Verification Continuum™
Synopsys

Synplify Pro for Microsemi
Edition Reference

January 2020

SYNOPSYS

Synopsys Confidential Information

Copyright Notice and Proprietary Information

© 2020 Synopsys, Inc. All rights reserved. This software and documentation
contain confidential and proprietary information that is the property of
Synopsys, Inc. The software and documentation are furnished under a
license agreement and may be used or copied only in accordance with the
terms of the license agreement. No part of the software and documentation
may be reproduced, transmitted, or translated, in any form or by any means,
electronic, mechanical, manual, optical, or otherwise, without prior written
permission of Synopsys, Inc., or as expressly provided by the license agree-
ment.

Free and Open-Source Licensing Notices

If applicable, Free and Open-Source Software (FOSS) licensing notices are
available in the product installation.

Destination Control Statement

All technical data contained in this publication is subject to the export
control laws of the United States of America. Disclosure to nationals of other
countries contrary to United States law is prohibited. It is the reader’s
responsibility to determine the applicable regulations and to comply with
them.

Disclaimer

SYNOPSYS, INC., AND ITS LICENSORS MAKE NO WARRANTY OF ANY
KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
2 Synopsys Confidential Information January 2020

Trademarks

Synopsys and certain Synopsys product names are trademarks of Synopsys,
as set forth at

http:/ /www.synopsys.com/Company/Pages/Trademarks.aspx.

All other product or company names may be trademarks of their respective
owners.

Third-Party Links

Any links to third-party websites included in this document are for your
convenience only. Synopsys does not endorse and is not responsible for such
websites and their practices, including privacy practices, availability, and
content.

Synopsys, Inc.

690 East Middlefield Road
Mountain View, CA 94043
WWW.SyNnopsys.com

January 2020

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information

http://www.synopsys.com/Company/Pages/Trademarks.aspx

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
4 Synopsys Confidential Information January 2020

Contents

Chapter 1: Product Overview

Overview of the Synthesis Tools i, 12

Common Features i 12
Graphic User Interface e 14
Getting Help 16

Chapter 2: User Interface Overview

The Project View 20
Project Management Views 21
The Project Results View 23
Project Status Tab 23
Implementation Directory e 29
Process View e 30
Other Windows and Views i e 33
Dockable GUI Entities 34
Watch Window e 34
Tcl Script and Messages Windows, 38
Tel Script WIndowo 38
Message ViewWer 39
Output Windows (Tcl Script and Watch Windows) 43
Text Editor View e 43
Context Help Editor Window 47
Interactive Attribute Examples 48
Usingthe MoUSE e 50
Mouse Operation Terminology i 51
Using Mouse Strokes 51
Usingthe Mouse Buttons 53
Using the Mouse Wheel i 55
Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 5

Toolbars 56

Project Toolbar 56
Analyst Toolbar e 58
Text Editor Toolbar 60
FSMViewer Toolbar i 61
Tools Toolbar e 62
Keyboard Shortcuts 63
Buttonsand Options e 71
Chapter 3: HDL Analyst Tool
HDL Analyst Views and Commands i, 76
RT L VieW ..o 77
Technology View 78
Hierarchy Browser e 81
FSM Viewer Window i 83
Filtered and Unfiltered Schematic Views 84
Accessing HDL Analyst Commands 85
Schematic Objects and TheirDisplay 86
Object Information e 86
Sheet ConnecCtorso 87
Primitive and Hierarchical Instances 88
Transparent and Opaque Display of Hierarchical Instances a0
Hidden Hierarchical Instances 92
Schematic Display e 92
Basic Operations on SchematicObjects 96
Finding SchematicObjects 96
Selecting and Unselecting Schematic Objects 98
Crossprobing Objects e 99
Dragging and Dropping Objects i, 101
Multiple-sheet Schematics 102
Controlling the Amount of LogiconaSheet 102
Navigating Among Schematic Sheets 102
Multiple Sheets for Transparent Instance Details 104
Exploring Design Hierarchy 105
Pushing and Popping Hierarchical Levels 105
Navigating With a Hierarchy Browser 108
Looking Inside Hierarchical Instances 110
Filtering and Flattening Schematics 112
Commands That Result in Filtered Schematics 112
© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual

6 Synopsys Confidential Information January 2020

Combined Filtering Operations i 113

Returning to The Unfiltered Schematic 113
Commands That Flatten Schematics 114
Selective Flattening 115
Filtering Compared to Flattening 117
Timing Information and Critical Paths 118
Timing Reports e 118
Critical Paths and the Slack Margin Parameter 119
Examining Critical Path Schematics 120

Chapter 4: Constraint Guidelines

Constraint TYyPeSot 124
Constraint Files 125
Timing Constraints e 127
FDC Constraints 131
Methods for Creating Constraints 132
Constraint Translation 134

SAC2fdC CONVEISION\t 134
Constraint Checking 138
Database Object Search 141
Forward Annotation 142
Auto Constraints 142

Chapter 5: Input and Result Files

Input Files 144
HDL Sourc e Files. 146
Libraries 147
Open Verification Library (Verilog) 148
The Generic Technology Library 149
ASIC Library Files 149
Output Files 151
Log File . .. 155
Compiler Report 158
Premap Report 158
Mapper Report 158
Clock Buffering Report 158
Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 7

Net Buffering Report 159

Compile Point Information 159
Timing Section e 159
Resource Usage Report 160
Retiming Report 160
Timing Reports e 161
Timing Report Header 162
Performance Summary e 162
Clock Pre-map Reports e 164
Clock Relationships e 167
Interface Information 168
A synchronous Clock Report i 169
Constraint Checking Report e 171
Chapter 6: RAM and ROM Inference
Guidelines and Support for RAM Inference 180
Automatic RAM Inference 181
Block RAM .. 181
RAM Attributes 182
Block RAM Inference 185
Block RAM Examples e 191
Initial Values for RAMS e 225
Example 1: RAM Initialization 225
Example 2: Cross-Module Referencing for RAM Initialization 226
Initialization Data File 228
Forward Annotation of Initial Values 231
RAM Instantiation with SYNCORE 238
ROM INference e e e 239
Chapter 8: SynCore IP Tool
SYNCore FIFO Compiler e 244
Synchronous FIFO Overview i 244
Specifying FIFOs with SYNCore i 245
SYNCore FIFOWizard i 250
FIFO Read and Write Operations 259
FIFO POrts ... e 261
FIFO Parameters e e 263
FIFO Status Flags e 265
© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual

8 Synopsys Confidential Information January 2020

FIFO Programmable Flags i i 268

SYNCore RAM Compiler i 275
Specifying RAMs with SYNCore 275
SYNCore RAM Wizard e e 283
Single-Port Memories e 287
Dual-Port Memories 289
Read/Write Timing Sequencest 294

SYNCore Byte-Enable RAM Compiler 297
Functional Overview 297
Specifying Byte-Enable RAMs with SYNCore 298
SYNCore Byte-Enable RAM Wizard 305
Read/Write Timing Sequencest 308
Parameter List 311

SYNCore ROM Compiler i 313
Functional Overview 313
Specifying ROMs with SYNCore 315
SYNCore ROM Wizardo e e 320
Single-Port Read Operation i 325
Dual-Port Read Operation 326
Parameter List 326

SYNCore Adder/Subtractor Compiler 328
Functional Description 328
Specifying Adder/Subtractors with SYNCore 329
SYNCore Adder/Subtractor Wizard 337
AdAEr . 340
Subtractor 343
Dynamic Adder/Subtractor 346

SYNCore Counter Compiler e 352
Functional Overview 352
Specifying Counters with SYNCore 353
SYNCore Counter Wizard i 359
UP Counter Operation 362
Down Counter Operation 363
Dynamic Counter Operation 363

Appendix A: Designing with Microsemi

Basic Support for MicrosemiDesigns 368
Microsemi Device-specific Support 368
Customizing Netlist Formats 370
Targeting Outputto YourVendor, 370

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 9

Microsemi Features 370

Synthesis Constraints and Attributes for Microsemi 371
Microsemi Components 373
Macros and Black Boxes in Microsemi Designs 373
DSP Block Inference 374
Microsemi RAM Implementations 377
RAM Read Enable Extraction 377
Instantiating RAMs with SYNCORE 382
Output Files and Forward-annotation for Microsemi 383
Forward-annotating Constraints for Placement and Routing 383
Synthesis Reports 384
Specifying PinLocations 385
Specifying Locations for MicrosemiBus Ports 385
Specifying Macro and Register Placement 386
Optimizations for Microsemi Designs 387
The syn_maxfan Attribute in Microsemi Designs 387
Promote Global Buffer Threshold 388
O INSertion 388
Number of Critical Paths 389
Retiming 389
Update Compile Point Timing Data Option 389
Operating Condition Device Optionc..... 391
Radiation-tolerant Applications 393
Integration with Microsemi Toolsand Flows, 396
Compile Point Synthesis 396
Using Predefined Microsemi Black Boxes 397
Using Smartgen Macrost e 398
Microsemi Place-and-Route Tools 399
Microsemi Device Mapping Options i, 399
Microsemi Tcl set_option Command Options 401
Microsemi Attribute and Directive Summary 404
© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual

10 Synopsys Confidential Information January 2020

SYNOPSYS

Silicon to Software

Chapter 1

Product Overview

This document is part of a set that includes reference and procedural infor-
mation for the Synopsys® FPGA synthesis tool. The reference manual
provides additional details about the synthesis tool user interface,
commands, and features. Use this information to supplement the user guide
tasks, procedures, design flows, and result analysis. The following sections
include an introduction to the synthesis tool.

* Overview of the Synthesis Tools, on page 12
* Graphic User Interface, on page 14

* Getting Help, on page 16

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 11

Product Overview Overview of the Synthesis Tools

Overview of the Synthesis Tools

This section introduces the technology, main features, and user interface of
the FPGA synthesis tool. See the following for details:

Common Features, on page 12

Graphic User Interface, on page 14

Common Features

The Synopsys FPGA synthesis tool includes the following built-in features:

The HDL Analyst® RTL analysis and debugging environment, a graphical
tool for analysis and crossprobing. See RTL View, on page 77,
Technology View, on page 78, and Analyzing With the Standard

HDL Analyst Tool, on page 332 in the User Guide.

The Text Editor window, with a language-sensitive editor for writing and
editing HDL code. See Text Editor View, on page 43.

The SCOPE" (Synthesis Constraint Optimization Environment®) tool,
which provides a spreadsheet-like interface for managing timing
constraints and design attributes. See Using the SCOPE Editor, on
page 114.

FSM Compiler, a symbolic compiler that performs advanced finite state
machine (FSM) optimizations. See Running the FSM Compiler, on
page 423.

Integration with the Identify Debugger.

FSM Explorer, which tries different state machine optimizations before
picking the best implementation. See Running the FSM Explorer, on
page 426.

The FSM Viewer, for viewing state transitions in detail. See FSM Viewer
Window, on page 83.

The Tcl window, a command line interface for running TCL scripts. See
Tcl Script Window, on page 38.

The Timing Analyst window, which allows you to generate timing
schematics and reports for specified paths for point-to-point timing
analysis.

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual

12

Synopsys Confidential Information January 2020

Overview of the Synthesis Tools Product Overview

* Other special windows, or views, for analyzing your design, including
the Watch Window and Message Viewer (see The Project View, on
page 20).

* Certain optimizations available, like retiming.
* Advanced analysis features like crossprobing and probe point insertion.

* Place-and-Route implementation(s) to automatically run placement and
routing after synthesis. You can run place-and-route from within the
tool or in batch mode. This feature is supported for the latest Microsemi
technologies (see Running P&R Automatically after Synthesis, on
page 542 in the User Guide).

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 13

Product Overview Graphic User Interface

Graphic User Interface

The Synopsys FPGA family of products share a common graphical user interface
(GUI), in order to ensure a cohesive look and feel across the different products.

Implementation
Project view ; Status -
Menus PrOJ\ﬁc\tNTree Results view
\B.Hhiﬂmm It Fun Andiyss HOL Cpiions ‘Window Tach Mgt e Halp i

BEAER DML EARE B e TELSaaananans
Toolbars — < g prEp\ 26 w8 dom

ify Pro®,
" : 0emors, 0 43 notes

.‘ |—E F T pm,,\, nf Frojact Sioius | fmplemertation Darector | Process Vi |
* butarial I:unt_ el - Acted POASKRE | ATERN | POFFIOA 1 1| ==

Rl:m: ot
mm_'] i%unnl /'

] Vel
(% ChameFie | Em:rg.m

(.2t ol Dasls Wimetin |0 FsMCompler |1

|! Implemertatan Gpaons..,

8 4 PR Imolsmentation

Buttons L4, vem Log Job Nama | Staws

Fm-nrq-:m: ["W‘ | Gommpltz
=1 & Autn Const

L

[wmanme
& AU
| Gomplets |4
Mn&ﬁmr!cm““ 1

Rz
k32 Al
CﬂmN!UnENU
F5M Compuber
F5M Exlarer =
| Reszuroe Sharing El
|Retming

~[wrani

10 4l A

Tabs to
access
main views

Ef

\.‘5 TS
Tfoaten -

[ypamigs. 42 pots { o [t | gy e crpcammen |
LT T Iurstooon Juagloston _frma_Jrapon il
WFLZ5 Found Fd ‘rags mem_regfiel 700, 12 words b, fag Gy (17 . Fra mapping Raper 1
HOME Found ROM, Fom.Decs_t[110], 92 wande by L2 . o romsld (220 Gt BE W, 10 Pre-fiaping Rapar L
BOE Viriting defaut property mnatnion Nle C:bawiiue . — Fra mapping Raper =
¥ COF20 Sefming tima resabition b g . Compilar Rapart 31:

TELSTR | Hessags

[i N\ II\\ i[=lr. EX <]

Tabs to access Tcl
Script and Messages Output Window Watch Window

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
14 Synopsys Confidential Information January 2020

Graphic User Interface Product Overview

The following table shows where you can find information about different
parts of the GUI, some of which are not shown in the above figure. For more
information, see the User Guide.

For information about... See...

Project window The Project View, on page 20

HDL Analyst view Chapter 7, Analyzing with HDL Analyst
Text Editor view Text Editor View, on page 43

Tcl window Tcl Script Window, on page 38

Watch Window Watch Window, on page 34

SCOPE spreadsheet SCOPE Constraints Editor, on page 100
Other views and windows The Project View, on page 20

Menu commands Chapter 5, User Interface Commands
and their dialog boxes

Toolbars Toolbars, on page 56

Buttons Buttons and Options, on page 71

Context-sensitive popup menus Chapter 6, GUI Popup Menu Commands
and their dialog boxes

Online help Use the F1 keyboard shortcut or click the Help
button in a dialog box. See Help Menu, on
page 443, for more information.

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 15

Product Overview

Getting Help

Getting Help

Look through the documentation for information. You can access the infor-
mation online from the Help menu, or refer to the corresponding manual. The
following table shows you how the information is organized.

Finding Information

For help with...

How to...

Flow information

FPGA Implementation
Tools

Synthesis features
Language and syntax

Attributes and
directives

Tcl language

Synthesis Tcl
commands

Using tool-specific
features and attributes

Error and warning
messages

© 2020 Synopsys, Inc.

Refer to the...

User Guide and various application notes available on the
Synplicity support web site

User Guide and various application notes available on the
Synopsys SolvNet support web site

Synopsys Web Page (Web->FPGA Implementation Tools
menu command from within the software)

User Guide and Reference Manual
Reference Manual

Reference Manual

Online help (Help->Tcl Help)

Reference Manual or type help followed by the command
name in the Tcl window

User Guide

Click the message ID code

Synplify Pro for Microsemi Edition Reference Manual
Synopsys Confidential Information January 2020

Getting Help Product Overview

Document Set

This document is part of a series of books included with the Synopsys FPGA
synthesis software tool. The set consists of the following books that are
packaged with the tool:

FPGA Synthesis User Guide

FPGA Synthesis Reference

FPGA Synthesis Command Reference

FPGA Synthesis Attributes and Directives Reference
FPGA Synthesis Language Support Reference
Identify Instrumentor User Guide

Identify Debugger User Guide

Identify Debugging Environment Reference Manual

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 17

Product Overview Getting Help

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
18 Synopsys Confidential Information January 2020

CHAPTER 2

User Interface Overview

SYNOPSYS

Silicon to Software

This chapter presents tools and technologies that are built into the Synopsys

FPGA synthesis software to enhance your productivity.

This chapter describes the following aspects of the graphical user interface
(GUI):

The Project View, on page 20

The Project Results View, on page 23
Other Windows and Views, on page 33
Using the Mouse, on page 50
Toolbars, on page 56

Keyboard Shortcuts, on page 63
Buttons and Options, on page 71

Synplify Pro for Microsemi Edition Reference Manual
January 2020 Synopsys Confidential Information

© 2020 Synopsys, Inc.
19

User Interface Overview The Project View

The Project View

The Project View is the main interface to the tool. The Project view consists of
a Project Management View and Project Results View. Use the Project
Management view to create or open projects, create new implementations, set
device options, and initiate design synthesis. The Project Results view
contains the results of the synthesis runs for the implementations of your
design and allows you to control job process flows. For a description of the
following Project views, see:

* Project Management Views
* The Project Results View
— Project Status Tab
— Implementation Directory

— Process View

The Project view typically displays the following process view tabs, depending
on the synthesis tool you use.

'Synplify Pro®

| Ready
Project Files Design Hierarchy | Project Status Implementation Directory Process View |
| | I l
[I
Project Management Views Project Results View
© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual

20 Synopsys Confidential Information January 2020

Project Management Views User Interface Overview

Project Management Views

The Project Management views appear on the left side of the Project view and
are used to create or open projects, create new implementations, set device
options, and initiate design synthesis.

The following figure shows the Project view as it appears in the Synplify Pro

interface.
Hierarchical PrOJeCt view Status |mp|ementation Results view
Synplify Pro®
Buttons |, Run ‘\ ynplify
\Ready
‘ T} Open Project.... | Project Files || Design Hierarchy Project Status | Implementation Dirgctory | Process View
T Close Project _ [C:\synpify_pra_actelirev_1
@A:;emrme | =@ [proj] |- C:\synplfy_pro_actehproj.i Name /_|Size Type Modified | =
lle... +
- g 3:% & [Z) backup Directory 10:16:33
By Change Fie... & 1oy f‘ @ dm Directory 10:54:48
|4 Add Implementation... | - & i synlog Directory 13:48:08/
& @ syntmp Directory 13:48:01
le & [synwork Directory 13:48:01
Add P&R Implementation eight_bit_uc.areasrr areasrr File :48:
0 eight_bi 18 ki Fil 13:48:08
‘ — | [eight_bit_uc.edn 723 KB edn File 13:48:08
S, View Log [eight_bit_uc.fse 1kB fse File 13:48:08
Frequency (MHz): [eight_bit_uc.htm 373 bytes htm File 13:48:08
®f1 - Auto Const. [eight_bit_uc.map 28 bytes map File 13:48:08
[eight_bic_uc.pdec 129 bytes pdc Fie 13:48:08
FSM Compiler [eight_bit_uc.sap 6 kB sap Fie 13:48:01
User FSM Explorer [} 0 eight_bit_uc.sdf i1MB sdf File 13:48:08
. Resource Sharing [eight_bit_uc.so 211 bytes so File 13:48:08
Optlons Retiming O @ eight_bit_uc.srd 78 kB Netlist 13:48:08
@ eight_bit_uc.srl 103 kB Netlist (RTL) 13:47:59
13 eight_bit_uc.srm 740 kB Netlist (Gate) 13:48:08
i | & [eight_bit_uc.srr 33 kB sir File 13:48:08]
1 \
' prai.pr
Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.

January 2020 Synopsys Confidential Information 21

User Interface Overview

Project Management Views

The Project View Interface

The Project view has the following main parts:

Project View Interface

Status

Buttons and options

Project tree view

Implementation Results
view

Description

Displays the current status of the synthesis job that is
running. Clicking in this area displays additional
information about the current job (see Job Status
Command, on page 379).

Allow immediate access to some of the more common
commands. See Buttons and Options, on page 71 for
details.

Lists the projects, workspaces, and implementations, and
their associated HDL source files and constraint files.

Lists the result of the synthesis runs for the
implementations of your design. You can only view one set
of implementation results at a time. Click an
implementation in the Project view to make it active and
view its result files.

The Project Results view includes the following:

* Project Status Tab—provides an overview of the project
settings and at-a-glance summary of synthesis
messages and reports.

* Implementation Directory—lists the names and types of
the result files, and the dates they were last modified.

* Process View—gives you instant visibility to the
synthesis and place-and-route job flows.

See The Project Results View, on page 23 for more
information.

To customize the Project view display, use the Options->Project View Options
command (Project View Options Command, on page 421).

© 2020 Synopsys, Inc.
22

Synplify Pro for Microsemi Edition Reference Manual
Synopsys Confidential Information January 2020

The Project Results View User Interface Overview

The Project Results View

The Project Results view appears on the right side of the Project view and
contains the results of the synthesis runs for the implementations of your
design. The Project Results view includes the following:

* Project Status Tab
* Implementation Directory

* Process View

Project Status Tab

The Project Status view provides an overview of the project settings and
at-a-glance summary of synthesis messages and reports such as an area or
optimization summary for the active implementation. You can track the
status and settings for your design and easily navigate to reports and
messages in the Project view.

To display this window, click the Project Status tab in the Project view. An
overview for the project is displayed in a spreadsheet format for each of the
following sections:

* Project Settings
* Run Status

* Reports

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 23

User Interface Overview The Project Results View

Project Files Design Hierarchy Project Status [Implementation Directory | Process View]

‘

=@ [proj] - C:\synplify_pro_actel =
[VHDL

Project Name proj Implementation Name rev_1
) Veriog Top Module [auto] |Retiming 0
rev_1 Resource Sharing 1 Fanout Guide 24
Disable /O Insertion 0 FSM Compiler 1

‘

CPU Real .

Job Name |Status m | A 0 Time Time Memory|Date/Time
Compile

Input Complete 27 |0 |0 |- Om:03s |- gﬁ;’%ﬂgﬁd
Detailed report -28:
Premap . . 9/9/2011
Dattieavesos | COMPlete(4 |0 10 | 0m:00s | Om:01s | 57MB | Y-l
Map &

Optimize | Complete{ 15 | 10| 0 | 0m:04s | 0m:04s | 101MB ggzsgljm
Detailed report -28:

Core Cells 1530 10 Cells 26
Block RAMs 1
Detailed report

‘

‘

Cluck Name Req Freq Est Freq Slack
1] o |) eugh.t bit_uc|clock 1.0 MHz 42.4 MHz 976.426
) Detailed report

You can expand or collapse each section of the Project Status view by clicking
on the + or - icon in the upper left-corner of each section.

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
24 Synopsys Confidential Information January 2020

The Project Results View User Interface Overview

Project Status Implementation Directory Process View |

=) Project Settings

Project Name proj Implementation Name rev_1
Top Module [auto] |Retiming 0
Resource Sharing 1 Fanout Guide 24
Disable /O Insertion] FSM Compiler 1

) Run Status

Job Name | Status n &) |CPU Time |Real Time |Memory|Date/Time
Compile
Input Complete| 27 |0 |0 |- 0m:03s
Detailed report
Premap
Detailed report
Map &
Optimize Complete 15 | 10
Detailed report

9/9/2011
2:28:44 PM

. . 9/9/2011
0m:00s 0m:01s 57TMB 22547 Fl

=
=
=

Complete 4

. . 9/9/2011
Om:04s O0m:04s 101MB TR T

i
—
=
=

) Area Summary
Detailed report

& Timing Summary

Detailed report

Project Settings

Project Settings is populated with the project settings from the run_options.txt file
after a synthesis run. This section displays information, like the following:

* Project name, top-level module, and implementation name

* Project options currently specified, such as Resource Sharing, Fanout
Guide, and Disable I/O Insertion.

Run Status

The Run Status table gets updated during and after a synthesis run. This
section displays job status information for the compiler, premap job, mapper,
and place-and-route runs, as needed. This section displays information
about the synthesis run:

* Job name - Jobs include Compiler Input, Premap, and Map & Optimize. The
job might have a Detailed Report link. When you click this link, it takes
you to the corresponding report in the log file.

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 25

User Interface Overview

The Project Results View

© 2020 Synopsys, Inc.

26

BN:

#Fri Sep 08 15:28:41 2011

Synopsys HOL Compiler, wersion comy
EN|Bunning in 32-bit mode
Copyright (C) 1994-2011 Synopsys,

version compS&0rec,

Job Name Status w| A 0 CPU Time |Real Time |Memory |Date/Time
Compile Input - . . 9/9/2011
Detsiled e Complete |27 |0 |0 0m:03s 2544 I
Premap . 4L 9/9/2011
Detoiled re Complete (4 |0 |0 |0Om:00s 0m:01s 5TMB 2254 Bl
Map &

Optimize Comple: ‘ Compile Input : Detailed report

Detailed recort $ Start of Compile

560rc, Build 019R, built Aug 22 2011

Inc. This software the associated documentation are

Inc.

@N:Top-level is not specified. Trying te extract sutomatically...
Synopsys VHDL Compiler,
@N|Running in 32-bit mode
Copyright (C) 1994-2011 Synopsys,

Build 019R, built Rug 22 2011

This software the associated documentation are

CD720 :™C:\builda%ayn201109 159R\1lib\vhd\atd.vhd":123:18:123:21|5etting time resocl

:"Civ\avnpli

_F

Copyright (C) 1994-2011 Synopsys,

@N:"C:\synplify pro_actel\vhdl\ins rom.vhd":13:7:13:13|Top entity is set to INS ROM.
WHDL syntax check successful!
Fri Sep 09 15:28:42 2011

Synopsys Verilog Compiler, wersion comp560rc, Build 019R, built Aug 22 2011
@N|Bunning in 32-bit mode

Inc. This software the associated documentation are

:"C:\builds\syn201109_159R\1lib\proasic\smartfusion.v"
\builda\syn201109 159R\1lib\vlogh3gcemi_cbjecta.v"”
C:\builds\syn201109_159R\lib\vlcog\hypermcds.v"™
_actel\wverilogialu.v"

: 06346 :"C:\synplify prec actel\werileghalu.v™:93:31:93:39|Read full case directive
_pro_actel\verilog\data mux.v"
)_actel\verilog\ins_decode.v™
y_actel\werilogiic.v"”

- pro_actel\wverilogimult.v"
)_actel\verilogh
y_actel\verilo
)_acteliverilogspcl
) actely\verilog\state_mc.
_acteliverilogieight bit_uc.+"
Verilog syntax check successful!

Synplify Pro for Microsemi Edition Reference Manual
Synopsys Confidential Information

January 2020

The Project Results View

Synplify Pro for Microsemi Edition Reference Manual

* Status - Reports whether the job is running or completed.

* Notes, warnings, and errors — These columns are headed by the respec-
tive icons and display the number of messages. The messages
themselves are displayed in the Messages tab, beside the TCL Script tab.
Links are available to the error message and the log location.

L asrnig, 7 notes rrd: ® | sethiem.. ||| AppbeFler o) BroupCominon T's
Typ= |I2I Iessage Source Lecation Log Location Tame Repart [=
h =MALL Froperty syn_clock_pnonty i net supported for this ta., - festa Y oo Pre-mapming Feport

oo SAFT4L Runming in 6 bt mode, st s Bie-mapging Repaort
m 2 MFEET Clock convesion disabled - tEstai Pre-rapging Report —
n NIT320 TIFAIRE Fep ot ETIMATsE fHaee and [ouUes 43t Flaacs L. - fEcter (188} M2%I3F.. Teming Fape {—
"l Bl imm i Gl e e 1 P N S

- ——r 3
| £10

TLEoet | Honopm

The message numbers may not match for designs with compile points.
The numbers reflect the top-level design.

* Real and CPU times, peak memory, and a timestamp

Reports

The mapper summary table generates various reports such as an
* Area Summary
* Optimization Summary

* Compile Point Summary

Click the Detailed Report link when applicable, to go to the log file and informa-
tion about the selected report. These reports are written to the synlog folder for
the active implementation.

Area Summary

For example, the Area Summary contains a resource usage count for compo-
nents such as registers, LUTs, and I/O ports in the design. Click the Detailed
report link to display the usage count information in the design for this report.

© 2020 Synopsys, Inc.

January 2020 Synopsys Confidential Information 27

User Interface Overview

User Interface Overview The Project Results View

Job Mame Status | o (b [CPUTIMe |Real Time |Mcmory |DatefTime
: {Comaoie Input _ i Rs i 11472011 §
| |peto loc resar: R Lols B:12:26 AM :
: [Premap o o e - : 11742011 :
st log : Compee L[l 0 | Cm:1zs U133 1/6NMB TR
: |Map & Dotimza e 3 1= 33m k 112011 :
Y e \Compee | 234 1143 0 | G613 | 1Em:33s 1zawe | N0
IF3 ports oL Mon /O Rog ster bits 44472 '361%)
- V0 liegister bits U Blocktams L B3 SR
NSPANs ar Repui L. llﬂuid{-iéﬂ' 3} Rramirra MTaage Bepnrh Fnr eight_hit_nre
%Jw L‘,.| ﬂ}'n[‘f‘ﬂﬂiﬁ Mopping so part: nmgiwa22lezfllsT?-14
: Yoo = Zomoller Report Cell usage:
E| Fre-mapping Repott DORi0EL 1 u=e
‘elock Hame] - dleck Summary FD 8 uses
E FOC 133 ussa
sbe |aqueris_toolshif_cloes = Mapper Resort sooE A
sho |aquans doa|systam_clack i Cloce Conversion B 4 uses
{ ET|r1|ﬂg F2port ECT 2 uzes
f e Perlwimance Sumiimary FDCE 24 vses
Clock Relatiznships D 10 Lses
- Interface Information MITE_T. 13 uaes
: i I Netailed Repart for Cloces | MR Z uzes
S - " Resource Unlizaton DAMEINES 1 uzes
1 : o i . .| [WCC 13 uwses
g0 odierarchical Aved Repuilleichl_bil | -2 e
18 P'_Iuce znd Route TUTL 20 uses
. %~ Backanrotztion Report (12020 08-8 |por; 235 vses
‘- Spagion Log (12:20 08-Aug) IUT2 9 usas
LU i ouses
LUTS 72 uoca
LUT3 154 us=s
LUTS_2 2 usm=z=s
© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual

28 Synopsys Confidential Information January 2020

The Project Results View

User Interface Overview

Implementation Directory

An implementation is one version of a project, run with certain parameter or
option settings. You can synthesize again, with a different set of options, to
get a different implementation. In the Project view, an implementation is
shown in the folder of its project; the active implementation is highlighted.
You can display multiple implementations in the same Project view. The
output files generated for the active implementation are displayed in the

Implementation Directory.

Project Files Design Hierarchy | Project Status Implementation Directory Process View |

| [

E"QJ [proj] - C:\synplfy_pro. |Name Size Type Modified =
g ieHrEI:JLg ﬁ? backup Directory 10:16:33
(- —— B-E) dm Directory 10:54:48

- & synlog Directory 13:48:08
B syntmp Directory 13:48:01
BB synwork Directory 13:48:01
- [@ eight_bit_uc.areasrr 18 kB areasrr File 15:28:52
- [eight_bit_uc.edn 723 kB edn File 15:28:52|
- [eight_bit_uc.fse 1 kB fse File 15:28:52
- [eight_bit_uc.htm 373 bytes htm File 15:28:53
- [@ eight_bit_uc.map 28 bytes map File 15:28:521
- [B eight_bit_uc.pdc 129 bytes pdc File 15:28:52
- [@ eight_bit_uc.sap 6 kB sap File 15:28:47
- [eight_bit_uc.sdf 1 MB sdf File 15:28:52
-~ [@ eight_bit_uc.s0 211 bytes so File 15:28:52
- @ eight_bit_uc.srd 78 kB Netlist 15:28:52
- @ eight_bit_uc.srl 103 kB MNetlist (RTL) 15:28:44
-1 eight_bit_uc.srm 740 kB Netlist (Gate) 15:28:52
Pr —) [| B eight_bit_uc.srr 33 kB srr File 1?:?8:53
E] A

Synplify Pro for Microsemi Edition Reference Manual

January 2020 Synopsys Confidential Information

© 2020 Synopsys, Inc.

29

User Interface Overview The Project Results View

Process View

As process flow jobs become more complex, the benefits of exposing the
underlying job flow is extremely valuable. The Process View gives you this
visibility to track the design progress for the synthesis and place-and-route
job flows.

Click the Process View tab on the right side of the Project Results view. This
displays the job flow hierarchy run on the active implementation and is a
function of this current implementation and its project settings.

Project Files Design Hierarchy | Project Status Implementation Directory Process View
i
r. rev_1 Show Hierarch
E--!J [proj] - C:\synplify_pro_acte [rev_) v
E? VHDL Process |State Run Time TCL Name
g Verllogl (Pre- .) =8] Logic Synthesis Running. 00:00:03 synthesis
rev_t (Fre-mapping... =+ 2] Compie Running. 00:00:03 compile

- #] Compile Process Complete 00:00:03 compie_flow
Running. 00:00:01 premap
Complete 00:00:00 map

- %] Map & Optimize Complete 00:00:00 fpga_mapper

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
30 Synopsys Confidential Information January 2020

The Project Results View User Interface Overview

Process View Displays and Controls

The Process View shows the current state of a job and allows you to control
the run. You can see various aspects of the synthesis process flow, such as
logical synthesis, premap, and map. If you run place-and-route, you can see
its job processes as well.

Appropriate jobs of the process flow contains the following information:
* Job Input and Output Files
* Completion State
Displays if the job generated an error, warning, or was canceled.

* Job State
— Out-of-date — Job needs to be run.
— Running - Job is active.
— Complete — Job has completed and is up-to-date.
— Complete * — Job is up-to-date, so the job is skipped.

* Run/File Time — Job process flow runtime in real time or file creation
date timestamp.

* Job TCL Command — Job process name.

Each job has the following control commands that allows you to run jobs at
any stage of the design process, for example map. Right-click any job icon and
select one of the following commands from the popup menu:

* Cancel jobProcess that is running

* Disable jobProcess that you do not want to run

* Run this jobProcess only

* Run to this jobProcess from the beginning of run

* Run from this jobProcess to the end of run

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 31

User Interface Overview The Project Results View

Hierarchical Job Flows

A hierarchical job flow runs two or more subordinate jobs. Primitive jobs
launch an executable, but have no subordinate jobs. The Logical Synthesis
flow is a hierarchical job that runs the Compile and Map flows.

The state of a hierarchical job depends on the state of its subordinate jobs.
* If a subordinate job is out-of-date, then its parent job is out-of-date.

* If a subordinate job has an error, then its parent job terminates with
this error.

* If a subordinate job has been canceled, then its parent job is canceled as
well.

¢ If a subordinate job is running, then its parent job is also running.

The Process View is a hierarchical tree view. To collapse or expand the main
hierarchical tree, enable or disable the Show Hierarchy option. Use the plus or
minus icon to expand or collapse each process flow to show the details of the
jobs. The icons below are used to show the information for the state of each

process:

* Red arrow (¥) — Job is out-of-date and needs to be rerun.
* Green arrow (%) —Job is up-to-date.

* Red Circle with! (@) - Job encountered an error.

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
32 Synopsys Confidential Information January 2020

Other Windows and Views User Interface Overview

Other Windows and Views

Besides the Project view, the tool provides other windows and views that help
you manage input and output files, direct the synthesis process, and analyze
your design and its results. The following windows and views are described
here:

* Dockable GUI Entities, on page 34

* Watch Window, on page 34

* Tcl Script and Messages Windows, on page 38

* Tcl Script Window, on page 38

* Message Viewer, on page 39

* Output Windows (Tcl Script and Watch Windows), on page 43
* Text Editor View, on page 43

* Context Help Editor Window, on page 47

* Interactive Attribute Examples, on page 48

See the following for descriptions of other views and windows that are not
covered here:

Project view The Project View, on page 20
SCOPE Interface SCOPE Tabs, on page 215
HDL Analyst Schematic Chapter 7, Analyzing with HDL Analyst
Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.

January 2020 Synopsys Confidential Information 33

User Interface Overview Other Windows and Views

Dockable GUI Entities

Some of the main GUI entities can appear as either independent windows or
docked elements of the main application window. These entities include the
menu bar, Watch window, Tcl window, and various toolbars (see the descrip-
tion of each entity for details). Docked elements function effectively as panes
of the application window: you can drag the border between two such panes
to adjust their relative areas.

Watch Window

The Watch window displays selected information from the log file (see Log
File, on page 155) as a spreadsheet of parameters that you select to monitor.
The values are updated when synthesis finishes.

Watch Window Display

Display of the Watch window is controlled by the View ->Watch Window
command. By default, the Watch window is below the Project view in the
lower right corner of the main application window.

To access the Watch window configuration menu, right-click in any cell.
Select Configure Watch to display the Log Watch Configuration dialog box.

Log Watch Configuration ed B

Watch Selection
& ‘Watch Active Implementation
watch Selected Implementations

wiatch All Implementations

Selected Implementations to watch:

[rew_1

[rev_tipr_1 Select Al

Clear Al

K

Cancel

In the Watch window, indicate which implementations to watch under Watch
Selection. The selected implementation(s) will display in the Watch window.

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
34 Synopsys Confidential Information January 2020

Other Windows and Views User Interface Overview

You can move the Watch window anywhere on the screen; you can make it
float in its own window (named Watch Window) or dock it at a docking area (an
edge) of the application window. Double-click in the banner to toggle between
docked and floating.

The Watch window has a special positioning popup menu that you access by
right-clicking the window border. The following commands are in the menu:

Command Description
Allow Docking A toggle: when enabled, the window can be docked.
Hide Hides the window; use View ->Watch Window to show it again.

Float in Main Window A toggle: when enabled, the window is floated (undocked).

Right-clicking the window title bar when the Watch window is floating
displays an alternative popup menu with commands Hide and Move; Move lets
you position the window using either the arrow keys or the mouse.

Using the Watch Window

You can view and compare the results of multiple implementations in the
Watch window.

nanle run 1
- B Log Parameter rew_2 2ip ren_4 4,
wiarsk Slack, -0.418 <. | -1.266 <
nable run 1 eight_bit_uclcﬁck—Estimated Frequency |\299.6MHz |<..| 130.0MHz | =
] eight_bit_uclclkik— Requested Frequency / 3424 MHz <. | 1556 MHz | <

Log Watch J
Log Parameters Watch Window

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.

January 2020 Synopsys Confidential Information 35

User Interface Overview

Other Windows and Views

To choose log parameters from a pull-down menu, click in the Log Parameter
section of the window. Click the pull-down arrow that appears to display the

parameter list choices:

eight_bit_uc|clock - Estimated Period
eight_bit_uc|clock -
eight_bit_uc|clock -
eight_bit_uc Part

eight_bit_uc [0 ATOMs

If

Slack,

Log Parameter rew_2
1D
/
<elear> -
Part
Warst Slack,
eight_bit_uc|clock - Estimated Frequency]
eight_bit_uc|clock - Requested Frequency

Requested Period

I

@g

Click pull-down arrow
to

display list of choices

The Watch window creates an entry for each implementation of a project:

Log Parameter rew_2 rev_4 =

Wharst Slack. -0.418 -1.266 |
eight_bit_uc|clock - Estimated Frequency 299.6 MHz 130.0 MHz

eight_hit_uc|clock - Requested Frequency 342.4 MHz 155.6 MHz z

-

To choose the implementations to watch, use the Log Watch Configuration dialog
box. To display this box, right-click in the Watch window, then choose

Configure Watch in the popup menu. Enable Watch Selected Implementations, then
choose the implementations you want to watch in the list Selected Implementa-
tions to watch. The other buttons let you watch only the active implementation

or all implementations.

© 2020 Synopsys, Inc.
36

Synplify Pro for Microsemi Edition Reference Manual

Synopsys Confidential Information

January 2020

Other Windows and Views User Interface Overview

Log Watch Configuration 2| x|

Config
Refresh

Clear Parameters

Hide

watch Selection

() Watch Active Implementation

(@ Watch Selected Implementations

() watch All Implementations

Selecked Implementations to wakch;

rev_2
[rev_.l'par_l E Select Al

ev_d4
[] rew_d4fpar_1

Clear nll

ol

Cancel

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 37

User Interface Overview Other Windows and Views

Tcl Script and Messages Windows

The Tcl window has tabs for the Tcl Script and Messages windows. By default,
the Tcl windows are located below the Project Tree view in the lower left corner
of the main application window.

Analysis Property Generator Complete
Purmning PROASICIE Mapper. ..

Launching mapper in pro mode

PROASIC2E Mapper Completed with warnings

¥

TCL Scripk Messages

Messages panel displays errors,
warnings, and notes

Tcl Script panel to display and
input Tcl commands

You can float the Tcl windows by clicking on a window edge while holding the
Ctrl or Shift key. You can then drag the window to float it anywhere on the
screen or dock it at an edge of the application window. Double-click in the
banner to toggle between docked and floating.

Right-clicking the Tcl windows title bar when the window is floating displays a
popup menu with commands Hide and Move. Hide removes the window (use
View ->Tcl Window to redisplay the window). Move lets you position the window
using either the arrow keys or the mouse.

For more information about the Tcl windows, see Tcl Script Window, on
page 38 and Message Viewer, on page 39.

Tcl Script Window

The Tcl Script window is an interactive command shell that implements the
Tcl command-line interface. You can type or paste Tcl commands at the
prompt (“%”). For a list of the available commands, type “hel p *” (without the
quotes) at the prompt. For general information about Tcl syntax, choose Help
->TCL.

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
38 Synopsys Confidential Information January 2020

Other Windows and Views User Interface Overview

The Tcl script window also displays each command executed in the course of
running the synthesis tool, regardless of whether it was initiated from a
menu, button, or keyboard shortcut. Right-clicking inside the Tcl window
displays a popup menu with the Copy, Paste, Hide, and Help commands.

See also

* Using Batch Mode, on page 500, for information about the Tcl synthesis
commands.

* Generating a Job Script, on page 507 in the User Guide.

Message Viewer

To display errors, warnings, and notes after running the synthesis tool, click
the Messages tab in the Tcl Window. A spreadsheet-style interactive interface

appears.
Icon Shows Error Location in
Message Type Message ID Source
1 warning, 29 notes Find: I+ [et Filter... | [_| apply Fileer [GroupCommon ID's
Type / |ID / |Message Source Location |Log Location |Time |Report =
BM227 This data was produced by a restricked version of 5., - eight bit uc.ser (1157 11:10:47... PROASICIE Mappe
MF249 Funning in 52-bit mode, - eight bit we.srr (1217 11:10:47.. PROASICIE Mapp:
MF258 Gated clock conversion disabled - eight bit uc.str {1227 11:10:47... PROASICIE Mapp
MF135 Found RAM, 'regs. mem_regfile[7:0], 32 words by & req file.v {17} eight bit uc.ser (135) 11:10:47.. PROASICIE Mapp:
MO106 Found ROM, 'rom.Data_1[11:0], 92 words by 12 bits jns_rom.vhd (22} gight_bit uc.ser (134) 11:10:47... PROASICIE Mapp:
CL134 Found RAM mem_regfile, depth=32, width=6 req file.w (17} gight bit uc.ser (487 11:10:44.. HOL Compiler
CO630 Synthesizing work.ins_rom. first ins_rom.vhd (13} gight bit uc.srr (977 11010044, HOL Compiler
G364 Synthesizing module eight_bit_uc - eight bit uc.str 11:10:44 ... HOL Compiler
MF176 Default generator successful - eight bit uc.srr 11:10:50. . PROASICSE Mapp:
MFZ233 Found 11 bit incrementor, ‘'unlS_pe[10:07 oy eight_bit uc.str 11:10:50... PROASICIE Mappe
ME235 Found 11 bit incrementor, 'un?_skack[10:0] pr.v (77 eight bit uc.ser (164) 11:10:50.. PROASICIE Mapp
- MF235 Found 11 bit incrementor, 'unls_pe[10:0] powy (47 gight_bit_uc.ser (163] 11010047, PROASICIE Mappe v |
Al |
TCL Scripk Messages

Grouped Log File
Common IDs Location
Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.

January 2020 Synopsys Confidential Information 39

User Interface Overview Other Windows and Views

Interactive tasks in the Messages panel include:

* Drag the pane divider with the mouse to change the relative column size.

* Click the ID entry to open online help for the error, warning, or note.

* Click a Source Location entry to go to the section of code in the source HDL
file that is causing the message.

* Click a Log Location entry to go to its location in the log file.

The following table describes the contents of the Messages panel. You can sort
the messages by clicking the column headers. For further sorting, use Find
and Filter. For details about using this window, see Checking Results in the
Message Viewer, on page 200 in the User Guide.

Item
Find
Filter

Apply Filter

Group Common
ID’s

Type

ID

Message

© 2020 Synopsys, Inc.
40

Description
Type into this field to find errors, warnings, or notes.

Opens the Warning Filter dialog box. See Messages Filter, on
page 42.

Enable/disable the last saved filter.

Enable/disable grouping of repeated messages. Groups are

indicated by a number next to the type icon. There are two types

of groups:

* The same warning or note ID appears in multiple source files
indicated by a dash in the source files column.

e Multiple warnings or notes in the same line of source code
indicated by a bracketed number.

The icons indicate the type of message:

9 Error

A Warning

@) Note

@ Advisory

A plus sign next to an icon indicates that repeated messages are

grouped together. Click the plus sign to expand and view the
various occurrences of the message.

This is the message ID. You can select an underlined ID to
launch help on the message.

The error, warning, or note message text.

Synplify Pro for Microsemi Edition Reference Manual
Synopsys Confidential Information January 2020

Other Windows and Views User Interface Overview

Item Description

Source Location The HDL source file that generated the error, warning, or note
message.

Log Location The location of the error, warning, or note message in the log
file.

Time The time that the error, warning, or note message was recorded

in the log file for the various stages of synthesis (for example:
compiler, premap, and map). If you rerun synthesis, only new
messages generate a new timestamp for this session.

Note: Once synthesis has run to completion, all the .srr files for
the different stages of synthesis are merged into one unified .srr
file. If you exit the GUI, these timestamps remain the same
when you re-open the same project in the GUI again.

Report Indicates which section of the Log File report the error appears,
for example Compiler or Mapper.

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 41

User Interface Overview

Other Windows and Views

Messages Filter

You filter which errors, warnings, and notes appear in the Messages panel of
the Tcl Window using match criteria for each field. The selections are combined
to produce the result. You can elect to hide or show the warnings that match
the criteria you set. See Checking Results in the Message Viewer, on

page 200 in the User Guide.

‘Warning Filter

@ Hide Filter Matches

() Show Filter Matched | Apply | | Close | | Synkax Help |

Enable

Type

[«

Warning

Fx107

j(n] Message Source Location Log Location Tirne: j

Mate

~
[<]

CDZ33

Mote

o
[«

CDa30

|

Item

Hide Filter Matches

Show Filter Matches

Syntax Help
Apply

Type, ID, Message,

Source Location, Log
Location, Time, Report

© 2020 Synopsys, Inc.

42

Description

Hides matched criteria in the Messages Panel.
Shows matched criteria in the Messages Panel.
Gives quick syntax descriptions.

Applies the filter criteria to the Messages Panel report,
without closing the window.

Log file report criteria to use when filtering.

Synplify Pro for Microsemi Edition Reference Manual
Synopsys Confidential Information January 2020

Other Windows and Views

User Interface Overview

The following is a filtering example.

Warning Filter E E
() Hide Filter Matches (@) Show Filker Matched | Apply | | Clase | | Synikax Help |
Enable Type jin] Message Source Location Log Lacation Time: j
1 Warning (Eémz)
z Mote cé(33
3 Mote coséq 8
-
\
4 \ E10)
\\
\
Show Filter [1 warning, 37 \otes (1 fikered) | Find: [I~ [| setFier... | (] apply Fiter I GroupCommon ID's
Matches we Y D | Message | sourcelocation | Loglostion | Time | Report
W 9 D233 Using sequential encading for type aluop_type constplag.vhd spel regzsr 07:37:47 Wed May 09 hdl Compller
mw 9 DE30 Synthesieing work.reg_fie first - spel regssr 07:37:47 Wed May 09 vhdl Compiler
M

Hide Filter
Matches

E¥107 Mo readjwrite conflict check. Simulation mismatch pos... req file.whd (23)

spol regssrr (87) 07:37:47 Wed May 09 Mapper Report

TCL Seript | Messages

[1 warring {1 fikered), 7 nates (18 fitered) | Finet: | I~ [| setFiter... | 1 apply Fiter I GroupComman ID's
| o | Message | sourcelocaton | Loglocation | Time | Repot |+
FH271 Instancs "DECODE.ALIOFLAT with 30 Iosds has bssr_ - sl reds.s 07:37:47 Wed May (13 SPARTANG M
D720 Setting Hime resslition to ris st vhd [123) sprl_regs.sr (1G] D7:37:47 Wed May 113 Whdl Compiler
U134 Found RAM mem, depth—32, width—5 ter fle.vhd (23] sprl redssr(SE) D7:37:47 Wed May 113 Whdl Compisr
U201 Tryirg to sxtract stats marhins For register STACKLEW | pe.vhd [34) sprl regs.srr (57) D7:37:47 Wed May 113 Whdl Compiler
FH214 Gensrating ROM ROM Dets_1[11:0] s romohd [22) sl regss (L2 07:37:47 Wed May (19 SPARTANG Ms__ [« |
MT208 fuboronstrain Mods is O -

spel reqs.srr (83) 07:37:47 Wed May 09 Mapper Report

TCL Scripk Messages

Output Windows (Tcl Script and Watch Windows)

The Output windows are the Tcl Script and Log Watch windows. To display or
hide them, use View->Output Windows from the main menu. Refer to Watch

Window, on page 34 and Tcl Script and Messages Windows, on page 38 for
more information.

Text Editor View

The Text Editor view displays text files. These can be constraint files, source
code files, or other informational or report files. You can enter and edit text in
the window. You use this window to update source code and fix syntax or

synthesis errors.

You can also use it to crossprobe the design. For informa-

tion about using the Text Editor, see Editing HDL Source Files with the Built-in
Text Editor, on page 36 in the User Guide.

Synplify Pro for Microsemi Edition Reference Manual

January 2020

© 2020 Synopsys, Inc.
Synopsys Confidential Information 43

User Interface Overview Other Windows and Views

[verilog)
odule clk_div [resetn, clock, clkl, clk2, clk3, clkd)

00003 input resetn, clock;

oooo4

00005 inout clkl, clk2, clk3, clkd4:

0ooone

00007 // this is a diwvide by four clock as clk4
0ooons

00009 reg clkl_int, clki_int, clk3_int, clk4 int:
00010 wire reset = ~resetn;

noo1l

00012 assign clkl = clkl int;
00013 assigm clk2 = clk2_int:
00014 assign clk3 = clk3_int;
00015 assigm clkd = clkd int:

00017 alwaysf@iposedge clock or posedge reset) —
00018 begin

00018 if(reset == 1)

00020 begin

000zl clkl_int <= 0;

noozz clk2_int <= 0;

00023 clk3_int <= 0;

oooz4 clkd int <= 1;

DDDES end, _lLI
4

»
Line 1 Cal 1 [[NUM i

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
44 Synopsys Confidential Information January 2020

Other Windows and Views User Interface Overview

Opening the Text Editor
To open the Text Editor to edit an existing file, do one of the following:
* Double-click a source code file (v or vhd) in the Project view.

* Choose File ->Open. In the dialog box displayed, double-click a file to
open it.

With the Microsoft® Windows® operating system, you can instead drag
and drop a source file from a Windows folder into the gray background
area of the GUI (not into any particular view).

To open the Text Editor on a new file, do one of the following:
* Choose File ->New, then specify the kind of text file you want to create.

* Click the HDL icon () to create and edit an HDL source file.

The Text Editor colors HDL source code keywords such as module and output
blue and comments green.

Text Editor Features

The Text Editor has the features listed in the following table.

Feature Description

Color coding Keywords are blue, comments green, and strings red. All
other text is black.

Editing text You can use the Edit menu or keyboard shortcuts for
basic editing operations like Cut, Copy, Paste, Find, Replace,
and Goto.

Completing keywords To complete a keyword, type enough characters to make
the string unique and then press the Esc key.

Indenting a block of text The Tab key indents a selected block of text to the right.
Shift-Tab indents text to the left.

Inserting a bookmark Click the line you want to bookmark. Choose Edit ->Toggle
Bookmark, type Ctrl-F2, or click the Toggle Bookmark icon
() on the Edit toolbar.
The line number is highlighted to indicate that there is a
bookmark at the beginning of the line.

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 45

User Interface Overview Other Windows and Views

Feature Description

Deleting a bookmark Click the line with the bookmark. Choose Edit ->Toggle

Bookmark, type Ctrl-F2, or click the Toggle Bookmark icon
() on the Edit toolbar.

Deleting all bookmarks ~ Choose Edit ->Delete all Bookmarks, type Ctrl-Shift-F2, or click

the Clear All Bookmarks icon () on the Edit toolbar.

Editing columns Press and hold Alt, then drag the mouse down a column of

text to select it.

Commenting out code Choose Edit ->Advanced ->Comment Code. The rest of the

current line is commented out: the appropriate comment
prefix is inserted at the current text cursor position.

Checking syntax Use Run ->Syntax Check to highlight syntax errors, such as

incorrect keywords and punctuation, in source code. If
the active window shows an HDL file, then only that file is
checked. Otherwise, the entire project is checked.

Checking synthesis Use Run ->Synthesis Check to highlight hardware-related

errors in source code, like incorrectly coded flip-flops. If
the active window shows an HDL file, then only that file is
checked. Otherwise, the entire project is checked.

See also:

Editor Options Command, on page 426, for information on setting Text
Editor preferences.

File Menu, on page 304, for information on printing setup operations.

Edit Menu Commands for the Text Editor, on page 310, for information
on Text Editor editing commands.

of the User Guide, on page 446, for information on the Text Editor popup
menu.

Text Editor Toolbar, on page 60, for information on bookmark icons of
the Edit toolbar.

Keyboard Shortcuts, on page 63, for information on keyboard shortcuts
that can be used in the Text Editor.

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual

46

Synopsys Confidential Information January 2020

Other Windows and Views

User Interface Overview

Context Help Editor Window

Use the Context Help button to copy Verilog, SystemVerilog, or VHDL
constructs into your source file or Tcl constraint commands into your Tcl file.
When you load a Verilog/SystemVerilog/VHDL file or Tcl file into the UI, the
Context Help button displays at the bottom of the window. Click this button to
display the Context Help Editor.

Synplify Pro for Microsemi Edition Reference Manual
January 2020 Synopsys Confidential Information

1 module df£2(gl, dl, clk, el, e2, e3);
2 input [4:0] d1;
3 input clk;
4 cutput [4:0] gql;
5 reg [4:0]1 gl;
B input el, e3;
7 input eZ;
8 slways E(pogggl— -1
. Context Hel d .3
9 begin 2| x|
10 if (el & ‘Verilng | Help struct
11 1= ; i
1 = s"Sb;T“E”IOg | Top | |@Bad< | | »Forward | ‘ Online Help ‘
12 end -~ Sbits
- gunit
13 end - shways_comb
14 endmodul el — always_ff
- always_latch =y= anus
- Const
—do
[I - endfunction
- endpackage Struct Construct
- endtask
Context HEID L - enum SystemVerilog adds several enhancements to Verilog for representing large
- for amounts of data. In SystemiVerilog, the Verilog array constructs are extended
- function both in how data can be reprezented and for operations on arrays. A structure
- interface data type has been defined as a means to represent collections of data types.
- modport These data types can be either standard data types (such as int, logic, or bit)
- package or, they can be defined types (using ilog typ). Structures
pa.ra!'g;ter allow multiple signals, of various data types, to be bundled together and
~ prior referenced by a single name.
- - struct e g &
- typedef Template:
- union
- unique /+Structure data type represents collections of
- viar data types. These dsts types can be either standard
- while datz types (such as int,
- wire logic, or bit) or, they can be user-defined types
i{typedef) */
struct [pecked <signing>] { varisble declaraticns;...}
[Packed Dimensions..] structNames,...
//examplas:
| Copy | ‘}InsertTemDIabe |
2

When you select a construct in the left-side of the window, the online help

description for the construct is displayed. If the selected construct has this
feature enabled, the online help topic is displayed on the top of the window
and a generic code or command template for that construct is displayed at

© 2020 Synopsys, Inc.

47

User Interface Overview Other Windows and Views

the bottom. The Insert Template button is also enabled. When you click the
Insert Template button, the code or command shown in the template window is
inserted into your file at the location of the cursor. This allows you to easily
insert the code or constraint command and modify it for the design that you
are going to synthesize. If you want to copy only parts of the template, select
the code or constraint command you want to insert and click Copy. You can
then paste it into your file.

Field/Option Description

Top Takes you to the top of the context help page for the selected
construct.

Back Takes you back to the last context help page previously
viewed.

Forward Once you have gone back to a context help page, use Forward
to return to the original context help page from where you
started.

Online Help Brings up the interactive online help for the synthesis tool.

Copy Allows you to copy selected code from the Template file and

paste it into the editor file.

Insert Template Automatically copies the code description in its entirety from
the Template file to the editor file.

Interactive Attribute Examples

The Interactive Attribute Examples wizard lets you select pre-defined attri-
butes to run in a project. To use this tool:

1. Click Help.

2. Click Interactive Attribute Examples.

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
48 Synopsys Confidential Information January 2020

Other Windows and Views User Interface Overview

< Interactive Attribute Example T — — | 2 =
| - {
el | syn_ramstyle attribute |
- About_wizard
- Memory The syn_ramstyle attribute spemﬁes the |mplememahun tn use for an inferred RAM. You can apply syn_ramstyle
syn_ramstyl ‘_ 77777 a & A & ffR gt the B st
Miscellaneous
- Optimization
H syn_maxfan
E- Probe *
syn_probe SYHUPSYS fy. It uses the
Microsemi ProASIC3 I
| prevent the
ST L use no_rw_check |
[¥] Block Ram [¥] Registers [¥] No RW Check R eAscimE A
Working Directory | ‘ | Browse... I
Generate | |Generat&Run| | Cancel | ‘ Help...
h

3. Double-click an attribute to start the wizard.
4. Specify the Working Directory location to write your project.
5. Click Generate to generate a project for your attribute.

A project will be created with an implementation for each attribute value
selected.

6. Click Generate Run to run synthesis for all the implementations. When
synthesis completes:

— The Technology view opens to show how the selected attribute
impacts synthesis.

— You can compare resource utilization and timing information
between implementations in the Log Watch window.

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 49

User Interface Overview Using the Mouse

Using the Mouse

The mouse button operations in Synopsys FPGA product is standard; refer to
Mouse Operation Terminology for a summary of supported functions. The
tool provides support for:

¢ Using Mouse Strokes, on page 51
* Using the Mouse Buttons, on page 53
* Using the Mouse Wheel, on page 55

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
50 Synopsys Confidential Information January 2020

Using the Mouse User Interface Overview

Mouse Operation Terminology

The following terminology is used to refer to mouse operations:

Term Meaning

Click Click with the left mouse button: press then release it without
moving the mouse.

Double-click Click the left mouse button twice rapidly, without moving the mouse.
Right-click Click with the right mouse button.

Drag Press the left mouse button, hold it down while moving the mouse,
then release it. Dragging an object moves the object to where the
mouse is released; then, releasing is sometimes called “dropping”.

Dragging initiated when the mouse is not over an object often traces
a selection rectangle, whose diagonal corners are at the press and
release positions.

Press Depress a mouse button; unless otherwise indicated, the left button
is implied. It is sometimes used as an abbreviation for “press
and hold”.

Hold Keep a mouse button depressed. It is sometimes used as an

abbreviation for “press and hold”.

Release Stop holding a mouse button depressed.

Using Mouse Strokes

Mouse strokes are used to quickly perform simple repetitive commands.
Mouse strokes are drawn by pressing and holding the right mouse button as
you draw the pattern. The stroke must be at least 16 pixels in width or height
to be recognized. You will see a green mouse trail as you draw the stroke (the
actual color depends on the window background color).

Some strokes are context sensitive. That is, the interpretation of the stroke
depends upon the window in which the stroke is started. For example, in the
HDL Analyst view, the right stroke means “Next Sheet.” In a dialog box, the
right stroke means “OK.”

For information on each of the available mouse strokes, consult the Mouse
Stroke Tutor.

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 51

User Interface Overview Using the Mouse

The strokes you draw are interpreted on a grid of one to three rows. Some
strokes are similar, differing only in the number of columns or rows, so it may
take a little practice to draw them correctly. For example, the strokes for Redo
and Back differ in that the Redo stroke is back and forth horizontally, within a
single-row grid, while the Back stroke involves vertical movement as well.

Redo Last Operation Back to Previous View

The Mouse Stroke Tutor

Do one of the following to access the Mouse Stroke Tutor:
* Help->Stroke Tutor
* Draw a question mark stroke ("?")

* Scribble (Show tutor when scribbling must be enabled on the Stroke Help
dialog box)

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
52 Synopsys Confidential Information January 2020

Using the Mouse User Interface Overview

Stroke Tutor K E

Use the right mouse button ko draw a stroke,
Strokes are interpreted as being either horizontal, vertical, or drawn on a 3%3 grid.

Click on a cormmand below to see what stroke to use.

Show) All Strokes (@) Current Context

Undo

Redo

Find

Cpen
Stroke Tukar
Help

Unda the last aperation

Show butor when scribbling

The tutor displays the available strokes along with a description and a
diagram of the stroke. You can draw strokes while the tutor is displayed.

Mouse strokes are context sensitive. When viewing the Stroke Tutor, you can
choose All Strokes or Current Context to view just the strokes that apply to the
context of where you invoked the tutor. For example, if you draw the "?"
stroke in the HDL Analyst window, the Current Context option in the tutor
shows only those strokes recognized in the HDL Analyst window.

You can display the tutor while working in a window such as the HDL Analyst
view. However you cannot display the tutor while a modal dialog is displayed,
as input is restricted to the modal dialog.

Using the Mouse Buttons

The operations you can perform using mouse buttons include the following:

* You select an object by clicking it. You deselect a selected object by
clicking it. Selecting an object by clicking it deselects all previously
selected objects.

* You can select and deselect multiple objects by pressing and holding the
Control key (Ctrl) while clicking each of the objects.

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 53

User Interface Overview Using the Mouse

* You can select a range of objects in a Hierarchy Browser, as follows:
— select the first object in the range

— scroll the tree of objects, if necessary, to display the last object in the
range

— press and hold the Shift key while clicking the last object in the range

Selecting a range of objects in a Hierarchy Browser crossprobes to the
corresponding schematic, where the same objects are automatically
selected.

* You can select all of the objects in a region by tracing a selection
rectangle around them (lassoing).

* You can select text by dragging the mouse over it. You can alternatively
select text containing no white space (such as spaces) by double-
clicking it.

* Double-clicking sometimes selects an object and immediately initiates a
default action associated with it. For example, double-clicking a source
file in the Project view opens the file in a Text Editor window.

* You can access a contextual popup menu by clicking the right mouse
button. The menu displayed is specific to the current context, including
the object or window under the mouse.

For example, right-clicking a project name in the Project view displays a
popup menu with operations appropriate to the project file. Right-
clicking a source (HDL) file in the Project view displays a popup menu
with operations applicable to source files.

Right-clicking a selectable object in an HDL Analyst schematic also
selects it, and deselects anything that was selected. The resulting popup
menu applies only to the selected object. See RTL View, on page 77, and
Technology View, on page 78, for information on HDL Analyst views.

Most of the mouse button operations involve selecting and deselecting
objects. To use the mouse in this way in an HDL Analyst schematic, the
mouse pointer must be the cross-hairs symbol: ~‘— If the cross-hairs pointer
is not displayed, right-click the schematic background to display it.

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
54 Synopsys Confidential Information January 2020

Using the Mouse User Interface Overview

Using the Mouse Wheel

If your mouse has a wheel and you are using a Microsoft Windows platform,
you can use the wheel to scroll and zoom, as follows:

* Whenever only a horizontal scroll bar is visible, rotating the wheel
scrolls the window horizontally.

* Whenever a vertical scroll bar is visible, rotating the wheel scrolls the
window vertically.

* Whenever both horizontal and vertical scroll bars are visible, rotating
the wheel while pressing and holding the Shift key scrolls the window
horizontally.

* In a window that can be zoomed, such as a graphics window, rotating
the wheel while pressing and holding the Ctrl key zooms the window.

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 55

User Interface Overview Toolbars

Toolbars

Toolbars provide a quick way to access common menu commands by clicking
their icons. The following standard toolbars are available:

* Project Toolbar — Project control and file manipulation.
* Analyst Toolbar — Manipulation of RTL and Technology views.

* FSM Viewer Toolbar — Display of finite state machine (FSM) informa-
tion.

* Text Editor Toolbar — Text Editor bookmark commands.

* Tools Toolbar — Opens supporting tool.

You can enable or disable the display of individual toolbars — see Toolbar
Command, on page 326.

By dragging a toolbar, you can move it anywhere on the screen: you can
make it float in its own window or dock it at a docking area (an edge) of the
application window. To move the menu bar to a docking area without docking
it there (that is, to leave it floating), press and hold the Ctrl or Shift key while
dragging it.

Right-clicking the window title bar when a toolbar is floating displays a popup
menu with commands Hide and Move. Hide removes the window. Move lets you
position the window using either the arrow keys or the mouse.

Project Toolbar

The Project toolbar provides the following icons, by default:

Open Launch Identify
Opgn Instrumentor
project New DeS|gn Plan Save All Copy Undo Find Launch
SYNCore
New HDL file Save Cut Paste Redo Constraint
New SCOPE File Check
Launch Identify
Debugger
© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual

56 Synopsys Confidential Information January 2020

Toolbars User Interface Overview

The following table describes the default Project icons. Each is equivalent to a
File or Edit menu command; for more information, see the following:

* File Menu, on page 304
e Edit Menu, on page 309

Icon Description
Open Project Displays the Open Project dialog box to create a

new project or to open an existing project.
Same as File ->Open Project.

New HDL file Opens the Text Editor window with a new, empty
source file.

Same as File ->New, Verilog File or VHDL File.

[E] New Constraint File (SCOPE) Opens the SCOPE spreadsheet with a new,
empty constraint file.

Same as File ->New, Constraint File (SCOPE).

Open Displays the Open dialog box, to open a file.
Same as File ->Open.
Save Saves the current file. If the file has not yet been

saved, this displays the Save As dialog box, where
you specify the filename. The kind of file depends
on the active view.

Same as File ->Save.

Save All Saves all files associated with the current design.
Same as File ->Save All.

Cut Cuts text or graphics from the active view,
making it available to Paste.

Same as Edit ->Cut.

Paste Pastes previously cut or copied text or graphics
to the active view.

Same as Edit ->Paste.

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 57

User Interface Overview

Toolbars

Icon

Undo
Redo
Find

Analyst Toolbar

Description

Undoes the last action taken.
Same as Edit ->Undo.

Performs the action undone by Undo.
Same as Edit ->Redo.

Finds text in the Text Editor or objects in an RTL
view or Technology view.

Same as Edit ->Find.

The Analyst toolbar becomes active after a design has been compiled. The
toolbar provides the following icons, by default:

aTL Eming Show Full Zoom Selection
| epol Critical View Out Po
View View Foward path ‘ | Hierarchy Fme
= | H iy e ' G L I
@ L IT F @'M%J&Q}g&gaa&."w
Technology Timing Back) ‘ Find Zoom Show Selection
View Analyst Fiter In Top Back
Schematic View

The following table describes

the default Analyst icons. Each is equivalent to

an HDL Analyst menu command — see HDL Analyst Menu, on page 405, for more

information.

© 2020 Synopsys, Inc.
58

Synopsys Confidential Information

Synplify Pro for Microsemi Edition Reference Manual
January 2020

Toolbars User Interface Overview

Icon Description

RTL View Opens a new, hierarchical RTL view: a register
transfer-level schematic of the compiled design,
together with the associated Hierarchy Browser.

Same as HDL Analyst ->RTL ->Hierarchical View.

Technology View Opens a new, hierarchical Technology view: a
technology-level schematic of the mapped
(synthesized) design, together with the associated
Hierarchy Browser.

Same as HDL Analyst ->Technology ->Hierarchical View.

Timing Analyst Generates and displays a custom timing report and
view. The timing report provides more information
than the default report (specific paths or more than
five paths) or one that provides timing based on
additional analysis constraint files. See Analysis
Menu, on page 349.

Only available for certain device technologies.
Same as Analysis ->Timing Analyst.

Filter Schematic Filters your entire design to show only the selected
objects. The result is a filtered schematic.

Same as HDL Analyst ->Filter Schematic.

Show Critical Path Filters your design to show only the instances (and
their paths) whose slack times are within the slack
margin of the worst slack time of the design (see HDL
Analyst ->Set Slack Margin). The result is flat if the entire
design was already flat.

Available only in a Technology view.

Back Goes backward in displaying schematics of the current
HDL Analyst view.
Same as View ->Back.

Forward Goes forward in displaying schematics of the current
HDL Analyst view.
Same as View ->Forward.

Zoom In Zooms the view in or out. Buttons stay active until
deselected.

@, Zoom Out Same as View ->Zoom In or View ->Zoom Out.

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.

January 2020 Synopsys Confidential Information 59

User Interface Overview Toolbars

Icon Description
Zoom Full Zoom that reduces the active view to display the entire
design.
Same as View ->Full View.
@ Show Top Level Displays the schematic for the top-level view.
E} Pop Hierarchy Traverses the schematic hierarchy using pop mode.
E Selection Back Displays the previous schematic that was selected.
E} Selection Forward Toggles back to the original schematic that was

previously selected.

Text Editor Toolbar

The Edit toolbar is active whenever the Text Editor is active. You use it to edit
bookmarks in the file. (Other editing operations are located on the Project
toolbar — see Project Toolbar, on page 56.) The Edit toolbar provides the
following icons, by default:

Toggle Bookmark Previous Bookmark
Pk ba by
Next Bookmark Clear All Bookmarks

The following table describes the default Edit icons. Each is available in the
Text Editor, and each is equivalent to an Edit menu command there — see Edit
Menu Commands for the Text Editor, on page 310, for more information.

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
60 Synopsys Confidential Information January 2020

Toolbars User Interface Overview

Icon Description

Toggle Bookmark Alternately inserts and removes a bookmark at the line
that contains the text cursor.

Same as Edit ->Toggle bookmark.

Next Bookmark Takes you to the next bookmark.
Same as Edit ->Next bookmark.

Previous Bookmark Takes you to the previous bookmark.
Same as Edit ->Previous bookmark.

Clear All Bookmarks Removes all bookmarks from the Text Editor window.
Same as Edit ->Delete all bookmarks.

FSM Viewer Toolbar

When you push down into a state machine primitive in an RTL view, the FSM
Viewer displays and enables the FSM toolbar. The FSM Viewer graphically
displays the states and transitions. It also lists them in table form. By default,
the FSM toolbar provides the following icons, providing access to common
FSM Viewer commands.

Toggle FSM Tabl %% 5:3 i
oggle able r— | Filter by outputs

Unfilter FSM

The following table describes the default FSM icons. Each is available in the
FSM viewer, and each is equivalent to a View menu command available there
— see View Menu, on page 323, for more information.

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 61

User Interface Overview

Toolbars

Icon

Toggle FSM Table

Unfilter FSM

Filter by outputs

Tools Toolbar

Description

Toggles the display of state-and-transition tables.
Same as View->FSM Table.

Restores a filtered FSM diagram so that all the states and
transitions are showing.

Same as View->Unfilter.

Hides all but the selected state(s), their output
transitions, and the destination states of those
transitions.

Same as View->Filter->By output transitions.

The Tools Toolbar opens supporting tool.

Icon

T, Constraint Check

Identify Instrumentor

Description

Checks the syntax and applicability of the
timing constraints in the constraint file for your
project and generates a report
(project_name_cck.rpt).

Same as Run->Constraint Check.

Brings up the Synopsys Identify Instrumentor
product. For more information, see Working
with the Identify Tools, on page 5520f the User
Guide.

Launch Identify Debugger Launches the Synopsys Identify Debugger

Launch SYNCore

wes VCS Simulator

© 2020 Synopsys, Inc.
62

product. For more information, see Working
with the Identify Tools, on page 5520of the User
Guide.

Launches the SYNCore IP wizard. This tool
helps you build IP blocks such as memory
models for your design.

For more information, see Launch SYNCore
Command, on page 391.

Configures and launches the VCS simulator.

Synplify Pro for Microsemi Edition Reference Manual
Synopsys Confidential Information January 2020

Keyboard Shortcuts User Interface Overview

Keyboard Shortcuts

Keyboard shortcuts are key sequences that you type in order to run a
command. Menus list keyboard shortcuts next to the corresponding
commands.

For example, to check syntax, you can press and hold the Shift key while you
type the F7 key, instead of using the menu command Run ->Syntax Check.

Run

Resynthesize all

Compile Only F7

‘Wrike Oukput Metlist Only

Estimate Area Fa
Compile Pheysical Hierarchy shift+F9
F3M Explorer F10

Translate Constraints. ..

(Synthesis Check Shift+Fg >
[Consteaint Check hift+F10

W

Arrange YHOL Files

Launch Identify

ﬁﬁ Launch Identify Debugger

€1 Launch S¥MCare,..

W68 Configure and Launch YCS Simulator ..,
Run TCL Scripk.. .

Fun All Implementations

Job Status
et Error'Warning FS
Previous Error/\Warning Shift+F5

The following table describes the keyboard shortcuts.

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 63

User Interface Overview Keyboard Shortcuts

Keyboard Description
Shortcut
b In an RTL or Technology view, shows all logic between two or

more selected objects (instances, pins, ports). The result is a
filtered schematic. Limited to the current schematic.

Same as HDL Analyst ->Current Level ->Expand Paths (see HDL
Analyst Menu: Filtering and Flattening Commands, on

page 408).
Ctrl-++ In the FSM Viewer, hides all but the selected state(s), their
(number pad) output transitions, and the destination states of those
transitions.

Same as View ->Filter ->By output transitions.

Ctrl-+- In the FSM Viewer, hides all but the selected state(s), their input
(number pad) transitions, and the origin states of those transitions.

Same as View ->Filter ->By input transitions.

Ctrl-+* In the FSM Viewer, hides all but the selected state(s), their input
(number pad) and output transitions, and their predecessor and successor
states.

Same as View ->Filter ->By any transition.

Ctrl-1 In an RTL or Technology view, zooms the active view, when you
click, to full (normal) size. Same as View ->Normal View.

Ctrl-a Centers the window on the design. Same as View ->Pan Center.

Ctrl-b In an RTL or Technology view, shows all logic between two or

more selected objects (instances, pins, ports). The result is a
filtered schematic. Operates hierarchically, on lower levels as
well as the current schematic.

Same as HDL Analyst ->Hierarchical ->Expand Paths (see HDL Analyst
Menu: Hierarchical and Current Level Submenus, on
page 400).

Ctrl-c Copies the selected object. Same as Edit ->Copy. This shortcut is
sometimes available even when Edit ->Copy is not. See, for
instance, Find Command (HDL Analyst), on page 315.)

Ctrl-d In an RTL or Technology view, selects the driver for the selected
net. Operates hierarchically, on lower levels as well as the
current schematic.

Same as HDL Analyst->Hierarchical ->Select Net Driver (see HDL
Analyst Menu: Hierarchical and Current Level Submenus, on
page 400).

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
64 Synopsys Confidential Information January 2020

Keyboard Shortcuts

User Interface Overview

Keyboard
Shortcut

Ctrl-e

Ctrl-Enter (Return)

Ctrl-f
Ctrl-F2

Ctrl-F4
Ctrl-F6
Ctrl-g

Ctrl-h

Ctrl-i

Ctrlj

Synplify Pro for Microsemi Edition Reference Manual

January 2020

Description

In an RTL or Technology view, expands along the paths from
selected pins or ports, according to their directions, to the
nearest objects (no farther). The result is a filtered schematic.
Operates hierarchically, on lower levels as well as the current
schematic.

Same as HDL Analyst->Hierarchical ->Expand (see HDL Analyst
Menu: Hierarchical and Current Level Submenus, on
page 406).

In the FSM Viewer, hides all but the selected state(s).
Same as View->Filter->Selected (see View Menu, on page 323).

Finds the selected object. Same as Edit->Find.

Alternately inserts and removes a bookmark to the line that
contains the text cursor.

Same as Edit->Toggle bookmark (see Edit Menu Commands for the
Text Editor, on page 310).

Closes the current window. Same as File ->Close.
Toggles between active windows.

In the Text Editor, jumps to the specified line. Same as Edit->Goto
(see Edit Menu Commands for the Text Editor, on page 310).

In an RTL or Technology view, selects the sheet number in a
multiple-page schematic. Same as View->View Sheets (see View
Menu: RTL and Technology Views Commands, on page 324).

In the Text Editor, replaces text. Same as Edit->Replace (see Edit
Menu Commands for the Text Editor, on page 310).

In an RTL or Technology view, selects instances connected to the
selected net. Operates hierarchically, on lower levels as well as
the current schematic. Same as HDL Analyst->Hierarchical->Select
Net Instances (see HDL Analyst Menu: Hierarchical and Current
Level Submenus, on page 406).

In an RTL or Technology view, displays the unfiltered schematic
sheet that contains the net driver for the selected net. Operates
hierarchically, on lower levels as well as the current schematic.

Same as HDL Analyst->Hierarchical->Goto Net Driver (see HDL
Analyst Menu: Hierarchical and Current Level Submenus, on
page 406).

Synopsys Confidential Information

© 2020 Synopsys, Inc.

65

User Interface Overview Keyboard Shortcuts

© 2020 Synopsys, Inc.

66

Keyboard
Shortcut

Ctrl-l

Ctrl-m

Ctrl-n
Ctrl-o
Ctrl-p
Ctrl-q

Ctrl-r

Ctrl-s
Ctrl-t

Ctrl-u

Ctrl-v

Description

In the FSM Viewer, or an RTL or Technology view, toggles zoom
locking. When locking is enabled, if you resize the window the
displayed schematic is resized proportionately, so that it
occupies the same portion of the window.

Same as View->Zoom Lock (see View Menu Commands: All Views,
on page 323).

In an RTL or Technology view, expands inside the subdesign,
from the lower-level port that corresponds to the selected pin, to
the nearest objects (no farther). Same as HDL
Analyst->Hierarchical->Expand Inwards (see HDL Analyst Menu:
Hierarchical and Current Level Submenus, on page 400).

Creates a new file or project. Same as File->New.
Opens an existing file or project. Same as File->Open.
Prints the current view. Same as File->Print.

In an RTL or Technology view, toggles the display of visual
properties of instances, pins, nets, and ports in a design.

In an RTL or Technology view, expands along the paths from
selected pins or ports, according to their directions, until
registers, ports, or black boxes are reached. The result is a
filtered schematic. Operates hierarchically, on lower levels as
well as the current schematic.

Same as HDL Analyst->Hierarchical->Expand to Register/Port (see HDL
Analyst Menu: Hierarchical and Current Level Submenus, on
page 4006).

In the Project View, saves the file. Same as File ->Save.

Toggles display of the Tcl window.
Same as View ->Tcl Window (see View Menu, on page 323).

In the Text Editor, changes the selected text to lower case. Same
as Edit->Advanced->Lowercase (see Edit Menu Commands for the
Text Editor, on page 310).

In the FSM Viewer, restores a filtered FSM diagram so that all
the states and transitions are showing. Same as View->Unfilter
(see View Menu: FSM Viewer Commands, on page 325).

Pastes the last object copied or cut. Same as Edit ->Paste.

Synplify Pro for Microsemi Edition Reference Manual
Synopsys Confidential Information January 2020

Keyboard Shortcuts

User Interface Overview

Keyboard
Shortcut

Ctrl-x

Ctrl-y

Ctrl-z

Ctrl-Shift-F2

Ctrl-Shift-h

Ctrl-Shift-i

Ctrl-Shift-p

Ctrl-Shift-u

Description

Cuts the selected object(s), making it available to Paste. Same as
Edit ->Cut.

In an RTL or Technology view, goes forward in the history of
displayed sheets for the current HDL Analyst view. Same as
View->Forward (see View Menu: RTL and Technology Views
Commands, on page 324).

In other contexts, performs the action undone by Undo. Same as
Edit->Redo.

In an RTL or Technology view, goes backward in the history of
displayed sheets for the current HDL Analyst view. Same as
View->Back (see View Menu: RTL and Technology Views
Commands, on page 324).

In other contexts, undoes the last action. Same as Edit ->Undo.

Removes all bookmarks from the Text Editor window. Same as
Edit ->Delete all bookmarks (see Edit Menu Commands for the Text
Editor, on page 310).

In an RTL or Technology view, shows all pins on selected
transparent hierarchical (non-primitive) instances. Pins on
primitives are always shown. Available only in a filtered
schematic.

Same as HDL Analyst ->Show All Hier Pins (see HDL Analyst Menu:
Analysis Commands, on page 412).

In an RTL or Technology view, selects all instances on the
current schematic level (all sheets). This does not select
instances on other levels.

Same as HDL Analyst->Select All Schematic->Instances (see HDL
Analyst Menu, on page 405).

In an RTL or Technology view, selects all ports on the current
schematic level (all sheets). This does not select ports on other
levels.

Same as HDL Analyst->Select All Schematic->Ports (see HDL Analyst
Menu, on page 405).
In the Text Editor, changes the selected text to lower case.

Same as Edit->Advanced->Uppercase (see Edit Menu Commands
for the Text Editor, on page 310).

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.

January 2020

Synopsys Confidential Information 67

User Interface Overview Keyboard Shortcuts

Keyboard Description
Shortcut
d In an RTL or Technology view, selects the driver for the selected

net. Limited to the current schematic.

Same as HDL Analyst ->Current Level ->Select Net Driver (see HDL
Analyst Menu, on page 405).

Delete (DEL) Removes the selected files from the project. Same as
Project->Remove Files From Project.

e In an RTL or Technology view, expands along the paths from
selected pins or ports, according to their directions, to the
nearest objects (no farther). Limited to the current schematic.

Same as HDL Analyst->Current Level->Expand (see HDL Analyst
Menu, on page 405).

F1 Provides context-sensitive help. Same as Help->Help.

F2 In an RTL or Technology view, toggles traversing the hierarchy
using the push/pop mode. Same as View->Push/Pop Hierarchy (see
View Menu: RTL and Technology Views Commands, on
page 324).
In the Text Editor, takes you to the next bookmark. Same as
Edit->Next bookmark (see Edit Menu Commands for the Text
Editor, on page 310).

F4 In the Project view, adds a file to the project. Same as
Project->Add Source File (see Build Project Command, on
page 308).

In an RTL or Technology view, zooms the view so that it shows
the entire design. Same as View->Full View (see View Menu: RTL
and Technology Views Commands, on page 324).

F5 Displays the next source file error.
Same as Run->Next Error/Warning (see Run Menu, on page 374).

F7 Compiles your design, without mapping it.
Same as Run->Compile Only (see Run Menu, on page 374).

F8 Synthesizes (compiles and maps) your design.
Same as Run->Synthesize (see Run Menu, on page 374).

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
68 Synopsys Confidential Information January 2020

Keyboard Shortcuts

User Interface Overview

Keyboard
Shortcut

F10

F11

F12

Shift-F2
Shift-F4

Shift-F5

Synplify Pro for Microsemi Edition Reference Manual

January 2020

Description

In the Project view, runs the FSM Explorer to determine
optimum encoding styles for finite state machines. Same as Run
->FSM Explorer (see Run Menu, on page 374).

In an RTL or Technology view, lets you pan (scroll) the schematic
by dragging it with the mouse. Same as View ->Pan (see View
Menu: RTL and Technology Views Commands, on page 324).

Toggles zooming in.

Same as View->Zoom In (see View Menu: RTL and Technology
Views Commands, on page 324).

In an RTL or Technology view, filters your entire design to show
only the selected objects.

Same as HDL Analyst->Filter Schematic — see HDL Analyst Menu:
Filtering and Flattening Commands, on page 408.

In an RTL or Technology view, selects instances connected to the
selected net. Limited to the current schematic.

Same as HDL Analyst->Current Level->Select Net Instances (see HDL
Analyst Menu, on page 405).

In an RTL or Technology view, displays the unfiltered schematic
sheet that contains the net driver for the selected net.

Same as HDL Analyst->Current Level->Goto Net Driver (see HDL
Analyst Menu, on page 405).

In an RTL or Technology view, expands along the paths from
selected pins or ports, according to their directions, until
registers, ports, or black boxes are reached. The result is a
filtered schematic. Limited to the current schematic.

Same as HDL Analyst ->Current Level->Expand to Register/Port (see
HDL Analyst Menu, on page 405).

In the Text Editor, takes you to the previous bookmark.

Allows you to add source files to your project (Project->Add Source
Files).

Same as File->New Workspace (see Edit Menu, on page 309).

Displays the previous source file error.

Same as Run->Previous Error/Warning (see Run Menu, on
page 374).

Synopsys Confidential Information

© 2020 Synopsys, Inc.

69

User Interface Overview Keyboard Shortcuts

Keyboard
Shortcut

Shift-F7

Shift-F8

Shift-F10

Shift-F11

Shift-Left Arrow
Shift-Right Arrow
Shift-s

© 2020 Synopsys, Inc.
70

Description

Checks source file syntax.
Same as Run->Syntax Check (see Run Menu, on page 374).

Checks synthesis.
Same as Run->Synthesis Check (see Run Menu, on page 374).

Checks the timing constraints in the constraint files in your
project and generates a report (project_name_cck.rpt).

Same as Run->Constraint Check (see Run Menu, on page 374).

Toggles zooming out.
Same as View->Zoom Out (see View Menu, on page 323).

Displays the previous sheet of a multiple-sheet schematic.
Displays the next sheet of a multiple-sheet schematic.

Dissolves the selected instances, showing their lower-level
details. Dissolving an instance one level replaces it, in the
current sheet, by what you would see if you pushed into it using
the push/pop mode. The rest of the sheet (not selected) remains
unchanged.

The number of levels dissolved is the Dissolve Levels value in the
Schematic Options dialog box. The type (filtered or unfiltered) of the
resulting schematic is unchanged from that of the current
schematic. However, the effect of the command is different in
filtered and unfiltered schematics.

Same as HDL Analyst ->Dissolve Instances — see Dissolve Instances,
on page 414.

Synplify Pro for Microsemi Edition Reference Manual
Synopsys Confidential Information January 2020

Buttons and Options User Interface Overview

Buttons and Options

The Project view contains several buttons and a few additional features that
give you immediate access to some of the more common commands and user

options.

2Run

!} Open Projeck, ..

,!: Close Project

[Add File...

By Change File...

Add Implementation. ..

{m' Implementation Options. ..

% Add P&R Implementation

&, View Log

—Frequency(MHz):

o) N
i =

@ Auto Constrain

The following table describes the Project View buttons and options.

Button/Option Action

Open Project... Opens a new or existing project.
Same as File->Open Project (see Open Project Command, on
page 309).

Close Project Closes the current project.

Same as File->Close Project (see Run Menu, on page 374).

Add File... Adds a source file to the project.

Same as Project->Add Source File (see Build Project
Command, on page 308).

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 71

User Interface Overview

Buttons and Options

Button/Option
Change File...

Add Implementation

Implementation Options/

Add P&R
Implementation

View Log

Frequency (MHz)

Auto Constrain

FSM Compiler

© 2020 Synopsys, Inc.
72

Action

Replaces one source file with another.

Same as Project ->Change File (see Change File Command,
on page 3395).

Creates a new implementation.

Same as Project ->New Implementation (see Edit Menu, on
page 309).

Displays the Implementation Options dialog box, where you
can set various options for synthesis.

Same as Project ->Implementation Options (see
Implementation Options Command, on page 345).

Creates a place-and-route implementation to control and
run place and route from within the synthesis tool. See
Add P&R Implementation Popup Menu Command, on
page 469 for a description of the dialog box, and Running
P&R Automatically after Synthesis, on page 542 in the
User Guide for information about using this feature.

Displays the log file.
Same as View ->View Log File (see View Menu, on page 323).

Sets the global frequency, which you can override locally
with attributes.

Same as enabling the Frequency (MHz) option on the
Constraints panel of the Implementation Options dialog box.

When Auto Constrain is enabled and no clocks are
defined, the software automatically constrains the design
to achieve best possible timing by reducing periods of
individual clock and the timing of any timed I/O paths in
successive steps.

See Using Auto Constraints, on page 373 in the User
Guide for detailed information about using this option.

You can also set this option on the Constraints panel of the
Implementation Options dialog box.

Turning on this option enables special FSM optimizations.

Same as enabling the FSM Compiler option on the Options
panel of the Implementation Options dialog box (see Using the
Mouse, on page 50 and Optimizing State Machines, on
page 421 in the User Guide).

Synplify Pro for Microsemi Edition Reference Manual
Synopsys Confidential Information January 2020

Buttons and Options

User Interface Overview

Button/Option
FSM Explorer

Resource Sharing

Retiming

Run

Technical Resource
Center

Synplify Pro for Microsemi Edition Reference Manual

January 2020

Action

When enabled, the FSM Explorer selects an encoding style
for the finite state machines in your design.

Same as enabling the FSM Explorer option on the Options
panel of the Implementation Options dialog box. For more
information, see Running the FSM Explorer, on page 426
and Running the FSM Compiler, on page 423 in the User
Guide.

When enabled, makes the synthesis use resource sharing
techniques. This produces the resource sharing report in
the log file (see Resource Usage Report, on page 160).

Same as enabling the Resource Sharing option on the Options
panel of the Implementation Options dialog box. See Sharing
Resources, on page 419 in the User Guide.

When enabled, improves the timing performance of
sequential circuits. The retiming process moves storage
devices (flip-flops) across computational elements with no
memory (gates/LUTs) to improve the performance of the
circuit. This option also adds a retiming report to the log
file.

Same as enabling the Retiming option on the Options panel
of the Implementation Options dialog box. Use the
syn_allow_retiming attribute to enable or disable retiming for
individual flip-flops. See syn_black box, on page 29 for
syntax details.

Runs synthesis (compilation and mapping).
Same as the Run->Synthesize command (see Run Menu, on
page 374).

Goes to the web page for the Synopsys Technical Resource
Center, which contains Synplicity Business Group (SBG)
product Messages.

Synopsys Confidential Information

© 2020 Synopsys, Inc.

73

User Interface Overview Buttons and Options

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
74 Synopsys Confidential Information January 2020

SYNOPSYS

Silicon to Software

CHAPTER 3

HDL Analyst Tool

The HDL Analyst tool helps you examine your design and synthesis results,
and analyze how you can improve design performance and area.

The following describe the HDL Analyst tool and the operations you can
perform with it.

* HDL Analyst Views and Commands, on page 76

* Schematic Objects and Their Display, on page 86

* Basic Operations on Schematic Objects, on page 96
* Multiple-sheet Schematics, on page 102

* Exploring Design Hierarchy, on page 105

* Filtering and Flattening Schematics, on page 112

* Timing Information and Critical Paths, on page 118

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 75

HDL Analyst Tool

HDL Analyst Views and Commands

HDL Analyst Views and Commands

© 2020 Synopsys, Inc.

76

The HDL Analyst tool graphically displays information in two schematic

views: the RTL and Technology views (see RTL View, on page 77 and

Technology View, on page 78 for information). The graphic representation is
useful for analyzing and debugging your design, because you can visualize
where coding changes or timing constraints might reduce area or increase
performance.

This section gives you information about the following:

RTL View, on page 77

Technology View, on page 78

Hierarchy Browser, on page 81

FSM Viewer Window, on page 83

Filtered and Unfiltered Schematic Views, on page 84
Accessing HDL Analyst Commands, on page 85

Synopsys Confidential Information

Synplify Pro for Microsemi Edition Reference Manual

January 2020

HDL Analyst Views and Commands HDL Analyst Tool

RTL View

The RTL view provides a high-level, technology-independent, graphic repre-
sentation of your design after compilation, using technology-independent
components like variable-width adders, registers, large multiplexers, and
state machines. RTL views correspond to the srs netlist files generated during
compilation. RTL views are only available after your design has been success-
fully compiled. For information about the other HDL Analyst view (the
Technology view generated after mapping), see Technology View, on page 78.

To display an RTL view, first compile or synthesize your design, then select
HDL Analyst->RTL and choose Hierarchical View or Flattened View, or click the
RTL icon (|@)).

An RTL view has two panes: a Hierarchy Browser on the left and an RTL
schematic on the right. You can drag the pane divider with the mouse to
change the relative pane sizes. For more information about the Hierarchy
Browser, see Hierarchy Browser, on page 81. Your design is drawn as a set of
schematics. The schematic for a design module (or the top level) consists of
one or more sheets, only one of which is visible in a given view at any time.
The title bar of the window indicates the current hierarchical schematic level,
the current sheet, and the total number of sheets for that level.

Sheet # of total # Current schematic |evel
™,
G Fillzied Skheel 1 od 1 i Tog level Jof mesdule paep?_2| |Flteaed BTL View] §npd-alins
O e (164
] O Pt [B]
=0 Tyr
] O Dhaek Ties
Hierarchy Browser Movable pane divider Schemalic

The design in the RTL schematic can be hierarchical or flattened. Further, the
view can consist of the entire design or part of it. Different commands apply,
depending on the kind of RTL view.

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 77

HDL Analyst Tool HDL Analyst Views and Commands

The following table lists where to find further information about the RTL view:

For information about... See...

Hierarchy Browser Hierarchy Browser, on page 81

Procedures for RTL view Working in the Standard Schematic, on page 289 of the
operations like User Guide.

crossprobing, searching,

pushing/popping,

filtering, flattening, etc.

Explanations or HDL Analyst Tool, on page 75
descriptions of features

like object display,

filtering, flattening, etc.

Commands for RTL view Accessing HDL Analyst Commands, on page 85

operations like filtering, ppr, Analyst Menu, on page 405
flattening, etc.

Viewing commands like = View Menu: RTL and Technology Views Commands, on
zooming, panning, etc. page 324

History commands: Back View Menu: RTL and Technology Views Commands, on
and Forward page 324

Search command Find Command (HDL Analyst), on page 315

Technology View

A Technology view provides a low-level, technology-specific view of your
design after mapping, using components such as look-up tables, cascade and
carry chains, multiplexers, and flip-flops. Technology views are only available
after your design has been synthesized (compiled and mapped). For informa-
tion about the other HDL Analyst view (the RTL view generated after compila-
tion), see RTL View, on page 77.

To display a Technology view, first synthesize your design, and then either
select a view from the HDL Analyst->Technology menu (Hierarchical View, Flattened
View, Flattened to Gates View, Hierarchical Critical Path, or Flattened Critical Path) or
select the Technology view icon ().

A Technology view has two panes: a Hierarchy Browser on the left and an RTL
schematic on the right. You can drag the pane divider with the mouse to
change the relative pane sizes. For more information about the Hierarchy

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
78 Synopsys Confidential Information January 2020

HDL Analyst Views and Commands

HDL Analyst Tool

Browser, see Hierarchy Browser, on page 81. Your design is drawn as a set of
schematics at different design levels. The schematic for a design module (or
the top level) consists of one or more sheets, only one of which is visible in a
given view at any time. The title bar of the window indicates the current
schematic level, the current sheet, and the total number of sheets for that

level.

Sheet # of total #
™

Current schematic level

Hierarchy Browser

4 o |nsmaes (1]
] O P)
+ O Mem 1R

WE Sheot 1ol 3 g lowel (ol o piep_2 |1 ccleolop Vo]
P e,

a [L
AE = S =T
- - mll=
= =
ot
Movable pane divider Schemalic

4

Fn

i

Jﬁ

Nl

r

The schematic design can be hierarchical or flattened. Further, the view can
consist of the entire design or a part of it. Different commands apply,
depending on the kind of view. In addition to all the features available in RTL
views, Technology views have two additional features: critical path filtering
and flattening to gates.

Synplify Pro for Microsemi Edition Reference Manual

January 2020

Synopsys Confidential Information

© 2020 Synopsys, Inc.
79

HDL Analyst Tool

HDL Analyst Views and Commands

The following table lists where to find further information about the

Technology view:

For information about...
Hierarchy Browser

Procedures for
Technology view
operations like
crossprobing, searching,
pushing/popping,
filtering, flattening, etc.

Explanations or
descriptions of features
like object display,
filtering, flattening, etc.

Commands for
Technology view
operations like filtering,
flattening, etc.

Viewing commands like
zooming, panning, etc.

History commands: Back
and Forward

Search command

© 2020 Synopsys, Inc.

80

See...
Hierarchy Browser, on page 81

Working in the Standard Schematic, on page 289 of the
User Guide

HDL Analyst Tool, on page 75

Accessing HDL Analyst Commands, on page 85
HDL Analyst Menu, on page 405

View Menu: RTL and Technology Views Commands, on
page 324

View Menu: RTL and Technology Views Commands, on
page 324

Find Command (HDL Analyst), on page 315

Synplify Pro for Microsemi Edition Reference Manual
Synopsys Confidential Information January 2020

HDL Analyst Views and Commands HDL Analyst Tool

Hierarchy Browser

The Hierarchy Browser is the left pane in the RTL and Technology views. (See
RTL View, on page 77 and Technology View, on page 78.) The Hierarchy
Browser categorizes the design objects in a series of trees, and lets you
browse the design hierarchy or select objects. Selecting an object in the
Browser selects that object in the schematic. The objects are organized as
shown in the following table, with a symbol that indicates the object type. See
Hierarchy Browser Symbols, on page 82 for common symbols.

Instances Lists all the instances and primitives in the design. In a Technology
view, it includes all technology-specific primitives.

Ports Lists all the ports in the design.
Nets Lists all the nets in the design.

Clock Tree Lists all the instances and ports that drive clock pins in an RTL view. If
you select everything listed under Clock Tree and then use the Filter
Schematic command, you see a filtered view of all clock pin drivers in
your design. Registers are not shown in the resulting schematic,
unless they drive clocks. This view can help you determine what to
define as clocks.

A tree node can be expanded or collapsed by clicking the associated icons:
the square plus () or minus (|E|) icons, respectively. You can also expand
or collapse all trees at the same time by right-clicking in the Hierarchy
Browser and choosing Expand All or Collapse All.

You can use the keyboard arrow keys (left, right, up, down) to move between
objects in the Hierarchy Browser, or you can use the scroll bar. Use the Shift
or Ctrl keys to select multiple objects. See Navigating With a Hierarchy
Browser, on page 108 for more information about using the Hierarchy
Browser for navigation and crossprobing.

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 81

HDL Analyst Tool

HDL Analyst Views and Commands

Hierarchy Browser Symbols

Common symbols used in Hierarchy Browsers are listed in the following

table.

Symbol

Gl = I R I RV N

H

v o e

Description

Folder

Input port

Output port
Bidirectional port

Net

Other primitive instance
Hierarchical instance

Technology-specific primitive
or inferred ROM

Register
or inferred state machine

Multiplexer
Tristate

Inverter

© 2020 Synopsys, Inc.

82

Synopsys Confidential Information

Symbol

@O ® ©F U Y YO0y

Description
Buffer

AND gate
NAND gate
OR gate
NOR gate
XOR gate
XNOR gate
Adder

Multiplier

Equal comparator
Less-than comparator

Less-than-or-equal comparator

Synplify Pro for Microsemi Edition Reference Manual

January 2020

HDL Analyst Views and Commands HDL Analyst Tool

FSM Viewer Window

Pushing down into a state machine primitive in the RTL view displays the
FSM Viewer and enables the FSM toolbar. The FSM Viewer contains graphical
information about the finite state machines (FSMs) in your design. The
window has a state-transition diagram and tables of transitions and state
encodings.

State- ‘ '
Transition : ~
Diagram ! -'

Transitions 7
©

Encodings

Tables , : — =
I I Fam s To Fraks raardein =
E. LohL L' b darded
12 |onomtien oy pmioy
_E' 1AL RiH | e erescey -
| £ JERE) N Lt S U dl s e i) ot

racsbora | R Envuding Fla_pd Sindings:

For the FSM Viewer to display state machine names for a Verilog design, you
must use the Verilog parameter keyword. If you specify state machine names
using the define keyword, the FSM Viewer displays the binary values for the
state machines, rather than their names.

You can toggle display of the FSM tables on and off with the Toggle FSM Table
icon () on the FSM toolbar. The FSM tables are in the following panels:

* The Transitions panel describes, for each transition, the From State, To State,
and Condition of transition.

* The RTL Encodings panel describes the correlation, in the RTL view,
between the states (State) and the outputs (Register) of the FSM cell.

* The Mapped Encodings panel describes the correlation, in the Technology
view, between the states (State) and their encodings into technology-
specific registers. The information in this panel is available only after the
design has been synthesized.

The following table describes FSM Viewer operations.

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 83

HDL Analyst Tool

HDL Analyst Views and Commands

To accomplish this...

Open the FSM Viewer

Hide/display the table

Filter selected states and
their transitions

Display the encoding
properties of a state

Display properties for the
state machine

Crossprobe

Do this...

Run the FSM Compiler or the FSM Explorer. Use the
push/pop mode in the RTL view to push down into
the FSM and open the FSM Viewer window.

Use the FSM icons.

Select the states. Right-click and choose the filter
criteria from the popup, or use the FSM icons.

Select a state. Right-click to display its encoding
properties (RTL or Mapped).

Right-click the window, outside the state-transition
diagram. The property sheet shows the selected
encoding method, the number of states, and the total
number of transitions among states.

Double-click a register in an RTL or Technology view
to see the corresponding code. Select a state in the
FSM view to highlight the corresponding code or
register in other open views.

Filtered and Unfiltered Schematic Views

HDL Analyst views (RTL View, on page 77 and Technology View, on page 78)
consist of schematics that let you analyze your design graphically. The

schematics can be filtered or unfiltered. The distinction is important because
the kind of view determines how objects are displayed for certain commands.

* Unfiltered schematics display all the objects in your design, at appro-
priate hierarchical levels.

* Filtered schematics show only a subset of the objects in your design,
because the other objects have been filtered out by some operation. The
Hierarchy Browser in the filtered view always list all the objects in the
design, not just the filtered objects. Some commands, such as HDL
Analyst -> Show Context, are only available in filtered schematics. Views
with a filtered schematic have the word Filtered in the title bar.

© 2020 Synopsys, Inc.
84

Synplify Pro for Microsemi Edition Reference Manual

Synopsys Confidential Information January 2020

HDL Analyst Views and Commands HDL Analyst Tool

Indicates a filtered schematic

(

Primitives (35) data mux
decode (ins_decode) -
dmux (data_mux)

Filtering commands affect only the displayed schematic, not the under-
lying design. For a detailed description of filtering, see Filtering and
Flattening Schematics, on page 112. For procedures on using filtering,
see Filtering Schematics, on page 336 in the User Guide.

Accessing HDL Analyst Commands

You can access HDL Analyst commands in many ways, depending on the
active view, the currently selected objects, and other design context factors.
The software offers these alternatives to access the commands:

* HDL Analyst and View menus

* HDL Analyst popup menus appear when you right-click in an HDL
Analyst view. The popup menu is context-sensitive, and includes
commonly used commands from the HDL Analyst and View menus, as well
as some additional commands.

* HDL Analyst toolbar icons provide shortcuts to commonly used
commands

For brevity, this document primarily refers to the menu method of accessing
the commands and does not list alternative access methods.

See also:
* HDL Analyst Menu, on page 405
* View Menu, on page 323
* RTL and Technology Views Popup Menus, on page 474
* Analyst Toolbar, on page 58

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 85

HDL Analyst Tool Schematic Objects and Their Display

Schematic Objects and Their Display

Schematic objects are the objects that you manipulate in an HDL Analyst
schematic: instances, ports, and nets. Instances can be categorized in
different ways, depending on the operation: hidden/unhidden, trans-
parent/opaque, or primitive/hierarchical. The following topics describe
schematic objects and the display of associated information in more detail:

* Object Information, on page 86

¢ Sheet Connectors, on page 87

* Primitive and Hierarchical Instances, on page 88

* Hidden Hierarchical Instances, on page 92

* Transparent and Opaque Display of Hierarchical Instances, on page 90

* Schematic Display, on page 92

For most objects, you select them to perform an operation. For some objects
like sheet connectors, you do not select them but right-click on them and
select from the popup menu commands.

Object Information

To obtain information about specific objects, you can view object properties
with the Properties command from the right-click popup menu, or place the
pointer over the object and view the object information displayed. With the
latter method, information about the object displays in these two places until
you move the pointer away:

* The status bar at the bottom of the synthesis window displays the name
of the instance, net, port, or sheet connector and other relevant informa-
tion. If HDL Analyst->Show Timing Information is enabled, the status bar also
displays timing information for the object. Here is an example of the
status bar information for a net:

Net cl ock (local net clock) Fanout=4

You can enable and disable the display of status bar information by
toggling the command View -> Status Bar.

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
86 Synopsys Confidential Information January 2020

Schematic Objects and Their Display HDL Analyst Tool

* In a tooltip at the mouse pointer
Displays the name of the object and any attached attributes. The
following figure shows tooltip information for a state machine:

statemachine \
data |
ok C 0[20] el A ’ [guess ==
ret R uni_state
Mouse pointer |1, =tatell:d]

Tooltip —}state[0:3] [staternaching] - Properties: spn_fem_id:62138211 |

To disable tooltip display, select View -> Toolbars and disable the Show
Tooltips option. Do this if you want to reduce clutter.

See also
* Pin and Pin Name Display for Opaque Objects, on page 94
* Standard HDL Analyst Options Command, on page 433

Sheet Connectors

When the HDL Analyst tool divides a schematic into multiple sheets, sheet
connector symbols indicate how sheets are related. A sheet connector symbol
is like a port symbol, but it has an empty diamond with sheet numbers at one
end. Use the Options->HDL Analyst Options command (see Sheet Size Panel, on
page 438) to control how the schematic is divided into multiple sheets.

< _pe[10:0] = [resetn —
& peffooT— o — (8=
Diamond indicates sheet connector

If you enable the Show Sheet Connector Index option in the (Options->HDL Analyst
Options), the empty diamond becomes a hexagon with a list of the connected
sheets. You go to a connecting sheet by right-clicking a sheet connector and
choosing the sheet number from the popup menu. The menu has as many
sheet numbers as there are sheets connected to the net at that point.

INST_0() INST_0 >
Show Sheet Connector Index disabled Show Sheet Connector Index enabled
Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.

January 2020 Synopsys Confidential Information 87

HDL Analyst Tool Schematic Objects and Their Display

See also
* Multiple-sheet Schematics, on page 102
* Standard HDL Analyst Options Command, on page 433
* RTL and Technology Views Popup Menus, on page 474

Primitive and Hierarchical Instances

HDL Analyst instances are either primitive or hierarchical, and sorted into
these categories in the Hierarchy Browser. Under Instances, the browser first
lists hierarchical instances, and then lists primitive instances under
Instances->Primitives.

Primitive Instances

Although some primitive objects have hierarchy, the term is used here to
distinguish these objects from user-defined hierarchies. Primitive instances
include the following:

RTL View Technology View

High-level logic primitives, like XOR gates Black boxes
or priority-encoded multiplexers

Inferred ROMs, RAMs, and state Technology-specific primitives, like
machines LUTs or FPGA block RAMs
Black boxes

Technology-specific primitives, like LUTs
or FPGA block RAMs

In a schematic, logic gate primitives are represented with standard schematic
symbols, and technology-specific primitives with various symbols (see
Hierarchy Browser Symbols, on page 82). You can push into primitives like
technology-specific primitives, inferred ROMs, and inferred state machines to
view internal details. You cannot push into logic primitives.

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
88 Synopsys Confidential Information January 2020

Schematic Objects and Their Display HDL Analyst Tool

Hierarchical Instances

Hierarchical instances are user-defined hierarchies; all other instances are
considered to be primitives. Hierarchical instances correspond to Verilog
modules and VHDL entities.

The Hierarchy Browser lists hierarchical instances under Instances, and uses
this symbol: T} . In a schematic, the display of hierarchical instances
depends on the combination of the following:

* Whether the instance is transparent or opaque. Transparent instances
show their internal details nested inside them; opaque instances do not.
You cannot directly control whether an object is transparent or opaque;
the views are automatically generated by certain commands. See Trans-
parent and Opaque Display of Hierarchical Instances, on page 90 for
details.

* Whether the instance is hidden or not. This is user-controlled, and you
can hide instances so that they are ignored by certain commands. See
Hidden Hierarchical Instances, on page 92 for more information.

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 89

HDL Analyst Tool Schematic Objects and Their Display

Transparent and Opaque Display of Hierarchical Instances

A hierarchical instance can be displayed transparently or opaquely. You
cannot directly control the display; certain commands cause instances to be
transparent. The distinction between transparent and opaque is important
because some commands operate differently on transparent and opaque
instances. For example, in a filtered schematic Flatten Current Schematic flattens
only transparent hierarchical instances.

* Opaque instances are pale yellow boxes, and do not display their
internal hierarchy. This is the default display.

rmod]

(a4 pa U J ———— No nested logic

* Transparent instances display some or all their lower-level hierarchy
nested inside a hollow box with a pale yellow border. Transparent
instances are only displayed in filtered schematics, and are a result of
certain commands. See Looking Inside Hierarchical Instances, on
page 110 for information about commands that generate transparent
instances.

A transparent instance can contain other opaque or transparent
instances nested inside. The details inside a transparent instance are
independent schematic objects and you can operate on them
independently: select, push into, hide, and so on. Performing an opera-
tion on a transparent object does not automatically perform it on any of
the objects nested inside it, and conversely.

1
%E::::: C“IEHISEI' ;ﬂﬂ!l’ cul!ﬂls!l’ | ——

mm—a— L YT o —:L— ““=*——— Nested opaque instance
A= At e - WILZERTAI 11 o

Irs 1.8 Irs 1103

Nested transparent instance

Ireit_z
LI
cLe

can
(LS

Transparent instance

Ins .1

Ireit

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
90 Synopsys Confidential Information January 2020

Schematic Objects and Their Display HDL Analyst Tool

See also
* Looking Inside Hierarchical Instances, on page 110
* Multiple Sheets for Transparent Instance Details, on page 104

* Filtered and Unfiltered Schematic Views, on page 84

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 91

HDL Analyst Tool Schematic Objects and Their Display

Hidden Hierarchical Instances

Certain commands do not operate on the lower-level hierarchy of hidden
instances, so you can hide instances to focus the operation of a command
and improve performance. You hide opaque or transparent hierarchical
instances with the Hide Instances command (described in RTL and Technology
Views Popup Menus, on page 474). Hiding and unhiding only affects the
current HDL Analyst view, and does not affect the Hierarchy Browser. You
can hide and unhide instances as needed. The hierarchical logic of a hidden
instance is not removed from the design; it is only excluded from certain
operations.

The schematics indicate hidden hierarchical instances with a small H in the
lower left corner. When the mouse pointer is over a hidden instance, the
status bar and the tooltip indicate that the instance is hidden.

ins_rom
-— clk
—-— rst data_out[11:0] —
o 23|l 110:01]
H” indicates a ; rom

hidden

Tooltip mentions

-
USER(HIDDE = instance is hidden

Schematic Display

The HDL Analyst Options dialog box controls general properties for all HDL
Analyst views, and can determine the display of schematic object informa-
tion. Setting a display option affects all objects of the given type in all views.
Some schematic options only take effect in schematic windows opened after
the setting change; others affect existing schematic windows as well.

The following are some commonly used settings that affect the display of
schematic objects. See Standard HDL Analyst Options Command, on
page 433 for a complete list of display options.

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
92 Synopsys Confidential Information January 2020

Schematic Objects and Their Display

HDL Analyst Tool

Option
Show Cell Interior
Compress Buses

Dissolve Levels

Instances
Filtered Instances

Instances added for
expansion

Instance Name
Show Conn Name
Show Symbol Name
Show Port Name

Show Pin Name

HDL Analyst->Show All Hier
Pins

Synplify Pro for Microsemi Edition Reference Manual

January 2020 Synopsys Confidential Information 93

Controls the display of...
Internal logic of technology-specific primitives
Buses as bundles

Hierarchical levels in a view flattened with HDL Analyst
-> Dissolve Instances or Dissolve to Gates, by setting the
number of levels to dissolve.

Instances on a schematic by setting limits to the
number of instances displayed

Object labels

Pin names. See Pin and Pin Name Display for Opaque
Objects, on page 94 and Pin and Pin Name Display
for Transparent Objects, on page 94 for details.

© 2020 Synopsys, Inc.

HDL Analyst Tool Schematic Objects and Their Display

Pin and Pin Name Display for Opaque Objects

Although it always displays the pins, the software does not automatically
display pin names for opaque hierarchical instances, technology-specific
primitives, RAMS, ROMs, and state machines. To display pin names for these
objects, enable Options-> HDL Analyst Options->Text->Show Pin Name. The following
figures illustrate this display. The first figure shows pins and pin names of an
opaque hierarchical instance, and the second figure shows the pins of a
technology-specific primitive with its cell contents not displayed.

Tooltip with

Mouse pointer pin data mux

[4] k[?],k[4:D]Fanout=9-22_‘ Pin
T J
bl 2

Pins

LUT4_DDD8

Mouse Pointer
Pin Symbol

Pins and
Pin Names. O

[TUN]

Pins and names

a1

BLUB._ o4 Fanouie]
Mouse pointer
(pin symbol)

alub_d_3 am[9]

Pin and Pin Name Display for Transparent Objects

This section discusses pin name display for transparent hierarchical
instances in filtered views and technology-specific primitives.

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
94 Synopsys Confidential Information January 2020

Schematic Objects and Their Display HDL Analyst Tool

Transparent Hierarchical Instances

In a filtered schematic, some of the pins on a transparent hierarchical
instance might not be displayed because of filtering. To display all the pins,
select the instance and select HDL Analyst -> Show All Hier Pins.

To display pin names for the instance, enable Options->HDL Analyst Options->Text
->Show Pin Name. The software temporarily displays the pin name when you
move the cursor over a pin. To keep the pin name displayed even after you
move the cursor away, select the pin. The name remains until you select
something else.

Primitives

To display pin names for technology primitives in the Technology view, enable
Options-> HDL Analyst Options->Text->Show Pin Name. The software displays the pin
names until the option is disabled. If Show Pin Name is enabled when Options->
HDL Analyst Options->General->Show Cell Interior is also enabled, the primitive is
treated like a transparent hierarchical instance, and primitive pin names are
only displayed when the cursor moves over the pins. To keep a pin name
displayed even after you move the cursor away, select the pin. The name
remains until you select something else.

register

Pin selected,
N ca) showing name
T UAlpopa) opo] ped®
T R
inst1.11_0.C2[1:0
instt I_0 alub_d_3_am[5]
See also:

* Standard HDL Analyst Options Command, on page 433
* Controlling the Amount of Logic on a Sheet, on page 102

* Analyzing Timing in Schematic Views, on page 356 in the User Guide

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 95

HDL Analyst Tool Basic Operations on Schematic Objects

Basic Operations on Schematic Objects

Basic operations on schematic objects include the following:
* Finding Schematic Objects, on page 96
* Selecting and Unselecting Schematic Objects, on page 98
* Crossprobing Objects, on page 99
* Dragging and Dropping Objects, on page 101

For information about other operations on schematics and schematic objects,
see the following:

¢ Filtering and Flattening Schematics, on page 112

¢ Timing Information and Critical Paths, on page 118
¢ Multiple-sheet Schematics, on page 102

* Exploring Design Hierarchy, on page 105

Finding Schematic Objects

You can use the following techniques to find objects in the schematic. For
step-by-step procedures using these techniques, see Finding Objects
(Standard), on page 311 in the User Guide.

* Zooming and panning
* HDL Analyst Hierarchy Browser

You can use the Hierarchy Browser to browse and find schematic
objects. This can be a quick way to locate an object by name if you are
familiar with the design hierarchy. See Browsing With the Hierarchy
Browser, on page 311 in the User Guide for details.

¢ Edit -> Find command

The Edit -> Find command is described in Find Command (HDL Analyst),
on page 315. It displays the Object Query dialog box, which lists
schematic objects by type (Instances, Symbols, Nets, or Ports) and lets you
use wildcards to find objects by name. You can also fine-tune your
search by setting a range for the search.

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
96 Synopsys Confidential Information January 2020

Basic Operations on Schematic Objects HDL Analyst Tool

This command selects all found objects, whether or not they are
displayed in the current schematic. Although you can search for hidden
instances, you cannot find objects that are inside hidden instances at a
lower level. Temporarily hiding an instance thus further refines the
search range by excluding the internals of a a given instance. This can
be very useful when working with transparent instances, because the
lower-level details appear at the current level, and cannot be excluded
by choosing Current Level Only. See Using Find for Hierarchical and
Restricted Searches, on page 313 in the User Guide.

* Edit-> Find command combined with filtering

Edit->Find enhances filtering. Use Find to select by name and hierarchical
level, and then filter the design to limit the display to the current selec-
tion. Unselected objects are removed. Because Find only adds to the
current selection (it never deselects anything already selected), you can
use successive searches to build up exactly the selection you need,
before filtering.

* Filtering before searching with Edit->Find

Filtering helps you to fine-tune the range of a search. You can search for
objects just within a filtered schematic by limiting the search range to
the Current Level Only.

Filtering adds to the expressive power of displaying search results. You
can find objects on different sheets and filter them to see them all
together at once. Filtering collapses the hierarchy visually, showing
lower-level details nested inside transparent higher-level instances. The
resulting display combines the advantage of a high-level, abstract view
with detail-rich information from lower levels.

See Filtering and Flattening Schematics, on page 112 for further infor-
mation.

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 97

HDL Analyst Tool Basic Operations on Schematic Objects

Selecting and Unselecting Schematic Objects

Whenever an object is selected in one place it is selected and highlighted
everywhere else in the synthesis tool, including all Hierarchy Browsers, all
schematics, and the Text Editor. Many commands operate on the currently
selected objects, whether or not those objects are visible.

The following briefly list selection methods; for a concise table of selection
procedures, see Selecting Objects in the RTL/ Technology Views, on page 296
in the User Guide.

Using the Mouse to Select a Range of Schematic Objects

In a Hierarchy Browser, you can select a range of schematic objects by
clicking the name of an object at one end of the range, then holding the Shift
key while clicking the name of an object at the other end of the range.To use
the mouse for selecting and unselecting objects in a schematic, the cross-
hairs symbol (~‘—) must appear as the mouse pointer. If this is not currently
the case, right-click the schematic background.

Using Commands to Select Schematic Objects

You can select and deselect schematic objects using the commands in the
HDL Analyst menu, or use Edit->Find to find and select objects by name.

The HDL Analyst menu commands that affect selection include the following:

* Expansion commands like Expand, Expand to Register/Port, Expand Paths,
and Expand Inwards select the objects that result from the expansion. This
means that (except for Expand to Register/Port) you can perform successive
expansions and expand the set of objects selected.

* The Select All Schematic and Select All Sheet commands select all instances
or ports on the current schematic or sheet, respectively.

* The Select Net Driver and Select Net Instances commands select the appro-
priate objects according to the hierarchical level you have chosen.

* Deselect All deselects all objects in all HDL Analyst views.
See also

* Finding Schematic Objects, on page 96

* HDL Analyst Menu, on page 405

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
98 Synopsys Confidential Information January 2020

Basic Operations on Schematic Objects HDL Analyst Tool

Crossprobing Objects

Crossprobing helps you diagnose where coding changes or timing constraints
might reduce area or increase performance. When you crossprobe, you select
an object in one place and it or its equivalent is automatically selected and
highlighted in other places. For example, selecting text in the Text Editor
automatically selects the corresponding logic in all HDL Analyst views.
Whenever a net is selected, it is highlighted through all the hierarchical
instances it traverses, at all schematic levels.

Crossprobing Between Different Views

You can crossprobe objects (including logic inside hidden instances) between
RTL views, Technology views, the FSM Viewer, HDL source code files, and
other text files. Some RTL and source code objects are optimized away during
synthesis, so they cannot be crossprobed to certain views.

The following table summarizes crossprobing to and from HDL Analyst (RTL
and Technology) views. For information about crossprobing procedures, see
Crossprobing (Standard), on page 324 in the User Guide.

From... To... Do this...
Text Editor: log Text Editor: Double-click a log file note, error, or warning.
file HDL source The corresponding HDL source code appears in
file the Text Editor.
Text Editor: HDL Analyst view The RTL view or Technology view must be open.
code . Select the code in the Text Editor that
FSM Viewer corresponds to the object(s) you want to
crossprobe.

The object corresponding to the selected code is
automatically selected in the target view, if an
HDL source file is in the Text Editor. Otherwise,
right-click and choose the Select in Analyst
command.

To cross-probe from text other than source
code, first select Options->HDL Analyst Options and
then enable Enhanced Text Crossprobing.

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 99

HDL Analyst Tool

Basic Operations on Schematic Objects

From...

FSM Viewer

Analyst view

FSM Viewer

Analyst view

Tcl window

Text Editor: any
text containing
instance names,
like a timing
report

© 2020 Synopsys, Inc.

To...

Analyst view

Text Editor

Another open
view

Text Editor

Corresponding
instance

Synopsys Confidential Information

Do this...

The target view must be open. The state
machine must be encoded with the onehot style
to crossprobe from the transition table.

Select a state anywhere in the FSM Viewer
(bubble diagram or transition table). The
corresponding object is automatically selected
in the HDL Analyst view.

Double-click an object. The source code
corresponding to the object is automatically
selected in the Text Editor, which is opened to
show the selection.

If you just select an object, without double-
clicking it, the corresponding source code is
still selected and displayed in the editor
(provided it is open), but the editor window is
not raised to the front.

Select an object in an HDL Analyst view. The
object is automatically selected in all open
views.

If the target view is the FSM Viewer, then the
state machine must be encoded as onehot.

Double-click an error or warning message
(available in the Tcl window errors or warnings
panel, respectively). The corresponding source
code is automatically selected in the Text
Editor, which is opened to show the selection.

Highlight the text, then right-click & choose
Select or Filter. Use this to filter critical paths
reported in a text file by the FPGA timing
analysis tool.

Synplify Pro for Microsemi Edition Reference Manual
January 2020

Basic Operations on Schematic Objects HDL Analyst Tool

Dragging and Dropping Objects

You can drag and drop objects like instances, nets, and pins from the HDL
Analyst schematic views to other windows to help you analyze your design or
set constraints. You can drag and drop objects from an RTL or Technology
views to the following other windows:

* SCOPE editor
* Text editor window

* Tcl window

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 101

HDL Analyst Tool Multiple-sheet Schematics

Multiple-sheet Schematics

When there is too much logic to display on a single sheet, the HDL Analyst
tool uses additional schematic sheets. Large designs can take several sheets.
In a hierarchical schematic, each module consists of one or more sheets.
Sheet connector symbols (Sheet Connectors, on page 87) mark logic connec-
tions from one sheet to the next.

For more information, see
¢ Controlling the Amount of Logic on a Sheet, on page 102
* Navigating Among Schematic Sheets, on page 102

* Multiple Sheets for Transparent Instance Details, on page 104

Controlling the Amount of Logic on a Sheet

You can control the amount of logic on a schematic sheet using the options in
Options->HDL Analyst Options->Sheet Size. The Maximum Instances option sets the
maximum number of instances on an unfiltered schematic sheet. The
Maximum Filtered Instances option sets the maximum number of instances
displayed at any given hierarchical level on a filtered schematic sheet.

See also:
¢ Standard HDL Analyst Options Command, on page 433
* Setting Schematic Preferences, on page 300 of the User Guide.

Navigating Among Schematic Sheets

This section describes how to navigate among the sheets in a given
schematic. The window title bar lets you know where you are at any time.

Multisheet Orientation in the Title Bar

The window title bar of an RTL view or Technology view indicates the current
context. For example, uc_alu (of module alu) in the title indicates that the
current schematic level displays the instance uc_alu (which is of module alu).
The objects shown are those comprising that instance.

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
102 Synopsys Confidential Information January 2020

Multiple-sheet Schematics HDL Analyst Tool

The title bar also indicates, for the current schematic, the number of the
displayed sheet, and the total number of sheets — for example, sheet 2 of 4. A
schematic is initially opened to its first sheet.

Sheet # of total # Context (level) of current sheet: instance name and module

® Sheet 4 of 8 - prgmentr {of modul: prgm_cntr) {(Technology View) PROASICIE: ASPEGOOPQFP208-2 _frev_1fewght bit wcsrm

G- [,2"' Instances (44) all— - oR [=]
B [Primitives (35)
H-- {1 decode (ins_decode) — —3
T dmux (data_mux) 1
- ¥ p1 (prepd)
E- & prgmentr (prgm_cntr) i it w_twe 2

[Mets (125)
i @ dock_c, Fanout=111

=
® skip_in_0_0_a2 0_0, Fano
® fin, Fanout=1

B inst, Fanout=1

® |, Fanout[1-3]

® opcode_call, Fanout=14
-

-

-

€

=

opcode_call_0, Fanout=15
opcode_goto, Fanout=13
opcode_retiw, Fanout=7

pe, Fanout[3-5]
pc_0, Fanout[1-2]

Navigating Among Sheets
You can navigate among different sheets of a schematic in these ways:

* Follow a sheet connector, by right-clicking it and choosing a connecting
sheet from the popup menu

* Use the sheet navigation commands of the View menu: Next Sheet,
Previous Sheet, and View Sheets, or their keyboard shortcut or icon equiva-
lents

* Use the history navigation commands of the View menu (Back and
Forward), or their keyboard shortcuts or icon equivalents to navigate to
sheets stored in the display history

For details, see Working with Multisheet Schematics, on page 297 in the User
Guide.

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 103

HDL Analyst Tool Multiple-sheet Schematics

You can navigate among different design levels by pushing and popping the
design hierarchy. Doing so adds to the display history of the View menu, so
you can retrace your push/pop steps using View -> Back and View->Forward.
After pushing down, you can either pop back up or use View->Back.

See also:
* Filtering and Flattening Schematics, on page 112
* View Menu: RTL and Technology Views Commands, on page 324
* Pushing and Popping Hierarchical Levels, on page 105

Multiple Sheets for Transparent Instance Details

The details of a transparent instance in a filtered view are drawn in two ways:

* Generally, these interior details are spread out over multiple sheets at
the same schematic level (module) as the instance that contains them.
You navigate these sheets as usual, using the methods described in
Navigating Among Schematic Sheets, on page 102.

* If the number of nested contents exceeds the limit set with the Filtered
Instances option (Options->HDL Analyst Options), the nested contents are
drawn on separate sheets. The parent hierarchical instance is empty,
with a notation (for example, Go to sheets 4-16) inside it, indicating which
sheets contain its lower-level details. You access the sheets containing
the lower-level details using the sheet navigation commands of the View
menu, such as Next Sheet.

See also:
* Controlling the Amount of Logic on a Sheet, on page 102
* View Menu: RTL and Technology Views Commands, on page 324

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
104 Synopsys Confidential Information January 2020

Exploring Design Hierarchy HDL Analyst Tool

Exploring Design Hierarchy

The hierarchy in your design can be explored in different ways. The following
sections explain how to move between hierarchical levels:

* Pushing and Popping Hierarchical Levels, on page 105
* Navigating With a Hierarchy Browser, on page 108

* Looking Inside Hierarchical Instances, on page 110

Pushing and Popping Hierarchical Levels

You can navigate your design hierarchy by pushing down into a high-level
schematic object or popping back up. Pushing down into an object takes you
to a lower-level schematic that shows the internal logic of the object. Popping
up from a lower level brings you back to the parent higher-level object.

Pushing and popping is best suited for traversing the hierarchy of a specific
object. If you want a more general view of your design hierarchy, use the
Hierarchy Browser instead. See Navigating With a Hierarchy Browser, on
page 108 and Looking Inside Hierarchical Instances, on page 110 for other
ways of viewing design hierarchy.

Pushable Schematic Objects

To push into an instance, it must have hierarchy. You can push into the
object regardless of its position in the design hierarchy; for example, you can
push into the object if it is shown nested inside a transparent instance. You
can push down into the following kinds of schematic objects:

* Non-hidden hierarchical instances. To push into a hidden instance,
unhide it first.

* Technology-specific primitives (not logic primitives)

* Inferred ROMs and state machines in RTL views. Inferred ROMs, RAMs,
and state machines do not appear in Technology views, because they are
resolved into technology-specific primitives.

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 105

HDL Analyst Tool Exploring Design Hierarchy

When you push/pop, the HDL Analyst window displays the appropriate level
of design hierarchy, except in the following cases:

* When you push into an inferred state machine in an RTL view, the FSM
Viewer opens, with graphical information about the FSM. See the FSM
Viewer Window, on page 83, for more information.

* When you push into an inferred ROM in an RTL view, the Text Editor
window opens and displays the ROM data table (romi nfo file).

You can use the following indicators to determine whether you can push into
an object:

* The mouse pointer shape when Push/Pop mode is enabled. See How to
Push and Pop Hierarchical Levels, on page 106 for details.

* A small H symbol () in the lower left corner indicates a hidden
instance, and you cannot push into it.

* The Hierarchy Browser symbols indicates the type of instance and you
can use that to determine whether you can push into an object. For
example, hierarchical instance (I}), technology-specific primitive
(¢), logic primitive such as XOR (i+), or other primitive instance
({F). The browser symbol does not indicate whether or not an instance
is hidden.

* The status bar at the bottom of the main synthesis tool window reports
information about the object under the pointer, including whether or not
it is a hidden instance or a primitive.

How to Push and Pop Hierarchical Levels

You push/pop design levels with the HDL Analyst Push/Pop mode. To enable
or disable this mode, toggle View->Push/Pop Hierarchy, use the icon, or use the
appropriate mouse strokes.

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
106 Synopsys Confidential Information January 2020

Exploring Design Hierarchy HDL Analyst Tool

ins_rom -«
clk
rst data_t

out]11:0] sl Po
M9R 00 @ Down (push) or upt (pop) p
ﬁ arrow mouse pointer
\ rom Lt fins_ram)] \

clk

Push L
T om

Fddr[00] BO0D o Af10:0] DOUT[10] el [i[11:0] 2[11:0] el Ta e w11 0] 2=
R

Data[11:0]
[data_out[11:0]

Once Push/Pop mode is enabled, you push or pop as follows:

* To pop, place the pointer in an empty area of the schematic background,
then click or use the appropriate mouse stroke. The background area
inside a transparent instance acts just like the background area outside
the instance.

* To push into an object, place the mouse pointer over the object and click
or use the appropriate mouse stroke. To push into a transparent
instance, place the pointer over its pale yellow border, not its hollow
(white) interior. Pushing into an object nested inside a transparent
hierarchical instance descends to a lower level than pushing into the
enclosing transparent instance. In the following figure, pushing into
transparent instance inst2 descends one level; pushing into nested
instance inst2.ll_3 descends two levels.

Push into transparent

instance along its border
iI Pop from background

register_Il_0_Il_3 (interior or exterior),

CLK unless at top level
RET C2[1:0] s ———

Push into nested T — 110

pushable object inst2ll_3

Inside | Outside

The following arrow mouse pointers indicate status in Push/Pop mode. For
other indicators, see Pushable Schematic Objects, on page 105.

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 107

HDL Analyst Tool Exploring Design Hierarchy

A down arrow f} Indicates that you can push (descend) into the object under
the pointer and view its details at the next lower level.

An up arrow 1} Indicates that there is a hierarchical level above the current
sheet.

A crossed-out Indicates that there is no accessible hierarchy above or below

double arrow @ the current pointer position. If the pointer is over the

schematic background it indicates that the current level is the
top and you cannot pop higher. If the pointer is over an object,
the object is an object you cannot push into: a non-
hierarchical instance, a hidden hierarchical instance, or a
black box.

See also:
* Hidden Hierarchical Instances, on page 92
* Transparent and Opaque Display of Hierarchical Instances, on page 90
¢ Using Mouse Strokes, on page 51
* Navigating With a Hierarchy Browser, on page 108

Navigating With a Hierarchy Browser

Hierarchy Browsers are designed for locating objects by browsing your
design. To move between design levels of a particular object, use Push/Pop
mode (see Pushing and Popping Hierarchical Levels, on page 105 and
Looking Inside Hierarchical Instances, on page 110 for other ways of viewing
design hierarchy).

The browser in the RTL view displays the hierarchy specified in the RTL
design description. The browser in the Technology view displays the
hierarchy of your design after technology mapping.

Selecting an object in the browser displays it in the schematic, because the
two are linked. Use the Hierarchy Browser to traverse your hierarchy and
select ports, nets, components, and submodules. The browser categorizes the
objects, and accompanies each with a symbol that indicates the object type.
The following figure shows crossprobing between a schematic and the
hierarchy browser.

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
108 Synopsys Confidential Information January 2020

Exploring Design Hierarchy

HDL Analyst Tool

P Sheet 1 of 1 - top level (of module eight_bit_uc) (Technology View) PROASIC3E: ASPEGDOPQFP208-2 _[rev_1/eight_bit_uc....

B [Primitives (35)

{1 decode (ins_decode)
T dmux (data_mux)

0 pilprepd)

8 promentr (prgm_entr)
O regs (reg_file)

{1} special_regs (spcl_regs)
O uc_alu (alu)

B [Nets (111)

B [Ports (10)

}- [Primitives (127)

{F alu_b_o[0] (XOR3

=8 Q Instances (44) ﬁ

- a3]
3 of .1 - uc_alu (of module alu) (Technology View) PROASICIE: ASPEGOOPQFRP208-2 ..[rev_1[eight bit wcsrm l

F EFEIRIE

g

alu_cour
alu_cou
alu_cou
alu_cou
alu_cow

aluz_reB

ot AR_

LET

B

Explore the browser hierarchy by expanding or collapsing the categories in
the browser. You can also use the arrow keys (left, right, up, down) to move
up and down the hierarchy and select objects. To select more than one object,
press Ctrl and select the objects in the browser. To select a range of schematic
objects, click an object at one end of the range, then hold the Shift key while
clicking the name of an object at the other end of the range.

See also:

* Crossprobing Objects, on page 99

* Pushing and Popping Hierarchical Levels, on page 105

* Hierarchy Browser Popup Menu Commands, on page 474

Synplify Pro for Microsemi Edition Reference Manual
January 2020

Synopsys Confidential Information

© 2020 Synopsys, Inc.

109

HDL Analyst Tool Exploring Design Hierarchy

Looking Inside Hierarchical Instances

An alternative method of viewing design hierarchy is to examine transparent
hierarchical instances (see Navigating With a Hierarchy Browser, on page 108
and Navigating With a Hierarchy Browser, on page 108 for other ways of
viewing design hierarchy). A transparent instance appears as a hollow box
with a pale yellow border. Inside this border are transparent and opaque
objects from lower design levels.

Transparent instances provide design context. They show the lower-level logic
nested within the transparent instance at the current design level, while

pushing shows the same logic a level down. The following figure compares the
same lower-level logic viewed in a transparent instance and a push operation:

mod1

‘: e Pushing down to lower-level schematic:
pipg BO1O] p— The pushed instance itself is not shown at
R the lower level; only its details are shown.

inst1
e mnls!r* regl=ker
‘: ::;? , . ader :;j . T
ol 11 03 - __“J_x::::: L L - s L =
o .. Iz na
L reglser
TS
i
Dissolving:

The dissolved instance is shown transparently,
with its details nested inside it.

Same details

:
regl=er reglser
B = _ ar =

T RsT ‘"'ﬂ_w_nnmn|nq G ca =
[T M caii

'
Do DO e e Gtz
I 1.1 " Ires .0
s Ires 1112 s
roizier
ek
L—rar o

s Transparent (dissolved)
= instance
© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual

110 Synopsys Confidential Information January 2020

Exploring Design Hierarchy HDL Analyst Tool

You cannot control the display of transparent instances directly. However,
you can perform the following operations, which result in the display of trans-
parent instances:

* Hierarchically expand an object (using the expansion commands in the
HDL Analyst menu).

* Dissolve selected hierarchical instances in a filtered schematic (HDL
Analyst -> Dissolve Instances).

* Filter a schematic, after selecting multiple objects at more than one
level. See Commands That Result in Filtered Schematics, on page 112
for additional information.

These operations only make non-hidden hierarchical instances transparent.
You cannot dissolve hidden or primitive instances (including technology-
specific primitives). However, you can do the following:

* Unhide hidden instances, then dissolve them.

* Push down into technology-specific primitives to see their lower-level
details, and you can show the interiors of all technology-specific primi-
tives.

See also:
* Pushing and Popping Hierarchical Levels, on page 105
* Navigating With a Hierarchy Browser, on page 108
* HDL Analyst Command, on page 406
* Transparent and Opaque Display of Hierarchical Instances, on page 90

* Hidden Hierarchical Instances, on page 92

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 111

HDL Analyst Tool Filtering and Flattening Schematics

Filtering and Flattening Schematics

This section describes the HDL Analyst commands that result in filtered and
flattened schematics. It describes

¢ Commands That Result in Filtered Schematics, on page 112
* Combined Filtering Operations, on page 113

* Returning to The Unfiltered Schematic, on page 113

* Commands That Flatten Schematics, on page 114

* Selective Flattening, on page 115

* Filtering Compared to Flattening, on page 117

Commands That Result in Filtered Schematics

A filtered schematic shows a subset of your design. Any command that
results in a filtered schematic is a filtering command. Some commands, like
the Expand commands, increase the amount of logic displayed, but they are
still considered filtering commands because they result in a filtered view of
the design. Other commands like Filter Schematic and Isolate Paths remove
objects from the current display.

Filtering commands include the following:
* Filter Schematic, Isolate Paths — reduce the displayed logic.

* Dissolve Instances (in a filtered schematic) — makes selected instances
transparent.

* Expand, Expand to Register/Port, Expand Paths, Expand Inwards, Select Net Driver,
Select Net Instances — display logic connected to the current selection.

¢ Show Critical Path, Flattened Critical Path, Hierarchical Critical Path — show critical
paths.

All the filtering commands, except those that display critical paths, operate
on the currently selected schematic object(s). The critical path commands
operate on your entire design, regardless of what is currently selected.

All the filtering commands except Isolate Paths are accessible from the HDL
Analyst menu; Isolate Paths is in the RTL view and Technology view popup
menus (along with most of the other commands above).

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
112 Synopsys Confidential Information January 2020

Filtering and Flattening Schematics HDL Analyst Tool

For information about filtering procedures, see Filtering Schematics, on
page 336 in the User Guide.

See also:
* Filtered and Unfiltered Schematic Views, on page 84

* HDL Analyst Menu, on page 405 and RTL and Technology Views Popup
Menus, on page 474

Combined Filtering Operations

Filtering operations are designed to be used in combination, successively.
You can perform a sequence of operations like the following:

1. Use Filter Schematic to filter your design to examine a particular instance.
See HDL Analyst Menu: Filtering and Flattening Commands, on
page 408 for a description of the command.

2. Select Expand to expand from one of the output pins of the instance to
add its immediate successor cells to the display. See HDL Analyst Menu:
Hierarchical and Current Level Submenus, on page 406 for a
description of the command.

3. Use Select Net Driver to add the net driver of a net connected to one of the
successors. See HDL Analyst Menu: Hierarchical and Current Level
Submenus, on page 406 for a description of the command.

4. Use Isolate Paths to isolate the net driver instance, along with any of its
connecting paths that were already displayed. See HDL Analyst Menu:
Analysis Commands, on page 412 for a description of the command.

Filtering operations add their resulting filtered schematics to the history of
schematic displays, so you can use the View menu Forward and Back
commands to switch between the filtered views. You can also combine
filtering with the search operation. See Finding Schematic Objects, on
page 96 for more information.

Returning to The Unfiltered Schematic

A filtered schematic often loses the design context, as it is removed from the
display by filtering. After a series of multiple or complex filtering operations,
you might want to view the context of a selected object. You can do this by:

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 113

HDL Analyst Tool

Filtering and Flattening Schematics

* Selecting a higher level object in the Hierarchy Browser; doing so always
crossprobes to the corresponding object in the original schematic.

* Using Show Context to take you directly from a selected instance to the
corresponding context in the original, unfiltered schematic.

* Using Goto Net Driver to go from a selected net to the corresponding
context in the original, unfiltered schematic.

There is no Unfilter command. Use Show Context to see the unfiltered schematic
containing a given instance. Use View->Back to return to the previous, unfil-
tered display after filtering an unfiltered schematic. You can go back and
forth between the original, unfiltered design and the filtered schematics,
using the commands View->Back and Forward.

See also:

* RTL and Technology Views Popup Menus, on page 474

* View Menu: RTL and Technology Views Commands, on page 324

Commands That Flatten Schematics

A flattened schematic contains no hierarchical objects. Any command that
results in a flattened schematic is a flattening command. This includes the

following.

Command
Dissolve Instances

Flatten Current
Schematic (Flatten
Schemaitic)

RTL->Flattened
View

Technology->
Flattened View

© 2020 Synopsys, Inc.
114

Unfiltered Schematic Filtered Schematic

Flattens selected instances --

Flattens at the current level Flattens only non-hidden

and all lower levels. RTL view: transparent hierarchical
flattens to generic logic level instances; opaque and hidden
Technology view: flattens to hierarchical instances are not
technology-cell level flattened.

Creates a new, unfiltered RTL schematic of the entire design,
flattened to the level of generic logic cells.

Creates a new, unfiltered Technology schematic of the entire
design, flattened to the level of technology cells.

Synplify Pro for Microsemi Edition Reference Manual
Synopsys Confidential Information January 2020

Filtering and Flattening Schematics HDL Analyst Tool

Command Unfiltered Schematic Filtered Schematic
Technology-> Creates a new, unfiltered Technology schematic of the entire
Flattened to Gates design, flattened to the level of Boolean logic gates.

View

Technology-> Creates a filtered, flattened Technology view schematic that
Flattened Critical shows only the instances with the worst slack times and their
Path path.

Unflatten Schematic Undoes any flattening done by Dissolve Instances and Flatten
Current Schematic at the current schematic level. Returns to the
original schematic, as it was before flattening (and any
filtering).

All the commands are on the HDL Analyst menu except Unflatten Schematic,
which is available in a schematic popup menu.

The most versatile commands, are Dissolve Instances and Flatten Current
Schematic, which you can also use for selective flattening (Selective Flattening,
on page 115).

See also:
* Filtering Compared to Flattening, on page 117

* Selective Flattening, on page 115

Selective Flattening

By default, flattening operations are not very selective. However, you can
selectively flatten particular instances with these commands (see RTL and
Technology Views Popup Menus, on page 474 for descriptions):

* Use Hide Instances to hide instances that you do not want to flatten, then
flatten the others (flattening operations do not recognize hidden
instances). After flattening, you can Unhide Instances that are hidden.

* Flatten selected hierarchical instances using one of these commands:
— If the current schematic is unfiltered, use Dissolve Instances.

— If the schematic is filtered, use Dissolve Instances, followed by Flatten
Current Schematic. In a filtered schematic, Dissolve Instances makes the
selected instances transparent and Flatten Current Schematic flattens
only transparent instances.

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 115

HDL Analyst Tool Filtering and Flattening Schematics

The Dissolve Instances and Flatten Current Schematic (or Flatten Schematic)
commands behave differently in filtered and unfiltered schematics as
outlined in the following table:

Command Unfiltered Schematic Filtered Schematic
Dissolve Instances Flattens selected Provides virtual flattening: makes
instances selected instances transparent,

displaying their lower-level details.

Flatten Current Flattens everything Flattens only the non-hidden,
Schematic at the current level transparent hierarchical instances: does
Flatten Schematic and below not flatten opaque or hidden instances.

See below for details of the process.

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual

116

Synopsys Confidential Information January 2020

Filtering and Flattening Schematics HDL Analyst Tool

In a filtered schematic, flattening with Flatten Current Schematic is actually a
two-step process:

1. The transparent instances of the schematic are flattened in the context
of the entire design. The result of this step is the entire hierarchical
design, with the transparent instances of the filtered schematic replaced
by their internal logic.

2. The original filtering is then restored: the design is refiltered to show
only the logic that was displayed before flattening.

Although the result displayed is that of Step 2, you can view the intermediate
result of Step 1 with View->Back. This is because the display history is erased
before flattening (Step 1), and the result of Step 1 is added to the history as if
you had viewed it.

Filtering Compared to Flattening

As a general rule, use filtering to examine your design, and flatten it only if
you really need it. Here are some reasons to use filtering instead of flattening:

* Filtering before flattening is a more efficient use of computer time and
memory. Creating a new view where everything is flattened can take
considerable time and memory for a large design. You then filter anyway
to remove the flattened logic you do not need.

* Filtering is selective. On the other hand, the default flattening operations
are global: the entire design is flattened from the current level down.
Similarly, the inverse operation (UnFlatten Schematic) unflattens every-
thing on the current schematic level.

* Flattening operations eliminate the history for the current view: You can
not use View->Back after flattening. (You can, however, use UnFlatten
Schematic to regenerate the unflattened schematic.).

See also:
* RTL and Technology Views Popup Menus, on page 474
* Selective Flattening, on page 115

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 117

HDL Analyst Tool Timing Information and Critical Paths

Timing Information and Critical Paths

The HDL Analyst tool provides several ways of examining critical paths and
timing information, to help you analyze problem areas. The different ways are
described in the following sections.

* Timing Reports, on page 118
¢ Critical Paths and the Slack Margin Parameter, on page 119
¢ Examining Critical Path Schematics, on page 120

See the following for more information about timing and result analysis:
¢ Watch Window, on page 34
* Log File, on page 155
* Chapter 13, Optimizing Processes for Productivity in the User Guide

Timing Reports

When you synthesize a design, a default timing report is automatically
written to the log file, which you can view using View->View Log File. This report
provides a clock summary, I/O timing summary, and detailed timing infor-
mation for your design.

For certain device technologies, you can use the Analysis->Timing Analyst
command to generate a custom timing report. Use this command to specify
start and end points of paths whose timing interests you, and set a limit for
the number of paths to analyze between these points.

By default, the sequential instances, input ports, and output ports that are
currently selected in the Technology views of the design are the candidates
for choosing start and end points. In addition, the start and end points of the
previous Timing Analyst run become the default start and end points for the
next run. When analyzing timing, any latches in the path are treated as level-
sensitive registers.

The custom timing report is stored in a text file named resultsfile. ta, where
resultsfile is the name of the results file (see Implementation Results Panel,
on page 351). In addition, a corresponding output netlist file is generated,
named resultsfile_ta.srm. Both files are in the implementation results direc-
tory.

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
118 Synopsys Confidential Information January 2020

Timing Information and Critical Paths HDL Analyst Tool

The Timing Analyst dialog box provides check boxes for viewing the text report
(Open Report) in the Text Editor and the corresponding netlist (Open Schematic)
in a Technology view. This Technology view of the timing path, labeled Timing
View in the title bar, is special in two ways:

* The Timing View shows only the paths you specify in the Timing Analyst
dialog box. It corresponds to a special design netlist that contains
critical timing data.

* The Timing Analyst and Show Critical Path commands (and equivalent icons
and shortcuts) are unavailable whenever the Timing View is active.

See also:
* Analysis Menu, on page 393
* Timing Reports, on page 161
* Log File, on page 155

Critical Paths and the Slack Margin Parameter

The HDL Analyst tool can isolate critical paths in your design, so that you can
analyze problem areas, add timing constraints where appropriate, and resyn-
thesize for better results.

After you successfully run synthesis, you can display just the critical paths of
your design using any of the following commands from the HDL Analyst menu:

* Hierarchical Critical Path
* Flattened Critical Path
* Show Critical Path

The first two commands create a new Technology view, hierarchical or
flattened, respectively. The Show Critical Path command reuses the current
Technology view. Neither the current selection nor the current sheet display
have any effect on the result. The result is flat if the entire design was already
flat; otherwise it is hierarchical. Use Show Critical Path if you want to maintain
the existing display history.

All these commands filter your design to show only the instances (and their
paths) with the worst slack times. They also enable HDL Analyst -> Show Timing
Information, displaying timing information.

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 119

HDL Analyst Tool Timing Information and Critical Paths

Negative slack times indicate that your design has not met its timing require-
ments. The worst (most negative) slack time indicates the amount by which
delays in the critical path cause the timing of the design to fail. You can also
obtain a range of worst slack times by setting the slack margin parameter to
control the sensitivity of the critical-path display. Instances are displayed
only if their slack times are within the slack margin of the (absolutely) worst
slack time of the design.

The slack margin is the criterion for distinguishing worst slack times. The
larger the margin, the more relaxed the measure of worst, so the greater the
number of critical-path instances displayed. If the slack margin is zero (the
default value), then only instances with the worst slack time of the design are
shown. You use HDL Analyst->Set Slack Margin to change the slack margin.

The critical-path commands do not calculate a single critical path. They filter
out instances whose slack times are not too bad (as determined by the slack
margin), then display the remaining, worst-slack instances, together with
their connecting paths.

For example, if the worst slack time of your design is -10 ns and you set a
slack margin of 4 ns, then the critical path commands display all instances
with slack times between -6 ns and -10 ns.

See also:
* HDL Analyst Menu, on page 405
* HDL Analyst Command, on page 406
* Handling Negative Slack, on page 362 of the User Guide
* Analyzing Timing in Schematic Views, on page 356 of the User Guide

Examining Critical Path Schematics

Use successive filtering operations to examine different aspects of the critical
path. After filtering, use View -> Back to return to the previous point, then filter
differently. For example, you could use the command Isolate Paths to examine
the cone of logic from a particular pin, then use the Back command to return
to the previous display, then use Isolate Paths on a different pin to examine a
different logic cone, and so on.

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
120 Synopsys Confidential Information January 2020

Timing Information and Critical Paths HDL Analyst Tool

Also, the Show Context and Goto Net Driver commands are particularly useful

after you have done some filtering. They let you get back to the original, unfil-
tered design, putting selected objects in context.

See also:

Returning to The Unfiltered Schematic, on page 113

Filtering and Flattening Schematics, on page 112

Synplify Pro for Microsemi Edition Reference Manual

© 2020 Synopsys, Inc.
January 2020

Synopsys Confidential Information 121

HDL Analyst Tool Timing Information and Critical Paths

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
122 Synopsys Confidential Information January 2020

SYNOPSYS

Silicon to Software

CHAPTER 4

Constraint Guidelines

Constraints are used in the FPGA synthesis environment to achieve optimal
design results. Timing constraints set performance goals, non-timing
constraints (design constraints) guide the tool through optimizations that
further enhance performance.

This chapter provides an overview of how constraints are handled in the
FPGA synthesis environment.

* Constraint Types, on page 124

* Constraint Files, on page 125

* Timing Constraints, on page 127

* FDC Constraints, on page 131

* Methods for Creating Constraints, on page 132
* Constraint Translation, on page 134

* Constraint Checking, on page 138

* Database Object Search, on page 141

* Forward Annotation, on page 142

* Auto Constraints, on page 142

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 123

Constraint Guidelines Constraint Types

Constraint Types

One way to ensure the tool achieves the best quality of results for your design
is to define proper constraints. In the FPGA environment, constraints can be
categorized by the following types:

Type

Description

Timing Performance constraints that guide the synthesis tools to achieve optimal

results. Examples: clocks (create_clock), clock groups (set_clock_groups),
and timing exceptions like multicycle and false paths
(set_multicycle_path...)

See Timing Constraints, on page 127 for information on defining these
constraints.

Design Additional design goals that enhance or guide tool optimizations.

Examples: Attributes and directives (define_attribute,
define_global_attribute), I/O standards (define_io_standard), and compile
points (define_compile_point).

The easiest way to specify constraints is through the SCOPE interface. The
tool saves timing and design constraints to an FDC file that you add to your
project.

See Also

Constraint Files, on page 125 for an overview of the types of constraint
files that are passed to the tool.

Timing Constraints, on page 127 for an overview of defining timing
constraints and generating FDC files.

Using the SCOPE Editor, on page 114 for details on how to automati-
cally create timing and design constraints.

Timing Constraints, on page 127 for timing constraint syntax.

FDC File Generation, on page 128 for design constraint syntax.

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual

124

Synopsys Confidential Information January 2020

Constraint Files Constraint Guidelines

Constraint Files

The figure below shows the files used for specifying various types of
constraints. The FDC file is the most important one and is the primary file for
both timing and non-timing design constraints. The other constraint files are
used for specific features or as input files to generate the FDC file, as
described in Timing Constraints, on page 127. The figure also indicates the
specific processes controlled by attributes and directives.

TIMING
DESIGN Legacy Synplify Timing
o Constraints
Directives
Attributes Synopsys Standard

Timing Constraints

Legacy SDC
Standard SDC Y
j A

Static .
. i Physical
———>» Compiler Mapper Timing 7
Analyzer Synthesis

Other Design Constraints

O =
ki

L— | CDC

A\

== Timing constraints

==p Design constraints

wuy Controlling constraint & module
== Physical constraint

= Constraint files

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 125

Constraint Guidelines

Constraint Files

The table is a summary of the various kinds of constraint files.

File
FDC

ADC

SDC
(Synopsys
Standard)

SDC
(Legacy)

Type
Timing
constraints

Design
constraints

Timing
constraints
for timing
analysis

FPGA timing
constraints

Legacy
timing
constraints
and non-
timing (or
design)
constraints

© 2020 Synopsys, Inc.

126

Common Commands

create_clock,

set_multicycle_delay ...

define_attribute,
define_io_standard ...

create_clock,

set_multicycle_delay ...

create_clock,

set_clock_latency,
set_false_path ...

define_clock,

define_false_path

define_attribute,
define_collection ...

Synopsys Confidential Information

Comments

Used for synthesis. Includes
timing constraints that
follow the Synopsys
standard format as well as
design constraints.

Used with the stand-alone
timing analyzer.

Use sdc2fdc to convert
constraints to an FDC file so
that they can be passed to
the synthesis tools.

Use sdc2fdc to convert the
constraints to an FDC file so
that they can be passed to
the synthesis tools.

Synplify Pro for Microsemi Edition Reference Manual
January 2020

Timing Constraints

Timing Constraints

The synthesis tool has supported different timing formats in the past, and
this section describes some of the details of standardization:

Legacy SDC and Synopsys Standard SDC, on page 127
FDC File Generation, on page 128

Timing Constraint Precedence in Mixed Constraint Designs, on page 130

Legacy SDC and Synopsys Standard SDC

Releases prior to G-2012.09M had two types of constraint files that could be
used in a design project:

Legacy “Synplify-style” timing constraints (define_clock, define_false_path...)
saved to an sdc file. This file also included non-timing design
constraints, like attributes and compile points.

Synopsys standard timing constraints (create_clock, set_false_path...).
These constraints were also saved to an sdc file, however, contained only
timing constraints and no design constraints. Any non-timing
constraints were placed in a separate sdc file. The tool used the two files
together, drawing timing constraints from one and non-timing
constraints from the other.

Starting with the G-2012.09M release, the legacy-style timing constraints
have been replaced by Synopsys standard timing constraints; and SDC
constraint files have been replaced by FDC (FPGA design constraint) files.

As a result of these updates, there are some changes in the use model:

Instead of a constraint file in the legacy format, the tool now supports an
FDC file, that includes both timing and non-timing constraints. This file
uses the Synopsys standard syntax for timing constraints (create_clock,
set_multicyle_path...). The syntax for non-timing design constraints
remains unchanged (define_attribute, define_io_standard...).

The SCOPE editor has been enhanced to support the timing constraint
changes, so that new constraints can be entered correctly.

For older designs, use the sdc2fdc command to do a one-time conversion
of the constraints.

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 127

Constraint Guidelines

Constraint Guidelines Timing Constraints

The following figure summarizes constraint-file handling:

Existing Designs
Synplify-Style Timing Synopsys Standard Timing
Legacy sdc Standard sdc
Timing and Design Timing Constraints Only
Constraints
create_clock. ..
define_clock...
define_attribute... Legacy sdc
New B Design Constraints Only
Designs 1File define afribule

2 Files

FDC

FDC File Generation

The following figure is a simplified summary of constraint-file handling and
the generation of fdc.

It is not required that you convert Synopsys standard sdc constraints as the
figure implies, because they are already in the correct format. You could have
a design with mixed constraints, with separate Synopsys standard sdc and fdc
files. The disadvantage to keeping them in the standard sdc format is that you
cannot view or edit the constraints through the SCOPE interface.

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
128 Synopsys Confidential Information January 2020

Timing Constraints Constraint Guidelines

Existing Designs
Synplify-Style Timing Synopsys Standard Timing

Legaocy sdc Standord sde

Timing and Design Timing Constraints Only
Constraints EERETTL
define_clock...

define_attribute. . Legacy sde

MNew Design Constraints Only
Designs 1File define. atfsibule.

2 Files

= I —

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 129

Constraint Guidelines Timing Constraints

Timing Constraint Precedence in Mixed Constraint Designs

Your design could include timing constraints in a Synopsys standard sdc file
and others in an fdc file. With mixed timing constraints in the same design,
the following order of precedence applies:

The tool reads the file order listed in the project file and any conflicting
constraint overwrites a previous constraint. This means that constraint
priority is determined by the constraint that is read last.

With the legacy timing constraints, it is strongly recommended that you
convert them to the f dc format. However, even if you retain the old format in
an existing design, they must be used alone and cannot be mixed in the same
design as f dc or Synopsys standard timing sdc constraints. Specifically, do
not specify timing constraints using mixed formats. For example, do not
define clocks with define_clock and create_clock together in the same constraint
file or multiple SDC/FDC files.

For the list of FPGA timing constraints (FDC) and their syntax, see Timing
Constraints, on page 155.

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
130 Synopsys Confidential Information January 2020

FDC Constraints Constraint Guidelines

FDC Constraints

The FPGA design constraints (FDC) file contains constraints that the tool uses
during synthesis. This FDC file includes both timing constraints and non-
timing constraints in a single file.

* Timing constraints define performance targets to achieve optimal
results. The constraints follow the Synopsys standard format, such as
create_clock, set_input_delay, and set_false_path.

* Non-timing (or design constraints) define additional goals that help the
tool optimize results. These constraints are unique to the FPGA
synthesis tools and include constraints such as define_attribute, define_io_-
standard, and define_compile_point.

The recommended method to define constraints is to enter them in the
SCOPE editor, and the tool automatically generates the appropriate syntax. If
you define constraints manually, use the appropriate syntax for each type of
constraint (timing or non-timing), as described above. See Methods for
Creating Constraints, on page 132 for details on generating constraint files.

Prior to release G-2012.09M, designs used timing constraints in either legacy
Synplify-style format or Synopsys standard format. You must do a one-time
conversion on any existing SDC files to convert them to FDC files using the
following command:

% sdc2f dc

sdc2fdc converts constraints as follows:

For legacy Synplify-style Converts timing constraints to Synopsys standard
timing constraints format and saves them to an FDC file.

For Synopsys standard Preserves Synopsys standard format timing
timing constraints constraints and saves them to an FDC file.

For non-timing or design Preserves the syntax for these constraints and
constraints saves them to an FDC file.

Once defined, the FDC file can be added to your project. Double-click this file
from the Project view to launch the SCOPE editor to view and/or modify your
constraints. See Converting SDC to FDC, on page 159 for details on how to
run sdc2fdc.

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 131

Constraint Guidelines Methods for Creating Constraints

Methods for Creating Constraints

Constraints are passed to the synthesis environment in FDC files using Tcl
command syntax.

New Designs

For new designs, you can specify constraints using any of the following

methods:
Definition Method Description
SCOPE Editor Use this method to specify constraints wherever possible.

The SCOPE editor automatically generates fdc
constraints with the right syntax. You can use it for most
constraints. See Chapter 5, Specifying Constraints, for
information how to use SCOPE to automatically generate
constraint syntax.

(fdc file)}-Recommended

Access: File->New->FPGA Design Constraints ...

Manually-Entered Text You can manually enter constraints in a text file. Make
Editor sure to use the correct syntax for the timing and design
(fdc File, all other commands.

constraint files) The SCOPE GUI includes a TCL View with an advanced

text editor, where you can manually generate the
constraint syntax. For a description of this view, see Tcl
Script Window, on page 38.

You can also open any constraint file in a text editor to

modify it.
Source Code Directives must be entered in the source code because
Attributes/Directives they affect the compiler. Do not include any other
(HDL files) constraints in the source code, as this makes the source

code less portable. In addition, you must recompile the
design for the constraints to take effect.

Attributes can be entered through the SCOPE interface,
as they affect the mapper, not the compiler

Automatic— First Pass Enable the Auto Constrain button in the Project view to
have the tool automatically generate constraints based
on inferred clocks. See Using Auto Constraints, on
page 494 in the User Guide for details.

Use this method as a quick first pass to get an idea of
what constraints can be set.

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
132 Synopsys Confidential Information January 2020

Methods for Creating Constraints Constraint Guidelines

If there are multiple timing exception constraints on the same object, the
software uses the guidelines described in Conflict Resolution for Timing
Exceptions, on page 255 to determine the constraint that takes precedence.

See Also
To specify the correct syntax for the timing and design commands, see:
¢ Chapter 4, Constraint Commands

* Attribute Reference Manual

Existing Designs

The SCOPE editor in this release does not save constraints to SDC files. For
designs prior to G-2012.09M, it is recommended that you migrate your
timing constraints to FDC format to take advantage of the tool’s enhanced
handling of these types of constraints. To migrate constraints, use the sdc2fdc
command (see Converting SDC to FDC, on page 159]) on your sdc files.

Note: If you need to edit an SDC file, either use a text editor, or double-
click the file to open the legacy SCOPE editor. For information on
editing older SDC files, see Using the SCOPE Editor (Legacy), on
page 249.

See Also
To use the current SCOPE editor, see:
* Chapter 4, Constraint Commands

* Chapter 5, Specifying Constraints

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 133

Constraint Guidelines Constraint Translation

Constraint Translation

The tool includes standalone scripts to convert specific vendor constraints, as
well as functionality that includes constraint translation as part of the larger
task of generating a synthesis project from vendor files.

sdc2fdc Conversion

The sdc2fdc Tcl shell command translates legacy FPGA timing constraints to
Synopsys FPGA timing constraints. This command scans the input SDC files
and attempts to convert constraints for the implementation.

For details, see the following:
* Troubleshooting Conversion Error Messages, on page 134

¢ sdc2fdc FPGA Design Constraint (FDC) File, on page 136 in the
Command Reference manual

Troubleshooting Conversion Error Messages

The following table contains common error messages you might encounter
when running the sdc2fdc Tcl shell command, and descriptions of how to
resolve these problems. In addition to these messages, you must also ensure
that your files have read /write permissions set properly and that there is
sufficient disk space.

Message Example Underlying Problem

Remove/disable Cannot translate a
D:FDC_constraints/rev_FDC/top_translated.fdc from the * translated.fdc file
current implementation.

Add/enable one or more SDC constraint files. No active constraint files

Add clock object qualifier (p: n: ...) for Clock not translated
"define_clock -name {clka {clka} -period 10 -clockgroup

{default_clkgroup_0}"

Synplicity_SDC source file:

D:.../clk_prior/scratch/top.sdc. Line number: 32

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
134 Synopsys Confidential Information January 2020

Constraint Translation

Constraint Guidelines

January 2020

Message Example

Specify -name for "define_clock {p:clkb} -period 20
-clockgroup {default_clkgroup_1}"

Synplicity SDC source file:
D:.../clk_prior/scratch/top.sdc. Line number: 33

Missing qualifier(s) (i: p: n: ...)

"define_multicycle_path 4 -from {a* b*} -to $fdc_cmd_0 -start"

Synplicity SDC source file:
D:.../clk_prior/scratch/top.sdc. Line number: 76

Mixing of object types not permitted
"define_multicycle_path -to {i:*y*.q[*] p:ena} 3"
Synplicity SDC source file:
D:.../clk_prior/scratch/top.sdc. Line number: 77

Mixing of object types and missing qualifiers not
permitted "define_multicycle_path -from {i:*y*.q[*] p:ena
enab} 3"

Synplicity SDC source file:
D:.../clk_prior/scratch/top.sdc. Line number: 77

Default 1000.

"create_clock -name {clkb} {p:clkb} -period 1000 -waveform
{0 500.0}"

Synplicity SDC source file:
D:.../clk_prior/scratch/top.sdc. Line number: 33

"create_clock -name {clka} {p:clka} -period 10 -rise 5
-clockgroup {default_clkgroup_0"

Synplicity SDC source file:
D:.../clk_prior/scratch/top.sdc. Line number: 32

Underlying Problem

Clock not translated

Bad -from list for
define_multicycle_path {a*
b*}

Bad -to list for
define_multicycle_path

{i: *y* .q[*] p:ena}

Bad -from list for
define_multicycle_path
{i-=*y* .q[*] p:ena enab}

No period or frequency found

Must specify both -rise and
-fall, or neither

Fix any issues in the SDC source file and rerun the sdc2fdc command.

Batch Mode

If you run sdc2fdc -batch, then the following occurs:

* The two A ock not transl at ed messages in the table above are not

generated.

* When the translation is successful, the SDC file is disabled and the FDC
file is enabled and saved automatically in the project file.

However, if the -batch option is not used and the translation is
successful, then the SDC file is disabled and the FDC file is enabled but

Synplify Pro for Microsemi Edition Reference Manual
Synopsys Confidential Information

© 2020 Synopsys, Inc.
135

Constraint Guidelines Constraint Translation

not automatically saved in the Project file. A message to this effect
displays in the Tcl shell window.

sdc2fdc FPGA Design Constraint (FDC) File

The FDC constraint file generated after running sdc2fdc contains translated
legacy FPGA timing constraints (SDC), which are now in the FDC format. This
file is divided into two sections:

1 Contains this information:
* Valid FPGA design constraints (e.g. define_scope_collection and define_attribute)

* Legacy timing constraints that were not translated because they were
specified with -disable.

2 Contains the legacy timing constraints that were translated.

This file also provides the following:
* Each source sdc file has its separate subhead.

* Each compile point is treated as a top level, so its sdc file has its own
_translated.fdc file.

* The translator adds the naming rule, set ril_ff_names, so that the
synthesis tool knows these constraints are not from the Synopsys
Design Compiler.

The following example shows the contents of the FDC file.

HH
####This file contains constraints from Synplicity SDC files that have been
####t ransl ated i nto Synopsys FPGA Design Constraints (FDC.

####Transl at ed FDC out put file:

####D: [bugs/tim ng_88/cl k_prior/scratch/ FDC constraints/rev_2/top_transl ated. fdc
####Source SDC files to the translation:

####D: [bugs/ ti m ng_88/ cl k_prior/scratch/top. sdc

HHH

HH R R R R R R R R R R
####Source SDC file to the translation:

####D: [bugs/ ti m ng_88/ cl k_prior/scratch/top. sdc

HH R R R R R R R R

#lLegacy constraint file

#C:\ Cl ean_Denos\ Constrai nts_Trai ni ng\top. sdc
#Witten on Mon May 21 15:58:35 2012

#by Synplify Pro, Synplify Pro Scope Editor
#

#Col | ecti ons
#
define_scope_col lection all_grp {define_collection\

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
136 Synopsys Confidential Information January 2020

Constraint Translation Constraint Guidelines

find -inst {i:FirstStbcPhase}] \
find -inst {i:NornDenon{G 0]}] \
find -inst {i:NormN\un{7:0]}] \
find -inst {i:PhaseOJt[Q 0]}] \
find -inst {i:PhaseQutd d[9:0]}] \
find -inst {i:PhaseVvalidQut}] \
find -inst {i:ProcessData}] \
find -inst {i:Qadrant[1:0]}] \
find -inst {i:State[2:0]}] \
}

#

#C ocks

#define_cl ock -disable -nane {clkc} -virtual -freq 150 -cl ockgroup default_cl kgroup_1

#Od ock to d ock
#

#

#l nput s/ Qut put s

#

define_input_delay -disable {b[7:0]} 2.00 -ref clka:r
define_input_delay -disable {c[7:0]} 0.20 -ref clkb:r
define_input_delay -disable {d[7:0]} 0.30 -ref clkb:r
define_output_del ay -disable {x[7:0]} -inprove 0.00 -route 0.00
define_output_delay -disable {y[7:0]} -inprove 0.00 -route 0.00
#

#Regi sters

#

#

#Mul ticycle Path

#

#
#Fal se Path
#

#
define_false path -disable -from{i:x[1]}
#

#Path Del ay
#

#

#Attributes

#

define_io _standard -defaul t_i nput -delay_type input syn_pad_type {LVOMX®S 33} #

#1/ O st andards
#

#

#Conpi | e Points
#

#
#O her Constraints

HHHHH A A
#SDC conpliant constraints translated from Legacy Timng Constraints

IR R R R R R R R R R R R
#

set_rtl_ff_names {#}

create_clock -nane {cl ka} [get_ports {clka}] -period 10 -waveform {0 5.0}

create_clock -nane {cl kb} [get_ports {clkb}] -period 6.666666666666667
-waveform {0 3.3333333333333335}

set _i nput _delay -clock [get_clocks {clka}] -clock_fall -

add_del ay 0.000 [al | _i nputs]

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 137

Constraint Guidelines Constraint Checking

set _output _delay -clock [get_clocks {clka}] -add_delay 0.000 [all_outputs]

set _i nput _delay -clock [get_clocks {clka}] -
add_del ay 2.00 [get_ports {a[7:0]}]
set _input _delay -clock [get_clocks {clka}] -add_delay 0 [get_ports {rst}]
set ncp 4
set_multicycle_path $ncp -start \
-from\
[get _ports \
{a* \
b*} \
1\
-to \
[find -seq -hier {qg?[*]}]

set_multicycle_path 3 -end \
-from\

[find -seq {*y*.q[*]}]

set _cl ock_groups -nane defaul t _cl kgroup_0 -asynchronous \
-group [get_clocks {clka dcnj cl kO_derived_cl ock dcni
cl k2x_derived_cl ock dcnj cl kOf x_deri ved_cl ock}]

set _cl ock_groups -nane defaul t _cl kgroup_1 -asynchronous \
-group [get_clocks {cl kb}]

Constraint Checking

The synthesis tool includes several features to help you debug and analyze
design constraints. Use the constraint checker to check the syntax and appli-
cability of the timing constraints in the project. The synthesis log file includes
a timing report as well as detailed reports on the compiler, mapper, and
resource usage information for the design. A stand-alone timing analyzer
(STA) generates a customized timing report when you need more details
about specific paths or want to modify constraints and analyze, without
resynthesizing the design. The following sections provide more information
about these features.

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
138 Synopsys Confidential Information January 2020

Constraint Checking Constraint Guidelines

Constraint Checker

Check syntax and other pertinent information on your constraint files using
Run->Constraint Check or the Check Constraints button in the SCOPE editor. This
command generates a report that checks the syntax and applicability of the
timing constraints that includes the following information:

* Constraints that are not applied
* Constraints that are valid and applicable to the design
* Wildcard expansion on the constraints

* Constraints on objects that do not exist

Note: Using collections with Tcl control constructs (such as if, for,
foreach, and while) can produce unexpected synthesis results.
Avoid defining constraints for collections with control constructs,
especially since the constraint checker does not recognize these
built-in Tcl commands.

See Constraint Checking Report, on page 171 for details.

Timing Constraint Report Files

The results of running constraint checking, synthesis, and stand-alone
timing analysis are provided in reports that help you analyze constraints.

Use these files for additional timing constraint analysis:

File Description

_cck.rpt Lists the results of running the constraint checker (see
Constraint Checking Report, on page 171).

_cck_fdc_rpt Lists the wildcard expansion results of running the constraint
checker for collections with the get * and all_* object query
commands using the check_fdc_query Tcl command. See
check_fdc_query, on page 46 for more information.

_scck. rpt Lists the results of running the constraint checker for collections
with the get_* and all_* object query commands.

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 139

Constraint Guidelines Constraint Checking

File Description

.ta Reports timing analysis results (see Generating Custom Timing
Reports with STA, on page 363).

.Srr or.htm Reports post-synthesis timing results as part of the text or HTML
log file (see Timing Reports, on page 161 and Log File, on
page 1595).

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
140 Synopsys Confidential Information January 2020

Database Object Search Constraint Guidelines

Database Object Search

To apply constraints, you have to search the database to find the appropriate
objects. Sometimes you might want to search for and apply the same
constraint to multiple objects. The tool provides some Tcl commands to facili-
tate the search for database objects:

Commands Common Commands Description

Find Tcl Find, open_design... Lets you search for design objects to
form collections that can apply
constraints to the group. See Using
Collections, on page 147 and find, on

page 152.
Collections define_collection, Create, copy, evaluate, traverse, and
C_union... filter collections. See Using Collections,

on page 147 and Collection
Commands, on page 169 for more
information.

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 141

Constraint Guidelines Forward Annotation

Forward Annotation

The tool can automatically generate vendor-specific constraint files for
forward annotation to the place-and-route tools when you enable the Write
Vendor Constraints switch (on the Implementation Results tab) or use the -write_apr_-
constraint option of the set_option command.

Vendor File Extension

Microsemi _SDC.SDC

For information about how forward annotation is handled for your target
technology, refer to the appropriate vendor chapter of the FPGA Synthesis
Reference Manual.

Auto Constraints

Auto constraints are automatically generated by the synthesis tool, however,
these do not replace regular timing constraints in the normal synthesis flow.
Auto constraints are intended as a quick first pass to evaluate the kind of
timing constraints you need to set in your design.

To enable this feature and automatically generate register-to-register
constraints, use the Auto Constrain option. For details, see Using Auto
Constraints, on page 373 in the User Guide.

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
142 Synopsys Confidential Information January 2020

SYNOPSYS

Silicon to Software

CHAPTER 5

Input and Result Files

This chapter describes the input and output files used by the synthesis tool.
* Input Files, on page 144
* Libraries, on page 147
* Output Files, on page 151
* Log File, on page 155
* Timing Reports, on page 161
* Constraint Checking Report, on page 171

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 143

Input and Result Files

Input Files

Input Files

The following table describes the input files used by the synthesis tool.

Extension File

. adc Analysis
Design
Constraint

.fdc Synopsys
FPGA Design
Constraint

dni Configuration
and
Initialization

. prj Project

© 2020 Synopsys, Inc.

Description

Contains timing constraints to use for stand-alone
timing analysis. Constraints in this file are used only
for timing analysis and do not change the result files
from synthesis. Constraints in the .adc file are applied
in addition to .fdc constraints used during synthesis.
Therefore, .adc constraints affect timing results only if
there are no conflicts with .fdc constraints.

You can forward annotate adc constraints to your
vendor constraint file without rerunning synthesis.
See Using Analysis Design Constraints, on page 366
of the User Guide for details.

Create FPGA timing and design constraints with
SCOPE. You can run the sdc2fdc utility to translate
legacy FPGA timing constraints (SDC) to Synopsys
FPGA timing constraints (FDC). For details, see the
sdc2fdc, on page 110.

Governs the behavior of the synthesis tool. You
normally do not need to edit this file. For example,
use the HDL Analyst Options dialog box, instead, to
customize behavior. See Standard HDL Analyst
Options Command, on page 433.

On the Windows 7 platforms, the .ini file is in the
C:\Users\userName\AppData\Roaming\Synplicity directory,
and on the Windows XP platforms, the .ini file is in the
C:\Documents and Settings\userName\Application
Data\Synplicity directory. On Linux workstations, the
.ini file is in the following directory:

(~/.synplicity, where ~ is your home directory, which
can be set with the environment variable $HOME).

Contains all the information required to complete a
design. It is in Tcl format, and contains references to
source files, compilation, mapping, and optimization
switches, specifications for target technology and
other runtime options.

Synplify Pro for Microsemi Edition Reference Manual

144 Synopsys Confidential Information January 2020

Input Files Input and Result Files

Extension File Description

. sdc Constraint Contains the timing constraints (clock parameters,
I/0O delays, and timing exceptions) in Tcl format.
You can either create this file manually or generate it
by entering constraints in the SCOPE window. For
more information about creating the .sdc file, see
SCOPE Tabs, on page 215.

.vhd Source files Design source files in VHDL format. See VHDL, on
(VHDL) page 146 and Chapter 3, VHDL Language Support
for details. For information about using VHDL and
Verilog files together in a design, see Using Mixed
Language Source Files, on page 45 of the User

Guide.
Y Source files Design source files in Verilog format. For more
(Verilog) information about the Verilog language, and the

synthesis commands and attributes you can include,
see Verilog, on page 147, Chapter 1, Verilog
Language Support, and Chapter 2, SystemVerilog
Language Support. For information about using
VHDL and Verilog files together in a design, see Using
Mixed Language Source Files, on page 45 of the User

Guide.
. SV Source files Design source files in SystemVerilog format. The sv
(Verilog) source file is added to the Verilog directory in the

Project view. For more information about the Verilog
and SystemVerilog languages, and the synthesis
commands and attributes you can include, see
Verilog, on page 147, Chapter 1, Verilog Language
Support, and Chapter 2, SystemVerilog Language
Support. For information about using VHDL and
Verilog files together in a design, see Using Mixed
Language Source Files, on page 45 of the User
Guide.

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 145

Input and Result Files Input Files

HDL Source Files

The HDL source files for a project can be in either VHDL (vhd), Verilog (v), or
SystemVerilog (sv) format.

The Synopsys FPGA synthesis tool contains built-in macro libraries for
vendor macros like gates, counters, flip-flops, and I/Os. If you use the built-
in macro libraries, you can easily instantiate vendor macros directly into the
VHDL designs, and forward-annotate them to the output netlist. Refer to the
appropriate vendor support documentation for more information.

VHDL

The Synopsys FPGA synthesis tool supports a synthesizable subset of
VHDL93 (IEEE 1076), and the following IEEE library packages:

* numeric_bit
* numeric_std
* std_logic_1164

The synthesis tool also supports the following industry standards in the IEEE
libraries:

¢ std_logic_arith
¢ std_logic_signed
* std_logic_unsigned

The Synopsys FPGA synthesis tool library contains an attributes package
(installDirectory/lib/vhd/synattr.vhd) of built-in attributes and timing constraints
that you can use with VHDL designs. The package includes declarations for
timing constraints (including black-box timing constraints), vendor-specific
attributes, and synthesis attributes. To access these built-in attributes, add
the following two lines to the beginning of each of the VHDL design units that
uses them:

l'ibrary synplify;
use synplify.attributes.all;

For more information about the VHDL language, and the synthesis
commands and attributes you can include, see Chapter 3, VHDL Language
Support.

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
146 Synopsys Confidential Information January 2020

Libraries Input and Result Files

Verilog

The Synopsys FPGA synthesis tool supports a synthesizable subset of Verilog
2001 and Verilog 95 (IEEE 1364) and SystemVerilog extensions. For more
information about the Verilog language, and the synthesis commands and
attributes you can include, see Chapter 1, Verilog Language Support and
Chapter 2, SystemVerilog Language Support.

The Synopsys FPGA synthesis tool contains built-in macro libraries for
vendor macros like gates, counters, flip-flops, and I/Os. If you use the built-
in macro libraries, you can instantiate vendor macros directly into Verilog
designs and forward-annotate them to the output netlist. Refer to the User
Guide for more information.

Libraries

You can instantiate components from a library, which can be either in Verilog
or VHDL. For example, you might have technology-specific or custom IP
components in a library, or you might have generic library components. The
installDirectory/lib directory included with the software contains some compo-
nent libraries you can use for instantiation.

There are several kinds of libraries you can use:

* Technology-specific libraries that contain I/O pad, macro, or other
component descriptions. The lib directory lists these kinds of libraries
under vendor sub-directories. The libraries are named for the technology
family, and in some cases also include a version number for the version
of the place-and-route tool with which they are intended to be used.

For information about using vendor-specific libraries to instantiate
LPMs, PLLs, macros, I/O pads, and other components, see the
Reference Manual.

* The open verification library is automatically included in the FPGA
product installation. When using your own open verification library,
follow the recommendation described in Open Verification Library
(Verilog), on page 148.

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 147

Input and Result Files Libraries

* Technology-independent libraries that contain common components.
You can have your own library or use the one Synopsys provides. The
Synopsys library is a Verilog library of common logic elements, much
like the Synopsys® GTECH component library. See The Generic
Technology Library, on page 149 for a description of this library.

* An ASIC Library Data Format file (.lib) is the technology library file that
contains information about the functionality of each standard cell, its
input capacitance, fanout, and timing information. For the synthesis
flow to understand the instantiated or mapped ASIC primitives in the
HDL, you would need to translate the functionality of the standard cell
to equivalent synthesizable Verilog/VHDL definitions. To do this, you
can use the lib2syn executable. For details, see ASIC Library Files, on
page 149.

Open Verification Library (Verilog)

The open verification library is automatically included in the FPGA product
installation. If you use your own version of the open verification library, then
it is recommended that you disable loading the default synovl library to avoid
any conflicts between the two libraries. To do this, set the -disable_synovl
environment variable to 1. For example:

#in bash
export disabl e_synovl =1

#in csh
setenv di sabl e_synovl 1

When the default synovl library is disabled, the following message is gener-
ated in the log file: @\ : Qpen Verification Library which is part of tool
installation, is being disabled by option "disabl e _synovl".

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
148 Synopsys Confidential Information January 2020

Libraries Input and Result Files

The Generic Technology Library

The synthesis software includes this Verilog library for generic components
under the installDirectory/lib/generic_technology directory. Currently, the library is
only available in Verilog format. The library consists of technology-indepen-
dent common logic elements, which help the designer to develop technology-
independent parts. The library models extract the functionality of the compo-
nent, but not its implementation. During synthesis, the mappers implement
these generic components in implementations that are appropriate to the
technology being used.

To use components from this directory, add the library to the project by doing
either of the following:

* Add add_file -verilog "$LIB/generic_technology/gtech.v to your prj file or type it in
the Tcl window.

* In the tool window, click the Add file button, navigate to the installDirec-
tory/lib/generic_technology directory and select the gtech.v file.

When you synthesize the design, the tool uses components from this library.

You cannot use the generic technology library together with other generic
libraries, as this could result in a conflict. If you have your own GTECH
library that you intend to use, do not use the generic technology library.

ASIC Library Files

An ASIC Library Data Format file (lib) is the technology library file that
contains information about the functionality of each standard cell, its input
capacitance, fanout, and timing information.

For the synthesis flow to understand the instantiated or mapped ASIC
primitives in the HDL, you would need to manually translate the functionality
of the standard cell to equivalent synthesizable Verilog/VHDL definitions.
This .lib file conversion is not automated in the synthesis flow. This means
that the tool will not automatically translate .lib files into corresponding and
equivalent synthesizable Verilog/VHDL definitions.

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 149

Input and Result Files Libraries

However, you can use the lib2syn executable to facilitate this conversion
process. The lib2syn.exe executable generates equivalent synthesizable
Verilog/VHDL definitions for the cells defined in the input .lib file. You can
find this executable at these locations:

* Windows: installDirectory/bin/lib2syn.exe
* Linux: installDirectory/bin/lib2syn
The executable can be run as shown in these examples:
* For Verilog output: lib2syn.exe test.lib -ovm a.vm -lodfile test_lib2syn.log

* For VHDL output: lib2syn.exe test.lib -ovhm a.vhm -lodfile test_lib2syn.log

The tool supports the Synopsys GTECH library flow by default, so you do not
need the .lib file equivalent synthesizable Verilog/VHDL definitions for a
NETLIST mapped to a GTECH library.

Note that for the synthesis flow, the lib2syn executable does not translate cells
with state table definitions.

The synthesis tools do not read Synopsis Liberty format (.syn) files directly.
However, there are workarounds.

¢ If your design has instantiated ASIC cells, do the following:
— Get the Verilog functional files for the instantiated components.

— Add the functional files to your project as libraries.

* If you have an ASIC library in the Liberty (.lib) or .sel format, do the
following:

— Convert the ASIC library into a Verilog functional file with the lib2syn
utility. The lib2syn command syntax is shown below:

installDirectory/bin/lib2syn.exe library.lib - ovm VerilogFunctionalFile
or

installDirectory/bin/lib2syn.exe library.sel -ovm VerilogFunctionalFile

— Add the functional file to your project as a library.

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
150 Synopsys Confidential Information January 2020

Output Files

Input and Result Files

Output Files

The synthesis tool generates reports about the synthesis run and files that
you can use for simulation or placement and routing.The following table
describes the output files, categorizing them as either synthesis result and
report files, or output files generated as input for other tools.

Extension

_cck. rpt

_conpiler. linkerlog

.info

.l'inkerlog

.fse

.pfl

File

Constraint Checker
Report

Compiler log file for
HDL source file
linking

Design component
files

Mixed language
ports/generics
differences

FSM information file

Message Filter
criteria

Synplify Pro for Microsemi Edition Reference Manual
Synopsys Confidential Information 151

January 2020

Description

Checks the syntax and
applicability of the timing
constraints in the .fdc file for your
project and generates a report
(projectName_cck.rpt). See
Constraint Checking Report, on
page 171 for more information.

Provides details for why the VHDL
and/or Verilog components in the
source files were not properly
linked. This file is located in the
synwork directory for the
implementation.

Design-dependent. Contains
detailed information about design
components like state machines or
ROMs.

Provides details of why the VHDL
and/or Verilog components in the
source files were not properly
linked. This file is located in the
synwork directory for the
implementation. The same
information is also reported in the
log file.

Design-dependent. Contains
information about encoding types
and transition states for all state
machines in the design.

Output file created after filtering
messages in the Messages window.
See Updating the projectName.pfl
file, on page 209 in the User
Guide.

© 2020 Synopsys, Inc.

Input and Result Files

Output Files

Extension

Results file:
o . edf
e . edn

run_options.txt

. sap

.sar

© 2020 Synopsys, Inc.
152

File

Vendor-specific
results file

Project settings for
implementations

Synplify Annotated
Properties

Archive file

Description

Results file that contains the
synthesized netlist, written out in
a format appropriate to the
technology and the place-and-
route tool you are using. Generally,
the format is EDIF, but there could
be vendor-specific formats, like the
Microsemi . edf format.

Specify this file on the
Implementation Results panel of the
Implementation Options dialog box
(Implementation Results Panel,
on page 351).

This file is created when a design is
synthesized and contains the
project settings and options used
with the implementations. These
settings and options are also
processed for displaying the
Project Status view after synthesis
is run. For details, see Project
Status Tab, on page 23.

This file is generated after the
Annotated Properties for Analyst option
is selected in the Device panel of
the Implementation Options dialog
box. After the compile stage, the
tool annotates the design with
properties like clock pins. You can
find objects based on these
annotated properties using Tcl Find.
For more information, see find, on
page 152 and Using the Tcl Find
Command to Define Collections,
on page 142 in the User Guide.

Output of the Synopsys FPGA
Archive utility in which design
project files are stored into a single
archive file. Archive files use
Synplicity Proprietary Format. See
Archive Project Command, on
page 337 for details on archiving,
unarchiving and copying projects.

Synplify Pro for Microsemi Edition Reference Manual
Synopsys Confidential Information January 2020

Output Files

Input and Result Files

Extension

_scck. rpt

.srd

.SrIs

synl og fol der

File

Constraint Checker
Report

Intermediate
mapping files

Mapping output files

Synthesis log file

Compiler output file

Intermediate
technology mapping
files

Synplify Pro for Microsemi Edition Reference Manual

January 2020

Description

Generates a report that contains
an overview of the design
information, such as, the top-level
view, name of the constraints file,
if there were any constraint syntax
issues, and a summary of clock
specifications. For details about
any constraint issues, see the
companion cck.rpt file that is also
created at this time.

Used to save mapping information
between synthesis runs. You do
not need to use these files.

Output file after mapping. It
contains the actual technology-
specific mapped design. This is the
representation that appears
graphically in a Technology view.

Provides information on the
synthesis run, as well as area and
timing reports. See Log File, on
page 155, for more information.

Output file after the compiler stage
of the synthesis process. It
contains an RTL-level
representation of a design. This is
the representation that appears
graphically in an RTL view.

This folder contains intermediate
netlists and log files after
technology mapping has been run.
Timestamp information is
contained in these netlist files to
manage jobs with up-to-date
checks. For more information, see
Using Up-to-date Checking for
Job Management, on page 180.

© 2020 Synopsys, Inc.

Synopsys Confidential Information 153

Input and Result Files

Output Files

Extension

synwor k fol der

.ta

_ta.srm

.tap

.tlg

© 2020 Synopsys, Inc.
154

File

Intermediate pre-
mapping files

Customized Timing
Report

Customized
mapping output file

Timing Annotated
Properties

Log file

Description

This folder contains intermediate
netlists and log files after pre-
mapping has been run. Timestamp
information is contained in these
netlist files to manage jobs with
up-to-date checks. For more
information, see Using Up-to-date
Checking for Job Management,
on page 180.

Contains the custom timing
information that you specify
through Analysis->Timing Analyst. See
Analysis Menu, on page 393, for
more information.

Creates a customized output
netlist when you generate a
custom timing report with HDL
Analyst->Timing Analyst. It contains
the representation that appears
graphically in a Technology view.
See Analysis Menu, on page 393
for more information.

This file is generated after the
Annotated Properties for Analyst option
is selected in the Device panel of
the Implementation Options dialog
box. After the compile stage, the
tool annotates the design with
timing properties and the
information can be analyzed in the
RTL view. You can also find objects
based on these annotated
properties using Tcl Find. For more
information, see Using the Tcl
Find Command to Define
Collections, on page 142 in the
User Guide.

This log file contains a list of all the
modules compiled in the design.

Synplify Pro for Microsemi Edition Reference Manual
Synopsys Confidential Information January 2020

Log File

Input and Result Files

Extension

vendor constraint file

. vm
. vhm

Log File

File

Constraints file for
forward annotation

Mapped Verilog or
VHDL netlist

Synplify Pro for Microsemi Edition Reference Manual

January 2020

Description

Contains synthesis constraints to
be forward-annotated to the place-
and-route tool. The constraint file
type varies with the vendor and the
technology. Refer to the vendor
chapters for specific information
about the constraints you can
forward-annotate. Check the
Implementation Results dialog
(Implementation Options) for
supported files. See
Implementation Results Panel, on
page 351.

Optional post-synthesis netlist file
in Verilog (.vm) or VHDL (.vhm)
format. This is a structural netlist
of the synthesized design, and
differs from the original RTL used
as input for synthesis. Specify
these files on the Implementation
Results dialog box (Implementation
Options). See Implementation
Results Panel, on page 351.

Typically, you use this netlist for
gate-level simulation, to verify your
synthesis results. Some designers
prefer to simulate before and after
synthesis, and also after place-
and-route. This approach helps
them to isolate the stage of the
design process where a problem
occurred.

The Verilog and VHDL output files
are for functional simulation only.
When you input stimulus into a
simulator for functional
simulation, use a cycle time for the
stimulus of 1000 time ticks.

© 2020 Synopsys, Inc.

Synopsys Confidential Information 155

Input and Result Files Log File

The log file report, located in the implementation directory, is written out in
two file formats: text (projectName.srr), and HTML with an interactive table of
contents (projectName.htm and projectName_srr.htm) where projectName is the
name of your project. Select View Log File in HTML in the Options->Project View
Options dialog box to enable viewing the log file in HTML. Select the View Log
button in the Project view (Buttons and Options, on page 71) to see the log file
report.

The log file is written each time you compile or synthesize (compile and map)
the design. When you compile a design without mapping it, the log file
contains only compiler information. As a precaution, a backup copy of the log
file (srr) is written to the backup sub-directory in the Implementation Results
directory. Only one backup log file is updated for subsequent synthesis runs.

The log file contains detailed reports on the compiler, mapper, timing, and
resource usage information for your design. Errors, notes, warnings, and
messages appear in both the log file and the warning tab in the Tcl window.

For further details about different sections of the log file, see the following:

For information about... See...

Compiled files, messages (warnings, errors, and Compiler Report, on
notes), user options set for synthesis, state machine page 158
extraction information, including a list of reachable

states.

Buffers added to clocks in certain supported Timing Reports, on
technologies. page 161

Buffers added to nets. Net Buffering Report, on

page 159

Timing results. This section of the log file begins with Timing Reports, on
“START TIMING REPORT” section. page 161

If you use the Timing Analyst to generate a custom
timing report, its format is the same as the timing
report in the log file, but the customized timing
report is in a .ta file.

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
156 Synopsys Confidential Information January 2020

Log File

Input and Result Files

For information about...

Compile point remapping.

Resources used by synthesis mapping.

Design changes made as a result of retiming.

Synplify Pro for Microsemi Edition Reference Manual

January 2020

Synopsys Confidential Information

See...

Compile Point Information,
on page 159

Resource Usage Report, on
page 160

Retiming Report, on
page 160

© 2020 Synopsys, Inc.
157

Input and Result Files Log File

Compiler Report

This report starts with the compiler version and date, and includes the
following:

* Project information: the top-level module.

* Design information: HDL syntax and synthesis checks, black box
instantiations, FSM extractions and inferred RAMs/ROMs. I

Premap Report

This report begins with the pre-mapper version and date, and reports the
following:

* File loading times and memory usage

* Clock summary

Mapper Report

This report begins with the mapper version and date, and reports the
following:

* Project information: the names of the constraint files, target technology,
and attributes set in the design.

* Design information such as flattened instances, extraction of counters,
FSM implementations, clock nets, buffered nets, replicated logic, HDL
optimizations, and informational or warning messages.

Clock Buffering Report

This section of the log file reports any clocks that were buffered. For example:

A ock Buffers:
Inserting dock buffer for port clockO, TNM=cl ockO

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
158 Synopsys Confidential Information January 2020

Log File Input and Result Files

Net Buffering Report

Net buffering reports are generated for most all of the supported FPGAs and
CPLDs. This information is written in the log file, and includes the following
information:

* The nets that were buffered or had their source replicated
* The number of segments created for that net
* The total number of buffers added during buffering

* The number of registers and look-up tables (or other cells) added during
replication

Example: Net Buffering Report

Net buffering Report:

Badd c[2] - |oads: 24, segnents
Badd c[1] - l|oads: 32, segnents
Badd_c[0] - |oads: 48, segnents
Aadd_c[0] - loads: 32, segments
Added 10 Buffers

Added 0 Registers via replication
Added 0 LUTs via replication

buf feri ng source
buf f eri ng source
buf f eri ng source
buf f eri ng source

WWN N

Compile Point Information

The Summary of Compile Points section of the log file (projectName.srr) lists each
compile point, together with an indication of whether it was remapped, and, if
so, why. Also, a timing report is generated for each compile point located in
its respective results directories in the Implementation Directory. The compile
point is the top-level design for this report file.

For more information on compile points and the compile-point synthesis flow,
see Synthesizing Compile Points, on page 4520f the User Guide.

Timing Section

A default timing report is written to the log file (projectName.srr) in the “START
OF TIMING REPORT” section. See Timing Reports, on page 161, for details.

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 159

Input and Result Files Log File

For certain device technologies, you can use the Timing Analyst to generate
additional timing reports for point-to-point analysis (see Analysis Menu, on
page 393). Their format is the same as the timing report.

Resource Usage Report

A resource usage report is written in the log file each time you compile or
synthesize. The format of the resource usage report varies, depending on the
architecture you are using. The report provides the following information:

* The total number of cells, and the number of combinational and sequen-
tial cells in the design

* The number of clock buffers and I/O cells

* Details of how many of each type of cell in the design

Retiming Report

Whenever retiming is enabled, a retiming report is added to the log file
(projectName.srr). It includes information about the design changes made as a
result of retiming, such as the following:

* The number of flip-flops added, removed, or modified because of
retiming. Flip-flops modified by retiming have a _ret suffix added to their
names.

* Names of the flip-flops that were moved by retiming and no longer exist
in the Technology view.

* Names of the flip-flops created as result of the retiming moves, that did
not exist in the RTL view.

* Names of the flip-flops modified by retiming; for example, flip-flops that
are in the RTL and Technology views, but have different fanouts because
of retiming.

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
160 Synopsys Confidential Information January 2020

Timing Reports

Input and Result Files

Timing Reports

Timing results can be written to one or more of the following files:

.srror.htm

.ta

desi gnNane_async_cl k
.rpt.scv

Log file that contains a default timing report. To find this
information, after synthesis completes, open the log file
(View -> Log File), and search for START TIMING REPORT.

Timing analysis file that contains timing information
based on the parameters you specify in the stand-alone
Timing Analyst (Analysis->Timing Analyst).

Asynchronous clock report file that is generated when you
enable the related option in the stand-alone Timing
Analyzer (Analysis->Timing Analyst). This report can be
displayed in a spreadsheet tool and contains information
for paths that cross between multiple clock groups. See
Asynchronous Clock Report, on page 169 for details on
this report.

The timing reports in the .srr/.htm and .ta files have the following sections:

* Timing Report Header, on page 162

* Performance Summary, on page 162

* Clock Pre-map Reports, on page 164

* Clock Relationships, on page 167

* Interface Information, on page 168

* Asynchronous Clock Report, on page 169

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.

January 2020

Synopsys Confidential Information 161

Input and Result Files

Timing Report Header

The timing report header lists the date and time, the name of the top-level
module, the number of paths requested for the timing report, and the
constraint files used.

UL S

00056 ###44 START TIMNING REPORT #####
00057 # Tining Feport written on Fri Sep 06 13:33:15 Z002Z

00058 #

nooss

no0s0

00081 Top wview: wodz
00062 Paths recuested: 5

00063 Constraint Fileis):
00064 [N| This timing report estimates place and route data. Please look

00065 [EM| Clock constraints cover all FF-to-FF, FF-to-output, input-to-FF
aigtgiads

You can control the size of the timing report by choosing Project -> Implementa-
tion Options, clicking the Timing Report tab of the panel, and specifying the
number of start/end points and the number of critical paths to report. See
Timing Report Panel, on page 353, for details.

Performance Summary

© 2020 Synopsys, Inc.

162

The Performance Summary section of the timing report reports estimated and
requested frequencies for the clocks, with the clocks sorted by negative slack.
The timing report has a different section for detailed clock information.

Lo:n slack in desigm: 2.479

Raguasted Eatimated Regqueated Eatimatad
[starting Clock enoy Frequenoy Period Period

letka HA 18,800 HA
:F.'.k? 111.1 MHz 1920.5 MHz 9.000 B.479
k3 125.0 Msiz WA 8000 HA
locmb | golk_intereed_clock 1.8 MHZ HA 1809080 HA

WA 15,000 HA declared

Estimated period and frequency reported as A means no slack depends directly on the clock waveform

The Performance Summary lists the following information for each clock in the
design:

Timing Reports

Synplify Pro for Microsemi Edition Reference Manual
Synopsys Confidential Information January 2020

Timing Reports Input and Result Files

Performance Summary Description
Column
Starting Clock Clock at the start point of the path.

If the clock name is system, the clock is a collection
of clocks with an undefined clock event. Rising and
falling edge clocks are reported as one clock

domain.
Requested/Estimated Target frequency goal /estimated value after
Frequency synthesis. See Cross-Clock Path Timing Analysis,

on page 167 for information on how cross-clock
path slack is reported.

Requested/Estimated Period Target clock period/estimated value after
synthesis.

Slack Difference between estimated and requested
period. See Cross-Clock Path Timing Analysis, on
page 167 for information on how cross-clock path
slack is reported.

Clock Type The type of clock: inferred, declared, derived or system.

Clock Group Name of the clock group that a clock belongs.

The synthesis tool does not report inferred clocks that have an unreasonable
slack time. Also, a real clock might have a negative period. For example,
suppose you have a clock going to a single flip-flop, which has a single path
going to an output. If you specify an output delay of —1000 on this output,
then the synthesis tool cannot calculate the clock frequency. It reports a
negative period and no clock.

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 163

Input and Result Files Timing Reports

Clock Types
The synthesis timing reports include the following types of clocks:
¢ Declared Clocks
User-defined clocks specified in the constraint file.
* Inferred Clocks

These are clocks that the synthesis timing engine finds during
synthesis, but which have not been constrained by the user. The tool
assigns the default global frequency specified for the project to these
clocks.

¢ Derived Clocks

These are clocks that the synthesis tool identifies from a clock divider or
multiplier.

* System Clock

The system clock is the delay for the combinatorial path. Additionally, a
system clock can be reported if there are sequential elements in the
design for a clock network that cannot be traced back to a clock. Also,
the system clock can occur for unconstrained I/O ports. You must
investigate these conditions.

Clock Pre-map Reports
The following clock reports are generated during pre-map.
¢ Clock Summary, on page 165
* Clock Load Summary, on page 165
* Clock Optimization Report, on page 166

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
164 Synopsys Confidential Information January 2020

Timing Reports Input and Result Files

Clock Summary

Here is an example of the pre-map Clock Summary report.

..................

Stare Requested Requested Cleck Claek
Level Clock Frequency Period Type Load
g2 ax 1008 100.000 . declared defamlc_cligrewp 20
0 - clk_co=b 10.0 MHz 100.000 declazed default_clkgroup 5
g = clk_pind 10.0 MH=z 100.000 declared default_clkgroup 1
0 = elk_pinl 10.0 MHz 100.000 declared default_clkgroup 1
g - clk pind 10.0 MHz 100.000 declared default clkgroup 1
g = :lk_p;:3 10.0 MHs 100.000 declared defsult clkgroup 1
i clk_piné 10.0 MHz 100.000 declazed default_clkgroup i
Clock Load Summary
The pre-map Clock Load Summary table contains the following:
* Clock name
* Number of clock loads
* Clock source pin
* Clock load on clock pin sequential example
* Clock load on non-clock pin sequential example
* Clock load on combinatorial example
Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.

January 2020 Synopsys Confidential Information 165

Input and Result Files

Timing Reports

-lock Load Summazy

sErsskdssbissnakEnabaEnE

=lk_cemb
=1k_pind
zlk_pinl
zlk_pin2
=1lk_pind

=1k_pind

Clock
Load

Source
Ein

clk.clk(il
elk_comb. elk_comb (1)
elk_pind.elk_pind (L)
clk_pinl.clk_pinl (i)
clk_pin2.clk_pinz (i)
elk_pind.elk_pind (i)

elk_pind .clk_pind (1)

il.

il.i2.

il.

i1

~OUE.

il.i0.out.D[0)

Hen-cleek Pin

Saq Example

Hon-eleck Pin
Comb Example

iZ.and_ewt0.I[1] (and)

12.and eued.I[2] (and)

Clock Optimization Report

This is an example of the pre-map Clock Optimization report. A table is
provided with information for both the Non-Gated /Non-Generated Clocks
and Gated/Generated Clocks.

T

& non-gated/nen-genecated clock treais)

b gated/genarated slook tres (8] delving § slack plnls) of sequentisl slement (8)

¥ insténces convested,

Nen-Gated/Hon-Ganaratad Clocks

driving 18 elack pinie] of wequential elsmsnt (s}

& waquential instences cemain diiven by gated/gensrated clocks

Zlook Tres ID Briving Elsmens brive Elsmsnc Typs Fanous Sampls Inscance
=logkid O elk_pind port 1 £1.i4.0un
Zlogkld 0§ =lk_pind port 1 11.40.0us
Zleckid 0 7 clk pind pozt. 1 41.42 gut
sleekid 0 8 ‘elk_pinl port i Al.4d.out
aaskia 03 21k_pind pare 1 11.10.aue
=lgskid 019 el parn 1a 10.sath

Gated/Cansrated Ciocks

~logk Tzes 1D Deiving Elemant Drive Elemant Typs Uncerverted Fansut Samples Instancs Explanation

sheskid 0 0 42, and_eutd OUT and 1 el oue Hultiple elecks on instance
slogkld B L i3, and_putd . OUT and 1 Tegd.out Multiple clocks on instance
clockid 0.3 43.and_outd.OoUT and. 1 ugl.out Hultiple clocks on instance
alockid 0 2 43. eutl.O0T and 1 Eagl.ous Hultiple clocks on Lnstance
<lockid O 4 13 . amd_oued 0T e 1 ragh oun Hultipls elecks on Lnstanes

© 2020 Synopsys, Inc.

166

Synplify Pro for Microsemi Edition Reference Manual
Synopsys Confidential Information

January 2020

Timing Reports Input and Result Files

Clock Relationships

For each pair of clocks in the design, the Clock Relationships section of the
timing report lists both the required time (constraint) and the worst slack time
for each of the intervals rise to rise, fall to fall, rise to fall, and fall to rise. See Cross-
Clock Path Timing Analysis, on page 167 for details about cross-clock paths.

This information is provided for the paths between related clocks (that is,
clocks in the same clock group). If there is no path at all between two clocks,
then that pair is not reported. If there is no path for a given pair of edges
between two clocks, then an entry of No paths appears.

For information about how these relationships are calculated, see Clock
Groups, on page 217. For tips on using clock groups, see Defining Other
Clock Requirements, on page 174 in the User Guide.

Clock REelationships
FEEEELTEELELLERELLTY

Clocks | rise to rise | fall to fall | rise to fall | fall to rise
Starting Ending | constraint slack | constraint slack | constraint slack | constraint slack
clkl clkl | &5.000 15.843 | 25.000 17.764 | Ho paths - | No paths -

clkl clkz | 1.000 -5.430 | HNo paths - | No pathsa - | 1.000 -1.531
clka clkl | No paths - | 1.000 -0.811 | 1.000 -1.531 | HNo paths -

clkz clkz | &.000 0.764 | &§.000 -1.057 | HNo paths - | 6.000 Z.5814
clk3 clk3 | Ho paths - | 10,000 0,943 | Ho paths - | Ho paths -

Cross-Clock Path Timing Analysis

The following describe how the timing analyst calculates cross-clock path
frequency and slack.

Cross-Clock Path Frequency

For each data path, the tool estimates the highest frequency that can be set
for the clock(s) without a setup violation. It finds the largest scaling factor
that can be applied to the clock(s) without causing a setup violation. If the
start clock is not the same as the end clock, it scales both by the same factor.

scale = (minimum time period -(-current slack))/minimum time period

It assumes all other delays in the setup calculation (e.g., uncertainty) are
fixed.

It applies relevant multicycle constraints to the setup calculation.

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 167

Input and Result Files Timing Reports

The estimated frequency for a clock is the minimum frequency over all paths
that start or end on that clock, with the following exceptions:

* The tool does not consider paths between the system clock and another
clock to estimate frequency.

* It considers paths with a path delay constraint to be asynchronous, and
does not use them to estimate frequency.

* It considers paths between clocks in different domains to be asynchro-
nous, and does not use them to estimate frequency.

Slack for Cross-Clock Paths

The slack reported for a cross-clock path is the worst slack for any path that
starts on that clock. Note that this differs from the estimated frequency calcu-
lation, which is based on the worst slack for any path starting or ending on
that clock.

Interface Information

The interface section of the timing report contains information on arrival
times, required times, and slack for the top-level ports. It is divided into two
subsections, one each for Input Ports and Output Ports. Bidirectional ports are
listed under both. For each port, the interface report contains the following

information.
Port parameter Description
Port Name Port name.

Starting Reference Clock The reference clock.

User Constraint The input/output delay. If a port has multiple delay
records, the report contains the values for the record with
the worst slack. The reference clock corresponds to the
worst slack delay record.

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
168 Synopsys Confidential Information January 2020

Timing Reports

Input and Result Files

Port parameter

Arrival Time

Required Time

Slack

Description

Input ports: define_input_delay, or default value of 0.

Output ports: path delay (including clock-to-out delay of
source register).

For purely combinational paths, the propagation delay is
calculated from the driving input port.

Input ports: clock period — (path delay + setup time of
receiving register + define_reg_input_delay value).

Output ports: clock period — define_output_delay. Default
value of define_output_delay is O.

Required Time — Arrival Time

Asynchronous Clock Report

You can generate a report for paths that cross between clock groups using
the stand-alone Timing Analyst (Analysis->Timing Analyst, Generate Asynchronous
Clock Report check box). Generally, paths in different clock groups are
automatically handled as false paths. This option provides a file that contains
information on each of the paths and can be viewed in a spreadsheet tool. To
display the CSV-format report:

1. Locate the file in your results directory
proj ect Name_async_cl k. rpt. csv.

2. Open the file in your spreadsheet tool.

Column
Index
Path Delay

Logic Levels

Types
Route Delay

Source Clock

Description
Path number.
Delay value as reported in standard timing (ta) file.

Number of logic levels in the path (such as LUTs,
cells, and so on) that are between the start and end
points.

Cell types, such as LUT, logic cell, and so on.
As reported for each path in ta.

Start clock.

Destination Clock End clock.
Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 169

Input and Result Files Timing Reports

Column Description
Data Start Pin Sequential device output pin at start of path.
Data End Pin Setup check pin at destination.

53 async_clic.rpt.cs¥

A B c D E F G H |

1 |Index Path Delay Logic Levels Types Route Delay Source Clock Destination Clack Data Start Pin Data End Fin
1 1.533 1LUTT_L 0.632|Clock_A Clock_B reg_A.Q reg_B.0
2 2176 1LUTI_L 0.884|Clock_B Clock_C reg_B.Q reg_C.D

4

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
170 Synopsys Confidential Information January 2020

Constraint Checking Report Input and Result Files

Constraint Checking Report

Use the Run->Constraint Check command to generate a report on the constraint
files in your project. The projectName_cck.rpt file provides information such as
invalid constraint syntax, constraint applicability, and any warnings or
errors. For details about running Constraint Check, see Checking Constraint
Files, on page 54 in the User Guide.

This section describes the following topics:
* Reporting Details, on page 171
* Inapplicable Constraints, on page 172
* Applicable Constraints With Warnings, on page 173
* Sample Constraint Check Report, on page 174

Reporting Details

This constraint checking file reports the following:
* Constraints that are not applied
* Constraints that are valid and applicable to the design
* Wildcard expansion on the constraints

* Constraints on objects that do not exist

It contains the following sections:

Summary Statement which summarizes the total number of issues
defined as an error or warning (x) out of the total number of
constraints with issues (y) for the total number of constraints
(2) in the .fdc file.

Found <x> issues in <y> out of <z> constraints
Clock Relationship Standard timing report clock table, without slack.

Unconstrained Lists I/O ports that are missing input/output delays.
Start/End Points

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 171

Input and Result Files

Constraint Checking Report

Unapplied
constraints

Applicable
constraints with
issues

Constraints with
matching wildcard
expressions

Constraints that cannot be applied because objects do not
exist or the object type check is not valid. See Inapplicable
Constraints, on page 172 for more information.

Constraints will be applied either fully or partially, but there
might be issues that generate warnings which should be
investigated, such as some objects/collections not existing.
Also, whenever at least one object in a list of objects is not
specified with a valid object type a warning is displayed. See
Applicable Constraints With Warnings, on page 173 for more
information.

Lists constraints or collections using wildcard expressions up
to the first 1000, respectively.

Inapplicable Constraints

Refer to the following table for constraints that were not applied because
objects do not exist or the object type check was not valid:

For these constraints...

Attributes

create_clock

Objects must be...
Valid definitions

e Ports

* Nets

* Pins

* Registers

* Instantiated buffers

create_generated_clock Clocks

define_compile_point

define_current_design

© 2020 Synopsys, Inc.

* Region
e View

v:view

Synplify Pro for Microsemi Edition Reference Manual
Synopsys Confidential Information

January 2020

Constraint Checking Report Input and Result Files

For these constraints... Objects must be...
set_false_path For -to or -from objects:
set_multicycle_path * i:sequential instances
set_max_delay * p:ports

¢ i:black boxes

For -through objects

* n:nets

* t:hierarchical ports

e t:pins
set_multicycle_path Specified as a positive integer
set_input_delay ¢ Input ports

* bidir ports

set_output_delay * Output ports
 Bidir ports

set_reg_input_delay Sequential instances
set_reg_output_delay

Applicable Constraints With Warnings

The following table lists reasons for warnings in the report file:

For these constraints... Objects must be...
create_clock * Ports

* Nets

¢ Pins

* Registers
¢ Instantiated buffers

set_clock_uncertainty A single object. Multiple objects are
not supported.
define_compile_point A single object. Multiple objects are
not supported.
define_current_design viview
Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.

January 2020 Synopsys Confidential Information 173

Input and Result Files Constraint Checking Report

For these constraints... Objects must be...
set_false_path For -to or -from objects:
set_multicycle_path * i:sequential instances
set_path_delay * p:ports

¢ i:black boxes

For -through objects:

* n:nets

¢ t:hierarchical ports

e t:pins

set_input_delay A single object. Multiple objects are
not supported.

set_output_delay A single object. Multiple objects are
not supported.

set_reg_input_delay A single object. Multiple objects are

set_reg_output_delay not supported.

Sample Constraint Check Report

The following is a sample report generated by constraint checking:

Synopsys Constraint Checker, version maprc, Build 658R built Aug 25 2011
Copyright (C 1994-2011, Synopsys, Inc.

Witten on Thu Cct 20 09: 42: 22 2011
#ittt DES| GN | NFO S

Top View "decode_t op"
Constraint File(s): "C \'tinm ng_88\ FPGA decode_t op. f dc"
#HittHE SUMWARY S

Found 3 issues in 2 out of 27 constraints

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
174 Synopsys Confidential Information January 2020

Constraint Checking Report Input and Result Files

GitR DETA LS SRSHH G e B B A R A R R R R

d ock Rel ationships

kkkkkhkkhkkkhkkhkkkhkhkkkhkkk

Starting Ending | risetorise | fall tofall | risetofall | fall torise
cl k2x clk2x | 24.000 | 24.000 | 12.000 | 12.000

cl k2x clk | 24.000 | No paths | No paths | 12.000

clk clk2x | 24.000 | No paths | 12.000 | No paths

cl k cl k | 48.000 | No paths | No paths | No paths

Not e:

"No paths' indicates there are no paths in the design for that pair of clock edges.
"Dff grp' indicates that paths exist but the starting clock and ending clock are in
di fferent clock groups

Unconstrai ned Start/End Points

Kkkkkkkkkhkhkhkhhhkhhhhhhhkhhhhhkk

p: test _node

I nappl i cabl e constraints

khkkkkkkhkkhkhkhkhhkhkhhkhkhkhkhkkk

set _false_path -fromp:next_synd -through i:core.tabl.ram| oader

@ | object "i:core.tabl.raml| oader" does not exist

@ |object "i:core.tabl.ramloader" is incorrect type; "-through" objects nust be of
type net (n:), or pin (t:)

Appl i cabl e constraints wth issues

LR R R R EEEEEEEEEEEEEEEEEEEEEEEEEEES

set_false path -from{core. decoder.root_nult*.root_prod_pre[*]} -to
{i:core.decoder.onega_inst.onega_tnp_d_| ch[7:0]}

@V | obj ect "core.decoder.root_nult*.root_prod_pre[*]" is missing qualifier which nmay
result inundesired results; "-from' objects nust be of type clock (c:), inst (i:), port
(p:), or pin (t:)

Constraints with matching wldcard expressions

EEEEEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEEEEEEEE RS

set_false path -from{core. decoder.root_nult*.root_prod_pre[*]} -to

{i:core. decoder.onega_inst.onega_tnp_d_| ch[7:0]}

@\ | expression "core. decoder.root_nult*.root_prod_pre[*]" applies to objects:
core. decoder. root_nult1l.root_prod_pre[14: 0]

core. decoder. root _nul t.root_prod_pre[14: 0]

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 175

Input and Result Files

Constraint Checking Report

set_false path -from{i:core.decoder.*.root_prod_pre[*]} -to {i:core.decoder.t_*_[*]}
@\ | expression "core. decoder.*.root_prod_pre[*]" applies to objects:

core. decoder.root_nultl.root_prod_pre[14: 0]

core. decoder.root _mul t.root_prod_pre[14: 0]

@\ | expression "core.

cor e. decoder
cor e. decoder
core. decoder
cor e. decoder
cor e. decoder
core. decoder
cor e. decoder
cor e. decoder

cor e. decoder.
cor e. decoder .
cor e. decoder .
cor e. decoder.
cor e. decoder .
cor e. decoder .
core. decoder.
cor e. decoder .
cor e. decoder .
core. decoder.
cor e. decoder .
cor e. decoder .
core. decoder.

1. 20 [7:
Lt 19 [7:
L1118 [7:
A7 (7
Lt 16 [7:
.t 15 [7:
Lt 1407
Lt 13 [7
t_12 [7
t_ 11 [7
t_10 [7
t 9 [7
t 8 [7
t_7.[7:
t_6_[7:
t 5 [7:
t_4[7:
t_ 3 [7:
t 2 [7:
t_ 1 [7:
t_ 0 [7

0]
0]
0]
0]
0]
0]
0]
: 0]
1 0]
:0]
1 0]

1 0]
0]

0]
0]
0]
0]
0]
0]
0]

1 0]

decoder.t_*_[*]" applies to objects:

set_false path -from{i:core.decoder.root_mult*.root_prod_pre[*]} -to

{i:core.decoder.err[7:0]}

N | expressi on "core. decoder.root_mult*.root_prod_pre[*]" applies to objects:
core. decoder. root _nul t 1. root _prod_pr e[14: 0]
core. decoder.root _mul t.root_prod_pre[14: 0]

{i:core.decoder.root[7:0]}

set_false path -from{i:core.decoder.root_mult*.root_prod_pre[*]} -to
{i:core. decoder. omega_i nst. deg_omnega[4: 0] }

@\ | expression "core. decoder.root_mult*.root_prod_pre[*]" applies to objects:
cor e. decoder. root _nul t 1. root _prod_pr e[14: 0]

core. decoder. root _mul t.root_prod_pre[14: 0]

set_false path -from{i:core.decoder.root_mlt*.root_prod_pre[*]} -to
{i:core. decoder. omega_i nst. omega_t np[0: 7] }

@\ | expression "core. decoder.root_mult*.root_prod_pre[*]" applies to objects:
cor e. decoder. root _nul t 1. root _prod_pre[14: 0]

core. decoder. root _mul t.root_prod_pre[14: 0]

set_false path -from{i:core.decoder.root_mlt*.root_prod_pre[*]} -to

@\ | expression "core. decoder.root_mult*.root_prod_pre[*]" applies to objects:

cor e. decoder. root _nul t 1. root _prod_pr e[14: 0]
core. decoder. root _mul t.root_prod_pre[14: 0]

© 2020 Synopsys, Inc.

176

Synplify Pro for Microsemi Edition Reference Manual
Synopsys Confidential Information January 2020

Constraint Checking Report

Input and Result Files

set_false path -from{i:core.decoder.root_mult*.root_prod_pre[*]} -to

{i:core.decoder.root_inst.count[3:0]}

N | expressi on "core. decoder.root _mult*.root_prod _pre[*]" applies to objects:

core. decoder.root_nultl.root_prod_pre[14: 0]
core. decoder. root _nul t. root_prod_pre[14: 0]

set_false path -from{i:core.decoder.root_mult*.root_prod_pre[*]}
{i:core.decoder.root_inst.q_reg[7:0]}

@\ | expression "core. decoder.root_nult*.root_prod_pre[*]" applies
core. decoder. root_nult1l.root_prod_pre[14: 0]

core. decoder. root _nul t. root_prod_pre[14: 0]

set_false path -from{i:core.decoder.root_mult*.root_prod_pre[*]}
{i:core.decoder.root_inst.q_reg_d_lch[7:0]}

@\ | expression "core. decoder.root_nult*.root_prod_pre[*]" applies
core. decoder. root_nult1.root_prod_pre[14: 0]

core. decoder. root _nul t. root_prod_pre[14: 0]

-to

to objects:

-to

to objects:

set_false path -from{i:core.decoder.root_mult.root_prod_pre[*]} -to

{i:core.decoder.error_inst.den[7:0]}

@\ | expression "core. decoder.root_nult.root_prod pre[*]" applies to objects:

core. decoder. root _nult.root_prod_pre[14: 0]

set_false path -from¢{i:core.decoder.root_nultl.root_prod_pre[*]} -to

{i:core.decoder.error_inst.nunl[7:0]}

@\ | expression "core.decoder.root_nultl.root_prod_pre[*]" applies to objects:

core. decoder.root_nultl. root_prod_pre[14: 0]

set_false path -from{i:core.decoder.synd_reg_* [7:0]} -to {i:core.decoder.b_* _[7:0]}

@\ | expression "core. decoder.synd_reg_* [7:0]" applies to objects:
unl_synd_reg_0_[7: 0]

synd_reg_20_[7:
.synd_reg_19 [7:
synd_reg_18 [7:
synd_reg_17 [7:
synd_reg_16 [7:
synd_reg_15 [7:
synd_reg_14 [7:
synd_reg_13 [7:
synd_reg_12 [7:
.synd_reg_11 [7:
.synd_reg_10 [7:
core. decoder .
cor e. decoder .
cor e. decoder .
core. decoder .
cor e. decoder .
cor e. decoder .
core. decoder .

cor e. decoder .
core. decoder.

cor e. decoder

cor e. decoder.
core. decoder.
cor e. decoder.
cor e. decoder .
core. decoder.
core. decoder.
cor e. decoder.

core. decoder
cor e. decoder

core. decoder
cor e. decoder

Synplify Pro for Microsemi Edition Reference Manual
Synopsys Confidential Information

January 2020

synd_reg_9 [7:
synd_reg_8_[7:
synd_reg 7 [7:
synd_reg_6_[7:
synd_reg_5 [7:
synd_reg_4 [7:
synd_reg_3 [7:

.synd_reg_2 [7:
.synd_reg_1 [7:

0]
0]
0]
0]
0]
0]
0]
0]
0]
0]
0]
0]
0]
0]
0]
0]
0]
0]
0]
0]

© 2020 Synopsys, Inc.
177

Input and Result Files

Constraint Checking Report

@\ | expression "core.decoder.b_* [7:0]" applies to objects:

core. decoder
cor e. decoder
cor e. decoder
core. decoder

cor e. decoder .
cor e. decoder .
core. decoder.
cor e. decoder .
cor e. decoder .
core. decoder.
core. decoder. b__
core. decoder. b__
core. decoder.
cor e. decoder .
cor e. decoder .
core. decoder.
cor e. decoder .
cor e. decoder .
core. decoder.
cor e. decoder .
cor e. decoder .
core. decoder.
cor e. decoder .

.b_calc.unl_| anbda_0_[7:0]

.unl_b 0 [7:0]

.b_20_[7:0]

.b_19 [7:0]
b_18 [7:0]
b 17 [7:0]
b_16_[7:0]
b_15 [7:0]
b_14 [7:0]
b_13_[7:0]
b_12 [7:0]
b 11 [7:0]
b_10_[7:0]
b_9 [7:0]
b_8 [7:0]
b_7 [7:0]
b_6_[7:0]
b_5_[7:0]
b_4 [7:0]
b_3 [7:0]
b 2 [7:0]
b 1 [7:0]
b 0J[7:0

Li brary Report

khkkkkkkkhkkkkk*k

End of Constraint

© 2020 Synopsys, Inc.

178

Checker Report

Synplify Pro for Microsemi Edition Reference Manual

Synopsys Confidential Information

January 2020

SYNOPSYS

Silicon to Software

CHAPTER 6

RAM and ROM Inference

This chapter provides guidelines and Verilog or VHDL examples for coding
RAMs for synthesis. It covers the following topics:

* Guidelines and Support for RAM Inference, on page 180
* Automatic RAM Inference, on page 181

* Block RAM Inference, on page 185

* Initial Values for RAMs, on page 225

* RAM Instantiation with SYNCORE, on page 238

* ROM Inference, on page 239

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 179

RAM and ROM Inference

Guidelines and Support for RAM Inference

Guidelines and Support for RAM Inference

There are two methods to handle RAMs: instantiation and inference. Many
FPGA families provide technology-specific RAMs that you can instantiate in
your HDL source code. The software supports instantiation, but you can also
set up your source code so that it infers the RAMs. The following table sums
up the pros and cons of the two approaches.

Inference in Synthesis

Advantages

Portable coding style

Automatic timing-driven synthesis
No additional tool dependencies

Limitations

Glue logic to implement the RAM might
result in a sub-optimal implementation

Can only infer synchronous RAMs
No support for address wrapping

Pin name limitations means some pins
are always active or inactive

Instantiation

Advantages

Most efficient use of the RAM primitives
of a specific technology

Supports all kinds of RAMs

Limitations

Source code is not portable because it is
technology-dependent

Limited or no access to timing and area
data if the RAM is a black box
Inter-tool access issues, if the RAM is a
black box created with another tool

You must structure your source code correctly for the type of RAM you want
to infer. The following table lists the supported technology-specific RAMs that

can be generated by the synthesis tool.

RAM Type Microsemi
Single Port X
Dual Port b4
True Dual X
Port

© 2020 Synopsys, Inc.
180

Synopsys Confidential Information

Synplify Pro for Microsemi Edition Reference Manual
January 2020

Automatic RAM Inference RAM and ROM Inference

Automatic RAM Inference

Instead of instantiating synchronous RAMs, you can let the synthesis tools
automatically infer them directly from the HDL source code and map them to
the appropriate technology-specific RAM resources on the FPGA. This
approach lets you maintain portability.

Here are some of the advantages offered by the inference approach:

* The tool automatically infers the RAM from the HDL code, which is
technology-independent. This means that the design is portable from
one technology to another without rework.

* RAM inference is the best method for prototyping.

* The tool automatically adds the extra glue logic needed to ensure that
the logic is correct.

* The software automatically runs timing-driven synthesis for inferred
RAMs.

Block RAM

The synthesis software can implement the block RAM it infers using different
types of block RAM and different block RAM modes.

Types of Block RAM

The synthesis software can infer different kinds of block RAM, according to
how the code is set up. For details about block RAM inference, see Block RAM
Inference, on page 185 and RAM Attributes, on page 182. For inference
examples, and see Block RAM Examples, on page 191.

The synthesis tool can infer the following kinds of block RAM:
* Single-port RAM
* Dual-port RAM

Based on how the read and write ports are used, dual-port RAM can be
further classified as follows:

— Simple dual-port
— Dual-port

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 181

RAM and ROM Inference Automatic RAM Inference

— True dual-port

Supported Block RAM Modes

Block RAM supports three operating modes, which determine the output of
the RAM when write enable is active. The synthesis tools infer the mode from
the RTL you provide. It is best to explicitly describe the RAM behavior in the
code, so as to correctly infer the operating mode you want. Refer to the
examples for recommended coding styles.

The block RAM operating modes are described in the following table:

Mode When write enable (WE) is active ...

WRITE_FIRST This is a transparent mode, and the input data is simultaneously
written into memory and stored in the RAM data output (DO). DO
uses the value of the RAM data input (DIl). See WRITE_FIRST Mode
Example, on page 192 for an example.

READ_FIRST This mode is read before write. The data previously stored at the
write address appears at the RAM data output (DO) first, and then
the RAM input data is stored in memory. DO uses the value of the
memory content. See READ_FIRST Mode Example, on page 193 for
an example.

NO_CHANGE RAM data output (DO) remains the same during a write operation,
with DO containing the last read data. See NO_CHANGE Mode
Example, on page 194 for an example.

RAM Attributes

In addition to the automatic inference by the tool, you can specify RAM infer-
ence with the syn_ramstyle and syn_rw_conflict_logic attributes. The syn_ramstyle
attribute explicitly specifies the kind of RAM you want, while the syn_rw_con-
flict_logic attribute specifies that you want to infer a RAM, but leave it to the
synthesis tools to select the kind of RAM, as appropriate.

Attribute-Based Inference of Block RAM

For block RAM, the syn_ramstyle attribute has a number of valid values, all of
which are extensively described in the documentation. This section confines
itself to the following values, which are most relevant to the discussion:

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
182 Synopsys Confidential Information January 2020

Automatic RAM Inference RAM and ROM Inference

syn_ramstyle Value Description

block_ram Enforces the inference and implementation of a
technology-specific RAM.

registers Prevents inference of a RAM, and maps the RAM to flip-flops
and logic.

no_rw_check Does not create overhead logic to account for read-write
conflicts.

If you specify the syn_rw_conflict_logic attribute, the synthesis tools can infer
block RAM, depending on the design. If the tool does infer block RAM, it does
not insert bypass logic around the block RAM to account for read-write
conflicts and prevent simulation mismatches. In this way its functionality is
the same as syn_ramstyle with no_rw_check, which does not insert bypass logic
either.

Specifying the Attributes

You set the attribute in the HDL source code, through the SCOPE interface or
in an FPGA constraint file.

HDL Source Code

Set the attribute on the Verilog register or VHDL signal that holds the output
values of the RAM. The following syntax shows how to specify the attribute in
Verilog and VHDL code:

Verilog reg [7:0] ramdout [127:0]
/*synthesis syn_ranstyle = "block_ran*/;
reg [d_w dth-1:0] nem [mem dept h-1: 0]
/*synthesis syn rw conflict_logic = 0*/;

VHDL attribute syn_ranstyle of ramdout : signal is "block_rani;

SCOPE

For the syn_ramstyle attribute, set the attribute on the RAM register memory
signal, mem, as shown below. For the syn_rw_conflict_logic attribute, set it on
the instance or set it globally. The attributes are written out to a constraints
file using the syntax described in the next section.

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 183

RAM and ROM Inference Automatic RAM Inference

|| Enabled | Object Type | Object | Attribute | value | val Type |
1 | ¥ <any= i:mem([7:0] Syn_ramstyle block_ram| - |string

Constraints File

In the fdc Tcl constraints file written out from the SCOPE interface, the
syn_ramstyle attribute is attached to the register mem signal of the RAM, and
the syn_rw_conflict_logic attribute is attached to the view, as shown below:

define_ attribute {i:menf7:0]} {syn_ranstyle} {block_ran}
define attribute {v:menj0:7]} syn_rw conflict _logic {0}

For the syn_rw_conflict_logic attribute, you can also specify it globally, as well as
on individual modules and instances:

define_global _attribute syn rw conflict_logic {0}

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual

184

Synopsys Confidential Information January 2020

Block RAM Inference RAM and ROM Inference

Block RAM Inference

Based on the design and how you code it, the tool can infer the following
kinds of block RAM: single-port, simple dual-port, dual-port, and true
dual-port. The details about RAM inference and setup guidelines are
described here:

* Setting up the RTL and Inferring Block RAM, on page 185
* Simple Dual-Port Block RAM Inference, on page 187

* Dual-Port RAM Inference, on page 189

* True Dual-Port RAM Inference, on page 189

* True Dual-Port Byte-Enabled RAM Inference, on page 191

Setting up the RTL and Inferring Block RAM

To ensure that the tool infers the kind of block RAM you want, do the
following;:

1. Set up the RAM HDL code in accordance with the following guidelines:

— The RAM must be synchronous. It must not have any asynchronous
control signals connected. The synthesis tools do not infer
asynchronous block RAM.

— You must register either the read address or the output.

— The RAMs must not be too small, as the tool does not infer block RAM
for small-sized RAMs. The size threshold varies with the target
technology.

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 185

RAM and ROM Inference Block RAM Inference

2. Set up the clocks and read and write ports to infer the kind of RAM you
want. The following table summarizes how to set up the RAM in the RTL:

RAM Clock Read Ports Write Ports

Single-port Single clock One; same as write One; same as read

Simple Single or dual One dedicated read One dedicated write

dual-port clock

Dual-port Single or dual Two independent One dedicated write
clock reads

True dual-port Single or dual Two independent Two independent
clock reads writes

See Dual-Port RAM Inference, on page 189 and True Dual-Port RAM
Inference, on page 189 for additional information.

For illustrative code examples, see the single-port and dual-port
examples listed in Block RAM Examples, on page 191.

3. If needed, guide automatic inference with the syn_ramstyle attribute:
— To force the inference of block RAM, specify syn_ramstyle=blockram.

— To prevent a block RAM from being inferred or if your resources are
limited, use syn_ramstyle=registers.

— If you know your design does not read and write to the same address
simultaneously, specify syn_ramstyle=no_rw_check to ensure that the
synthesis tool does not unnecessarily create bypass logic for resolving
conflicts.

4. Synthesize the design.

The tool first compiles the design and infers the RAMs, which it
represents as abstract technology-independent primitives like RAM1 and
RAM2. You can view these RAMs in the RTL view, which is a graphic,
technology-independent representation of your design after compilation:

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
186 Synopsys Confidential Information January 2020

Block RAM Inference RAM and ROM Inference

T = —a—ia oy rami
SIS et [350] 100] (i AL]
L -
addr_reg[5:0 EHAT 1) e
= QE] [E:ll) DOUTF O] : I”‘“. 0] =
|-—L- WADDR[50] SR

We a—| wEm
data[7:0] — —| CLK

ram[7.0]

It is important that the compiler first infers the RAM, because the tool
only maps the inferred RAM primitives to technology-specific block RAM.
Any RAM that is not inferred is mapped to registers. You can view the
mapped RAMs in the Technology view, which is a graphic representation
of your design after synthesis, and shows the design mapped to
technology-specific resources.

Simple Dual-Port Block RAM Inference

Simple dual-port RAMs (SDP) are block RAMs with one port dedicated to read
operations and one port dedicated to write operations. SDP RAMs offer the
unique advantage of combining ports and using them to pack double the data
width and address width.

The synthesis tools map SDP RAMs to RAM primitives in the architecture. A
unique set of addresses, clocks, and enable signals are used for each port.
The synthesis tool might also set the RAM_MODE property on the RAM to
indicate the RAM mode.

The inference of simple dual-port RAM is dependent on the size of the
address and data. The RAM must follow the coding guidelines listed below to
be inferred.

* The read and write addresses must be different
* The read and write clocks can be different

* The enable signals can be different

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 187

RAM and ROM Inference Block RAM Inference

Here is an example where the tool infers SDP RAM:

nmodul e Read_First _RAM (
read_cl k,
read_address,
data_ in,
wite clk,
rd_en,
w_en,
reg_en,
wite_address,
data out);

paranet er address_wi dth = 8;
paraneter data width = 32;
paraneter depth = 256;
input read clk, wite clk;
i nput rd_en;
i nput w_en;
i nput reg_en;
i nput [address_wi dth-1:0] read address, wite_ address;
input [data width-1:0] data_in;
output [data wi dth-1:0] data out;
[/wire [data_wi dth-1:0] data out;
reg [data_width-1:0] mem[depth -1 : 0]/* synthesis
syn_ranst yl e="no_rw _check”
*/ :
reg [data_w dth-1:0] data out;
al ways @ posedge wite clk)

i f(w _en)

menfwite_address] <= data_in;
al ways @ posedge read_cl k)
if(rd_en)

data out <= nenjread_address];

endnodul e

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
188 Synopsys Confidential Information January 2020

Block RAM Inference RAM and ROM Inference

rami

[T~ = it} Lot
. T

[ualE =+ == data_out[31:0]

mem[31:0]

==

Dual-Port RAM Inference

Dual-port RAM is configured to have read and/or write operations from both
ports of the RAM. One such configuration is a RAM with one port for both
read and write operations and another dedicated read-only port. A unique set
of addresses, clocks, and enable signals are used for each port. The synthesis
tool sets properties on the RAM to indicate the RAM mode.

To infer dual-port block RAM, the RAM must follow the coding rules
described below.

* The read and write addresses must be different
* The read and write clocks can be different

* The enable signals can be different

True Dual-Port RAM Inference

True dual-port RAMs (TDP) are block RAMs with two write ports and two read
ports. The compiler extracts a RAM2 primitive for RAMs with two write ports
or two read ports and the tool maps this primitive to TDP RAM. The ports
operate independently, with different clocks, addresses and enables.

The synthesis tool also sets the RAM_MODE property on the RAM to indicate
the RAM mode.

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 189

RAM and ROM Inference Block RAM Inference

The compiler infers TDP block RAM based on the write processes. The imple-
mentation depends on whether the write enables use one process or multiple
processes:

* When all the writes are made in one process, there are no address
conflicts, and the compiler generates an nram that is later mapped to
either true dual-port block RAM. The following coding results in an nram
with two write ports, one with write address waddr0 and the other with
write address waddr1:

al ways @ posedge cl k)
begi n
i f(wel) nenjwaddr0] <= datal,;
i f(we2) nenfwaddrl] <= data2;
end

* When the writes are made in multiple processes, the software does not
infer a multiport RAM unless you explicitly specify the syn_ramstyle attri-
bute with a value that indicates the kind of RAM to implement, or with
the no_rw_check value. If the attribute is not specified as such, the
software does not infer an nram, but infers a RAM with multiple write
ports. You get a warning about simulation mismatches when the two
addresses are the same.

In the following case, the compiler infers an nram with two write ports
because the syn_ramstyle attribute is specified. The writes associated with
waddrO0 and waddr1 are we1 and we2, respectively.

reg [1:0] nem[7:0] /* synthesis syn_ranstyl e="no_rw check" */;
al ways @ posedge cl k1)
begi n
i f(wel) nenjwaddr0] <= datal,;
end

al ways @ posedge cl k2)
begi n

i f(we2) nenfwaddrl] <= data2;
end

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
190 Synopsys Confidential Information January 2020

Block RAM Inference

RAM and ROM Inference

True Dual-Port Byte-Enabled RAM Inference

The procedure below describes how to specify RAM where you can read/write
each byte into a specific address location independently, and how to imple-
ment it as block RAM.

1. Instantiate the true dual-port RAM n number of times, where n is the

number of bytes for a particular RAM address.

In the following example, ram_dp is instantiated twice because there are
two bytes in the address:

ram_dp u1 (clk1, clk2, dia[7:0] , addra, wea[0], doa[7:0] , dib[7:0] , addrb, web][0],
dob[7:0]);

ram_dp u2 (clk1, clk2, dia[15:8], addra, wea[1], doa[15:8], dib[15:8], addrb,
web[1], dob[15:8]);

. To map the true dual-port RAM into a block RAM, add the

syn_ramstyle="block_ram" attribute to the true dual-port RAM module.

. Run compile.

The RTL schematic shows two instantiations, as specified.
Run map.

After synthesis, check the resource utilization report to make sure that
two block RAMs were inferred, as specified.

Block RAM Examples

The examples below show you how to define RAM in the HDL code so that the
synthesis tools can infer block RAM. See the following for details:

Block RAM Mode Examples, on page 192
Single-Port Block RAM Examples, on page 195
Dual-Port Block RAM Examples, on page 199

True Dual-Port RAM Examples, on page 201

For details about inferring block RAM, see Block RAM Inference, on page 185.

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 191

RAM and ROM Inference Block RAM Inference

Block RAM Mode Examples

The coding style supports the enable and reset pins of the block RAM primi-
tive. The tool supports different write mode operations for single-port and
dual-port RAM. This section contains examples of how to specify the
supported block RAM output modes:

¢ WRITE_FIRST Mode Example, on page 192
* READ_FIRST Mode Example, on page 193
* NO_CHANGE Mode Example, on page 194

WRITE_FIRST Mode Example

This example shows the WRITE_FIRST mode operation with active enable.

modul e v_rans_02a (clk, we, en, addr, di, dou);
i nput clk;

i nput we;

i nput en;

input [5:0] addr;

input [63:0] di;

out put [63:0] dou;

reg [63:0] RAM[63:0];

reg [63:0] dou;

al ways @ posedge cl k)

begi n
if (en)
begi n
if (we)
begi n
RAM addr] <= di;
dou <= di;
end
el se
dou <= RAM addr];
end
end

al ways @ posedge cl k)
if (en &we) RAMaddr] <= di;
endnodul e

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual

192

Synopsys Confidential Information January 2020

Block RAM Inference RAM and ROM Inference

The following figure shows the RTL view of a WRITE_FIRST mode RAM
with output registered. Select the Technology view to see that the RAM is
mapped to a block RAM.

RTL View
=l
— =
== — L =
=

READ_FIRST Mode Example

The following piece of code is an example of READ_FIRST mode with both
enable and reset, with reset taking precedence:

nodul e ramtest(data out, data in, addr, clk, rst, en, we);
output [7:0]data out;

input [7:0]data_in;

i nput [6: 0] addr;

i nput clk, en, rst, we;

reg [7:0] nmem[127:0] /* synthesis syn_ranmstyle = "block_rant */;
reg [7:0] data out;

al ways @ posedge cl k)

if(rst == 1)
data out <= 0;
el se begin
i f(en) begin
data_out <= menjaddr];
end
end

al ways @ posedge cl k)
if (en &we) nmenjaddr] <= data_in;
endnodul e

The following figure shows the RTL view of a READ_FIRST RAM with
inferred enable and reset, with reset taking precedence. Select the
Technology view to see that the inferred RAM is mapped to a block RAM.

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 193

RAM and ROM Inference Block RAM Inference
i} raml RTL VleW
=) =
und_en ’_ dataout_4[7:0] data_oul[T0]
menm{7:0] N

i

uni_data_ou_1_sgmuoa

data_outb

NO_CHANGE Mode Example

This NO_CHANGE mode example has neither enable nor reset. If you register
the read address and the output address, the software infers block RAM.

nodul e ramtest(data_out, data_ in, addr, clk, we);

output [7:0]data out;

input [7:0]data_in;

i nput [6: 0] addr;

i nput cl k, we;

reg [7:0] nmem[127:0] /* synthesis syn_ranstyle
reg [7:0] data_ out;

al ways @ posedge cl k)

if(we == 1
data out <= data out;
el se

data out <= nenfaddr];

al ways @ posedge cl k)
if (we) nenfjaddr] <= data_in;

endnodul e

"bl ock_ramt */;

The next figure shows the RTL view of a NO_CHANGE RAM. Select the
Technology view to see that the RAM is mapped to block RAM.

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual

194 Synopsys Confidential Information

January 2020

Block RAM Inference RAM and ROM Inference

RTL View
ram1
e 24000 R] G
B AT et bt DATAT.O g
[=n5n St V/ADIDRIE e g] - afr. '
we L WEIl —L°
ok - data_out[7:0]
mem{7:0]

L

uni_we

Single-Port Block RAM Examples

This section describes the coding style required to infer single-port block
RAMs. For single-port RAM, the same address is used to index the write-to
and read-from RAM. See the following examples:

* Single-Port Block RAM Examples, on page 195
* Single-Port RAM with RAM Output Registered Examples, on page 197
* Dual-Port Block RAM Examples, on page 199

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 195

RAM and ROM Inference Block RAM Inference

Single-Port RAM with Read Address Registered Example

In these examples, the read address is registered, but the write address
(which is the same as the read address) is not registered. There is one clock
for the read address and the RAM.

Verilog Example: Read Address Registered

modul e ramtest(q, a, d, we, clk);

output [7:0] q;

input [7:0] d;

input [6:0] a;

i nput clk, we;

reg [6:0] read_add;

/* The array of an array register ("nenm') fromwhich the RAMis
i nferred*/

reg [7:0] nem[127:0] ;

assign q = nenjread_add];

al ways @ posedge cl k) begin
read_add <= ga;
i f(we)
/* Register RAM Data */
nenfa] <= d;
end

endnodul e

VHDL Example: READ Address Registered

library ieee;
use ieee.std_| ogic_1164.all;
use ieee.std | ogic_unsigned.all

entity ramtest is
port (d : in std_logic_vector(7 downto 0);

a: in std_logic_vector(6 dowto 0);
we : in std_|ogic;
clk : in std_logic;

g : out std |ogic vector(7 downto 0));
end ramtest;

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
196 Synopsys Confidential Information January 2020

Block RAM Inference RAM and ROM Inference

architecture rtl of ramtest is
type memtype is array (127 downto 0) of
std _logic_vector (7 downto 0);
signal mem nemtype;
signal read_add : std | ogic_vector(6 dowto 0);

begi n
process (clk)
begi n
if rising_edge(clk) then
if (we ="1") then
men{conv_i nteger(a)) <= d;
end if;
read_add <= a;
end if;

end process;

g <= nen{conv_i nteger(read_add));
end rtl ;

Single-Port RAM with RAM Output Registered Examples

In this example, the RAM output is registered, but the read and write
addresses are unregistered. The write address is the same as the read
address. There is one clock for the RAM and the output.

Verilog Example: Data Output Registered

nodul e ramtest(q, a, d, we, clk);

output [7:0] q;

input [7:0] d;

input [6:0] a;

i nput clk, we;

/* The array of an array register ("nent) fromwhich the RAMis

inferred */

reg [7:0] mem[127:0] ;

reg [7:0] q;

al ways @posedge cl k) begin

q = menjal;

i f(we)
/* Register RAM Data */
menja] <= d,

end

endrodul e

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.

January 2020 Synopsys Confidential Information 197

RAM and ROM Inference Block RAM Inference

VHDL Example: Data Output Registered

library ieee;
use ieee.std_| ogic_1164.all;
use ieee.std_| ogi c_unsigned. al |

entity ramtest is
port (d: in std_logic_vector(7 downto 0);
a: in integer range 127 downto O;
we: in std_|ogic;
clk: in std_ | ogic;
g: out std |ogic vector(7 dowto 0));
end ramtest;

architecture rtl of ramtest is

type memtype is array (127 downto 0) of
std_|l ogic_vector (7 downto 0);

signal nmem nemtype;

begi n
process(cl k)
begi n
if (clk'event and clk="1") then
g <= nmen(a);
if (we="1") then
men(a) <= d,
end if;
end if;
end process;
end rtl;
© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual

198 Synopsys Confidential Information January 2020

Block RAM Inference RAM and ROM Inference

Dual-Port Block RAM Examples

The following example or HDL code results in simple dual-port block RAMs
being implemented in supported technologies.

Verilog Example: Dual-Port RAM

This Verilog example has two read addresses, both of which are registered,
and one address for write (same as a read address), which is unregistered. It
has two outputs for the RAM, which are unregistered. There is one clock for
the RAM and the addresses.

nodul e dual portram (ql, g2, al, a2, d, we, cl k1) ;
out put [7:0]ql, g2;
input [7:0] d;
i nput [6:0]al, az;
i nput cl k1, we;
wire [7:0] qil;
reg [6:0] read_addrl,read_addr2;
reg[7:0] mem|[127:0] /* synthesis syn ranstyle = "no_rw check" */;
assign gl = nem|[read_addr1];
assign g2 = nenjread_addr?];
al ways @(posedge cl kl) begin
read_addrl <= al;
read_addr2 <= a2;
if (we)
nenf a2] <= d;
end

endnodul e

VHDL Example: Dual-Port RAM
The following VHDL example is of READ_FIRST mode for a dual-port RAM:

Li brary | EEE ;

use | EEE std_| ogi c_1164.all ;

use | EEE std_logic_arith.all ;
use | EEE std_l ogi c_unsigned. all ;

entity Dual _Port ReadFirst is
generic (data w dth: integer :=4;
address_wi dth: integer :=10);

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 199

RAM and ROM Inference Block RAM Inference

port (wite_enable: in std_|ogic;
wite clk, read clk: in std_|ogic;
data in: in std |ogic vector (data w dth-1 downto 0);
data out: out std logic vector (data wi dth-1 downto 0);
wite address: in std_|logic_vector (address_w dth-1 downto 0);
read_address: in std_|logic_vector (address_wi dth-1 downto 0)
)

end Dual _Port ReadFirst;

architecture behavioral of Dual Port ReadFirst is

type nmenory is array (2**(address_wi dth-1) downto 0) of
std | ogic_vector (data wi dth-1 downto 0);

signal mem: menory;

signal reg wite address : std_|ogic vector (address width-1 downto 0);
signal reg_ wite_enable: std_|ogic;

attribute syn ranstyle : string;
attribute syn ranstyle of mem: signal is "block rani;

begi n
regi ster_enabl e_and wite_address:
process (wite clk,wite_enabl e, wite address, data_in)
begi n
if (rising_edge(wite_clk)) then
reg wite address <= wite_address;
reg wite_enable <= wite_enabl ¢;
end if;
end process;

wite:
process (read_clk,wite_enabl e,wite address, data_in)
begi n
if (rising_edge(wite_clk)) then
if (wite_enable="1") then
men{conv_i nteger (wite_address))<=data in;
end if;
end if;
end process;

read:
process (read_cl k,wite_enabl e, read_address, wite_address)
begi n
if (rising_edge(read clk)) then
if (regwite enable="1") and (read_address =
reg wite_address) then data out <= "XXXX';

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
200 Synopsys Confidential Information January 2020

Block RAM Inference RAM and ROM Inference

el se
dat a_out <=nen{ conv_i nt eger (read_address));
end if;
end if;
end process;

end behavi oral ;

True Dual-Port RAM Examples

You must use a registered read address when you code the RAM or have
writes to one process. If you have writes to multiple processes, you must use
the syn_ramstyle attribute to infer the RAM.

There are two situations which can result in this error message:

"@: MF216: ramv(29)| Found NRAM nem 1[7: 0] with multiple
processes"

* An nram with two clocks and two write addresses has syn_ramstyle set to a
value of registers. The software cannot implement this, because there is a
physical FPGA limitation that does not allow registers with multiple
writes.

* You have a registered output for an nram with two clocks and two write
addresses.

Verilog Example: True Dual-Port RAM

The following HDL example shows the recommended coding style for true
dual-port block RAM. It is a Verilog example where the tool infers true
dual-port RAM from a design with multiple writes:

nmodul e ran{dat a0, datal, waddrO, waddrl, weO, wel,
cl kO, clkl, g0, ql);

paraneter d width = 8;

paraneter addr_wi dth = 8;

par anet er mem depth = 256;

input [d width-1:0] dataO, datal,;

i nput [addr_wi dth-1: 0] waddrO, waddr1;

i nput weO, wel, clkO, clki,;

output [d width-1:0] g0, qi;

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 201

RAM and ROM Inference

Block RAM Inference

© 2020 Synopsys, Inc.

202

reg [addr_width-1:0] reg_addr0O, reg _addrl

reg [d width-1:0] mem|[memdepth-1:0] /* synthesis
syn_ranstyl e="no_rw check" */;

assign q0 = nenjreg_addr0];

assign gl = nenjreg_addr1];

al ways @ posedge cl k0)
begi n
reg_addr0 <= waddrO;
if (we0)
nmenj waddr 0] <= dat a0;
end

al ways @ posedge cl k1)
begi n
reg_addrl <= waddr1;
if (wel)
menj waddr 1] <= datal
end

endnodul e

reg_addri[7:0]

W mem 7]

= -+
[l 1724

— e
reg_addrl [7:0]

il

mem_1[7:0]

RTL View

Synopsys Confidential Information

Synplify Pro for Microsemi Edition Reference Manual

January 2020

Block RAM Inference RAM and ROM Inference

VHDL Example: True Dual-Port RAM

The following HDL example shows the recommended coding style for true
dual-port block RAM. It is a VHDL example where the tool infers true
dual-port RAM from a design with multiple writes:

library ieee;
use ieee.std logic_1164. all;
use ieee.nuneric_std.all;

entity one is

generic (data width : integer := 4;

address_ width :integer :=5);

port (data_a:in std_|ogic_vector(data w dth-1 dowto 0);

data b:in std | ogic vector(data wi dth-1 downto 0);
addr_a:in std_| ogi c_vector(address w dth-1 downto 0);
addr_b:in std_| ogi c_vector(address _w dth-1 downto 0);
wen_a:in std_logic;
wen_b:in std_|l ogic;
clk:in std_logic;
g_a:out std | ogic_vector(data width-1 downto 0);
g _b:out std |ogic vector(data width-1 dowmto 0));

end one;

architecture rtl of one is
type memarray is array(0 to 2**(address_w dth) -1) of
std_logi c_vector(data wi dth-1 downto 0);
signal mem: nemarray;
attribute syn ranstyle : string;
attribute syn ramstyle of nem: signal is "no rw check" ;
signal addr_a reg : std_logic_vector(address w dth-1 dowto 0);
signal addr b reg : std_logic_vector(address_w dth-1 downto 0);
begi n
WRI TE_RAM : process (clk)
begi n
if rising_edge(clk) then
if (wen_a ="1") then
nmen{t o_i nt eger (unsi gned(addr_a))) <= data_a;
end if;
if (wen_b="1") then
memr(to_i nt eger (unsi gned(addr_b))) <= data b;

end if;

addr_a reg <= addr_a;

addr_b reg <= addr_b;

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 203

RAM and ROM Inference Block RAM Inference

end if;
end process WR TE_RAM
g_a <= nmen{to_integer(unsigned(addr_a reg)));
g_b <= men(to_i nteger(unsigned(addr_b reg)));
end rtl;

Limitations to RAM Inference
RAM inference is only supported for synchronous RAMs.
/] Exanple 1: Verilog Asymretric RAM Coding Style 1

nmodul e asymmetric_ram (cl kA, cl kB, weA enA addrA addrB, diA
doB);

par aret er W DTHA = 2;

paranet er Sl ZEA = 16384,

par amet er ADDRW DTHA = 14;
pararmeter W DTHB = 4;

paraneter Sl ZEB = 8192;
paraneter ADDRWDIHB = 13;

i nput cl kA
i nput cl kB;
i nput WeA;

i nput enA

i nput [ADDRW DTHA- 1: 0] addr A;
i nput [ADDRW DTHB- 1: 0] addr B;
i nput [W DTHA- 1: 0] di A
output reg [WDIHB- 1: 0] doB;

“define nmax(a,b) {(a) > (b) ? (a) : (b)}

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
204 Synopsys Confidential Information January 2020

Block RAM Inference

RAM and ROM Inference

“define nin(a,b) {(a) < (b) ? (a) : (b)}

function integer |og2;
i nput integer val ue;
reg [31:0] shifted;
i nteger res;
begi n
if (value < 2)
| og2 = val ue;
el se
begi n
shifted = val ue-1;
for (res=0; shifted>0; res=res+l)
shifted = shifted>>1,;
| 0og2 = res;
end
end

endf uncti on

| ocal par am maxSl| ZE “max(Sl ZEA, Sl ZEB);

| ocal par am maxW DTH “max(WDTHA, W DTHB) ;

| ocal param m nW DTH “mn(WDTHA, W DTHB) ;

maxW DTH / m nW DTH,

| ocal par am RATI O

| ocal param | 0g2RATI O = | 0g2(RATI O ;
reg [MnNWDTH 1: 0] RAM[0: maxSl ZE-1];
reg [ADDRWDTHB- 1: 0] addrB reg;

Synplify Pro for Microsemi Edition Reference Manual
January 2020 Synopsys Confidential Information

© 2020 Synopsys, Inc.
205

RAM and ROM Inference Block RAM Inference

genvar i;

al ways @ posedge cl kA)
begi n
if (enA & weAh)
RAM addr A] <= di A

end

al ways @ posedge cl kB)

begi n
addrB reg <= addrB;
end
generate for (i =0; i <RATIQ i =1i+1)

begi n: ranread
| ocal param [l 0g2RATI O 1: 0] I sbaddr = i;
al ways @ posedge cl kB)
begi n
doB[(i +1) *m nW DTH 1:i *m nWDTH <= RAM
{addrB reg, |sbaddr}];
end
end

endgener at e

endnodul e
/!l Exanple 1. VHDL Asymretric RAM Coding Sytle 1

library ieee;

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
206 Synopsys Confidential Information January 2020

Block RAM Inference

RAM and ROM Inference

use ieee.std logic_1164. all;

use ieee.std_|ogi c_unsigned.all;

use ieee.std logic_arith.all;

entity asymmetric_ramis

generic (
W DTHA
S| ZEA

ADDRW DTHA

W DTHB
S| ZEB

ADDRW DTHB

)

port (
cl KA
cl kB
weA
enA
addr A
addr B
di A
doB
);

n

n

integer := 2;

i nteger := 16384,

i nteger := 14;

i nteger := 4;

i nteger := 8192;

integer := 13
std_l ogic;
std_| ogi c;
std_| ogi c;
std_| ogic;

std_I ogi c_vect or (ADDRW DTHA-1 downt o 0);

std_| ogi c_vect or (ADDRW DTHB-1 downto 0);

std_| ogi c_vector (WDTHA-1 downto O);

out std | ogic vector(WDTHB-1 downto 0)

end asynmetric_ram

archi t ect ure behavi or al

Synplify Pro for Microsemi Edition Reference Manual

January 2020

Synopsys Confidential Information

of asymmetric _ramis

© 2020 Synopsys, Inc.
207

RAM and ROM Inference Block RAM Inference

function max(L, R INTEGER) return INTEGER is
begi n
if L>Rthen
return L;
el se
return R
end if;

end;

function mn(L, R INTEGER) return INTEGER i s
begi n
if L <Rthen
return L;
el se
return R
end if;

end;

function log2 (val: INTEGER) return natural is
variable res : natural;
begi n
for i in0Oto 31 |oop
if (val <= (2**i)) then
res :=i;
exit;
end if;

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
208 Synopsys Confidential Information January 2020

Block RAM Inference RAM and ROM Inference

end | oop;
return res;

end function Log2;

constant minWDTH : i nteger m n(W DTHA, W DTHB) ;
max(W DTHA, W DTHB) ;

max (S| ZEA, S| ZEB) ;

constant nmaxWDTH : i nteger

constant maxSlIZE : integer

constant RATIO : integer := naxWDIH / m nWDTH,

type ramlype is array (0 to maxSl ZE-1) of
std_logi c_vector(m nWDIH 1 downto 0);
signal ram: ranType := (others => (others => '0'));

signal addrB reg : std_|ogic_vector(ADDRWDTHB-1 downto 0);

begi n
process (clkA)
begi n
if rising_edge(clkA) then
if enA="'1 then
if weA ="'1" then
ram(conv_i nteger (addrA)) <= di A
end if;
end if;
end if;

end process;

process (cl kB)

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 209

RAM and ROM Inference Block RAM Inference

begi n
if rising_edge(clkB) then
for i inO0to RATIO 1 | oop
doB((i +1)*m nWDTH 1 downto i*m nWDTH) <=
ran{conv_i nteger(addrB reg &
conv_std logic vector(i,log2(RATIO)));
addrB reg <= addrB;
end | oop;
end if;

end process;

end behavi oral ;

/] Exanple 1: Verilog Asymmetric RAM Coding Style 2

modul e asymmetric_ram (cl kA, cl kB, weA, enA addrA addrB, diA
doB);

par amet er W DTHA

I
N

paranet er Sl ZEA
par amet er ADDRW DTHA
paranmeter W DTHB

1 1 1
[T e
- o o
L3

»

paranet er Sl ZEB

]
N
a1

A

par amet er ADDRW DTHB

]
&

i nput cl kA;
i nput cl kB;
i nput WeA;
i nput enA

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
210 Synopsys Confidential Information January 2020

Block RAM Inference

RAM and ROM Inference

i nput [ADDRWDTHA-1: 0] addr A
i nput [ADDRW DTHB- 1: 0] addr B;
i nput [WDTHA- 1: O] di A
output reg [WDTHB- 1:0] doB;

“define nmax(a,b) {(a) > (b) ? (a)
“define min(a,b) {(a) < (b) ? (a)

| ocal par am maxS| ZE

| ocal par am maxW DTH

| ocal param m nW DTH

| ocal par am RATI O = maxWDTH / m nWDTH,
reg [MNWDTH 1: 0] RAM[0: maxSl ZE-1];
reg [ADDRWDTHB- 1: 0] addrB reg;

al ways @ posedge cl kA)
begi n
if (weh)
begi n
RAM addr A] <= di A
end

end

al ways @ posedge cl kB)
begi n
addrB reg <= addrB;

Synplify Pro for Microsemi Edition Reference Manual
January 2020 Synopsys Confidential Information

“nmax(Sl ZEA, S| ZEB);
“max(WDTHA, WDTHB) ;
“mn(WDTHA, WDTHB) ;

© 2020 Synopsys, Inc.
211

RAM and ROM Inference Block RAM Inference

doB[4*m nWDTH 1: 3*m nWDIH <= RAM{addrB reg, 2 d3}];
doB[3*m nWDTH 1: 2*m nWDTH] <= RAM {addrB reg, 2'd2}];
doB[2*m nW DTH 1: m nW DTH| <= RAM {addrB reg, 2'd1}];
doB[m nW DTH- 1: 0] <= RAM {addrB reg, 2'd0}];

end

endnodul e

/! Exanple 1. VHDL Asymretric RAM Coding Style 2
library ieee;

use ieee.std |logic _1164.all;

use ieee.std_|ogic_unsigned.all

use ieee.std logic_arith.all;

entity asymmetric_ramis

generic (
W DTHA . integer := 2;
S| ZEA : integer := 1024,

ADDRW DTHA : integer := 10;

W DTHB . integer :=8;
S| ZEB . integer := 256;
ADDRWDTHB : integer := 8
)
port (
clkA : in std_logic;
clkB : in std_|ogic;
© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual

212 Synopsys Confidential Information January 2020

Block RAM Inference

RAM and ROM Inference

weA
enA
addr A
addr B
di A
doB

);

in std_logic;

in std_logic;

in std_|ogic_vector(ADDRNVDIHA-1 downto 0);
in std_|ogic vector(ADDRNWDITHB-1 downto 0);
in std |ogic vector(WDTHA-1 downto 0);

out std | ogic vector(WDTHB-1 downto 0)

end asymmetric_ram

architecture behavioral of asymetric_ramis

function max(L, R INTEGER) return INTEGER is

begi n

if L > Rthen

return L;

el se

return R

end if;

end;

function min(L, R INTEGER) return INTEGER i s

begi n

if L <Rthen

return L;

el se

return R

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.

January 2020

Synopsys Confidential Information 213

RAM and ROM Inference Block RAM Inference

end if;

end;

constant mi nWDTH : integer

m n(W DTHA, W DTHB) ;

constant naxWDTH : i nteger

max(W DTHA, W DTHB) ;
max(Sl ZEA, S| ZEB) ;
constant RATIO: integer := naxWDTH / m nWDTH

constant naxSIZE : integer

type ramlype is array (0 to maxSl ZE-1) of
std_| ogi c_vector (m nWDTH 1 downto 0);
signal ram: ranype := (others => (others => ‘0"));

signal addrB reg : std_|logic_vector(ADDRWDTHB-1 downto 0);

begi n
process (cl kA)
begi n
if rising_edge(clkA) then
if enA="'1 then
if weA="'1 then
ran{conv_i nteger (addrA)) <= di A
end if;
end if;
end if;

end process;

process (cl kB)
begi n

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
214 Synopsys Confidential Information January 2020

Block RAM Inference RAM and ROM Inference

if rising_edge(clkB) then

addrB reg <= addrB;
doB(m nWDTH 1 downto 0) <=

ram(conv_i nt eger (addr B_reg&conv_std_| ogi c_vector (0, 2)));
doB(2*m nWDITH 1 downto m nWDIH <=

ran{conv_i nt eger (addr B reg&conv_std |l ogi c_vector(1,2)));
doB(3*m nWDTH 1 downto 2*m nWDITH) <=

ran{conv_i nt eger (addr B_reg&conv_std_l ogi c_vector(2,2)));
doB(4*m nWDITH 1 downto 3*m nWDIH) <=

ran{conv_i nt eger (addr B _reg&conv_std_| ogi c_vector(3,2)));
end if;

end process;

end behavi oral ;
/] Exanple 2: Verilog Asymretric RAM Coding Style 1
nodul e v_asymmetric_ram (cl kA, cl kB, weB, addrA addrB, doA, diB);

par aret er W DTHA = 8;

paraneter Sl ZEA = 256;
par amret er ADDRW DTHA = §;

par aneter W DITHB = 32;
par armet er Sl ZEB = 64,
par aret er ADDRWDTHB = 6;

i nput cl kA;

i nput cl kB;

i nput weB;

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.

January 2020 Synopsys Confidential Information 215

RAM and ROM Inference Block RAM Inference

i nput [ADDRW DTHA-1: 0] addrA;

i nput [ADDRW DTHB- 1: 0] addr B;

out put [WDTHA- 1: O] doA;

i nput [WDTHB- 1: 0] di B;

reg [ADDRW DTHA-1: 0] addr A reg;

“define max(a,b) {(a) > (b) ? (a) : (b)}
“define mn(a,b) {(a) <(b) ? (a) : (b)}
function integer |og2;
i nput integer val ue;
reg [31:0] shifted;
i nteger res;
begi n
if (value < 2)
| 0g2 = val ue;
el se
begi n

shifted val ue- 1;

for (res=0; shifted>0; res=res+l)
shifted = shifted>>1
| 0og2 = res;
end
end
endf uncti on

| ocal param maxSI ZE = "nax(SlI ZEA, S| ZEB);

| ocal par am maxW DTH “nmax(WDTHA, WDTHB) ;

| ocal param m nW DTH "mn(WDTHA, WDTHB) ;

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
216 Synopsys Confidential Information January 2020

Block RAM Inference

RAM and ROM Inference

| ocal param RATI O

| ocal param | 0g2RATI O = | 0g2(RATI O ;
reg [MnNWDTH 1: 0] RAM[0: maxSl ZE-1];
reg [WDTHB-1: 0] readB;

genvar i;
al ways @ posedge cl kA)
begi n

addr A reg <= addr A
end

assi gn doA = RAM addr A req];

generate for (i =0; i <RATIQ i =

begi n: ranread

| ocal param [| 0g2RATI O 1: 0] | sbaddr

al ways @ posedge cl kB)
begi n
if (weB)

RAM {addr B, |sbaddr}] <= di B[(i +1)

*m nWDTH 1: i *m nWDTH] ;
end
end

endgener at e

endnodul e

nmaxWDTH / m nW DTH

// Exanple 2: VHDL Asymmetric RAM Coding Style 1

library ieee;

use ieee.std logic 1164.all;

Synplify Pro for Microsemi Edition Reference Manual

January 2020 Synopsys Confidential Information

© 2020 Synopsys, Inc.
217

RAM and ROM Inference Block RAM Inference

use ieee.std_|ogic_unsigned. all;

use ieee.std logic_arith.all;

entity asymmetric_ramis

generic (

W DTHA i nteger := 8;

Sl ZEA i nteger := 256;

ADDRW DTHA i nteger := 8;

W DrHB i nteger := 32;

S| ZEB i nteger := 64;

ADDRW DTHB integer := 6);

port (clkA : in std_logic;
clkB : in std_logic;
weB :in std_logic;
addrA : in std_logic_vector (ADDRWDTHA-1 downto O);
addrB : in std_|ogic_vector(ADDRWNWDIHB-1 downto 0);
diB :in std logic vector(WDIHB-1 downto 0);
doA : out std |ogic_vector(WDTHA-1 downto 0));

end asymmetric_ram
archi tecture behavioral of asymetric_ramis
function max(L, R INTEGER) return INTEGER i s
begi n
if L>Rthen
return L;
el se
return R

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
218 Synopsys Confidential Information January 2020

Block RAM Inference RAM and ROM Inference

end if;
end;
function mn(L, R INTEGER) return INTEGER i s
begi n
if L <Rthen
return L;
el se
return R
end if;
end;
function log2 (val: INTEGER) return natural is
variable res : natural;
begi n
for i inOto 31 |oop
if (val <= (2**i)) then
res :=i;
exit;
end if;
end | oop;
return res;

end function Log2;

constant mi nWDTH : i nteger m n(W DTHA, W DTHB) ;
max(W DTHA, W DTHB) ;
max(Sl ZEA, Sl ZEB) ;

constant RATIO : integer := naxWDIH / m nWDTH

constant maxWDTH : integer

constant maxSlIZE : integer

type ramfype is array (0 to maxSl ZE-1) of

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 219

RAM and ROM Inference Block RAM Inference

std | ogi c_vector(mnWDTH 1 downto 0);
shared variable ram: ramlype := (others => (others => ‘0"));
signal addrA reg : std_logic_vector(ADDRW DTHA-1 downto 0);
begi n
process (cl kA)
begi n
if rising_edge(cl kA) then
addr A reg <= addr A
end if;
end process;

doA <= ran{conv_i nteger(addrA reg));

process (cl kB)
begi n
if rising_edge(clkB) then
if weB="'1 then
for i in0to RATIO 1 | oop
ran{conv_i nt eger (
addrB & conv_std_| ogic_vector(i,log2(RATIO)))
= diB((i +1)*m nWDTH 1 downto i *m nWDTH);
end | oop;
end if;
end if;

end process;

end behavi oral ;

[/l Exanple 2. Verilog Asymretric RAM Coding Style 2

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
220 Synopsys Confidential Information January 2020

Block RAM Inference

RAM and ROM Inference

nmodul e asymmetric_ram (cl kA, cl kB, enA,
addrB, di A, doB);

par amet er WDTHA = 32;

par armet er Sl ZEA = 256;

par armet er ADDRW DTHA = 8;

par amet er W DTHB= 16;

paraneter Sl ZEB = 512;

par aret er ADDRW DTHB = 9;

i nput cl kA, cl kB, enA enB, weA
i nput [ADDRW DTHA-1: 0] addr A;
i nput [ADDRW DTHB- 1: 0] addr B;
i nput [WDTHA- 1: 0] di A ;
output reg [WDTHB-1: 0] doB,;
reg [WDTHA-1: 0] mnux;
reg [WDTHA-1: 0] RAM [SI ZEA-1: 0] ;
al ways @ posedge cl kA)
begi n

i f(enA & weh)

RAM addr A] <= di A

end

al ways @ posedge cl kB)
begi n
nmux = RAM addr B[ADDRW DTHB- 1: 1] | ;
i f(enB)
if (addrB[0])

Synplify Pro for Microsemi Edition Reference Manual
January 2020 Synopsys Confidential Information

enB, weA, addrA,

© 2020 Synopsys, Inc.
221

RAM and ROM Inference Block RAM Inference

begi n
doB <= nmux[WDTHA- 1: WDTHB] ;
end
el se
begi n
doB <= nmux[WDTHB- 1: 0] ;
end

end

endnodul e

/! Exanple 2: VHDL Asymretric RAM Coding Style 2
library ieee;

use ieee.std logic_1164.all;

use ieee.std_| ogi c_unsigned. al |

use ieee.std logic_arith.all;

entity asymmetric_ramis

generic (
W DTHA . integer := 32
S| ZEA . integer := 256;
ADDRW DTHA : integer := 8;
W DTHB . integer := 16;
S| ZEB . integer := 512;
ADDRWDTHB : integer := 9

)

port (

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual

222 Synopsys Confidential Information January 2020

Block RAM Inference

RAM and ROM Inference

cl kA
cl kB
r st
weA
enA
enB
addr A
addr B
di A
doB
);

n

n

std_| ogic;
std_I ogi c;
std_| ogi c;
std_| ogic;
std_| ogi c;
std_| ogi c;

std_| ogi c_vect or (ADDRW DTHA- 1 downt o 0);
std_I ogi c_vect or (ADDRW DTHB-1 downt o 0);
std_|l ogi c_vect or (WDITHA-1 downto 0);

out std | ogic vector(WDTHB-1 downto 0)

end asymmetric_ram

archi tecture behavi oral

type ramlype is array (0 to Sl ZEA-1)

of std_|ogic vector (WDTHA-1 downto 0);

SHARED VARI ABLE ram : raniype;

begi n

process (clkA)

begi n

if rising_edge(clkA) then

if enA="'1 then

if weA ="'1 then

ram(conv_i nt eger (addr A))

end if;

end if;

Synplify Pro for Microsemi Edition Reference Manual

January 2020

Synopsys Confidential Information

of asymmetric_ramis

= di A

© 2020 Synopsys, Inc.
223

RAM and ROM Inference

Block RAM Inference

end if;

end process;

process (cl kB)

variable nmux : std_|ogic vector(WDITHA-1 downto 0);

begi n
if rising_edge(cl kB) then
if enB="'1 then
if addrB(0) = '0" then
nux : = ram(conv_i nt eger
(addr B(ADDRW DTHB-1 downto 1)));
doB <= mux (WDITHB-1 downto 0);
el se
mux := ran{conv_integer (
addr B(ADDRW DTHB- 1 downto 1)));
doB <= mux(WDTHA-1 downto WDTHB);
end if;
end if;
end if;

end process;

end behavi oral ;

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual

224 Synopsys Confidential Information

January 2020

Initial Values for RAMs RAM and ROM Inference

Initial Values for RAMs

You can specify initial values for a RAM in a data file and then include the
appropriate task enable statement, $readmemb or $readmemh, in the initial state-
ment of the HDL code for the module. The inferred logic can be different due
to the initial statement. The syntax for these two statements is as follows:

$readmemh ("fileName", memoryName [, startAddress [, stopAddress]]);

$readmemb ("fileName", memoryName [, startAddress [, stopAddress]]);

$readmemb Use this with a binary data file.
$readmemh Use this with a hexadecimal data file.
fileName Name of the data file that contains initial values. See

Initialization Data File, on page 228 for format examples.
memoryName The name of the memory.

startAddress Optional starting address for RAM initialization; if omitted,
defaults to first available memory location.

stopAddress Optional stopping address for RAM initialization;
startAddress must be specified

Also, see the following topics:
* Example 1: RAM Initialization, on page 225

* Example 2: Cross-Module Referencing for RAM Initialization, on
page 226

* Initialization Data File, on page 228

* Forward Annotation of Initial Values, on page 231

Example 1: RAM Initialization

This example shows a single-port RAM that is initialized using the $readmemb
binary task enable statement which reads the values specified in the binary

mem.ini file. See Initialization Data File, on page 228 for details of the binary

and hexadecimal file formats.

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 225

RAM and ROM Inference Initial Values for RAMs

nmodul e ram.inference (data, clk, addr, we, data_out);
i nput [27:0] data;
i nput clk, we;
i nput [10:0] addr;
output [27:0] data_out;
reg [27:0] nem[0:2000] /* synthesis syn ranstyle = "no_rw check" */;
reg [10: 0] addr_reg;
initial
begi n
$readnento ("nemini”, nem 2, 1900) /* Initialize RAMwth contents */
/* fromlocations 2 thru 1900*/;

end
al ways @ posedge cl k)
begi n

addr _reg <= addr;
end

al ways @ posedge cl k)
begi n
i f(we)
begi n
menj addr] <= dat a;
end
end

assign data_out = nmenjaddr_req];
endnodul e

Example 2: Cross-Module Referencing for RAM Initialization

The following example shows how a RAM using cross-module referencing
(XMR) can be accessed hierarchically and initialized with the

$readmemb /$readmemh statement which reads the values specified in the
mem.txt file from the top-level design.

Example2A: XMR for RAM lInitialization (Top-Level Module)

/1 Exanple 2A: XMR for RAM I nitialization
(Top-Level Modul e)
/1 Top

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
226 Synopsys Confidential Information January 2020

Initial Values for RAMs RAM and ROM Inference

nmodul e top (input[27:0] data, input clk, we, input[10:0] addr,
out put [27: 0] data_out);

raminference raminst (.*);

initial

begi n
$readmenb (“memtxt”, top.raminst.mem 0, 10);

end

endnodul e

This code example implements cross-module referencing of the RAM block
and is initialized with the $readmemb statement in the top-level module.

Example2B: XMR for RAM Initialization (RAM)
/!l Example 2B: XMR for RAM I nitialization (RAM

/1 RAM
nmodul e raminference (input[27:0] data, input clk, input[10:0]
addr, output[27:0] data out);
reg[27: 0] menj0: 2000] /*synthesis syn_ranmstyle = “no_rw check”*/;
reg [10:0] addr _reg;
al ways @ posedge cl k)
begi n
addr_reg <= addr;
end
al ways @ posedge cl k)
begi n
i f(we)
begi n
nmenjaddr] <= data

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 227

RAM and ROM Inference Initial Values for RAMs

end
end
assign data_out = nmenjaddr_req];
endnodul e

Here is the code example of the RAM block to be implemented for
cross-module referencing and initialized.

The following shows the HDL Analyst view of a RAM module that must be
accessed hierarchically to be initialized.

ram_inference _xme0(verilog)

WCEL

k3] ——

B3 11| ——

nst

RAM Initialization Limitations with XMR
XMR for RAM initialization requires that the following conditions be met:
* Variables must be recognized as inferred memories.

* Cross-module referencing of memory variables cannot occur between
HDL languages.

* Cross-module referencing paths must be static and cannot include an
index with a dynamic value.

Initialization Data File

The initialization data file, read by the $readmemb and $readmemh system
tasks, contains the initial values to be loaded into the memory array. This
initialization file can reside in the project directory or can be referenced by an
include path relative to the project directory. The system $readmemb or

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
228 Synopsys Confidential Information January 2020

Initial Values for RAMs RAM and ROM Inference

$readmemh task first looks in the project directory for the named file and, if
not found, searches for the file in the list of directories on the Verilog tab in
include-path order.

If the initialization data file does not contain initial values for every memory
address, the unaddressed memory locations are initialized to O. Also, if a
width mismatch exists between an initialization value and the memory width,
loading of the memory array is terminated; any values initialized before the
mismatch is encountered are retained.

Unless an internal address is specified (see Internal Address Format, on
page 231), each value encountered is assigned to a successive word element
of the memory. If no addressing information is specified either with the
$readmem task statement or within the initialization file itself, the default
starting address is the lowest available address in the memory. Consecutive
words are loaded until either the highest address in the memory is reached or
the data file is completely read.

If a start address is specified without a finish address, loading starts at the
specified start address and continues upward toward the highest address in
the memory. In either case, loading continues upward. If both a start address
and a finish address are specified, loading begins at the start address and
continues until the finish address is reached (or until all initialization data is
read).

For example:

initial
begi n
/1 $readmenh ("memini", rambankl)
/* Initialize RAMwith contents fromlocations O thru 31%/;

/1 $readmenh ("memini", rambankl, 0)
/* Initialize RAMwith contents fromlocations O thru 31*/;

$readnenh ("nemini", rambankl, 0, 31)
/* Initialize RAMwith contents fromlocations 0 thru 31*/;

$readnenh ("nemini", rambank2, 31, 0)
/* Initialize RAMwith contents fromlocations 31 thru 0*/;

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 229

RAM and ROM Inference Initial Values for RAMs

The data initialization file can contain the following:
* White space (spaces, new lines, tabs, and form-feeds)
* Comments (both comment formats are allowed)

* Binary values for the $readmemb task, or hexadecimal values for the
$readmemh tasks

In addition, the data initialization file can include any number of hexadecimal
addresses (see Internal Address Format, on page 231).

Binary File Format

The binary data file mem.ini that corresponds to the example in Example 1:
RAM Initialization, on page 225 looks like this:

1111111111111111111100110111 /* data for address 0 */
11111112111111111111101100111 /* data for address 1 */
1111111111111111111111000010
1111111111111111111100100001
11111111112111111111101110000
1111111111111111111011100110

/* continues until Address 1999 */

Hex File Format

If you use $readmemh instead of $readmemb, t he hexadecimal data file for the
example in Example 1: RAM Initialization, on page 225 looks like this:

FFFFF37 /* data for address 0 */
FFFFF63 /* data for address 1 */
FFFFFC2

FFFFF21

.../* continues until Address 1999 */

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
230 Synopsys Confidential Information January 2020

Initial Values for RAMs RAM and ROM Inference

Internal Address Format

In addition to the binary and hex formats described above, the initialization
file can include embedded hexadecimal addresses. These hexadecimal
addresses must be prefaced with an at sign (@) as shown in the example
below.

FFFFF37 /* data for address 0 */
FFFFF63 /* data for address 1 */
@EA /* menory address 234

FFFFFC2 /* data for address 234*/
FFFFF21 /* data for address 235*/

@)A? /* menory address 137
FFFFF77 [/* data for address 137*/
FFFFF7A /* data for address 138*/

Either uppercase or lowercase characters can be used in the address. No
white space is allowed between the @ and the hex address. Any number of
address specifications can be included in the file, and in any order. When the
$readmemb or $readmemh system task encounters an embedded address speci-
fication, it begins loading subsequent data at that memory location.

When addressing information is specified both in the system task and in the
data file, the addresses in the data file must be within the address range
specified by the system task arguments; otherwise, an error message is
issued, and the load operation is terminated.

Forward Annotation of Initial Values

Initial values for RAMs and sequential shift components are forward
annotated to the netlist. The compiler currently generates netlist (srs) files
with seqgshift, ram1, ram2, and nram components. If initial values are specified in
the HDL code, the synthesis tool attaches an attribute to the component in
the srs file.

/!l Exanple: Verilog Initial Values for Asymmetric RAM
/1

/1 Asymmetric port RAM

I Port Ais 256x8-bit read-only

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 231

RAM and ROM Inference Initial Values for RAMs

/1 Port Bis 64x32-bit wite-only

/[l Wite_First mode with no control signals on Address register.
D fferent clocks.

11

modul e v_asymretric_ram4 (cl kA, cl kB, weB, addrA, addrB, doA

di B) ;

par anet er
par anet er
par anet er
par anet er
par anet er

par anet er

i nput
i nput
i nput
i nput
i nput
out put
i nput

reg

W DTHA = 8;
S| ZEA = 256;
ADDRW DTHA = 8;
W DTrHB = 32,
S| ZEB = 64,
ADDRW DTHB = 6;

cl kA
cl kB
weB;

[ADDRW DTHA- 1: 0] addr A

[ADDRWDTHB- 1: 0] addr B;

[W DTHA- 1: 0] doA;

[WDTHB- 1: 0] di B;

[ADDRW DTHA-1: 0] addrA reg;

“define max(a,b) {(a) > (b) ? (a) : (b)}
“define min(a,b) {(a) < (b) ? (a) : (b)}

function integer |og2;

© 2020 Synopsys, Inc.
232

Synplify Pro for Microsemi Edition Reference Manual
Synopsys Confidential Information January 2020

Initial Values for RAMs RAM and ROM Inference

i nput integer val ue;
reg [31:0] shifted,;
i nteger res;
begi n
if (value < 2)
| og2 = val ue;
el se
begi n
shifted = val ue-1,;
for (res=0; shifted>0; res=res+l)
shifted = shifted>>1,;
| 0g2 = res;
end
end

endf uncti on

“max(Sl ZEA, S| ZEB);

*max(W DTHA, W DTHB) ;
‘nmin(WDTHA, WDTHB) ;
maxWDTH / m nW DTH,

| ocal par am naxSl| ZE

| ocal par am maxW DTH

| ocal param m nW DTH

| ocal par am RATI O

| ocal param | 0g2RATI O = | 0g2(RATI O ;
reg [WDTHB-1: 0] readB;
genvar i;
reg [MnWDTH 1: 0] RAM[O0: maxSl ZE-1];
Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.

January 2020 Synopsys Confidential Information 233

RAM and ROM Inference

Initial Values for RAMs

I/ RAMinitialization

initial

$readmenb (“mem.init_256x8. dat”,

al ways @ posedge cl kA)

begi n
addr A reg <= addr A;

end

RAM ;

assi gn doA = RAM addr A req];

generate for (i = 0; i

begi n: ranread

| ocal param [| 0g2RATI O 1: 0]

< RATIQ i =i+1)

| sbaddr = i;

al ways @ posedge cl kB)

begi n

if (weB)
RAM { addr B,

end

end

endgener at e

endnodul e
/1l Exanple: VHDL Initial
library ieee;

© 2020 Synopsys, Inc.
234

Synopsys Confidential Information

| sbaddr}] <= diB[(i+1)*m nWDITH 1:i*m nWDTH ;

Val ues for Asymmetric RAM

Synplify Pro for Microsemi Edition Reference Manual
January 2020

Initial Values for RAMs RAM and ROM Inference

use ieee.std logic_1164. all;
use ieee.std_|ogi c_unsigned.all;

use ieee.std logic_arith.all;

entity asymmetric_ram4 is

generic (
W DTHA ;. integer := 8§
S| ZEA . integer := 256;

ADDRWDTHA : integer := 8;

W DTHB . integer := 32;
Sl ZEB : integer := 64;
ADDRWDTHB : integer := 6
);
port (
clkA : in std_logic;
clkB : in std_|logic;
reA . in std_logic;
weB :in std_|ogic;

addrA : in std_logic_vector(ADDRNDIHA-1 downto 0);

addrB : in std_logic_vector(ADDRWDTHB-1 downto O);
di B . in std_logic_vector(WDIHB-1 downto 0);
doA . out std_logic vector(WDIHA-1 downto 0)

);

end asymmetric_ram 4;

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 235

RAM and ROM Inference Initial Values for RAMs

architecture behavioral of asymmetric_ram4 is

function max(L, R INTEGER) return INTEGER is
begi n
if L >Rthen
return L;
el se
return R
end if;

end;

function mn(L, R INTEGER) return INTEGER i s
begi n
if L<Rthen
return L;
el se
return R
end if;

end;

function log2 (val: INTEGER) return natural is
variable res : natural;
begi n
for i inOto 31 |oop
if (val <= (2**i)) then
res :=i;
exit;

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
236 Synopsys Confidential Information January 2020

Initial Values for RAMs RAM and ROM Inference

end if;
end | oop;
return res;

end function Log2;

constant minWDTH : i nteger m n(W DTHA, W DTHB) ;

constant maxWDTH : integer max(W DTHA, W DTHB) ;

constant naxSIZE : integer max(Sl ZEA, Sl ZEB);

constant RATIO : integer := naxWDIH / m nWDTH

type ramlype is array (0 to maxSl ZE-1) of
std_logic_vector(m nWDIH 1 downto 0);

shared variable ram: ranfType := (others =>"11111111");

signal readA : std | ogic_vector (WDITHA-1 downto 0):= (
others => *0');
signal regA : std |logic_vector(WDITHA-1 downto 0): =
(others => '0");
begi n
process (clkA)
begi n
if rising_edge(cl kA then
if reA="1 then
doA <= ran{conv_i nteger (addrA));
end if;
Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.

January 2020 Synopsys Confidential Information 237

RAM and ROM Inference RAM Instantiation with SYNCORE

end if;

end process;

process (cl kB)
begi n
if rising_edge(clkB) then
if weB="'1 then
for i inO0to RATIO 1 | oop
ran{conv_i nt eger (addrB &
conv_std logic vector(i,log2(RATIO)))
= diB((i+1)*m nWDITH 1 downto i *m nWDTH);
end | oop;
end if;
end if;

end process;

end behavi oral ;

RAM Instantiation with SYNCORE

The SYNCORE Memory Compiler in the IP Wizard helps you generate HDL
code for your specific RAM implementation requirements. For information on
using the SYNCORE Memory Compiler, see Chapter 8, SynCore IP Tool

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
238 Synopsys Confidential Information January 2020

ROM Inference RAM and ROM Inference

ROM Inference

As part of BEST (Behavioral Extraction Synthesis Technology) feature, the
synthesis tool infers ROMs (read-only memories) from your HDL source code,
and generates block components for them in the RTL view.

The data contents of the ROMs are stored in a text file named rom.info. To
quickly view rom.info in read-only mode, synthesize your HDL source code,
open an RTL view, then push down into the ROM component.

Generally, the Synopsys FPGA synthesis tool infers ROMs from HDL source
code that uses case statements, or equivalent if statements, to make 16 or
more signal assignments using constant values (words). The constants must
all be the same width.

Another requirement for ROM inference is that values must be specified for at
least half of the address space. For example, if the ROM has 5 address bits,
then the address space is 32 and at least 16 of the different addresses must
be specified.

Verilog Example

nmodul e rom(z, a);
output [3:0] z;

input [4:0] a;

reg [3:0] z;

al ways @a) begin

case (a)
5' b00000 : z = 4' b0001;
5' b00001 : z = 4' b0010;
5'b00010 : z = 4' b0110;
5' b00011 : z = 4' b1l010;
5' b00100 : z = 4' b1000;
5'b00101 : z = 4' b1001;
5'b00110 : z = 4' b000O;
5'b00111 : z = 4' b1110;
5' b01000 : z = 4' bl111;
5' b01001 : z = 4' b1110;
5' b01010 : z = 4' b0001;
5'b01011 : z = 4' b1000;
5'b01100 : z = 4' b1110;
5'b01101 : z = 4' b0011;
5'b01110 : z = 4' bl111;
Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.

January 2020 Synopsys Confidential Information 239

RAM and ROM Inference

ROM Inference

5' b01111 :
5' b10000 :
5' b10001 :
5' b10010 :

def aul t
endcase
end
endnodul e

VHDL Example

library ieee;
use ieee.std |

entity romt is
port (a : i

z . out std |ogic vector(3 downto 0));

end ron#;

architecture b
begi n
process(a)
begi n

if a="

zZ <=

elsif a

zZ <=

elsif a

zZ <=

elsif a

zZ <=

elsif a

zZ <=

elsif a

zZ <=

elsif a

zZ <=

elsif a

zZ <=

elsif a

zZ <=

elsif a

zZ <=

elsif a

zZ <=

elsif a

© 2020 Synopsys, Inc.

240

4' b1100;
4' b1000;
4' b000O;
4' b0011
z = 4' b0111;

N N N N
Inmnmnn

ogic_1164.all;

n std | ogi c_vector(4 downto 0);

ehave of rom# is

00000" t hen
"0001";

= "00001" then
"0010";

= "00010" then
"0110";

= "00011" then
"1010";

= "00100" then
"1000";

= "00101" then
"1001";

= "00110" then
"0000";

= "00111" then
"1110";

= "01000" then
"1111";

= "01001" then
"1110";

= "01010" then
"0001";

= "01011" then

Synplify Pro for Microsemi Edition Reference Manual

Synopsys Confidential Information

January 2020

ROM Inference RAM and ROM Inference

z <= "1000";

elsif a = "01100" then
z <= "1110";

elsif a ="01101" then
z <= "0011";

elsif a = "01110" then
z <= "1111";

elsif a ="01111" then
z <= "1100";

elsif a = "10000" then
z <= "1000";

elsif a = "10001" then
z <= "0000";

elsif a = "10010" then
z <= "0011";

el se
z <= "0111";

end if;

end process;
end behave;

ROM Table Data (rom.info File)

Note: This data is for view ng only.

ROM wor k. r omid(behave) -z_1[3: 0]
address width: 5
data width: 4

i nput s:

0: a[0]

al 1]

al 2]

al 3]

al 4]

ut put s:

0: z_1[0]

1. z 1[1]

2: z 1[2]

3. z_1[3]

1
2
3
4
o)

dat a:

00000 -> 0001
00001 -> 0010
00010 -> 0110
00011 -> 1010
00100 -> 1000

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 241

RAM and ROM Inference ROM Inference

00101 -> 1001
00110 -> 0000
00111 -> 1110
01000 -> 1111
01001 -> 1110
01010 -> 0001
01011 -> 1000
01100 -> 1110
01101 -> 0011
01110 -> 0010
01111 -> 0010
10000 -> 0010
10001 -> 0010
10010 -> 0010
default -> 0111

ROM Initialization with Generate Block

The software supports conditional ROM initialization with the generate block,
as shown in the following example:

generate
if (INT) begin
initial
begi n
$readnenb("i ni t. hex", menj;
end
end
endgener at e

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
242 Synopsys Confidential Information January 2020

SYNOPSYS

Silicon to Software

CHAPTER 8

SynCore IP Tool

This chapter describes the SYNCore IP functionality that is bundled with the
synthesis tool.

* SYNCore FIFO Compiler, on page 244

* SYNCore RAM Compiler, on page 275

* SYNCore Byte-Enable RAM Compiler, on page 297
* SYNCore ROM Compiler, on page 313

* SYNCore Adder/Subtractor Compiler, on page 328
* SYNCore Counter Compiler, on page 352

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 243

SynCore IP Tool SYNCore FIFO Compiler

SYNCore FIFO Compiler

The SYNCore synchronous FIFO compiler offers an IP wizard that generates
Verilog code for your FIFO implementation. This section describes the
following:

* Synchronous FIFO Overview, on page 244

* Specifying FIFOs with SYNCore, on page 245
* SYNCore FIFO Wizard, on page 250

* FIFO Read and Write Operations, on page 259
¢ FIFO Ports, on page 261

¢ FIFO Parameters, on page 263

¢ FIFO Status Flags, on page 265

* FIFO Programmable Flags, on page 268

Synchronous FIFO Overview

A FIFO is a First-In-First-Out memory queue. Different control logic manages
the read and write operations. A FIFO also has various handshake signals for
interfacing with external user modules.

The SYNCore FIFO compiler generates synchronous FIFOs with symmetric
ports and one clock controlling both the read and write operations. The FIFO
is symmetric because the read and write ports have the same width.

When the Write_enable signal is active and the FIFO has empty locations, data
is written into FIFO memory on the rising edge of the clock. A Full status flag
indicates that the FIFO is full and that no more write operations can be
performed. See FIFO Write Operation, on page 259 for details.

When the FIFO has valid data and Read_enable is active, data is read from the
FIFO memory and presented at the outputs. The FIFO Empty status flag
indicates that the FIFO is empty and that no more read operations can be
performed. See FIFO Read Operation, on page 260 for details.

The FIFO is not corrupted by an invalid request: for example, if a read request
is made while the FIFO is empty or a write request is received when the FIFO
is full. Invalid requests do not corrupt the data, but they cause the corre-

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
244 Synopsys Confidential Information January 2020

SYNCore FIFO Compiler SynCore IP Tool

sponding read or write request to be ignored and the Overflow or Underflow flags
to be asserted. You can monitor these status flags for invalid requests. These
and other flags are described in FIFO Status Flags, on page 265 and FIFO
Programmable Flags, on page 268.

At any point in time, Data count reflects the available data inside the FIFO. In
addition, you can use the Programmable Full and Programmable Empty status flags
for user-defined thresholds.

Specifying FIFOs with SYNCore

The SYNCore IP Wizard helps you generate Verilog code for your FIFO imple-
mentations. The following procedure shows you how to generate Verilog code
for a FIFO using the SYNCore IP wizard.

Note: The SYNCore FIFO model uses Verilog 2001. When adding a FIFO
model to a Verilog-95 design, be sure to enable the Verilog 2001 check
box on the Verilog tab of the Implementation Options dialog box or include
a set_option -vlog_std v2001 statement in your project file to prevent a
syntax error.

1. Start the wizard.

— From the synthesis tool GUI, select Run->Launch SYNCore or click the
Launch SYNCore icon to start the SYNCore IP wizard.

| SYNCore FIFO Model =

El- addnsub
addnsub model The SYNCore FIFO compiler helps you create FIFO models for your
E-counter designs. These FIFO models are written out in Verilog and can be
counter_model synthesized as well as simulated. Atestbench is generated far this
El- fifos purpose.
- sfifo

i For more information about the SYNCore FIFO compiler, refer to the

£ memories " | following:

El- byte_enable_ram o))
byte_en_ram_model * The built-in EIFO Compiler document. which you access from

El- ram the SyncFifo Info button.
ram_model * The Synplicity tool synthesis tool online help, where you can

- rom access information for the following from the online help
rom_model Contents:

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.

January 2020 Synopsys Confidential Information 245

SynCore IP Tool SYNCore FIFO Compiler

— In the window that opens, select sfifo_model and click Ok. This opens
the first screen of the wizard.

FIFO Parameters | Core Overview |

Sync Fifo Compiler

Componert Nams [

Directory [] | Browse._. |

Areset

Sync FIFO File Name [] | Browse |

Sync FIFO Size

Width Valid Range 1..256

Read_enabl Depth Valid Range 8..16384

Write_enabl

SynCore FIFC

| Back || MNext Page 1 0f 5

2. Specify the parameters you need in the five pages of the wizard. For
details, refer to Specifying SYNCore FIFO Parameters, on page 248.

The FIFO symbol on the left reflects the parameters you set.

3. After you have specified all the parameters you need, click the Generate
button (lower left).

The tool displays a confirmation message (TCL execution successful!) and
writes the required files to the directory you specified in the parameters.
The HDL code is in Verilog.

The FIFO generated is a synchronous FIFO with symmetric ports and
with the same clock controlling both the read and write operations. Data
is written or read on the rising edge of the clock. All resets are synchro-

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
246 Synopsys Confidential Information January 2020

SYNCore FIFO Compiler SynCore IP Tool

nous with the clock. All edges (clock, enable, and reset) are considered
positive.

SYNCore also generates a testbench for the FIFO that you can use for
simulation. The testbench covers a limited set of vectors for testing.

You can now close the SYNCore wizard.

4. Add the FIFO you generated to your design.

— Use the Add File command to add the Verilog design file that was
generated and the syncore_sfifo.v file to your project. These files are in
the directory for output files that you specified on page 1 of the
wizard.

— Use a text editor to open the instantiation_file.vin template file, which is
located in the same directory. Copy the lines that define the memory,
and paste them into your top-level module. The following shows a
template file (in red text) inserted into a top-level module.

modnle top |

input Clk,

input [15:0] Dacalmn,
input WrEn,

input RdEn,

output Full,

output Empty,

output [15:0] DataCut
)z

fifo 232 <instanceName> |
Clock(Clock)

Din (Din)

Write enable (Write enable)
.Eea d_E:'. ghle| _:.ea:l_eza]:'_ej template
Dout (Douc)
Full (Full)
Empty (Enpty)
)

endmrdule

¥
¥
¥
¥
¥
¥

5. Edit the template port connections so that they agree with the port
definitions in your top-level module as shown in the example below (the
updated connection names are shown in red). You can also assign a
unique name to each instantiation.

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 247

SynCore IP Tool SYNCore FIFO Compiler

module top (.

input Clk,
input [15:0] Dataln,
input WrEn,
input RdEn,

output Full,

cutput Empty,
cutput [15:0] DataCut

)7

fifo a32 busfifqf
.Clock({CLk)

r .Din(Dataln)

; .Write enable (WrEn)
r -Bead enable (EdEn)
¢ <Dout (Datadut)

, -Full (Full)

¢ -Empty (Empty)

endmochile

Note that currently, the FIFO models will not be implemented with the
dedicated FIFO blocks available in certain technologies.

Specifying SYNCore FIFO Parameters

The following elaborates on the parameter settings for SYNCore FIFOs. The
status, handshaking, and programmable flags are optional. For descriptions
of the parameters, see SYNCore FIFO Wizard, on page 250.

1. Start the SYNCore wizard, as described in Specifying FIFOs with
SYNCore, on page 245.

2. Do the following on page 1 of the FIFO wizard:
— In Component Name, specify a name for the FIFO. Do not use spaces.

— In Directory, specify a directory where you want the output files to be
written. Do not use spaces.

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
248 Synopsys Confidential Information January 2020

SYNCore FIFO Compiler SynCore IP Tool

— In Filename, specify a name for the Verilog output file with the FIFO
specifications. Do not use spaces.

— Click Next. The wizard opens another page where you can set
parameters.

3. For a FIFO with no status, handshaking, or programmable flags, use the
default settings. You can generate the FIFO, as described in Specifying
FIFOs with SYNCore, on page 245.

4. To set an almost full status flag, do the following on page 2 of the FIFO
wizard:
— Enable Almost Full.

— Set associated handshaking flags for the signal as desired, with the
Overflow Flag and Write Acknowledge options.

— Click Next when you are done.

5. To set an almost empty status flag, do the following on page 3:
— Enable Almost Empty.

— Set associated handshaking flags for the signal as desired, with the
Underflow Flag and Read Acknowledge options.

— Click Next when you are done.

6. To set a programmable full flag, do the following:

— Make sure you have enabled Full on page 2 of the wizard and set any
handshaking flags you require.

— Go to page 4 and enable Programmable Full.

— Select one of the four mutually exclusive configurations for
Programmable Full on page 4. See Programmable Full, on page 269
or details.

— Click Next when you are done.

7. To set a programmable empty flag, do the following:

— Make sure you have enabled Empty on page 3 of the wizard and set
any handshaking flags you require.

— Go to page 5 and enable Programmable Empty.

— Select one of the four mutually exclusive configurations for
Programmable Empty on page 5. See Programmable Empty, on
page 272 or details.

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 249

SynCore IP Tool SYNCore FIFO Compiler

You can now generate the FIFO and add it to the design, as described in
Specifying FIFOs with SYNCore, on page 245.

SYNCore FIFO Wizard

The following describe the parameters you can set in the FIFO wizard, which
opens when you select sfifo_model:

¢ SYNCore FIFO Parameters Page 1, on page 250
* SYNCore FIFO Parameters Page 2, on page 251
* SYNCore FIFO Parameters Page 3, on page 253
¢ SYNCore FIFO Parameters Page 4, on page 255
* SYNCore FIFO Parameters Page 5, on page 257

SYNCore FIFO Parameters Page 1

The page 1 parameters define the FIFO. Data is written/read on the rising
edge of the clock.

Sync Fifo Compiler

Cornponent Marne []

Directory []| Browse,.. |

Filename []| Browse, .. |

Swnc FIFOD Size

width E | valid Range 1..258
Depth [18 | valid Range &..16384
© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual

250 Synopsys Confidential Information January 2020

SYNCore FIFO Compiler

SynCore IP Tool

Parameter

Component Name

Directory

Filename

Width

Depth

SYNCore FIFO

Function

Specifies a name for the FIFO. This is the name that you
instantiate in your design file to create an instance of the
SYNCore FIFO in your design. Do not use spaces.

Indicates the directory where the generated files will be
stored. Do not use spaces.

Specifies the name of the generated file containing the HDL
description of the generated FIFO. Do not use spaces.

Specifies the width of the FIFO data input and output. It
must be within the valid range.

Specifies the depth of the FIFO. It must be within the valid
range.

Parameters Page 2

Sync Fifo Compiler

Sync FIFO Optional Flags

Write Control Handshaking Options

Full Flags

+| Full Flag
® Active Hich

Ackive Low

Almosk Full Flag
(@) Ackive High

() Ackive Low

Orverflow
Crverflow Flag

(@) Active High

() Active Low

WWrite Acknowledge

‘Write Acknowledge Flag

(® Active High () Active Low
Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 251

SynCore IP Tool

SYNCore FIFO Compiler

The page 2 parameters let you specify optional handshaking flags for FIFO
write operations. When you specify a flag, the symbol on the left reflects your
choice. Data is written/read on the rising edge of the clock.

Parameter

Full Flag

Almost Full Flag

Overflow Flag

Write Acknowledge
Flag

Active High

Active Low

© 2020 Synopsys, Inc.
252

Function

Specifies a Full signal, which is asserted when the FIFO
memory queue is full and no more writes can be performed
until data is read.

Enabling this option makes the Active High and Active Low
options (FULL_FLAG_SENSE parameter) available for the
signal. See Full/Almost Full Flags, on page 265 and FIFO
Parameters, on page 263 for descriptions of the flag and
parameter.

Specifies an Almost_full signal, which is asserted to indicate
that there is one location left and the FIFO will be full after
one more write operation.

Enabling this option makes the Active High and Active Low
options available for the signal (AFULL_FLAG_SENSE
parameter). See Full/Almost Full Flags, on page 265 and
FIFO Parameters, on page 263 for descriptions of the flag
and parameter.

Specifies an Overflow signal, which is asserted to indicate
that the write operation was unsuccessful because the FIFO
was full.

Enabling this option makes the Active High and Active Low
options available for the signal (OVERFLOW_FLAG_SENSE
parameter). See Handshaking Flags, on page 267 f and
FIFO Parameters, on page 263 for descriptions of the flag
and parameter.

Specifies a Write_ack signal, which is asserted at the
completion of a successful write operation.

Enabling this option makes the Active High and Active Low
options (WACK_FLAG_SENSE parameter) available for the
signal. See Handshaking Flags, on page 267 and FIFO
Parameters, on page 263 for descriptions of the flag and
parameter.

Sets the specified signal to active high (1).

Sets the specified signal to active low (0).

Synplify Pro for Microsemi Edition Reference Manual
Synopsys Confidential Information January 2020

SYNCore FIFO Compiler SynCore IP Tool

SYNCore FIFO Parameters Page 3

The page 3 parameters let you specify optional handshaking flags for FIFO
read operations. Data is written/read on the rising edge of the clock.

Sync Fifo Compiler

Sync FIFO Optional Flags

Read Control Handshaking Options
Empty Flag
« | Enpty Flag
® Active High Active Low

Almost Emply Flag
@) Active High () Active Low

Underflow
Underflow Flag

@) Active High () Active Low

Read Acknowledge

Read Acknowledge Flag

@) Active High () Active Low
Parameter Function
Empty Flag Specifies an Empty signal, which is asserted when the

memory queue for the FIFO is empty and no more reads
can be performed until data is written.

Enabling this option makes the Active High and Active Low
options (EMPTY_FLAG_SENSE parameter) available for the
signal. See Empty/Almost Empty Flags, on page 266 and
FIFO Parameters, on page 263 for descriptions of the flag
and parameter.

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 253

SynCore IP Tool

SYNCore FIFO Compiler

Parameter

Almost Empty Flag

Underflow Flag

Read Acknowledge
Flag

Active High

Active Low

© 2020 Synopsys, Inc.
254

Function

Specifies an Almost_empty signal, which is asserted when
there is only one location left to be read. The FIFO will be
empty after one more read operation.

Enabling this option makes the Active High and Active Low
options (AEMPTY_FLAG_SENSE parameter) available for the
signal. See Empty/Almost Empty Flags, on page 266 and
FIFO Parameters, on page 263 for descriptions of the flag
and parameter.

Specifies an Underflow signal, which is asserted to indicate
that the read operation was unsuccessful because the FIFO
was empty.

Enabling this option makes the Active High and Active Low
options (UNDRFLW_FLAG_SENSE parameter) available for the
signal. See Handshaking Flags, on page 267 and FIFO
Parameters, on page 263 for descriptions of the flag and
parameter.

Specifies a Read_ack signal, which is asserted at the
completion of a successful read operation.

Enabling this option makes the Active High and Active Low
options (RACK_FLAG_SENSE parameter) available for the
signal. See Handshaking Flags, on page 267 and FIFO
Parameters, on page 263 for descriptions of the flag and
parameter.

Sets the specified signal to active high (1).

Sets the specified signal to active low (0).

Synplify Pro for Microsemi Edition Reference Manual
Synopsys Confidential Information January 2020

SYNCore FIFO Compiler SynCore IP Tool

SYNCore FIFO Parameters Page 4

Sync Fifo Compiler

Handshaking Options

Programmable Full Flag
Programmable Full Flag
[single Programmable Full Threshold Constant
Full Threshold Assert Constant Valid Range DEPTH[Z2. .max of DEPTH
[multiple Programmable Full Threshold Constant
Full Threshold Assert Constant ‘alid Range DEPTH/Z. .max of DEPTH
Full Threshold Megate Constant ‘alid Range DEPTH/Z. .max of DEPTH
[Single Programmable Full Threshold Input
[rMultiple Programmable Full Threshold Input

(® Active High () Active Low

The page 4 parameters let you specify optional handshaking flags for FIFO
programmable full operations. To use these options, you must have a Full
signal specified. See FIFO Programmable Flags, on page 268 for details and
FIFO Parameters, on page 263 for a list of the FIFO parameters. Data is
written /read on the rising edge of the clock.

Parameter Function
Programmable Full Specifies a Prog_full signal, which indicates that the FIFO
Flag has reached a user-defined full threshold.

You can only enable this option if you set Full Flag on page 2.
When it is enabled, you can specify other options for the
Prog_Full signal (PFULL_FLAG_SENSE parameter). See
Programmable Full, on page 269 and FIFO Parameters, on
page 263 for descriptions of the flag and parameter.

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 255

SynCore IP Tool

SYNCore FIFO Compiler

Parameter

Single Programmable
Full Threshold
Constant

Multiple Programmable
Full Threshold
Constant

Full Threshold Assert
Constant

Full Threshold Negate
Constant

Single Programmable
Full Threshold Input

Multiple Programmable
Full Threshold Input

Active High

Active Low

© 2020 Synopsys, Inc.
256

Function

Specifies a Prog_full signal with a single constant defining the
assertion threshold (PGM_FULL_TYPE=1 parameter). See
Programmable Full with Single Threshold Constant, on
page 269 for details.

Enabling this option makes Full Threshold Assert Constant
available.

Specifies a Prog_full signal (PGM_FULL_TYPE=2 parameter),
with multiple constants defining the assertion and de-
assertion thresholds. See Programmable Full with Multiple
Threshold Constants, on page 270 for details.

Enabling this option makes Full Threshold Assert Constant and
Full Threshold Negate Constant available.

Specifies a constant that is used as a threshold value for
asserting the Prog_full signal It sets the PGM_FULL_THRESH
parameter for PGM_FULL_TYPE=1 and the
PGM_FULL_ATHRESH parameter for PGM_FULL_TYPE=2.

Specifies a constant that is used as a threshold value for de-
asserting the Prog_full signal (PGM_FULL_NTHRESH
parameter).

Specifies a Prog_full signal (PGM_FULL_TYPE=3 parameter),
with a threshold value specified dynamically through a
Prog_full_thresh input port during the reset state. See
Programmable Full with Single Threshold Input, on
page 270 for details.

Enabling this option adds the Prog_full_thresh input port to
the FIFO.

Specifies a Prog_full signal (PGM_FULL_TYPE=4 parameter),
with threshold assertion and deassertion values specified
dynamically through input ports during the reset state.
See Programmable Full with Multiple Threshold Inputs, on
page 271 for details.

Enabling this option adds the Prog_full_thresh_assert and
Prog_full_thresh_negate input ports to the FIFO.

Sets the specified signal to active high (1).

Sets the specified signal to active low (0).

Synplify Pro for Microsemi Edition Reference Manual
Synopsys Confidential Information January 2020

SYNCore FIFO Compiler SynCore IP Tool

SYNCore FIFO Parameters Page 5

These options specify optional handshaking flags for FIFO programmable
empty operations. To use these options, you first specify an Empty signal on
page 3. See FIFO Programmable Flags, on page 268 for details and FIFO
Parameters, on page 263 for a list of the FIFO parameters. Data is

written /read on the rising edge of the clock.

Sync Fifo Compiler

Handshaking Options
Programmable Empty Flag

Programmable Empty Flag
[single Programmable Empty Threshald Constant
Emply Threshold Assert Constant ‘alid Range 1..max of DEPTH/Z
[Multiple Programmable Empty Threshold Constant
Empty Threshold Assert Constant Valid Range 1..max of DEPTH[2
Empty Threshold Megate Constant Valid Range 1..max of DEPTH[2

[single Programmahble Empty Threshald Input
[Multiple Programmable Empty Threshold Input

(@) Active High () Ackive Laow

Murnber of Words in FIFO

MNumber of valid Data in Fifo

Parameter Function

Programmable Empty Specifies a Prog_empty signal (PEMPTY_FLAG_SENSE

Flag parameter), which indicates that the FIFO has reached a
user-defined empty threshold. See Programmable Empty,
on page 272 and FIFO Parameters, on page 263 for
descriptions of the flag and parameter.

Enabling this option makes the other options available to
specify the threshold value, either as a constant or through
input ports. You can also specify single or multiple
thresholds for each of these options.

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 257

SynCore IP Tool

SYNCore FIFO Compiler

Parameter

Single Programmable
Empty Threshold
Constant

Multiple Programmable
Empty Threshold
Constant

Empty Threshold
Assert Constant

Empty Threshold
Negate Constant

Single Programmable
Empty Threshold Input

Multiple Programmable
Empty Threshold Input

Active High

Active Low

© 2020 Synopsys, Inc.
258

Function

Specifies a Prog_empty signal (PGM_EMPTY_TYPE=1
parameter), with a single constant defining the assertion
threshold. See Programmable Empty with Single Threshold
Input, on page 273 for details.

Enabling this option makes Empty Threshold Assert Constant
available.

Specifies a Prog_empty signal (PGM_EMPTY_TYPE=2
parameter), with multiple constants defining the assertion
and de-assertion thresholds. See Programmable Empty
with Multiple Threshold Constants, on page 273 for
details.

Enabling this option makes Empty Threshold Assert Constant
and Empty Threshold Negate Constant available.

Specifies a constant that is used as a threshold value for
asserting the Prog_empty signal. It sets the
PGM_EMPTY_THRESH parameter for PGM_EMPTY_TYPE=1
and the PGM_EMPTY_ATHRESH parameter for
PGM_EMPTY_TYPE=2.

Specifies a constant that is used as a threshold value for de-
asserting the Prog_empty signal (PGM_EMPTY_NTHRESH
parameter).

Specifies a Prog_empty signal (PGM_EMPTY_TYPE=3
parameter), with a threshold value specified dynamically
through a Prog_empty_thresh input port during the reset
state. See Programmable Empty with Single Threshold
Input, on page 273 for details.

Enabling this option adds the Prog_full_thresh input port to
the FIFO.

Specifies a Prog_empty signal (PGM_EMPTY_TYPE=4
parameter), with threshold assertion and deassertion
values specified dynamically through
Prog_empty_thresh_assert and Prog_empty_thresh_negate input
ports during the reset state. See Programmable Empty
with Multiple Threshold Inputs, on page 274 for details.

Enabling this option adds the input ports to the FIFO.
Sets the specified signal to active high (1).

Sets the specified signal to active low (0).

Synplify Pro for Microsemi Edition Reference Manual
Synopsys Confidential Information January 2020

SYNCore FIFO Compiler SynCore IP Tool

Parameter Function
Number of Valid Data Specifies the Data_cnt signal for the FIFO output. This signal
in FIFO contains the number of words in the FIFO in the read
domain.

FIFO Read and Write Operations

This section describes FIFO behavior with read and write operations.

FIFO Write Operation

When write enable is asserted and the FIFO is not full, data is added to the
FIFO from the input bus (Din) and write acknowledge (Write_ack) is asserted. If
the FIFO is continuously written without being read, it will fill with data. The
status outputs are asserted when the number of entries in the FIFO is greater
than or equal to the corresponding threshold, and should be monitored to
avoid overflowing the FIFO.

When the FIFO is full, any attempted write operation fails and the overflow
flag is asserted.

The following figure illustrates the write operation. Write acknowledge
(Write_ack) is asserted on the next rising clock edge after a valid write opera-
tion. When Full is asserted, there can be no more legal write operations. This
example shows that asserting Write_enable when Full is high causes the asser-
tion of Overflow.

s U
Write_enable — {
Din j:@:bcj@:b::bd:}:b:ﬁ:i:bd:ﬁ':
Write_ack — ./ : T_I—I_ '. _._._._—!_!_!_
Overfiow ———+——+—— -
Ful —— e L
Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.

January 2020 Synopsys Confidential Information 259

SynCore IP Tool SYNCore FIFO Compiler

FIFO Read Operation

When read enable is asserted and the FIFO is not empty, the next data word
in the FIFO is driven on the output bus (Dout) and a read valid is asserted. If
the FIFO is continuously read without being written, the FIFO will empty. The
status outputs are asserted when the number of entries in the FIFO are less
than or equal to the corresponding threshold, and should be monitored to
avoid underflow of the FIFO. When the FIFO is empty, all read operations fail
and the underflow flag is asserted.

If read and write operation occur simultaneously during the empty state, the
write operation will be valid and empty, and is de-asserted at the next rising
clock edge. There cannot be a legal read operation from an empty FIFO, so
the underflow flag is asserted.

The following figure illustrates a typical read operation. If the FIFO is not
empty, Read_ack is asserted at the rising clock edge after Read_enable is
asserted and the data on Dout is valid. When Empty is asserted, no more read
operations can be performed. In this case, initiating a read causes the asser-
tion of Underflow on the next rising clock edge, as shown in this figure.

- [Ta— J—- I T T
S eV ey Iatal ety ininial J—H' g
Read_enable ! ! ! /i ! ! ! ! ! ! ! ! ' ! ! !
Dout _’-Aﬁré—;',-'—r}—m : PR—— P
Read_ack —. : : : A : ; o .
Underflow —{————ff——————— 0
Empty | AELE /A ' I ! w—'ﬁ | ' | AR i i
© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual

260 Synopsys Confidential Information January 2020

SYNCore FIFO Compiler SynCore IP Tool

FIFO Ports

The following figure shows the FIFO ports.

Port Name Description

Almost_empty Almost empty flag output (active high). Asserted when the FIFO
is almost empty and only one more read can be performed. Can
be active high or active low.

Almost_full Almost full flag output (active high). Asserted when only one
more write can be performed into the FIFO. Can be active high or
active low.

AReset Asynchronous reset input. Resets all internal counters and FIFO

flag outputs.

Clock Clock input for write and read. Data is written/read on the
rising edge.

Data_cnt Data word count output. Indicates the number of words in the
FIFO in the read clock domain.

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 261

SynCore IP Tool

SYNCore FIFO Compiler

Port Name
Din [width:0]
Dout [width:0]
Empty

Full

Overflow

Prog_empty

Prog_empty
thresh

Prog_empty
thresh_assert

Prog_empty
thresh_negate

Prog_full

Prog_full_thresh

Prog_full_thresh_

assert

© 2020 Synopsys, Inc.

262

Description
Data input word to the FIFO.
Data output word from the FIFO.

FIFO empty output (active high). Asserted when the FIFO is
empty and no additional reads can be performed. Can be active
high or active low.

FIFO full output (active high). Asserted when the FIFO is full and
no additional writes can be performed. Can be active high or
active low.

FIFO overflow output flag (active high). Asserted when the FIFO
is full and the previous write was rejected. Can be active high or
active low.

Programmable empty output flag (active high). Asserted when
the words in the FIFO exceed or equal the programmable empty
assert threshold. De-asserted when the number of words is more
than the programmable full negate threshold. Can be active high
or active low.

Programmable FIFO empty threshold input. User-programmable
threshold value for the assertion of the Prog_empty flag. Set
during reset.

Programmable FIFO empty threshold assert input. User-
programmable threshold value for the assertion of the
Prog_empty flag. Set during reset.

Programmable FIFO empty threshold negate input. User
programmable threshold value for the de-assertion of the
Prog_full flag. Set during reset.

Programmable full output flag (active high). Asserted when the
words in the FIFO exceed or equal the programmable full assert
threshold. De-asserted when the number of words is less than
the programmable full negate threshold. Can be active high or
active low.

Programmable FIFO full threshold input. User-programmable
threshold value for the assertion of the Prog_full flag. Set during
reset.

Programmable FIFO full threshold assert input. User-
programmable threshold value for the assertion of the Prog_full
flag. Set during reset.

Synplify Pro for Microsemi Edition Reference Manual
Synopsys Confidential Information January 2020

SYNCore FIFO Compiler

SynCore IP Tool

Port Name
Prog_full_thresh_
negate

Read_ack
Read_enable
Underflow

Write_ack

Write_enable

Description

Programmable FIFO full threshold negate input. User-
programmable threshold value for the de-assertion of the
Prog_full flag. Set during reset.

Read acknowledge output (active high). Asserted when valid data
is read from the FIFO. Can be active high or active low.

Read enable output (active high). If the FIFO is not empty, data
is read from the FIFO on the next rising edge of the read clock.

FIFO underflow output flag (active high). Asserted when the
FIFO is empty and the previous read was rejected.

Write Acknowledge output (active high). Asserted when there is a
valid write into the FIFO. Can be active high or active low.

Write enable input (active high). If the FIFO is not full, data is
written into the FIFO on the next rising edge.

FIFO Parameters

Parameter

Description

AEMPTY_FLAG _SENSE FIFO almost empty flag sense

0 Active Low
1 Active High

AFULL_FLAG_SENSE FIFO almost full flag sense

DEPTH

0 Active Low
1 Active High

FIFO depth

EMPTY_FLAG_SENSE FIFO empty flag sense

O Active Low
1 Active High

FULL_FLAG_SENSE FIFO full flag sense

0 Active LowOVERFLOW_
1 Active High

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.

January 2020

Synopsys Confidential Information 263

SynCore IP Tool

SYNCore FIFO Compiler

Parameter

OVERFLOW_FLAG_
SENSE

PEMPTY_FLAG_
SENSE

PFULL_FLAG_SENSE

PGM_EMPTY_
ATHRESH

PGM_EMPTY_
NTHRESH
PGM_EMPTY_THRESH

PGM_EMPTY_TYPE

PGM_FULL_ATHRESH

PGM_FULL_NTHRESH

PGM_FULL_THRESH
PGM_FULL_TYPE

Description

FIFO overflow flag sense
0 Active Low
1 Active High

FIFO programmable empty flag sense
0 Active Low
1 Active High

FIFO programmable full flag sense
0 Active Low
1 Active High

Programmable empty assert threshold for
PGM_EMPTY_TYPE=2

Programmable empty negate threshold for
PGM_EMPTY_TYPE=2

Programmable empty threshold for
PGM_EMPTY_TYPE=1

Programmable empty type. See Programmable Empty,
on page 272 for details.

1 Programmable empty with single threshold constant.

2 Programmable empty with multiple threshold
constant

3 Programmable empty with single threshold input
4 Programmable empty with multiple threshold input

Programmable full assert threshold for
PGM_FULL_TYPE=2

Programmable full negate threshold for
PGM_FULL_TYPE=2

Programmable full threshold for PGM_FULL_TYPE=1

Programmable full type. See Programmable Full, on
page 269 for details.

1 Programmable full with single threshold constant

2 Programmable full with multiple threshold constant
3 Programmable full with single threshold input

4 Programmable full with multiple threshold input

© 2020 Synopsys, Inc.
264 Synopsys Confidential Information

Synplify Pro for Microsemi Edition Reference Manual
January 2020

SYNCore FIFO Compiler

SynCore IP Tool

Parameter

RACK_FLAG_SENSE

UNDERFLOW_FLAG_

SENSE

WACK_FLAG_SENSE

WIDTH

FIFO Status Flags

Description

FIFO read acknowledge flag sense
O Active Low
1 Active High

FIFO underflow flag sense
O Active Low
1 Active High

FIFO write acknowledge flag sense
0 Active Low
1 Active High

FIFO data input and data output width

You can set the following status flags for FIFO read and write operations.

* Full/Almost Full Flags, on page 265

* Empty/Almost Empty Flags, on page 266

* Handshaking Flags, on page 267

* Programmable full and empty flags, which are described in Program-
mable Full, on page 269 and Programmable Empty, on page 272.

Full/Almost Full Flags

These flags indicate the status of the FIFO memory queue for write opera-

tions:

Full Indicates that the FIFO memory queue is full and no more writes can
be performed until data is read. Full is synchronous with the clock
(Clock). If a write is initiated when Full is asserted, the write does not
succeed and the overflow flag is asserted.

Almost_full The almost full flag (Almost_full) indicates that there is one location left
and the FIFO will be full after one more write operation. Almost full is
synchronous to Clock. This flag is guaranteed to be asserted when the
FIFO has one remaining location for a write operation.

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.

January 2020

Synopsys Confidential Information 265

SynCore IP Tool

SYNCore FIFO Compiler

The following figure displays the behavior of these flags. In this example,
asserting Wriite_enable when Almost_full is high causes the assertion of Full on
the next rising clock edge.

Clock

Wiite_enable

Wirite_ack
Full -

Almost_full

[}
_.‘
'

'

' '
J_ |_. ey |_| n_. n_ f_' |_ |_
Vo o ! \ 3

'
"—‘| ‘—1—

Din : /:Di(:}::d:«:bdﬁ:iicbdz@ -

i/

[Y
‘—'l '-.|‘ L e T | —': "—'|
1 1 1 1
' ' ' '

_._Jf
L

—
]

Empty/Almost Empty Flags

These flags indicate the status of the FIFO memory queue for read operations:

Empty Indicates that the memory queue for the FIFO is empty and no more
reads can be performed until data is written. The output is active
high and is synchronous to the clock. If a read is initiated when the
empty flag is true, the underflow flag is asserted.

Almost_ Indicates that the FIFO will be empty after one more read operation.

empty Almost_empty is active high and is synchronous to the clock. The flag is
guaranteed to be asserted when the FIFO has one remaining location
for a read operation.

The following figure illustrates the behavior of the FIFO with one word

remaining.
— 1_ |_ |_ |_, [E— — —, I—.
Clock & W4 -—‘l: —‘: —‘: LS W S W h‘—k i -—-\.J_
Readen L1 1 1 bbb
Read_ack. : : . I W . | |) : ! 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1
Empty it , N

Almost_empty

© 2020 Synopsys, Inc.
266

Synplify Pro for Microsemi Edition Reference Manual
Synopsys Confidential Information January 2020

SynCore IP Tool

SYNCore FIFO Compiler

Handshaking Flags

, Overflow, and Underflow

Write_ack

You can specify optional Read_ack,
handshaking flags for the FIFO.

Underflow -

© 2020 Synopsys, Inc.

Synplify Pro for Microsemi Edition Reference Manual

267

Synopsys Confidential Information

January 2020

SynCore IP Tool SYNCore FIFO Compiler

Read_ack

Write_ack

Overflow

Underflow

Asserted at the completion of each successful read operation. It
indicates that the data on the Dout bus is valid. It is an optional port
that is synchronous with Clock and can be configured as active high or
active low.

Read_ack is deasserted when the FIFO is underflowing, which indicates
that the data on the Dout bus is invalid. Read_ack is asserted at the next
rising clock edge after read enable. Read_enable is asserted when the
FIFO is not empty.

Asserted at the completion of each successful write operation. It
indicates that the data on the Din port has been stored in the FIFO. It is
synchronous with the clock, and can be configured as active high or
active low.

Write_ack is deasserted for a write to a full FIFO, as illustrated in the
figure. Write_ack is deasserted one clock cycle after Full is asserted to
indicate that the last write operation was valid and no other write
operations can be performed.

Indicates that a write operation was unsuccessful because the FIFO
was full. In the figure, Full is asserted to indicate that no more writes
can be performed. Because the write enable is still asserted and the
FIFO is full, the next cycle causes Overflow to be asserted. Note that
Write_ack is not asserted when FIFO is overflowing. When the write
enable is deasserted, Overflow deasserts on the next clock cycle.

Indicates that a read operation was unsuccessful, because the read
was attempted on an empty FIFO. In the figure, Empty is asserted to
indicate that no more reads can be performed. As the read enable is
still asserted and the FIFO is empty, the next cycle causes Underflow to
be asserted. Note that Read_ack is not asserted when FIFO is
underflowing. When the read enable is deasserted, the Underflow flag
deasserts on the next clock cycle.

FIFO Programmable Flags

The FIFO supports completely programmable full and empty flags to indicate
when the FIFO reaches a predetermined user-defined fill level. See the

following:
Prog_full Indicates that the FIFO has reached a user-defined full threshold. See
Programmable Full, on page 269 for more information.
Prog_empty Indicates that the FIFO has reached a user-defined empty threshold.
See Programmable Empty, on page 272 for more information.
© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
268 Synopsys Confidential Information January 2020

SYNCore FIFO Compiler SynCore IP Tool

Both flags support various implementation options. You can do the following:
* Set a constant value

* Set dedicated input ports so that the thresholds can change dynamically
in the circuit

* Use hysteresis, so that each flag has different assert and negative values

Programmable Full

The Prog_full flag (programmable full) is asserted when the number of entries

in the FIFO is greater than or equal to a user-defined assert threshold. If the
number of words in the FIFO is less than the negate threshold, the flag is de-
asserted. The following is the valid range of threshold values:

Assert Depth / 2 to Max of Depth

threshold For multiple threshold types, the assert value should always be
value larger than the negate value in multiple threshold types.
Negate Depth / 2 to Max of Depth

threshold

value

Prog_full has four threshold types:
* Programmable Full with Single Threshold Constant, on page 269
* Programmable Full with Multiple Threshold Constants, on page 270
* Programmable Full with Single Threshold Input, on page 270
* Programmable Full with Multiple Threshold Inputs, on page 271

Programmable Full with Single Threshold Constant
PGM_FULL_TYPE =1

This option lets you set a single constant value for the threshold. It requires
significantly fewer resources when the FIFO is generated. This figure illus-
trates the behavior of Prog_full when configured as a single threshold constant
with a value of 6.

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 269

SynCore IP Tool SYNCore FIFO Compiler

S aininiaiainiaininiatyinintaiaintaty
, . I.':." | | | [| |
wen /TN AN | T
' W T T T T W I s w/ m f f I s s
Wiite_ack /0 e e e
e e e o T e A O (L 5
Prog_full T T Y

Programmable Full with Multiple Threshold Constants
PGM_FULL_TYPE =2

The programmable full flag is asserted when the number of words in the FIFO
is greater than or equal to the full threshold assert value. If the number of
FIFO words drops to less than the full threshold negate value, the program-
mable full flag is de-asserted. Note that the negate value must be set to a
value less than the assert value. The following figure illustrates the behavior
of Prog_full configured as multiple threshold constants with an assert value of
6 and a negate value of 4.

ELaiataiaintaiginiaintyiaintaiaininty
TR T Ty, | I'I_I_I"_I_‘ | 1 1 1 [

Wn'te_en o ' ' ' PN : I N : ' .|. P : ' e

. 1 [T T T T T, 1N 1 i_l_.".’_l_r- 1 1 1 1 [
Wirite_ack / 1 1 1 1 R 1 / 1 1 [1 1 I 1
Data_cnt - o] I“ij_':_l'j_:t}:'_g—::':_‘!_:tl{ :5 :K : : EE _"I.'I : : A_s_:"ﬁ“\ :; :} 2‘
g Rl L L 4 ———t—

_ T T T T T T T T | 1 1 1 | ! 1

Programmable Full with Single Threshold Input
PGM_FULL_TYPE =3

This option lets you specify the threshold value through an input port (Prog_-
full_thresh) during the reset state, instead of using constants. The following
figure illustrates the behavior of Prog_full configured as a single threshold
input with a value of 6.

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual

Synopsys Confidential Information January 2020

SYNCore FIFO Compiler

SynCore IP Tool

Clock _:,—,u.-—.ll J—. J—. —.‘_.ll—. _:I._| J—'._i'_"_:!'_‘_i—r;_:!'_"_i'_'_:!'_‘_i'_'_i'_'_;_‘_'!—
1 | 1 1 | 1 1 1 I 1 1 T I 1 1 1 | 1

i ' 'ﬁ‘ [:_‘ 1 ! : v : 1 1 1 1 fﬁ
wnte—en 1 I 1 1 | I I. 1 ; I. 1 1 I,'.- 1 I 1 1 1 | 1
Write ack / P T T A " o / :
- 1 I 1 1 I 1 1 1 I 1 1 1 I 1 1 1 I 1
1 | 1 1 | 1 1 1 | 1 1 . 1 | 1 1 1 | 1

Drata_cnt O iy zyawayw 5] ¥ OB W 4

1 I 1 1 I 1 1 1 | 1 e | 1 1 1 I 1
Prog_full - o T T
1 I 1 1 I 1 1 1 I 1 1 1 I 1 1 1 I 1

Programmable Full with Multiple Threshold Inputs
PGM_FULL_TYPE =4

This option lets you specify the assert and negate threshold values dynami-
cally during the reset stage using the Prog_full_thresh_assert and Prog_full_-
thresh_negate input ports. You must set the negate value to a value less than
the assert value.

The programmable full flag is asserted when the number of words in the FIFO
is greater than or equal to the Prog_full_thresh_assert value. If the number of
FIFO words goes below Prog_full_thresh_negate value, the programmable full
flag is deasserted. The following figure illustrates the behavior of Prog_full
configured as multiple threshold inputs with an assert value of 6 and a
negate value of 4.

VTR TR I ST A F T
oo i ey e
Write_en - e e e A e : ':
R i [} T T T T Ty T ||—|—.".-'—|—r. 1 1 1 1 [
Wiite_ack ——1" 1 1 | 1 [ST L T T 1 [—" 1 1 I 1
8 € 3 e . /e &3 €3

'
1 1 1 1 1S 1 [1 1

Prog_full 1!

Synplify Pro for Microsemi Edition Reference Manual

January 2020

Synopsys Confidential Information

© 2020 Synopsys, Inc.
271

SynCore IP Tool SYNCore FIFO Compiler

Programmable Empty

The programmable empty flag (Prog_empty) is asserted when the number of
entries in the FIFO is less than or equal to a user-defined assert threshold. If
the number of words in the FIFO is greater than the negate threshold, the flag
is deasserted. The following is the valid range of threshold values:

Assert 1 to Max of Depth/2

threshold For multiple threshold types, the assert value should always be
value lower than the negate value in multiple threshold types.
Negate 1 to Max of Depth/2

threshold

value

There are four threshold types you can specify:
* Programmable Empty with Single Threshold Constant, on page 272
* Programmable Empty with Multiple Threshold Constants, on page 273
¢ Programmable Empty with Single Threshold Input, on page 273
* Programmable Empty with Multiple Threshold Inputs, on page 274

Programmable Empty with Single Threshold Constant
PGM_EMPTY_TYPE = 1

This option lets you specify an empty threshold value with a single constant.
This approach requires significantly fewer resources when the FIFO is gener-
ated. The following figure illustrates the behavior of Prog_empty configured as
a single threshold constant with a value of 3.

Clock _.' J— f f f _:.”_[— f f 'j_f— _f— _!— _f— J— UV AR AT
Read_en . . : : : l AT e
Data_cnt — 5 *"Tz*ﬂ'“r—‘z—‘ Fsﬁe—“ B W ENEN 3 T
Pogemply =~ oo g o
© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual

272 Synopsys Confidential Information January 2020

SYNCore FIFO Compiler

SynCore IP Tool

Programmable Empty with Multiple Threshold Constants
PGM_EMPTY_TYPE =2

This option lets you specify constants for the empty threshold assert value
and empty threshold negate value. The programmable empty flag asserts and
deasserts in the range set by the assert and negate values. The assert value
must be set to a value less than the negate value. When the number of words
in the FIFO is less than or equal to the empty threshold assert value, the
Prog_empty flag is asserted. When the number of words in FIFO is greater than
the empty threshold negate value, Prog_empty is deasserted.

The following figure illustrates the behavior of Prog_empty when configured as
multiple threshold constants with an assert value of 3 and a negate value of
S.

Synplify Pro for Microsemi Edition Reference Manual
January 2020

clock 4 WU gy
o}t R A

Prog_empty i i i

Programmable Empty with Single Threshold Input
PGM_EMPTY_TYPE =3

This option lets you specify the threshold value dynamically during the reset
state with the Prog_empty thresh input port, instead of with a constant. The
Prog_empty flag asserts when the number of FIFO words is equal to or less
than the Prog_empty thresh value and deasserts when the number of FIFO
words is more than the Prog_empty_thresh value. The following figure illus-
trates the behavior of Prog_empty when configured as a single threshold input
with a value of 3.

© 2020 Synopsys, Inc.

Synopsys Confidential Information 273

SynCore IP Tool SYNCore FIFO Compiler

! iF
am!;

Clock J- rrfrfrfrfffJ—J J AVRtRty
Read en . : ' | | |

1
L]
1
Data_ent ~ 0 12V TN 4 5N B WENEAK 3 X2

O
R NV e

Programmable Empty with Multiple Threshold Inputs
PGM_EMPTY_TYPE =4

This option lets you specify the assert and negate threshold values dynami-
cally during the reset stage using the Prog_empty thresh_assert and Prog_empty_-
thresh_negate input ports instead of constants. The programmable empty flag
asserts and deasserts according to the range set by the assert and negate
values. The assert value must be set to a value less than the negate value.

When the number of FIFO words is less than or equal to the empty threshold
assert value, Prog_empty is asserted. If the number of FIFO words is greater
than the empty threshold negate value, the flag is deasserted. The following
figure illustrates the behavior of Prog_empty configured as multiple threshold
inputs, with an assert value of 3 and a negate value of 5.

Prog_empty "1+ LN

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual

274

Synopsys Confidential Information January 2020

SYNCore RAM Compiler SynCore IP Tool

SYNCore RAM Compiler

The SYNCore RAM Compiler generates Verilog code for your RAM implemen-
tation. This section describes the following:

* Specifying FIFOs with SYNCore, on page 245
* SYNCore RAM Wizard, on page 283

* Single-Port Memories, on page 287

* Dual-Port Memories, on page 289

* Read/Write Timing Sequences, on page 294

Specifying RAMs with SYNCore

The SYNCore IP wizard helps you generate Verilog code for your RAM imple-
mentation requirements. The following procedure shows you how to generate
Verilog code for a RAM using the SYNCore IP wizard.

Note: The SYNCore RAM model uses Verilog 2001. When adding a RAM
model to a Verilog-95 design, be sure to enable the Verilog 2001 check
box on the Verilog tab of the Implementation Options dialog box or include
a set_option -vlog_std v2001 statement in your project file to prevent a
syntax error.

1. Start the wizard.

— From the synthesis tool GUI, select Run->Launch SYNCore or click the
Launch SYNCore icon to start the SYNCore IP wizard.

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 275

SynCore IP Tool SYNCore RAM Compiler

SYNCore RAM Model e

El- addnsub
addnsub model The SYNCore memaory compiler helps you create memory models for
B counter your designs. The models are written out in Verilog and can be
counter_model synthesized as well as simulated. Atestbench is generated for this
- fifos purpose.
= sfifo
sfifo_model For more information about the SYNCore memory compiler, refer to
B memories the following:
- byte_enable_ram o))
byte_en_ram_model * The built-in Memory Compiler document, which you access
El- ram from the RAM Info button.
iram_model * The Synplicity tool synthesis tool online help, where you can
- rom access information for the following from the online help
rom_model Contents:

— In the window that opens, select ram_model and click Ok. This opens
the first screen of the wizard.

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual

276 Synopsys Confidential Information January 2020

SYNCore RAM Compiler

SynCore IP Tool

- —
RAM Parameaters | Core Overview |

Jyncore RAM

Memory Compiler

Component Name |

Directory [] | Browse |
Filz Mame [] Browse...
—Memory Size

Data Width Valid Range 1..256
Address YWidth |8 alid Range 2..20

— How will you be using the RAM?

& Single Port Duzl Paort

—Which clocking method do you want to use?

& Single Clock
() Separate Clocke For Each Port

| Back || MNext | Pagetofa

2. Specify the parameters you need in the wizard.

— For details about the parameters for a single-port RAM, see

Specifying Parameters for Single-Port RAM, on page 280.

— For details about the parameters for a dual-port RAM, see Specifying

Parameters for Dual-Port RAM, on page 281. Note that dual-port
implementations are only supported for some technologies.

The RAM symbol on the left reflects the parameters you set.

The default settings for the tool implement a block RAM with synchro-
nous resets, and where all edges (clock, enable, and reset) are considered
positive.

Synplify Pro for Microsemi Edition Reference Manual

January 2020

Synopsys Confidential Information

© 2020 Synopsys, Inc.
277

SynCore IP Tool SYNCore RAM Compiler

3. After you have specified all the parameters you need, click the Generate
button in the lower left corner.

The tool displays a confirmation message is displayed (TCL execution
successfull) and writes the required files to the directory you specified in
the parameters. The HDL code is in Verilog.

SYNCore also generates a testbench for the RAM. The testbench covers a
limited set of vectors.

You can now close the SYNCore Memory Compiler.

4. Edit the RAM files if necessary.

— The default RAM has a no_rw_check attribute enabled. If you do not
want this, edit syncore_ram.v and comment out the “define
SYN_MULTI_PORT_RAM statement, or use "undef
SYN_MULTI_PORT_RAM.

— If you want to use the synchronous RAMs available in the target
technology, make sure to register either the read address or the
outputs.

S. Add the RAM you generated to your design.

— Use the Add File command to add the Verilog design file that was
generated and the syncore_ram.v file to your project. These files are in
the directory for output files that you specified on page 1 of the
wizard.

— Use a text editor to open the instantiation_file.vin template file, which is
located in the same directory. Copy the lines that define the memory,
and paste them into your top-level module. The following figure
shows a template file (in red text) inserted into a top-level module.

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual

278

Synopsys Confidential Information January 2020

SYNCore RAM Compiler

SynCore IP Tool

module top |

input ClkR,

input [7:0] Addrd,
input [15:0] Datalnh,
input WrEnk,

ontput [15:0] Datatmti
}:

Z'If'l}”_’aIlfLZ <InstancelName>

.PortACI kK (PorthClk)

r Porcasddr (Porcanddr)

r SPOrtADRCaIn(FortADataIn)

r CPOrtANriteEnable (PortAWriteEnzble)
r . Port@DataCut (PortADatalut)

endmoduls

template

6. Edit the template port connections so that they agree with the port
definitions in your top-level module as shown in the example below (the
updated connection names are shown in red). You can also assign a

unique name to each instantiation.

Synplify Pro for Microsemi Edition Reference Manual

January 2020 Synopsys Confidential Information

© 2020 Synopsys, Inc.
279

SynCore IP Tool SYNCore RAM Compiler

module top [

input Clka,

input [7:0] Addra,
input |[15:I.}] DataInA,
input WrEna,

cutput [15:0] DataOutk

Ys;

myrams decoderramf(
PortRC1k (C1lkR)
LoonPOrtARGdr (AddrR)
rooPortiDataln (Datalnk)
sonnPOTtRAWriteEnable (WrEnA)
sonnPOrtADataOut (DataCuth)
1:

endmodule

Specifying Parameters for Single-Port RAM

To create a single-port RAM with the SYNCore Memory Compiler, you need to
specify a single read /write address (single port) and a single clock. You only
need to configure Port A. The following procedure lists what you need to
specify. For descriptions of each parameter, refer to SYNCore RAM Wizard, on
page 283.

1. Start the SYNCore RAM wizard, as described in Specifying Byte-Enable
RAMs with SYNCore, on page 298.
2. Do the following on page 1 of the RAM wizard:

— In Component Name, specify a name for the memory. Do not use
spaces.

— In Directory, specify a directory where you want the output files to be
written. Do not use spaces.

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
280 Synopsys Confidential Information January 2020

SYNCore RAM Compiler SynCore IP Tool

— In Filename, specify a name for the Verilog file that will be generated
with the RAM specifications. Do not use spaces.

— Enter data and address widths.

— Enable Single Port, to specify that you want to generate a single-port
RAM. This automatically enables Single Clock.

— Click Next. The wizard opens another page where you can set
parameters for Port A.

The RAM symbol dynamically updates to reflect the parameters you set.

3. Do the following on page 2 of the RAM wizard:
— Set Use Write Enable to the setting you want.
— Set Register Read Address to the setting you want.

— Set Synchronous Reset to the setting you want. Register Outputs is
always enabled

— Specify the read access you require for the RAM.

You can now generate the RAM by clicking Generate, as described in
Specifying RAMs with SYNCore, on page 275. You do not need to specify
any parameters on page 3, as this is a single-port RAM and you do not
need to specify Port B. All output files are in the directory you specified
on the first page of the wizard.

For details about setting dual-port RAM parameters, see Specifying
Parameters for Dual-Port RAM, on page 281. For read/write timing
diagrams, see Read/Write Timing Sequences, on page 294.

Specifying Parameters for Dual-Port RAM

The following procedure shows you how to set parameters for dual-port
memory in the SYNCore wizard. Dual-port RAMs are only supported for some
technologies. For information about generating single-port RAMs, see Speci-
fying Parameters for Single-Port RAM, on page 280. It shows you how to
generate these common RAM configurations:

* One read access and one write access
* Two read accesses and one write access

* Two read accesses and two write accesses

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 281

SynCore IP Tool SYNCore RAM Compiler

For the corresponding read/write timing diagrams, see Read/Write Timing
Sequences, on page 294.

1. Start the SYNCore RAM wizard, as described in Specifying RAMs with
SYNCore, on page 275.
2. Do the following on page 1 of the RAM wizard:

— In Component Name, specify a name for the memory. Do not use
spaces.

— In Directory, specify a directory where you want the output files to be
written. Do not use spaces.

— In Filename, specify a name for the Verilog file that will be generated
with the RAM specifications. Do not use spaces.

— Enter data and address widths.

— Enable Dual Port, to specify that you want to generate a dual-port
RAM.

— Specify the clocks.

For a single clock ... Enable Single Clock.

For separate clocks for Enable Separate Clocks For Each Port.
each of the ports ...

— Click Next. The wizard opens another page where you can set
parameters for Port A.

3. Do the following on page 2 of the RAM wizard to specify settings for Port

A:
— Set parameters according to the kind of memory you want to
generate:
One read & one write Enable Read Only Access.
Two reads & one write Enable Read and Write Access.
Specify a setting for Use Write Enable.
Two reads & two writes Enable Read and Write Access.
Specify a setting for Use Write Enable.
Specify a read access option for Port A.
— Specify a setting for Register Read Address.
© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual

282 Synopsys Confidential Information January 2020

SYNCore RAM Compiler SynCore IP Tool

— Set Synchronous Reset to the setting you want. Register Outputs is
always enabled.

— Click Next. The wizard opens another page where you can set
parameters for Port B. The page and the parameters are identical to
the previous page, except that the settings are for Port B instead of
Port A.

4. Specify the settings for Port B on page 3 of the wizard according to the
kind of memory you want to generate:

One read & one write Enable Write Only Access.
Set Use Write Enable to the setting you want.

Two reads & one write Enable Read Only Access.
Specify a setting for Register Read Address.

Two reads & two writes Enable Read and Write Access.
Specify a setting for Use Write Enable.
Specify a setting for Register Read Address.
Set Synchronous Reset to the setting you want.
Note that Register Outputs is always enabled.
Select a read access option for Port B.

The RAM symbol on the left reflects the parameters you set. All output
files are written to the directory you specified on the first page of the
wizard.

You can now generate the RAM by clicking Generate, as described in
Specifying RAMs with SYNCore, on page 275, and add it to your design.

SYNCore RAM Wizard

The following describe the parameters you can set in the RAM wizard, which
opens when you select ram_model:

* SYNCore RAM Parameters Page 1, on page 284
* SYNCore RAM Parameters Pages 2 and 3, on page 286

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 283

SynCore IP Tool SYNCore RAM Compiler

SYNCore RAM Parameters Page 1

Memory Compiler

Companent Name []

Direckary [] | Browse. ., |
Filzname: [l | Browse. .. |
Mermoty Size
Data Width [18 | valid Range 1..256
Address width |8 | valid Range 2..256

How will wou be using the RAM?

® Single Port Dual Fort

‘Which clocking method do wou want bo use?

® Single Clock () Separate Clocks For Each Port

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
284 Synopsys Confidential Information January 2020

SYNCore RAM Compiler SynCore IP Tool

Component Specifies the name of the component. This is the name that you
Name instantiate in your design file to create an instance of the
SYNCore RAM in your design. Do not use spaces. For example:

rani0l <Conponent Name> (
. Port AQ k(Port A k)
, . Port AAddr (Port AAddr)
, . Port ADat al n(Port ADat al n)
, . Port AWiteEnabl e(Port AWit eEnabl e)
, . PortBDat al n(Port BDat al n)
, . Port BAddr (Port BAddr)
, .PortBWiteEnabl e(PortBwWiteEnabl e)
, . Port ADat aQut (Port ADat aQut)
, . Port BDat aCut (Por t BDat aQut)

)i
Directory Specifies the directory where the generated files are stored. Do
not use spaces. The following files are created:
* filelist.txt - lists files written out by SYNCore
¢ options.txt - lists the options selected in SYNCore
* readme.txt - contains a brief description and known issues

* syncore_ram.v - Verilog library file required to generate RAM
model

* testbench.v - Verilog testbench file for testing the RAM model
* instantiation_file.vin - describes how to instantiate the wrapper file
e component.v - RAM model wrapper file generated by SYNCore

Note that running the Memory Compiler wizard in the same
directory overwrites the existing files.

Filename Specifies the name of the generated file containing the HDL
description of the compiled RAM. Do not use spaces.

Data Width Is the width of the data you need for the memory. The unit used is
the number of bits.

Address Width Is the address depth you need for the memory. The unit used is
the number of bits.

Single Port When enabled, generates a single-port RAM.

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 285

SynCore IP Tool

SYNCore RAM Compiler

Dual Port
Single Clock

Separate Clocks
for Each Port

When enabled, generates a dual-port RAM.

When enabled, generates a RAM with a single clock for dual-port
configurations.

When enabled, generates separate clocks for each port in dual-
port RAM configurations.

SYNCore RAM Parameters Pages 2 and 3

The port implementation parameters on pages 2 and 3 are identical, but page
2 applies to Port A (single- and dual-port configurations), and page 3 applies
to Port B (dual-port configurations only). The following figure shows the
parameters on page 2 for Port A.

Memory Compiler

Zonfiguring Port A

Howe do ol want ko configure Part A

® Read And rite Access () Read Only Access () Wirite Only Access

Design Opkions For Port A

| Lse Write Enable

+ Register Read Address

Register Outputs

Synchronous Reset

Read Access Options For Park A

® Read before Write

Read and Write
Access

Read Only Access
Write Only Access
Use Write Enable

© 2020 Synopsys, Inc.
286

Read after Write Mo Read on Write

Specifies that the port can be accessed by both read and write
operations.

Specifies that the port can only be accessed by read operations.
Specifies that the port can only be accessed by write operations.

Includes write-enable control. The RAM symbol on the left
reflects the selections you make.

Synplify Pro for Microsemi Edition Reference Manual
Synopsys Confidential Information January 2020

SYNCore RAM Compiler SynCore IP Tool

Register Read Adds registers to the read address lines. The RAM symbol on the
Address left reflects the selections you make.

Register Outputs Adds registers to the write address lines when you specify
separate read/write addressing. The register outputs are always
enabled. The RAM symbol on the left reflects the selections you

make.
Synchronous Individually synchronizes the reset signal with the clock when
Reset you enable Register Outputs. The RAM symbol on the left reflects

the selections you make.

Read before Write Specifies that the read operation takes place before the write
operation for port configurations with both read and write
access (Read And Write Access is enabled). For a timing diagram,
see Read Before Write, on page 294.

Read after Write Specifies that the read operation takes place after the write
operation for port configurations with both read and write
access (Read And Write Access is enabled). For a timing diagram,
see Write Before Read, on page 295.

No Read on Write Specifies that no read operation takes place when there is a
write operation for port configurations with both read and write
access (Read And Write Access is enabled). For a timing diagram,
see No Read on Write, on page 296.

Single-Port Memories

For single-port RAM, it is only necessary to configure Port A. The following
diagrams show the read-write timing for single-port memories. See Specifying
RAMs with SYNCore, on page 275 in the User Guide for a procedure.

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 287

SynCore IP Tool SYNCore RAM Compiler

Single-Port Read

ADDR 00 X 01 X 02 X 03 X

CLK
aout xx A FO X F1 N F2 X F3
MEM1 F1
MEMO FO
MEM3 F3
MEM2 F2
MEM4 F4
© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual

288 Synopsys Confidential Information January 2020

SYNCore RAM Compiler

SynCore IP Tool

Single-Port Write

DATA 7A X FC X 7F X FF
WREN | | | |
ADDR 00 X 01 X 02 X

e | L L

QouT XX X FO X

MEM1 F1 X A / /
/ /
MEMO FO [
|
MEM3 F3 \
\ \
MEM2 F2 X 7* X FF

Dual-Port Memories

SYNCore dual-port memory includes the following common configurations:

* One read access and one write access

* Two read accesses and one write access

* Two read accesses and two write accesses

The following diagrams show the read-write timing for dual-port memories.
See Specifying RAMs with SYNCore, on page 275 in the User Guide for a
procedure to specify a dual-port RAM with SYNCore.

Synplify Pro for Microsemi Edition Reference Manual

© 2020 Synopsys, Inc.

January 2020 Synopsys Confidential Information 289

SynCore IP Tool SYNCore RAM Compiler

Dual-Port Single Read

RADDR 00 X 03 X 02 X 01 X

CLK
aout xx A FO X F3 X F2 X F1
MEM1 F1
MEMO FO
MEM3 F3
MEM2 F2
MEM4 F4
© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual

290 Synopsys Confidential Information January 2020

SYNCore RAM Compiler

SynCore IP Tool

Dual-Port Single Write

ATA D G G X r

wen [] | L
waoor o0 Y > X B X
RADDR ® X X =X

e | L1 L LI |

QouT XX X f X 7A /] X 77 X FF
MEM1 F1 X 7A / /

/ /

\ \
MEM2 F2 X 7+ X FF

Synplify Pro for Microsemi Edition Reference Manual
January 2020 Synopsys Confidential Information

© 2020 Synopsys, Inc.
291

SynCore IP Tool SYNCore RAM Compiler

Dual-Port Read

ADDR_A 00 X 01 X 02 X 03 X
ADDR_B 00 X 03 X 02 X 01 X

QOUT_A XX FO F1 F2 F3

QOUT B XX \ﬁ(FO ‘X F3 \ﬁ(F2 \ﬁ(F1

MEM1 F1
MEMO FO
MEM3 F3
MEM2 F2
MEM4 F4
© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual

292 Synopsys Confidential Information January 2020

SYNCore RAM Compiler SynCore IP Tool
Dual-Port Write
DATA_A 7A X rc X 7F FF
wena [| L
ADDR_A 00 X 01 X 02 X
DATA_B 04 X « X 4F Fa
ADDR_B 00 X 03 X 02 X

CLK J |_| | |

QOUT_A XX X r X 7A X 7 XFr
QOUT_B XX X Fo X o4 X F3 X x X
MEM1 F1 X 7A

MEMO FO X 7A

MEM3 F3

MEM2 F2 w X FF
MEM4 F4

Synplify Pro for Microsemi Edition Reference Manual

January 2020

Synopsys Confidential Information

© 2020 Synopsys, Inc.
293

SynCore IP Tool SYNCore RAM Compiler

Read/Write Timing Sequences

The waveforms in this section describe the behavior of the RAM when both
read and write are enabled and the address is the same operation. The
waveforms show the behavior when each of the read-write sequences is
enabled. The waveforms are merged with the simple waveforms shown in the
previous sections. See the following:

* Read Before Write, on page 294
* Write Before Read, on page 295
* No Read on Write, on page 296

Read Before Write

ADDR X o X oo X 02 X 0 X o0 X
DATA X = X m X Ffc X Fm X FE X

WEN |
QouT X a0 X a1 XAZXFCXASXFDXA4XFEX:
MEMO A0
MEMA1 A1
MEM2 A2 X FC
MEM3 A3 X FD
MEM4 A4 X FE
© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual

294 Synopsys Confidential Information January 2020

SYNCore RAM Compiler SynCore IP Tool

Write Before Read

ADDR X o X oo X 02 X 0 X 04 X
DATA X fm X m X Fc X F X FE X

WEN |
QouT X A0 X A1 X FC X FD X FE X:
MEMO A0
MEM1 A1
MEM2 a2 X FC
MEM3 A3 X
MEM4 A4 X FE
Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.

January 2020 Synopsys Confidential Information 295

SynCore IP Tool SYNCore RAM Compiler

No Read on Write

ADDR X oo X o X o0 X o X o X
DATA X Fm X m X Ffc X Fm X rfE X

WEN |
Qout X r X A1
MEMO A0
MEM1 A1
MEM2 a2 X FC
MEM3 A3 X o
MEM4 A4 X FE
© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual

296 Synopsys Confidential Information January 2020

SYNCore Byte-Enable RAM Compiler SynCore IP Tool

SYNCore Byte-Enable RAM Compiler

The SYNCore byte-enable RAM compiler generates SystemVerilog code
describing byte-enabled RAMs. The data width of each byte is calculated by
dividing the total data width by the write enable width. The byte-enable RAM
compiler supports both single- and dual-port configurations.

This section describes the following:
* Functional Overview, on page 297
* Specifying Byte-Enable RAMs with SYNCore, on page 298
* SYNCore Byte-Enable RAM Wizard, on page 305
* Read/Write Timing Sequences, on page 308

* Parameter List, on page 311

Functional Overview

The SYNCore byte-enable RAM component supports bit/byte-enable RAM
implementations using block RAM and distributed memory. For each config-
uration, design optimizations are made for optimum use of core resources.
The timing diagram that follow illustrate the supported signals for byte-
enable RAM configurations.

Byte-enable RAM can be configured in both single- and dual-port configura-
tions. In the dual-port configuration, each port is controlled by different
clock, enable, and control signals. User configuration controls include
selecting the enable level, reset type, and register type for the read data
outputs and address inputs.

Reset applies only to the output read data registers; default value of read data
on reset can be changed by user while generating core. Reset option is
inactive when output read data is not registered.

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 297

SynCore IP Tool SYNCore Byte-Enable RAM Compiler

Specifying Byte-Enable RAMs with SYNCore

The SYNCore IP wizard helps you generate SystemVerilog code for your byte-
enable RAM implementation requirements. The following procedure shows
you how to generate SystemVerilog code for a byte-enable RAM using the
SYNCore IP wizard.

Note: The SYNCore byte-enable RAM model uses SystemVerilog. When
adding a byte-enable RAM to your design, be sure to enable the
System Verilog check box on the Verilog tab of the Implementation Options
dialog box or include a set_option -vlog_std sysv statement in your
project file to prevent a syntax error.

1. Start the wizard.

— From the FPGA synthesis tool GUI, select Run->Launch SYNCore or
click the Launch SYNCore icon to start the SYNCore IP wizard.

Flovst | SYNCore Byte-Enable RAM

El- addnsub
addnsub_model MOdEI
=~ counter
counter_model The SYNCore byte-enable RAM compiler helps you create byte-
El-fifos enable RAM models for your designs. These models are written out
- sfifo in SystemVerilog and can be synthesized as well as simulated. A
sfifo_model testbench is generated for this purpose.
EH memaories
E- byte_enable_ram For more information about the SYMNCare byte-enable RAM compiler,
byte_en_ram_model || refer to the following:
El- ram
ram_model ® The built-in Byte-Enable RAM Compiler document, which you
= rom can access from the BYTE ENABLE RAM Info button.
rom_model ® The tools anline help, where you can access information for
the following from the online help:

— In the window that opens, select byte_en_ram_model and click Ok to
open the first page (pagel) of the wizard.

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
298 Synopsys Confidential Information January 2020

SYNCore Byte-Enable RAM Compiler SynCore IP Tool

BYTE ENABLE RAM Faramealers | Core Ovendlow

Byte Enable Ram Compiler

Component Mama]
Directory [] | Browse... |
File Nama [] | Browse... |
Memory Size
SEENN| BYTE e ——— Address Width Valid Range 220
Data Width |2 | valid range 2. 256

Wiits Enabls Width |2 | Valid Hange 2 266
How will you be using the RAM?

. Single Port Dual Port

BynCore BYTE EMABLE RAM

| Back || Next | Page1of3

2. Specify the parameters you need in the wizard. For details about the
parameters, see Specifying Byte-Enable RAM Parameters, on page 302.
The BYTE ENABLE RAM symbol on the left reflects any parameters you
set.

3. After you have specified all the parameters you need, click the Generate
button in the lower left corner. The tool displays a confirmation message
(TCL execution successfull) and writes the required files to the directory you
specified on page 1 of the wizard. The HDL code is in SystemVerilog.

SYNCore also generates a test bench for the byte-enable RAM compo-
nent. The test bench covers a limited set of vectors. You can now close
the SYNCore byte-enable RAM compiler.

4. Edit the generated files for the byte-enable RAM component if necessary.

5. Add the byte-enable RAM that you generated to your design.

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 299

SynCore IP Tool SYNCore Byte-Enable RAM Compiler

— On the Verilog tab of the Implementation Options dialog box, make
sure that SystemVerilog is enabled.

— Use the Add File command to add the Verilog design file that was
generated (the filename entered on page 1 of the wizard) and the
syncore_*.v file to your project. These files are in the directory for
output files that you specified on page 1 of the wizard.

— Use a text editor to open the instantiation_file.vin template file. This file is
located in the same output files directory. Copy the lines that define
the byte-enable RAM and paste them into your top-level module.

— Edit the template port connections so that they agree with the port
definitions in the top-level module; also change the instantiation
name to agree with the component name entered on page 1. The
following figure shows a template file inserted into a top-level module
with the updated component name and port connections in red.

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
300 Synopsys Confidential Information January 2020

SYNCore Byte-Enable RAM Compiler SynCore IP Tool

module top
(input Clockh,
input [3:0] 2dda
input [31:0] Dataln
input WrEna,
input Reset
|outpu.t [31:0] DataCut
)

INST TAG

SP REM #

(.ADD WIDTH(4),
.WE_WIDTH(2),
.RADDR LTNCY &(1), // 0 — No Latency, 1 — 1 Cycle Latency
.RDATA LTNCY A(1l), // 0 - No Latency, 1 - 1 Cycle Latency
.RST TYPE A(1), // 0 - No Reset, 1 synchronous
.RST RDATA A({32{1"bl}}),
.DATA WIDTH(32)

)

4x32spram

(// Output Ports
.RBdDataa (DatalIn),
// Input Ports
WrDatad (DataCut) ,
WenA (WeEnk) ,
LAddra (Bdda) ,
.Reseth (Feset),
LCLER (ClockR)

Port List

Port A interface signals are applicable for both single-port and dual-port
configurations; Port B signals are applicable for dual-port configuration only.

Name Type Description
CIkA Input Clock input for Port A
WenA Input Write enable for Port A; present when Port
A is in write mode
AddrA Input Memory access address for Port A
Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.

January 2020 Synopsys Confidential Information 301

SYNCore Byte-Enable RAM Compiler

SynCore IP Tool
ResetA Input
WrDataA Input
RdDataA Output
ClkB Input
WenB Input
AddrB Input
ResetB Input
WrDataB Input
RdDataB Output

Reset for memory and all registers in core;
present with registered read data when
Reset is enabled; active low (cannot be
changed)

Write data to memory for Port A; present
when Port A is in write mode

Read data output for Port A; present when
Port A is in read or read/write mode

Clock input for Port B; present in dual-
port mode

Write enable for Port B; present in dual-
port mode when Port B is in write mode

Memory access address for Port B; present
in dual-port mode

Reset for memory and all registers in core;
present in dual-port mode when read data
is registered and Reset is enabled; active
low (cannot be changed)

Write data to memory for Port B; present
in dual-port mode when Port B is in write
mode

Read data output for Port B; present in
dual-port mode when Port B is in read or
read /write mode

Specifying Byte-Enable RAM Parameters

When creating a single-port, byte-enable RAM with the SYNCore IP wizard,
you must specify a single read address and a single clock; you only need to

configure the Port A parameters on page 2 of the wizard.

When creating a dual-port, byte-enable RAM, you must additionally configure

the Port B parameters on page 3 of the wizard.

The following procedure lists the parameters you need to specify. For descrip-

tions of each parameter, refer to Parameter List, on page 311.

1. Start the SYNCore byte-enable RAM wizard as described in Specifying

Byte-Enable RAMs with SYNCore, on page 298.

© 2020 Synopsys, Inc.
302

Synopsys Confidential Information

Synplify Pro for Microsemi Edition Reference Manual
January 2020

SYNCore Byte-Enable RAM Compiler SynCore IP Tool

2. Do the following on page 1 of the byte-enable RAM wizard:

Specify a name for the memory in the Component Name field; do not
use spaces.

Specify a directory name in the Directory field where you want the
output files to be written; do not use spaces.

Specify a name in the File Name field for the SystemVerilog file to be
generated with the byte-enable RAM specifications; do not use
spaces.

Enter a value for the address width of the byte-enable RAM; the
maximum depth of memory is limited to 2/256.

Enter a value for the data width for the byte-enable RAM; data width
values range from 2 to 256.

Enter a value for the write enable width; write-enable width values
range from 1 to 4.

Select Single Port to generate a single-port, byte-enable RAM or select
Dual Port to generate a dual-port, byte-enable RAM.

Click Next to open page 2 of the wizard.

The Byte Enable RAM symbol dynamically updates to reflect the param-
eters that you set.

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.

January 2020

Synopsys Confidential Information 303

SynCore IP Tool SYNCore Byte-Enable RAM Compiler

3. Do the following on page 2 (configuring Port A) of the wizard:

— Select the Port A configuration. Only Read and Write Access mode is
valid for single-port configurations; this mode is selected by default.

— Set Pipelining Address Bus and Output Data according to your
application. By default, read data is registered; you can register both
the address and data registers.

— Set the Configure Reset Options. Enabling the checkbox enables the
synchronous reset for read data. This option is enabled only when the
read data is registered. Reset is active low and cannot be changed.

— Configure output reset data value options under Specify output data
on reset; reset data can be set to default value of all '1' s or to a user-
defined decimal value. Reset data value options are disabled when
the reset is not enabled for Port A.

— Set Write Enable for Port A value; default for the write-enable level is
active high.

4. If you are generating a dual-port, byte-enable RAM, set the Port B
parameters on page 3 (note that the Port B parameters are only enabled
when Dual Port is selected on page 1).

The Port B parameters are identical to the Port A parameters on page 2.
When using the dual-port configuration, when one port is configured for
read access, the other port can only be configured for read /write access
or write access.

S. Generate the byte-enable RAM by clicking Generate. Add the file to your
project and edit the template file as described in Specifying Byte-Enable
RAMs with SYNCore, on page 298. For read/write timing diagrams, see
Read /Write Timing Sequences, on page 294.

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
304 Synopsys Confidential Information January 2020

SYNCore Byte-Enable RAM Compiler SynCore IP Tool

SYNCore Byte-Enable RAM Wizard

The following describes the parameters you can set in the byte-enable RAM
wizard, which opens when you select byte_en_ram.

* SYNCore Byte-Enable RAM Parameters Page 1, on page 305
* SYNCore Byte-Enable RAM Parameters Pages 2 and 3, on page 306

SYNCore Byte-Enable RAM Parameters Page 1

Byte Enable Ram Compiler

Component Name [SP_RAM]

Directory ’C:,-’Designs]:l,l'cer‘t-ident,Ir] | Browse... |
File Name [4x325pram] | Browse... |
—Memaory Size
Address Width 4 | valid Range 1...256
Data Width |32 | valid range 1..256
Write Enable Width |2 | valid Range 1...256

—How will you be using the RAM?

® Single Port) Dual Port

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 305

SynCore IP Tool SYNCore Byte-Enable RAM Compiler

Component Specifies the name of the component. This is the name that you
Name instantiate in your design file to create an instance of the
SYNCore byte-enable RAM in your design. Do not use spaces.

Directory Specifies the directory where the generated files are stored. Do
not use spaces. The following files are created:

« filelist.txt - lists files written out by SYNCore
* options.txt - lists the options selected in SYNCore
e readme.txt - contains a brief description and known issues

e syncore_be_ram_sdp.v - SystemVerilog library file required to
generate single or simple dual-port, byte-enable RAM model

e syncore_be_ram_tdp.v - SystemVerilog library file required to
generate true dual-port byte-enable RAM model

* testbench.v - Verilog testbench file for testing the byte-enable
RAM model

« instantiation_file.vin - describes how to instantiate the wrapper file

* component.v - Byte-enable RAM model wrapper file generated by
SYNCore

Note that running the byte-enable RAM wizard in the same
directory overwrites the existing files.

Filename Specifies the name of the generated file containing the HDL
description of the compiled byte-enable RAM. Do not use spaces.

Address Width Specifies the address depth for Ports A and B. The unit used is
the number of bits; the default is 2.

Data Width Specifies the width of the data for Ports A and B. The unit used is
the number of bits; the default is 2.

Write Enable Specifies the write enable width for Ports A and B. The unit used

Width is the number of byte enables; the default is 2, the maximum is 4.

Single Port When enabled, generates a single-port, byte-enable RAM

(automatically enables single clock).

Dual Port When enabled, generates a dual-port, byte-enable RAM
(automatically enables separate clocks for each port).

SYNCore Byte-Enable RAM Parameters Pages 2 and 3

The port implementation parameters on pages 2 and 3 are identical, but page
2 applies to Port A (single- and dual-port configurations), and page 3 applies
to Port B (dual-port configurations only). The following figure shows the
parameters on page 2 for Port A.

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
306 Synopsys Confidential Information January 2020

SYNCore Byte-Enable RAM Compiler SynCore IP Tool

Byte Enable Ram Compiler

Configuring Port A

—How do you want to configure Port A

® Read And Write Access (O Read Only Access (O Write Only Access

—Pipelining Address Bus and Output Data
Register address bus AddrA
Register output data bus RdDataA

— Configure Reset Option

Reset for RdDataA

—Specify output data on reset
Default value of '1' for all bits
[0 Specify Reset value for RdDatas [| Valid Range 0...2~DATA_WIDTH

— Configure Write Enable Option
Write Enable for PORTA

@ Active High) Active Lows
Read and Write Specifies that the port can be accessed by both read and write
Access operations (only mode allowed for single-port configurations).

Read Only Access Specifies that the port can only be accessed by read operations
(dual-port mode only).

Write Only Access Specifies that the port can only be accessed by write operations
(dual-port mode only).

Register address ~ Adds registers to the read address lines.

bus AddrA/B
Register output Adds registers to the read data lines. By default, the read data
data bus register is enabled.
RdDataA/B
Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.

January 2020 Synopsys Confidential Information 307

SynCore IP Tool SYNCore Byte-Enable RAM Compiler

Reset for Specifies the reset type for registered read data:

RdDataA/B * Reset type is synchronous when Reset for RdDataA/B is enabled
* Reset type is no reset when Reset for RdDataA/B is disabled

Specify output Specifies reset value for registered read data (applies only when

data on reset RdDataA/B is enabled):

¢ Default value of ‘1’ for all bits - sets read data to all 1’s on reset

» Specify Reset value for RdDataA/B - specifies reset value for read
data; when enabled, value is entered in adjacent field

Write Enable for Specifies the write enable level for Port A/B. Default is Active
Port A/B High.

Read/Write Timing Sequences

The waveforms in this section describe the behavior of the byte-enable RAM
for both read and write operations.

Read Operation

On each active edge of the clock when there is a change in address, data is
valid on the same clock or next clock (depending on latency parameter values
for read address and read data ports). Active reset ignores any change in
input address, and data and output data are initialized to user-defined values
set by parameters RST_RDATA_A and RST_RDATA_B for port A and port B,
respectively.

The following waveform shows the read sequence of the byte-enable RAM
component with read data registered in single-port mode.

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
308 Synopsys Confidential Information January 2020

SYNCore Byte-Enable RAM Compiler SynCore IP Tool

@ R3T_RDATA_A[70] 255
& RADDR_LTHCY_A[31:0] i
@ ROATA_LTNCY_A[31:0] 1
& RET_TvPE_A[31:0] 1
& WE_WIDTH[31:0] z
& ADD_WIDTH[31:0] 5
@ DATA_WIDTH[31.0] g
o Addra[5:0) 6'hoo
£ CliA[0:0) 1'b0
o-4YenA[1:0] 2'ho

o-\WrDataA[7:0] g'hoo
& RdDataA[7:0] a'hon | [l
&~ ResetA[0:0] 1'b1

As shown in the above waveform, output read data changes on the same
clock following the input address changed. When the address changes from
'h00 to 'h01, read data changes to 50 on the same clock, and data will be
valid on the next clock edge.

The following waveform shows the read sequence with both the read data and
address registered in single-port mode.

© RST_ROATA_A[70] 255
© RADDR_LTHCY_A[31:0] 1
© RDATA_LTNCY_A[31:0] 1
© RST_TYPE_A[31:0] 1
& WE_WIDTH[31:0] z
& ADD_WIDTH[31:0] g
© DATA_WIDTH[31:0] g
o= Addra[5:0] &'hoo
o= ClkA[DO] 1'b1
B-YenA[1:0] Z'h0
-V rDataA[7:0] a'hoo
© RdDataA[7:0] g'hoo
&-ResetA[0:0] 1'b1

As shown in the above waveform, output read data changes on the next clock
edge after the input address changes. When the address changes from '"h0O to
'h01, read data changes to 50 on the next clock, and data is valid on the next
clock edge.

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 309

SynCore IP Tool SYNCore Byte-Enable RAM Compiler

Note: The read sequence for dual-port mode is the same as single port;
read /write conflicts occurring due to accessing the same location
from both ports are the user’s responsibility.

Write Operation

The following waveform shows a write sequence with read-after write in
single-port mode.

® RST_RDATA_A[7:0] 255
® RADDR_LTNCY_A[31:0] a
® RDATA_LTNCY_A[31:0] 1
® RST_TYPE_A[31:0] 1
® WE_WIDTH[31:0] b
® ADD_WIDTH[31:0] B
® DATA_WIDTH[31:0] 3
B AddrA[5:0] &'hoo
e ClkA[0:0] 1'b0
o-YWenA[1:0] z'ha
o-WrlataA[7.0] a'hoa
& RdDataA[7:0] g'hoa

o~ ResetA[0:0] 1'b1

On each active edge of the clock when there is a change in address with an
active enable, data is written into memory on the same clock. When enable is
not active, any change in address or data is ignored. Active reset ignores any
change in input address and data.

The width of the write enable is controlled by the WE_WIDTH parameter.
Input data is symmetrically divided and controlled by each write enable. For
example, with a data width of 32 and a write enable width of 4, each bit of the
write enable controls 8 bits of data (32/4=8). The byte-enable RAM compiler
will error for wrong combination data width and write enable values.

The above waveform shows a write sequence with all possible values for write
enable followed by a read:

¢ Value for parameter WE_WIDTH is 2 and DATA_WIDTH is 8 so each
write enable controls 4 bits of input data.

* WenA value changes from 1 to 2, 2 to O, and O to 3 which toggles all

possible combinations of write enable.

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
310 Synopsys Confidential Information January 2020

SYNCore Byte-Enable RAM Compiler

SynCore IP Tool

The first sequence of address, write enable changes to perform a write

sequence and the data patterns written to memory are 00, aa, ff. The read

data pattern reflects the current content of memory before the write.

The second address sequence is a read (WenA is always zero). As shown in

the read pattern, only the respective bits of data are written according to the

write enable value.

Note: The write sequence for dual-port mode is the same as single port;
conflicts occurring due to writing the same location from both

ports are the user’s responsibility.

Parameter List

The following table lists the file entries corresponding to the byte-enable RAM
wizard parameters.

selection

Name Description Default Value Range
ADDR_WIDTH Bit/byte enable RAM 2 multiples of 2
address width
DATA_WIDTH Data width for input 8 2 to 256
and output data,
common to both Port A
and Port B
WE_WIDTH Write enable width, 2
common to both Port A
and Port B
CONFIG_PORT Selects single/dual 1 (single port) 0 = dual-port
port configuration 1 = single-port
RST_TYPE_A/B Port A/B reset type 1 (synchronous) |0 = no reset

1 = synchronous

RST_RDATA_A/B

Default data value for
Port A/B on active
reset

All 1°s

decimal value

Synplify Pro for Microsemi Edition Reference Manual
January 2020

Synopsys Confidential Information

© 2020 Synopsys, Inc.

311

SynCore IP Tool SYNCore Byte-Enable RAM Compiler

WEN_SENSE_A/B Port A/B write enable |1 (active high) 0 = active low
sense 1 = active high

RADDR_LTNCY_A/B (Optional read address |1 0 = no latency
register select Port 1 = one cycle latency
A/B

RDATA_LTNCY_A/B [Optional read data 1 0 = no latency
register select Port 1 = one cycle latency
A/B

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual

312 Synopsys Confidential Information January 2020

SYNCore ROM Compiler SynCore IP Tool

SYNCore ROM Compiler

The SYNCore ROM Compiler generates Verilog code for your ROM implemen-
tation. This section describes the following:

Functional Overview, on page 313

Specifying ROMs with SYNCore, on page 315
SYNCore ROM Wizard, on page 320
Single-Port Read Operation, on page 325
Dual-Port Read Operation, on page 326
Parameter List, on page 326

SYNCore Adder/Subtractor Compiler, on page 328

Functional Overview

The SYNCore ROM component supports ROM implementations using block
ROM or logic memory. For each configuration, design optimizations are made
for optimum usage of core resources. Both single- and dual-port memory
configurations are supported. Single-port ROM allows read access to memory
through a single port, and dual-port ROM allows read access to memory
through two ports. The following figure illustrates the supported signals for
both configurations.

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 313

SynCore IP Tool SYNCore ROM Compiler

In the single-port (Port A) configuration, signals are synchronized to CIKA,
ResetA can be synchronous or asynchronous depending on parameter selec-
tion. The read address (AddrA) and/or data output (DataA) can be registered to
increase memory performance and improve timing. Both the read address
and data output are subject to clock latency based on the ROM configuration
(see SYNCore Adder/Subtractor Compiler, on page 328). In the dual-port
configuration, all Port A signals are synchronized to CIkA, and all PortB
signals are synchronized to CIkB. ResetA and ResetB can be synchronous or
asynchronous depending on parameter selection, and both data outputs can
be registered and are subject to the same clock latencies. Registering the data
output is recommended.

Note: When the data output is unregistered, the data is immediately
set to its predefined reset value concurrent with an active reset
signal.

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual

314

Synopsys Confidential Information January 2020

SYNCore ROM Compiler SynCore IP Tool

Specifying ROMs with SYNCore

The SYNCore IP wizard helps you generate Verilog code for your ROM imple-
mentation requirements. The following procedure shows you how to generate
Verilog code for a ROM using the SYNCore IP wizard.

Note: The SYNCore ROM model uses Verilog 2001. When adding a ROM
model to a Verilog-95 design, be sure to enable the Verilog 2001 check
box on the Verilog tab of the Implementation Options dialog box or include
a set_option -vlog_std v2001 statement in your project file to prevent a
syntax error.

1. Start the wizard.

— From the FPGA synthesis tool GUI, select Run->Launch SYNCore or
click the Launch SYNCore icon to start the SYNCore IP wizard.

glea:ititmetic | SYNcore Rom MOdEI B

El- addnsub
addnsub model The SYNCore Rom compiler helps you create Rom models for your
B counter designs. These Rom models are written out in Verilog and can be
counter_mode! synthesized as well as simulated. Atestbench is generated for this
El-fifos purpose.
E- sfifo
sfifo_model For more information about the SYNCore Rom compiler, refer to the
= memaries following:
El- byte_enable_ram o))
byte_en_ram_model * The built-in Rom Compiler document, which you access from
El- ram the ROM Info button.
ram_model * The Synplicity tool synthesis tool online help, where you can
= rom access information for the following from the online help
irom_model Contents:

— In the window that opens, select rom_model and click Ok to open page
1 of the wizard.

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 315

SynCore IP Tool SYNCore ROM Compiler

ROM Parameters [Core Overview

Rom Compiler

Component Name []

Directory [] | Browse... |
File Name [] | Browse. _. |
—ROM Size

Read Data width Valid Range 1..256

ROM address width Valid Range 2..20

- Configuring the ROM

® 5ingle Port Rom Dual Port Rom

SynCore ROM

| Back || Next Page 1 of 4

2. Specify the parameters you need in the wizard. For details about the
parameters, see Specifying ROM Parameters, on page 319. The ROM
symbol on the left reflects any parameters you set.

3. After you have specified all the parameters you need, click the Generate
button in the lower left corner. The tool displays a confirmation message
(TCL execution successfull) and writes the required files to the directory you
specified on page 1 of the wizard. The HDL code is in Verilog.

SYNCore also generates a testbench for the ROM. The testbench covers
a limited set of vectors.

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
316 Synopsys Confidential Information January 2020

SYNCore ROM Compiler SynCore IP Tool

You can now close the SYNCore ROM Compiler.

4. Edit the ROM files if necessary. If you want to use the synchronous
ROMs available in the target technology, make sure to register either the
read address or the outputs.

5. Add the ROM you generated to your design.

— Use the Add File command to add the Verilog design file that was
generated and the syncore_rom.v file to your project. These files are in
the directory for output files that you specified on page 1 of the
wizard.

— Use a text editor to open the instantiation_file.vin template file. This file
is located in the same output files directory. Copy the lines that
define the ROM, and paste them into your top-level module. The
following figure shows a template file (in red text) inserted into a top-
level module.

module test rom stylel(z,a,clk,en,rst);
input clk,en,rst;

output reg [3:0] =;

input [6:0] a;

mylstROM <InstanceNam=> |
// Output Ports
.DataA (Dataad),
// Input Ports template
L.ClEA(C1lkR),
LEnf (End)
.Beseth (Resetd) ,
Addra (Addra)

6. Edit the template port connections so that they agree with the port
definitions in your top-level module as shown in the example below (the
updated connection names are shown in red). You can also assign a
unique name to each instantiation.

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 317

SynCore IP Tool SYNCore ROM Compiler

nmodul e test_romstyle(z,a,clk,en,rst);
i nput clk, en,rst;

output reg [3:0] z;

input [6:0] a;

nylst ROM decode_ ron{
// Qutput Ports
. Dat aA(z),

/1 lnput Ports
. d kA(cl k),

. EnA(en),

. Reset A(rst),

. Addr A(a)

)

Port List

PortA interface signals are applicable for both single-port and dual-port
configurations; PortB signals are applicable for dual-port configuration only.

Name Type Description
CIkA Input Clock input for Port A
EnA Input Enable input for Port A
AddrA Input Read address for Port A
ResetA Input Reset or interface disable pin for Port A
DataA Output Read data output for Port A
ClkB Input Clock input for Port B
EnB Input Enable input for Port B
AddrB Input Read address for Port B
ResetB Input Reset or interface disable pin for Port B
DataB Output Read data output for Port B

© 2020 Synopsys, Inc.

Synplify Pro for Microsemi Edition Reference Manual
Synopsys Confidential Information

January 2020

SYNCore ROM Compiler SynCore IP Tool

Specifying ROM Parameters

If you are creating a single-port ROM with the SYNCore IP wizard, you need to
specify a single read address and a single clock, and you only need to
configure the Port A parameters on page 2. If you are creating a dual-port
ROM, you must additionally configure the Port B parameters on page 3. The
following procedure lists what you need to specify. For descriptions of each
parameter, refer to SYNCore RAM Wizard, on page 283.

1. Start the SYNCore ROM wizard, as described in Specifying ROMs with
SYNCore, on page 315.

2. Do the following on page 1 of the ROM wizard:

— In Component Name, specify a name for the memory. Do not use
spaces.

— In Directory, specify a directory where you want the output files to be
written. Do not use spaces.

— In Filename, specify a name for the Verilog file that will be generated
with the ROM specifications. Do not use spaces.

— Enter values for Read Data width and ROM address width (minimum depth
value is 2; maximum depth of the memory is limited to 27256).

— Select Single Port Rom to indicate that you want to generate a single-
port ROM or select Dual Port Rom to generate a dual-port ROM.

— Click Next. The wizard opens page 2 where you set parameters for Port
A.

The ROM symbol dynamically updates to reflect any parameters you set.

3. Do the following on page 2 (Configuring Port A) of the RAM wizard:

— For synchronous ROMs, select Register address bus AddrA and/or
Register output data bus DataA to register the read address and/or the
outputs. Selecting either checkbox enables the Enable for Port A
checkbox which is used to select the Enable level.

— Set the Configure Reset Options. Enabling the checkbox enables the type
of reset (asynchronous or synchronous) and allows an output data
pattern (all 1’s or a specified pattern) to be defined on page 4.

4. If you are generating a dual-port ROM, set the port B parameters on
page 3 (the page 3 parameters are only enabled when Dual Port Rom is
selected on page 1).

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 319

SynCore IP Tool SYNCore ROM Compiler

S. On page 4, specify the location of the ROM initialization file and the data
format (Hexadecimal or Binary). ROM initialization is supported using
memory-coefficient files. The data format is either binary or hexadecimal
with each data entry on a new line in the memory-coefficient file
(specified by parameter INIT_FILE). Supported file types are t xt , mem dat ,
and init (recommended).

6. Generate the ROM by clicking Generate, as described in Specifying ROMs
with SYNCore, on page 315 and add it to your design. All output files are
in the directory you specified on page 1 of the wizard.

For read/write timing diagrams, see Read/Write Timing Sequences, on
page 294.

SYNCore ROM Wizard

The following describe the parameters you can set in the ROM wizard, which
opens when you select rom_model:

¢ SYNCore ROM Parameters Page 1, on page 321
* SYNCore ROM Parameters Pages 2 and 3, on page 322
¢ SYNCore ROM Parameters Page 4, on page 324

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
320 Synopsys Confidential Information January 2020

SYNCore ROM Compiler SynCore IP Tool

SYNCore ROM Parameters Page 1

Zomponent Mame [BankDecndeROMZ]

Direckary [C:,l'majie,l'dsgns] | Browse. .. |
File Mame Ibdromz.v| I | Browse. .. |
—R.OM Size
Read Data width |2 | valid Range 1..256
ROM address width [10 | valid Range 2..256

~—Zonfiguring the ROM

@ Single Port Rom () Dual Port Rom

Component Name Specifies the name of the component. This is the name that
you instantiate in your design file to create an instance of
the SYNCore ROM in your design. Do not use spaces.

Directory Specifies the directory where the generated files are stored.
Do not use spaces. The following files are created:

filelist.txt - lists files written out by SYNCore
options.txt - lists the options selected in SYNCore
readme.txt - contains a brief description and known issues

syncore_rom.v - Verilog library file required to generate ROM
model

testbench.v - Verilog testbench file for testing the ROM model
instantiation_file.vin - describes how to instantiate the wrapper
file

component.v - ROM model wrapper file generated by SYNCore

Note that running the ROM wizard in the same directory
overwrites the existing files.

File Name Specifies the name of the generated file containing the HDL
description of the compiled ROM. Do not use spaces.

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 321

SynCore IP Tool

SYNCore ROM Compiler

Read Data Width

ROM address width

Single Port Rom

Dual Port Rom

Specifies the read data width of the ROM. The unit used is
the number of bits and ranges from 2 to 256. Default value
is 8. The read data width is common to both Port A and Port
B. The corresponding file parameter is DATA_WIDTH=n.

Specifies the address depth for the memory. The unit used
is the number of bits. Default value is 10. The
corresponding file parameter is ADD_WIDTH=n.

When enabled, generates a single-port ROM. The
corresponding file parameter is CONFIG_PORT="single".

When enabled, generates a dual-port ROM. The
corresponding file parameter is CONFIG_PORT="dual".

SYNCore ROM Parameters Pages 2 and 3

The port implementation parameters on pages 2 and 3 are the same; page 2
applies to Port A (single- and dual-port configurations), and page 3 applies to
Port B (dual-port configurations only).

—iZonfiguring Pork &

~Pipelining Address Bus and Output Data
[Register address bus Addra

Regisker output data bus Datad

~i_onfigure Reset Cptions
Reset for PORTA

(@ Asynchronous Reset () Synchronous Reset

~Configure Enable
Enable for PORTA

(@) Active High Enable () Active Low Enable

— Specify oukput data on reset

Default value of '1' for all bits

[Specify reset value for Datak :] walid F.ange 0...2DATA_WIDTH

© 2020 Synopsys, Inc.

322

Synplify Pro for Microsemi Edition Reference Manual
Synopsys Confidential Information January 2020

SYNCore ROM Compiler SynCore IP Tool

Register address bus ~ Used with synchronous ROM configurations to register the

AddrA read address. When checked, also allows chip enable to be
configured.

Register output data Used with synchronous ROM configurations to register the

bus DataA data outputs. When checked, also allows chip enable to be
configured.

Asynchronous Reset Sets the type of reset to asynchronous (Configure Reset
Options must be checked). Configuring reset also allows
the output data pattern on reset to be defined. The
corresponding file parameter is
RST_TYPE_A=1/RST_TYPE_B=1.

Synchronous Reset Sets the type of reset to synchronous (Configure Reset Options
must be checked). Configuring reset also allows the output
data pattern on reset to be defined. The corresponding file
parameter is RST_TYPE_A=0/RST_TYPE_B=0.

Active High Enable Sets the level of the chip enable to high for synchronous
ROM configurations. The corresponding file parameter is
EN_SENSE_A=1/EN_SENSE_B=1.

Active Low Enable Sets the level of the chip enable to low for synchronous ROM
configurations. The corresponding file parameter is
EN_SENSE_A=0/EN_SENSE_B=0.

Default value of '1' for ~ Specifies an output data pattern of all 1’s on reset. The
all bits corresponding file parameter is
RST_DATA_A={n{1'b1} ¥RST_DATA_B={n{1b1} }.

Specify reset value for ~ Specifies a user-defined output data pattern on reset. The
DataA/DataB pattern is defined in the adjacent field. The corresponding
file parameter is RST_TYPE_A=pattern/RST_TYPE_B=pattern.

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 323

SynCore IP Tool SYNCore ROM Compiler

SYNCore ROM Parameters Page 4

~ Inkialization of FOM

Select the type of the Inkial values

(@ Binary () Hexadecimal

Inkialization File IC:,I'DesignsSll'majie,l'rnm_init.txt I | Browse, .,

Binary Specifies binary-formatted initialization file.
Hexadecimal Specifies hexadecimal-formatted initial file.

Initialization File Specifies path and filename of initialization file. The
corresponding file parameter is INIT_FILE="filename".

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
324 Synopsys Confidential Information January 2020

SYNCore ROM Compiler SynCore IP Tool

Single-Port Read Operation

For single-port ROM, it is only necessary to configure Port A (see Specifying
ROMs with SYNCore, on page 315 in the User Guide). The following diagram
shows the read timing for a single-port ROM.

On every active edge of the clock when there is a change in address with an
active enable, data will be valid on the same clock or next clock (depending on
latency parameter values). When enable is inactive, any address change is
ignored, and the data port maintains the last active read value. An active
reset ignores any change in input address and forces the output data to its
predefined initialization value. The following waveform shows the functional
behavior of control signals in single-port mode.

Clka | | | | | | | | | | | | | |
End |

Addrd 3 B Ji0 iz 14 16 Jia fz0
Resebh |

Datad 170 J245 22z]

When reset is active, the output data holds the initialization value (i.e., 255).
When reset goes inactive (and enable is active), data is read form the
addressed location of ROM. Reset has priority over enable and always sets
the output to the predefined initialization value. When both enable and reset
are inactive, the output holds its previous read value.

Note: In the above timing diagram, reset is synchronous.

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 325

SynCore IP Tool SYNCore ROM Compiler

Dual-Port Read Operation

Dual-port ROMs allow read access to memory through two ports. For dual-

port ROM, both port A and port B must be configured (see Specifying ROMs
with SYNCore, on page 315 in the User Guide). The following diagram shows
the read timing for a dual-port ROM.

Clkas | | | | | |

Reseth

End |

Addr, 8 J10 iz 114 i3 & {70
Datad 170 J245 22z 125

ClkE] | | | | | | | | | | | L
Reseth

ErE I

AddrE P {15 115 21 J2d 27 150
Dataf 187 745 f143 {167 214

When either reset is active, the corresponding output data holds the initial-
ization value (i.e., 255). When a reset goes inactive (and its enable is active),
data is read form the addressed location of ROM. Reset has priority over
enable and always sets the output to the predefined initialization value. When
both enable and reset are inactive, the output holds its previous read value.

Note: In the above timing diagram, reset is synchronous.

Parameter List

The following table lists the file entries corresponding to the ROM wizard

parameters.
Name Description Default Value Range
ADD_WIDTH ROM address width |10 -
value. Default
value is 10
DATA_WIDTH Read Data width, 8 2 to 256
common to both
IPort A and Port B

© 2020 Synopsys, Inc.

326

Synplify Pro for Microsemi Edition Reference Manual
Synopsys Confidential Information January 2020

SYNCore ROM Compiler

SynCore IP Tool

CONFIG_PORT

Parameter to select
Single/Dual
configuration

dual (Dual Port)

dual (Dual), single (Single).

RST TYPE_A

Port A reset type
selection
(synchronous,
asynchronous)

1 - asynchronous

1(asyn), 0 (sync)

RST TYPE_B

Port B reset type
selection
(synchronous,
asynchronous)

1 - asynchronous

1 (asyn), 0 (sync)

RST_DATA A

Default data value
for Port A on active
Reset

"1’ for all data bits

0 — 2 "DATA_WIDTH - 1

RST_DATA_B

Default data value
for Port A on active
Reset

1’ for all data bits

0 — 2"DATA_WIDTH - 1

EN_SENSE_A

Port A enable sense

1 — active high

0 - active low, 1- active high

EN_SENSE_B

Port B enable sense

1 — active high

0 - active low, 1- active high

ADDR_LTNCY_A

Optional address
register select Port
A

1- address registered

1(reg), 0(no reg)

ADDR_LTNCY_B

Optional address
register select Port
B

1- address registered

1(reg), 0(no reg)

DATA_LTNCY_A

Optional data
register select Port
A

1- data registered

1(reg), 0(no reg)

DATA_LTNCY B

Optional data
register select Port
B

1- data registered

1(reg), 0(no reg)

INIT_FILE

Initial values file
name

init.txt

Synplify Pro for Microsemi Edition Reference Manual
Synopsys Confidential Information

January 2020

© 2020 Synopsys, Inc.
327

SynCore IP Tool SYNCore Adder/Subtractor Compiler

SYNCore Adder/Subtractor Compiler

The SYNCore adder/subtractor compiler generates Verilog code for a parame-
trizable, pipelined adder/subtractor. This section describes the functionality
of this block in detail.

* Functional Description, on page 328

* Specifying Adder/Subtractors with SYNCore, on page 329
* SYNCore Adder/Subtractor Wizard, on page 337

* Adder, on page 340

* Subtractor, on page 343

* Dynamic Adder/Subtractor, on page 346

Functional Description

The adder/subtractor has a single clock that controls the entire pipeline
stages (if used) of the adder/subtractor.

As its name implies, this block just adds/subtracts the inputs and provides
the output result. One of the inputs can be configured as a constant. The
data inputs and outputs of the adder/subtractor can be pipelined; the
pipeline stages can be O or 1, and can be configured individually. The
individual pipeline stage registers include their own reset and enable ports.

The reset to all of the pipeline registers can be configured either as synchro-
nous or asynchronous using the RESET_TYPE parameter. The reset type of
the pipeline registers cannot be configured individually.

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
328 Synopsys Confidential Information January 2020

SYNCore Adder/Subtractor Compiler SynCore IP Tool

Pipeline Stage A

|: Pipeline Stage Out

PortA ‘ N

— X >
PortOut

[‘

PortB

Pipeline Stage B

PortCarryln

SYNCore adder/subtractor has ADD_N_SUB parameter, which can take three
values ADD, SUB, or DYNAMIC. Based on this parameter value, the
adder/subtractor can be configured as follows.

* Adder
* Subtractor

* Dynamic Adder and Subtractor

Specifying Adder/Subtractors with SYNCore

The SYNCore IP wizard helps you generate Verilog code for your
adder/subtractor implementation requirements. The following procedure

shows you how to generate Verilog code for an adder/subtractor using the
SYNCore IP wizard.

Note: The SYNCore adder/subtractor models use Verilog 2001. When
adding an adder/subtractor model to a Verilog-95 design, be sure to
enable the Verilog 2001 check box on the Verilog tab of the Implementation
Options dialog box or include a set_option -vlog_std v2001 statement in
your project file to prevent a syntax error.

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 329

SynCore IP Tool SYNCore Adder/Subtractor Compiler

1. Start the wizard.

— From the FPGA synthesis tool GUI, select Run->Launch SYNCore or
click the Launch SYNCore icon to start the SYNCore IP wizard.

Flevst | SYNCore AddnSub Model

El- addnsub
‘addnsub modei ! | The SYMNCore AddnSub compiler helps you create AddnSub models
- counter for your designs. These AddnSub models are written out in Verilog
counter_model and can be synthesized as well as simulated. A testbench is
£~ fifos generated for this purpose.
E- sfifo
sfifo model For more information about the SYNCore AddnSub compiler, refer to
S memories the fallowing:
El- byte_enable_ram L)]
byte_en_ram_model *® The built-in AddnSub Compiler document, which you access
El- ram from the ADDnSUB Info button.
ram_model ® The Synplicity tool synthesis tool online help, where you can
= rom access information for the following from the online help
rorm_model Contents:

— In the window that opens, select addnsub_model and click Ok to open
pagel of the wizard.

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
330 Synopsys Confidential Information January 2020

SYNCore Adder/Subtractor Compiler SynCore IP Tool

ADDnSUB Parameters | Core Overview |

AddnSub Compiler

Componert Name ||

Directory [] | Browse. .. |

File Name [] | Browse._. |

~ Configure the Mode of Operation —

ADDNSUB PortOut e Adder
Subtractor
Adder/Subtractor
PortCarmyln
SynCore ADDNSUB
| Back || Next | Pagetof2

2. Specify the parameters you need in the wizard. For details about the
parameters, see Specifying Adder/Subtractor Parameters, on page 335.
The ADDnSUB symbol on the left reflects any parameters you set.

3. After you have specified all the parameters you need, click the Generate
button in the lower left corner.

The tool displays a confirmation message (TCL execution successful!)
and writes the required files to the directory you specified on page 1 of
the wizard. The HDL code is in Verilog.

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 331

SynCore IP Tool SYNCore Adder/Subtractor Compiler

The SYNCore wizard also generates a testbench for your
adder/subtractor. The testbench covers a limited set of vectors. You can
now close the wizard.

4. Add the adder/subtractor you generated to your design.
— Edit the adder/subtractor files if necessary.

— Use the Add File command to add the Verilog design file that was
generated and the syncore_addnsub.v file to your project. These files are
in the directory for output files that you specified on page 1 of the
wizard.

— Use a text editor to open the instantiation_file.v template file. This file is
located in the same output files directory. Copy the lines that define
the adder/subtractor and paste them into your top-level module. The
following figure shows a template file (in red text) inserted into a top-
level module.

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
332 Synopsys Confidential Information January 2020

SYNCore Adder/Subtractor Compiler

SynCore IP Tool

module top
output [15:0] Out,
input Clk,
input [15:0] &,
input CEA,
input RSTA,
input [15:0] B,
input CEB,
input RSTEB,
input CEOut,
input RETCOut,
input ADDNSUB,
input CarryIm };

My ADDnSUB <InstanceName> (

{// Output Ports
.PortOut (PortOut),

/) Input Ports
.PortClk (PortClk),
.PortA(Portl),
.PortCEL (PortCEA),
.PortRSTLE(PortRSTL),
.PortB (FPortBO,
.PortCEE (PortCEB},
.PortRETEG(PortRSTE),
.PortCEQut (Port CEOut) ,
.PortR3TCOut (FortRSTOut),
.PortADDnSUB (PortADDRSUB],
.PortCarryIn{PortCarryIn} };

endmodule

5. Edit the template port connections so that they agree with the port
definitions in your top-level module as shown in the example below (the
updated connection names are shown in red). You can also assign a

unique name to each instantiation.

nodul e top (
output [15 : 0] Qut,
i nput 4 Kk,
input [15 : 0] A
i nput CEA

Synplify Pro for Microsemi Edition Reference Manual
January 2020 Synopsys Confidential Information

© 2020 Synopsys, Inc.

333

SynCore IP Tool SYNCore Adder/Subtractor Compiler

nput RSTA

nput [15 : 0] B,
nput CEB,

nput RSTB,

nput CEQut,
nput RSTQut,
nput ADDNSUB,
nput Carryln);

M/_ADDNSUB ADDNSUB i nst (
/1 Qutput Ports

.PortQut(Cut),
/1l Input Ports

.Portd k(dKk),

.Port A(A),

. Port CEA(CEA) ,

. Port RSTA(RSTA) ,

. PortB(B),

. Port CEB(CEB),

. Port RSTB(RSTB)

. Port CEQut (CEQuUt),

. Port RSTCQut (RSTQUL),

. Por t ADDnSUB(ADDnSUB) ,

.PortCarryln(Carryln));
endnodul e

Port List

The following table lists the port assignments for all possible configurations;
the third column specifies the conditions under which the port is available.

Port Name Description Required/Optional
PortA Data input for Always present
adder/subtractor

Parameterized width and
pipeline stages

PortB Data input for Not present if
adder/subtractor adder/subtractor is
Parameterized width and configured as a constant
pipeline stages adder/subtractor

PortClk Primary clock input; clocks all Always present

registers in the unit

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
334 Synopsys Confidential Information January 2020

SYNCore Adder/Subtractor Compiler

SynCore IP Tool

Port Name
PortRstA

PortRstB

PortADDnSUB

PortRstOut

PortCEA

PortCEB

PortCarryin

PortCEOut

PortOut

Description

Reset input for port A pipeline
registers (active high)

Reset input for port B pipeline
registers (active high)

Selection port for dynamic
operation

Reset input for output register
(active high)

Clock enable for port A
pipeline registers (active high)

Clock enable for port B
pipeline registers (active high)
Carry input for
adder/subtractor

Clock enable for output
register (active high)

Data output

Specifying Adder/Subtractor Parameters

Required/Optional

Not present if pipeline stage
for port Ais O

Not present if pipeline stage
for port B is O or for constant
adder/subtractor

Not present if
adder/subtractor configured
as standalone adder or
subtractor

Not present if output pipeline
stage is O

Not present if pipeline stage
for port Ais O

Not present if pipeline stage
for port B is O or for constant
adder/subtractor

Always present

Not present if output pipeline
stage is O

Always present

The SYNCore adder/subtractor can be configured as any of the following:

¢ Adder

* Subtractor

* Dynamic Adder/Subtractor

If you are creating a constant input adder, subtractor, or a dynamic
adder/subtractor with the SYNCore IP wizard, you must select Constant Value
Input and specify a value for port B in the Constant Value/Port B Width field on

page 2 of the parameters. The following procedure lists the parameters you

need to define when generating an adder/subtractor. For descriptions of each
parameter, see SYNCore Adder/ Subtractor Wizard, on page 337.

Synplify Pro for Microsemi Edition Reference Manual
Synopsys Confidential Information

January 2020

© 2020 Synopsys, Inc.

335

SynCore IP Tool SYNCore Adder/Subtractor Compiler

1. Start the SYNCore adder/subtractor wizard as described in Specifying
Adder/ Subtractors with SYNCore, on page 329.
2. Enter the following on page 1 of the wizard:

— In the Component Name field, specify a name for your
adder/subtractor. Do not use spaces.

— In the Directory field, specify a directory where you want the output
files to be written. Do not use spaces.

— In the Filename field, specify a name for the Verilog file that will be
generated with the adder/subtractor definitions. Do not use spaces.

— Select the appropriate configuration in Configure the Mode of Operation.
3. Click Next. The wizard opens page 2 where you set parameters for port A
and port B.
4. Configure Port A and B.
— In the Configure Port A section, enter a value in the Port A Width field.

— If you are defining a synchronous adder/subtractor, check Register
Input A and then check Clock Enable for Register A and /or Reset for Register
A.

— To configure port B as a constant port, go to the Configure Port B
section and check Constant Value Input. Enter the constant value in the
Constant Value/Port B Width field.

— To configure port B as a dynamic port, go to the Configure Port B
section and check Enable Port B and enter the port width in the
Constant Value/Port B Width field.

— To define a synchronous adder/subtractor, check Register Input B and
then check Clock Enable for Register B and/or Reset for Register B.
5. In the Configure Output Port section:
— Enter a value in the Output port Width field.
— If you are registering the output port, check Register output Port.
— Ifyou are defining a synchronous adder/subtractor check Clock Enable

for Register PortOut and /or Reset for Register PortOut.

6. In the Configure Reset type for all Reset Signal section, click Synchronous Reset
or Asynchronous Reset as appropriate.

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
336 Synopsys Confidential Information January 2020

SYNCore Adder/Subtractor Compiler SynCore IP Tool

As you enter the page 2 parameters, the ADDnSUB symbol dynamically
updates to reflect the parameters you set.

7. Generate the adder/subtractor by clicking the Generate button as
described in Specifying Adder/Subtractors with SYNCore, on page 329
and add it to your design. All output files are in the directory you
specified on page 1 of the wizard.

SYNCore Adder/Subtractor Wizard

The following describe the parameters you can set in the adder/subtractor
wizard, which opens when you select addnsub_model:

SYNCore Adder/Subtractor Parameters Page 1, on page 337

SYNCore Adder/Subtractor Parameters Page 2, on page 339

SYNCore Adder/Subtractor Parameters Page 1

e e

Component Name [adder_subtractorS]

Direckory [C;p’designsp’majie ” Browse, ., |

File Mame [add_sub4]l Browse. .. |

~Configure the Mode of Operation

() Adder
() subtractor

(@ Adder/Subtractor

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 337

SynCore IP Tool

SYNCore Adder/Subtractor Compiler

Component Name

Directory

Filename

Adder

Subtractor

Adder/Subtractor

© 2020 Synopsys, Inc.
338

Specifies a name for the adder/subtractor. This is the name
that you instantiate in your design file to create an instance
of the SYNCore adder/subtractor in your design. Do not use
spaces.

Indicates the directory where the generated files will be
stored. Do not use spaces. The following files are created:

* filelist.txt - lists files written out by SYNCore
* options.txt - lists the options selected in SYNCore
* readme.txt - contains a brief description and known issues

¢ syncore_ADDNnSUB.v - Verilog library file required to
generate adder/subtractor model

¢ testbench.v - Verilog testbench file for testing the
adder/subtractor model

¢ instantiation_file.vin - describes how to instantiate the
wrapper file

¢ component.v - adder/subtractor model wrapper file
generated by SYNCore

Note that running the wizard in the same directory
overwrites any existing files.

Specifies the name of the generated file containing the HDL
description of the generated adder/subtractor. Do not use
spaces.

When enabled, generates an adder (the corresponding file
parameter is ADD_N_SUB ="ADD").

When enabled, generates a subtractor (the corresponding
file parameter is ADD_N_SUB ="SUB").

When enabled, generates a dynamic adder/subtractor (the
corresponding file parameter is ADD_N_SUB ="DYNAMIC").

Synplify Pro for Microsemi Edition Reference Manual
Synopsys Confidential Information January 2020

SYNCore Adder/Subtractor Compiler SynCore IP Tool
SYNCore Adder/Subtractor Parameters Page 2
~ Input and Cutput Porks Configurations
— onfigure Port A
Part A Width |
Reqgister Input &
Zlock Enable For Register A Reset for Regisker &
—onfigure Port B
[Constant Value Input Enable Port B
Constant YalueiPort B Width |
Reqister Input B
Zlock Enable For Register B Reset for Register B
— onfigure Cutput Pork
Quput port Wwidth [
Reqgister oukpuk PortCut
Clock Enable For Register PorkbOut Reset For Register Porbouk
— onfigure Reset bype for all Reset Signals
() Synchronous Reset (@ Asynchronous Reset
Port A Width Specifies the width of port A (the corresponding file
parameter is PORT_A_WIDTH=n).
Register Input A Used with synchronous adder/subtractor configurations to

register port A. When checked, also allows clock enable and
reset to be configured (the corresponding file parameter is

PORTA_PIPELINE_STAGE="0" or ‘1’).

Clock Enable for Specifies the enable for port A register.

Register A

Reset for Register A Specifies the reset for port A register.

Constant Value Input Specifies port B as a constant input when checked and
allows you to enter a constant value in the Constant Value/Port
B Width field (the corresponding file parameter is

CONSTANT_PORT =0).

Synplify Pro for Microsemi Edition Reference Manual

January 2020 Synopsys Confidential Information

© 2020 Synopsys, Inc.
339

SynCore IP Tool SYNCore Adder/Subtractor Compiler
Enable Port B Specifies port B as an input when checked and allows you to
enter a port B width in the Constant Value/Port B Width field
(the corresponding file parameter is CONSTANT_PORT =1").
Constant Value/Port B Specifies either a constant value or port B width depending
Width on Constant Value Input and Enable Port B selection (the

Register Input B

Clock Enable for
Register B

Reset for Register B
Output port Width

Register output
PortOut

Clock Enable for
Register PortOut

Reset for Register
PortOut

Synchronous Reset

Asynchronous Reset

Adder

corresponding file parameters are CONSTANT_VALUE= n or
PORT_B_WIDTH=n).

Used with synchronous adder/subtractor configurations to
register port B. When checked, also allows clock enable and
reset to be configured (the corresponding file parameter is
PORTB_PIPELINE_STAGE="0"or ‘1’).

Specifies the enable for the port B register.

Specifies the reset for the port B register.

Specifies the width of the output port (the corresponding file
parameter is PORT_OUT_WIDTH=n).

Used with synchronous adder/subtractor configurations to
register the output port. When checked, also allows clock
enable and reset to be configured (the corresponding file
parameter is PORTOUT_PIPELINE_STAGE='0’ or ‘1’.

Specifies the enable for the output port register.

Specifies the reset for the output port register.

Sets the type of reset to synchronous (the corresponding file
parameter is RESET_TYPE=0).

Sets the type of reset to asynchronous (the corresponding
file parameter is RESET_TYPE="1’).

Based on the parameter CONSTANT_PORT, the adder can be configured in two

ways.

* CONSTANT_PORT='0' — adder with two input ports (port A and port B)

* CONSTANT_PORT='1' — adder with one constant port

© 2020 Synopsys, Inc.

Synplify Pro for Microsemi Edition Reference Manual
January 2020

Synopsys Confidential Information

SYNCore Adder/Subtractor Compiler SynCore IP Tool

Adder with Two Input Ports (Port A and Port B)

In this mode, port A and port B values are added. Optional pipeline stages
can also be inserted at port A, port B or at both port A and port B. Optionally,
pipeline stages can also be added at the output port. Depending on pipeline
stages, a number of the adder configurations are given below.

Adder with No Pipeline Stages — In this mode, the port A and port B inputs
are added. The adder is purely combinational, and the output changes
immediately with respect to the inputs.

Parameters: PORTA_PIPELINE_STAGE= ‘0’
PortA 0 4 la [13 5 I1
PortB 0 I I3 5 2 5
PortOut 0 5 12 [18 17 l6

Adder with Pipeline Stages at Input Only - In this mode, the port A and
port B inputs are pipelined and added. Because there is no pipeline stage at
the output, the result is valid at each rising edge of the clock.

Parameters: PORTA_PIPELINE_STAGE= ‘1’
PORTB_PIPELINE_STAGE= ‘1’
PORTOUT_PIPELINE_STAGE= ‘0’

PortClk .

PortA 0 a 9 l13 5 1
PortB 0 1 E 5 2 5
PortOut 0 5 l12 l18 7 6

Adder with Pipeline Stages at Input and Output - In this mode, the port A
and port B inputs are pipelined and added, and the result is pipelined. The
result is valid only on the second rising edge of the clock.

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 341

SynCore IP Tool SYNCore Adder/Subtractor Compiler

Parameters: PORTA_PIPELINE_STAGE= ‘1’
PORTB_PIPELINE_STAGE= ‘1’
PORTOUT_PIPELINE_STAGE= ‘1’

PorClk I N N

PortA 0 la la l13 5 1
PoriB 0 1 I3 5 2 5
PortOut 0 5 l12 l18 17

Adder with a Port Constant

In this mode, port A is added with a constant value (the constant value can be
passed though the parameter CONSTANT_VALUE). Optional pipeline stages
can also be inserted at port A, Optionally, pipeline stages can also be added
at the output port. Depending on the pipeline stages, a number of the adder
configurations are given below (here CONSTANT _VALUE="3’)

Adder with No Pipeline Stages — In this mode, input port A is added with a
constant value. The adder is purely combinational, and the output changes
immediately with respect to the input.

Parameters: PORTA_PIPELINE_STAGE= ‘0’
PORTOUT_PIPELINE_STAGE= ‘0’

PorA 0 la I la I3 [13
PortOut 3 7 la l12 6 l16

Adder with Pipeline Stage at Input Only - In this mode, input port A is
pipelined and added with a constant value. Because there is no pipeline stage
at the output, the result is valid at each rising edge of the clock.

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
342 Synopsys Confidential Information January 2020

SYNCore Adder/Subtractor Compiler SynCore IP Tool

Parameters: PORTA_PIPELINE_STAGE= ‘1’
PORTOUT_PIPELINE_STAGE= ‘0

PorClk e
PortA 0 la 1 la I3 [13
PortOut I3 7 la [12 6 l1g

Adder with Pipeline Stages at Input and Output - In this mode, input port
A is pipelined and added with a constant value, and the result is pipelined.
The result is valid only on the second rising edge of the clock.

Parameters: PORTA_PIPELINE_STAGE= ‘1’
PORTOUT_PIPELINE_STAGE= ‘1’

PortClk] |
PortA 0 la 1 la I3
PortOut I3 7 la [12

Subtractor

Based on the parameter CONSTANT_PORT, the subtractor can be configure in
two ways.

CONSTANT_PORT="0" — subtractor with two input ports (port A and port B)

CONSTANT_PORT="'1"— subtractor with one constant port

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 343

SynCore IP Tool SYNCore Adder/Subtractor Compiler

Subtractor with Two Input Ports (Port A and Port B)

In this mode, port B is subtracted from port A. Optional pipeline stages can
also be inserted at port A, port B, or both ports. Optionally, pipeline stages
can also be added at the output port. Depending on the pipeline stages, a
number of the subtractor configurations are given below.

Subtractor with No Pipeline Stages — In this mode, input port B is
subtracted from port A, and the subtractor is purely combinational. The
output changes immediately with respect to the inputs.

Parameters: PORTA_PIPELINE_STAGE= ‘0’
PORTB_PIPELINE_STAGE= ‘0’
PORTOUT_PIPELINE_STAGE= "0’

PorA 0 4 o 113 5
PortB 0 1 I 5 2
PortOut 0 I3 |6 8 I3

Subtractor with Pipeline Stages at Input Only - In this mode, input port B
and input PortA are pipelined and then subtracted. Because there is no
pipeline stage at the output, the result is valid at each rising edge of the
clock.

Parameters: PORTA_PIPELINE_STAGE= ‘1’
PORTB_PIPELINE_STAGE= ‘1’
PORTOUT_PIPELINE_STAGE= ‘0’

PortA
PoriB
PortOut

b= ==

PortClk | |] B
0 4
0
0

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual

Synopsys Confidential Information January 2020

SYNCore Adder/Subtractor Compiler SynCore IP Tool

Subtractor with Pipeline Stages at Input and Output - In this mode, input

PortA and PortB are pipelined and then subtracted, and the result is
pipelined. The result is valid only at the second rising edge of the clock.

Parameters: PORTA_PIPELINE_STAGE= ‘1’
PORTB_PIPELINE_STAGE= ‘1’
PORTOUT_PIPELINE_STAGE= ‘1’

PonClk]]

PortA 0 14 lo l13 5
PortB 0 I1 I3 5 12
PortOut 0 I3 6 I8

Subtractor with a Port Constant

In this mode, a constant value is subtracted from port A (the constant value
can be passed though the parameter CONSTANT_VALUE). Optional pipeline
stages can also be inserted at port A, Optionally, pipeline stages can also be

added at the output port. Depending on pipeline stages, a number of the
subtractor configurations are given below (here CONSTANT_VALUE="1").

Subtractor with No Pipeline Stages — In this mode, a constant value is
subtracted from port A. The subtractor is purely combinational, and the
output changes immediately with respect to the input.

Parameters: PORTA_PIPELINE_STAGE= ‘0
PORTOUT_PIPELINE_STAGE= ‘0’

PorA 0 4 1 o 3
PortOut 0 3 o 8 2
Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.

January 2020 Synopsys Confidential Information

345

SynCore IP Tool SYNCore Adder/Subtractor Compiler

Subtractor with Pipeline Stages at Input Only - In this mode, a constant
value is subtracted from pipelined input port A. Because there is no pipeline
stage at the output, the output is valid at each rising edge of the clock.

Parameters: PORTA_PIPELINE_STAGE= ‘1’
PORTOUT_PIPELINE_STAGE= ‘0’

PortA 4 1 9 I3
PortOut I3 lo 8 2

PorClk _ |
0
0

Subtractor with Pipeline Stages at Input and Output - In this mode, a
constant value is subtracted from pipelined port A, and the output is
pipelined. The result is valid only at the second rising edge of the clock.

Parameters: PORTA_PIPELINE_STAGE= ‘1’
PORTOUT_PIPELINE_STAGE= ‘1’

PortClk] | I

PorA 0 la I lo I3
PortOut 0 Iz o g

Dynamic Adder/Subtractor

In dynamic adder/subtractor mode, port PortADDnSUB controls
adder/subtractor operation.

PortADDnSUB='0"' — adder operation
PortADDnSUB='1" — subtractor operation

Based on the parameter CONSTANT_PORT the dynamic adder/subtractor can
be configured in one of two ways:

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
346 Synopsys Confidential Information January 2020

SYNCore Adder/Subtractor Compiler SynCore IP Tool

CONSTANT_PORT='0"— dynamic adder/subtractor with two input ports
CONSTANT_PORT="1'— dynamic adder/subtractor with one constant port

Dynamic Adder/Subtractor with Two Input Ports (Port A and Port B)

In this mode, the addition and subtraction is dynamic based on the value of
input port PortADDnSUB. Optional pipeline stages can also be inserted at Port
A, Port B, or both Port A and Port B. Optionally, pipeline stages can also be
added at the output port. Depending on pipeline stages, some of the dynamic
adder/subtractor configurations are given below.

Dynamic Adder/Subtractor with No Pipeline Registers — In this mode, the
dynamic adder/subtractor is a purely combinational, and output changes
immediately with respect to the inputs.

Parameters: PORTA_PIPELINE_STAGE= ‘0’
PORTB_PIPELINE_STAGE= ‘0’
PORTOUT_PIPELINE_STAGE= ‘0’

PortADDNSUB

PorA 5 l15 I8 [z
PoriB 7 2 3
PortOut [12 117 113 8

Dynamic Adder/Subtractor with Pipeline Stages at Input Only — In this
mode, input port A and port B are pipelined and then added/subtracted
based on the value of port PotADDnSUB. Because there is no pipeline stage at
the output port, the result immediately changes with respect to the PortADD-
nSUB signal.

Parameters: PORTA_PIPELINE_STAGE= ‘1’
PORTB_PIPELINE_STAGE= ‘1’
PORTOUT_PIPELINE_STAGE= ‘0

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 347

SynCore IP Tool SYNCore Adder/Subtractor Compiler

PortClk | [
PortADDNRSUB

PortA 5 l15 s [13
PortB 17 12 5
PortOut l12 17 1z 3 s

Dynamic Adder/Subtractor with Pipeline Stages at Input and Output - In
this mode, input port A and port B are pipelined and then added/subtracted
based on the value of port PortADDNnSUB. Because the output port is pipelined,
the result is valid only on the second rising edge of the clock.

Parameters: PORTA_PIPELINE_STAGE= ‘1’
PORTB_PIPELINE_STAGE= ‘1’
PORTOUT_PIPELINE_STAGE= ‘1’

PortClk | [
PortADDNRSUB

PorA 5 115 s [z
PorB 17 2 5
PortOut 0 l12 17 I3

Dynamic Adder/Subtractor with a Port Constant

In this mode, a constant value is either added or subtracted from port A
based on input port value PortADDnSUB (the constant value can be passed
though the parameter CONSTANT_VALUE). Optional pipeline stages can also
be inserted at port A, Optionally, pipeline stages can also be added at the
output port. Depending on the pipeline stages, a number of the dynamic
adder/subtractor configurations are given below (here CONSTANT_VALUE=1’).

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
348 Synopsys Confidential Information January 2020

SYNCore Adder/Subtractor Compiler SynCore IP Tool

Dynamic Adder/Subtractor with No Pipeline Registers — In this mode,
dynamic adder/subtractor is a purely combinational, and the output change
immediately with respect to the input.

Parameters: PORTA_PIPELINE_STAGE= ‘0’
PORTOUT_PIPELINE_STAGE= ‘0’

PortADDRSUB
PortA 13 o 5
PortOut 114 10 6 14

Dynamic Adder/Subtractor with Pipeline Stages at Input Only - In this
mode, a constant value is either added or subtracted from the pipelined
version of port A based on the value of port PortADDnSUB. Because there is no
pipeline stage on the output port, the result changes immediately with
respect to the PortADDnSUB signal.

Parameters: PORTA_PIPELINE_STAGE= ‘1’
PORTOUT_PIPELINE_STAGE= ‘0’

PortClk]
PortADDRSUB

PortA 113 l9 5

PortOut 0 114 l10 6 1a

Dynamic Adder/Subtractor with Pipeline Stages at Input and Output - In
this mode, a constant value is either added or subtracted from the pipelined
version of port A based on the value of port PortADDnSUB. Because the output
port is pipelined, the result is valid only on the second rising edge of the
clock.

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 349

SynCore IP Tool SYNCore Adder/Subtractor Compiler

Parameters: PORTA_PIPELINE_STAGE= ‘1’
PORTOUT_PIPELINE_STAGE= ‘1’

PortClk I |] [
PortADDRSUB i

PortA l13 9 5

PortOut 0 l14 l10 4

Dynamic Adder/Subtractor with Carry Input

The following waveform shows the behavior of the dynamic adder/subtractor
with a carry input (the carry input is assumed to be 0).

PortClk | |
8
5

PortA I l13 5 I
PortB |5 la 2 7
PontCarryln |
PortADDNSUB

PortOut 0 I7 I8

Dynamic Adder/Subtractor with Complete Control Signals

The following waveform shows the complete signal set for the dynamic
adder/subtractor. The enable and reset signals are always present in all of
the previous cases.

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
350 Synopsys Confidential Information January 2020

SYNCore Adder/Subtractor Compiler SynCore IP Tool

PortClk | | | | | | | [
PortA (
PorB lo

|

|

|

[

[

[

PortCEA
PortCEB
PortCEOut
FortRSTA
PortRSTB
PortRSTOut
PonCarryln L

PortADDNSUB

PortOut —o I7 I8

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 351

SynCore IP Tool SYNCore Counter Compiler

SYNCore Counter Compiler

The SYNCore counter compiler generates Verilog code for your up, down, and
dynamic (up/down) counter implementation. This section describes the
following:

¢ Functional Overview, on page 352

* Specifying Counters with SYNCore, on page 353
* SYNCore Counter Wizard, on page 359

¢ UP Counter Operation, on page 362

¢ Down Counter Operation, on page 363

* Dynamic Counter Operation, on page 363

Functional Overview

The SYNCore counter component supports up, down, and dynamic
(up/down) counter implementations using DSP blocks or logic elements. For
each configuration, design optimizations are made for optimum use of core
resources.

As its name implies, the COUNTER block counts up (increments) or down
(decrements) by a step value and provides an output result. You can load a
constant or a variable as an intermediate value or base for the counter. Reset
to the counter on the PortRST input is active high and can be can be config-
ured either as synchronous or asynchronous using the RESET_TYPE param-
eter. Count enable on the PortCE input must be value high to enable the
counter to increment or decrement.

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
352 Synopsys Confidential Information January 2020

SYNCore Counter Compiler SynCore IP Tool

Specifying Counters with SYNCore

The SYNCore IP wizard helps you generate Verilog code for your counter
implementation requirements. The following procedure shows you how to
generate Verilog code for a counter using the SYNCore IP wizard.

Note: The SYNCore counter model uses Verilog 2001. When adding a
counter model to a Verilog-95 design, be sure to enable the Verilog
2001 check box on the Verilog tab of the Implementation Options dialog box
or include a set_option -viog_std v2001 statement in your project file to
prevent a syntax error.

1. Start the wizard.

— From the FPGA synthesis tool GUI, select Run->Launch SYNCore or
click the Launch SYNCore icon to start the SYNCore IP wizard.

File List [«]
St | SYNCore Counter Model
El- addnsub
addnsub model The SYMNCore Counter compiler helps you create Counter models for
- counter B your designs. These Counter models are written out in Verilog and
counter_model can be synthesized as well as simulated. Atestbench is generated
£~ fifos for this purpose.
EH- sfifo
sfifo model For more information about the SYMNCore Counter compiler, refer to
= memories the following:
El- byte_enable_ram o))
byte_en_ram_model * The built-in Counter Compiler document, which you access
El- ram from the COUNTER Info button.
ram_model * The Synplicity tool synthesis tool online help, where you can
= rom access information for the following from the online help
rorm_model Contents:

— In the window that opens, select counter_model and click Ok to open
pagel of the wizard.

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 353

SynCore IP Tool SYNCore Counter Compiler

COUNTER Parameters | Core Overview |

Counter Compiler

Comparentame [|

PortClk Directory | | | Browse... |

File Name [] | Browse._. |

— Configure the Counter Parameters ——

Width of Counter | |
FPortCount
COUM
COUNTER Counter Step Vave [|

— Configure the Mode of Counter
® Lip Counter
Down Counter

UpDown Counter

synCore COUNTER [}

| Back || Next Page 1 of 2

2. Specify the parameters you need in the wizard. For details about the
parameters, see Specifying Counter Parameters, on page 358. The
COUNTER symbol on the left reflects any parameters you set.

3. After you have specified all the parameters you need, click the Generate
button in the lower left corner.

The tool displays a confirmation message (TCL execution successful!)
and writes the required files to the directory you specified on page 1 of
the wizard. The HDL code is in Verilog.

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
354 Synopsys Confidential Information January 2020

SYNCore Counter Compiler SynCore IP Tool

The SYNCore wizard also generates a testbench for your counter. The
testbench covers a limited set of vectors. You can now close the wizard.

4. Add the counter you generated to your design.
— Edit the counter files if necessary.

— Use the Add File command to add the Verilog design file that was
generated and the syncore_addnsub.v file to your project. These files are
in the directory for output files that you specified on page 1 of the
wizard.

— Use a text editor to open the instantiation_file.v template file. This file is
located in the same output files directory. Copy the lines that define
the counter and paste them into your top-level module. The following
figure shows a template file (in red text) inserted into a top-level
module.

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 355

SynCore IP Tool SYNCore Counter Compiler

module counter #(
parameter COUNT WIDTH = 5,
parameter STEFR = Z,
parameter RESET TYPE = 0,
parameter LOAD = 2,
parameter MODE = "Dynamic")

{
// Output Ports
output wire [WIDTH-1:0] Count,
// Input Ports
input wire Clock,
input wire Reset,
input wire Up Down,
input wire Load,
input wire [WIDTH-1:0] LoadvValue,
input wire Enable);

SynCoreCounter # (
. COUNT WIDTH (COUNT WIDTH) ,
.STEP (STEP) , N
.RESET TYPE (RESET TYPE),
.TORD (LOAD) ,
MODE (MODE))

) ; termplate
SynCoreCounter insl |

.PortCount (_;ortCount) P

PortClk (PortClock),

.PortRST {PortRST) ,

.PortUp nDown (PortUp nDown) »
PortLoad (PortLoad) ,
PortloadvValus (PortLoadloadvalues)
.PortCE (PortCE)) ;

endmodule

5. Edit the template port connections so that they agree with the port
definitions in your top-level module as shown in the example below (the
updated connection names are shown in red). You can also assign a
unique name to each instantiation. You can also assign a unique name
to each instantiation.

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
356 Synopsys Confidential Information January 2020

SYNCore Counter Compiler

SynCore IP Tool

nodu

p
p
p
p
p

| e counter #(
araneter COUNT_WDTH = 5,
araneter STEP = 2,

aranet er RESET_TYPE = 0,
araneter LOAD = 2,
arameter MCDE = "Dynam c")

(
[/l Qutput Ports

111

output wire [WDTIH 1: 0] Count,
nput Ports

i nput wire d ock,

i nput wire Reset,

i nput wire Up_Down,

i nput wire Load,

input wire [WDTH 1: 0] LoadVal ue,

i nput wire Enable);

SynCor eCount er #(
. COUNT_W DTH(COUNT_W DTH) ,
. STEP(STEP) ,
. RESET_TYPE(RESET_TYPE),
. LOAD(LQAD) ,
. MODE(MCDE))

SynCor eCount er _i ns1 (
. Port Count (Count),
. Portd k(d ock),
. Port RST(Reset),
. Port Up_nDown(Up_Down),
. Port Load(Load),
. Port LoadVal ue(LoadVal ue),
. Port CE(Enabl e)) ;

endnodul e

Port List

The following table lists the port assignments for all possible configurations;
the third column specifies the conditions under which the port is available.

Synplify Pro for Microsemi Edition Reference Manual

January 2020

Synopsys Confidential Information

© 2020 Synopsys, Inc.
357

SynCore IP Tool SYNCore Counter Compiler
Port Name Description Required/Optional
PortCE Count Enable input pin with Always present
size one (active high)
PortClk Primary clock input Always present
PortLoad Load Enable input which Not present for parameter
loads the counter (active high). LOAD=0
PortLoadValue Load value primary input Not present for parameter
(active high) LOAD=0 and LOAD=1
PortRST Reset input which resets the Always present

PortUp_nDown

PortCount

counter (active high)

Primary input which
determines the counter mode.
0 = Up counter

1 = Down counter

Counter primary output

Specifying Counter Parameters

Present only for
MODE="Dynamic”

Always present

The SYNCore counter can be configured for any of the following functions:

© 2020 Synopsys, Inc.

¢ Up Counter
* Down Counter

* Dynamic Up/Down Counter

The counter core can have a constant or variable input load or no load value.
If you are creating a constant-load counter, you will need to select Enable Load
and Load Constant Value on page 2 of the wizard. If you are creating a variable-
load counter, you will need to select Enable Load and Use Variable Port Load on
page 2. The following procedure lists the parameters you need to define when
generating a counter. For descriptions of each parameter, see SYNCore
Counter Wizard, on page 359.

1. Start the SYNCore counter wizard, as described in Specifying Counters
with SYNCore, on page 353.

Synplify Pro for Microsemi Edition Reference Manual
Synopsys Confidential Information January 2020

SYNCore Counter Compiler SynCore IP Tool

2. Enter the following on page 1 of the wizard:

In the Component Name field, specify a name for your counter. Do not
use spaces.

In the Directory field, specify a directory where you want the output
files to be written. Do not use spaces.

In the Filename field, specify a name for the Verilog file that will be
generated with the counter definitions. Do not use spaces.

Enter the width and depth of the counter in the Configure the Counter
Parameters section.

Select the appropriate configuration in the Configure the Mode of Counter
section.

3. Click Next. The wizard opens page 2 where you set parameters for
PortLoad and PortLoadValue.

Select Enable Load option and the required load option in Configure Load
Value section.

Select the required reset type in the Configure Reset type section.

The COUNTER symbol dynamically updates to reflect the parameters you
set.

4. Generate the counter core by clicking Generate button. All output files
are written to the directory you specified on pagel of the wizard.

SYNCore Counter Wizard

The following describe the parameters you can set in the ROM wizard, which
opens when you select counter_model:

* SYNCore Counter Parameters Page 1, on page 360

* SYNCore Counter Parameters Page 2, on page 361

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.

January 2020

Synopsys Confidential Information 359

SynCore IP Tool

SYNCore Counter Compiler

SYNCore Counter Parameters Page 1

Component Mame [up—down_cnunter

Directary [Z: /designs/majiefmanitor

] | Browse, ..

File Mame [udc2

] | Browse. ..

~— Configure the Counter Parameters

width of Counter |16

Counker Step Yalue [1

— onfigure the Mode of Counter

() Up Counter
() Doven Counker

@ UpDown Counter

Component Name

Directory

Filename

© 2020 Synopsys, Inc.
360

Specifies a name for the counter. This is the name that you
instantiate in your design file to create an instance of the
SYNCore counter in your design. Do not use spaces.

Indicates the directory where the generated files will be
stored. Do not use spaces. The following files are created:

* filelist.txt - lists files written out by SYNCore
* options.txt - lists the options selected in SYNCore
¢ readme.txt - contains a brief description and known issues

* syncore_counter.v - Verilog library file required to generate
counter model

* testbench.v - Verilog testbench file for testing the counter
model

* instantiation_file.vin - describes how to instantiate the
wrapper file

¢ component.v - counter model wrapper file generated by
SYNCore

Note that running the wizard in the same directory
overwrites any existing files.

Specifies the name of the generated file containing the HDL
description of the generated counter. Do not use spaces.

Synplify Pro for Microsemi Edition Reference Manual
Synopsys Confidential Information January 2020

SYNCore Counter Compiler SynCore IP Tool

Width of Counter Determines the counter width (the corresponding file
parameter is COUNT_WIDTH=n).

Counter Step Value Determines the counter step value (the corresponding file
parameter is STEP=n).

Up Counter Specifies an up counter (the default) configuration (the
corresponding file parameter is MODE=Up).

Down Counter Specifies an down counter configuration (the
corresponding file parameter is MODE=Down).

UpDown Counter Specifies a dynamic up/down counter configuration (the
corresponding file parameter is MODE=Dynamic).

SYNCore Counter Parameters Page 2

—additional Configurations

~Configure Load options

Enable Load option

Configure Load Yalue

[] Load Constant value

Load Value Far constant lnad option | 1

Use the port PortLoadvValue to load Yalue

~Configure Reset type

(® Synchronous Reset () Asynchronous Reset

Enable Load option Enables the load options

Load Constant Value Load the constant value specified in the Load Value for constant
load option field; (the corresponding file parameter is LOAD=1).

Load Value for The constant value to be loaded.
constant load option

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 361

SynCore IP Tool

SYNCore Counter Compiler

Use the port
PortLoadValue to load
Value

Synchronous Reset

Asynchronous Reset

Loads variable value from PortLoadValue (the corresponding
file parameter is LOAD=2).

Specifies a synchronous (the default) reset input (the
corresponding file parameter is MODE=0).

Specifies an asynchronous reset input (the corresponding
file parameter is MODE=1).

UP Counter Operation

In this mode, the counter is incremented by the step value defined by the
STEP parameter. When reset is asserted (when PostRST is active high), the
counter output is reset to 0. After the assertion of PortCE, the counter starts
counting upwards coincident with the rising edge of the clock. The following
waveform is with a constant STEP value of 5 and no load value.

Parameters:

PorlRST

MODE-= ‘Up’
LOAD= ‘0’

PortClk |
]

PortCE

'PartCount (0

5 110 15 J20 J25 Js0 a5 140 Jas 50 Js5 160 Jes 70 |75 [s0 Jg

Note: Counter core can be configured to use a constant or dynamic
load value in Up Counter mode (for the counter to load the Port-
LoadValue, PortCE must be active). This functionality is explained
in Dynamic Counter Operation, on page 363.

© 2020 Synopsys, Inc.
362

Synplify Pro for Microsemi Edition Reference Manual
Synopsys Confidential Information January 2020

SYNCore Counter Compiler SynCore IP Tool

Down Counter Operation

In this mode, the counter is decremented by the step value defined by the
STEP parameter. When reset is asserted (when PostRST is active high), the
counter output is reset to 0. After the assertion of PortCE, the counter starts
counting downwards coincident with the rising edge of the clock. The
following waveform is with a constant STEP value of 5 and no load value.

Parameters: MODE= ‘Down’
LOAD= ‘0’

PoriClk

PorRST
PoriCE
PotCourt 53 M8 i3 8 13 |8 J3 8 13 B B

Note: Counter core can be configured to use a constant or dynamic
load value in Down Counter mode (for the counter to load the
PortLoadValue, PortCE must be active). This functionality is
explained in Dynamic Counter Operation, on page 363.

Dynamic Counter Operation

In this mode, the counter is incremented or decremented by the step value
defined by the STEP parameter; the count direction (up or down) is controlled
by the PortUp_nDown input (1 = up, O = down).

Dynamic Up/Down Counters with Constant Load Value*

On de-assertion of PortRST, the counter starts counting up or down based on
the PortUp_nDown input value. The following waveform is with STEP value of 5
and a LOAD_VALUE of 80. When PortLoad is asserted, the counter loads the
constant load value on the next active edge of clock and resumes counting in
the specified direction.

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 363

SynCore IP Tool SYNCore Counter Compiler

Parameters: MODE= ‘Dynamic’

PortClk
PortRST
PartlUp_nDown
PortCE
PortLoad
PorCaunt

LOAD= ‘1’

Uy
[

—

5 1o J15 J20 |5 J30 Jeo Jes Joo 185 T100 105 [110 J115 J120 J125 J130 J125 J120

Note: *For counter to load the PortLoadValue, PortCE must be active.

Dynamic Up/Down Counters with Dynamic Load Value*

On de-assertion of PortRST, the counter starts counting up or down based on
the PortUp_nDown input value. The following waveform is with STEP value of 5
and a LOAD_VALUE of 80. When PortLoad is asserted, the counter loads the
constant load value on the next active edge of clock and resumes counting in
the specified direction.

In this mode, the counter counts up or down based on the PortUp_nDown input
value. On the assertion of PortLoad, the counter loads a new PortLoadValue and
resumes up/down counting on the next active clock edge. In this example, a
variable PortLoadValue of 8 is used with a counter STEP value of 5.

Parameters: MODE-= ‘Dynamic’

© 2020 Synopsys, Inc.

364

LOAD= 2’

Synplify Pro for Microsemi Edition Reference Manual
Synopsys Confidential Information January 2020

SYNCore Counter Compiler SynCore IP Tool

PortClk

PorRST l

Portup_nDown |
PorCE
PorLoadValue | |25 I3t

PortLoad
PortCount 05 10 15 20 [265 [260 [265 [270 1275 270 1265 [260 (255 [31 l26 21 116

Note: * For counter to load the PortLoadValue, PortCE should be
active.

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 365

SynCore IP Tool SYNCore Counter Compiler

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
366 Synopsys Confidential Information January 2020

SYNOPSYsS

Silicon to Software

APPENDIX A

Designing with Microsemi

The following topics describe how to design and synthesize with the
Microsemi technology:

* Basic Support for Microsemi Designs, on page 368

* Microsemi Components, on page 373

* Output Files and Forward-annotation for Microsemi, on page 383
* Optimizations for Microsemi Designs, on page 387

* Integration with Microsemi Tools and Flows, on page 396

* Microsemi Device Mapping Options, on page 399

* Microsemi Tcl set_option Command Options, on page 401

* Microsemi Attribute and Directive Summary, on page 404

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 367

Designing with Microsemi Basic Support for Microsemi Designs

Basic Support for Microsemi Designs

This section describes the use of the synthesis tool with Microsemi devices. It
describes

* Microsemi Device-specific Support, on page 368
* Microsemi Features, on page 370

* Synthesis Constraints and Attributes for Microsemi, on page 371

Microsemi Device-specific Support

The synthesis tool creates technology-specific netlists for a number of
Microsemi families of FPGAs. New devices are added on an ongoing basis. For
the most current list of supported devices, check the Device panel of the
Implementation Options dialog box (see Device Panel, on page 346).

Synthesis supports the following technologies:

Low-Power FPGASs
ProASIC3E

Antifuse FPGAs

* Axcelerator

e eX

FPGAs
« IGLOO/e/PLUS

* ProASIC3/e/L

Mixed Signal FPGAs

Fusion

SoC FPGAs

SmartFusion

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
368 Synopsys Confidential Information January 2020

Basic Support for Microsemi Designs Designing with Microsemi

Legacy FPGAs
¢ ACT1, ACT2/1200L, and ACT3

* ProASICPLUS
¢ 3200DX, 40MX, 42MX, 54SX, and 54SXA

After synthesis, the synthesis tool generates EDIF netlists as well as a
constraint file that is forward annotated as input into the Microsemi Libero
tool.

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 369

Designing with Microsemi Basic Support for Microsemi Designs

Customizing Netlist Formats

The following table lists some attributes for customizing your Microsemi
output netlists:

For... Use...

Netlist formatting syn_netlist_hierarchy (Microsemi)
define_global_attribute syn_netlist_hierarchy {0}

Bus specification syn_noarrayports (Microsemi)
define_global_attribute syn_noarrayports {1}

Targeting Output to Your Vendor
You can generate output targeted to your vendor.
1. To specify the output, click the Implementation Options button.
2. Click the Implementation Results tab, and check the output files you need.

The following table summarizes the outputs to set for the different
vendors, and shows the P&R tools for which the output is intended.

Vendor Output Netlist P&R Tool
Microsemi EDIF (. edn or . edf) Libero IDE
*_sdc.sdc

3. To generate mapped Verilog/VHDL netlists and constraint files, check
the appropriate boxes and click OK.

See Specifying Result Options, on page 81 for details about setting the
option.

Microsemi Features

The synthesis tool contains the following Microsemi-specific features:
* Direct mapping to Microsemi c-modules and s-modules

* Timing-driven mapping, replication, and buffering

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
370 Synopsys Confidential Information January 2020

Basic Support for Microsemi Designs Designing with Microsemi

* Inference of counters, adders, and subtractors; module generation
* Automatic use of clock buffers for clocks and reset signals

* Automatic I/O insertion. See I/O Insertion, on page 388 for more infor-
mation.

Synthesis Constraints and Attributes for Microsemi

The synthesis tools let you specify timing constraints, general HDL attributes,
and Microsemi-specific attributes to improve your design. You can manage
the attributes and constraints in the SCOPE interface. Microsemi has
vendor-specific I/O standard constraints it supports for synthesis. For a list
of supported I/O standards, see Microsemi I/O Standards, on page 371.

Microsemi I/O Standards

The following table lists the supported I/O standards for the ProASIC3E,
ProASIC and ProASICPLUS families and Axcelerator family. Some I/O
standards have associated modifiers you can set, such as slew, termination,
drive, power, and Schmitt, which allow the software to infer the correct buffer

types.

ProASIC3E ProASIC, Axcelerator
ProASICPLUS

GTL25 LVCMOS_25 GTL+25
GTL+25 LVCMOS_33 GTL+33
GTL33 LVTTL HSTL_Class_I
GTL+33 PCI33 HSTL_Class_II
HSTL_Class_I LVCMOS_15
HSTL_Class_II LVCMOS_18
LVCMOS_12 LVCMOS_5
LVCMOS_15 LVDS
LVCMOS_18 LVPECL
LVCMOS_33 LVTTL

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.

January 2020 Synopsys Confidential Information 371

Designing with Microsemi Basic Support for Microsemi Designs

ProASIC3E ProASIC, Axcelerator
ProASICPLUS

LVCMOS_5 PCI

LVDS PCIX

LVPECL SSTL_2_Class_I

LVTTL SSTL_2_Class_II

PCI SSTL_3_Class_I

PCIX SSTL_3_Class_II

SSTL_2_Class_I
SSTL_2_Class_II
SSTL_3_Class_I
SSTL_3_Class_II

See Also:

* Industry I/O Standards, on page 239 for a list of industry I/O
standards.

* Microsemi Attribute and Directive Summary, on page 404 for a list of
Microsemi attributes and directives.

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
372 Synopsys Confidential Information January 2020

Microsemi Components Designing with Microsemi

Microsemi Components

The following topics describe how the synthesis tools handle various
Microsemi components, and show you how to work with or manipulate them
during synthesis to get the results you need:

* Macros and Black Boxes in Microsemi Designs, on page 373
* DSP Block Inference, on page 374
* Microsemi RAM Implementations, on page 377

* Instantiating RAMs with SYNCORE, on page 382

Macros and Black Boxes in Microsemi Designs

You can instantiate Smartgen! macros or other Microsemi macros like gates,
counters, flip-flops, or I/Os by using the supplied Microsemi macro libraries
to pre-define the Microsemi macro black boxes. For certain technologies, the
following macros are also supported:

¢ SIMBUF Macro

* MATH18X18 Block
For general information on instantiating black boxes, see Instantiating Black
Boxes in VHDL, on page 371, and Instantiating Black Boxes in Verilog, on

page 104. For specific procedures about instantiating macros and black

boxes and using Microsemi black boxes, see the following sections in the User
Guide:

* Defining Black Boxes for Synthesis, on page 378

* Using Smartgen Macros, on page 398

1. Smartgen macros now replace the ACTgen macros. ACTgen macros were available in the
previous Designer 6.x place-and-route tool.

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 373

Designing with Microsemi Microsemi Components

SIMBUF Macro

The synthesis software supports instantiation of the SIMBUF macro. The
SIMBUF macro provides the flexibility to probe signals without using physical
locations, such as possible from the Identify tool. The Resource Summary will
report the number of SIMBUF instantiations in the lO Tile section of the log
file.

SIMBUF macros are supported for ProASIC3E devices.

MATH18X18 Block

The synthesis software supports instantiation of the MATH18X18 block. The
MATH18X18 block is useful for mapping arithmetic functions for RTAXSDSP
devices.

DSP Block Inference

This feature allows the synthesis tools to infer DSP or MATH18x18 blocks for
Axcelerator RTAX2000D and RTAX4000D devices only. The following struc-
tures are supported:

* Multipliers
* Mult-adds — Multiplier followed by an Adder
* Mult-subs — Multiplier followed by a Subtractor

* Wide multiplier inference

A multiplier is treated as wide, if any of its inputs is larger than 18 bits
signed or 17 bits unsigned. The multiplier can be configured with only
one input that is wide, or else both inputs are wide. Depending on the
number of wide inputs for signed or unsigned multipliers, the synthesis
software uses the cascade feature to determine how many math blocks
to use and the number of Shift functions it needs.

* MATH block inferencing across hierarchy

This enhancement to MATH block inferencing allows packing input
registers, output registers, and any adders or subtractors into different
hierarchies. This helps to improve QoR by packing logic more efficiently
into MATH blocks.

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
374 Synopsys Confidential Information January 2020

Microsemi Components Designing with Microsemi

By default, the synthesis software maps the multiplier to DSP blocks if all
inputs to the multiplier are more than 2-bits wide; otherwise, the multiplier is
mapped to logic. You can override this default behavior using the syn_multstyle
attribute. See syn_multstyle, on page 71 for details.

The following conditions also apply:
* Signed and unsigned multiplier inferencing is supported.

* Registers at inputs and outputs of multiplier/multiplier-adder/multi-
plier-subtractor are packed into DSP blocks.

* Synthesis software fractures multipliers larger than 18X18 (signed) and
17X17 (unsigned) into smaller multipliers and packs them into DSP
blocks.

* When multadd/multsub are fractured, the final adder/subtractor are
packed into logic.

DSP Cascade Chain Inference

The MATH18x18 block cascade feature supports the implementation of
multi-input Mult-Add/Sub for devices with MATH blocks. The software packs
logic into MATH blocks efficiently using hard-wired cascade paths, which
improves the QoR for the design.

Prerequisites include the following requirements:

* The input size for multipliers is not greater than 18x18 bits (signed) and
17x17 bits (unsigned).

* Signed multipliers have the proper sign-extension.
* All multiplier output bits feed the adder.

* Multiplier inputs and outputs can be registered or not.

Multiplier-Accumulators (MACs) Inference

The Multiplier-Accumulator structures use internal paths for adder feedback
loops inside the MATH18x18 block instead of connecting it externally.

Prerequisites include the following requirements:

* The input size for multipliers is not greater than 18x18 bits (signed) and
17x17 bits (unsigned).

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 375

Designing with Microsemi Microsemi Components

* Signed multipliers have the proper sign-extension.
¢ All multiplier output bits feed the adder.
* The output of the adder must be registered.

* The registered output of the adder feeds back to the adder for accumula-
tion.

* Since the Microsemi MATH block contains one multiplier, only Multi-

plier-Accumulator structures with one multiplier can be packed inside
the MATH block.

The other Multiplier-Accumulator structure supported is with Synchronous
Loadable Register.

Prerequisites include the following requirements:
* All the requirements mentioned above apply for this structure as well.

¢ For the Loading Multiplier-Accumulator structure, new Load data
should be passed to input C.

* The LoadEn signal should be registered.

DSP Limitations

Currently, DSP inferencing does not support the following functions:
¢ SIMD mode
* Overflow extraction
* Arithmetic right shift for operand C
* Dynamic Mult-AddSub

Note: For more information about Microsemi DSP math blocks along
with a comprehensive set of examples, see the Inferring Microsemi
RTAX-DSP MATH Blocks application note on SolvNet.

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
376 Synopsys Confidential Information January 2020

Microsemi Components Designing with Microsemi

Microsemi RAM Implementations

Refer to the following topics for Microsemi RAM implementations:
* ProASIC (500K) and ProASICPLUS (PA)
* ProASIC3E
* ProASIC (500K) and ProASICPLUS (PA)

* Axcelerator

RAM Read Enable Extraction

RAM Read Enable extraction currently supports RAMs for output registers,
with an enable. This feature is available for ProASIC3E and Axcelerator
devices only.

The following example contains a RAM with read enable.
“timescal e 100 ps/ 100 ps
/* Synchronous wite and read RAM */

nodul e test (dout, addr, din, we, clk, ren);

paraneter data width = 8;
par aneter address wi dth = 4;
paraneter ramsize = 16;

output [data w dth-1:0] dout;

i nput [data width-1:0] din;

i nput [address_wi dth-1:0] addr;
i nput we, clk, ren;

reg [data width-1:0] nem[ramsize-1:0];
reg [data width-1:0] dout;

al ways @posedge cl k) begin
i f(we)
nmenj addr] <= din;

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 377

Designing with Microsemi

Microsemi Components

© 2020 Synopsys, Inc.

if (ren)
dout = menjaddr];
end
endnodul e
rarml
RADDRED]
O] == DATAR) e .
(B0 =y WADDRED] DOUTLZO) =4 _._grm] LAy (7] =
W E]
Lok === ELK dout[7:0]
merr{7:0]
ren
ProASIC3E

The synthesis software extracts single-port and dual-port versions of the
following RAM configurations:

RAM4K9
RAM512X18

Synchronous write, synchronous read, transparent output

Synchronous write, synchronous read, registered output

The architecture of the inferred RAM for the ProASIC3E can be registers,
block_ram, rw_check, or no_rw_check. You set these values in the SCOPE
interface using the syn_ramstyle attribute.

The following is an example of the RAM4K9 configuration:
library ieee;
use ieee.std_| ogic_1164.all;
use ieee.std_| ogi c_signed. al |

entity ranmest is

port (q : out std_logic vector(9 downto 0);
d: in std_|ogic vector(9 downto 0);
addr in std | ogic _vector(9 downto 0);

Synplify Pro for Microsemi Edition Reference Manual
Synopsys Confidential Information January 2020

Microsemi Components Designing with Microsemi

we : in std_|ogic;
clk : in std_logic);
end rantest;

architecture rtl of ramtest is
type nemtype is array (1023 downto 0) of std |ogic_vector (9
downto 0);

signal mem: nmemtype
signal read_addr : std_|ogic_vector(9 dowto 0);

begi n
g <= nen{conv_integer(read_addr));

process (clk) begin
if rising_edge(clk) then
if (we ="1) then
read_addr <= addr;
men(conv_i nteger (read_addr)) <= d;

end if;
end if;
end process;
end rtl;
o =
[addr2 Of Qf N
e E S o e T
read_addr[9: 0]
IEERY) -
rmer 9.0]

The following is an example of the RAM512X18 configuration:

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 379

Designing with Microsemi Microsemi Components

library ieee;
use ieee.std logic_1164.all;
use ieee.std | ogic_signed. all

entity rantest is
port (q : out std_|ogic_vector(3 downto 0);

d: in std_logic vector(3 downto 0);
addr : in std_|logic_vector(2 dowto 0);
we : in std_|ogic;

clk : in std_|logic);
end rantest;

architecture rtl of rantest is
type memtype is array (7 downto 0) of std |ogic_vector (3 downto
0);

signal mem: nemtype
signal read_addr : std_logic_vector(2 dowto 0);

begi n
g <= nen{conv_integer(read_addr));

process (clk) begin
if rising_edge(clk) then
if (we ="1) then
read_addr <= addr;
men(conv_i nteger (read_addr)) <= d;
end if;
end if;
end process;

end rtl;

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
380 Synopsys Confidential Information January 2020

Microsemi Components

Designing with Microsemi

| R

[

=l

m
i

read_addr2: 0]

L=

memi 0]

Synplify Pro for Microsemi Edition Reference Manual

January 2020

Synopsys Confidential Information

- :3('

© 2020 Synopsys, Inc.
381

Designing with Microsemi Microsemi Components

ProASIC (500K) and ProASICPLUS (PA)

The synthesis software extracts single-port and dual-port versions of the
following RAM configurations:

SA Synchronous write, asynchronous read
SST Synchronous write, synchronous read, transparent output
SSR Synchronous write, synchronous read, registered output

Axcelerator

The synthesis software extracts single-port and dual-port versions of the
following RAM configurations. The memory blocks operate in synchronous
mode for both read and write operations. There are two read modes and one
write mode:

Read Nonpipelined Synchronous — one clock edge
Read Pipelined Synchronous — two clock edges
Write Synchronous — one clock edge

The architecture of the inferred RAM for the Axcelerator device can be
registers, block_ram rw_check, or no_rw_check. You set these values in the SCOPE
interface using the syn_ramstyle attribute.

Instantiating RAMs with SYNCORE

The SYNCORE Memory Compiler is available under the IP Wizard to help you
generate HDL code for your specific RAM implementation requirements. For

information on using the SYNCORE Memory Compiler, see Specifying RAMs

with SYNCore, on page 275 in the User Guide.

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
382 Synopsys Confidential Information January 2020

Output Files and Forward-annotation for Microsemi Designing with Microsemi

Output Files and Forward-annotation for
Microsemi

After synthesis, the software generates a log file and output files for
Microsemi. The following describe some of the reports with Microsemi-specific
information, or files that forward-annotate information for the Microsemi P&R
tools.

* Forward-annotating Constraints for Placement and Routing, on
page 383

* Synthesis Reports, on page 384
* Specifying Pin Locations, on page 385
* Specifying Locations for Microsemi Bus Ports, on page 385

* Specifying Macro and Register Placement, on page 386

Forward-annotating Constraints for Placement and Routing

For Microsemi Axcelerator, ProASIC (500K), ProASICPLUS (PA), and
ProASIC3E technology families, the synthesis tool forward-annotates timing
constraints to placement and routing through an Microsemi constraint
(flename_sdc. sdc) file. These timing constraints include clock period, max
delay, multiple-cycle paths, input and output delay, and false paths. During
synthesis, the Microsemi constraint file is generated using synthesis tool
attributes and constraints.

By default, Microsemi constraint files are generated. You can disable this
feature in the Project view. To do this, bring up the Implementation Options
dialog box (Project -> Implementation Options), then, on the Implementation Results
panel, disable Write Vendor Constraint File.

Forward-annotated Constraints

The constraint file generated for Microsemi’s place-and-route tools has an
_sdc.sdc file extension. Constraints files that properly specify either
Synplify-style timing constraints or Synopsys SDC timing constraints can be
forward annotated to support the Microsemi P&R tool.

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 383

Designing with Microsemi

Output Files and Forward-annotation for Microsemi

Synthesis

create clock

set_max_delay

set_multicycle_path

set_false path

Synthesis Reports

Microsemi

create_clock
The create_clock constraint is allowed for all NGT families.
No wildcards are accepted. The pin or port must exist in
the design.

The -name argument is not supported as that would
define a virtual clock. However, for backward
compatibility, a -name argument does not generate an
error or warning when encountered in a .fdc file.

set_max_delay

The set_max_delay constraint is allowed for all NGT
families, however, it will not drive ProASIC (500K) TDPR
because of conversion issues to GCF (the whole path is
needed in GCF, not the start and end point). Wildcards
are accepted.

set_multicycle_path

You must specify at least one of the -from or -to
arguments, however, it is best to specify both. Wildcards
are accepted.

Multicycle constraints with -from and/or -to arguments
only are supported for Microsemi Axcelerator, ProASIC,
ProASICPLUS and ProASIC3E technologies. Multicycle
constraints with a -through argument are not supported
for any NGT family.

set_false_path

Only false path constraints with a -through argument are
supported for NGT families. However, it might not drive
ProASIC (500K) TDPR because of conversion issues to
GCF (some non supported objects). False path
constraints with either -from and/or -to arguments are
not supported for any NGT family. Wildcards are
accepted.

The synthesis tool generates a resource usage report, a timing report, and a
net buffering report for the Microsemi designs that you synthesize.To view the
synthesis reports, click View Log.

© 2020 Synopsys, Inc.
384

Synplify Pro for Microsemi Edition Reference Manual
Synopsys Confidential Information January 2020

Output Files and Forward-annotation for Microsemi Designing with Microsemi

Specifying Pin Locations

In certain technologies you can specify pin locations that are forward-
annotated to the corresponding place-and-route tool. The following procedure
shows you how to specify the appropriate attributes. For information about
other placement properties, see Specifying Macro and Register Placement, on
page 386.

1. Start with a design using one of the following vendors and technologies:
Microsemi families.

2. Add the appropriate attribute to the port. For a bus, list all the bus pins,
separated by commas. To specify Microsemi bus port locations, see
Specifying Locations for Microsemi Bus Ports, on page 385.

— To add the attribute from the SCOPE interface, click the Attributes tab
and specify the appropriate attribute and value.

— To add the attribute in the source files, use the appropriate attribute
and syntax. See the Reference Manual for syntax details.

Family Attribute and Value
Microsemi syn_l oc {pi n_nunber}
or

al spi n {pi n_nunber}

Specifying Locations for Microsemi Bus Ports

You can specify pin locations for Microsemi bus ports. To assign pin numbers
to a bus port, or to a single- or multiple-bit slice of a bus port, do the
following:

1. Open the constraint file an add these attributes to the design.

2. Specify the syn_noarrayports attribute globally to bit blast all bus ports in
the design.

define_global _attribute syn_noarrayports {1};

3. Use the alspin attribute to specify pin locations for individual bus bits.
This example shows locations specified for individual bits of bus
ADDRESSO.

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 385

Designing with Microsemi Output Files and Forward-annotation for Microsemi

define_attribute {ADDRESSO[4]} al spin {26}
define attribute {ADDRESSO[3]} al spin {30}
define attribute {ADDRESSO[2]} al spin {33}
define attribute {ADDRESSO[1]} al spin {38}
define_ attribute {ADDRESSO[O0]} al spin {40}

The software forward-annotates these pin locations to the place-and-
route software.

Specifying Macro and Register Placement

You can use attributes to specify macro and register placement in Microsemi
designs. The information here supplements the pin placement information
described in Specifying Pin Locations, on page 385 and bus pin placement
information described in Specifying Locations for Microsemi Bus Ports, on
page 385.

For... Use...
Relative placement of Microsemi alsloc, on page 8
macros and IP blocks define_attribute {u1} alsloc {R15C6}
© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual

386

Synopsys Confidential Information January 2020

Optimizations for Microsemi Designs Designing with Microsemi

Optimizations for Microsemi Designs

The synthesis tools offer various optimizations for Microsemi designs. The
following describe the optimizations in more detail:

The syn_maxfan Attribute in Microsemi Designs, on page 387
Promote Global Buffer Threshold, on page 388

I/O Insertion, on page 388

Number of Critical Paths, on page 389

Retiming, on page 389

Update Compile Point Timing Data Option, on page 389
Operating Condition Device Option, on page 391
Radiation-tolerant Applications, on page 393

The syn_maxfan Attribute in Microsemi Designs

The syn_maxfan attribute is used to control the maximum fanout of the design,
or an instance, net, or port. The limit specified by this attribute is treated as a
hard or soft limit depending on where it is specified. The following rules
described the behavior:

Global fanout limits are usually specified with the fanout guide options
(Project->Implementation Options->Device), but you can also use the
syn_maxfan attribute on a top-level module or view to set a global soft
limit. This limit may not be honored if the limit degrades performance.
To set a global hard limit, you must use the Hard Limit to Fanout option.

A syn_maxfan attribute can be applied locally to a module or view. In this
case, the limit specified is treated as a soft limit for the scope of the
module. This limit overrides any global fanout limits for the scope of the
module.

When a syn_maxfan attribute is specified on an instance that is not of
primitive type inferred by Synopsys FPGA compiler, the limit is consid-
ered a soft limit which is propagated down the hierarchy. This attribute
overrides any global fanout limits.

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 387

Designing with Microsemi Optimizations for Microsemi Designs

* When a syn_maxfan attribute is specified on a port, net, or register (or any
primitive instance), the limit is considered a hard limit. This attribute
overrides any other global fanout limits. Note that the syn_maxfan attri-
bute does not prevent the instance from being optimized away and that
design rule violations resulting from buffering or replication are the
responsibility of the user.

Promote Global Buffer Threshold

The Promote Global Buffer Threshold option is for the ProASIC3E technology
families only. This option is for both ports and nets.

The Tcl command equivalent is set_option -globalthreshold value, where the value
refers to the minimum number of fanout loads. The default value is 1.

Only signals with fanout loads larger than the defined value are promoted to
global signals. The synthesis tool assigns the available global buffers to drive
these signals using the following priority:

1. Clock
2. Asynchronous set/reset signal

3. Enable, data

/0O Insertion

The Synopsys FPGA synthesis tool inserts I/O pads for inputs, outputs, and
bidirectionals in the output netlist unless you disable I/O insertion. You can
control I/O insertion with the Disable I/O Insertion option (Project->Implementation
Options->Device).

If you do not want to automatically insert any I/O pads, check the Disable I/O
Insertion box (Project->Implementation Options->Device). This is useful to see how
much area your blocks of logic take up, before synthesizing an entire FPGA. If
you disable automatic I/O insertion, you will not get any I/O pads in your
design unless you manually instantiate them yourself.

If you disable I/O insertion, you can instantiate the Microsemi I/O pads you
need directly. If you manually insert I/O pads, you only insert them for the
pins that require them.

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
388 Synopsys Confidential Information January 2020

Optimizations for Microsemi Designs Designing with Microsemi

Number of Critical Paths

The Max number of critical paths in SDF option (Project->Implementation Options->
Device) is only available for the ProASIC (500K), ProASICPLUS (PA) and
ProASIC3E technology families. It lets you set the maximum number of
critical paths in a forward-annotated constraint file (sdf). The sdf file displays
a prioritized list of the worst-case paths in a design. Microsemi Designer
prioritizes routing to ensure that the worst-case paths are routed efficiently.

The default value for the number of critical paths that are forward-annotated
is 4000. Various design characteristics affect this number, so experiment
with a range of values to achieve the best circuit performance possible.

Retiming

Retiming is the process of automatically moving registers (register balancing)
across combinational gates to improve timing, while ensuring identical logic

behavior. Currently, retiming is available for the Axcelerator, ProASIC (500K),
ProASICPLUS (PA), and ProASIC3E technology families.

You enable/disable global retiming with the Retiming device mapping option
(Project view or Device panel). You can use the syn_allow_retiming attribute to
enable or disable retiming for individual flip-flops. See syn_allow_retiming, on
page 27 and the Synplify User Guide for more information.

Update Compile Point Timing Data Option

In ProASIC (500K), ProASICFLUS (PA) and ProASIC3E designs, the Synopsys
FPGA compile-point synthesis flow lets you break down a design into smaller
synthesis units, called compile points, making incremental synthesis
possible. See Synthesizing Compile Points, on page 452 in the User Guide.

The Update Compile Point Timing Data option controls whether or not changes to a
locked compile point force remapping of its parents, taking into account the
new timing model of the child.

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 389

Designing with Microsemi Optimizations for Microsemi Designs

Note: To simplify this description, the term child is used here to refer to
a compile point that is contained inside another; the term parent
is used to refer to the compile point that contains the child.
These terms are thus not used here in their strict sense of direct,
immediate containment: If a compile point A is nested in B,
which is nested in C, then A and B are both considered children
of C, and C is a parent of both A and B. The top level is consid-
ered the parent of all compile points.

Disabled

When the Update Compile Point Timing Data option is disabled (the default), only
(locked) compile points that have changed are remapped, and their
remapping does not take into account changes in the timing models of any of
their children. The old (pre-change) timing model of a child is used, instead,
to map and optimize its parents.

An exceptional case occurs when the option is disabled and the interface of a
locked compile point is changed. Such a change requires that the immediate
parent of the compile point be changed accordingly, so both are remapped. In
this exceptional case, however, the updated timing model (not the old model)
of the child is used when remapping this parent.

Enabled

When the Update Compile Point Timing Data option is enabled, locked compile-
point changes are taken into account by updating the timing model of the
compile point and resynthesizing all of its parents (at all levels), using the
updated model. This includes any compile point changes that took place prior
to enabling this option, and which have not yet been taken into account
(because the option was disabled).

The timing model of a compile point is updated when either of the following is
true:

* The compile point is remapped, and the Update Compile Point Timing Data
option is enabled.

* The interface of the compile point is changed.

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
390 Synopsys Confidential Information January 2020

Optimizations for Microsemi Designs Designing with Microsemi

Operating Condition Device Option

You can specify an operating condition for certain Microsemi technologies:
* ProASIC (500K)
* ProASICFLUS (PA)ProASIC3E

* Axcelerator

Different operating conditions cause differences in device performance. The
operating condition affects the following:

* optimization, if you have timing constraints
* timing analysis
* timing reports

To set an operating condition, select the value for Operating Conditions from the
menu on the Device tab of the Implementation Options dialog box.

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 391

Designing with Microsemi Optimizations for Microsemi Designs

Device Mapping Options
Cptian Yalue
Annotated Properties For Analyst
Fanout Guide 1z
Promote Global Buffer Threshold 50
Hard lirnit ko Fanout [
Disable I/O Insartian [
Retiming [
Max number of critical paths in SDF 4000
Cperating Conditions Default -
Update Compile Point Timing Data =
COMWC-2
Conservative Reqgister Optimization COMWE-1
COMWCSTD
COMWC-F
COMTC-2
— Cption Descripkion EngS%I'D
COMTC-F -
Click, on an option For description COMBC-2 E

To set an operating condition in a project or Tcl file, use the command:
set_option -opcond value

where value can be specified like the following typical operating conditions:

Default Typical timing
MIL-WC Worst-case Military timing
MIL-TC Typical-case Military timing
MIL-BC Best-case Military timing
Automotive-WC Worst-case Automotive timing
© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual

392 Synopsys Confidential Information January 2020

Optimizations for Microsemi Designs Designing with Microsemi

For Example

The Microsemi operating condition can contain any of the following specifica-
tions:

* MIL—military

* COM—commercial
* IND—Industrial

* TGradel

* TGrade2

as well as, include one of the following designations:
* WC—worst case
* BC—best case
* TC—typical case

For specific operating condition values for your required technology, see the
Device tab on the Implementation Options dialog box.

Even when a particular operating condition is valid for a family, it may not be
applicable to every part/package/speed-grade combination in that family.
Consult Microsemi's documentation or software for information on valid
combinations and more information on the meaning of each operating
condition.

Radiation-tolerant Applications

You can specify the radiation-resistant design technique to use on an object
for a design with the syn_radhardlevel attribute. This attribute can be applied to
a module/architecture or a register output signal (inferred register in VHDL),
and is used in conjunction with the Microsemi macro files supplied with the
software.

Values for syn_radhardlevel are as follows:

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 393

Designing with Microsemi Optimizations for Microsemi Designs

Value Description
none Standard design techniques are used.

cc Combinational cells with feedback are used to implement storage rather
than flip-flop or latch primitives.

tmr Triple module redundancy or triple voting is used to implement registers.
Each register is implemented by three flip-flops or latches that “vote” to
determine the state of the register.

tmr_cc Triple module redundancy is used where each voting register is composed
of combinational cells with feedback rather than flip-flop or latch primitives

Working with Radhard Designs

The following procedure outlines how to specify radhard values for a design
with the syn_radhardlevel attribute. Remember that the attribute is not recur-
sive. It only applies to all registers at the level where it is set and does not
affect lower-level registers.

You specify radhard values in modules and architecture in both the Attri-
butes panel in SCOPE and in the source code. However, for registers, it must
be specified in the source code only.

1. Add to your project the Microsemi macro files appropriate to the radhard
values you plan to set in the design. The macro files are in
installDirectory/ lib/ microsemi:

Radhard Value Verilog Macro File VHDL Macro File
cc cc.v cc.vhd

tmr tmr.v tmr.vhd

tmr_cc tmr_cc.v tmr_cc.vhd

For ProASIC3E devices only, you do not need to add the Microsemi
macro file to your project.
2. To set a global or default syn_radhardlevel attribute, do the following:

— Set the value in the source file for the module. The following sets all
registers of module_b to tmr:

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
394 Synopsys Confidential Information January 2020

Optimizations for Microsemi Designs Designing with Microsemi

VHDL Verilog

library synplify; nmodul e nodul e_b (a, b, sub,
use synplify.attributes.all; clk, rst) /*synthesis
attribute syn_radhardl evel of syn_radhardl evel ="tnmr"*/;

behav: architecture is "tm";

— Make sure that the corresponding Microsemi macro file (see step 1) is
the first file listed in the project, if required.

3. To set a syn_radhardlevel value on a per register basis, set it in the source
file. You can use a register-level attribute to override a default value with
another value, or set it to a value of none, so that the global default value
is not applied to the register. To set the value in the source file, add the
attribute to the register. For example, to set the value of register bl_int to
tmr, enter the following in the module source file:

VHDL Verilog

library synplify; reg [15:0] al_int, bl int

use synplify.attributes.all; / *synt hesi s syn_radhardl evel
attribute syn _radhardl evel of ="tm"*/;

bl int: signal is "tnr"

For details, see:

* syn_radhardlevel, on page 101

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 395

Designing with Microsemi Integration with Microsemi Tools and Flows

Integration with Microsemi Tools and Flows

The following describe how the synthesis tools support various tools and
flows for Microsemi designs:

* Compile Point Synthesis, on page 396
* Using Predefined Microsemi Black Boxes, on page 397
¢ Using Smartgen Macros, on page 398

* Microsemi Place-and-Route Tools, on page 399

Compile Point Synthesis

Compile-point synthesis is available for the Synplify Pro tool and only for the
Microsemi Axcelerator, ProASIC (500K), ProASICPLUS (PA), and ProASIC3E
technology families. The compile-point synthesis flow lets you achieve incre-
mental design and synthesis without having to write and maintain sets of
complex, error-prone scripts to direct synthesis and keep track of design
dependencies. See Synthesizing Compile Points, on page 452 for a
description, and Working with Compile Points, on page 433 in the User Guide
for a step-by-step explanation of the compile-point synthesis flow.

In device technologies that can take advantage of compile points, you break
down your design into smaller synthesis units or compile points, in order to
make incremental synthesis possible. A compile point is a module that is
treated as a block for incremental mapping: When your design is resynthe-
sized, compile points that have already been synthesized are not resynthe-
sized, unless you have changed:

* the HDL source code in such a way that the design logic is changed,
* the constraints applied to the compile points, or
* the device mapping options used in the design.
(For details on the conditions that necessitate resynthesis of a compile point,

see Compile Point Basics, on page 434, and Update Compile Point Timing
Data Option, on page 389.)

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
396 Synopsys Confidential Information January 2020

Integration with Microsemi Tools and Flows Designing with Microsemi

Using Predefined Microsemi Black Boxes

The Microsemi macro libraries contain predefined black boxes for Microsemi
macros so that you can manually instantiate them in your design. For infor-
mation about using ACTGen macros, see Using Smartgen Macros, on

page 398. For general information about working with black boxes, see
Defining Black Boxes for Synthesis, on page 378.

To instantiate an Microsemi macro, use the following procedure.

1. Locate the Microsemi macro library file appropriate to your technology
and language (v or vhd) in one of these subdirectories under
installDirectory/ lib.
proasic ProASIC (PA), ProASICPLUS ProASIC3E

microsemi Macros for all other Microsemi technologies.

Use the macro file that corresponds to your target architecture. If you
are targeting the 1200XL architecture, use the act2.v or act2.vhd macro
library.

2. Add the Microsemi macro library at the top of the source file list for your
synthesis project. Make sure that the library file is first in the list.

3. For VHDL, also add the appropriate library and use clauses to the top of
the files that instantiate the macros:

library family;
use family.components.all ;

Specify the appropriate technology in family.

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 397

Designing with Microsemi Integration with Microsemi Tools and Flows

Using Smartgen! Macros

The following procedure shows you how to include Smartgen macros in your
design. For information about using Microsemi macro libraries, see Using
Predefined Microsemi Black Boxes, on page 397. For general information
about working with black boxes, see Defining Black Boxes for Synthesis, on
page 378.

1. In Smartgen, generate the function you want to include.

2. For Verilog macros, do the following:

— Include the appropriate Microsemi macro library file for your target
architecture in your the source files list for your project.

— Include the Verilog version of the Smartgen result in your source file
list. Make sure that the Microsemi macro library is first in the source
files list, followed by the Smartgen Verilog files, followed by the other
source files.

3. Synthesize your design as usual.

1. Smartgen macros now replace the ACTgen macros. ACTgen macros were available in the
previous Designer 6.x place-and-route tool.

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
398 Synopsys Confidential Information January 2020

Microsemi Device Mapping Options Designing with Microsemi

Microsemi Place-and-Route Tools

You can run place and route automatically after synthesis. For details on how
to set options, see Running P&R Automatically after Synthesis, on page 542 in
the User Guide.

For details about the place-and-route tools, refer to the Microsemi documen-
tation.

Microsemi Device Mapping Options

You select device mapping options for Microsemi technologies, select Project ->
Implementation Options->Device and set the options.

Option For details, see...

Conservative Register Optimization See the Microsemi Tcl set_option
Command Options, on page 401 for
more information about the
preserve_registers option.

Disable I/O Insertion I/O Insertion, on page 388.

Fanout Guide Setting Fanout Limits, on page 415 of the
User Guide and The syn_maxfan
Attribute in Microsemi Designs, on
page 387.

Hard Limit to Fanout Setting Fanout Limits, on page 415 of the
User Guide and The syn_maxfan
Attribute in Microsemi Designs, on
page 387.

Max number of critical paths in SDF Number of Critical Paths, on page 389.
(certain technologies)

Operating Conditions (certain technologies) Operating Condition Device Option, on
page 391

Promote Global Buffer Threshold Controlling Buffering and Replication,
on page 417 of the User Guide and
Promote Global Buffer Threshold, on
page 388.

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 399

Designing with Microsemi

Microsemi Device Mapping Options

Option
Read Write Check on RAM

Retiming

Resolve Mixed Drivers

Update Compile point Timing Data

© 2020 Synopsys, Inc.

400 Synopsys Confidential Information

For details, see...

Lets the synthesis tool insert bypass logic
around the RAM to prevent a simulation
mismatch between the RTL and post-
synthesis simulations. The synthesis
software globally inserts bypass logic
around the RAM that read and write to
the same address simultaneously.
Disable this option, when you cannot
simultaneously read and write to the
same RAM location and want to minimize
overhead logic.

For details about using this option in
conjunction with the syn_ramstyle
attribute, see syn_ramstyle, on page 106.

Retiming, on page 402 of the User Guide
and Retiming, on page 389.

When a net is driven by a VCC or GND
and active drivers, enable this option to
connect the net to the VCC or GND driver.

Update Compile Point Timing Data
Option, on page 389

Synplify Pro for Microsemi Edition Reference Manual
January 2020

Microsemi Tcl set_option Command Options Designing with Microsemi

Microsemi Tcl set_option Command
Options

You can use the set_option Tcl command to specify the same device mapping
options as are available through the Implementation Options dialog box displayed
in the Project view with Project -> Implementation Options (see Implementation
Options Command, on page 345).

This section describes the Microsemi-specific set_option Tcl command options.
These include the target technology, device architecture, and synthesis
styles.

The table below provides information on specific options for Microsemi archi-
tectures. For a complete list of options for this command, refer to set_option,
on page 112. You cannot specify a package (-package option) for some
Microsemi technologies in the synthesis tool environment. You must use the
Microsemi back-end tool for this.

Option Description

-technology keyword Sets the target technology for the implementation.
Keyword must be one of the following Microsemi
architecture names:

3200DX, 40MX, 42MX, 500K, 54SX, 54SXA, ACT1,
ACT2, ACT3, AXCELERATOR, EX, PA, and
ProASIC3E.

For the 1200XL architecture, use ACT2.

-part part_name Specifies a part for the implementation. Refer to the
Implementation Options dialog box for available choices.

-package package_name Specifies the package. Refer to Project-> Implementation
Options->Device for available choices.

-speed_grade value Sets the speed grade for the implementation. Refer to
the Implementation Options dialog box for available
choices. This option is not supported by the ProASIC
(500K) technology.

-disable_io_insertion1 | 0 Prevents (1) or allows (0) insertion of I/O pads during
synthesis. The default value is false (enable I/0 pad
insertion). For additional information about disabling
I/0 pads, see I/O Insertion, on page 388.

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 401

Designing with Microsemi Microsemi Tcl set_option Command Options

Option Description

-fanout_guide value Sets the fanout limit guideline for the current project.
If you want to set a hard limit, you must also set the
-maxfan_hard option to true. For more information
about fanout limits, see The syn_maxfan Attribute in
Microsemi Designs, on page 387.

-globalthreshold value Sets the minimum fanout load value. This option
applies only to the ProASIC3E technologies. For more
information, see Promote Global Buffer Threshold, on
page 388.

-maxfan_hard 1 Specifies that the specified -fanout_guide value is a
hard fanout limit that the synthesis tool must not
exceed. To set a guideline limit, see the -fanout_guide
option. For more information about fanout limits, see
The syn_maxfan Attribute in Microsemi Designs, on
page 387.

-opcond value Sets the operating condition for device performance in
the areas of optimization, timing analysis, and timing
reports. This option applies only to the ProASIC
(500K), ProASICFLUS (PA), and ProASIC3E
technologies. Values are Default, MIL-WC, IND-WC,
COM-WC, and Automotive-WC. See Operating
Condition Device Option, on page 391 for more
information.

-preserve_registers 1|0 When enabled, the software uses less restrictive
register optimizations during synthesis if area is not
as great a concern for your device. The default for this
option is disabled (0).

-resolve_multiple_driver When a net is driven by a VCC or GND and active
110 drivers, enable this option to connect the net to the
VCC or GND driver.

-report_path value Sets the maximum number of critical paths in a
forward-annotated SDF constraint file. This option
applies only to the ProASIC (500K), ProASICFLUS (PA),
and ProASIC3E technologies. For information about
setting critical paths, see Number of Critical Paths,
on page 389.

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
402 Synopsys Confidential Information January 2020

Microsemi Tcl set_option Command Options Designing with Microsemi

Option Description

-retiming1 | 0 When enabled (1), registers may be moved into
combinational logic to improve performance. The
default value is O (disabled). This option is only
available for the Axcelerator, ProASIC (S00K),
ProASICFLUS (PA), and ProASIC3E technologies. For
additional information about retiming, see Retiming,
on page 389

-RWCheckOnRam 1| 0 If read or write conflicts exist for the RAM, enable this
option to insert bypass logic around the RAM to
prevent simulation mismatch. Disabling this option
does not generate bypass logic.

For more information about using this option in
conjunction with the syn_ramstyle attribute, see
syn_ramstyle, on page 106.

-update_models_cp1 | 0 Determines whether (1) or not (0) changes to a locked
compile point force remapping of its parents, taking
into account the new timing model of the child. This
option is only available for the ProASIC (500K),
ProASICPLUS (PA), and ProASIC3E technologies. See
Update Compile Point Timing Data Option, on
page 389, for details.

Synplify Pro for Microsemi Edition Reference Manual © 2020 Synopsys, Inc.
January 2020 Synopsys Confidential Information 403

Designing with Microsemi

Microsemi Attribute and Directive Summary

Microsemi Attribute and Directive Summary

The following table summarizes the synthesis and Microsemi-specific attri-
butes and directives available with the Microsemi technology.

Attribute/Directive

alsloc

alspin

alspreserve

black_box_pad_pin (D)

black_box_tri_pins (D)

full_case (D)

loop_limit (D)

parallel_case (D)

syn_allow_retiming

syn_black_box (D)

Description

Forward-annotates the relative placements of
macros and IP blocks to Microsemi Designer. This
attribute does not apply to ProASIC (S00K) and
ProASICPLUS (PA) designs.

Assigns scalar or bus ports to Microsemi I/O pin
numbers. This attribute does not apply to ProASIC
(500K) and ProASICFLUS (PA) designs.

Specifies that a net be preserved, and prevents it
from being removed during place-and-route
optimization. This attribute does not apply to
ProASIC (500K) and ProASICPLUS (PA) designs.

Specifies that a pin on a black box is an I/O pad. It
is applied to a component, architecture, or module,
with a value that specifies the set of pins on the
module or entity.

Specifies that a pin on a black box is a tristate pin. It
is applied to a component, architecture, or module,
with a value that specifies the set of pins on the
module or entity.

Specifies that a Verilog case statement has covered
all possible cases.

Specifies a loop iteration limit for for loops.

Specifies a parallel multiplexed structure in a Verilog
case statement, rather than a priority-encoded
structure.

Specifies whether registers can be moved during
retiming.

Defines a black box for synthesis.

(D) indicates directives; all others are attributes.

© 2020 Synopsys, Inc.

Synopsys Confidential Information

Synplify Pro for Microsemi Edition Reference Manual
January 2020

Microsemi Attribute and Directive Summary

Designing with Microsemi

Attribute/Directive

syn_encoding

syn_encoding

syn_enum_encoding (D)

syn_global_buffers

syn_hier

syn_isclock (D)

syn_keep (D)

syn_maxfan

syn_multstyle

syn_netlist_hierarchy

syn_noarrayports

syn_noclockbuf

syn_noprune (D)

syn_pad_type

syn_preserve (D)

Description

Assigns clock enable nets to dedicated flip-flop
enable pins. It can also be used as a compiler
directive that marks flip-flops with clock enables for
inference.

Specifies the encoding style for state machines.

Specifies the encoding style for enumerated types
(VHDL only).

Sets the number of global buffers to use in a
ProASIC3E.

Controls the handling of hierarchy boundaries of a
module or component during optimization and

mapping.

Specifies that a black-box input port is a clock, even
if the name does not indicate it is one.

Prevents the internal signal from being removed
during synthesis and optimization.

Overrides the default fanout guide for an individual
input port, net, or register output.

Determines how multipliers are implemented for
Microsemi devices.

Determines whether the EDIF output netlist is flat or
hierarchical.

Prevents the ports in the EDIF output netlist from
being grouped into arrays, and leaves them as
individual signals.

Turns off the automatic insertion of clock buffers.

Controls the automatic removal of instances that
have outputs that are not driven.

Specifies an I/O buffer standard.

Prevents sequential optimizations across a flip-flop
boundary during optimization, and preserves the
signal.

(D) indicates directives; all others are attributes.

Synplify Pro for Microsemi Edition Reference Manual

January 2020 Synopsys Confidential Information 405

© 2020 Synopsys, Inc.

Designing with Microsemi

Microsemi Attribute and Directive Summary

Attribute/Directive

syn_preserve_sr_priority

syn_probe

syn_radhardlevel

syn_ramstyle

syn_reference_clock

syn_replicate
syn_resources
syn_sharing (D)

syn_state_machine (D)

syn_tco<n> (D)

syn_tpd<n> (D)

syn_tristate (D)

syn_tsu<n> (D)

syn_useenables

translate_off/translate_on (D)

Description

Forces set/reset flip-flops to honor the coded priority
for the set or reset. ACT 1 and 40MX architectures
only.

Adds probe points for testing and debugging.

Specifies the radiation-resistant design technique to
apply to a module, architecture, or register.

Specifies the implementation to use for an inferred
RAM. You apply syn_ramstyle globally, to a module,
or to a RAM instance.

Specifies a clock frequency other than that implied
by the signal on the clock pin of the register.

Controls replication.
Specifies resources used in black boxes.
Specifies resource sharing of operators.

Determines if the FSM Compiler extracts a structure
as a state machine.

Defines timing clock to output delay through the
black box. The n indicates a value between 1 and 10.

Specifies timing propagation for combinational delay
through the black box. The n indicates a value
between 1 and 10.

Specifies that a black-box pin is a tristate pin.
Specifies the timing setup delay for input pins,
relative to the clock. The n indicates a value between
1 and 10.

Generates clock enable pins for registers.

Specifies sections of code to exclude from synthesis,
such as simulation-specific code.

(D) indicates directives; all others are attributes.

© 2020 Synopsys, Inc.

406

Synplify Pro for Microsemi Edition Reference Manual

Synopsys Confidential Information January 2020

Index

Symbols

_ta.srm file 154
.adc file 144
.edf file 152
fse file 151
.info file 151
.ini file 144
.prj file 144
.sap
annotated properties for analyst 152
.sar file 152
.sdc file 145
.srd file 153
.srm file 153
.srr file 156
watching selected information 34
.srs file 153
initial values (Verilog) 231
.sv file 145
SystemVerilog source file 146
.synplicity directory (UNIX) 144
.ta file
See timing report file 154
.v file 145
.vhd file 145
.vhm file 155
.vm file 155

A

ACTgen macros 398
adc file (analysis design constraint) 144
adder
SYNCore 328
adders
SYNCore 329
Allow Docking command 35
alspin
bus port pin numbers 385
Alt key, selecting columns in Text Editor 46

Synplify Pro for Microsemi Edition Reference Manual
January 2020

Synopsys Confidential Information

analysis design constraint file (.adc) 144
annotated properties for analyst
.sap 152
.timing annotated properties (.tap) 154
archive file (.sar) 152
arrow keys, selecting objects in Hierarchy
Browser 109
arrow pointers for push and pop 107
asynchronous clock report
description 169
attributes
inferring RAM 182
attributes (Microsemi) 404
Attributes demo 48
auto constraints 142
Maximize option 72

B

black boxes
See also macros, macro libraries
Microsemi 373
block RAM
dual-port RAM examples 199
inferring 185
modes 181
NO_CHANGE mode example 194
READ_FIRST mode example 193
single-port RAM examples 195
types 181
WRITE_FIRST mode example 192
block RAMs
syn_ramstyle attribute 406
buttons and options, Project view 71
byte-enable RAMs
SYNCore 298

Cc

cck.rpt file (constraint checking report) 151
check boxes, Project view 71
clock buffering report, log file (.srr) 161

© 2020 Synopsys, Inc.
407

clock groups
Clock Relationships (timing report) 167
clock pin drivers, selecting all 81
clock relationships, timing report 167
clock report
asynchronous 161
Clock Tree, HDL Analyst tool 81
clocks
asynchronous report 169
declared clock 164
defining 81
derived clock 164
inferred clock 164
system clock 164
color coding
Text Editor 45
commenting out code (Text Editor) 46
compile points
Microsemi 396
updating data (Microsemi) 389
compiler report, log file (.srr) 158
Constraint Check command 171
constraint checking report 171
constraint files 125
.sdc 145
automatic. See auto constraints
fdc and sdc precedence order 130
Microsemi 383
constraint files (.sdc)
creating 57
constraint priority 130
constraints
auto constraints. See auto constraints
non-DC 136
priority 130
report file 171
styles 127
types 124
context help editor 47
context of filtered schematic, displaying 113
context sensitive help
using the F1 key 15
copying
for pasting 64
counter compiler
SYNCore 352
counters
SYNCore 353
critical paths 118

© 2020 Synopsys, Inc.

408 Synopsys Confidential Information

analyzing 119

finding 119

setting maximum (Microsemi) 389
cross-clock paths, timing analysis 167
cross-hair mouse pointer 54
crossprobing 99

definition 99
Ctrl key

avoiding docking 56

multiple selection 53

zooming using the mouse wheel 55
cutting (for pasting) 57

D

declared clock 164
define_clock
forward-annotation, Microsemi 384
define_false_path
forward-annotation, Microsemi 384
define_multicycle_path
forward-annotation, Microsemi 384
define_path_delay
forward-annotation, Microsemi 384
deleting
See removing
derived clock 164
design size, schematic sheet
setting 102
device options (Microsemi) 399
directives (Microsemi) 404
directory
.synplicity (UNIX) 144
home (UNIX) 144
Dissolve Instances command 116
docking 35
avoiding 56
docking GUI entities
toolbar 56
dual-port RAM examples 199
dual-port RAMs
SYNCore parameters 281

E

edf file 152

edif file (.edf) 152

editor view
context help 47

Synplify Pro for Microsemi Edition Reference Manual
January 2020

encoding
state machine
FSM Explorer 73
examples
Interactive Attribute Examples 48
Explorer, FSM
enabling 73

F

failures, timing (definition) 120
fanout
Microsemi 387
fdc
constraint priority 130
precedence over sdc 130
fdc constraints 131

generation process 128
fdc file

relationship with other constraint files

125

FIFO compiler

SYNCore 244
FIFO flags

empty/almost empty 266

full/almost full 265

handshaking 267

programmable 268

programmable empty 272

programmable full 269
FIFOs

compiling with SYNCore 245
files

.adc 144

.edf 152

fse 151

.info 151

.ini 144

.prj 144

.sar 152

.sdc 145

.srm 153, 154

.srr 156

watching selected information 34

.srs 153

.ta 154

.v 145

.vhd 145

.vhm 155

.vm 155

Synplify Pro for Microsemi Edition Reference Manual
January 2020

compiler output (.srs) 153
constraint (.adc) 144
constraint (.sdc) 145
creating 57
customized timing report (.ta) 154
design component info (.info) 151
edif (.edf) 152
initialization (.ini) 144
log (.srr) 156
watching selected information 34
mapper output (.srm) 153, 154
output 370
See output files
project (.prj) 144
RTL view (.srs) 153
srr 156
watching selected information 34
state machine encoding (.fse) 151
Synplicity archive file (.sar) 152
synthesis output 151
Technology view (.srm) 153, 154
Verilog (.v) 145
VHDL (.vhd) 145
files for synthesis 144
filtered schematic
compared with unfiltered 84
filtering 112
commands 112
compared with flattening 117
FSM states and transitions 84
paths from pins or ports 120
filtering critical paths 119
finding
critical paths 119
information on synthesis tool 16
GUI 15
finite state machines
See state machines
Flatten Current Schematic command 116
Flatten Schematic command 116
flattening
commands 114
compared with filtering 117
selected instances 115
Float command
Watch window popup menu 35
floating
toolbar 56
floating toolbar popup menu 56

© 2020 Synopsys,
Synopsys Confidential Information

Inc.
409

forward annotation
initial values 231
Forward Annotation of Initial Values
Verilog 231
forward-annotation
Microsemi 383
frequency
cross-clock paths 167
Frequency (Mhz) option, Project view 72
fse file 151
FSM Compiler option, Project view 72
FSM Compiler, enabling and disabling
globally
with GUI 72
FSM encoding file (.sfe) 151
FSM Explorer
enabling 73
FSM Explorer option, Project view 73
FSM Viewer 83
FSMs (finite state machines)
See state machines

G

generic technology library 149
graphical user interface (GUI), overview 19
GTECH library. See generic technology li-
brary
gtech.v library 149
gui
synthesis software 14
GUI (graphical user interface), overview 19

H

HDL Analyst tool 75
accessing commands 85
analyzing critical paths 118
Clock Tree 81
crossprobing 99
filtering designs 112
finding objects 96
hierarchical instances. See hierarchical

instances

object information 86
preferences 102
push/pop mode 105
ROM table viewer 239
schematic sheet size 102

© 2020 Synopsys, Inc.

410 Synopsys Confidential Information

schematics, filtering 112
schematics, multiple-sheet 102
status bar information 86
title bar information 102
HDL Analyst toolbar
See Analyst toolbar
HDL Analyst views 76
See also RTL view, Technology view
HDL files, creating 57
header, timing report 162
help
online
accessing 15
hidden hierarchical instances 92
are not flattened 116
Hide command
floating toolbar popup menu 56
Log Watch window popup menu 35
Tcl Window popup menu 38
hierarchical instances 89
compared with primitive 88
display in HDL Analyst 90
hidden 92
opaque 90
transparent 90
hierarchical schematic sheet, definition 102
hierarchy
flattening
compared with filtering 117
pushing and popping 105
schematic sheets 102
Hierarchy Browser 108
changing size in view 77
Clock Tree 81
finding schematic objects 96
moving between objects 81
RTL view 77
symbols (legend) 82
Technology view 78
trees of objects 81
home directory (UNIX) 144
HOME environment variable (UNIX) 144

I/0 insertion (Microsemi) 388
Identify Instrumentor

launching 62
IEEE 1364 Verilog 95 standard 147

Synplify Pro for Microsemi Edition Reference Manual
January 2020

Implementation Directory 29
indenting a block of text 45
indenting text (Text Editor) 45
inferred clock 164
info file (design component info) 151
ini file 144
initial value data file

Verilog 228
Initial Values

forward annotation 231
initial values

$readmemb 225

$readmemh 225
initial values (Verilog)

netlist file (.srs) 231
initialization file (.ini) 144
input files 144

.adc 144

.ini 144

.sdc 145

.sv 146

.v 145, 146

.vhd 146

vhd 145
inserting

bookmarks (Text Editor) 45
instances

hierarchical

dissolving 110
making transparent 110

hierarchical. See hierarchical instances

primitive. See primitive instances
Interactive Attribute Examples 48
interface information, timing report 168
IPs

SYNCore byte-enable RAMs 298

SYNCore counters 353

SYNCore FIFOs 245

SYNCore RAMs 275

SYNCore ROMs 315

SYNCore subtractors 329
isolating paths from pins or ports 120

K

keyboard shortcuts 63

arrow keys (Hierarchy Browser) 109
keyword completion, Text Editor 45
keywords

Synplify Pro for Microsemi Edition Reference Manual
January 2020

completing in Text Editor 45

L

latches

in timing analysis 118
Launch Identify Instrumentor icon 62
legacy sdc file. See sdc files, difference be-

tween legacy and Synopsys standard

lib2syn

using 149
libraries

general technology 148

macro, built-in 146

technology-independent 148

VHDL

attributes and constraints 146

linkerlog file 151
log file (.srr) 156

watching selected information 34
log file report 156

clock buffering 161

compiler 158

mapper 158

net buffering 159

resource usage 160

retiming 160

timing 159
Log Watch Configuration dialog box 36
Log Watch window 34

Output Windows 43

positioning commands 35

macros
libraries 146
MATH18X18 block 374
Microsemi 373
SIMBUF 374
mapper output file (.srm) 153, 154
mapper report
log file (.srr) 158
margin, slack 119
message viewer
description 39
Messages Tab 39
Microsemi
ACTgen macros 398
attributes 404

© 2020 Synopsys, Inc.

Synopsys Confidential Information 411

black boxes 373
compile point synthesis 396
compile point timing data 389
device options 399
directives 404
features 370
forward-annotation, constraints 383
I/0O insertion 388
implementing RAM 377
macro libraries 397
macros 373
MATH18X18 block 374
Operating Condition Device Option 391
output netlist 370
pin numbers for bus ports 385
product families 368
reports 384
retiming 389
SIMBUF macro 374
Tcl implementation options 401
mouse button operations 53
mouse operations 50
Mouse Stroke Tutor 51
mouse wheel operations 55
Move command
floating toolbar window 56
Log Watch window popup menu 35
Tcl window popup menu 38
moving between objects in the Hierarchy
Browser 81
moving GUI entities
toolbar 56
multiple-sheet schematics 102
multisheet schematics
transparent hierarchical instances 104

N

navigating
among hierarchical levels
by pushing and popping 105
with the Hierarchy Browser 108
among the sheets of a schematic 102
nesting design details (display) 110
net buffering report, log file 159
netlist file 155
initial values (Verilog) 231
netlists for different vendors 370

© 2020 Synopsys, Inc.

412 Synopsys Confidential Information

(0

object information
status bar, HDL Analyst tool 86
viewing in HDL Analyst tool 86
objects
crossprobing 99
dissolving 110
making transparent 110
objects, schematic
See schematic objects
Online help
F1 key 15
online help
accessing 15
opaque hierarchical instances 90
are not flattened 116
Operating Condition Device Option (Microse-
mi) 391
options
Project view 71
Frequency (Mhz) 72
FSM Compiler 72
FSM Explorer 73
Resource Sharing 73
Retiming 73
options (Microsemi) 401
output files 151, 370
.edf 152
.info 151
.sar 152
.srm 153, 154
.srr 156
watching selected information 34
.srs 153
.ta 154
.vhm 155
.vm 155
netlist 1565
See also files
Output Windows 43
Overview of the Synopsys FPGA Synthesis
Tools 12

P

parameters
SYNCore adder/subtractor 337
SYNCore byte-enable RAM 305

Synplify Pro for Microsemi Edition Reference Manual
January 2020

SYNCore counter 359
SYNCore FIFO 250
SYNCore RAM 283
SYNCore ROM 320
partitioning of schematics into sheets 102
pasting 57
performance summary, timing report 162
pins
displaying
on transparent instances 95
displaying on technology-specific
primitives 95
isolating paths from 120
Place and Route constraint file (Microsemi)
383
pointers, mouse
cross-hairs 54
push/pop arrows 107
popping up design hierarchy 105
popup menus
floating toolbar 56
Log Watch window 35, 36
Log Watch window positioning 35
Tcl window 38
precedence of constraint files 130
preferences
HDL Analyst tool 102
Project view display 56
primitive instances 88
primitives
pin names in Technology view 95
prj file 144
Process View 30
project files (.prj) 144
project results
Implementation Directory 29
Process View 30
Project Status View 23
Project Results View 23
Project Status View 23
Project view 20
buttons and options 71
options 71
Synplify Pro 20
Project window 20
project_name_cck.rpt file 171
Promote Global Buffer Threshold (Microsemi)
388

Synplify Pro for Microsemi Edition Reference Manual
January 2020

push/pop mode, HDL Analyst tool 105

R

RAM implementations
Microsemi 377
RAM inference 181
using attributes 182
RAMs
compiling with SYNCore 275
inferring block RAM 185
initial values (Verilog) 225
SYNCore 275
SYNCore, byte-enable 298
RAMs, inferring
advantages 180
reference manual, role in document set 11
removing
bookmark (Text Editor) 46
window (view) 56
reports
constraint checking (cck.rpt) 171
Resource Sharing option, Project view 73
resource usage report, log file 160
retiming
report, log file 160
retiming (Microsemi) 389
Retiming option, Project view 73
ROM compiler
SYNCore 313
ROM inference examples 239
ROM initialization
with rom.info file 241
with Verilog generate block 242
rom.info file 239
ROMs
SYNCore 315
RTL view 77
displaying 59
file (.srs) 153

S

schematic objects
crossprobing 99
definition 86
dissolving 110
finding 96
making transparent 110

© 2020 Synopsys, Inc.

Synopsys Confidential Information 413

status bar information 86
schematic sheets 102
hierarchical (definition) 102
navigating among 102
setting size 102
schematics

configuring amount of logic on a sheet
102

crossprobing 99
filtered 84
filtering commands 112
flattening compared with filtering 117
flattening selectively 115
hierarchical (definition) 102
multiple-sheet 102
multiple-sheet. See also schematic
sheets
object information 86
partitioning into sheets 102
sheet connectors 87
sheets
navigating among 102
size, setting 102
size in view, changing 77
unfiltered 84
unfiltering 113
SCOPE
for legacy sdc 133
sdc
fdc precedence 130
SCOPE for legacy files 133
sdc file
difference between legacy and
Synopsys standard 127
Search SolvNet
using 50
selecting
text column (Text Editor) 46
selecting multiple objects using the Ctrl key
53
set_rtl ff names 136
sheet connectors 87
Shift key 56
shortcuts
keyboard
See keyboard shortcuts
SIMBUF macro 374
single-port RAM examples 195
single-port RAMs

© 2020 Synopsys, Inc.

414 Synopsys Confidential Information

SYNCore parameters 280
slack
cross-clock paths 168
defined 163
margin
definition 120
setting 119
SolvNet
search 50
source files
See also files
creating 57
srd file 153
srm file 153, 154
srr file 156
watching selected information 34
srs file 153
initial values (Verilog) 231
standards, supported
Verilog 147
VHDL 146
state machines
encoding
displaying 84
FSM Explorer 73
encoding file (.fse) 151
filtering states and transitions 84
state encoding, displaying 84
status bar information, HDL Analyst tool 86
structural netlist file (.vhm) 155
structural netlist file (.vm) 155
subtractor
SYNCore 328
subtractors
SYNCore 329
supported standards
Verilog 147
VHDL 146
symbols
Hierarchy Browser (legend) 82
syn_noarrayports attribute
use with alspin 385
SYNCore
adder/subtractor 328
adder/subtractor parameters 337
adders 329
byte-enable RAM compiler
byte-enable RAM compiler
SYNCore 297

Synplify Pro for Microsemi Edition Reference Manual
January 2020

byte-enable RAM parameters 305
counter compiler 352
counter parameters 359
counters 353
FIFO compiler 244, 245
FIFO parameters 250
RAM compiler
RAM compiler
SYNCore 275
RAM parameters 283
RAMs 275
RAMs, byte-enable 298
RAMs, dual-port parameters 281
RAMs, single-port parameters 280
ROM compiler 313
ROM parameters 320
ROMs 315
ROMs, parameters 319
subtractors 329
SYNCore adder/subtractor
adders 340
dynamic adder/subtractor 346
subtractors 343
SYNCore FIFOs
definition 244
parameter definitions 263
port list 261
read operations 260
status flags 265
write operations 259
SYNCore ROMs
clock latency 328
dual-port read 326
parameter list 326
single-port read 325
Synopsys FPGA Synthesis Tools
overview 12
Synopsys standard sdc file. See sdc files, dif-
ference between legacy and Synopsys
standard
synplicity directory (UNIX) 144
Synplify Pro tool
Project view 20
user interface 14
synthesis
log file (.srr) 156
watching selected information 34
synthesis software
flow 16

Synplify Pro for Microsemi Edition Reference Manual
January 2020

Synopsys Confidential Information

gui 14
system clock 164
SystemVerilog keywords
context help 47

T

ta file (customized timing report) 154
Tcl commands
constraint files 132
pasting 38
Tcl Script window
Output Windows 43
Tcl window
popup menu commands 39
popup menus 38
Technical Resource Center
description 73
Technology view 78
displaying 59
file (.srm) 153, 154
Text Editor
features 45
indenting a block of text 45
opening 45
selecting text column 46
view 43
text editor
completing keywords 45
Text Editor view 43
timing analysis of critical paths (HDL Analyst
tool) 118
timing analyst
cross-clock paths 167
timing annotated properties (.tap) 154
timing constraints
See also FPGA timing constraints
See constraints
timing failures, definition 120
timing report 161
clock relationships 167
customized (.ta file) 154
file (.ta) 154
header 162
interface information 168
performance summary 162
timing reports
asynchronous clocks 169
log file (.srr) 159

© 2020 Synopsys, Inc.
415

title bar information, HDL Analyst tool 102 VHDL

toolbars 56 libraries
moving and docking 56 attributes, supplied with synthesis tool
transparent hierarchical instances 90 146
lower-level logic on multiple sheets 104 macro libraries, Microsemi 397
operations resulting in 111 source files (.vhd) 145
pins and pin names 95 structural netlist file (.vhm) 155
trees of objects, Hierarchy Browser 81 supported standards 146
trees, browser, collapsing and expanding 81 VHDL source file (.vhd) 146
vhm file 155
U views 33
. . FSM 83
unfiltered schematic, compared with filtered Project 20
84 removing 56
unfiltering schematic 113 RTL 77
user interface Technology 78
Synplify Pro tool 14 vm file 155
user interface, overview 19
using the mouse 50 W
utﬁltles Watch Window. See Log Watch window
ib2syn 149 .
window
\Vj Project 20
windows 33
v file 145 closing 65
variables log watch 34
HOME (UNIX) 144 removing 56
vendor technologies
Microsemi 367 Z
vendor-specific netlists 370
Verilog * sing th heel and Ctrl key 55
Forwa2r:;d1 Annotation of Initial Values using the mouse wheel an trl key

generic technology library 149
initial value data file 228
initial values for RAMs 225
Microsemi ACTgen macros 398
netlist file 155
ROM inference 239
source files (.v) 145
structural netlist file (.vim) 155
supported standards 147

Verilog 2001 147

Verilog 95 147

Verilog macro libraries
Microsemi 397

Verilog source file (.v) 146

vhd file 145

vhd source file 145

© 2020 Synopsys, Inc. Synplify Pro for Microsemi Edition Reference Manual
416 Synopsys Confidential Information January 2020

	Synplify Pro for Microsemi Edition Reference
	Copyright Notice and Proprietary Information
	Free and Open-Source Licensing Notices
	Destination Control Statement
	Disclaimer
	Trademarks
	Third-Party Links

	Product Overview
	Overview of the Synthesis Tools
	Common Features

	Graphic User Interface
	Getting Help

	User Interface Overview
	The Project View
	Project Management Views
	The Project Results View
	Project Status Tab
	Implementation Directory
	Process View

	Other Windows and Views
	Dockable GUI Entities
	Watch Window
	Tcl Script and Messages Windows
	Tcl Script Window
	Message Viewer
	Output Windows (Tcl Script and Watch Windows)
	Text Editor View
	Context Help Editor Window
	Interactive Attribute Examples

	Using the Mouse
	Mouse Operation Terminology
	Using Mouse Strokes
	Using the Mouse Buttons
	Using the Mouse Wheel

	Toolbars
	Project Toolbar
	Analyst Toolbar
	Text Editor Toolbar
	FSM Viewer Toolbar
	Tools Toolbar

	Keyboard Shortcuts
	Buttons and Options

	HDL Analyst Tool
	HDL Analyst Views and Commands
	RTL View
	Technology View
	Hierarchy Browser
	FSM Viewer Window
	Filtered and Unfiltered Schematic Views
	Accessing HDL Analyst Commands

	Schematic Objects and Their Display
	Object Information
	Sheet Connectors
	Primitive and Hierarchical Instances
	Transparent and Opaque Display of Hierarchical Instances
	Hidden Hierarchical Instances
	Schematic Display

	Basic Operations on Schematic Objects
	Finding Schematic Objects
	Selecting and Unselecting Schematic Objects
	Crossprobing Objects
	Dragging and Dropping Objects

	Multiple-sheet Schematics
	Controlling the Amount of Logic on a Sheet
	Navigating Among Schematic Sheets
	Multiple Sheets for Transparent Instance Details

	Exploring Design Hierarchy
	Pushing and Popping Hierarchical Levels
	Navigating With a Hierarchy Browser
	Looking Inside Hierarchical Instances

	Filtering and Flattening Schematics
	Commands That Result in Filtered Schematics
	Combined Filtering Operations
	Returning to The Unfiltered Schematic
	Commands That Flatten Schematics
	Selective Flattening
	Filtering Compared to Flattening

	Timing Information and Critical Paths
	Timing Reports
	Critical Paths and the Slack Margin Parameter
	Examining Critical Path Schematics

	Constraint Guidelines
	Constraint Types
	Constraint Files
	Timing Constraints
	FDC Constraints
	Methods for Creating Constraints
	Constraint Translation
	sdc2fdc Conversion

	Constraint Checking
	Database Object Search
	Forward Annotation
	Auto Constraints

	Input and Result Files
	Input Files
	HDL Source Files

	Libraries
	Open Verification Library (Verilog)
	The Generic Technology Library
	ASIC Library Files

	Output Files
	Log File
	Compiler Report
	Premap Report
	Mapper Report
	Clock Buffering Report
	Net Buffering Report
	Compile Point Information
	Timing Section
	Resource Usage Report
	Retiming Report

	Timing Reports
	Timing Report Header
	Performance Summary
	Clock Pre-map Reports
	Clock Relationships
	Interface Information
	Asynchronous Clock Report

	Constraint Checking Report

	RAM and ROM Inference
	Guidelines and Support for RAM Inference
	Automatic RAM Inference
	Block RAM
	RAM Attributes

	Block RAM Inference
	Block RAM Examples

	Initial Values for RAMs
	Example 1: RAM Initialization
	Example 2: Cross-Module Referencing for RAM Initialization
	Initialization Data File
	Forward Annotation of Initial Values

	RAM Instantiation with SYNCORE
	ROM Inference

	SynCore IP Tool
	SYNCore FIFO Compiler
	Synchronous FIFO Overview
	Specifying FIFOs with SYNCore
	SYNCore FIFO Wizard
	FIFO Read and Write Operations
	FIFO Ports
	FIFO Parameters
	FIFO Status Flags
	FIFO Programmable Flags

	SYNCore RAM Compiler
	Specifying RAMs with SYNCore
	SYNCore RAM Wizard
	Single-Port Memories
	Dual-Port Memories
	Read/Write Timing Sequences

	SYNCore Byte-Enable RAM Compiler
	Functional Overview
	Specifying Byte-Enable RAMs with SYNCore
	SYNCore Byte-Enable RAM Wizard
	Read/Write Timing Sequences
	Parameter List

	SYNCore ROM Compiler
	Functional Overview
	Specifying ROMs with SYNCore
	SYNCore ROM Wizard
	Single-Port Read Operation
	Dual-Port Read Operation
	Parameter List

	SYNCore Adder/Subtractor Compiler
	Functional Description
	Specifying Adder/Subtractors with SYNCore
	SYNCore Adder/Subtractor Wizard
	Adder
	Subtractor
	Dynamic Adder/Subtractor

	SYNCore Counter Compiler
	Functional Overview
	Specifying Counters with SYNCore
	SYNCore Counter Wizard
	UP Counter Operation
	Down Counter Operation
	Dynamic Counter Operation

	Designing with Microsemi
	Basic Support for Microsemi Designs
	Microsemi Device-specific Support
	Customizing Netlist Formats
	Targeting Output to Your Vendor
	Microsemi Features
	Synthesis Constraints and Attributes for Microsemi

	Microsemi Components
	Macros and Black Boxes in Microsemi Designs
	DSP Block Inference
	Microsemi RAM Implementations
	RAM Read Enable Extraction
	Instantiating RAMs with SYNCORE

	Output Files and Forward-annotation for Microsemi
	Forward-annotating Constraints for Placement and Routing
	Synthesis Reports
	Specifying Pin Locations
	Specifying Locations for Microsemi Bus Ports
	Specifying Macro and Register Placement

	Optimizations for Microsemi Designs
	The syn_maxfan Attribute in Microsemi Designs
	Promote Global Buffer Threshold
	I/O Insertion
	Number of Critical Paths
	Retiming
	Update Compile Point Timing Data Option
	Operating Condition Device Option
	Radiation-tolerant Applications

	Integration with Microsemi Tools and Flows
	Compile Point Synthesis
	Using Predefined Microsemi Black Boxes
	Using Smartgen Macros
	Microsemi Place-and-Route Tools

	Microsemi Device Mapping Options
	Microsemi Tcl set_option Command Options
	Microsemi Attribute and Directive Summary

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Z

