Defining State Machines for Synthesis Chapter 9: Inferring High-Level Objects

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 387

Defining State Machines for Synthesis
A finite state machine (FSM) is a piece of hardware that advances from state 
to state at a clock edge. The synthesis software recognizes and extracts the 
state machines from the HDL source code. For guidelines on setting up the 
source code, see the following:

• Defining State Machines in Verilog, on page 387

• Defining State Machines in VHDL, on page 388

• Specifying FSMs with Attributes and Directives, on page 389

For information about the attributes used to define state machines, see 
Running the FSM Compiler, on page 423. 

Defining State Machines in Verilog
The synthesis software recognizes and automatically extracts state machines 
from the Verilog source code if you follow these coding guidelines. The 
software attaches the syn_state_machine attribute to each extracted FSM. 

For alternative ways to define state machines, see Defining State Machines in 
VHDL, on page 388 and Specifying FSMs with Attributes and Directives, on 
page 389. 

• In Verilog, model the state machine with case, casex, or casez statements 
in always blocks. Check the current state to advance to the next state 
and then set output values. Do not use if statements. 

• Always use a default assignment as the last assignment in the case 
statement, and set the state variable to ‘bx. This is a “don’t care” state-
ment and ensures that the software can remove unnecessary decoding 
and gates. 

• Make sure the state machines have a synchronous or asynchronous 
reset to set the hardware to a valid state after power-up, or to reset the 
hardware when you are operating. 

• Use explicit state values for states using parameter or ‘define statements. 
This is an example of a parameter statement that sets the current state to 
2’h2:



LO

Chapter 9: Inferring High-Level Objects Defining State Machines for Synthesis

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
388 Synopsys Confidential Information January 2020

parameter state1 = 2’h1, state2 = 2’h2;
...
current_state = state2; 

This example shows how to set the current state value with `define state-
ments:

‘define state1 2’h1
‘define state2 2’h2
...
current_state = ‘state2; 

• Make state assignments using parameter with symbolic state names.Use 
parameter over `define, because `define is applied globally while parameter 
definitions are local. Local definitions make it easier to reuse common 
state names in multiple FSM designs, like RESET, IDLE, READY, READ, 
WRITE, ERROR, and DONE. 

If you use `define to assign the names, you cannot reuse a state name 
because it has already been used in the global name space. To reuse the 
same names in this scenario, you have to use `undef and `define state-
ments between modules to redefine the names. This method makes it 
difficult to probe the internal values of FSM state buses from a 
testbench and compare them to the state names.

Defining State Machines in VHDL
The synthesis software recognizes and automatically extracts state machines 
from the VHDL source code if you follow coding guidelines. For alternative 
ways to define state machines, see Defining State Machines in Verilog, on 
page 387 and Specifying FSMs with Attributes and Directives, on page 389. 

The following are VHDL guidelines for coding. The software attaches the 
syn_state_machine attribute to each extracted FSM.

• Use case statements to check the current state at the clock edge, 
advance to the next state, and set output values. You can also use if-then-
else statements, but case statements are preferable. 

• If you do not cover all possible cases explicitly, include a when others 
assignment as the last assignment of the case statement, and set the 
state vector to some valid state. 

• If you create implicit state machines with multiple WAIT statements, the 
software does not recognize them as state machines. 



Defining State Machines for Synthesis Chapter 9: Inferring High-Level Objects

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 389

• Make sure the state machines have a synchronous or asynchronous 
reset to set the hardware to a valid state after power-up, or to reset the 
hardware when you are operating. 

• To choose an encoding style, attach the syn_encoding attribute to the 
enumerated type. The software automatically encodes your state 
machine with the style you specified. 

Specifying FSMs with Attributes and Directives
If your design has state machines, the software can extract them automati-
cally with the FSM Compiler (see Optimizing State Machines, on page 421), or 
you can manually specify attributes to define the state machines. You attach 
the attributes to the state registers. For detailed information about the attri-
butes and their syntax, see the Reference Manual. 

The following steps show you how to use attributes to define FSMs for 
extraction. For alternative ways to define state machines, see Defining State 
Machines in Verilog, on page 387 and Defining State Machines in VHDL, on 
page 388.

1. To determine how state machines are extracted, set attributes in the 
source code as shown in the following table: 

For information about how to add attributes, see Specifying Attributes 
and Directives, on page 88.

2. To determine the encoding style used for the state machine, set the 
syn_encoding attribute in the source code or in the SCOPE window. For 
VHDL users there are alternative methods, described in the next step.

The FSM Compiler and the FSM Explorer honor this setting. The 
different values for this attribute are briefly described here:

To... Attribute 

Specify a state machine for extraction and 
optimization

syn_state_machine=1

Prevent state machines from being extracted 
and optimized

syn_state_machine=0

Prevent the state machine from being 
optimized away

syn_preserve=1



LO

Chapter 9: Inferring High-Level Objects Defining State Machines for Synthesis

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
390 Synopsys Confidential Information January 2020

3. If you are using VHDL, you have two choices for defining encoding:

– Use syn_encoding as described above, and enable the FSM compiler.

– Use syn_enum_encoding to define the states (sequential, onehot, gray, and 
safe) and disable the FSM Explorer. If you do not disable the FSM 
Explorer, the syn_enum_encoding values are not implemented. This is 
because the FSM Explorer, a mapper operation, overrides 
syn_enum_encoding, which is a compiler directive. 

Use the syn_enum_encoding method for user-defined FSM encoding. 
For example:

attribute syn_enum_encoding of state_type : type is "001 010 101";

Situation: If... syn_encoding Value Explanation

Area is important sequential One of the smallest encoding 
styles.

Speed is 
important

onehot Usually the fastest style and 
suited to most FPGA styles.

Recovery from an 
invalid state is 
important

safe, with another 
style. For example: 
/* synthesis 
syn_encoding = 
"safe, onehot" */

Forces the state machine to 
reset in certain situations. For 
example, if an alpha particle hit 
in a hostile operating 
environment causes a 
spontaneous register change, 
you can use safe to reset the 
state machine

There are 
<5 states

sequential Default encoding. 

Large output 
decoder follows 
the FSM

sequential or 
gray

Could be faster than onehot, 
even though the value must be 
decoded to determine the state. 
For sequential, more than one bit 
can change at a time; for gray, 
only one bit changes at a time, 
but more than one bit can be 
hot. 

There are a large 
number of flip-
flops

onehot Fastest style, because each state 
variable has one bit set, and 
only one bit of the state register 
changes at a time. 



Initializing RAMs Chapter 9: Inferring High-Level Objects

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 391

Initializing RAMs
You can specify startup values for RAMs and pass them on to the place-and-
route tools. See the following for ways to set the initial values:

• Initializing RAMs in Verilog, on page 391

• Initializing RAMs in VHDL, on page 392

• Initializing RAMs with $readmemb and $readmemh, on page 395

Initializing RAMs in Verilog
In Verilog, you specify startup values using initial statements, which are 
procedural assign statements guaranteed by the language to be executed by 
the simulator at the start of the simulation. This means that any assignment 
to a variable within the body of the initial statement is treated as if the 
variable was initialized with the corresponding LHS value. You can initialize 
memories using the built-in load memory system tasks $readmemb (binary) 
and $readmemh (hex). 

The following procedure is the recommended method for specifying initial 
values:

1. Create a data file with an initial value for every address in the memory 
array. This file can be a binary file or a hex file. See Initialization Data 
File, on page 60 in the Reference Manual for details of the formats for 
these files. 

2. Do the following in the Verilog file to define the module:

– Include the appropriate task enable statement, $readmemb or 
$readmemh, in the initial statement for the module:

$readmemb ("fileName", memoryName [, startAddress [, stopAddress]]);

$readmemh ("fileName", memoryName [, startAddress [, stopAddress]]);

Use $readmemb for a binary file and use $readmemh for a hex file. For 
descriptions of the syntax, see Initial Values in Verilog, on page 56 in 
the Reference Manual. 



LO

Chapter 9: Inferring High-Level Objects Initializing RAMs

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
392 Synopsys Confidential Information January 2020

– Make sure the array declaration matches the order in the initial value 
data file you specified. As the file is read, each number encountered is 
assigned to a successive word element of the memory. The software 
starts with the left-hand address in the memory declaration, and 
loads consecutive words until the memory is full or the data file has 
been completely read. The loading order is the order in the 
declaration. For example, with the following memory definition, the 
first line in the data file corresponds to address 0:

reg [7:0] mem_up [0:63]
With this next definition, the first line in the data file applies to 
address 63: 

reg [7:0] mem_down [63:0]
3. To forward-annotate initial values, use the $readmemb or $readmemh 

statements, as described in Initializing RAMs with $readmemb and 
$readmemh, on page 395. 

See RAM Initialization Example, on page 59 in the Reference Manual for 
an example of a Verilog single-port RAM.

Initializing RAMs in VHDL
There are two ways to initialize RAMs in the VHDL code: with signal declara-
tions or with variable declarations. 

Initializing VHDL Rams with Signal Declarations
The following example shows a single-port RAM that is initialized with signal 
initialization statements. For alternative methods, see Initializing VHDL 
Rams with Variable Declarations, on page 394. 

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;



Initializing RAMs Chapter 9: Inferring High-Level Objects

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 393

entity w_r2048x28 is
port (

clk : in  std_logic;
adr : in  std_logic_vector(10 downto 0);
di : in  std_logic_vector(26 downto 0);
we : in  std_logic;
dout : out std_logic_vector(26 downto 0));

end;
architecture arch of w_r2048x28 is
-- Signal  Declaration --
type MEM is array(0 to 2047) of std_logic_vector (26 downto 0);
signal memory : MEM := (
"111111111111111000000000000"
,"111110011011101010011110001"
,"111001111000111100101100111"
,"110010110011101110011110001"
,"101001111000111111100110111"
,"100000000000001111111111111"
,"010110000111001111100110111"
,"001101001100011110011110001"
,"000110000111001100101100111"
,"000001100100011010011110001"
,"000000000000001000000000000"
,"000001100100010101100001110"
,"000110000111000011010011000"
,"001101001100010001100001110"
,"010110000111000000011001000"
,"011111111111110000000000000"
,"101001111000110000011001000"
,"110010110011100001100001110"
,"111001111000110011010011000"
,"111110011011100101100001110"
,"111111111111110111111111111"
,"111110011011101010011110001"
,"111001111000111100101100111"
,"110010110011101110011110001"
,"101001111000111111100110111"
,"100000000000001111111111111"
,others => (others => '0'));
begin  
process(clk)



LO

Chapter 9: Inferring High-Level Objects Initializing RAMs

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
394 Synopsys Confidential Information January 2020

begin
if rising_edge(clk) then

if (we = '1') then
memory(conv_integer(adr)) <= di;

end if;
dout <= memory(conv_integer(adr));

end if;
end process;
end arch;

Initializing VHDL Rams with Variable Declarations
The following example shows a RAM that is initialized with variable declara-
tions. For alternative methods, see Initializing VHDL Rams with Signal Decla-
rations, on page 392 and Initializing RAMs with $readmemb and 
$readmemh, on page 395.

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
entity one is
generic (data_width    : integer := 6;

address_width :integer  := 3
);
port ( data_a    :in std_logic_vector(data_width-1 downto 0);

raddr1    :in unsigned(address_width-2 downto 0);
waddr1 :in unsigned(address_width-1 downto 0);
we1    :in std_logic;
clk :in std_logic;
out1 :out std_logic_vector(data_width-1 downto 0) );

end;
architecture rtl of one is

type mem_array is array(0 to 2**(address_width) -1) of 
std_logic_vector(data_width-1 downto 0);

begin
WRITE1_RAM :  process (clk)

variable mem : mem_array := (1 => "111101", others => (1=>'1',
others => '0'));

begin
if rising_edge(clk) then

out1  <= mem(to_integer(raddr1));
if (we1 = '1') then



Initializing RAMs Chapter 9: Inferring High-Level Objects

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 395

mem(to_integer(waddr1)) := data_a;
end if;

end if;
end process WRITE1_RAM;
end rtl;

Initializing RAMs with $readmemb and $readmemh
1. Create a data file with an initial value for every address in the memory 

array. This file can be a binary file or a hex file. See Initialization Data 
File, on page 60 in the Reference Manual for details. 

2. Include one of the task enable statements, $readmemb or $readmemh, in 
the initial statement for the module:

$readmemb ("fileName", memoryName [, startAddress [, stopAddress]]) ;
$readmemh ("fileName", memoryName [, startAddress [, stopAddress]]) ;

Use $readmemb for a binary file and $readmemh for a hex file. For details 
about the syntax, see Initial Values in Verilog, on page 56 in the Refer-
ence Manual. 



LO

Chapter 9: Inferring High-Level Objects Initializing RAMs

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
396 Synopsys Confidential Information January 2020



Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 397

C H A P T E R  1 0

Specifying Design-Level Optimizations

This chapter covers techniques for optimizing your design using built-in tools 
or attributes. For vendor-specific optimizations, see Chapter A, Designing 
with Microsemi. It describes the following:

• Tips for Optimization, on page 398

• Retiming, on page 402

• Preserving Objects from Being Optimized Away, on page 409

• Optimizing Fanout, on page 415

• Sharing Resources, on page 419

• Inserting I/Os, on page 420

• Optimizing State Machines, on page 421

• Inserting Probes, on page 429



LO

Chapter 10: Specifying Design-Level Optimizations Tips for Optimization

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
398 Synopsys Confidential Information January 2020

Tips for Optimization
The software automatically makes efficient trade-offs to achieve the best 
results. However, you can optimize your results by using the appropriate 
control parameters. This section describes general design guidelines for 
optimization. The topics have been categorized as follows:

• General Optimization Tips, on page 398

• Optimizing for Area, on page 399

• Optimizing for Timing, on page 400

General Optimization Tips
This section contains general optimization tips that are not directly area or 
timing-related. For area optimization tips, see Optimizing for Area, on 
page 399. For timing optimization, see Optimizing for Timing, on page 400.

• In your source code, remove any unnecessary priority structures in 
timing-critical designs. For example, use CASE statements instead of 
nested IF-THEN-ELSE statements for priority-independent logic. 

• If your design includes safe state machines, use the syn_encoding attri-
bute with a value of safe. This ensures that the synthesized state 
machines never lock in an illegal state. 

• For FSMs coded in VHDL using enumerated types, use the same 
encoding style (syn_enum_encoding attribute value) on both the state 
machine enumerated type and the state signal. This ensures that there 
are no discrepancies in the type of encoding to negatively affect the final 
circuit. 

• Make sure that the source code supports inferencing or instantiation by 
using architecture-specific resources like memory blocks. 

• Some designs benefit from hierarchical optimization techniques. To 
enable hierarchical optimization on your design, set the syn_hier attri-
bute to firm.

• For accurate results with timing-driven synthesis, explicitly define clock 
frequencies with a constraint, instead of using a global clock frequency. 



Tips for Optimization Chapter 10: Specifying Design-Level Optimizations

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 399

Optimizing for Area
This section contains information on optimizing to reduce area. Optimizing 
for area often means larger delays, and you will have to weigh your perfor-
mance needs against your area needs to determine what works best for your 
design. For tips on optimizing for performance, see Optimizing for Timing, on 
page 400. General optimization tips are in General Optimization Tips, on 
page 398. 

• Increase the fanout limit when you set the implementation options. A 
higher limit means less replicated logic and fewer buffers inserted 
during synthesis, and a consequently smaller area. In addition, as P&R 
tools typically buffer high fanout nets, there is no need for excessive 
buffering during synthesis. See Setting Fanout Limits, on page 415 for 
more information. 

• Enable the Resource Sharing option when you set implementation options. 
With this option checked, the software shares hardware resources like 
adders, multipliers, and counters wherever possible, and minimizes 
area. This is a global setting, but you can also specify resource sharing 
on an individual basis for lower-level modules. See Sharing Resources, 
on page 419 for details. 

• For designs with large FSMs, use the gray or sequential encoding styles, 
because they typically use the least area. For details, see Specifying 
FSMs with Attributes and Directives, on page 389. 

• If you are mapping into a CPLD and do not meet area requirements, set 
the default encoding style for FSMs to sequential instead of onehot. For 
details, see Specifying FSMs with Attributes and Directives, on 
page 389.

• For small CPLD designs (less than 20K gates), you might improve area 
by using the syn_hier attribute with a value of flatten. When specified, the 
software optimizes across hierarchical boundaries and creates smaller 
designs. 



LO

Chapter 10: Specifying Design-Level Optimizations Tips for Optimization

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
400 Synopsys Confidential Information January 2020

Optimizing for Timing
This section contains information on optimizing to meet timing requirements. 
Optimizing for timing is often at the expense of area, and you will have to 
balance the two to determine what works best for your design. For tips on 
optimizing for area, see Optimizing for Area, on page 399. General optimiza-
tion tips are in General Optimization Tips, on page 398. 

• Use realistic design constraints, about 10 to 15 percent of the real goal. 
Over-constraining your design can be counter-productive because you 
can get poor implementations. Typically, you set timing constraints like 
clock frequency, clock-to-clock delay paths, I/O delays, register I/O 
delays and other miscellaneous path delays. Use clock, false path, and 
multi-cycle path constraints to make the constraints realistic. 

• Enable the Retiming option. This optimization moves registers into I/O 
buffers if this is permitted by the technology and the design. However, it 
may add extra registers when clouds of logic are balanced across more 
than one register-to-register timing path. Extra registers are only added 
in parallel within the timing path and only if no extra latency is added by 
the additional registers. For example, if registers are moved across a 2x1 
multiplexer, the tool adds two new registers to accommodate the select 
and data paths. 

You can set this option globally or on specific registers. See Retiming, on 
page 402 for details. 

• Select a balanced fanout constraint. A large constraint creates nets with 
large fanouts, and a low fanout constraint results in replicated logic. See 
Setting Fanout Limits, on page 415 for information about setting limits 
and using the syn_maxfan attribute. You can use this in conjunction with 
the syn_replicate attribute that controls register duplication and buffering. 

• Control register duplication and buffering criteria with the syn_replicate 
attribute. The tool automatically replicates registers during optimization, 
and you can use this attribute globally or locally on a specific register to 
turn off register duplication. See Controlling Buffering and Replication, 
on page 417 for a description. Use syn_replicate in conjunction with the 
syn_maxfan attribute that controls fanout. 

• If the critical path goes through arithmetic components, try disabling 
Resource Sharing. You can get faster times at the expense of increased 
area, but use this technique carefully. Adding too many resources can 
cause longer delays and defeat your purpose.



Tips for Optimization Chapter 10: Specifying Design-Level Optimizations

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 401

• If the P&R and synthesis tools report different critical paths, use a 
timing constraint with the -route option. With this option, the software 
adds route delay to its calculations when trying to meet the clock 
frequency goal. Use realistic values for the constraints. 

• For FSMs, use the onehot encoding style, because it is often the fastest 
implementation. If a large output decoder follows an FSM, gray or 
sequential encoding could be faster. 

• For designs with black boxes, characterize the timing models accurately, 
using the syn_tpd, syn_tco, and syn_tso directives. 

• If you see warnings about feedback muxes being created for signals 
when you compile your source code, make sure to assign set/resets for 
the signals. This improves performance by eliminating the extra mux 
delay on the input of the register. 

• Make sure that you pass your timing constraints to the place-and-route 
tools, so that they can use the constraints to optimize timing. 



LO

Chapter 10: Specifying Design-Level Optimizations Retiming

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
402 Synopsys Confidential Information January 2020

Retiming
Some Microsemi technologies. Retiming improves the timing performance of 
sequential circuits without modifying the source code. It automatically moves 
registers (register balancing) across combinatorial gates or LUTs to improve 
timing while maintaining the original behavior as seen from the primary 
inputs and outputs of the design. Retiming moves registers across gates or 
LUTs, but does not change the number of registers in a cycle or path from a 
primary input to a primary output. However, it can change the total number 
of registers in a design. 

The retiming algorithm retimes only edge-triggered registers. It does not 
retime level-sensitive latches. Note that registers associated with RAMS and 
DSPs may be moved, regardless of the Retiming option setting. The Retiming 
option is not available if it does not apply to the family you are using. 

These sections contain details about using retiming. 

• Controlling Retiming, on page 402

• Retiming Example, on page 404

• Retiming Report, on page 405

• How Retiming Works, on page 406

Controlling Retiming
The following procedure shows you how to use retiming. 

1. To enable retiming for the whole design, check the Retiming check box.

You can set the Retiming option from the button panel in the Project 
window, or with the Project->Implementation Options command (Options tab). 
The option is only available in certain technologies. 



Retiming Chapter 10: Specifying Design-Level Optimizations

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 403

Retiming works globally on the design, and moves edge-triggered regis-
ters as needed to balance timing. 

2. To enable retiming on selected registers, use either of the following 
techniques:

– Check the Retiming checkbox and attach the syn_allow_retiming attribute 
with a value of 0 or false to any registers you do not want the software 
to move. This attribute specifies that the register cannot be moved for 
retiming. Refer to How Retiming Works, on page 406 for a list of the 
components the retiming algorithm will move.

– Do not check the Retiming checkbox. Attach the syn_allow_retiming 
attribute with a value of 1 or true to any registers you want the 
software to consider for retiming. You can do this in the SCOPE 
interface or in the source code. This attribute marks the register as 
one that can be moved during retiming, but does not necessarily force 
it to be moved during retiming. If you apply the attribute to an FSM, 
RAM or SRL that is decomposed into flip-flops and logic, the software 
applies the attribute to all the resulting flip-flops

3. You can also fine-tune retiming using attributes:

– To preserve the power-on state of flip-flops without sets or resets (FD 
or FDE) during retiming, set syn_preserve=1 or syn_allow_retiming=0 on 
these flip-flops. 

Set the retiming option in either place.



LO

Chapter 10: Specifying Design-Level Optimizations Retiming

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
404 Synopsys Confidential Information January 2020

– To force flip-flops to be packed in I/O pads, set syn_useioff=1 as a 
global attribute. This will prevent the flip-flops from being moved 
during retiming.

4. Set other options for the run. Retiming might affect some constraints 
and attributes. See How Retiming Works, on page 406 for details. 

5. Click Run to start synthesis.

After the LUTs are mapped, the software moves registers to optimize 
timing. See Retiming Example, on page 404 for an example. The 
software honors other attributes you set, like syn_preserve, syn_useioff, 
and syn_ramstyle. See How Retiming Works, on page 406 for details. 

Note that the tool might retime registers associated with RAMs and 
DSPs, regardless of whether the Retiming option is on or off.

The log file includes a retiming report that you can analyze to under-
stand the retiming changes. It contains a list of all the registers added or 
removed because of retiming. Retimed registers have a _ret suffix added 
to their names. See Retiming Report, on page 405 for more information 
about the report. 

Retiming Example
The following example shows a design with retiming disabled and enabled. 



Retiming Chapter 10: Specifying Design-Level Optimizations

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 405

The top figure shows two levels of logic between the registers and the output, 
and no levels of logic between the inputs and the registers. 

The bottom figure shows the results of retiming the three registers at the 
input of the OR gate. The levels of logic from the register to the output are 
reduced from two to one. The retimed circuit has better performance than the 
original circuit. Timing is improved by transferring one level of logic from the 
critical part of the path (register to output) to the non-critical part (input to 
register). 

Retiming Report
The retiming report is part of the log file, and includes the following: 

• The number of registers added, removed, or untouched by retiming.

• Names of the original registers that were moved by retiming and which 
no longer exist in the Technology view.

• Names of the registers created as a result of retiming, and which did not 
exist in the RTL view. The added registers have a _ret suffix. 



LO

Chapter 10: Specifying Design-Level Optimizations Retiming

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
406 Synopsys Confidential Information January 2020

How Retiming Works
This section describes how retiming works when it moves sequential compo-
nents (flip-flops). Registers associated with RAMs and DSPs might be moved, 
whether Retiming is enabled or not. Here are some implications and results of 
retiming:

• Flip-flops with no control signals (resets, presets, and clock enables) are 
moved. Flip-flops with minimal control logic can also be retimed. 
Multiple flip-flops with reset, set or enable signals that need to be 
retimed together are only retimed if they have exactly the same control 
logic. 

• The software does not retime the following combinatorial sequential 
elements: flip-flops with both set and reset, flip-flops with attributes like 
syn_preserve, flip-flops packed in I/O pads, level-sensitive latches, regis-
ters that are instantiated in the code, SRLs, and RAMs. If a RAM with 
combinatorial logic has syn_ramstyle set to registers, the registers can be 
retimed into the combinatorial logic. 

• Retimed flip-flops are only moved through combinatorial logic. The 
software does not move flip-flops across the following objects: black 
boxes, sequential components, tristates, I/O pads, instantiated compo-
nents, carry and cascade chains, and keepbufs.

• You might not be able to crossprobe retimed registers between the RTL 
and the Technology view, because there may not be a one-to-one corre-
spondence between the registers in these two views after retiming. A 
single register in the RTL view might now correspond to multiple regis-
ters in the Technology view.

• Retiming affects or is affected by, these attributes and constraints:

Attribute/Constraint Effect

False path constraint Does not retime flip-flops with different false path 
constraints. Retimed registers affect timing 
constraints. 

Multicycle constraint Does not retime flip-flops with different multicycle 
constraints. Retimed registers affect timing 
constraints. 

Register constraint Does not maintain define_reg_input_delay and 
define_reg_output_delay constraints. Retimed 
registers affect timing constraints.



Retiming Chapter 10: Specifying Design-Level Optimizations

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 407

• Retiming does not change the simulation behavior (as observed from 
primary inputs and outputs) of your design, However if you are 
monitoring (probing) values on individual registers inside the design, 
you might need to modify your test bench if the probe registers are 
retimed. 

from/to timing 
exceptions

If you set a timing constraint using a from/to 
specification on a register, it is not retimed. The 
exception is when using a max_delay constraint. In 
this case, retiming is performed but the constraint is 
not forward annotated. (The max_delay value would 
no longer be valid.)

syn_hier=macro Does not retime registers in a macro with this 
attribute.

syn_keep Does not retime across keepbufs generated because 
of this attribute. 

syn_hier=macro Does not retime registers in a macro with this 
attribute.

syn_probe Does not retime net drivers with this attribute. If the 
net driver is a LUT or gate, no flip-flops are retimed 
across it. 

syn_reference_clock On a critical path, does not retime registers with 
different syn_reference_clock values together, 
because the path effectively has two different clock 
domains. 

syn_useioff Does not override attribute-specified packing of 
registers in I/O pads. If the attribute value is false, 
the registers can be retimed. If the attribute is not 
specified, the timing engine determines whether the 
register is packed into the I/O block.

syn_allow_retiming Registers are not retimed if the value is 0.

Attribute/Constraint Effect



LO

Chapter 10: Specifying Design-Level Optimizations Retiming

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
408 Synopsys Confidential Information January 2020

• Beginning with the C-2009.09-SP1 release, the behavior for retiming 
unconstrained I/O pads has changed. If retiming is enabled, registers 
connected to unconstrained I/O pins are not retimed by default. If you 
want to revert to how retiming I/O paths was previously implemented, 
you can: 

– Globally turn on the Use clock period for unconstrained IO switch from the 
Constraints tab of the Implementation Options panel.

– Add constraints to all input/output ports. 

– Separately constrain each I/O pin as required.



Preserving Objects from Being Optimized Away Chapter 10: Specifying Design-Level Optimizations

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 409

Preserving Objects from Being Optimized 
Away

Synthesis can collapse or remove nets during optimization. If you want to 
retain a net for simulation, probing, or for a different synthesis implementa-
tion, you must specify this with an attribute. Similarly, the software removes 
duplicate registers or instances with unused output. If you want to preserve 
this logic for simulation or analysis, you must use an attribute. The following 
table lists the attributes to use in each situation. For details about the attri-
butes and their syntax, see the Reference Manual. 

To Preserve... Attach... Result

Nets syn_keep on wire or reg 
(Verilog), or signal (VHDL). 
For Microsemi designs, use 
alspreserve as well as 
syn_keep. 

Keeps net for simulation, a different 
synthesis implementation, or for 
passing to the place-and-route tool. 

Nets for probing syn_probe on wire or reg 
(Verilog), or signal (VHDL)

Preserves internal net for probing. 

Shared registers syn_keep on input wire or 
signal of shared registers

Preserves duplicate driver cells, 
prevents sharing. See Using 
syn_keep for Preservation or 
Replication, on page 410 for details 
on the effects of applying syn_keep 
to different objects. 

Sequential 
components

syn_preserve on reg or 
module (Verilog), signal or 
architecture (VHDL)

Preserves logic of constant-driven 
registers, keeps registers for 
simulation, prevents sharing

FSMs syn_preserve on reg or 
module (Verilog), signal 
(VHDL)

Prevents the output port or internal 
signal that holds the value of the 
state register from being optimized

Instantiated 
components

 syn_noprune on module or 
component (Verilog), 
architecture or instance 
(VHDL)

Keeps instance for analysis, 
preserves instances with unused 
outputs



LO

Chapter 10: Specifying Design-Level OptimizationsPreserving Objects from Being Optimized Away

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
410 Synopsys Confidential Information January 2020

See the following for more information:

• Using syn_keep for Preservation or Replication, on page 410

• Controlling Hierarchy Flattening, on page 413

• Preserving Hierarchy, on page 413

Using syn_keep for Preservation or Replication
By default the tool considers replicated logic redundant, and optimizes it 
away. If you want to maintain the redundant logic, use syn_keep to preserve 
the logic that would otherwise be optimized away. 

The following Verilog code specifies a replicated AND gate:

module redundant1(ina,inb,out1);
input  ina,inb;
output out1,out2;
wire out1;
wire out2;
assign out1 = ina & inb;
assign out2 = ina & inb;;
endmodule

The compiler implements the AND function by replicating the outputs out1 
and out2, but optimizes away the second AND gate because it is redundant. 



Preserving Objects from Being Optimized Away Chapter 10: Specifying Design-Level Optimizations

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 411

To replicate the AND gate in the previous example, apply syn_keep to the input 
wires, as shown below: 

module redundant1d(ina,inb,out1,out2);
input ina,inb;
output out1,out2;
wire out1;
wire out2;
wire in1a /*synthesis syn_keep = 1*/;
wire in1b /*synthesis syn_keep = 1*/;
wire in2a /*synthesis syn_keep = 1*/;
wire in2b /*synthesis syn_keep = 1 */;
assign in1a = ina ;
assign in1b = inb  ;
assign in2a = ina;
assign in2b = inb;
assign out1 = in1a & in1b;
assign out2 = in2a & in2b;
endmodule

Setting syn_keep on the input wires ensures that the second AND gate is 
preserved: 



LO

Chapter 10: Specifying Design-Level OptimizationsPreserving Objects from Being Optimized Away

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
412 Synopsys Confidential Information January 2020

You must set syn_keep on the input wires of an instance if you want to 
preserve the logic, as in the replication of this AND gate. If you set it on the 
outputs, the instance is not replicated, because syn_keep preserves the nets 
but not the function driving the net. If you set syn_keep on the outputs in the 
example, you get only one AND gate, as shown in the next figure. 



Preserving Objects from Being Optimized Away Chapter 10: Specifying Design-Level Optimizations

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 413

Controlling Hierarchy Flattening
Optimization flattens hierarchy. To control the flattening, use the syn_hier 
attribute as described here. You can also use the attribute to prevent 
flattening, as described in Preserving Hierarchy, on page 413.

1. Attach the syn_hier attribute with the value you want to the module or 
architecture you want to preserve. 

You can also add the attribute in SCOPE instead of the HDL code. If you 
use SCOPE to enter the attribute, make sure to use the v: syntax. For 
details, see syn_hier, on page 50 in the Reference Manual.

The software flattens the design as directed. If there is a lower-level 
syn_hier attribute, it takes precedence over a higher-level one. 

2. If you want to flatten the entire design, use the syn_netlist_hierarchy 
attribute set to false, instead of the syn_hier attribute. 

This flattens the entire netlist and does not preserve any hierarchical 
boundaries. See syn_netlist_hierarchy, on page 73 in the Reference 
Manual for the syntax. 

Preserving Hierarchy
The synthesis process includes cross-boundary optimizations that can flatten 
hierarchy. To override these optimizations, use the syn_hier attribute as 
described here. You can also use this attribute to direct the flattening process 
as described in Controlling Hierarchy Flattening, on page 413.

1. Attach the syn_hier attribute to the module or architecture you want to 
preserve. You can also add the attribute in SCOPE. If you use SCOPE to 
enter the attribute, make sure to use the v: syntax. 

To... Value...

Flatten all levels below, but not the current level flatten

Remove the current level of hierarchy without affecting 
the lower levels

remove

Remove the current level of hierarchy and the lower levels flatten, remove

Flatten the current level (if needed for optimization) soft



LO

Chapter 10: Specifying Design-Level OptimizationsPreserving Objects from Being Optimized Away

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
414 Synopsys Confidential Information January 2020

2. Set the attribute value:

The software flattens the design as directed. If there is a lower-level 
syn_hier attribute, it takes precedence over a higher-level one. 

To... Value...

Preserve the interface but allow cell packing across the 
boundary

firm

Preserve the interface with no exceptions hard

Preserve the interface and contents with no exceptions 
(except Microsemi PA and 500K families)

macro

Flatten lower levels but preserve the interface of the specified 
design unit

flatten, firm



Optimizing Fanout Chapter 10: Specifying Design-Level Optimizations

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 415

Optimizing Fanout
You can optimize your results with attributes and directives, some of which 
are specific to the technology you are using. Similarly, you can use specify 
objects or hierarchy that you want to preserve during synthesis. For a 
complete list of all the directives and attributes, see the Reference Manual. 
This section describes the following:

• Setting Fanout Limits, on page 415

• Controlling Buffering and Replication, on page 417

Setting Fanout Limits
Optimization affects net fanout. If your design has critical nets with high 
fanout, you can set fanout limits. You can only do this in certain technolo-
gies. For details specific to individual technologies, see the Reference Manual. 

1. To set a global fanout limit for the whole design, do either of the 
following:

– Select Project-> Implementation Options->Device and type a value for the 
Fanout Guide option. 

– Apply the syn_maxfan attribute to the top-level view or module. 

The value sets the number of fanouts for a given driver, and affects all 
the nets in the design. The defaults vary, depending on the technology. 
Select a balanced fanout value. A large constraint creates nets with large 
fanouts, and a low fanout constraint results in replicated or buffered 
logic. Both extremes affect routing and design performance. The right 
value depends on your design. The same value of 32 might result in 
fanouts of 11 or 12 and large delays on the critical path in one design or 
in excessive replication in another design. 

The software uses the value as a soft limit, or a guide. It traverses the 
inverters and buffers to identify the fanout, and tries to ensure that all 
fanouts are under the limit by replicating or buffering where needed (see 
Controlling Buffering and Replication, on page 417 for details). However, 
the synthesis tool does not respect the fanout limit absolutely; it ignores 
the limit if the limit imposes constraints that interfere with optimization. 

2. For certain Microsemi technologies, you can set a global hard fanout 
limit by doing the following:



LO

Chapter 10: Specifying Design-Level Optimizations Optimizing Fanout

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
416 Synopsys Confidential Information January 2020

– Select Project-> Implementation Options->Device and type a value for the 
Fanout Guide option, as described in the previous step.

– On the same tab, check the Hard Fanout Limit option. 

This makes the specified value a global hard fanout limit for the design.

3. To override the global fanout guideline and set a soft fanout limit at a 
lower level, set the syn_maxfan attribute on modules, views, or non-
primitive instances. 

These limits override the more global limits for that object (including a 
global hard limit in Microsemi technologies). However, these limits still 
function as soft limits, and are replicated or buffered, as described in 
Controlling Buffering and Replication, on page 417. 

4. To set a hard or absolute limit, set the syn_maxfan attribute on a port, 
net, register, or primitive instance. 

Fanouts that exceed the hard limit are buffered or replicated, as 
described in Controlling Buffering and Replication, on page 417. 

5. To preserve net drivers from being optimized, attach the syn_keep or 
syn_preserve attributes. 

For example, the software does not traverse a syn_keep buffer (inserted 
as a result of the attribute), and does not optimize it. However, the 
software can optimize implicit buffers created as a result of other opera-
tions; for example, it does not respect an implicit buffer created as a 
result of syn_direct_enable. 

Attribute specified on... Effect

Module or view Soft limit for the module; overrides the global setting.

Non-primitive instance Soft limit; overrides global and module settings

Clock nets or 
asynchronous control nets

Soft limit. 



Optimizing Fanout Chapter 10: Specifying Design-Level Optimizations

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 417

6. Check the results of buffering and replication in the following:

– The log file (click View Log). The log file reports the number of buffered 
and replicated objects and the number of segments created for the 
net.

– The HDL Analyst views. The software might not follow DRC rules 
when buffering or replicating objects, or when obeying hard fanout 
limits. 

Controlling Buffering and Replication
To honor fanout limits (see Setting Fanout Limits, on page 415) and reduce 
fanout, the software either replicates components or adds buffers. The tool 
uses buffering to reduce fanout on input ports, and uses replication to reduce 
fanout on nets driven by registers or combinatorial logic. The software first 
tries replication, replicating the net driver and splitting the net into segments. 
This increases the number of register bits in the design. When replication is 
not possible, the software buffers the signals. Buffering is more expensive in 
terms of intrinsic delay and resource consumption. The following table 
summarizes the behavior. 

You can control whether high fanout nets are buffered or replicated, using 
the techniques described here:

• To use buffering instead of replication, set syn_replicate with a value of 0 
globally, or on modules or registers. The syn_replicate attribute prevents 

Replicates When... Creates Buffers When...

syn_maxfan is set on a 
register output

syn_replicate is 1 syn_replicate is 0. 
Note that the syn_replicate attribute must be used in 
conjunction with the syn_maxfan attribute for 
Microsemi families. The syn_replicate attribute is 
used only to turn off the replication. 

syn_maxfan is set on a port/net that is driven by a 
port or I/O pad.

The net driver has a syn_keep or syn_preserve 
attribute.

The net driver is not a primitive gate or register.



LO

Chapter 10: Specifying Design-Level Optimizations Optimizing Fanout

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
418 Synopsys Confidential Information January 2020

replication, so that the software uses buffering to satisfy the fanout 
limit. For example, you can prevent replication between clock bound-
aries for a register that is clocked by clk1 but whose fanin cone is driven 
by clk2, even though clk2 is an unrelated clock in another clock group.

• To specify that high-fanout clock ports should not be buffered, set 
syn_noclockbuf globally, or on individual input ports. Use this if you want 
to save clock buffer resources for nets with lower fanouts but tighter 
constraints. 

• Inverters merged with fanout loads increase fanout on the driver during 
placement and routing. A distinction is made between a keep buffer 
created as the result of the syn_keep attribute being applied by the user 
(explicit keep buffer) and a keep buffer that exists as the result of 
another attribute (implicit keep buffer). For example, the syn_direct_enable 
attribute inserts a keep buffer. When a syn_maxfan attribute is applied to 
the output of an explicit keep buffer, the signal is buffered (the keep 
buffer is not traversed so that the driver is not replicated). When the 
syn_maxfan attribute is applied to the output of an implicit keep buffer, 
the keep buffer is traversed and the driver is replicated.

• Turn off buffering and replication entirely, by setting syn_maxfan to a very 
high number, like 1000. 



Sharing Resources Chapter 10: Specifying Design-Level Optimizations

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 419

Sharing Resources
One of the ways to optimize area is to use resource sharing in the compiler. 
With resource sharing, the software uses the same arithmetic operators for 
mutually exclusive statements; for example, with the branches of a case 
statement. Conversely, you can improve timing by disabling resource 
sharing, but at the expense of increased area. 

Compiler resource sharing is on by default. You can set it globally and then 
override the global setting on individual modules.

1. To disable resource sharing globally for the whole design, use one of the 
methods below. 

Leave the default setting to improve area; disable the option to improve 
timing.

– Select Project->Implementation Options->Options, disable Resource Sharing. 
Alternatively, disable the Resource Sharing button on the left side of the 
Project view. 

– Apply the syn_sharing directive to the top-level module or architecture 
in the source code. See syn_sharing, on page 119 of the Reference 
Manual for details of the syntax. 

– Edit your project file and include the following command: set_option 
-resource_sharing 0

When you save the project file, it includes the Tcl set_option 
-resource_sharing command. 

You cannot specify syn_sharing from the SCOPE interface, because it is a 
compiler directive, and works during the compilation stage of synthesis. 
The resource sharing setting does not affect the mapper, so even if 
resource sharing is disabled, the tool can share resources during the 
mapping phase to optimize the design and improve results.

Verilog module top(out, in, clk_in) /* synthesis syn_sharing = "off" */;
VHDL architecture rtl of top is 

attribute syn_sharing : string; 
attribute syn_sharing of rtl : architecture is "false"; 



LO

Chapter 10: Specifying Design-Level Optimizations Inserting I/Os

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
420 Synopsys Confidential Information January 2020

2. To specify resource sharing on an individual basis or override the global 
setting, specify the syn_sharing attribute for the lower-level 
module/architecture. 

Inserting I/Os
You can control I/O insertion globally, or on a port-by-port basis. 

1. To control the insertion of I/O pads at the top level of the design, use the 
Disable I/O Insertion option as follows: 

– Select Project->Implementation Options and click the Device panel. 

– Enable the option (checkbox on) if you want to do a preliminary run 
and check the area taken up by logic blocks, before synthesizing the 
entire design. 

Do this if you want to check the area your blocks of logic take up, 
before you synthesize an entire FPGA. If you disable automatic I/O 
insertion, you do not get any I/O pads in your design, unless you 
manually instantiate them.

– Leave the Disable I/O Insertion checkbox empty (disabled) if you want to 
automatically insert I/O pads for all the inputs, outputs and 
bidirectionals. 

When this option is set, the software inserts I/O pads for inputs, 
outputs, and bidirectionals in the output netlist. Once inserted, you 
can override the I/O pad inserted by directly instantiating another 
I/O pad. 

– For the most control, enable the option and then manually 
instantiate the I/O pads for specific pins, as needed. 



Optimizing State Machines Chapter 10: Specifying Design-Level Optimizations

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 421

Optimizing State Machines
You can optimize state machines with the symbolic FSM Compiler and the 
FSM Explorer tool. 

• The Symbolic FSM Compiler
An advanced state machine optimizer, it automatically recognizes state 
machines in your design and optimizes them. Unlike other synthesis 
tools that treat state machines as regular logic, the FSM Compiler 
extracts the state machines as symbolic graphs, and then optimizes 
them by re-encoding the state representations and generating a better 
logic optimization starting point for the state machines.

• The FSM Explorer
A specialized state machine optimizer that explores different encoding 
styles before selecting the best style. It uses the FSM Compiler to extract 
state machines, and runs the FSM Compiler automatically if it has not 
been run.

For more information, see the following:

• Deciding when to Optimize State Machines, on page 421

• Running the FSM Compiler, on page 423

• Running the FSM Explorer, on page 426

Deciding when to Optimize State Machines
The FSM Explorer and the FSM Compiler is an automatic tool for encoding 
state machines, but you can also specify FSMs manually with attributes. For 
more information about using attributes, see Specifying FSMs with Attributes 
and Directives, on page 389. 



LO

Chapter 10: Specifying Design-Level Optimizations Optimizing State Machines

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
422 Synopsys Confidential Information January 2020

Here are the main reasons to use the FSM Compiler:

• To generate better results for your state machines

The software uses optimization techniques that are specifically tuned for 
FSMs, like reachability analysis for example. The FSM Compiler also lets 
you convert an encoded state machine to another encoding style (to 
improve speed and area utilization) without changing the source. For 
example, you can use a onehot style to improve results.

• To debug the state machines

State machine description errors result in unreachable states, so if you 
have errors, you will have fewer states. You can check whether your 
source code describes your state machines correctly. You can also use 
the FSM Viewer to see a high-level bubble diagram and crossprobe from 
there. For information about the FSM Viewer, see Using the FSM Viewer 
(Standard), on page 348. 

• To run the FSM Explorer

The FSM Explorer is a tool that examines all the encoding styles before 
selecting the best option, based on the state machine extraction done by 
the FSM Compiler. If the FSM Compiler has not been run previously, the 
Explorer automatically runs it. For more information about using the 
FSM Explorer, see Running the FSM Explorer, on page 426. 

If you are trying to decide whether to use the FSM Compiler or the FSM 
Explorer to optimize your state machines, remember these points:

• The FSM Explorer runs the FSM Compiler if it has not already been run, 
because it picks encoding styles based on the state machines that the 
FSM Compiler extracts. 

• Like the FSM Compiler, you use the FSM Explorer to generate better 
results for your state machines. Unlike the FSM Compiler, which picks 
an encoding style based on the number of states, the FSM Explorer tries 
out different encoding styles and picks the best style for the state 
machine based on overall design constraints. 

The trade-off is that the FSM Explorer takes lonbger to run than the FSM 
Compiler. 



Optimizing State Machines Chapter 10: Specifying Design-Level Optimizations

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 423

Running the FSM Compiler
The FSM Compiler performs proprietary, state-machine optimization 
techniques (other synthesis tools treat state machines as regular logic). You 
enable the FSM compiler to take advantage of these techniques; you do not 
need special directives or attributes to locate the state machines in your 
design. You can also, however, enable the FSM compiler selectively for 
individual state machines, using synthesis directives in the HDL description.

Use the symbolic FSM compiler to generate better results for state machines 
or to debug state machines. If you do not want to use the symbolic FSM 
compiler on the final circuit, you can use it only during initial synthesis to 
check that the state machines are described correctly. Many common state 
machine description errors result in unreachable states, which are optimized 
away during synthesis, resulting in a smaller number of states than you 
expect. Reachable states are reported in the log file. 

You can run the FSM Compiler tool on the whole design or on individual 
FSMs. See the following:

• Running the FSM Compiler on the Whole Design, on page 423

• Running the FSM Compiler on Individual FSMs, on page 425

Running the FSM Compiler on the Whole Design
1. Enable the compiler by checking the Symbolic FSM Compiler box in one of 

these places:

– The main panel on the left side of the project window

– The Options tab of the dialog box that comes up when you click the 
Add Implementation/New Impl or Implementation Options buttons

2. To set a specific encoding style for a state machine, define the style with 
the syn_encoding attribute, as described in Specifying FSMs with 
Attributes and Directives, on page 389. 

If you do not specify a style, the FSM Compiler picks an encoding style 
based on the number of states. 

3. Click Run to run synthesis. 

The software automatically recognizes and extracts the state machines 
in your design, and instantiates a state machine primitive in the netlist 
for each FSM it extracts. It then optimizes all the state machines in the 



LO

Chapter 10: Specifying Design-Level Optimizations Optimizing State Machines

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
424 Synopsys Confidential Information January 2020

design, using techniques like reachability analysis, next state logic 
optimization, state machine re-encoding and proprietary optimization 
algorithms. Unless you specified an encoding style, the tool automati-
cally selects the encoding style. If you did specify a style, the tool uses 
that style. 

In the log file, the FSM Compiler writes a report that includes a descrip-
tion of each state machine extracted and the set of reachable states for 
each state machine.

4. Select View->View Log File and check the log file for descriptions of the 
state machines and the set of reachable states for each one. You see text 
like the following:

Extracted state machine for register cur_state
State machine has 7 reachable states with original encodings of:

0000001
0000010
0000100
0001000
0010000
0100000
1000000

....
original code -> new code

0000001 -> 0000001
0000010 -> 0000010
0000100 -> 0000100
0001000 -> 0001000
0010000 -> 0010000
0100000 -> 0100000
1000000 -> 1000000

5. Check the state machine implementation in the RTL and Technology 
views and in the FSM viewer.

– In the RTL view you see the FSM primitive with one output for each 
state.

– In the Technology view, you see a level of hierarchy that contains the 
FSM, with the registers and logic that implement the final encoding.

– In the FSM viewer you see a bubble diagram and mapping 
information. For information about the FSM viewer, see Using the 
FSM Viewer (Standard), on page 348. 



Optimizing State Machines Chapter 10: Specifying Design-Level Optimizations

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 425

– In the statemachine.info text file, you see the state transition 
information.

Running the FSM Compiler on Individual FSMs
If you have state machines that you do not want automatically optimized by 
the FSM Compiler, you can use one of these techniques, depending on the 
number of FSMs to be optimized. You might want to exclude state machines 
from automatic optimization because you want them implemented with a 
specific encoding or because you do not want them extracted as state 
machines. The following procedure shows you how to work with both cases. 

1. If you have just a few state machines you do not want to optimize, do the 
following:

– Enable the FSM Compiler by checking the box in the button panel of 
the Project window.

– If you do not want to optimize the state machine, add the 
syn_state_machine directive to the registers in the Verilog or VHDL 
code. Set the value to 0. When synthesized, these registers are not 
extracted as state machines. 

– If you want to specify a particular encoding style for a state machine, 
use the syn_encoding attribute, as described in Specifying FSMs with 
Attributes and Directives, on page 389. When synthesized, these 
registers have the specified encoding style.

– Run synthesis.

The software automatically recognizes and extracts all the state 
machines, except the ones you marked. It optimizes the FSMs it 
extracted from the design, honoring the syn_encoding attribute. It writes 
out a log file that contains a description of each state machine extracted, 
and the set of reachable states for each FSM.

2. If you have many state machines you do not want optimized, do this:

Verilog reg [3:0] curstate /* synthesis syn_state_machine=0 */ ;
VHDL signal curstate : state_type;

attribute syn_state_machine : boolean;
attribute syn_state_machine of curstate : signal is 
false;v



LO

Chapter 10: Specifying Design-Level Optimizations Optimizing State Machines

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
426 Synopsys Confidential Information January 2020

– Disable the compiler by disabling the Symbolic FSM Compiler box in one 
of these places: the main panel on the left side of the project window 
or the Options tab of the dialog box that comes up when you click the 
Add Implementation or Implementation Options buttons. This disables the 
compiler from optimizing any state machine in the design. You can 
now selectively turn on the FSM compiler for individual FSMs. 

– For state machines you want the FSM Compiler to optimize 
automatically, add the syn_state_machine directive to the individual 
state registers in the VHDL or Verilog code. Set the value to 1. When 
synthesized, the FSM Compiler extracts these registers with the 
default encoding styles according to the number of states.

– For state machines with specific encoding styles, set the encoding 
style with the syn_encoding attribute, as described in Specifying FSMs 
with Attributes and Directives, on page 389. When synthesized, these 
registers have the specified encoding style.

– Run synthesis.

The software automatically recognizes and extracts only the state 
machines you marked. It automatically assigns encoding styles to the 
state machines with the syn_state_machine attribute, and honors the 
encoding styles set with the syn_encoding attribute. It writes out a log file 
that contains a description of each state machine extracted, and the set 
of reachable states for each state machine.

3. Check the state machine in the log file, the RTL and technology views, 
and the FSM viewer. For information about the FSM viewer, see Using 
the FSM Viewer (Standard), on page 348.

Running the FSM Explorer
The FSM Explorer automatically explores different encoding styles for state 
machines and picks the style best suited to your design. The FSM explorer 
runs the FSM viewer to identify the finite state machines in a design, then 
analyzes the FSMs to select the optimum encoding style for each. 

Verilog reg [3:0] curstate /* synthesis syn_state_machine=1 */ ;
VHDL signal curstate : state_type;

attribute syn_state_machine : boolean;
attribute syn_state_machine of curstate : signal is true;



Optimizing State Machines Chapter 10: Specifying Design-Level Optimizations

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 427

1. If you need to customize the extraction process, set attributes. 

– Use syn_state_machine=0 to specify state machines you do not want to 
extract and optimize.

Use syn_encoding if you want to set a specific encoding style.

The FSM Compiler honors the syn_state_machine attribute when it 
extracts state machines, and the FSM Explorer honors the syn_encoding 
attribute when it sets encoding styles. See Specifying FSMs with Attri-
butes and Directives, on page 389 for details. 

2. Enable the FSM Explorer by checking the FSM Explorer box in one of 
these places:

– The main panel on the left side of the project window

– The Options tab of the dialog box that comes up when you click the 
Add Implementation or Implementation Options buttons.

If you have not checked the FSM Compiler option, checking the FSM 
Explorer option automatically selects the FSM Compiler option. 

3. Click Run to run synthesis. 

The FSM Explorer uses the state machines extracted by the FSM 
Compiler. If you have not run the FSM Compiler, the FSM Explorer 
invokes the compiler automatically to extract the state machines, 
instantiate state machine primitives, and optimize them. Then, the FSM 
Explorer runs through each encoding style for each state machine that 
does not have a syn_encoding attribute and picks the best style. If you 
have defined an encoding style with syn_encoding, it uses that style.

Verilog reg [3:0] curstate /* synthesis state_machine */ ;
VHDL signal curstate : state_type;

attribute syn_state_machine : boolean;
attribute syn_state_machine of curstate : signal is true;

Verilog reg [3:0] curstate /* synthesis syn_encoding="gray"*/ ;
VHDL signal curstate : state_type;

attribute syn_encoding : string;
attribute syn_encoding of curstate : signal is "gray";



LO

Chapter 10: Specifying Design-Level Optimizations Optimizing State Machines

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
428 Synopsys Confidential Information January 2020

The FSM Compiler writes a description of each state machine extracted 
and the set of reachable states for each state machine in the log file. The 
FSM Explorer adds the selected encoding styles. The FSM Explorer also 
generates a <design>_fsm.sdc file that contains the encodings and 
which is used for mapping. 

4. Select View->View Log File and check the log file for the descriptions. The 
following extract shows the state machine and the reachable states as 
well as the encoding style, gray, set by FSM Explorer.

Extracted state machine for register cur_state
State machine has 7 reachable states with original encodings of:

0000001
0000010
0000100
0001000
0010000
0100000
1000000

....
Adding property syn_encoding, value "gray", to instance 
cur_state[6:0]
List of partitions to map:

view:work.Control(verilog)
Encoding state machine work.Control(verilog)-
cur_state_h.cur_state[6:0]
original code -> new code

0000001 -> 000
0000010 -> 001
0000100 -> 011
0001000 -> 010
0010000 -> 110
0100000 -> 111
1000000 -> 101

5. Check the state machine implementation in the RTL and Technology 
views and in the FSM viewer.

For information about the FSM viewer, see Using the FSM Viewer 
(Standard), on page 348. 



Inserting Probes Chapter 10: Specifying Design-Level Optimizations

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 429

Inserting Probes
Probes are extra wires that you insert into the design for debugging. When 
you insert a probe, the signal is represented as an output port at the top 
level. You can specify probes in the source code or by interactively attaching 
an attribute. 

Specifying Probes in the Source Code
To specify probes in the source code, you must add the syn_probe attribute to 
the net. You can also add probes interactively, using the procedure described 
in Adding Probe Attributes Interactively, on page 430. 

1. Open the source code file. 

2. For Verilog source code, attach the syn_probe attribute as a comment on 
any internal signal declaration: 

module alu(out, opcode, a, b, sel);
output [7:0] out;
input [2:0] opcode;
input [7:0 a, b;
input sel;
reg [7:0] alu_tmp /* synthesis syn_probe=1 */;
reg [7:0] out;

//Other code
The value 1 indicates that probe insertion is turned on. For detailed 
information about Verilog attributes and examples of the files, see the 
Reference Manual.

To define probes for part of a bus, specify where you want to attach the 
probes; for example, if you specify reg [1:0] in the previous code, the 
software only inserts two probes. 

3. For VHDL source code, add the syn_probe attribute as follows:

architecture rtl of alu is
signal alu_tmp : std_logic_vector(7 downto 0) ;
attribute syn_probe : boolean;
attribute syn_probe of alu_tmp : signal is true;
--other code;



LO

Chapter 10: Specifying Design-Level Optimizations Inserting Probes

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
430 Synopsys Confidential Information January 2020

For detailed information about VHDL attributes and sample files, see the 
Reference Manual.

4. Run synthesis. 

The software looks for nets with the syn_probe attribute and creates 
probes and I/O pads for them. 

5. Check the probes in the log file (*.srr) and the Technology view.

This figure shows some probes and probe entries in the log file.

Adding Probe Attributes Interactively
The following procedure shows you how to insert probes by adding the 
syn_probe attribute through the SCOPE interface. Alternatively, you can add 
the attribute in the source code, as described in Specifying Probes in the 
Source Code, on page 429. 

1. Open the SCOPE window and click Attributes. 

2. Push down as necessary in an RTL view, and select the net for which 
you want to insert a probe point. 

Do not insert probes for output or bidirectional signals. If you do, you 
see warning messages in the log file. 

3. Do the following to add the attribute:

– Drag the net into a SCOPE cell. 



Inserting Probes Chapter 10: Specifying Design-Level Optimizations

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 431

– Add the prefix n: to the net name in the SCOPE window. If you are 
adding a probe to a lower-level module, the name is created by 
concatenating the names of the hierarchical instances. 

– If you want to attach probes to part but not all of a bus, make the 
change in the Object column. For example, if you enter 
n:UC_ALU.longq[4:0] instead of n:UC_ALU.longq[8:0], the software only 
inserts probes where specified.

– Select syn_probe in the Attribute column, and type 1 in the Value 
column. 

– Add the constraint file to the project list.

4. Rerun synthesis.

5. Open a Technology view and check the probe wires that have been 
inserted. You can use the Ports tab of the Find form to locate the probes. 

The software adds I/O pads for the probes. The following figure shows 
some of the pads in the Technology view and the log file entries. 



LO

Chapter 10: Specifying Design-Level Optimizations Inserting Probes

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
432 Synopsys Confidential Information January 2020



Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 433

CHAPTER 11

Working with Compile Points

The following sections describe compile points and how to use them in logic 
synthesis iterative flows:

• Compile Point Basics, on page 434

• Compile Point Synthesis Basics, on page 443

• Synthesizing Compile Points, on page 452

• Using Compile Points with Other Features, on page 464

• Resynthesizing Incrementally, on page 465



LO

Chapter 11: Working with Compile Points Compile Point Basics

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
434 Synopsys Confidential Information January 2020

Compile Point Basics
Compile points are HDL partitions of the design that you define before 
synthesizing the design. Compile points can be defined manually, or the tool 
can generate them automatically. The software treats each compile point as a 
block, and can synthesize, optimize, place, and route the compile points 
independently. Compile points can be nested.

See the following topics for some details about compile points:

• Advantages of Compile Point Design, next

• Nested Compile Points, on page 437

• Compile Point Types, on page 439

Advantages of Compile Point Design
Designing with compile points makes it more efficient to work with the 
increasingly larger designs of today and the corresponding team approach to 
design. They offer several advantages, which are described here:

• Compile Points and Design Flows, next

• Runtime Savings, on page 435

• Design Preservation, on page 435

Compile Points and Design Flows
Compile points improve the efficacy of both top-down and bottom-up design 
flows: 

• In a traditional bottom-up design flow, compile points make it possible 
to easily divide up the design effort between designers or design teams. 
The compile points can be worked on separately and individually. The 
compile point synthesis flow eliminates the need to maintain the 
complex error-prone scripts for stitching, modeling, and ordering 
required by the traditional bottom-up design flow. 

• From a top-down design flow perspective, compile points make it easier 
to work on the top-level design. You can mark compile points that are 
still being developed as black boxes, and synthesize the top level with 
what you have. You can also customize the compile point type settings 



Compile Point Basics Chapter 11: Working with Compile Points

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 435

for individual compile points to take advantage of cross-boundary 
optimizations. 

You can also synthesize incrementally, because the tool does not resyn-
thesize compile points that are unchanged when you resynthesize the 
design. This saves runtime and also preserves parts of the design that 
are done while the rest of the design is completed. 

See Compile Point Synthesis, on page 449 for a description of the synthesis 
process with compile points.

Runtime Savings
Compile points are the required foundation for multiprocessing and incre-
mental synthesis, both of which translate directly to runtime savings:

• Multiprocessing runs synthesis as multiple parallel processes, using the 
compile points as the partitions that are synthesized in parallel on 
different processors. See Combining Compile Points with Multipro-
cessing, on page 464. 

• Incremental synthesis uses compile points to determine which portions 
of the design to resynthesize, only resynthesizing the compile points that 
have been modified. See Resynthesizing Compile Points Incrementally, 
on page 465. 

Design Preservation
Using compile points addresses the need to maintain the overall stability of a 
design while portions of the design evolve. When you use compile points to 
partition the design, you can isolate one part from another. This lets you 
preserve some compile points, and only resynthesize those that need to be 
rerun. These scenarios describe some design situations where compile points 
can be used to isolate parts of the design and run incremental synthesis:

• During the initial design phase, design modules are still being designed. 
Use compile points to preserve unchanged design modules and evaluate 
the effects of modifications to parts of the design that are still changing.

• During design integration, use compile points to preserve the main 
design modules and only allow the glue logic to be remapped.

• If your design contains IP, synthesize the IP, and use compile points to 
preserve them while you run incremental synthesis on the rest of the 
design. 



LO

Chapter 11: Working with Compile Points Compile Point Basics

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
436 Synopsys Confidential Information January 2020

• In the final stages of the design, use compile points to preserve design 
modules that do not need to be updated while you work through minor 
RTL changes in some other part of the design. 

Manual Compile Points
Manual compile points require more setup, but provide more control because 
they let you define the partition boundaries and constraints instead of the 
tool. 

• Manual compile points (MCP) 

Manual compile points provide more control. You can specify boundary 
constraints for each compile point individually. You can separate 
completed parts of the design from parts that are still being designed, or 
fine-tune the compile points to take advantage of as many cross-
boundary optimizations as possible. For example, you can ensure that a 
critical path does not cross a compile point boundary, thus ensuring 
synthesis results with optimal performance. 

Guidelines for Using Manual Compile Points
Determine the kind of compile point to use based on what the design 
requires. The table lists some guidelines:



Compile Point Basics Chapter 11: Working with Compile Points

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 437

Nested Compile Points
A design can have any number of compile points, and compile points can be 
nested inside other compile points. In the following figure, compile point CP6 
is nested inside compile point CP5, which is nested inside compile point CP4. 

To simplify things, the term child is used to refer to a compile point that is 
contained inside another compile point; the term parent is used to refer to a 
container compile point that contains a child. These terms are not used in 
their strict sense of direct, immediate containment: If a compile point A is 
nested in B, which is nested in C, then A and B are both considered children 
of C, and C is a parent of both A and B. The top level is considered the parent 
of all compile points. In the figure above, both CP5 and CP6 are children of 
CP4; both CP4 and CP5 are parents of CP6; CP5 is an immediate child of CP4 
and an immediate parent of CP6.

Use Manual Compile Points...

When you know the design in detail.
Create manual compile points to get better QoR. 
Good candidates for manual compile points 
include the following:
• Completed modules with registered interfaces, 

where you want to preserve the design
• Modules created to include an entire critical 

path, so as to get the best performance.
• Modules that are less likely to be affected by 

cross boundary optimizations like constant 
propagation and register absorption. 

When you do not want further optimizations to a 
completed compile point. 
When you want more control to determine 
cross-boundary optimizations on an individual 
basis. 



LO

Chapter 11: Working with Compile Points Compile Point Basics

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
438 Synopsys Confidential Information January 2020

CP1

CP2

CP3

CP5 is nested inside CP4.
CP5 is an immediate child of CP4.
CP4 is the immediate parent of CP5.
CP4 is also the parent of CP6 and CP7.

The top level is a parent of all compile points.
It is an immediate parent of CP1, CP2, CP3, 
and CP4, and parent to all other compile points.

CP6 & CP7 are nested inside CP5.
CP5 is the immediate parent of CP6 & CP7.
CP6 & CP7 are immediate children of CP5.
CP6 & CP7 are children of both CP4 & CP5.
CP4 & CP5 are parents of CP6 & CP7.

Top Level

CP6

CP4

CP5

CP7



Compile Point Basics Chapter 11: Working with Compile Points

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 439

Compile Point Types
Compile point designs do not have as good QoR as designs without them 
because the boundaries limit optimizations. Cross-boundary optimizations 
typically improve area and timing, at the expense of runtime. The compile 
point type determines whether boundary optimizations are allowed. For 
manual compile points, you define the type. See Defining the Compile Point 
Type, on page 458 for details. 

These are descriptions of the soft, hard, and locked compile types: 

• Soft

Compile point boundaries can be reoptimized during top-level mapping. 
Timing optimizations like sizing, buffering, and DRC logic optimizations 
can modify boundary instances of the compile point and combine them 
with functions from the next higher level of the design. The compile 
point interface can also be modified. Multiple instances are uniquified. 
Any optimization changes can propagate both ways: into the compile 
point and from the compile point to its parent.

Using soft mode usually yields the best quality of results, because the 
software can utilize boundary optimizations. On the other hand, soft 
compile points can take a longer time to run than the same design with 
hard or locked compile points.

The following figure shows the soft compile point with a dotted boundary 
to show that logic can be moved in or out of the compile point. 

• Hard

For hard compile points, the compile point boundary can be reoptimized 
during top-level mapping and instances on both sides of the boundary 
can be modified by timing and DRC optimizations using top-level 

Optimization of entire logic cone across boundary

TOP

compile_point = soft



LO

Chapter 11: Working with Compile Points Compile Point Basics

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
440 Synopsys Confidential Information January 2020

constraints. However, the boundary is not modified. Any changes can 
propagate in either direction while the compile point boundary 
(port/interface) remains unchanged. Multiple instances are uniquified. 
For performance improvements, constant propagation and removal of 
unused logic optimizations are performed across hard compile points.

In the following figure, the solid boundary on the hard compile point 
indicates that no logic can be moved in or out of the compile point. 

The hard compile point type allows for optimizations on both sides of the 
boundary without changing the boundary. There is a trade-off in quality 
of results to keep the boundaries. Using hard also allows for hierarchical 
equivalence checking for the compile point module.

TOP

compile_point = hard

Optimization on both sides



Compile Point Basics Chapter 11: Working with Compile Points

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 441

• Locked

This is the default compile point type. With a locked compile point, the 
tool does not make any interface changes or reoptimize the compile 
point during top-level mapping. An interface logic model (ILM) of the 
compile point is created (see Interface Logic Models, on page 446) and 
included for the top-level mapping. The ILM remains unchanged during 
top-level mapping. 

The locked value indicates that all instances of the same compile point 
are identical and unaffected by top-level constraints or critical paths. As 
a result, multiple instances of the compile point module remain identical 
even though the compile point is uniquified. The Technology view (srm 
file) shows unique names for the multiple instances, but in the final 
Verilog netlist (vma file) the original module names for the multiple 
instances are restored. 

Timing optimization can only modify instances outside the compile 
point. Although the compile point is used to time the top-level netlist, 
changes do not propagate into or out of a locked compile point. The 
following figure shows a solid boundary for the locked compile point to 
indicate that no logic is moved in or out of the compile point during top-
level mapping. 

This mode has the largest trade-off in terms of QoR, because there are 
no boundary optimizations. So, it is very important to provide accurate 
constraints for locked compile points. The following table lists some 
advantages and limitations with the locked compile point: 

TOP

compile_point = locked

No optimization inside compile point



LO

Chapter 11: Working with Compile Points Compile Point Basics

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
442 Synopsys Confidential Information January 2020

Compile Point Type Summary
The following table summarizes how the tool handles different compile points 
during synthesis:

Advantages Limitations

Consumes smallest amount of memory. 
Used for large designs because of this 
memory advantage.

Interface timing

Provides most runtime advantage 
compared to other compile point types.

Constant propagation

Allows for obtaining stable results for a 
completed part of the design.

Allows for hierarchical place and route with 
multiple output netlists for each compile 
point and the top-level output netlist.

GSR hookup

Allows for hierarchical simulation. IO pads, like IBUFs and OBUFs, 
should not be instantiated 
within compile points

Features Compile Point Type

Soft Hard Locked

Boundary optimizations Yes Limited No 

Uniquification of multiple 
instance modules

Yes Yes Limited

Compile point interface (port 
definitions)

Modified Not modified Not modified

Hierarchical simulation No no Yes

Hierarchical equivalence 
checking

No Yes Yes

Interface Logic Model 
(created/used)

No No Yes



Compile Point Synthesis Basics Chapter 11: Working with Compile Points

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 443

Compile Point Synthesis Basics
This section describes the compile point constraint files and timing models, 
and describes the steps the tool goes through to synthesize compile points. 
See the following for details: 

• Compile Point Constraint Files, on page 443

• Interface Logic Models, on page 446

• Interface Timing for Compile Points, on page 446

• Compile Point Synthesis, on page 449

• Incremental Compile Point Synthesis, on page 451

• Forward-annotation of Compile Point Timing Constraints, on page 452

For step-by-step information about how to use compile points, see Synthe-
sizing Compile Points, on page 452.

Compile Point Constraint Files
A compile point design can contain two levels of constraint files, as described 
below:

• The constraint file at the top level

This is a required file, and contains constraints that apply to the entire 
design. This file also contains the definitions of the compile points in the 
design. The define_compile_point command is automatically written to the 
top-level constraint file for each compile point you define. 

The following figure shows that this design has one locked compile 
point, pgrm_cntr. It uses the following syntax to define the compile point:

define_compile_point {v:work.prgm_cntr} -type {locked}



LO

Chapter 11: Working with Compile Points Compile Point Synthesis Basics

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
444 Synopsys Confidential Information January 2020

• Constraint files at the compile point level

These constraint files are optional, and are used for better control over 
manual compile points. 

The compile point constraints are specific to the compile point and only 
apply within it. If your design has manual compile points, you can 
define corresponding compile point constraint files for them. See Setting 
Constraints at the Compile Point Level, on page 459 for a step-by-step 
procedure. 

When compile point constraints are defined, the tool uses them to 
synthesize the compile point, not automatic interface timing. Note that 
depending on the compile point type, the tool might further optimize the 
compile points during top-down synthesis of the top level to improve 
timing performance and overall design results, but the compile point 
itself is synthesized with the defined compile point constraints.

The first command in a compile point constraint file is define_current_de-
sign, and it specifies the compile point module for the contained 



Compile Point Synthesis Basics Chapter 11: Working with Compile Points

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 445

constraints. This command sets the context for the constraint file. The 
remainder of the file is similar to the top-level constraint file. For 
example:

define_current_design {pgrm_cntr}

If your design has some compile points with their own constraint files and 
others without them, the tool uses the defined compile point constraints 
when it synthesizes those compile points. For the other compile points 
without defined constraints, it uses automatic interface timing, as described 
in Interface Timing for Compile Points, on page 446. 



LO

Chapter 11: Working with Compile Points Compile Point Synthesis Basics

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
446 Synopsys Confidential Information January 2020

Interface Logic Models
The interface logic model (ILM) of a locked compile point is a timing model that 
contains only the interface logic necessary for accurate timing. An ILM is a 
partial gate-level netlist that represents the original design accurately while 
requiring less memory during mapping. Using ILMs improves the runtime for 
static timing analysis without compromising timing accuracy.

The tool does not do any timing optimizations on an ILM. The interface logic 
is preserved with no modifications. All logic required to recreate timing at the 
top level is included in the ILM. ILM logic includes any paths from an 
input/inout port to an internal register, an internal register to an 
output/inout port, and an input/inout port to an output/inout port. 

The tool removes internal register-to-register paths, as shown in this 
example. In this design, and_a is not included in the ILM because the timing 
path that goes through and_a is an internal register-to-register path.

Interface Timing for Compile Points
By default, the synthesis tool automatically infers timing constraints for all 
compile points from the top-level constraints. However, if a compile point has 
its own constraint file, the tool applies those compile point-specific 
constraints to synthesize the compile point. 

• For automatic interface timing, the tool derives constraints from the top 
level and uses them to synthesize the compile point. It then synthesizes 
the top level, and applies top-level constraints to the compile points. 

Gates included in ILM

Gate not included
 in ILM

and_a and_b

and_c or_a

CP 1



Compile Point Synthesis Basics Chapter 11: Working with Compile Points

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 447

• When there are compile point constraint files, the tool first synthesizes 
the compile point using the constraints in the compile point constraints 
file and then synthesizes the top level using the top-level constraints. 

When it synthesizes a compile point, the tool considers all other compile 
points as black boxes and only uses their interface timing information. In the 
following figure, when the tool is synthesizing compile point A, it applies 
relevant timing information to the boundary registers of B and C, because it 
treats them as black boxes. 



LO

Chapter 11: Working with Compile Points Compile Point Synthesis Basics

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
448 Synopsys Confidential Information January 2020

Interface Timing Example
The design below shows how the interface timing works on compile points.

Interface Timing Off
Interface timing is off for a compile point when you define constraints for it in 
a compile point constraints file. In this example, the following frequencies are 
defined for the level1 compile point shown above:

When interface timing is off, the compile point log file (srr) reports the clock 
period for the compile point as 20 ns, which is the compile point period. 

Clock Period Constraints File

Top-level clock 10 ns Top-level constraint file

Compile point-level clock 20 ns Compile point constraint file

Contents of level1 Module



Compile Point Synthesis Basics Chapter 11: Working with Compile Points

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 449

Interface Timing On
For automatic interface timing to run on a compile point (interface timing on), 
there must not be a compile-point level constraints file. When interface 
timing is on, the compile point log file (srr) reports the clock period for the 
top-level design, which is 10 ns: 

Compile Point Synthesis
During synthesis, the tool first synthesizes the compile points and then maps 
the top level. The rest of this section describes the process that the tool goes 
through to synthesize compile points; for step-by-step information about 
what you need to do to use compile points, see Synthesizing Compile Points, 
on page 452.



LO

Chapter 11: Working with Compile Points Compile Point Synthesis Basics

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
450 Synopsys Confidential Information January 2020

Stage 1: Bottom-up Compile Point Synthesis
The tool synthesizes compile points individually from the bottom up. If you 
have enabled multiprocessing, it synthesizes the compile points in parallel 
using multiple processing jobs. For nested compile points, it starts with the 
compile point at the lowest level of hierarchy and works up the hierarchy. 

A compile point stands on its own, and is optimized separately from its parent 
environment (the compile point container or the top level). This means that 
critical paths from a higher level do not propagate downwards, and they are 
unaffected by them. 

If you have specified compile point-level constraints, the tool uses them to 
synthesize the compile point; if not, it uses automatic interface timing propa-
gated from the top level. For compile point synthesis, the tool assumes that 
all other compile points are black boxes, and only uses the interface informa-
tion. 

When defined, compile point constraints apply within the compile point. For 
manual compile points, it is recommended that you set constraints on locked 
compile points, but setting constraints is optional for soft and hard compile 
points. 

By default, synthesis stops if the tool encounters an error while synthesizing 
a compile point. You can specify that the tool ignore the error and continue 
synthesizing other compile points.

Stage 2: Top-Level Synthesis
Once all the compile points have been synthesized, the tool synthesizes the 
entire design from the top down, using the model information generated for 
each compile point and constraints defined in the top-level fdc constraints 
file. You do not need to duplicate compile point constraints at a higher level, 
because the tool takes the compile point timing models into account when it 
synthesizes a higher level. Note that if you run standalone timing analysis on 
a compile point, the timing report reflects the top-level constraints and not 
the compile point fdc constraints, although the tool used compile point level 
constraints to synthesize the compile point. 

The software writes out a single output netlist and one constraint file for the 
entire design. See Forward-annotation of Compile Point Timing Constraints, 
on page 452 for a description of the constraints that are forward-annotated. 



Compile Point Synthesis Basics Chapter 11: Working with Compile Points

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 451

Incremental Compile Point Synthesis
The tool treats compile points as blocks for incremental synthesis. On subse-
quent synthesis runs, the tool runs incrementally and only resynthesizes 
those compile points that have changed, and the top level. The synthesis tool 
automatically detects design changes and resynthesizes compile points only if 
necessary. For example, it does not resynthesize a compile point if you only 
add or change a source code comment, because this change does not really 
affect the design functionality. 

The tool resynthesizes a compile point that has already been synthesized, in 
any of these cases:

• The HDL source code defining the compile point is changed in such a 
way that the design logic is changed.

• The constraints applied to the compile point are changed.

• Any of the options on the Device panel of the Implementation Options dialog 
box, except Update Compile Point Timing Data, are changed. In this case the 
entire design is resynthesized, including all compile points. 

• You intentionally force the resynthesis of your entire design, including 
all compile points, with the Run -> Resynthesize All command.

• The Update Compile Point Timing Data device mapping option is enabled and 
at least one child of the compile point (at any level) has been remapped. 
The option requires that the parent compile point be resynthesized using 
the updated timing model of the child. Note that this includes the possi-
bility that the child was remapped earlier, while the option was disabled. 
The newly enabled option requires that the updated timing model of the 
child be taken into account, by resynthesizing the parent.

For each compile point, the software creates a subdirectory named for the 
compile point, in which it stores intermediate files that contain hierarchical 
interface timing and resource information that is used to synthesize the next 
level. Once generated, the model file is not updated unless there is an inter-
face design change or you explicitly specify it. If you happen to delete these 
files, the associated compile point will be resynthesized and the files regener-
ated.



LO

Chapter 11: Working with Compile Points Synthesizing Compile Points

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
452 Synopsys Confidential Information January 2020

Forward-annotation of Compile Point Timing Constraints 
In addition to a top-level constraint file, each compile point can have its own 
constraint file. Constraints are forward-annotated to placement and routing 
from the top-level as well as the compile point-level files. However, not all 
compile point constraints are forward-annotated, as explained below. For 
example, constraints on top-level ports are always forward annotated, but 
compile point port constraints are not forward annotated. 

• Top-level constraints are forward-annotated. 

• Constraints applied to the interface (ports and bit ports) of the compile 
point are not forward-annotated.
These include input_delays, output_delays, and clock definitions on the 
ports. Such constraints are only used to map the compile point itself, 
not its parents. They are not used in the final timing report, and they are 
not forward-annotated.

• Constraints applied to instances inside the compile point are forward-
annotated
Constraints like timing exceptions and internal clocks are used to map 
the compile point and its parents. They are used in the final timing 
report, and they are forward-annotated. 

Synthesizing Compile Points
This section describes the synthesis process with manual compile points in 
your design:

• The Manual Compile Point Flow, on page 453

• Creating a Top-Level Constraints File for Compile Points, on page 455

• Defining Manual Compile Points, on page 456

• Setting Constraints at the Compile Point Level, on page 459

• Analyzing Compile Point Results, on page 461



Synthesizing Compile Points Chapter 11: Working with Compile Points

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 453

The Manual Compile Point Flow
Using manual compile points is most advantageous in the following situa-
tions, where you

• Have to work with a large design 

• Experience long runtimes, or need to reduce synthesis runtime

• Require the maximum QoR from logic synthesis

• Can adjust design methodology to get the best results from the tools

The following figure summarizes the process for using manual compile points 
in your design. 

This procedure describes the steps in more detail: 

1. Set up the project.

– Create the project and add RTL and IP files to the project, as usual. 



LO

Chapter 11: Working with Compile Points Synthesizing Compile Points

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
454 Synopsys Confidential Information January 2020

– Target a device and technology for which compile points are 
supported. This includes most of the newer Microsemi device 
families.

– Set other options as usual. 

2. Compile the design (F7) to initialize the constraints file. 

3. Do the following in the top-level constraint file:

– Define compile points in the top-level constraint file. See Creating a 
Top-Level Constraints File for Compile Points, on page 455. Note that 
by default, the tool automatically calculates the interface timing for 
all compile points. 

– Set timing constraints and attributes in the top-level constraint file: 

4. Set compile point-specific constraints as needed in a separate, compile 
point-level fdc file.

See Setting Constraints at the Compile Point Level, on page 459 for a 
step-by-step procedure. After setting the compile point constraints, add 
the compile point constraint file to the project. 

5. If you do not want to interrupt synthesis for compiler errors, select 
Options->Configure Compile Point Process and enable the Continue on Error 
option. 

Constraint Apply to... Example
Clock All clocks in the design. create_clock {p:clk} -name clk -period 

100 -clockgroup cg1

I/O 
constraints

All top-level port constraints. 
Register the compile point I/O 
boundaries to improve timing. 

set_input_delay {p:a} {1} -clock {clk:r}

Timing 
exceptions

All timing exceptions that are 
outside the compile point 
module, or that might be 
partially in the compile point 
modules.

set_false_path -from {i:reg1} -to 
{i:reg2}

Attributes All attributes that are 
applicable to the rest of the 
design, not within the compile 
points.

define_attribute {i:statemachine_1} 
syn_encoding {sequential}



Synthesizing Compile Points Chapter 11: Working with Compile Points

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 455

With this option enabled, the tool black boxes any compile points that 
have mapper errors and continues to synthesize the rest of the design. 
See Using Continue on Error, on page 213 for more information about 
this mode. 

6. Synthesize the design.

The tool synthesizes the compile points separately and then synthesizes 
the top level. See Compile Point Synthesis, on page 449 for details about 
the process. 

– The first time it runs synthesis, the tool maps the entire design.

– For subsequent synthesis runs, the tool only maps compile points 
that were modified since the last run. It preserves unchanged compile 
points.

You can also run synthesis on individual compile points, without 
synthesizing the whole design. 

7. Analyze the synthesis results using the top-level srr log file. 

See Analyzing Compile Point Results, on page 461 for details. 

8. If you do not meet your design goals, make necessary changes to the 
RTL, constraints, or synthesis controls, and re-synthesize the design.

The tool runs incremental synthesis on the modified parts of the design, 
as described in Incremental Compile Point Synthesis, on page 451. See 
Resynthesizing Compile Points Incrementally, on page 465 for a detailed 
procedure.

Creating a Top-Level Constraints File for Compile Points
All compile points require a top-level constraints file. If you have manual 
compile points, define them in this file. The top-level file also contains design-
level constraints. The following procedure describes how to create a top-level 
constraints file for a compile point design. 

1. Create the top-level constraints file.

– To define compile points in an existing top-level constraint file, open a 
SCOPE window by double-clicking the file in the Project view.

– To define compile points in a new top-level constraint file, click the 
SCOPE icon. Click the FPGA Constraints (SCOPE) button. 



LO

Chapter 11: Working with Compile Points Synthesizing Compile Points

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
456 Synopsys Confidential Information January 2020

The SCOPE window opens. It includes a Current Design field, where you can 
specify constraints for the top-level design from the drop-down menu and 
define manual compile points.

2. Set top-level constraints like input/output delays, clock frequencies or 
multicycle paths. 

You do not have to redefine compile point constraints at the top level as 
the tool uses them to synthesize the compile points. 

3. Define manual compile points if needed. 

See Defining Manual Compile Points, on page 456 for details. 

4. Save the top-level fdc file and add it to the project. 

Defining Manual Compile Points
Compile points and constraints are both saved in a constraint file, so this 
step can be combined with the setting of constraints, as convenient. This 
procedure only describes how to define compile points. You define compile 
points in a top-level constraint file. You can add the compile point definitions 
to an existing top-level fdc file or create a new file. 

1. From the Current Design field, select the module for which you want to 
create the compile point.



Synthesizing Compile Points Chapter 11: Working with Compile Points

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 457

1. Click the Compile Points tab in the top-level constraints file. 

See Creating a Top-Level Constraints File for Compile Points, on 
page 455 if you need information about creating this file. 

2. Set the module you want as a compile point.

Do this by either selecting a module from the drop-down list in the View 
column, or dragging the instance from the HDL Analyst RTL view to the 
View column. The equivalent Tcl command is define_compile_point, as 
shown below: 

define_compile_point {v:work.m1} -type {locked}

3. Set the Type to locked, hard, or soft, according to your design goals. See 
Defining the Compile Point Type, on page 458 for details. 

This tags the module as a compile point. The following figure shows the 
prgm_cntr module set as a locked compile point:



LO

Chapter 11: Working with Compile Points Synthesizing Compile Points

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
458 Synopsys Confidential Information January 2020

4. Save the top-level constraint file. 

You can now open the compile point fdc file and define constraints for the 
compile point, as needed for manual compile points. See Setting Constraints 
at the Compile Point Level, on page 459 for details. 

Defining the Compile Point Type
The compile point type you select depends on your design goals. For descrip-
tions of the various compile point types, see Compile Point Types, on 
page 439. This procedure shows you how to set the compile point type in the 
top-level fdc file when you define the compile points: 

1. When runtime is the main objective and QoR is not a primary concern, 
set the compile point type as follows on the SCOPE Compile Points tab:

The following example shows the Tcl command and the equivalent 
version in the in the SCOPE GUI: 

define_compile_point {v:work.user_top} -type {locked}

Situation Compile Point Type

HDL is almost ready locked



Synthesizing Compile Points Chapter 11: Working with Compile Points

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 459

2. When runtime and QoR are both important, do the following to ensure 
the best performance while still saving runtime:

– Register the I/O boundaries for the compile points. 

– As far as possible, put the entire critical path into the same compile 
point. 

– Set each compile point type individually, using these compile point 
types:

3. If your goal is design preservation, set the compile point you want to 
preserve to locked. 

Setting Constraints at the Compile Point Level 
You can specify constraints for each compile point in individual fdc files. (See 
Compile Point Constraint Files, on page 443 for a description of the files.) It is 
recommended that you specify constraints for each locked manual compile 
point, but you do not need to set them for soft and hard compile points.

When you specify compile point constraints, the tool synthesizes the compile 
point using the compile point timing models instead of automatic interface 
timing from the top level. This procedure explains how to create a (compile 
point constraint file, and set constraints for the compile point:

1. In an open project, click the SCOPE icon ( ). Click the FPGA Constraints 
(SCOPE) button. The New Constraints File dialog box opens. 

2. From the Current Design field, select the module for which you want to 
create the compile point.

Situation Compile Point Type

Need boundary optimizations soft

Do not need boundary optimizations locked 



LO

Chapter 11: Working with Compile Points Synthesizing Compile Points

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
460 Synopsys Confidential Information January 2020

3. Check that you are in the right file. 

A default name for the compile point file appears in the banner of the 
SCOPE window. Unlike the top-level constraint file, the Compile Point tab 
in the SCOPE UI is greyed out when the constraint file is for a compile 
point.

4. Set constraints for the compile point. In particular, do the following:

– Define clocks for the compile point. 

– Specify I/O delay constraints for non-registered I/O paths that may 
be critical or near critical.

– Set port constraints for the compile point that are needed for top-level 
mapping. 

The tool uses the compile point constraints you define to synthesize the 
compile point. Compile point port constraints are not used at the parent 
level, because compile point ports do not exist at that level. 



Synthesizing Compile Points Chapter 11: Working with Compile Points

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 461

You can specify SCOPE attributes for the compile point as usual. See 
Using Attributes with Compile Points, on page 461 for some exceptions. 

5. Save the file and add it to the project. When prompted, click Yes to add 
the constraint file to the top-level design project.

Otherwise, use Save As to write a file such as, moduleName.fdc to the 
current directory. The hierarchical paths for compile point modules in 
the constraint file are specified at the compile point level; not the top-
level design. 

Using Attributes with Compile Points
You can use attributes as usual when you set constraints for compile points. 
The following sections describe some caveats and exceptions:

• syn_hier 

When you use syn_hier on a compile point, the only valid value is flatten. 
All other values of this attribute are ignored for compile points. The 
syn_hier attribute behaves normally for all other module boundaries that 
are not defined as compile points.

• syn_allowed_resources 

Apply the syn_allowed_resources attribute globally or to a compile point to 
specify its allowed resources. When a compile point is synthesized, the 
resources of its siblings and parents cannot be taken into account 
because it stands alone as an independent synthesis unit. This attribute 
limits dedicated resources such as block RAMs or DSPs that the compile 
point can use, so that there are adequate resources available during the 
top-down flow. 

Analyzing Compile Point Results
The software writes all timing and area results to a single log file in the imple-
mentation directory. You can check this file and the RTL and Technology 
views to determine if your design has met the goals for area and performance. 
You can also view and isolate the critical paths, search for and highlight 
design objects and crossprobe between the schematics and source files.

1. Check that the design meets the target frequency for the design. Use the 
Watch window or check the log file. 



LO

Chapter 11: Working with Compile Points Synthesizing Compile Points

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
462 Synopsys Confidential Information January 2020

2. Open the log file and check the following:

– Check top-level and compile point boundary timing. You can also 
check this visually using the RTL and Technology view schematics. If 
you find negative slack, check the critical path. If the critical path 
crosses the compile point boundary, you might need to improve the 
compile point constraints. 

– If the design was resynthesized, check the Summary of Compile Points 
section to see if compile points were preserved or remapped.

Note that this section reports black box compile points as Not Mapped, 
and lists the reason as Black Box. 

– Review all warnings and determine which should be addressed and 
which can be ignored.

– Review the area report in the log file and determine if the cell usage is 
acceptable for your design. 

– Check all DRC information. 

3. Check other files: 

– Check the individual compile point module log files. The tool creates a 
separate directory for each compile point module under the 
implementation directory. Check the compile point log file in this 
directory for synthesis information about the compile point synthesis 
run. 

– Check the compile point timing report. This report is located in the 
compile point results directory of the implementation directory for 
each compile point.

4. Check the RTL and Technology view schematics for a graphic view of the 
design logic. Even though instantiations of compile points do not have 
unique names in the output netlist, they have unique names in the 
Technology view. This is to facilitate timing analysis and the viewing of 
critical paths.



Synthesizing Compile Points Chapter 11: Working with Compile Points

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 463

Note: Compile point of type {hard} is easily located in the Technology view 
with the color green.

5. Fix any errors. 

Remember that the mapper reports an error if synthesis at a parent level 
requires that interface changes be made to a locked compile point. The 
software does not change the compile point interface, even if changes 
are required to fix DRC violations.



LO

Chapter 11: Working with Compile Points Using Compile Points with Other Features

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
464 Synopsys Confidential Information January 2020

Using Compile Points with Other Features
You can effectively combine compile points with other synthesis features for 
better runtime. The following sections describe how you can use compile 
points with multiprocessing:

• Combining Compile Points with Multiprocessing, on page 464

Combining Compile Points with Multiprocessing
To use compile points with multiprocessing, specify the number of parallel 
jobs to run with the Options->Configure Parallel or Compile Point Process command. 
For a step-by-step procedure, see Multiprocessing With Compile Points, on 
page 814. 



Resynthesizing Incrementally Chapter 11: Working with Compile Points

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 465

Resynthesizing Incrementally
Incremental synthesis can significantly reduce runtime on subsequent runs. 
It can also help with design stabilization and preservation. The following 
describe the incremental synthesis process, and how compile points are used 
in incremental synthesis within the tool and with other tools: 

• Incremental Compile Point Synthesis, on page 451

• Resynthesizing Compile Points Incrementally, on page 465

Resynthesizing Compile Points Incrementally
The following figure illustrates how compile points (CP) are used in incre-
mental synthesis. 

1. To synthesize a design incrementally, make the changes you need to fix 
errors or improve your design.



LO

Chapter 11: Working with Compile Points Resynthesizing Incrementally

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
466 Synopsys Confidential Information January 2020

– Define new compile point constraints or modify existing constraints 
in the existing constraint file or in a new constraint file for the 
compile point. Save the file. 

– If necessary, reset implementation options. Click Implementation Options 
and modify the settings (operating conditions, optimization switches, 
and global frequency). 

To obtain the best results, define any required constraints and set the 
proper implementation options for the compile point before resynthe-
sizing.

2. Click Run to resynthesize the design. 

When a design is resynthesized, compile points are not resynthesized 
unless source code logic, implementation options, or constraints have 
been modified. If there are no compile point interface changes, the 
software synthesizes the immediate parent using the previously gener-
ated model file for the compile point. See Incremental Compile Point 
Synthesis, on page 451 for details. 

3. Check the log file for changes. 

The following figure illustrates incremental synthesis by comparing 
compile point summaries. After the first run, a syntax change was made 
in the mult module, and a logic change in the comb_logic module. The 
figure shows that incremental synthesis resynthesizes comb_logic (logic 
change), but does not resynthesize mult because the logic did not change 
even though there was a syntax change. Incremental synthesis re-uses 
the mapped file generated from the previous run to incrementally 
synthesize the top level. 



Resynthesizing Incrementally Chapter 11: Working with Compile Points

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 467

4. To force the software to generate a new model file for the compile point, 
click Implementation Options on the Device tab and enable Update Compile 
Point Timing Data. Click Run. 

The software regenerates the model file for each compile point when it 
synthesizes the compile points. The new model file is used to synthesize 
the parent. The option remains in effect until you disable it. 

5. To override incremental synthesis and force the software to resynthesize 
all compile points whether or not there have been changes made, use 
the Run->Resynthesize All command. 

You might want to force resynthesis to propagate changes from a locked 
compile point to its environment, or resynthesize compile points one last 
time before tape out. When you use this option, incremental synthesis is 
disabled for the current run only. The Resynthesize All command does not 
regenerate model files for the compile points unless there are interface 
changes. If you enable Update Compile Point Timing Data and select Resynthe-
size All, you can resynthesize the entire design and regenerate the 
compile point model files, but synthesis will take longer than an incre-
mental synthesis run.

Incremental Run Log Summary

First Run Log Summary

Syntax changes only; not resynthesized

Logic changes; compile 
point resynthesized



LO

Chapter 11: Working with Compile Points Resynthesizing Incrementally

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
468 Synopsys Confidential Information January 2020



Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 469

C H A P T E R  1 2

Working with IP Input

This chapter describes how to work with IP from different sources. It 
describes the following:

• The Synopsys FPGA IP Encryption Flow, on page 470

• Working with IEEE 1735 Encryption, on page 481

• Working with Synenc-encrypted IP, on page 491

• Using Hyper Source, on page 493 



LO

Chapter 12: Working with IP Input The Synopsys FPGA IP Encryption Flow

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
470 Synopsys Confidential Information January 2020

The Synopsys FPGA IP Encryption Flow
The Synopsys FPGA IP encryption flow is a design flow that encourages 
interoperability while protecting IP implementations using encryp-
tion/decryption technologies. This flow offers the following advantages: 
interoperability, protection of IP, reuse of IP, and a standard flow for IP 
encryption. 

See the following for information about the encryption flow: 

• Overview of the Synopsys FPGA IP Encryption Flow, on page 470

• Preparing and Encrypting IP, on page 476

The following encryption standards are supported, but the recom-
mended scheme is the IEEE 1735 standard. 

Regardless of which IP encryption scheme you choose, please be aware 
that encryption, like any security measure, may become vulnerable to 
unauthorized access and circumvention. The encryption technology and 
this documentation are supplied "As Is", and Synopsys makes no 
warranties or representations (whether express or implied) regarding the 
efficacy or security of such technology.

• Preparing the IP Package, on page 477

Overview of the Synopsys FPGA IP Encryption Flow
The complete flow for protecting IP requires a partnership between the IP 
author, Synopsys, and any other downstream tool vendor that consumes the 
IP. The following figure shows an FPGA synthesis flow, which requires the IP 
to be handed off from the synthesis tool to the place-and-route tool. 

Encryption Standard Details

IEEE 1735-2014 with 
key-block (Recommended)

Working with IEEE 1735 Encryption, on 
page 481

OpenIP Encrypting IP Using OpenIP (encryptIP), on 
page 487

Synenc-encrypted IP Working with Synenc-encrypted IP, on page 491



The Synopsys FPGA IP Encryption Flow Chapter 12: Working with IP Input

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 471

The details of the encryption and decryption hand-offs are described in 
Encryption and Decryption, on page 471. 

Encryption and Decryption
There are two major classes of encryption/decryption algorithms: symmetric, 
and asymmetric. Each method has its own advantages and disadvantages. 
The approach for the Synopsys FPGA IP flow is a hybrid one that uses both 
asymmetric and symmetric encryption to leverage the strengths of each 
scheme. 



LO

Chapter 12: Working with IP Input The Synopsys FPGA IP Encryption Flow

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
472 Synopsys Confidential Information January 2020

The following figure illustrates the steps in this encryption/decryption 
methodology, showing the handoff from an IP author to a Synopsys FPGA 
tool.

The following describes these phases in more detail:

• Data Encryption, on page 473



The Synopsys FPGA IP Encryption Flow Chapter 12: Working with IP Input

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 473

• Data Decryption, on page 475

• Re-encryption in the Synopsys FPGA IP Flow, on page 475

Synopsys provides the IEEE 1735-2014 and OpenIP scripts to simplify and 
automate the process of encrypting data for the IP vendor.

Data Encryption
Data encryption is a three-step process that uses both symmetric and 
asymmetric encryption to encrypt the data. 

Step 1: Data Encryption (Symmetric)
Symmetric encryption uses a special number as a key to encrypt the files. 
The same key is used to decrypt the file, so the software must have access to 
the same key.

The IP author encrypts the IP data using their own symmetric key. This key is 
called the data key. The result of encoding is a data block. Using symmetric 
encryption offers two advantages to the IP author: fast data encryption 
because it is symmetric, and freedom to use any symmetric scheme they 
choose: Data Encryption Standard (DES), Triple DES, or Advanced Encryp-
tion Standard (AES). 

Step 2: Data Key Encryption (Assymetric)
Next, the IP author encrypts the data key used to encode the IP block, and 
generates a key block. For this operation, the IP author uses RSA asymmetric 
encryption and the public key provided by the downstream consumer of the 
IP; for example Synopsys. 

Asymmetric encryption uses different keys to encode and decode data. The IP 
consumer or tool vendor generates and makes a public key for encryption 
available to the IP author. The public key cannot be used for decryption. The 
IP consumer has a corresponding private key that is used to decrypt the data. 
The asymmetric encryption cipher used is RSA.



LO

Chapter 12: Working with IP Input The Synopsys FPGA IP Encryption Flow

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
474 Synopsys Confidential Information January 2020

Asymmetric encryption offers the following advantages: 

• Although asymmetric encryption is compute-intensive, the data key 
itself is small, so this is not time-intensive. 

• The IP author can use public keys from different IP consumers to 
encrypt the IP data key (and therefore the IP data) for each IP consumer. 
This capability ensures that IP consistency is maintained, because there 
is no need for multiple copies. There is just one encrypted IP data block, 
with multiple keys, one for each specific IP consumer. 

• Downstream IP consumers only need to pass their specific public key to 
the IP author, so that the data key can be encrypted for later retrieval. 

Step 3: Bundling of Encrypted Data Block and Data Key

The IP author bundles the encrypted data block with the key block into one 
decryption envelope file for handoff to the IP consumer. Note that this 
methodology allows the IP author to create just one version of the IP, and add 
key blocks for each supported downstream consumer; for example, add key 



The Synopsys FPGA IP Encryption Flow Chapter 12: Working with IP Input

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 475

blocks for place-and-route and simulation. Also, this approach eliminates the 
need to securely transmit the symmetric key, because this is included in the 
file. Security is maintained because both the key and the data are encrypted.

This is the point at which the IP author hands off the IP to the synthesis tool.

Data Decryption 
Decryption is a two-stage process. 

Step 1: Data Key Decryption
In the FPGA tool, the first step as an IP consumer is to decrypt the data key 
from the IP author. The IP author encrypted the data key with the 
asymmetric public key from the FPGA tool, so the tool decodes this using the 
private key counterpart to the public key used for encryption, and extracts 
the data key. 

Step 2: Data Decryption
The second step is to use the extracted data key to access the IP data. As the 
data key is the original symmetric key used to encode the IP, the process is 
quick. The tool can now use the unencrypted IP. 

Re-encryption in the Synopsys FPGA IP Flow
After synthesis, the IP can be re-encrypted if the downstream IP consumer 
has adopted one of the Synopsys methodologies. 



LO

Chapter 12: Working with IP Input The Synopsys FPGA IP Encryption Flow

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
476 Synopsys Confidential Information January 2020

Re-encryption of the synthesized IP for other consumers downstream 
requires that the public key for the other consumer be included when the IP 
is first encrypted. If there is a key block included for a downstream 
consumer, that consumer can access the re-encrypted data. If such an agree-
ment is not in place, the IP is treated as a black box, and the output netlists, 
plaintext netlists, or encrypted netlists contain black boxes instead of the 
encrypted IP. 

Preparing and Encrypting IP
IP authors can use any of the supported Synopsys FPGA IP schemes to 
provide IP for prototypers and FPGA implementers to evaluate and use. 
Synopsys provides scripts to simplify this process. 

To prepare and encrypt your IP as an IP author, do the following:

1. Gather your RTL files. 

You only encrypt the RTL. You can encrypt any number of Verilog and 
VHDL (or mixed) RTL files to form your encrypted IP, and each file can 
be encrypted in its entirety. 

2. Determine your file setup for each IP.

– Create a single set of files for the IP if your IP has no vendor-specific 
or vendor-optimized content and if the output method is supported 
by all intended consumers. 

– Create multiple versions of your protected IP if you are using FPGA 
device-family specific RTL like architecture-specific instantiations, or 
if you optimized your RTL or constraints for use with a specific FPGA 
vendor device family or FPGA vendor. 

3. Encrypt the files with the appropriate encryption script:

All the schemes uses a two-stage encryption process:

IEEE 1735-2014 encryption Working with IEEE 1735 Encryption, on 
page 481

OpenIP encryption Encrypting IP Using OpenIP (encryptIP), on 
page 487

Synenc encryption Working with Synenc-encrypted IP, on 
page 491



The Synopsys FPGA IP Encryption Flow Chapter 12: Working with IP Input

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 477

– First, encrypt your IP files using a symmetric encryption algorithm 
and your own data key to create an encrypted data block. See Step 1: 
Data Encryption (Symmetric), on page 473 for a general description. 

– Next, encrypt the session key for the encrypted data block using an 
asymmetric algorithm and the Synopsys public key. All the Synopsys 
encryption methodologies support RSA encryption. See Step 2: Data 
Key Encryption (Assymetric), on page 473 for a general description.

4. Package your IP, as described in Preparing the IP Package, on page 477. 

5. Verify that your IP works with the tool by going through the procedure 
that the user would use.

– Start the tool and add the IP into a design. 

– Run the normal synthesis implementation flow and check that the IP 
works. 

Preparing the IP Package
Do the following to package your IP and make it accessible to an authorized 
consumer like Synopsys: 

1. Collect the files for the package.

– Encrypt the files you need, as described in Preparing and Encrypting 
IP, on page 476.

– Make sure your package includes the files listed in IP Package File 
List, on page 478. 

– Structure the files as described in Suggested Directory Structure, on 
page 478. 

2. If your IP package is intended for synthesis only, without subsystem 
assembly, create a compressed package for download, using one of these 
methods:

– Create a compressed tarball (.tar.gz), which is a tar archive 
compressed with the gzip utility, using one of these commands:

tar cf -fileList | gzip -c > compressed-tarball
gtar -cf compressed-tarball fileList

Preserve the directory structure when you run gzip. 



LO

Chapter 12: Working with IP Input The Synopsys FPGA IP Encryption Flow

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
478 Synopsys Confidential Information January 2020

– Create a zip file (zip) by running WinZip. WinZip archives and 
preserves your directory hierarchy. 

3. Post the packaged IP on your website for downloading. 

The user generally downloads the package and then untars or unzips it 
into a top-level directory. The IP can then be used by the tool. 

4. Supply Synopsys with the following:

– The URL for the download package.

– Vendor and advertising information you wish to display on the 
Synopsys website. See Supplying Vendor Information, on page 479 
for details. 

IP Package File List
Your IP package must contain the following files:

Suggested Directory Structure
Follow these recommendations when you structure the IP package: 

• Always use relative paths to reference a file. 

• Always preserve directory structure when you run gzip.

Files Description

ipinfo.txt Text file that lists the name of the IP, the version, restrictions 
for use, support contact information, and an email alias to 
request a license for the full RTL for your IP. 

Documentation, 
preferably a PDF

Documents the IP, and includes detailed information about 
usage restrictions like vendor, device family, etc. 

Readme An optional text file that contains instructions on use of the IP 
for assembly and/or synthesis, and hints on how to use it 
correctly. 

Encrypted HDL or 
EDIF

Protected RTL for the IP, created using the Synopsys encryptIP 
script. See the documentation for details. 

FDC constraints Unencrypted design constraints for the IP. You need only 
maintain a single file for both the Synopsys synthesis tools. 



The Synopsys FPGA IP Encryption Flow Chapter 12: Working with IP Input

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 479

• You can place IP-XACT xml files in the top-level directory or in a common 
subdirectory. You can have multiple files or a single file for the same 
component or variants of a component. However, it is preferred that you 
keep all IP-XACT components that are in one library at the same direc-
tory level, even if it is many levels deep in the directory hierarchy. 

Supplying Vendor Information
To make your IP accessible for downloads and evaluation from the Synopsys 
tools, you must supply Synopsys with some vendor information as well as 
information for each of the cores or IPs to be used. 

1. Supply Synopsys with the following general information to advertise 
your company and IP on the Synopsys website: 

2. Supply Synopsys with the following information about each core or IP to 
be used: 

IP vendor name and logo Your vendor name and logo for display.

Optional IP description Short paragraph describing the IP and key 
features.

Email alias Synopsys sends leads to this alias when evaluation 
cores are requested on the Synopsys IP website.

Website URL Unique URL for accessing IP. After the user has 
filled out lead information on the website, the 
Synopsys tool directs the user to this URL to 
download the IP. The lead form on your website can 
be pre-filled by prior arrangement with Synopsys 
Marketing. 

IP name Name of the IP. 

IP short 
description

Sentence describing the IP, which is displayed in the 
summary view on the Synopsys website. 

IP paragraph 
description

More detailed description of the IP, covering functional 
description and compatibility with other cores or 
peripherals. 

Notes about usage Any other information, like licensing requirements



LO

Chapter 12: Working with IP Input The Synopsys FPGA IP Encryption Flow

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
480 Synopsys Confidential Information January 2020

Core datasheet 
(HTML or PDF)

Information about the characteristics, features, 
functions, and interfaces. 

Supported FPGA 
vendors and 
devices

List of the targeted vendors and devices that the core 
supports. 

IP-XACT 
compatibility 
information

List of the IP-XACT version number supported, the IP-
XACT VLNV, and the IP-XACT VLNVs of all the bus 
definitions required for the core, along with a link to 
download each of these bus definitions. 



Working with IEEE 1735 Encryption Chapter 12: Working with IP Input

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 481

Working with IEEE 1735 Encryption
The recommended method for encrypting IP is to use the IEEE 1735-2014 
standard. The following figure summarizes the steps for encrypting and 
decrypting the IP. 

See the following for details about the stages in the flow shown above: 

• Encrypting IP Using IEEE 1735-2014, on page 482

• Including IEEE 1735-Encrypted IP in a Synthesis Flow, on page 486



LO

Chapter 12: Working with IP Input Working with IEEE 1735 Encryption

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
482 Synopsys Confidential Information January 2020

Encrypting IP Using IEEE 1735-2014
The following figure summarizes the steps an IP author must follow to 
encrypt and package data with the IEEE 1735-2014 standard. You can 
encrypt an entire file or parts of it. According to the encryption model, you 
add encryption pragmas to the source files and edit the encryption key file. 
The encryptIP1735 Perl script, which is included in the tool hierarchy along 
with a default encryption key file, simplifies the process of encrypting the IP 
and generating an envelope around it. 

1. Install the encryptP1735.pl script. 

– Make sure Perl is installed; otherwise you cannot run the script. 
Several commercial and free versions are available from 
http://www.perl.org/get.html.

2. Determine the scope of the encryption, and add encryption pragmas to 
the source files according to the encryption use model you use. 

– For Verilog source files, enclose the code you want to encrypt between 
pragma protect begin and pragma protect end statements. 

– For VHDL source files, enclose the code you want to encrypt between 
protect begin and protect end statements.

http://www.perl.org/get.html


Working with IEEE 1735 Encryption Chapter 12: Working with IP Input

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 483

Encryption Model Details of Use

Full file • Do not add any pragmas in the HDL because the entire 
source file is encrypted.

• Add the public key information in the keys.txt file, as 
described in step 3. Add information from each IP 
consumer that will have access. 

See Full-File Use Model, on page 62.

Partial file with 
minimal pragmas 

• In the HDL, define pragma protect begin and pragma protect 
end pragmas for each data block you want to encrypt.

• Add the public key information in the keys.txt file, as 
described in step 3. Add information for each IP 
consumer that will have access. The marked data is 
encrypted for all the keys in the keys file. 

See Partial File with Minimal Pragmas Use Model, on 
page 63.

Partial file with 
standard pragmas 

(Recommended 
model)

• In the HDL, precede each data block you want to 
encrypt with the names of the keys which can access 
that block, using pragma protect statements. The values 
must match the values in the key file. Do not include 
the key block. 

• In the HDL, define pragma protect begin and pragma protect 
end pragmas for each data block you want to encrypt. 

• Add the public key information in the keys.txt file, as 
described in step 3. Add information for each IP 
consumer that will have access. Each block of data is 
only encrypted for the keys specified before the block. 

See Partial File with Standard Pragmas Use Model, on 
page 64.

Partial file with 
IEEE pragmas 

• Define pragma protect begin and pragma protect end 
pragmas for each data block you want to encrypt. 

• In the HDL, precede each data block you want to 
encrypt with the names of the keys which can access 
that block, using pragma protect statements. 

• In the HDL, also include the public key information for 
each IP consumer that will have access.

• You do not need the key file, because all the public key 
information is included in the HDL. 

See Partial File with IEEE Pragmas Use Model, on 
page 66.



LO

Chapter 12: Working with IP Input Working with IEEE 1735 Encryption

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
484 Synopsys Confidential Information January 2020

– The recommended use model is the partial file with standard 
pragmas use model. 

– For an encryption scheme that is portable and can be used with any 
1735 encryptor, use the partial file with IEEE pragmas use model. 

3. Add public key information and other encryption pragma information to 
the keys.txt file to define which tools have access to the IP.

The keys.txt file contains the public key information and other encryption 
pragmas. 

Guidelines for All Use Models Except Partial File with IEEE Pragmas

• Copy the keys.txt file, which is included with the installDir/lib/encryptP1735.pl 
script, to a local directory so that you can edit the file.

• Obtain public key information for each tool. If you want the IP to be used by 
other tools, you must add key information for each tool that will be able to 
access the IP. For example, contact Synopsys for VCS. Note that the 
Synopsys VCS key is different from the one used by the Synopsys FPGA 
tools. 

• Add the public key information obtained from the IP consumers to the 
keys.txt file. 

• Add it after the default information, between the comment lines indicated in 
the file. The following example shows information for a dummy key. You 
must use actual information from the vendor. 

// Add additional public keys below this line
`pragma protect key_keyowner="XYZ",

key_keyname="DUMMY", key_method="rsa"
`pragma protect key_public_key

…<tool_vendor_public_key_information>…
// Add additional public keys above this line

• You must add the information for each downstream consumer at this time, 
as the encrypted IP cannot be passed to tools that do not have public key 
information included.

Additional Guidelines for Partial File with Standard Pragmas Model

• Follow the general guidelines above. 
• In addition, make sure to specify the version: 

`pragma protect version=1



Working with IEEE 1735 Encryption Chapter 12: Working with IP Input

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 485

4. Run the encryptP1735.pl Perl script.

– Find the encryptP1735.pl script in the installDir/lib directory of the tool. 

– Run the script. Below is an example of a command to run the script, 
where keys.txt is the file with the public keys and mylist is a file that 
contains a list of the files to encrypt. The list can name a single file to 
encrypt or multiple files; for multiple files, put each file name on a 
separate line. This command also prints messages to a log file. 

perl encryptP1735.pl -list mylist -pk keys.txt -log encryptP1735.log

For the complete syntax to run the script, refer to encryptP1735, on 
page 59. 

This script automates the two-stage encryption process described in The 
Synopsys FPGA IP Encryption Flow, on page 470. It first encrypts the IP 
files using a symmetric encryption algorithm and a random data key to 
create an encrypted data block. It then encrypts the session key for the 
encrypted data block using an asymmetric algorithm and the Synopsys 
public key. The tool currently uses RSA encryption. 

The script then creates a “decryption envelope” file, so that the 
encrypted IP can be passed on and used by other tools. Verilog decryp-
tion envelopes have a .vp extension, and VHDL decryption envelopes 
have a .vhdp extension. For information about using the encrypted IP, 
see Including IEEE 1735-Encrypted IP in a Synthesis Flow, on page 486. 

• In addition, add encryption information to the HDL. Before each block to be 
encrypted, add key_keyowner entries, making sure that the information 
matches what is in the key block in the keys.txt file. For example:

`protect key_keyowner="Synopsys", key_keyname="SYNP15_1", 
key_method="rsa", key_block

Guidelines for Partial File with IEEE Pragmas Model

• Do not use the keys.txt file. Add all encryption information in the HDL only. 

• In the HDL, before each block to be encrypted, add the key_keyowner and key 
block information for each tool allowed to access that block. For example:

`protect key_keyowner="Synopsys", key_keyname="SYNP15_1", 
key_method="rsa", key_block

`pragma protect key_public_key
…<vendor_public_key_information>…



LO

Chapter 12: Working with IP Input Working with IEEE 1735 Encryption

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
486 Synopsys Confidential Information January 2020

Including IEEE 1735-Encrypted IP in a Synthesis Flow
This figure summarizes how to incorporate IP encrypted with IEEE 1735 in a 
synthesis implementation for single-FPGA designs. For information about 
encrypting the IP, see Encrypting IP Using IEEE 1735-2014, on page 482. 

1. Add the encrypted file along with other source files when you compile 
the design. 

– To add a file, use Add File from the GUI or the add_file Tcl command in 
the Project view.

– For a .vp Verilog file, make sure to specify that the file is a Verilog file, 
using the -type argument from the command line. Alternatively, you 
can right-click the file name in the GUI and specify the file type. 

2. Run through the design flow and compile and map as usual. 

The tool decrypts the protected IP and uses it in the design, while 
protecting the IP data from disclosure. The IP remains encrypted as a 
black box in compiled views and no LUT initialization values are 
displayed in mapped views. 

3. To use the encrypted IP in other tools, like place and route or VCS 
simulation, the IP author must include the public keys for these tools 
when the IP was first encrypted. 

If the keys were included, the encrypted IP is passed on and can be used 
in the other tools. If the appropriate keys were not included, the IP must 
be re-encrypted with all the public keys required before it can be used. 
In this case the output from the FPGA tool includes a black box for the 
IP. 



Encrypting IP Using OpenIP (encryptIP) Chapter 12: Working with IP Input

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 487

Encrypting IP Using OpenIP (encryptIP)
OpenIP encryption is a scheme developed by Synopsys and donated to the 
standards body. You can use it to encrypt modules or components, which 
can then be downloaded for evaluation or use by the Synopsys FPGA user. 
Synopsys provides a script (encryptIP) to encrypt your data with this scheme. 
The script is run with the encryptIP Perl command. For details, see Encrypting 
IP with the OpenIP Scheme, on page 487.

Encrypting IP with the OpenIP Scheme
Synopsys provides a script to encrypt your data with the OpenIP scheme. The 
encryptIP Perl script is provided to IP vendors who wish to provide IP to 
synthesis users.The script automates the two-stage encryption process 
described in the Synopsys FPGA IP methodology (The Synopsys FPGA IP 
Encryption Flow, on page 470). The following procedure shows you how to 
encrypt your data with the encryptIP script.

Do the following to use the encryptIP script to encrypt IP: 

1. Install the encryptIP Perl script. 

– Install Perl on your machine. You cannot run the script if you do not 
have Perl installed. 

2. Make sure that the encryptIP script specifies the decryption key and the 
matching key length: 

– Specify the symmetric data decryption key with the -k option. 
Optionally, you can also specify a symmetric encryption key in 
hexadecimal format with the -kx option. 

– Make sure you specify the right key length for the encryption 
algorithm with the -c option. For example, TEST1234 becomes a 64-bit 
key, so you specify the des-cbc algorithm.

See encryptP1735, on page 59 in the FPGA Synthesis Command Refer-
ence  for full details of the encryptip syntax. 

3. Make sure you specify the appropriate output method (-om) when you 
run the script. 

This is important because the output method (-om) determines what is 
encrypted to the user. If the output method is plaintext for example, the 



LO

Chapter 12: Working with IP Input Encrypting IP Using OpenIP (encryptIP)

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
488 Synopsys Confidential Information January 2020

entire output netlist is unencrypted, and includes the IP netlist in an 
unencrypted and readable form. See Specifying the Script Output 
Method for OpenIP Encryption, on page 488 for more information.

The script encrypts the IP with the standard symmetric encryption 
algorithm you specified, and produces a data_block. The data key used for 
encrypting the HDL is then encrypted with an asymmetric algorithm and 
the Synopsys public key, and produces a key_block. The data_block and 
the key_block are combined with the appropriate pragmas for the flow 
being used, and the script creates an encrypted HDL file. For a detailed 
figure, see Encryption and Decryption, on page 471. 

All other output files from synthesis, including srm, srd, and srs files, 
are encrypted using the same encryption method specified for the input 
to synthesis. Output constraints are not encrypted. 

4. Run the encryptIP script on each RTL file you want to encrypt. 

The following example encrypts the Verilog plain_ip.v file into an 
encrypted file called protected_ip.v, using AES128-cbc encryption. The 
session key is MY_AES_SAMPLEKEY. See encryptIP, on page 56 in the 
FPGA Synthesis Command Reference for details about the syntax and 
required parameters. 

perl encryptIP -in plain_ip.v -out protected_ip.v -c aes128-cbc 
-k MY_AES_SAMPLEKEY -bd 16OCT2007 -om plaintext -v

First, it encrypts the IP files using a symmetric encryption algorithm and 
a random session or data key. This creates an encrypted data block. 
Next, it encrypts the session key for the encrypted data block using an 
asymmetric algorithm and the public key for the FPGA software and any 
other public keys you might have added for other tools. 

5. Check the encrypted RTL file to make sure that there is only one key 
block present. 

Specifying the Script Output Method for OpenIP Encryption
You can control access to the IP encrypted with OpenIP by setting the appro-
priate output method. You specify the output method using the -om param-
eter, as described in encryptIP, on page 56 in the FPGA Synthesis Command 
Reference Manual.



Encrypting IP Using OpenIP (encryptIP) Chapter 12: Working with IP Input

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 489

The output method mainly affects the output netlist. The following are guide-
lines for setting the output method for the encryptIP script, and detail the 
effects of different settings: 

1. When using the encrypyIP script, set -om to persistent_key:
– If you have an agreement in place with Synopsys and want the output 

netlist to be encrypted

2. Set -om to plaintext in the following cases:

– If you want to allow the IP to be incorporated in a logic synthesis 
design

Setting the output method to plaintext allows the tool to synthesize, 
run gate-level simulations, place and route, and implement an FPGA 
(that includes the IP) on a board. 

– If you want the IP to be freely optimized by the synthesis tools

Although IP cores are already optimized, the synthesis tools can effect 
additional optimizations based on the design context in which it will 
be used. When the synthesis tool is allowed to optimize the IP, it can 
prune away IP logic that is unused or unnecessary in the current 
design context. Or take the case where the output of an instantiated 
IP core is timing-critical because it drives hundreds of user loads. If 
the synthesis tool can freely optimize, it can replicate sources within 
the core and fix the problem. 

3. To let the IP be incorporated in a logic synthesis design, set -om to 
plaintext or blackbox.

Setting the output method to plaintext allows the tool to synthesize, run 
gate-level simulations, place and route, and implement an FPGA (that 
includes the IP) on a board. Setting the output method to blackbox does 
not allow the tool to run gate-level simulations or place and route the IP, 
because it only uses the port and connectivity information. 

4. If you have set -om to plaintext and you want to specify individual cores as 
white boxes, set the syn_macro directive to 1 on the view for the IP. 

Note that you must set this on the view, not the instance. When this is 
set, the tool treats the IP as a white box and only uses the timing and 
connection information from the IP. The synthesis tool maintains the IP 
boundary and only trims unused logic inside the IP. 



LO

Chapter 12: Working with IP Input Encrypting IP Using OpenIP (encryptIP)

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
490 Synopsys Confidential Information January 2020

5. During synthesis, the IP contents appear as a black box in the RTL view, 
irrespective of the output method selected. When the output method is 
set to plaintext, you can push down into the IP from the Technology view.

6. After synthesis, the output method affects the results in the following 
ways: 

– Output constraints for an IP are in the standard Synopsys format and 
are not encrypted. 

– The output method affects the contents of the output netlist and its 
format. This table summarizes the encryptIP behavior with different 
output methods.

Method (-om) Output Netlist After Synthesis

blackbox The output netlist contains the IP interface only, and no IP 
contents. It only includes IP ports and connections. The IPs are 
treated as black boxes, and there are no nets or instances shown 
inside the IP. This applies to all the netlist formats generated for 
different vendors, whether it is HDL (vm), (edn).
Output constraints are not encrypted. Output resource 
utilization and timing information includes IP information.
You cannot run gate-level simulation on the output netlist or 
place and route the IP, because there is no information about the 
contents of the IP. 

plaintext The output netlist includes encrypted versions of the IP. The IP is 
re-encrypted using the same session key and cipher that was 
used to encrypt the IP. The encrypted IP can be passed to place 
and route if that tool also uses the OpenIP scheme.

persistent_key The output netlist includes encrypted versions of the IP. The IP is 
re-encrypted using the same session key and cipher that was 
used to encrypt the IP. The encrypted IP can be passed to place 
and route if that tool also uses the OpenIP scheme



Working with Synenc-encrypted IP Chapter 12: Working with IP Input

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 491

Working with Synenc-encrypted IP
Synenc encryption is a proprietary Synopsys encryption scheme for RTL 
cores, and is used for encryption by many Synopsys products. It includes 
DesignWare library macrocells and proprietary RTL cores encrypted using 
Synopsys coreTools. On Linux platforms, the FPGA tool reads Synenc-
encrypted IP. As long as the Synenc-encrypted data does not include licensed 
components, you can read in the IP and synthesize or prototype it in the 
FPGA tool. 

The following steps describe how to use these encrypted cores: 

1. For cores created with coreConsultant, follow these steps:

– Create a synthesis project file in coreConsultant. This file includes 
the synenc-encrypted DesignWare core files in the correct order.

2. For existing Synenc-encoded source files where you cannot go back to 
coreConsultant and create a project file, add the core files manually to 
the synthesis project. 

File order is critical, because incorrect order causes the compiler to error 
out with a message about unknown macros. Ensure correct file order by 
doing one of the following:

– Use the original lst file from coreConsultant to set up your project. 
The lst file gives the proper order of files. This is the typical path to 
the lst file:

ip_core_name/src/ip_core_name.lst

– If the lst file is unavailable, make sure that the params and constants 
files for each core are listed first, and make sure that the undef file for 
the core is listed last. 

Make sure that encrypted IP generated from coreConsultant are specified 
with the correct file types and Verilog standards to avoid a compiler error. Use 
one of the following methods:

• Open the project file in the synthesis tool and highlight IP files. Right 
click and select File Options, then specify the applicable File Type and 
Verilog Standard on the dialog box. 



LO

Chapter 12: Working with IP Input Working with Synenc-encrypted IP

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
492 Synopsys Confidential Information January 2020

All files are automatically updated in the project.

• Also, you can manually open the project file and edit the encrypted file 
with the proper file type and Verilog standard. For example, if the top.v 
file uses the Verilog 2001 standard specify the following:

add_file -vlog_std v2001 "./top.v"

Similarly, specify the following for an encrypted SystemVerilog top.sv file:

add_file -verilog -vlog_std sysv "./top.sv"



Using Hyper Source Chapter 12: Working with IP Input

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 493

Using Hyper Source
Hyper source is a useful feature that lets you prototype ASIC designs that use 
one or more FPGAs. You can also use it to validate and debug the HDL for IP 
designs. See the following for more information:

• Using Hyper Source for Prototyping, on page 493

• Using Hyper Source for IP Designs, on page 493

• Threading Signals Through the Design Hierarchy of an IP, on page 494

Using Hyper Source for Prototyping
For prototyping, use Hyper Source to address the following issues:

• Use it to efficiently thread nets across multiple modules to the top-level 
design to support Time Domain Multiplexing (TDM). 

• Use it to easily replace an ASIC RAM with an FPGA RAM. 

Follow these guidelines to replace an ASIC RAM with an FPGA RAM:

1. Change the HDL for the RAM instantiation.

2. Add an extra clock signal to all the module interfaces. 

Hyper source reduces the number of modified HDL modules to two: one 
for the RAM and one for the top level.

Using Hyper Source for IP Designs
For IP designs, Hyper Source is useful for validating and debugging the HDL 
without directly modifying it. After the HDL has been fully tested with 
complete QoR results, use Hyper Source to debug, as described in the 
following cases: 

• Add some instrumentation logic that is not part of the original design, 
such as a cache profiler that counts cache misses or bus monitor that 
might count statistics about bus contention. The cache or bus might be 
buried deep inside the HDL; accessing the cache or the bus means ports 
might need to be added through several levels of hierarchy in the HDL. 
The instrumentation logic can be included anywhere in the design, so 



LO

Chapter 12: Working with IP Input Using Hyper Source

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
494 Synopsys Confidential Information January 2020

you can use hyper source and hyper connect to easily thread the neces-
sary connections during synthesis.

• Insert other hyper sourcing inside the IP to probe, monitor, and verify 
correct operation of known signals within the IP. 

Threading Signals Through the Design Hierarchy of an IP
Use this mechanism to thread a signal through the design hierarchy of a user 
IP. This signal can be threaded to a top-level port or signal. This works even if 
the Verilog or VHDL is compiled separately. The tool automatically adds ports 
and signals between the source and the connection. Otherwise, these connec-
tions must be manually added to the HDL code.

The following procedure describes a method for using hyper source, using the 
example HDL shown in Hyper Source Example, on page 495.

1. Define how to connect to the signal source. The following apply to this 
example:

– Signal syn_hyper_source (in1) module defines the source, with a width of 
1. 

– The tag name "tag_name" is the global name for the hyper source.

2. Define how to access the hyper source which drives the local signal or 
port. The following apply to this example:

– Signal syn_hyper_connect (out1) module defines the connection. The 
signal width of 1 matches the source.

– Tag name can be the global name or the instance path to the hyper 
source.

3. In this hierarchical design, note the following about hyper source:

– Applies to the module lower_module.
– Signal syn_hyper_source my_source(din) module is defined for the source 

with a width of 8.

– The tag name of "probe_sig" must match the name used in the hyper 
connect block to thread the signal properly.

4. In this hierarchical design, note the following about the hyper connect:

– Applies to the top-level module top, but can be any level of hierarchy.



Using Hyper Source Chapter 12: Working with IP Input

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 495

– Signal syn_hyper_connect connect_block (probe) module is defined for the 
connection with a width of 8.

– Tag name of "probe_sig" must match the name used in the hyper 
source block to thread the signal properly.

5. After you run synthesis, the following message appears in the log file:

Hyper Source Example
/* Connect to a signal you want to export example : in1*/
module syn_hyper_source(in1) /*synthesis syn_black_box=1 syn_noprune=1 */;
parameter w = 1;
parameter tag = "tag_name"; /* global name of hyper_source */
input [w-1:0] in1;
endmodule

/* Use to access hyper_source and drive a local signal or port example 
:out1 */
module syn_hyper_connect(out1) /* synthesis syn_black_box=1 syn_noprune=1 
*/;
parameter w = 1; /* width must match source */
parameter tag = "tag_name"; /* global name or instance path to hyper_source 
*/
parameter dflt = 0;
parameter mustconnect = 1'b1;
output [w-1:0] out1;
endmodule

/* Example hierarchical design which uses hyper_source */
module lower_module (clk, dout, din1, din2, we);
output reg [7:0] dout;
input clk, we;
input [7:0] din1, din2;
wire [7:0] din;

syn_hyper_source my_source(din);
defparam my_source.tag = "probe_sig"; /* to thread the signal this
tag_name must match to name used in the hyper connect block */



LO

Chapter 12: Working with IP Input Using Hyper Source

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
496 Synopsys Confidential Information January 2020

defparam my_source.w = 8;

always @(posedge clk)
if (we)

dout <= din;
assign din = din1 & din2;
endmodule

module sub1_module (clk, dout, din1, din2, we);
output[7:0] dout;
input clk, we;
input [7:0] din1, din2;
lower_module lower_module (clk, dout, din1, din2, we);
endmodule

module sub2_module (clk, dout, din1, din2, we);
output [7:0] dout;
input clk, we;
input [7:0] din1, din2;
sub1_module sub1_module (clk, dout, din1, din2, we);
endmodule

module top (clk, dout, din1, din2, we, probe);
output[7:0] dout;
output [7:0] probe;
input clk, we;
input [7:0] din1, din2;

syn_hyper_connect connect_block(probe);
defparam connect_block.tag = "probe_sig"; /* to thread the signal this 
tag_name must match to name used in the hyper connect block */
defparam connect_block.w = 8;

sub2_module sub2_module (clk, dout, din1, din2, we);

endmodule



Using Hyper Source Chapter 12: Working with IP Input

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 497

The following figures show how the hyper source signal automatically gets 
connected through the hierarchy of the IP in the HDL Analyst views.

RTL View

Technology View



LO

Chapter 12: Working with IP Input Using Hyper Source

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
498 Synopsys Confidential Information January 2020



Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 499

C H A P T E R  1 3

Optimizing Processes for Productivity

This chapter covers topics that can help the advanced user improve produc-
tivity and interoperability with other tools. It includes the following:

• Using Batch Mode, on page 500

• Working with Tcl Scripts and Commands, on page 506

• Automating Flows with synhooks.tcl, on page 514

• Invoking Third-Party Vendor Tools, on page 524



LO

Chapter 13: Optimizing Processes for Productivity Using Batch Mode

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
500 Synopsys Confidential Information January 2020

Using Batch Mode
Batch mode is a command-line mode in which you run scripts from the 
command line. You might want to set up multiple synthesis runs with a 
batch script. You can run in batch mode if you have a floating license, but 
not with a node-locked license. 

Batch scripts are in Tcl format. For more information about Tcl syntax and 
commands, see Working with Tcl Scripts and Commands, on page 506. 

This section describes the following operations:

• Running Batch Mode on a Project File, on page 500

• Running Batch Mode with a Tcl Script, on page 501

• Queuing Licenses, on page 502

Running Batch Mode on a Project File
Use this procedure to run batch mode if you already have a project file set up. 
You can also run batch mode from a Tcl script, as described in Running 
Batch Mode with a Tcl Script, on page 501.

1. Make sure you have a project file (prj) set up with the implementation 
options. For more information about creating this Tcl file, see Creating a 
Tcl Synthesis Script, on page 508. 

2. From a command prompt, go to the directory where the project files are 
located, and type one of the following, depending on which product you 
are using:

synplify_pro -batch project_file_name.prj
The software runs synthesis in batch mode. Use absolute path names or 
a variable instead of a relative path name.

If the -tclcmd switch is used, synthesis will not automatically run. To 
make synthesis run, project -run must be added: 

synplify_pro -tcl myproj.prj -tclcmd "project -run" 
The -tclcmd switch specifies the tcl commands to be executed before 
synthesis starts. To run a constraint check before synthesis:



Using Batch Mode Chapter 13: Optimizing Processes for Productivity

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 501

synplify_pro -tcl myproj.prj -tclcmd "project -run constraint_-
check"
The -tclcmd switch also allows the synthesis results path to be changed. 

synplify_pro -tcl "D:/tests/myproj.prj"  -tclcmd "set_option 
-result_file \"./impl1/test.edf\"; project -run"
The software returns the following codes after the batch run: 

0 - OK
2 - logical error
3 - startup failure
4 - licensing failure
5 - batch not available
6 - duplicate-user error
7 - project-load error
8 - command-line error
9 - Tcl-script error
20 - graphic-resource error
21 - Tcl-initialization error
22 - job-configuration error
23 - parts error
24 - product-configuration error
25 - multiple top levels 

3. If there are errors in the source files, check the standard output for 
messages. On Linux systems, this is generally the monitor; on Windows 
systems, it is the stdout.log file. 

4. After synthesis, check the resultFile.srr log file for error messages about 
the run.

Running Batch Mode with a Tcl Script
The following procedure shows you how to create a Tcl batch script for 
running synthesis. If you already have a project file set up, use the procedure 
described in Running Batch Mode on a Project File, on page 500. 

1. Create a Tcl batch script. See Creating a Tcl Synthesis Script, on 
page 508 for details. 

2. Save the file with a tcl extension to the directory that contains your 
source files and other project files.



LO

Chapter 13: Optimizing Processes for Productivity Using Batch Mode

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
502 Synopsys Confidential Information January 2020

3. From a command prompt, go to the directory with the files and type the 
following:

synplify_pro -batch Tcl_script.tcl
The software runs synthesis in batch mode. The synthesis (compilation 
and mapping) status results and errors are written to the log file result-
File.srr for each implementation. The synthesis tool also reports success 
and failure return codes.

4. Check for errors.

– For source file or Tcl script errors, check the standard output for 
messages. On Linux systems, this is generally the monitor in addition 
to the stdout.log file; on Windows systems, it is the stdout.log file. 

– For synthesis run errors, check the resultFile.srr log file. The software 
uses the following error codes:

0 - OK
2 - logical error
3 - startup failure
4 - licensing failure
5 - batch not available
6 - duplicate-user error
7 - project-load error
8 - command-line error
9 - Tcl-script error
20 - graphic-resource error
21 - Tcl-initialization error
22 - job-configuration error
23 - parts error
24 - product-configuration error
25 - multiple top levels 

Queuing Licenses
A common problem when running in batch mode is that the run fails because 
all of the available licenses are in use. License queuing allows a batch run to 
wait for the next available license when a license is on the server but not 
immediately available. 



Using Batch Mode Chapter 13: Optimizing Processes for Productivity

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 503

You can specify either blocking or non-blocking queuing. With blocking-style 
queuing, the tool waits until a license becomes available; with non-blocking-
style queuing, the tool waits the specified length of time for a license to 
become available. 

For details, see the following:

• Queuing Considerations, on page 503

• Queuing Licenses, on page 504

Queuing Considerations
Consider these points when using queuing:

• A blocking-style queuing is used; license checkout does not exit until a 
license becomes available.

• There is no maximum wait time; once initiated, the tool can wait indefi-
nitely for a license.

• If the server shuts down while the tool is waiting, a checkout failure is 
reported.

• When two licenses are required, queuing waits only until the first license 
becomes available (and not the second) to avoid holding a license unnec-
essarily.



LO

Chapter 13: Optimizing Processes for Productivity Using Batch Mode

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
504 Synopsys Confidential Information January 2020

Queuing Licenses
The following procedure describes how to specify blocking-style or non-
blocking style queuing for synthesis licenses. You can specify the licensed 
features for queuing with an environment variable or directly in batch mode. 

1. Specify the list of licensed features you want to queue, using either of 
the following methods:

– Set the toolName_LICENSE_TYPE environment variable to the features 
you want. For example:

SYNPLIFYPRO_LICENSE_TYPE=synplifypro:synplifypromicrosemi
– Specify a list of features to wait for using the -batch, -licensetype and -

license_wait options. For example: 

synplify_pro -batch -license_wait -licensetype
synplifypro:synplifypromicrosemi myProject.prj

2. To enable blocking-style queuing, do one of the following: 

– Set environment variable toolName_LICENSE_WAIT=1 (toolName is the 
name of the FPGA synthesis tool).

– In batch mode, include a -license_wait command-line argument, as 
shown in the following examples:

synplify_pro -batch -license_wait Tcl_script.tcl
synplify_pro -batch -license_wait projectFilename.prj

With blocking-style queuing enabled, the tool waits until the requested 
license becomes available. It generates the following message in the 
stdout.log or the Tcl window:

Waiting for license: toolName



Using Batch Mode Chapter 13: Optimizing Processes for Productivity

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 505

3. To enable non-blocking-style queuing, do either of the following: 

– Set environment variable toolName_LICENSE_WAIT=waitTime 
(toolName is the name of the FPGA synthesis tool and waitTime is the 
maximum wait time in seconds). For example:

SYNPLIFYPRO_LICENSE_WAIT=180
The waitTime value determines the maximum wait time, in seconds: 

– Include a -license_wait waitTime command-line argument when 
launching batch mode as shown in the following examples:

synplify_pro -batch -license_wait waitTime Tcl_script.tcl
synplify_pro -batch -license_wait waitTime projectFilename.prj

When non-blocking-style queuing is enabled, the tool waits up to the 
maximum time limit specified for the license to become available. The 
tool generates the following message in stdout.log or the Tcl window:

Waiting up to n seconds for license: toolName

WaitTime Value Queuing Behavior

Undefined or 0 Queuing off

1 Queuing on; wait indefinitely

>1 Queuing on; wait up to the specified number of seconds



LO

Chapter 13: Optimizing Processes for Productivity Working with Tcl Scripts and Commands

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
506 Synopsys Confidential Information January 2020

Working with Tcl Scripts and Commands
The software uses extensions to the popular Tcl (Tool Command Language) 
scripting language to control synthesis and for constraint files. See the 
following for more information:

• Using Tcl Commands and Scripts, next

• Generating a Job Script, on page 507

• Setting Number of Parallel Jobs, on page 507

• Creating a Tcl Synthesis Script, on page 508

• Using Tcl Variables to Try Different Clock Frequencies, on page 510

• Using Tcl Variables to Try Several Target Technologies, on page 512

• Running Bottom-up Synthesis with a Script, on page 513

You can also use synhooks Tcl scripts, as described in Automating Flows with 
synhooks.tcl, on page 514. 

Using Tcl Commands and Scripts
1. To get help on Tcl syntax, do any of the following:

– Refer to the online help (Help->Tcl Help) for general information about 
Tcl syntax. 

– Refer to the Reference Manual for information about the synthesis 
commands.

– Enter help * in the Tcl window for a list of all the Tcl synthesis 
commands.

– Enter help commandName in the Tcl window to see the syntax for an 
individual command. 



Working with Tcl Scripts and Commands Chapter 13: Optimizing Processes for Productivity

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 507

2. To run a Tcl script, do the following:

– Create a Tcl script. Refer to Generating a Job Script, on page 507 and 
Creating a Tcl Synthesis Script, on page 508. 

– Run the Tcl script by either entering source Tcl_scriptfile in the Tcl 
script window, or by selecting File->Run Tcl Script, selecting the Tcl file, 
and clicking Open.

The software runs the selected script by executing each command in 
sequence. For more information about Tcl scripts, refer to the following 
sections. 

Generating a Job Script
You can record Tcl commands from the interface and use it to generate job 
scripts.

1. In the Tcl script window, enter recording -file logfile to write out a Tcl log 
file.

2. Work through a synthesis session.

The software saves the commands from this session into a Tcl file that 
you can use as a job script or as a starting point for creating other 
Tcl files. 

For the command syntax, see recording, on page 102 in the Reference 
manual.

Setting Number of Parallel Jobs
You can set the maximum number of parallel jobs by setting a variable in the 
ini file, by defining a Tcl variable, or specifying the maximum number in the 
GUI. 

1. To set the maximum number of parallel jobs in the ini file, do the 
following:

– Open the ini file for the synthesis tool. For example, synplify_pro.ini.
– Add the MaxParallelJobs variable to the ini file, as follows:

[JobSetting]
MaxParallelJobs=<n>



LO

Chapter 13: Optimizing Processes for Productivity Working with Tcl Scripts and Commands

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
508 Synopsys Confidential Information January 2020

The tool uses the MaxParallelJobs value from the ini file as the default for 
both the UI (Project->Options) and batch mode. This value remains in 
effect until you reset it in the ini file or from the GUI, as described in the 
next step. To locate this configuration and initialization file (ini), see 
Input Files, on page 144.

2. To set or change the maximum number of parallel jobs from the GUI, do 
the following:

– Select Options->Configure Parallel or Compile Point Process from the Project 
view.

– Set the value you want in the Maximum number of parallel synthesis jobs 
field, and click OK. This field shows the current ini value, but you 
can reset it, and it will remain in effect until you change it again. The 
value you set is saved to the ini file. 

3. To set a Tcl variable for the maximum number of parallel jobs, do the 
following:

– Determine where you are going to define the variable. You can do this 
in the project file, or a Tcl file, or you can type it in the Tcl window. If 
you specify it in a Tcl file, you must source the file. If you specify it in 
the Tcl window, the tool does not save the value, and it will be lost 
when you end the current session. 

– Specify the max_parallel_jobs variable with the set_option Tcl command: 

set_option -max_parallel_jobs value

The tool applies the max_parallel_jobs value specified to all project files 
and their respective implementations. This is a global option. The 
maximum number of parallel jobs remains in effect until you specify a 
new value. This new value takes effect immediately, going forward. 
However, when you set this option from the Tcl command window, the 
max_parallel_jobs value is not saved and will be lost when you exit the 
application.

Creating a Tcl Synthesis Script
Tcl scripts are text files with a tcl extension. You can use the graphic user 
interface to help you create a Tcl script. Interactive commands that you use 
actually execute Tcl commands, which are displayed in the Tcl window as 
they are run. You can copy the command text and paste it into a text file that 
you build to run as a Tcl script. For example:



Working with Tcl Scripts and Commands Chapter 13: Optimizing Processes for Productivity

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 509

add_file -verilog "prep2.v"
set_option -technology PROASIC3

set_option -part A3P400
set_option -package FBGA144
set_option -speed_grade -Std

project -run
The following procedure covers general guidelines for creating a synthesis 
script.

1. Use a text file editor or select File->New, click the Tcl Script option, and type 
a name for your Tcl script. 

2. Start the script by specifying the project with the project -new command. 
For an existing project, use project -load project.prj.

3. Add files using the add_file command. The files are added to their 
appropriate directories based on their file name extensions (see add_file, 
on page 21 in the Reference Manual). Make sure the top-level file is last 
in the file list:

add_file statemach.vhd
add_file rotate.vhd
add_file memory.vhd
add_file top_level.vhd
add_file design.fdc

For information on constraints and vendor-specific attributes, see 
Checking Constraint Files, on page 54 for details about constraint files. 

4. Set the design synthesis controls and the output:

– Use the set_option command for setting implementation options and 
vendor-specific controls as needed. See the appropriate vendor 
chapter in the Reference Manual for details.

– Set the output file information with project -result_file and project -log_file.

5. Set the file and run options:

– Save the project with a project -save command

– Run the project with a project -run command 

– Open the RTL and Technology views:

open_file -rtl_view
open_file -technology_view



LO

Chapter 13: Optimizing Processes for Productivity Working with Tcl Scripts and Commands

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
510 Synopsys Confidential Information January 2020

6. Check the syntax.

– Check case (Tcl commands are case-sensitive).

– Start all comments with a hash mark (#).

– Always use a forward slash (/) in directory and pathnames, even on 
the Windows platform. 

Using Tcl Variables to Try Different Clock Frequencies 
To create a single script for multiple synthesis runs with different clock 
frequencies, you need to create a Tcl variable for the different settings you 
want to try. For example, you might want to try different target technologies. 

1. To create a variable, use this syntax:

set variable_name {
first_option_to_try
second_option_to_try
...}

2. Create a foreach loop that runs through each option in the list, using the 
appropriate Tcl commands. The following example shows a variable set 
up to synthesize a design with different frequencies. It also creates a 
separate log file for each run. 

The following code shows the complete script:

set try_freq {
85.0
90.0
92.0
95.0
97.0
100.0

)
foreach frequency $try_freq {

set_option -frequency $frequency
project -log_file $frequency.srr
project -run}

Tcl commands that set the 
frequency, create separate log files 
for each run, and run synthesis

Foreach loop

Set of frequencies
to try



Working with Tcl Scripts and Commands Chapter 13: Optimizing Processes for Productivity

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 511

project -load design.prj
set try_these {

20.0
24.0
28.0
32.0
36.0
40.0

}
foreach frequency $try_these {

set_option -frequency $frequency
project -log_file $frequency.srr
project -run
open_file -edit_file $frequency.srr

}



LO

Chapter 13: Optimizing Processes for Productivity Working with Tcl Scripts and Commands

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
512 Synopsys Confidential Information January 2020

Using Tcl Variables to Try Several Target Technologies 
This technique used here to run multiple synthesis implementations with 
different target technologies is similar to the one described in Using Tcl 
Variables to Try Different Clock Frequencies, on page 510. As in that section, 
you use a variable to define the target technologies you want to try. 

1. Create a variable called try_these with a list of the technologies.

set try_these {

PROASIC3 PROASIC3E # list of technologies
}

2. Add a foreach loop that creates a new implementation for each 
technology and opens the RTL view for each implementation. 

foreach technology $try_these {
impl -add
set_option -technology $technology
project -run -fg
open_file -rtl_view

}
The following code example shows the script:

# Open a new project, set frequency, and add files.
project -new
set_option -frequency 33.3
add_file -verilog D:/test/simpletest/prep2_2.v

# Create the Tcl variable to try different target technologies.
set try_these 

500K AX eX # list of technologies
}

# Loop through synthesis for each target technology.
foreach technology $try_these {

impl -add
set_option -technology $technology
project -run -fg
open_file -rtl_view

}



Working with Tcl Scripts and Commands Chapter 13: Optimizing Processes for Productivity

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 513

Running Bottom-up Synthesis with a Script
To run bottom-up synthesis, you create Tcl scripts for individual logic blocks, 
and a script for the top level that reads the other Tcl scripts. 

1. Create a Tcl script for each logic block. The Tcl script must synthesize 
the block. See Creating a Tcl Synthesis Script, on page 508 for details. 

2. Create a top-level script that reads the block scripts. Create the script 
with the with the project -new command. 

3. Add the top-level data:

– Add source and constraint files with the add_file command.

– Set the top-level options with the set_option command.

– Set the output file information with project -result_file and project -log_file.

– Save the project with a project -save command.

– Run the project with a project -run command.

4. Save the top-level script, and then run it using this syntax:

source block_script.tcl

When you run this command, the entire design is synthesized, begin-
ning with the lower-level logic blocks specified in the sourced files, and 
then the top level. 



LO

Chapter 13: Optimizing Processes for Productivity Automating Flows with synhooks.tcl

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
514 Synopsys Confidential Information January 2020

Automating Flows with synhooks.tcl
This procedure provides the advanced user with callbacks that let you 
customize your design flow or integrate with other products. For example, 
you might use the callbacks to send yourself email when a job is done (see 
Automating Message Filtering with a Tcl Script, on page 205), or to automati-
cally copy files to another location after mapping. You can use the callback 
functions to integrate with a version control system, or generate the files 
needed to run verification. The procedure is based on a file called synhooks.tcl, 
which contains the Tcl callbacks. 

1. Copy the synhooks.tcl file from the installDirectory/examples directory to a 
new location. 

You must copy the file to a new location so that it does not get 
overwritten by subsequent product installations and you can maintain 
your customizations from version to version. For example, copy it to 
C:/work/synhooks.tcl. 

2. Define an environment variable called SYN_TCL_HOOKS, and point it to 
the absolute path location of the synhooks.tcl file. For example:

$SYN_TCL_HOOKS=/remote/rel/projects/MyProj/synhooks.tcl

3. Open the synhooks.tcl file in a text editor, and edit the file so that the 
commands reflect what you want to do. The default file contains 
examples of the callbacks, which provide you with hooks at various 
points of the design process. 

– Customize the file by deleting the ones you do not need and by adding 
your customized code to the callbacks you want to use. The following 
table summarizes the various design phases where you can use the 
callbacks and lists the corresponding functions. For details of the 
syntax, refer to synhooks File Syntax, on page 516 in the Reference 
Manual. 

Design Phase Tcl Callback Function

Project Setup Callbacks

Settings defaults for projects proc syn_on_set_project_template 

Creating projects proc syn_on_new_project 

Opening projects proc syn_on_open_project 



Automating Flows with synhooks.tcl Chapter 13: Optimizing Processes for Productivity

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 515

– Save the file. 

As you synthesize your design, the software automatically executes the 
function callbacks you defined at the appropriate points in the design 
flow. 

Example: proc syn_on_start_run
The following code example gets selected files from the project browser at the 
start of a run:

Closing projects proc syn_on_close_project

Application Callbacks

Starting the application after 
opening a project

proc syn_on_start_application

Exiting the application proc syn_on_exit_application 

Run Callbacks

Starting a run. See Example: 
proc syn_on_start_run, on 
page 515. 

proc syn_on_start_run 

Ending a run proc syn_on_end_run

Key Assignment Callbacks

Setting an operation for Ctrl-
F8. See Example: proc 
syn_on_press_ctrl_f8, on 
page 516. 

proc syn_on_press_ctrl_f8 

Setting an operation for Ctrl-
F9

proc syn_on_press_ctrl_f9 

Setting an operation for Ctrl-
F11

proc syn_on_press_ctrl_f11

Design Phase Tcl Callback Function



LO

Chapter 13: Optimizing Processes for Productivity Automating Flows with synhooks.tcl

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
516 Synopsys Confidential Information January 2020

proc syn_on_start_run {compile c:/work/prep2.prj rev_1} {
set sel_files [get_selected_files -browser]

while {[expr [llength $sel_files] > 0]} {
set file_name [lindex $sel_files 0]
puts $file_name
set sel_files [lrange $sel_files 1 end]

}
}

Example: proc syn_on_press_ctrl_f8
The following code example gets all the selected files from the project browser 
and project directory when the Ctrl-F8 key combination is pressed:

proc syn_on_press_ctrl_f8 {} {
set sel_files [get_selected_files]

while {[expr [llength $sel_files] > 0]} {
set file_name [lindex $sel_files 0]
puts $file_name
set sel_files [lrange $sel_files 1 end]

}
}

synhooks File Syntax
The Tcl hooks commands provide an advanced user with callbacks to 
customize a design flow or integrate with other products. To enable these 
callbacks, set the environment variable SYN_TCL_HOOKS to the location of the 
Tcl hooks file(synhooks.tcl), then customize this file to get the desired customi-
zation behavior. For more information on creating scripts using synhooks.tcl, 
see Automating Flows with synhooks.tcl, on page 514.



Automating Flows with synhooks.tcl Chapter 13: Optimizing Processes for Productivity

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 517

Tcl Callback Syntax Function

proc syn_on_set_project_template 
{projectPath} {yourDefaultProjectSettings}

Called when creating a new project. 
projectPath is the path name to the 
project being created. 

proc syn_on_new_project {projectPath} 
{yourCode}

Called when creating a new project.
projectPath is the path name to the 
project being created. 

proc syn_on_open_project {projectPath} 
{yourCode}

Called when opening a project. 
projectPath is the path name to the 
project being created.

proc syn_on_close_project {projectPath} 
{yourCode}

Called after closing a project.
projectPath is the path name to the 
project being created.

proc syn_on_start_application 
{applicationName version currentDirectory} 
{yourCode}

Called when starting the application.
• applicationName is the name of the 

software. For example synplify_pro.
• version is the name of the version of 

the software. For example 2017.03
• currentDirectory is the name of the 

software installation directory. For 
example 
C:\synplify_pro\bin\synplify_pro.exe. 

proc syn_on_exit_application 
{applicationName version} 
{yourCode}

Called when exiting the application.
• applicationName is the name of the 

software. For example synplify_pro.
• version is the name of the version of 

the software. For example 2017.03. 

proc syn_on_start_run {runName 
projectPath implementationName} 
{yourCode}

Called when starting a run. 
• runName is the name of the run. For 

example compile or synthesis.
• projectPath is the location of the 

project.
• implementationName is the name of the 

project implementation. For example, 
rev_1.



LO

Chapter 13: Optimizing Processes for Productivity Automating Flows with synhooks.tcl

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
518 Synopsys Confidential Information January 2020

Tcl Hook Command Example
Create a modifier key (ctrl-F8) to get all the selected files from a project browser 
and project directory.

set sel_files [get_selected_files]
while {[expr [llength $sel_files] > 0]} {
set file_name [lindex $sel_files 0]
puts $file_name
set sel_files [lrange $sel_files 1 end]

proc syn_on_end_run {runName 
projectPath implementationName} 
{yourCode}

Called at the end of a run.
• runName is the name of the run. For 

example, compile or synthesis.
• projectPath is the location of the 

project.
• implementationName is the name of the 

project implementation. For example, 
rev_1.

proc syn_on_press_ctrl_F8 {} 
{yourCode}

Called when Ctrl-F8 is pressed. See Tcl 
Hook Command Example below.

proc syn_on_press_ctrl_F9 {} 
{yourCode}

Called when Ctrl-F9 is pressed. 

proc syn_on_press_ctrl_F8 {} 
{yourCode

Called when Ctrl-F11 is pressed. 

Tcl Callback Syntax Function



Invoking Third-Party Vendor Tools Chapter 13: Optimizing Processes for Productivity

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 519

Invoking Third-Party Vendor Tools 
You can invoke third-party tools from within the Synopsys FPGA synthesis 
products, and configure the locations and common arguments for the tools. 
This capability lets you modify source files or libraries or debug problems 
from within the third-party tool, without leaving the synthesis environment. 

You can invoke pre-configured tools or add your own. The process consists of 
two steps:

• Configuring Tool Tags, on page 519

• Invoking a Third-Party Tool, on page 520

Configuring Tool Tags
A tool tag is a configuration definition for a tool you want to invoke from the 
synthesis interface. You define a tool tag to set up the third-party tool you 
want to use. The following procedure shows you how to define your own tool 
tags, or add command arguments. Use this to specify other tools, other 
versions of a tool, or to run a tool with different arguments. 

1. Select Options->Configure 3rd Party Tool Options from the Project view. 

2. Define the application tag information for the tool you want to invoke.

– Specify the application you want to invoke in Application Tag Name. 

– Specify how you want to invoke the application tool. If you want to 
run the tool directly from the UI, select Direct Execution. If your 
application is a Tcl procedure, select TCL Mode. 

– Specify the location of the application executable or Tcl procedure 
name in Application Name with Path or Tcl Procedure Name.

– Specify any command arguments you want in the Command Argument if 
any field. You can use this to define a new tool tag or to add 
arguments to a tool tag that is already defined. 

For a list of predefined command arguments, click the + button and 
select them from the list. Otherwise, type the command arguments. 
For the internal Synopsys tools, you must select $SynCode from the 
Command Argument if any field.

– Click Apply.



LO

Chapter 13: Optimizing Processes for Productivity Invoking Third-Party Vendor Tools

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
520 Synopsys Confidential Information January 2020

– Click Close.

The tool saves these settings in the FPGA synthesis tool .ini file and 
retrieves them for subsequent invocations. For information about 
invoking a third-party tool, see Invoking a Third-Party Tool, on page 520, 
next. 

Invoking a Third-Party Tool
You can define tool tags globally and then use these tool tags to run the third-
party tool from the Project view for the specified tool tag only. Some common 
tool tags are pre-configured and are read when the application starts up. You 
can add or modify existing tool tags or define your own Tcl procedures to 
invoke within the FPGA synthesis tools.

1. Define a tool tag for your application, as described in Configuring Tool 
Tags, on page 519.

2. Right-click in the Project view on a file or folder which is configured to 
run the vendor tool, and select Launch Tools->Run Vendor Tool from the 
popup menu. 

This dialog box automatically displays tool tag information associated 
with the file or folder. If no tool tag information is specified, look for the 
parent hierarchy and edit or change it, if necessary.

3. To associate a file or folder with a particular third-party tool, do the 
following: 

– Select the file or folder in the Project view. If you select a folder, the 
third-party tool is associated with all the files in the folder. If you 
associate a tool with a file, this setting overrides the folder setting. 

– Right-click a file or folder and select Launch Tools->Run Vendor Tool from 
the popup menu. 



Invoking Third-Party Vendor Tools Chapter 13: Optimizing Processes for Productivity

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 521

– In the Vendor Tool Invocation dialog box, select the application in 
Application Tag Name. 

– Include any additional options you want to use with this file when 
you invoke the vendor tool. You can set command arguments now, if 
you did not configure them earlier.

– Verify the command string in the dialog box.

– Click Save, and Close. The third-party tool is associated with the file or 
folder and appears in the Launch Tools menu. 

4. To invoke an associated third-party tool for a file or folder, do the 
following: 

– Right-click the file or folder in the Project view.

– Select Launch Tools-><Third-Party Tool> from the popup menu. The 
synthesis tool automatically runs the tool or Tcl procedure as 
specified. 

5. To invoke the tool at the same time that you associate a third-party tool 
with a file or folder, or to add additional arguments on the fly, do the 
following: 

– Right-click a file or folder and select Launch Tools->Run Vendor Tool from 
the popup menu. 



LO

Chapter 13: Optimizing Processes for Productivity Invoking Third-Party Vendor Tools

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
522 Synopsys Confidential Information January 2020

– In the Vendor Tool Invocation dialog box, select the application in 
Application Tag Name. 

– Include any additional options you want to use with this file when 
you invoke the vendor tool. You can set command arguments now, if 
you did not configure them earlier.

– Verify the command string in the dialog box.

– Click Save. The tool and arguments you specified is associated with 
the file or folder and appears in the Launch Tools menu. 

If you defined a new tool tag, the 3rd Party Tool Configuration dialog box 
appears. After saving the settings here, go back to the Vendor Tool 
Invocation dialog box. You are prompted to save this information to the 
project file before invoking the third-party tool.

– Click the Run button in the Vendor Tool Invocation dialog box. The 
synthesis tool launches the third-party tool or runs the Tcl procedure 
with the arguments you specified. 

These settings are saved in the FPGA synthesis tool .ini file, from where it 
can be retrieved for subsequent invocations.



Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 523

CHAPTER 14

Improving Runtime

The following sections describe how to use multiprocessing to run parallel 
synthesis jobs and improve runtime:

• Multiprocessing With Compile Points, on page 524

– Setting Maximum Parallel Jobs, on page 524

– Specifying Licenses for Multiprocessing, on page 525



LO

Chapter 14: Improving Runtime Multiprocessing With Compile Points

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
524 Synopsys Confidential Information January 2020

Multiprocessing With Compile Points
This procedure describes how to run multiprocessing on a design with 
compile points. For information about defining compile points, see 
Chapter 12, Working with Compile Points. 

To run compile points with multiprocessing: 

1. If required, specify additional license types to use for multiprocessing, as 
described in Using Different License Types for Multiprocessing, on 
page 526. 

The tool runs four jobs in parallel per license, so additional licenses 
increase the number of jobs that can be run in parallel. The actual 
number of licenses used depends on certain factors. See Specifying 
Licenses for Multiprocessing, on page 525 for an explanation. 

2. Select Options->Configure Parallel or Compile Point Process and set the 
maximum number of jobs to run in parallel. 

See Setting Maximum Parallel Jobs, on page 524 for other ways to set 
this value. 

3. Synthesize the design as usual. 

The synthesis software runs multiple, independent compile point jobs 
simultaneously, providing additional runtime improvements for the 
logical compile point synthesis flows. 

Setting Maximum Parallel Jobs
You can set maximum number of parallel jobs in the following ways:

• Setting the MaxParallelJobs Variable in the ini File, on page 524

• Setting the max_parallel_jobs Tcl Option

Setting the MaxParallelJobs Variable in the ini File
The maximum number of parallel jobs is set in the product ini file. The 
following commands are set in the product.ini file (for example, synplify_pro.ini):

[JobSetting]



Multiprocessing With Compile Points Chapter 14: Improving Runtime

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 525

MaxParallelJobs=<n>
The MaxParallelJobs value is used by the UI as well as in batch mode. This 
value is effective until you specify a new value. To change the number of 
parallel jobs you can run, use the Options->Configure Parallel or Compile Point 
Process command from the Project view menu. On the Configure Parallel or 
Compile Point Process dialog box, in the Maximum number of parallel synthesis jobs 
field you will see the current ini value. You can specify a new MaxParallelJobs 
value which is effective until you change it again. Once you click OK, the new 
value is saved in the ini file. For a description of the dialog box, see Configure 
Parallel or Compile Point Process Command, on page 418.

Setting the max_parallel_jobs Tcl Option
You can also manually set an override value for the maximum number of 
parallel jobs. To do this, use the Tcl command: 

set_option -max_parallel_jobs numberJobs 

You can choose to:

• Source the Tcl file containing this option. 

• Add this option to the Project file. 

• Set this option from the Tcl command window.

This max_parallel_jobs value is applied to all project files and their respective 
implementations. This is a global option. The maximum number of parallel 
jobs remains in effect until you specify a new value. This new value takes 
affect immediately going forward. However, when you set this option from the 
Tcl command window, the max_parallel_jobs value is not saved and will be lost 
when you exit the application.

Specifying Licenses for Multiprocessing
When you decide to run parallel synthesis jobs, additional licenses may be 
required for the compile point jobs. By default, four parallel jobs use one 
license. For example, if you set the Maximum number of parallel synthesis jobs to 
12, the synthesis tool consumes one license to run 4 compile point jobs and 
can utilize the two additional licenses to run 8 more parallel jobs if they are 
available for your computing environment. Licenses are released as jobs 
complete, and then consumed by new jobs which need to run.



LO

Chapter 14: Improving Runtime Multiprocessing With Compile Points

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
526 Synopsys Confidential Information January 2020

The actual number of licenses utilized depends on the following factors:

1. Synthesis software scheme for the compile point requirements used to 
determine the maximum number of parallel jobs or licenses a particular 
design tries to use.

2. Value set on the Configure Parallel or Compile Point Process dialog box.

3. Number of licenses actually available. You can use Help->Preferred License 
Selection to check the number of available license. If you need to increase 
the number of available licenses, you can specify multiple license types. 
For more information, see Using Different License Types for 
Multiprocessing, on page 526.

Factors 1 and 3 above can change during a single synthesis run. The number 
of jobs equals the number of licenses; which then equates the lowest value of 
these three factors.

Using Different License Types for Multiprocessing
You can specify multiple license types to increase the total number of licenses 
available for multiprocessing. To do this, you can either:

• Use the -licensetype command line option when you execute your tool. 

For example, suppose you have two synplifypro licenses, two synplifypro_all-
vendor licenses, and three synplifypro_microsemi licenses. Type the following 
at the command line:

synplify_pro.exe -licensetype 
"synplifypro:synplifypro_allvendor:synplifypro_microsemi"

• Use the following environment variables specified with the license type:

– SYNPLIFYPRO_LICENSE_TYPE (Synplify Pro tool)

setenv SYNPLIFYPRO_LICENSE_TYPE=
"synplifypro:synplifypro_allvendor:synplifypro_microsemi"

Multiprocessing can access any of these license types for additional licenses.



Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 527

CHAPTER 15

Handling High-Reliability Designs

As geometries shrink, the possibility of soft errors or radiation effects 
increase. This affects industries like aerospace most immediately, but many 
other applications increasingly require high reliability and built-in fault toler-
ance. The synthesis software provides different ways to implement high 
reliability, and the following describe methods to implement high reliability in 
your designs: 

• Working with Microsemi Radhard Designs, on page 528

• Specifying Safe FSMs, on page 531



LO

Chapter 15: Handling High-Reliability Designs Working with Microsemi Radhard Designs

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
528 Synopsys Confidential Information January 2020

Working with Microsemi Radhard Designs
The following procedure outlines how to specify radhard values for a design 
with the syn_radhardlevel attribute. Remember that the attribute is not recur-
sive. It only applies to all registers at the level where it is set and does not 
affect lower-level registers. 

You can specify radhard values on modules and architecture in both the 
Attributes panel in SCOPE and in the source code. However, for registers, it 
must be specified in the source code only.

1. Add to your project the Microsemi macro files appropriate to the radhard 
values you plan to set in the design. The macro files are in 
installDirectory/lib/microsemi:

2. To set a global or default syn_radhardlevel attribute, do the following: 

– Set the value in the source file for the module. The following sets all 
registers of module_b to tmr:

– Make sure that the corresponding Microsemi macro file from step 1 is 
the first file listed in the project, if required.

Radhard Value Verilog Macro File VHDL Macro File

cc cc.v cc.vhd

tmr tmr.v tmr.vhd

tmr_cc tmr_cc.v tmr_cc.vhd

VHDL Verilog

library synplify;
use synplify.attributes.all;
attribute syn_radhardlevel of
behav: architecture is "tmr";

module module_b (a, b, sub, 
clk, rst) /*synthesis 
syn_radhardlevel="tmr"*/;



Working with Microsemi Radhard Designs Chapter 15: Handling High-Reliability Designs

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 529

Specifying syn_radhardlevel in the Source Code
For a module, you can attach the syn_radhardlevel attribute either in the Attri-
butes panel of the SCOPE window or in the source code. For a register, you 
can only apply this attribute in the source code.

To set attributes in SCOPE, see the Attribute Reference in the Attribute 
Reference manual Manual. The following procedure outlines how to set this 
attribute in the source code.

1. To set a global or default value, make sure that the corresponding 
Microsemi macro file is the first file listed in the project, if required. 

2. To set a syn_radhardlevel value for all the registers of a module, do the 
following:

– Set the value in the source file. The following sets all registers of 
module_b to tmr:

– Add the appropriate Microsemi macro file (tmr.v or tmr.vhd) to the 
project. The macro files are in the installDirectory/lib/microsemi. 

The attribute is not recursive. When used at the module or architecture 
level, it only applies to the registers at that level, and does not affect 
lower-level registers. 

3. To set a syn_radhardlevel value on a per-register basis, do the following:

– Set the value on the register in the source file for the module. For 
example, to set the value of register bl_int to tmr, enter the following in 
the module source file:

VHDL Verilog

library synplify;
use synplify.attributes.all;
attribute syn_radhardlevel of

behav: architecture is "tmr";

module module_b (a, b, sub,
clk, rst) /*synthesis
syn_radhardlevel="tmr"*/;



LO

Chapter 15: Handling High-Reliability Designs Working with Microsemi Radhard Designs

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
530 Synopsys Confidential Information January 2020

– Add the appropriate Microsemi macro file (tmr.v or tmr.vhd for this 
example) to the project.

Use a register-level attribute to override a default value with another 
value, or set it to none to ensure that a global default value is not applied 
to the register. 

4. To prevent a default from being applied to a register or module/entity, 
set syn_radhardlevel to none for that register, module, or entity. 

VHDL Verilog

library synplify;
use synplify.attributes.all;
attribute syn_radhardlevel of

bl_int: signal is "tmr"

reg [15:0] a1_int, b1_int 
/* synthesis syn_radhardlevel = 
"tmr" */;



Specifying Safe FSMs Chapter 15: Handling High-Reliability Designs

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 531

Specifying Safe FSMs
Typically, unspecified or unreachable FSM states are optimized away during 
synthesis, so if an SEU causes a bit to be inverted, the FSM can be put into 
an undefined, invalid state, and lock up the circuit. An SEU fault is a change 
of state caused by ions or electro-magnetic radiation that affects sequential 
elements. The basic principle of a safe FSM is to prevent the state machine 
from getting stuck in an unknown state because of an SEU. 

Safe FSMs are primarily required by commercial or military-aerospace users, 
especially those who want to ensure that their FSMs are tolerant of single 
event upset (SEU) faults and continue to function correctly. 

The following procedures describe ways to ensure high reliability and fault 
tolerance for FSMs:

• Implementing Safe Encoding FSMs, on page 531

• Implementing Safe Case FSMs, on page 532

Implementing Safe Encoding FSMs
Fault-tolerant FSMs with safe encoding is an error mitigation technique, 
which builds error recovery logic that specifies the FSM state use the reset 
condition when the FSM gets into an invalid or undefined state.

1. Select a supported device in the synthesis tool.

2. To apply safe encoding for FSMs, use the syn_encoding attribute with the 
value safe. When choosing an encoding style, use the syn_encoding 
attribute with the values safe, encodingStyle. You can apply this 
attribute on an FSM instance or register in the Verilog/VHDL source 
code or the FDC constraint file. For example:

module /*synthesis syn_encoding="safe, encodingStyles";*/
attribute syn_encoding of architecture : signal is 

"safe, encodingStyles";
You can also define a SCOPE collection in the constraint file, then apply 
the attribute to the collection as shown below:

define_scope_collection sm {find -hier -inst * -filter 
inst_of==statemachine}



LO

Chapter 15: Handling High-Reliability Designs Specifying Safe FSMs

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
532 Synopsys Confidential Information January 2020

define_attribute {$sm} {syn_encoding} {safe, encodingStyles}
For details about this directive, see syn_encoding, on page 35 in the 
Attribute Reference Manual.

Note: You must enable the FSM Compiler option to ensure the syn_encoding 
attribute takes effect. This overrides the default FSM compiler encoding 
for the state machine.

 Example: Safe Encoding FSM
When the syn_encoding attribute is specified with the value safe on the FSM, 
the tool builds an error recovery to reset the state as shown below.

Implementing Safe Case FSMs
Fault-tolerant FSMs with safe case is an error mitigation technique, which 
builds error recovery logic that specifies the FSM state use the default/others 
clause when the FSM gets into an invalid or undefined state.



Specifying Safe FSMs Chapter 15: Handling High-Reliability Designs

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 533

To implement safe case FSMs, follow this procedure:

1. Select a supported device in the synthesis tool.

2. To globally implement safe case FSMs, go to the Implementation Options-> 
High Reliability tab, and enable the Preserve and Decode Unreachable States 
(FSM, Counters, Sequential Logic) option.

The high reliability safe case option turns off sequential optimizations 
that would otherwise optimize away some FSM states.

Note: Preserve and Decode Unreachable States not only works on FSMs, but 
can perform operations on any pmux to prevent specific optimi-
zations. Using this option might produce different results than 
the syn_safe_case directive below.

3. To apply safe case on an individual module or architecture, set the 
syn_safe_case directive on a module. 

This is a Verilog example: module /* syn_safe_case =1*/

4. To choose an encoding style that can be implemented when building the 
recovery logic for the FSM, use the syn_encoding attribute. The software 
honors the values you specify for the encoding style. You can apply the 
attribute globally on a module or architecture in the Verilog/VHDL 
source code, as well as, the FDC constraint file. For example:

module /*synthesis syn_encoding="encodingStyles";*/ 
attribute syn_encoding of architecture : signal is

"encodingStyles";
You can also define a SCOPE collection in the constraint file, then apply 
the attribute to the collection:



LO

Chapter 15: Handling High-Reliability Designs Specifying Safe FSMs

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
534 Synopsys Confidential Information January 2020

define_scope_collection sm {find -hier -inst * -filter
inst_of==statemachine}

define_attribute {$sm} {syn_encoding} {encodingStyles}
For details about this attribute, see syn_encoding, on page 35.

You must enable the FSM Compiler option to ensure that the syn_encoding 
attribute takes affect. This overrides the default FSM compiler encoding 
for the state machine.

5. Provide error monitoring.

See Error Monitoring for High Reliability Features, on page 538 for 
details.

Note: You can optionally specify the error monitoring Tcl commands for 
safe FSM.

Example: Safe Case FSM
The syn_safe_case directive is applied on the FSM. When an undefined state 
occurs, the state machine uses the others clause to synthesize for error 
recovery as shown below. 



Specifying Safe FSMs Chapter 15: Handling High-Reliability Designs

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 535

Example: FSM with Reset State
You can set the syn_encoding=safe attribute for the FSM and define the reset 
condition to return a sequential element to a safe state in the RTL.



LO

Chapter 15: Handling High-Reliability Designs Specifying Safe FSMs

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
536 Synopsys Confidential Information January 2020

 Specifying ECC for RAMs
Using Error Correction Code (ECC) RAM lets you detect and correct single-bit 
errors on RAM. Specific vendor architectures offer ECC memories that 
automatically detect and correct single-bit errors. The synthesis software can 
infer and connect these vendor-specific memories. 

The following procedure shows you how to ensure high reliability by speci-
fying ECC RAMs. You can also combine the error-mitigating ECC RAMs with 
TMR to prevent false data from being captured by the memory and propa-
gated to other parts of the circuitry. 

1. Select a supported device in the tool. 

2. Specify the syn_ramstyle attribute with a value of ecc. 

If the ecc value is used in combination with other syn_ramstyle values like 
select_ram, it has a higher priority. For more about the attribute syntax, 
see syn_ramstyle, on page 106 in the Attribute Reference Manual.



Specifying Safe FSMs Chapter 15: Handling High-Reliability Designs

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 537

3. Provide error monitoring.

See Error Monitoring for High Reliability Features, on page 538 for 
details.

Note: You can optionally specify the error monitoring Tcl commands for 
ECC RAM.

4. Run synthesis.

The software infers the built-in ECC RAM primitive in the design. The 
synthesis tool creates the ECC RAM block primitive and its associated 
glue logic (for example, address decoders/encoders or comparators), 
while keeping the RAM interface the same.

5. Check the log file for the ECC RAM.



LO

Chapter 15: Handling High-Reliability Designs Error Monitoring for High Reliability Features

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
538 Synopsys Confidential Information January 2020

Error Monitoring for High Reliability 
Features

The software can inform you when it detects that an error has occurred. 
Based on the type of error, you may want to take corrective action (such as, 
reset the design or enable/disable scrubbing). Error monitoring can occur for 
the following:

• Finite state machines with unreachable states

For details, see the following topics:

• Error Monitoring Procedure, on page 538

• Error Monitoring Examples, on page 539

Error Monitoring Procedure
Error monitoring requires that you do the following:

1. As a prerequisite, a top-level port or user instantiated error monitoring 
IP (EMIP) must be provided in the RTL. You must specify syn_keep on the 
signal/wire feeding into the top-level port or EMIP port.

2. Specify the connectivity between the module/instance being monitored 
for the error with the error monitoring IP port or top-level port for the 
error monitoring module. You must define the control signals of the 
source and elements for error monitoring with the following Tcl 
commands:

– syn_create_err_net
– syn_connect

Add these commands in the constraint file. For a descriptions of the 
syntax, see syn_connect, on page 141 and syn_create_err_net, on 
page 142.

Here are some examples of specifying these commands:

# Unregistered error flag connected to top-level error port
syn_create_err_net {-name {error_flag} -inst {i:inst_A}}

syn_connect {-from {n:error_flag} -to {p:emp}}



Error Monitoring for High Reliability Features Chapter 15: Handling High-Reliability Designs

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 539

# Error flag with 4 stage pipeline registers with asynchronous 
reset connected to EMIP port

syn_create_err_net {-name {error_flag} -inst {i:inst_A} 
-err_pipe_num {4} -err_clk {n:inst_A.clk} -err_reset 
{n:inst_A.rst} -err_synch {false}}

syn_connect {-from {n:error_flag} -to {t:inst_emip.emp}}
The usage model for setting up the error monitoring varies slightly depending 
on the type of high reliability feature you are implementing, for example ECC.

Error Monitoring Examples
Error monitoring is applied to an instance. You can have a 1-bit error port for 
each instance. To do this, use the following Tcl commands:

• syn_create_err_net - Creates logic (XOR/OR) that compares the outputs for 
the selected module and connects it to the source of the new net that 
you specified. You can also specify pipeline registers along with clock 
and other control signals to improve timing through the comparator 
circuitry.

• syn_connect - Connects the new net that you specified to an existing net, 
top-level port, or input port of the instantiated Error Monitoring IP 
(EMIP).

See the following example:

• Example 4: Error Monitoring with FSM, on page 539

 Example 4: Error Monitoring with FSM
To set up the error monitoring for an FSM and provide access to error bits, 
specify the following:

1. Enable Preserve and Decode Unreachable States on the High Reliability tab of 
the Implementation Options panel for the state machine. 

2. On the instance:

– syn_create_err_net {–name {error_flag} -inst {i:state[1:3]}}
– syn_connect -from {{n:error_flag} -to {t:EMIP.err_port}}



LO

Chapter 15: Handling High-Reliability Designs Error Monitoring for High Reliability Features

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
540 Synopsys Confidential Information January 2020

In this example, the Preserve and Decode Unreachable States option is enabled on 
the High Reliability tab of the Implementation Options panel for the compiler to 
implement recovery logic by inferring the stateerrordetect IP. The Tcl commands 
connect the output of this IP to the EMP port for error monitoring of the FSM 
to occur.



Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 541

C H A P T E R  1 6

Running Post-Synthesis Operations

The following topics describe how to run post-synthesis operations, like 
place-and-route and verification, with compatible tools:

• Running P&R Automatically after Synthesis, on page 542

• Working with the Identify Tools, on page 545

• Simulating with the VCS Tool, on page 554



LO

Chapter 16: Running Post-Synthesis Operations Running P&R Automatically after Synthesis

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
542 Synopsys Confidential Information January 2020

Running P&R Automatically after Synthesis
You can run place and route automatically from within the tool or in batch 
mode for certain vendor devices.

For detailed procedures, see the following:

• Integrating Synthesis and Place and Route in One Run, on page 542

• Running Place and Route Using a Custom Script, on page 542

• Releasing the Synthesis License During Place and Route, on page 543

Integrating Synthesis and Place and Route in One Run
You can run the place-and-route tool for certain target technologies automat-
ically after synthesis. 

For devices that do not have integrated P&R support, see Running Place and 
Route Using a Custom Script, on page 542.

1. Check the Release Notes and make sure that you are using the correct 
version of the P&R tool. 

2. Set the PATH variable to point to the place-and-route tool. 

3.   To automatically run the P&R tool after synthesis completes, do the 
following: 

– Click the Add P&R Implementation button. In the dialog box, select the 
P&R implementation you want to run and enable Run Place & Route 
after synthesis. 

– Synthesize the design.

The tool automatically runs P&R after synthesis.

Running Place and Route Using a Custom Script
Ideally, after synthesis, the tool provides an options file (.tcl), along with the 
synthesis netlist output, to launch the integrated place and route (P&R) tool 
for your target technology.



Running P&R Automatically after Synthesis Chapter 16: Running Post-Synthesis Operations

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 543

For devices that do not have integrated P&R support, FPGA designers can 
provide a custom shell script to launch the P&R flow based on the device 
selected in the project options. The shell script provides the path to the P&R 
tool and identifies the output files (output netlist and constraints) after 
synthesis.

The flow is shown below:

To launch the P&R tool using a custom P&R script, do the following:

1. Ensure that you have a custom script to use when launching the P&R 
tool.

2. Click the Add P&R Implementation button.

3. In the Add New Place & Route dialog box, from Flow Settings, select the Run 
Place & Route after synthesis.

4. Click Add Shell Script to add your custom script to the project.

5. Click OK.

The custom script is launched and the tool automatically runs P&R after 
synthesis.

Releasing the Synthesis License During Place and Route
When invoking a third-party place-and-route tool from the FPGA synthesis 
tool, you can choose to have place and route continue to run even after 
exiting the synthesis tool so that it does not consume an FPGA license. The 
software lets you release the license for the synthesis tool and run the place-
and-route tool in batch mode.



LO

Chapter 16: Running Post-Synthesis Operations Running P&R Automatically after Synthesis

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
544 Synopsys Confidential Information January 2020

To release the FPGA license, specify the following command:

toolName -batch -license_release
Where toolName can be  the following keyword:  synplify_pro. 
In synthesis batch mode (synbatch), the -license_release option obtains all the 
synthesis licenses that are checked out for the session and checks them in 
immediately after the place-and-route job is launched. 

When licenses are released, you see the following message is generated:

Exiting session due to -license_release option



Working with the Identify Tools Chapter 16: Running Post-Synthesis Operations

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 545

Working with the Identify Tools
The Synopsys Identify tool set is a dual-component system that is a valuable 
part of the HDL design flow process. The system consists of the Identify 
instrumentor and Identify debugger. 

• The Identify instrumentor allows you to select your design instrumenta-
tion at the HDL level and then create an on-chip hardware probe. 

• The Identify debugger interacts with the on-chip hardware probe and 
lets you do live debugging of the design. 

The combination of these tools allows you to probe your HDL design in the 
target environment. The combined system allows you to debug your design 
faster, easier, and more efficiently. This section describes how to take advan-
tage of this integration and use the Identify instrumentor:

• Launching from the Tool, on page 545

• Handling Problems with Launching Identify, on page 550

• Using the Identify Tool, on page 551

• Using Compile Points with the Identify Tool, on page 552

Launching from the Tool
This section describes how to launch the Identify tool from the synthesis 
software. Define a project that you can pass to and launch in the Identify 
instrumentor. You must create an Identify implementation in order to run the 
Identify instrumentor. If you already have an Identify implementation, open it 
and use the Identify tool as described in Using the Identify Tool, on page 551. 

Do the following to add an Identify implementation:

1. In the synthesis interface, open the design you want to debug. 

2. Do one of the following tasks to add an Identify implementation:

– With the project implementation selected, right-click and select New 
Identify Implementation from the pop-up menu.



LO

Chapter 16: Running Post-Synthesis Operations Working with the Identify Tools

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
546 Synopsys Confidential Information January 2020

– Select Project->New Identify Implementation. 

An Implementation Options dialog box appears where you can set the 
options for your implementation. An Identify implementation is 
created. 

3. To run Identify instrumentor, select the Launch Identify Instrumentor icon 
( ) in the toolbar or select Run->Identify Instrumentor.



Working with the Identify Tools Chapter 16: Running Post-Synthesis Operations

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 547

The Identify interface opens. You can now use the Identify tool as 
described in Using the Identify Tool, on page 551 For complete details, 
consult the Identify documentation. 

Note that you can perform SRS instrumentation from the HDL Analyst 
view.

The following Integrated version of the Identify Instrumentor interface 
opens in the synthesis tool. For a description of this interface, see 
Chapter 3, Using the Instrumentor.



LO

Chapter 16: Running Post-Synthesis Operations Working with the Identify Tools

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
548 Synopsys Confidential Information January 2020

Set parameters for the Intelligent In-Circuit Emulator (IICE) in the 
instrumentor to prepare the design for debugging. Click the Edit IICE 
icon ( ). For details on how to set IICE parameters, see Chapter 2, IICE 
Configuration.

After you click OK on the Edit IICE Settings dialog box, you can now use the 
Identify tool as described in Using the Identify Tool, on page 551 For complete 
details, consult the Identify tool set documentation. 

Copying an Identify Implementation
1. Open a project.

An Identify implementation must already exist that has previously run 
instrumentation.

2. From the Identify implementation, right-click and select Copy 
Implementation from the drop-down menu.

A new Identify implementation is created with the same instrumentation 
as the one from which it is copied.



Working with the Identify Tools Chapter 16: Running Post-Synthesis Operations

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 549

Otherwise, as a workaround you can create a New Identify Implementation 
and copy the following files from the original Identify implementation:

– identify.db

– instr.db
– syn.db

3. Make any changes for instrumentation.

4. Synthesize the instrumented implementation.

After the design has been synthesized, place and route your design. 
Program the device, install the device in the target system, and complete 
the cable interface. You can now run the Identify debugger on the 
instrumented design (designName.prj) to verify correct operation.



LO

Chapter 16: Running Post-Synthesis Operations Working with the Identify Tools

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
550 Synopsys Confidential Information January 2020

Handling Problems with Launching Identify
If you have not installed Identify correctly, you might run into problems when 
you try to launch it from the synthesis tools. The following describe some 
situations: 

• If the Launch Identify Instrumentor icon ( )and the Run->Identify Instrumentor 
menu command are inaccessible, you are either on an unsupported 
platform or you are using a technology that does not support this 
feature.

• If you have the Identify software installed but the synthesis application 
cannot find it, select Options->Configure Identify Launch.

In the resulting dialog box, select the Identify tool to use:

– Integrated - Opens the embedded version of the Identify Instrumentor 
interface from the synthesis tool.

– Stand-alone - Opens the stand-alone version of the Identify tools. Note 
that the Identify debugger runs in stand-alone mode, by default.



Working with the Identify Tools Chapter 16: Running Post-Synthesis Operations

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 551

Either:

– Check the Use Current Identify Installation (for the Identify Debugger) 
entry. This entry is set by the SYN_IDENTIFY_EXE environment 
variable to point to the Identify installation. If this path is incorrect, 
change the environment variable setting and restart the synthesis 
tool. 

– Click the Locate Identify Installation button and specify the correct 
location in the corresponding field. Use the browse button to open the 
Select Identify Installation Directory dialog box and navigate to your current 
Identify installation directory.

Using the Identify Tool
This procedure provides an overview of how to use the Identify instrumentor. 
For detailed information about the tool, refer to the Identify RTL debugger 
documentation. 

1. The Identify instrumentor software interface opens, with an Identify 
project automatically set up for the design to be instrumented and 
debugged (IICE tab). 

2. Do the following in the Identify instrumentor interface:

– Instrument the design. For details of using the Identify instrumentor, 
refer to the Identify RTL debugger documentation. 

– Save the instrumented design. 

The Identify instrumentor tool exports the instrumented design to the 
synthesis software. It creates an instrumentation subdirectory under 
your synthesis working directory called designName_instr, which 
contains the following: 

– A synthesis project file

– An instr_sources subdirectory for the instrumented HDL files

– Tcl scripts for loading the instrumented design

3. Return to the synthesis interface and view the instrumented design that 
contains the debugging logic.

– In the synthesis interface, open the project file for the instrumented 
design, which is in the instr_sources subdirectory listed in the 
Implementations Results view for your original synthesis project. 



LO

Chapter 16: Running Post-Synthesis Operations Working with the Identify Tools

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
552 Synopsys Confidential Information January 2020

– Synthesize the design.

– Open the RTL view to see the inserted debugging logic. 

4. Place and route the instrumented design after synthesis. 

5. Use the Identify debugger tool to debug the instrumented design.

Using Compile Points with the Identify Tool
You can use compile points to run incrementally. This can reduce runtime 
while running synthesis, and also while running the Identify flow. The 
following figure illustrates this: 

When you use Identify instrumentation, the tool creates extra IICE logic at 
the top level of the design and the corresponding interface to the signals that 
need to be debugged. If you define compile points, the tool need only rerun 
the compile points that have changed because of the insertion of this logic. 
On subsequent runs, it can incrementally re-instrument only those compile 



Working with the Identify Tools Chapter 16: Running Post-Synthesis Operations

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 553

points where there are instrumentation changes or design modifications.The 
following procedure describes the steps to follow to implement the flow and 
take advantage of incremental synthesis and instrumentation:

1. Create a synthesis implementation with compile points. 

2. Set up the Identify implementation:

– Generate the Identify implementation by right-clicking the FPGA 
synthesis implementation and selecting New Identify Implementation from 
the popup menu. 

– Copy the compile point subdirectories manually to the new Identify 
implementation directory. 

3. Run the tools. 

– Run synthesis. 

– Before running the Identify tool, enable the top-level constraint file 
and all compile point constraint files in the Identify implementation.

– Instrument the design. The tool inserts additional logic for 
instrumentation. 

4. Resynthesize the design.

The tool runs incrementally, only resynthesizing the compile points 
affected by the inserted instrumentation logic. If you make any other 
design changes, the tool incrementally synthesizes the affected compile 
points. 

5. Rerun instrumentation.

The tool runs incrementally, and only re-instruments the affected 
compile points. 



LO

Chapter 16: Running Post-Synthesis Operations Simulating with the VCS Tool

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
554 Synopsys Confidential Information January 2020

Simulating with the VCS Tool
The Synopsys VCS® tool is a high-performance, high-capacity Verilog 
simulator that incorporates advanced, high-level abstraction verification 
technologies into a single, open, native platform. You can launch this simula-
tion tool from the synthesis tools on Linux and Unix platforms by following 
the steps below. The VCS tool does not run under the Windows operating 
system. 

1. Set up the tools.

– Install the VCS software and set up the $VCS_HOME environment 
variable to define the location of the software. 

– Set up the place-and-route tool. 

– In the synthesis software, either select Run->Configure and Launch VCS 
Simulator, or click the  icon. 

If you did not set up the $VCS_HOME environment variable, you are 
prompted to define it. The Run VCS Simulator dialog box opens. For 
descriptions of the options in this dialog box, see Configure and Launch 
VCS Simulator Command, on page 383 of the Reference Manual. 

2. Choose the category Simulation Type in the dialog box to configure the 
simulation options.

– Specify the kind of simulation you want to run. 

RTL simulation Enable Pre-Synthesis

Post-synthesis netlist simulation Enable Post-Synthesis

Post-P&R netlist simulation Enable Post P&R



Simulating with the VCS Tool Chapter 16: Running Post-Synthesis Operations

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 555

– Choose the category VCS Options in the dialog box to set options such 
as the following VCS commands. 

The options you set are written out as VCS commands in the script. If 
you leave the default settings the VCS tool uses the FPGA version of VCS 
and opens with the debugger (DVE) GUI and the waveform viewer. See 
the VCS documentation for details of command options. 

3. If your project has Verilog files with `include statements, you must use 
the +incdir+ fileName argument when you specify the vlogan 
command. You enter the +incdir+ in the Verilog Compile field in the VCS 
Options dialog box, as shown below:

To set... Type the option in...

VLOGAN command options for compiling and 
analyzing Verilog, like the -q option

Verilog Compile 

VHDLAN options for compiling and analyzing VHDL VHDL Compile 

VCS command options Elaboration

SIMV command options, like -debug Simulation



LO

Chapter 16: Running Post-Synthesis Operations Simulating with the VCS Tool

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
556 Synopsys Confidential Information January 2020

Example Verilog File: 

`include "component.v" 

module Top (input a, output x);

...

endmodule
The syntax for the VCS commands must reflect the relative location of 
the Verilog files: 

– If the Verilog files are in the same directory as the top.v file, specify: 

- vlogan -work work  Top.v  +incdir+ ./   
– If the Verilog files are in the a directory above the top.v file, specify: 

- vlogan -work work  Top.v  +incdir+ ../include1  +incdir+ ../ 
include2
– If the Verilog files are in directories below and above the top.v file, specify: 

- vlogan -work work  Top.v  +incdir+ ./include_dir1 
+incdir../include_dir2



Simulating with the VCS Tool Chapter 16: Running Post-Synthesis Operations

Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 557

4. Specify the libraries and test bench files, if you are using them.

– To specify a library, click the green Add button, and specify the library 
in the dialog box that opens. Use the full path to the libraries. For 
pre-synthesis simulation, specifying libraries is optional.

– For post-synthesis and post-P&R synthesis, by default the dialog box 
displays the UNISIM and SIMPRIM libraries in the P&R tool path. You 
can add and delete libraries or edit them, using the buttons on the 
side. To restore the defaults, click the Verilog Defaults or VHDL Defaults 
button, according to the language you are using. 

– If you have test bench files, choose the category Test Bench Files in the 
dialog box to specify them. Use the buttons on the side to add, delete, 
or edit the files. 

5. Specify the top-level module and run directory.

– Choose the category Top Level Module in the dialog box to specify the 
top-level module or modules for the simulation. 

– If necessary, choose the category Run Directory near the bottom of the 
dialog box to edit the default run directory listed in the field. The 
default location is in the implementation results directory. 

6. Generate the VCS script.

– To view the script before generating it, click the View Script button on 
the top right of the dialog box. A window opens with the specified VCS 
commands and options. 

– To generate the VCS script, click Save As, or run VCS by clicking the 
Run button in the upper right. The tool generates the XML script in 
the directory specified. 

7. To run VCS from the synthesis tool interface, do the following:

Add

Edit

Delete



LO

Chapter 16: Running Post-Synthesis Operations Simulating with the VCS Tool

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
558 Synopsys Confidential Information January 2020

– If you do not already have it open, open the Run VCS Simulator dialog 
box by clicking the  icon. 

– To use an existing script, click the Load From button on the lower right 
and select the script in the dialog box that opens. Then click Run in 
the Run VCS Simulator dialog box. 

– If you do not have an existing script, specify the VCS options, as 
described in the previous five steps. Click Run. 

The tool invokes VCS from the synthesis interface, using the commands 
in the script. 

Limitations
If Verilog include paths have been added to your project file, these paths are 
not automatically added to the VCS script. Add the Verilog include paths 
manually by using one of the following workarounds:

• From the Run VCS Simulator dialog box, add +incdir+includePath in the 
Verilog Compile options field.

• Modify the VCS script file, adding the +incdir+includePath to all or any 
relevant vlogan commands.



Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 559

Index

Symbols
.adc file 368
.fdc file 115
.ini file

parallel jobs 507

A
adc constraints 368
adc file

creating 368
object names 372

adc file, using 366
Alt key

column editing 37
mapping 328

analysis design constraint file (.adc) 368
analysis design constraints

design scenarios 367
analysis design constraints (adc) 366
analysis design constraints (adc), using 

with fdc 369
Analyst view

traversing hierarchy 239
archive utility

using 100
archiving projects 100
area, optimizing 399
asterisk wildcard

Find command 257, 316
attributes

adding 88
adding in constraint files 178
adding in SCOPE 92
adding in Verilog 91
adding in VHDL 90
effects of retiming 406
for FSMs 389, 427

handling properties 96
syn_hier (on compile points) 461
VHDL package 90

auto constraints, using 373
AutoConstraint_design_name.fdc 376

B
B.E.S.T 332
backslash

escaping dot wildcard in Find 
command 257, 316

batch mode 19, 500
using find and expand 145

Behavior Extracting Synthesis 
Technology. See B.E.S.T

black boxes 378
adding constraints 382
adding constraints in SCOPE 385
adding constraints in Verilog 384
adding constraints in VHDL 383
instantiating in Verilog 378
instantiating in VHDL 380
passing VHDL boolean generics 48
passing VHDL integer generics 49
pin attributes 386
timing constraints 382

blocking-style license queuing 504
bookmarks

in source files 37
using in log files 188

bottom-up design flow
compile point advantages 434

browsers 303
buffering

controlling 417

C
c_diff command, examples 153



© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
560 Synopsys Confidential Information January 2020

c_intersect command, examples 153
c_list command

different from c_print 155
example 157
using 156

c_print command
different from c_list 155
using 156

c_symdiff command, examples 154
c_union command, examples 153
callback functions, customizing 

flow 514, 516
case sensitivity

Find command (Tcl) 139
clock constraints

edge-to-edge delay 166
false paths 177
setting 123, 166

clock domains
clock enables 173
setting up 174

clock enables
defining with multicycle path 

constraints 172
negative slack 172

clock groups
effect on false path constraints 137, 177
for global frequency clocks 168

clock trees 359
clocks

asymmetrical 169
defining 168
frequency 169
gated.  See  gated clocks
implicit false path 137, 177
limited resources 174
overriding false paths 177
start and end points for clock 

enables 173
CoE. See  continue on error 213
collections

adding objects 151
concatenating 151
constraints 150
copying 156
creating from common objects 151
creating from other collections 149

creating in SCOPE 148
creating in Tcl 150
crossprobing objects 149
definition 147
diffing 151
highlighting in HDL Analyst views 155
iterating through objects 157
listing objects 156
listing objects and properties 155
listing objects in a file 156
listing objects in columnar format 155
listing objects with c_list 155
special characters 154
Tcl window and SCOPE 

comparison 147
using Tcl expand command 143
using Tcl find command 142
viewing 154

column editing 37
commands

Tcl hooks 516
comments

source files 37
compile point types

hard 439
locked 441

compile points
advantages 434
analyzing results 461
automatic timing budgeting 446
child 437
constraint files 443
constraints for forward-annotation 452
constraints, internal 452
continue on error 213
creating constraint file 459
defined 434
defining in constraint files 456
feature summary 442
Identify flow 552
incremental synthesis 465
manual compile point flow 453
multiprocessing 464
nested 437
optimization 450
order of synthesis 450
parent 437
preserving with syn_hier 461
resynthesis 451



Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 561

setting constraints 460
setting type 458
syn_hier 461
synthesis process 449
synthesizing 452
types 439
using syn_allowed_resources 

attribute 461
compile-point synthesis

interface logic models 446
compile-point synthesis flow

defining compile points 456
setting constraints 459

compiler directives 34
using 34

compiler directives (Verilog)
specifying 85

compilers 21
constants

extracting from VHDL source code 87
constraint files 52

applying to a collection 150
black box 382
compile point 443, 452
creating in a text editor 178
defining clocks 161
defining register delays 162
editing 129
effects of retiming 406
opening 115
options 80
setting for compile points 460
types of 163
when to use 52

constraints
specifying through points 133
using FDC template command 118

context
for object in filtered view 335

context help editor 34
SystemVerilog 34

continue on error 79, 213
compile points 213

create_fdc_template
using 118

critical paths
delay 360

flat view 360
hierarchical view 360
negative slack on clock enables 172
slack time 360
using -route 401
viewing 359

crossprobing 324
and retiming 406
collection objects 149
filtering text objects for 329
from FSM viewer 331
from log file 188
from message viewer 202
from text files 327
Hierarchy Browser 258, 324
importance of encoding style 331
new HDL Analyst views 259
paths 328
RTL view 325
schematic views 258
Technology view 325
Text Editor view 325
text file example 328
to FSM Viewer 331
to place-and-route file 300
Verilog file 325
VHDL file 325
within RTL and Technology views 324

current level
expanding logic from net 339
expanding logic from pin 339
searching current level and below 313

custom folders
creating 65
hierarchy management 65

customization
callback functions 514, 516

D
data block 473
data key 473
default enum encoding 87
define_attribute 95
define_clock constraint 161
define_false_paths constraint 162
define_input_delay constraint 162



© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
562 Synopsys Confidential Information January 2020

define_multicycle_path constraint 162
define_output_delay constraint 162
define_reg_input_delay constraint 162
define_reg_output_delay constraint 162
design flow

customizing with callback 
functions 514, 516

design guidelines 398
design hierarchy

viewing 266, 333
design size

amount displayed on a sheet 300
design views

moving between views 235, 299
DesignWare

importing cores 491
device options

See also implementation options
directives

adding 88
adding in Verilog 91
adding in VHDL 90
black box 383, 384
for FSMs 389
handling properties 96
specifying for Verilog compiler 85
syn_state_machine 425
syn_tco 384

adding black box constraints 383
syn_tpd 384

adding black box constraints 383
syn_tsu 384

adding black box constraints 383
directory

examples delivered with synthesis 
tool 23

dissolving instances for flattening 
hierarchy 346

dot wildcard
Find command 257, 316

drivers
preserving duplicates with 

syn_keep 409
selecting 342

E
ECC RAM 536
Editing window 36
editor

compiler directives 34
editor view

context help 34
emacs text editor 41
encoding

state machine
FSM Explorer 426

encoding styles
and crossprobing 331
default VHDL 87
FSM Compiler 424

encryption
asymmetric 473
methodologies 471
symmetric 473
synenc 491

encryption algorithms 473
encryptip output constraints 490
encryptip output method

effect on output netlists 490
encryptIP script 487

encrypting IP 487
output methods 488

encryptP1735.pl script 482
environment variables

SYN_TCL_HOOKS 514
error codes 501
error correction code. See  ECC 536
errors

continuing 79, 213
definition 36
filtering 201
sorting 201
source files 35
Verilog 35
VHDL 35

examples delivered with synthesis tool, 
directory 23

expand
batch mode 145



Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 563

Expand command
connection logic 342
pin and net logic 273, 338
using 339

expand command (Tcl). See Tcl expand 
command

Expand Inwards command
using 273, 339

Expand Paths command
different from Isolate Paths 342

Expand to Register/Port command
using 339

expanding
connections 342
pin and net logic 273, 338

Explorer, FSM
overview 426

F
false paths

defining between clocks 177
I/O paths 137, 177
impact of clock group 

assignments 137, 177
overriding 177
ports 137, 176
registers 137, 176
setting constraints 137, 176

fanouts
buffering vs replication 417
hard limits 416
soft global limit 415
soft module-level limit 416
using syn_keep for replication 410
using syn_maxfan 415

fault tolerance. See  high reliability
files

.fdc 115

.pfl file 203

.prj 25
filtered messages 205
fsm.info 425
log 185
message filter (pfl) 203
project (.prj) 25
rom.info 306
searching 96

statemachine.info 352
synhooks.tcl 514
Tcl 506

See also Tcl commands
Tcl batch script 501

Filter Schematic command, 
using 271, 336

Filter Schematic icon, using 271, 337
filtering 271, 336

advantages over flattening 271, 336
using to restrict search 313

Find command
313

browsing with 313
hierarchical search 314
long names 313
message viewer 201
reading long names 316
search scope, effect of 317
search scope, setting 314
searching the mapped database 315
searching the output netlist 321
setting limit for results 315
using in RTL and Technology views 313
using wildcards 257, 316
wildcard examples 318

find command
nuances and differences 320

find command (Tcl)
See  Tcl find command

Flatten Current Schematic command
transparent instances 344
using 344

Flatten Schematic command
using 344

flattening 283, 343
See also dissolving
compared to filtering 271, 336
dissolving instances 283, 346
hidden instances 345
transparent instances 344
using syn_hier 413
using syn_netlist_hierarchy 413

foreach command 157
foreach_in_collection loops, 

converting 157
forward-annotation



© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
564 Synopsys Confidential Information January 2020

compile point constraints 452
FPGA Design Constraints Editor

using TCL View 126
frequency

clocks 169
defining for non-clock signals 170
internal clocks 170
setting global 79

from constraints 133
FSM Compiler

advantages 422
enabling 423

FSM encoding
user-defined 390
using syn_enum_encoding 390

FSM Explorer 421
overview 426
running 427
when to use 421

FSM view
crossprobing from source file 327

FSM Viewer 348
crossprobing 331

fsm.info file 425
FSMs

See also FSM Compiler, FSM Explorer
attributes and directives 389
defining in Verilog 387
defining in VHDL 388
definition 387
optimizing with FSM Compiler 421
properties 352
safe. See safe FSMs
state encodings 351
transition diagram 349
viewing 349

G
gated clocks

defining 174
generics

extracting from VHDL source code 87
passing boolean 48
passing integer 49

global optimization options 78

H
HDL Analyst

See also RTL view, Technology view
critical paths 359
crossprobing 258, 324
filtering schematics 271, 336
Push/Pop mode 306, 309
traversing hierarchy with mouse 

strokes 304
traversing hierarchy with Push/Pop 

mode 243, 306
using 266, 332

HDL Analyst tool
deselecting objects 230, 297
selecting/deselecting objects 229, 296

HDL Analyst views
highlighting collections 155

HDL views, annotating timing 
information 357

hidden instances
consequences of saving 334
flattening 345
restricting search by hiding 314
specifying 334
status in other views 334

hierarchical design
expanding logic from nets 339
expanding logic from pins 273, 338

hierarchical instances
dissolving 283, 346
hiding. See  hidden instances, Hide 

Instances command
multiple sheets for internal logic 335
pin name display 337
viewing internal logic 269, 334

hierarchical objects
pushing into with mouse 

stroke 243, 305
traversing with Push/Pop 

mode 243, 306
hierarchical search 313
hierarchy

flattening 283, 344
traversing 239, 303

Hierarchy Browser 247
hierarchy browser

clock trees 359



Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 565

controlling display 300
crossprobing from 258, 324
defined 239, 303
finding objects 247, 311
traversing hierarchy 303

hierarchy management (custom 
folders) 65

high reliability
ECC RAM 536
safe FSMs 531
using safe FSM 531

high reliability design 527
hyper source

example 495
for IPs 493
for prototyping 493
IP design hierarchy 493
threading signals 494

I
I/O insertion 420
I/O pads

specifying I/O standards 126
I/O paths

false path constraint 137, 177
I/O standards 126
I/Os

auto-constraining 374
constraining 125, 175
Verilog black boxes 378
VHDL black boxes 380

Identify
compile points 552

IEEE 1735
encrypting multiple files 485

implementation options 75
device 75
global frequency 79
global optimization 78
part selection 75
specifying results 81

implementations
copying 73
deleting 73
multiple. See multiple 

implementations.

overwriting 73
renaming 73

incremental synthesis
compile points 465

input constraints, setting 124, 175
Instance Hierarchy tab 249
instances

preserving with syn_noprune 409
properties 222, 291
properties of pins 292

integrated P&R 543
custom shell script 543

ILM See interface logic models
interface logic models 446
interface timing 446
IP

encryption-decryption flow 471
re-encryption 476

IP design hierarchy
hyper source 493

IP encryption
IEEE 1735 482

IP encryption flow overview 470
IP encryption scheme 476
IP vendors

directory structure for package 478
encrypting IP 476
package file list for encrypted IP 

flow 478
packaging for evaluation 477
supplying vendor information 479

IPs
encrypting 476
encryption flow 470
using hyper source for debug 493

Isolate Paths command
different from Expand Paths 342, 343

iterations
reducing with compile on error 213

J
job management

up-to-date checking 180



© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
566 Synopsys Confidential Information January 2020

K
key assignments

customizing 515
key block 473
keywords

completing words in Text Editor 37

L
library extensions 42
license

specifying in batch mode 19
license queuing 502

blocking-style 504
license release (synthesis)

after P&R 543
license_release 543
log file

remote access 191
log files

checking FSM descriptions 428
checking information 185
retiming report 405
setting default display 185
state machine descriptions 424
viewing 185

logic
expanding between objects 342
expanding from net 275, 339
expanding from pin 273, 338

logic preservation
syn_hier 413
syn_keep for nets 409
syn_keep for registers 409
syn_noprune 409
syn_preserve 409

logical folders
creating 65

M
manual compile points

flow 453
max_parallel_jobs variable 508
maximum parallel jobs 507, 524

MaxParallelJobs variable 507
memory usage

maximizing with HDL Analyst 348
Message viewer

filtering messages 202
keyboard shortcuts 201
saving filter expressions 203
searching 201
using 200
using the F3 key to search forward 201
using the Shift-F3 key to search 

backward 201
messagefilter.txt file 210
messages

demoting 207
filtering 202
promoting 207
saving filter information from command 

line 204
saving filter information from GUI 203
severity levels 208
suppressing 207
writing messages to file 205

mitigation technology 527
mixed designs

troubleshooting 48
mixed language files 45
mouse strokes

pushing/popping objects 242, 304
multicycle constraints

clock enables 172
multicycle paths

setting constraints 123, 167
multiple implementations 72

running from project 73
multiprocessing

compile points 464
maximum parallel jobs 507, 524

multisheet schematics 297
for nested internal logic 335
searching just one sheet 313
transparent instances 298

N
name spaces

output netlist 321



Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 567

technology view 315
navigating among design views 235, 299
nets

expanding logic from 275, 339
preserving for probing with 

syn_probe 409
preserving with syn_keep 409
properties 222, 291
selecting drivers 342

new Hierarchy Browser 248
New property 294
notes

filtering 201
sorting 201

notes, definition 36

O
objects

finding on current sheet 313
flagging by property 292
selecting/deselecting 296

open_design
with find and expand 146

optimization
for area 399
for timing 400
logic preservation. See  logic 

preservation.
preserving hierarchy 413
preserving objects 409
state machines 423
tips for 398

OR 135
orig_inst_of property 295
output constraints, setting 124, 175
output files

specifying 81
output netlists

finding objects 321
overutilization 197

P
package library, adding 58
pad types

industry standards 126
parallel jobs 507
parameter passing 49

boolean generics 48
parameters

extracting from Verilog source code 84
part selection options 75
path constraints

false paths 137, 176
pathnames

using wildcards for long names 
(Find) 316

paths
crossprobing 328
tracing between objects 342
tracing from net 275, 339
tracing from pin 273, 338

pattern matching
Find command (Tcl) 139

pattern searching 96
PDF

cutting from 37
pin names, displaying 337
pins

expanding logic from 273, 338
properties 222, 291

ports
false path constraint 137, 176
properties 222, 291

POS interface
using 133

post-synthesis constraints with adc 367
preferences

crossprobing to place-and-route 
file 300

displaying Hierarchy Browser 300
displaying labels 301
RTL and Technology views 300
sheet size (UI) 300

primitives
pin name display 337
pushing into with mouse 

stroke 243, 305
viewing internal hierarchy 333

private key 473



© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
568 Synopsys Confidential Information January 2020

prj file 25
probes

adding in source code 429
definition 429
retiming 407

Product of Sums interface. See POS 
interface

project command
archiving projects 100
copying projects 106
unarchiving projects 103

project file hierarchy 65
project files

adding files 60
adding source files 56
batch mode 500
creating 56
definition 56
deleting files from 60
opening 59
replacing files in 60
updating include paths 64
VHDL library 58

project files (.prj) 25
project status report

remote access 191
projects

archiving 100
copying 106
restoring archives 103

properties
displaying with tooltip 222, 291
finding objects with Tcl find -filter 140
orig_inst_of 295
reporting for collections 155
viewing for individual objects 222, 292

prototyping
using hyper source threading 493

public key 473
Push/Pop mode

HDL Analyst 304
keyboard shortcut 306
using 242, 243, 304, 306

Q
question mark wildcard, Find 

command 257, 316

R
radiation effects.  See high reliability
RAMs

ECC 536
initializing 391

register balancing. See retiming
register constraints, setting 166
registers

false path constraint 137, 176
remote access

status reports 191
replication

controlling 417
resource sharing

optimization technique 399
overriding option with syn_sharing 420
results example 420
using 419

resource usage 196
resource utilization. See  resource usage
resynthesis

compile points 451
forcing with Resynthesize All 451
forcing with Update Compile Point 

Timing Data 451
retiming

effect on attributes and constraints 406
example 404
overview 402
probes 407
report 405
simulation behavior 407

return codes 501
rom.info file 306
ROMs

viewing data table 306
RTL view

See also HDL Analyst
analyzing clock trees 359
crossprobing collection objects 149



Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 569

crossprobing description 324
crossprobing from 325
crossprobing from Text Editor 327
defined 290
description 289
filtering 271, 336
finding objects with Find 313
finding objects with Hierarchy 

Browser 247, 311
flattening hierarchy 283, 344
highlighting collections 155
opening 219, 291
selecting/deselecting objects 296
setting preferences 300
state machine implementation 424
traversing hierarchy 303

running P&R
license release (synthesis) 543

runtime
continue on error 213

S
safe case 532
safe FSM 531

using safe case 532
Schematic Options 249
schematics

multisheet. See multisheet schematics
page size 300
selecting/deselecting objects 229, 296

SCOPE
adding attributes 92
adding probe insertion attribute 430
case sensitivity for Verilog designs 139
collections compared to Tcl script 

window 147
creating compile-point constraint 

file 459
defining compile points 455
drag and drop 130
editing operations 131
I/O pad type 126
multicycle paths 136
setting compile point constraints 460
setting constraints (FDC) 114
state machine attributes 389

search

browsing objects with the Find 
command 313

browsing with the Hierarchy 
Browser 247, 311

finding objects on current sheet 313
setting limit for results 315
setting scope 314
using the Find command in HDL 

Analyst views 313
search in Analyst

browsing objects with the Find 
command 253

See also search
set command

collections 156
set_option command 77
sheet connectors

navigating with 299
sheet size

setting number of objects 300
shematic view

setting preferences (New Anallyst) 236
Shift-F3 key

Message Viewer 201
Show Cell Interior option 333
Show Context command

different from Expand 335
using 335

signals
threading with hyper source. See hyper 

source
simulation, effect of retiming 407
slack 362

setting margins 359
slack time display 356
Slow property 293
source code

commenting with synthesis on/off 88
crossprobing from Tcl window 330
defining FSMs 387
fixing errors 38
opening automatically to 

crossprobe 326
optimizing 398
when to use for constraints 52

source files



© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
570 Synopsys Confidential Information January 2020

See also  Verilog, VHDL.
adding comments 37
adding files 56
checking 35
column editing 37
copying examples from PDF 37
creating 32
crossprobing 327
editing 37
editing operations 37
mixed language 45
specifying default encoding style 87
specifying top level file for mixed 

language projects 46
specifying top-level file 87
state machine attributes 389
using bookmarks 37

special characters
Tcl collections 154

STA 363
STA, generating custom timing 

reports 363
STA, using analysis design constraints 

(adc) 366
stand-alone timing analyst. See STA
starting Synplify 19
starting Synplify Premier 19
starting Synplify Premier DP 19
starting Synplify Pro 19
state machines

See also FSM Compiler, FSM Explorer, 
FSM viewer, FSMs.

attributes 389
descriptions in log file 424
encoding

FSM Explorer 426
implementation 424
optimization 423
parameter and ’define comparison 388

statemachine.info file 352
Structural Verilog flow 50
syn_allow_retiming

compile points 461
using for retiming 403

syn_allowed_resources
compile points 461

syn_encoding attribute 389

syn_enum_encoding directive
FSM encoding 390

syn_hier attribute
controlling flattening 413
preserving hierarchy 413
using with compile points 461

syn_isclock
black box clock pins 386

syn_keep
replicating redundant logic 410

syn_keep attribute
preserving nets 409
preserving shared registers 409

syn_keep directive
effect on buffering 417

syn_macro
specifying encrypted IP as white 

box 489
syn_maxfan attribute

setting fanout limits 415
syn_noprune directive

preserving instances 409
syn_preserve

effect on buffering 417
preserving power-on for retiming 403

syn_preserve directive
preserving FSMs from optimization 389
preserving logic 409

syn_probe attribute 429
inserting probes 429
preserving nets 409

syn_reference_clock
defining non-clock signal 

frequencies 170
syn_reference_clock constraint 161
syn_replicate attribute

using buffering 417
syn_sharing directive

overriding default 420
syn_state_machine directive

using with value=0 425
SYN_TCL_HOOKS environment 

variable 514
SYN_TCL_HOOKS variable 516
syn_tco attribute



Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 571

adding in SCOPE 385
syn_tco directive 384

adding black box constraints 383
syn_tpd attribute

adding in SCOPE 385
syn_tpd directive 384

adding black box constraints 383
syn_tsu attribute

adding in SCOPE 385
syn_tsu directive 384

adding black box constraints 383
syn_useioff

preventing flops from moving during 
retiming 404

synenc encryption 491
synhooks

automating message filtering 205
synhooks.tcl file 514, 516
Synopsys

FPGA product family 16
synplify command-line command 19
synplify premier command-line 

command 19
synplify premier dp command-line 

command 19
Synplify Premier synthesis tool

overview 16
Synplify Pro synthesis tool

overview 16
synplify_pro command-line 

command 19
SYNPLIFY_REMOTE_REPORT_LOCATIO

N 192
syntax

checking source files 35
syntax check 35
synthesis check 35
synthesis software

flow 21
synthesis_on/off

using 88
SystemVerilog keywords

context help 34

T
Tcl

max_parallel_jobs variable 508
tcl callbacks

customizing key assignments 515
Tcl commands

batch script 501
entering in SCOPE 167
running 506
syntax for Tcl hooks 516

Tcl expand
using 138

Tcl expand command
crossprobing objects 149
usage tips 143
using in SCOPE 148

Tcl files 506
creating 508
for bottom-up synthesis 513
guidelines 53
naming conventions 53
recording from commands 507
synhooks.tcl 514
using variables 510
wildcards 54

Tcl find
batch mode 145
filtering results by property 140
search patterns 138
using 138

Tcl find command
annotating properties 140
case sensitivity 139
crossprobing objects 149
database differences 148
pattern matching 139
Tcl window vs SCOPE 148
usage tips 142
useful -filter examples 142
using in SCOPE 148

Tcl Script window
crossprobing 330
message viewer 200

Tcl script window
collections compared to SCOPE 147

Tcl scripts
See Tcl files.



© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
572 Synopsys Confidential Information January 2020

TCL View 126
-tclcmd 500
Technology view

See also HDL Analyst
critical paths 359
crossprobing 324, 325
crossprobing collection objects 149
crossprobing from source file 327
filtering 271, 336
finding objects 315
finding objects with Find 313
finding objects with Hierarchy 

Browser 247, 311
flattening hierarchy 283, 344
general description 289
highlighting collections 155
opening 291
selecting/deselecting objects 296
setting preferences 300
state machine implementation in 424
traversing hierarchy 303

text editor
built-in 36
external 41
using 36

Text Editor view
crossprobing 325

Text Editor window
colors 39
crossprobing 39
fonts 39

text files
crossprobing 327

The Synopsys FPGA Product Family 16
through constraints 133

AND lists 135
OR lists 133

time stamp, checking on files 61
timing analysis 356
timing analysis using STA 363
timing budgeting

compile points 446
timing constraints 161
timing exceptions, adding constraints 

after synthesis 367
timing exceptions, modifying with 

adc 367

timing failures 362
timing information commands 356
timing information in HDL views 357
timing information, critical paths 360
timing optimization 400
timing reports

specifying format options 82
timing reports, custom 363
tips

memory usage 348
to constraints

specifying 133
tool tags

creating 519
definition 519

top level
specifying 86

top-down design flow
compile point advantages 434

transparent instances
flattening 344
lower-level logic on multiple sheets 298

U
up-to-date checking 180

copying job logs to log file 182
limitations 184

using 50

V
Verilog

‘define statements 85
adding attributes and directives 91
adding probes 429
black boxes 378
black boxes, instantiating 378
case sensitivity for Tcl Find 

command 139
checking source files 35
choosing a compiler 84
creating source files 32
crossprobing from HDL Analyst 

view 325
defining FSMs 387
editing operations 37



Synplify Pro for Microsemi Edition User Guide © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 573

extracting parameters 84
include paths, updating 64
initializing RAMs 391
mixed language files 45
specifying compiler directives 85
specifying top-level module 86
using library extensions 42

Verilog 2001
setting global option from the Project view 84
setting option per file 84

Verilog library files
using library extensions 42

Verilog model (.vmd) 446
VHDL

adding attributes and directives 90
adding probes 429
black boxes 380
black boxes, instantiating 380
case sensitivity for Tcl Find command 139
checking source file 35
constants 87
creating source files 32
crossprobing from HDL Analyst view 325
defining FSMs 388
editing operations 37
extracting generics 87
global signals in mixed designs 48
initializing RAMs with variable declarations 394
initializing with signal declarations 392
mixed language files 45
specifying top-level entity 86

VHDL files
adding library 58
adding third-party package library 58

vi text editor 41
virtual clock, setting 166

W
warning messages

definition 36
warnings

feedback muxes 401
filtering 201
sorting 201

Watch window 194
moving 195, 200
multiple implementations 73



LO

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition User Guide
574 Synopsys Confidential Information January 2020

resizing 195, 200
wildcards

effect of search scope 317
Find command (Tcl) 139
message filter 203

wildcards (Find)
examples 318
how they work 257, 316

WNID_UG_PNR_SCRIPTS 542


	Synplify Pro for Microsemi Edition User Guide
	Copyright Notice and Proprietary Information
	Free and Open-Source Licensing Notices
	Destination Control Statement
	Disclaimer
	Trademarks
	Third-Party Links

	Introduction
	Synopsys FPGA and Prototyping Products
	FPGA Implementation Tools
	Synphony Model Compiler
	Rapid Prototyping

	Starting the Synthesis Tool
	Logic Synthesis Overview
	Synthesizing Your Design

	User Interface Overview

	FPGA Synthesis Design Flows
	Logic Synthesis Design Flow

	Preparing the Input
	Setting Up HDL Source Files
	Creating HDL Source Files
	Using the Context Help Editor
	Checking HDL Source Files
	Editing HDL Source Files with the Built-in Text Editor
	Setting Editing Window Preferences
	Using an External Text Editor
	Using Library Extensions for Verilog Library Files

	Using Mixed Language Source Files
	Using the Structural Verilog Flow
	Structural Verilog Limitations

	Working with Constraint Files
	When to Use Constraint Files over Source Code
	Tcl Syntax Guidelines for Constraint Files
	Checking Constraint Files


	Setting Up a Logic Synthesis Project
	Setting Up Project Files
	Creating a Project File
	Opening an Existing Project File
	Making Changes to a Project
	Setting Project View Display Preferences
	Updating Verilog Include Paths in Older Project Files

	Managing Project File Hierarchy
	Creating Custom Folders
	Manipulating Custom Project Folders
	Manipulating Custom Files

	Setting Up Implementations
	Working with Multiple Implementations

	Setting Logic Synthesis Implementation Options
	Setting Device Options
	Setting Optimization Options
	Specifying Global Frequency and Constraint Files
	Specifying Result Options
	Specifying Timing Report Output
	Setting Verilog and VHDL Options

	Specifying Attributes and Directives
	Specifying Attributes and Directives in VHDL
	Specifying Attributes and Directives in Verilog
	Specifying Attributes Using the SCOPE Editor
	Specifying Attributes in the Constraints File
	Handling Properties with Attributes or Directives

	Searching Files
	Identifying the Files to Search
	Filtering the Files to Search
	Initiating the Search
	Search Results

	Archiving Files and Projects
	Archive a Project
	Un-Archive a Project
	Copy a Project
	Support for Hierarchical Include Paths


	Specifying Constraints
	Using the SCOPE Editor
	Creating Constraints in the SCOPE Editor
	Creating Constraints With the FDC Template Command

	Specifying SCOPE Constraints
	Entering and Editing SCOPE Constraints
	Setting Clock and Path Constraints
	Defining Input and Output Constraints
	Specifying Standard I/O Pad Types
	Using the TCL View of SCOPE GUI
	Guidelines for Entering and Editing Constraints

	Specifying Timing Exceptions
	Defining From/To/Through Points for Timing Exceptions
	Defining Multi-cycle Paths
	Defining False Paths

	Finding Objects with Tcl find and expand
	Specifying Search Patterns for Tcl find
	Refining Tcl Find Results with -filter
	Using the Tcl Find Command to Define Collections
	Using the Tcl expand Command to Define Collections
	Checking Tcl find and expand Results
	Using Tcl find and expand in Batch Mode

	Using Collections
	Comparison of Methods for Defining Collections
	Creating and Using SCOPE Collections
	Creating Collections Using Tcl Commands
	Viewing and Manipulating Collections with Tcl Commands

	Converting SDC to FDC
	Using the SCOPE Editor (Legacy)
	Entering and Editing SCOPE Constraints (Legacy)
	Specifying SCOPE Timing Constraints (Legacy)
	Entering Default Constraints
	Setting Clock and Path Constraints
	Defining Clocks
	Defining Input and Output Constraints (Legacy)
	Defining False Paths (Legacy)
	Using a Text Editor for Constraint Files (Legacy)


	Synthesizing and Analyzing the Results
	Synthesizing Your Design
	Running Logic Synthesis
	Using Up-to-date Checking for Job Management

	Checking Log File Results
	Viewing and Working with the Log File
	Accessing Specific Reports Quickly
	Accessing Results Remotely
	Analyzing Results Using the Log File Reports
	Using the Watch Window
	Checking Resource Usage
	Querying Metrics for a Design

	Handling Messages
	Checking Results in the Message Viewer
	Filtering Messages in the Message Viewer
	Filtering Messages from the Command Line
	Automating Message Filtering with a Tcl Script
	Log File Message Controls
	Working with Downgradable Errors and Critical Warnings

	Using Continue on Error
	Using Continue on Error for Compile Point Synthesis


	Analyzing with HDL Analyst
	Working in the Schematic
	Opening the Views
	Cloning Schematics
	Viewing Object Properties
	Viewing Objects with Constant Values
	Viewing Objects in a Source File
	Selecting Objects in the Schematic
	Grouping Objects in the Schematic
	Moving Between Views in a Schematic Window
	Setting Schematic Preferences

	Exploring Design Hierarchy
	Traversing Design Hierarchy with the Hierarchy Browser
	Exploring Object Hierarchy with Push/Pop Commands

	Finding Objects
	Browsing to Find Objects in HDL Analyst Views
	Using Wildcards with the Find Command

	Crossprobing
	Crossprobing within a View
	Crossprobing from an HDL Analyst View
	Crossprobing to the Source Code
	Crossprobing from the Text Editor Window
	Crossprobing from the Log File

	Analyzing With the HDL Analyst Tool
	Viewing Design Hierarchy and Context
	Filtering Schematics
	Expanding Pin and Net Logic
	Dissolving and Partial Dissolving of Buses and Pins
	Dissolving of Ports
	Flattening Schematic Hierarchy
	Using the FSM Viewer

	Working in the Standard Schematic
	Differentiating Between the HDL Analyst Views
	Opening the Views
	Viewing Object Properties
	Selecting Objects in the RTL/Technology Views
	Working with Multisheet Schematics
	Moving Between Views in a Schematic Window
	Setting Schematic Preferences
	Managing Windows

	Exploring Design Hierarchy (Standard)
	Traversing Design Hierarchy with the Hierarchy Browser
	Exploring Object Hierarchy by Pushing/Popping
	Exploring Object Hierarchy of Transparent Instances

	Finding Objects (Standard)
	Browsing to Find Objects in HDL Analyst Views
	Using Find for Hierarchical and Restricted Searches
	Using Wildcards with the Find Command
	Combining Find with Filtering to Refine Searches
	Using Find to Search the Output Netlist

	Crossprobing (Standard)
	Crossprobing within an RTL/Technology View
	Crossprobing from the RTL/Technology View
	Crossprobing from the Text Editor Window
	Crossprobing from the Tcl Script Window
	Crossprobing from the FSM Viewer

	Analyzing With the Standard HDL Analyst Tool
	Viewing Design Hierarchy and Context
	Filtering Schematics
	Expanding Pin and Net Logic
	Expanding and Viewing Connections
	Flattening Schematic Hierarchy
	Minimizing Memory Usage While Analyzing Designs

	Using the FSM Viewer (Standard)

	Analyzing Timing
	Analyzing Timing in Schematic Views
	Viewing Timing Information
	Annotating Timing Information in the Schematic Views
	Analyzing Clock Trees in the RTL View
	Viewing Critical Paths
	Handling Negative Slack

	Generating Custom Timing Reports with STA
	Using Analysis Design Constraints
	Scenarios for Using Analysis Design Constraints
	Creating an ADC File
	Using Object Names Correctly in the adc File

	Using Auto Constraints
	Results of Auto Constraints


	Inferring High-Level Objects
	Defining Black Boxes for Synthesis
	Instantiating Black Boxes and I/Os in Verilog
	Instantiating Black Boxes and I/Os in VHDL
	Adding Black Box Timing Constraints
	Adding Other Black Box Attributes

	Defining State Machines for Synthesis
	Defining State Machines in Verilog
	Defining State Machines in VHDL
	Specifying FSMs with Attributes and Directives

	Initializing RAMs
	Initializing RAMs in Verilog
	Initializing RAMs in VHDL


	Specifying Design-Level Optimizations
	Tips for Optimization
	General Optimization Tips
	Optimizing for Area
	Optimizing for Timing

	Retiming
	Controlling Retiming
	Retiming Example
	Retiming Report
	How Retiming Works

	Preserving Objects from Being Optimized Away
	Using syn_keep for Preservation or Replication
	Controlling Hierarchy Flattening
	Preserving Hierarchy

	Optimizing Fanout
	Setting Fanout Limits
	Controlling Buffering and Replication

	Sharing Resources
	Inserting I/Os
	Optimizing State Machines
	Deciding when to Optimize State Machines
	Running the FSM Compiler
	Running the FSM Explorer

	Inserting Probes
	Specifying Probes in the Source Code
	Adding Probe Attributes Interactively


	Working with Compile Points
	Compile Point Basics
	Advantages of Compile Point Design
	Manual Compile Points
	Nested Compile Points
	Compile Point Types

	Compile Point Synthesis Basics
	Compile Point Constraint Files
	Interface Logic Models
	Interface Timing for Compile Points
	Compile Point Synthesis
	Incremental Compile Point Synthesis
	Forward-annotation of Compile Point Timing Constraints

	Synthesizing Compile Points
	The Manual Compile Point Flow
	Creating a Top-Level Constraints File for Compile Points
	Defining Manual Compile Points
	Setting Constraints at the Compile Point Level
	Analyzing Compile Point Results

	Using Compile Points with Other Features
	Combining Compile Points with Multiprocessing

	Resynthesizing Incrementally
	Resynthesizing Compile Points Incrementally


	Working with IP Input
	The Synopsys FPGA IP Encryption Flow
	Overview of the Synopsys FPGA IP Encryption Flow
	Encryption and Decryption
	Preparing and Encrypting IP
	Preparing the IP Package

	Working with IEEE 1735 Encryption
	Encrypting IP Using IEEE 1735-2014
	Including IEEE 1735-Encrypted IP in a Synthesis Flow

	Encrypting IP Using OpenIP (encryptIP)
	Encrypting IP with the OpenIP Scheme

	Working with Synenc-encrypted IP
	Using Hyper Source
	Using Hyper Source for Prototyping
	Using Hyper Source for IP Designs
	Threading Signals Through the Design Hierarchy of an IP


	Optimizing Processes for Productivity
	Using Batch Mode
	Running Batch Mode on a Project File
	Running Batch Mode with a Tcl Script
	Queuing Licenses

	Working with Tcl Scripts and Commands
	Using Tcl Commands and Scripts
	Generating a Job Script
	Setting Number of Parallel Jobs
	Creating a Tcl Synthesis Script
	Using Tcl Variables to Try Different Clock Frequencies
	Using Tcl Variables to Try Several Target Technologies
	Running Bottom-up Synthesis with a Script

	Automating Flows with synhooks.tcl
	synhooks File Syntax

	Invoking Third-Party Vendor Tools
	Configuring Tool Tags
	Invoking a Third-Party Tool


	Improving Runtime
	Multiprocessing With Compile Points
	Setting Maximum Parallel Jobs
	Specifying Licenses for Multiprocessing


	Handling High-Reliability Designs
	Working with Microsemi Radhard Designs
	Specifying syn_radhardlevel in the Source Code

	Specifying Safe FSMs
	Implementing Safe Encoding FSMs
	Implementing Safe Case FSMs
	Specifying ECC for RAMs

	Error Monitoring for High Reliability Features
	Error Monitoring Procedure
	Error Monitoring Examples


	Running Post-Synthesis Operations
	Running P&R Automatically after Synthesis
	Integrating Synthesis and Place and Route in One Run
	Running Place and Route Using a Custom Script
	Releasing the Synthesis License During Place and Route

	Working with the Identify Tools
	Launching from the Tool
	Handling Problems with Launching Identify
	Using the Identify Tool
	Using Compile Points with the Identify Tool

	Simulating with the VCS Tool

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W


