

PolarFire® SoC FPGA Board Design Guidelines

Introduction

Good board design practices are required to achieve expected performance from both PCBs and PolarFire[®] SoC devices. High-quality and reliable results depend on minimizing noise levels, preserving signal integrity, meeting impedance and power requirements, and using appropriate transceiver protocols. These guidelines must be treated as a supplement to the standard board-level design practices.

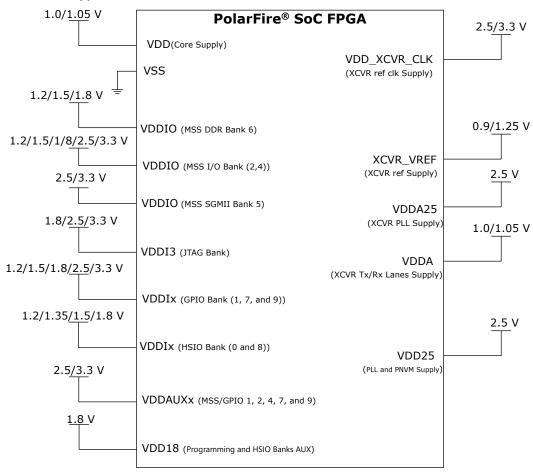
This document is intended for readers who are familiar with the PolarFire SoC device, experienced in digital board design, and know about the electrical characteristics of systems. It discusses power supplies, high-speed interfaces, various control interfaces, and the associated peripheral components of PolarFire SoC FPGAs.

Table of Contents

Intr	oductio	n	1
1.	Desig	ning the Board	3
	1.1.	Power Supplies	3
	1.2.	I/O Glitch	9
	1.3.	User I/O	10
	1.4.	MSS I/Os	12
	1.5.	Clocks	13
	1.6.	Reset	
	1.7.	DDR	
	1.8.	Device Programming	
	1.9.	Special Pins	
	1.10.	Transceiver	
	1.11.	MIPI Hardware Design Guidelines	
		AC and DC Coupling	
	1.13.	Brownout Detection	19
2.	Board	Design Checklist	20
	2.1.	Prerequisites	20
	2.2.	Design Checklist	20
	2.3.	Layout Checklist	22
3.	Anner	ndix: General Layout Design Practices	23
Ο.	3.1.	MIPI	
	3.2.	Transceiver	
	0.2.	Transcover	20
4.	Revis	on History	28
Mic	rochip	FPGA Support	29
	-		
The	Micro	chip Website	29
Pro	duct C	nange Notification Service	29
Cu	stomer	Support	20
Ou	Storrici	очрроги	29
Mic	rochip	Devices Code Protection Feature	29
Leç	gal Noti	DE	30
Tra	demark	S	30
Qu	ality Ma	nagement System	31
Wo	rldwide	Sales and Service.	32

1. Designing the Board

The PolarFire SoC family offers the industry's first RISC-V based SoC FPGAs. The PolarFire SoC family combines a powerful 64-bit 5x core RISC-V Microprocessor Subsystem (MSS) with the FPGA fabric in a single device. Packed with this powerful combination, PolarFire SoC devices offer the scalable features of FPGAs and high-performance of ASICs like DDR3/DDR4, 12.7G Transceiver, PCIe Gen2 and HSIO/GPIO, and a highly configurable MSS.


Subsequent sections discuss the following:

- Power Supplies
- · I/O Glitch
- User I/O
- Clocks
- Reset
- DDR
- Device Programming
- · Special Pins
- Transceiver
- · AC and DC Coupling
- · Brownout Detection

1.1 Power Supplies

The following illustration shows the typical power supply requirements for PolarFire SoC devices, and the recommended connections of power rails when every part of the device is used in a system. For more information on decoupling capacitors associated with individual power supplies, see 1.1.1 PolarFire SoC Decoupling Capacitors.

Figure 1-1. Power Supplies

For the PolarFire SoC device to operate successfully, power supplies must be free from unregulated spikes and the associated grounds must be free from noise. All overshoots and undershoots must be within the absolute maximum ratings provided in the PolarFire SoC FPGA Advance Datasheet.

The following table lists the various power supplies required for PolarFire SoC FPGAs.

Table 1-1. Supply Pins

Name	Description
XCVR_VREF	Voltage reference for transceivers
VDD_XCVR_CLK	Power to input buffers for the transceiver reference clock
VDDA25	Power to the transceiver PLL
VDDA ¹	Power to the transceiver TX and RX lanes
VSS	Core digital ground
VDD ²	Device core digital supply
VDDI3 (JTAG Bank)	Power to JTAG bank pins
VDDI5	VDDI5 power to MSS SGMII banks
VDDI2	VDDI2 power to MSS peripheral banks
VDDI4	Power to MSS peripheral banks

continued	
Name	Description
VDDI6	Power to MSS DDR banks
VDDIx (GPIO Banks)	Power to GPIO bank pins
VDDIx (HSIO Banks)	Power to HSIO bank pins
VDD25	Power to corner PLLs and PNVM
VDD18	Power to programming and HSIO auxiliary supply
VDDAUXx	Power to GPIO auxiliary supply

Note:

- 1. VDDA—This supply can be powered to 1.0V or 1.05V. For more information, see "Recommended Operating Conditions" in PolarFire SoC FPGA Advance Datasheet. This is a quiet supply for the device. One method would be to use a Linear regulator to ensure the supply is quiet.
- 2. VDD—This supply can be powered to 1.0V or 1.05V. For more information, see "Recommended Operating Conditions" in PolarFire SoC FPGA Advance Datasheet.
 - VREFx—is the reference voltage for DDR3 and DDR4 signals. VREF voltages can be generated internally and externally.
 - Internal VREF—is not subjected to PCB, package inductance, and capacitance loss. These changes provide the highest performance and can be programmed as required by DDR controller.
 - External VREF—is fixed and cannot be programed as required. The PCB, package inductance, and capacitance impact the VREF performance. If VDDI and VDDAUX need to be configured to the same voltage (2.5V or 3.3V), ensure both VDDI and VDDAUX are supplied from the same regulator. Do not use different regulators to source these rails. This prevents any voltage variations between VDDI and VDDAUX. In this case, the board must not supply the VDDI and VDDAUX from individual voltage supplies.

When a GPIO bank requires the VDDI to be less than 2.5V (1.2V, 1.5V, or 1.8V), the VDDAUX for that bank must be tied to 2.5V supply irrespective of the VDDI supply. The VDDI requires a separate supply for the specific I/O type (1.5V or 1.8V).

Note: The on-chip Power-on Reset circuitry requires the VDD, VDD18, and VDD25 supplies to ramp monotonically from 0V to the minimum recommended operating voltage.

For a detailed pin description, see PolarFire SoC FPGA Packaging and Pin Descriptions User Guide.

1.1.1 **PolarFire SoC Decoupling Capacitors**

The following table lists the requirement of all decoupling capacitors for the MPFS250TS - FCG1152 and MPFS250TS - FCVG484 devices.

Table 1-2. Power-Supply Decoupling Capacitors¹—MPFS250TS - FCG1152 (1 mm)

Pin Name	Cerami c	Tantalu m								
	1 nF	4.7nF	10 nF	22nF	47 nF	0.1 μF	1 μF	10 μF	47 μF	330 μF
VDD	_	_	5	2	2	1	1	_	1	2
VDD18	_	_	1	_	_	1	_	_	2	_
VDDA	_	3	1	_	_	6	_	_	2	_
VDDA25	2	_	_	_	_	2	_	_	1	_
VDD25	1	_	2	_	_	2	_		1	

DS60001681B-page 5 **User Guide** © 2021 Microchip Technology Inc.

continue	continued											
Pin Name	Cerami c	Tantalu m										
	1 nF	4.7nF	10 nF	22nF	47 nF	0.1 μF	1 μF	10 μF	47 μF	330 μF		
VDDAUX(GPI O)	_	1	1	_	_	1	_	_	1	_		
GPIO Bank	1	_	_	_	_	_	_	_	1	_		
HSIO Bank	_	_	_	_	_	2	_	_	1	_		
VDDSREF	_	_	_	_	_	2	_	1	_	_		
SERDES_VR EF	_	_	_	_	_	2	_	_	_	_		
Bank 3 JTAG	_	_	_	_	_	2	_	1	_	_		
Bank 2	_	_	_	_	_	2	_	1	_	_		
Bank 4	_	_	_	_	_	2	_	1	_	_		
Bank 5	_	_	_	_		2	_	1	_	_		
Bank 6 MSS DDR	_	_	1	_	_	1	_	_	1	_		

Note: 1. The guidelines are provided on how to effectively decouple only the PolarFire SoC device. If the power source is placed on a different PCB or delivered through interconnects (flex cables or connectors), ensure an effective power delivery to the PolarFire SoC device. Follow the recommended operational conditions as per PolarFire SoC FPGA Advance Datasheet.

Table 1-3. Power-Supply Decoupling Capacitors¹—MPFS250TS - FCVG484 (0.8 mm)

Pin Name	Cera mic	Tantalu m									
	1 nF	3.3 nF	2.2 nF	4.7 nF	10 nF	47 nF	0.1 μF	1 μF	10 μF	47 μF	330 μF
VDD	_	_	_	_	_	3	3	3	_	1	2
VDD18	_	_	_	1	1	_	1	_	_	2	_
VDDA	_	_	2	_	2	_	1	_	_	2	_
VDDA25	1	_	_	_	_	_	1	_	_	1	_
VDD25	1	_	_	_	2	_	2	_	_	1	_
VDDAUX(GPIO)	_	_	_	1	1	_	1	_	_	1	_
GPIO Bank	1	_	_	1	_	_	1	_	_	1	_
HSIO Bank	1	_	_	1	_	_	1	_	_	1	_
VDDSREF	_	_	_	_	_	_	2	_	1	_	_
SERDES_VREF	_	_	_	_	_	_	2	_	_	_	_
Bank 3 JTAG	_	_	_	_	_	_	2	_	1	_	_
Bank 2	_	_	_	_	_	_	2	_	1		_
Bank 4	_	_	_	_	_	_	2	_	1	_	_
Bank 5	_	_	_	_	_	_	2	_	1		_

continued	continued										
Pin Name	Cera mic	Tantalu m									
	1 nF	3.3 nF	2.2 nF	4.7 nF	10 nF	47 nF	0.1 μF	1 μF	10 μF	47 μF	330 μF
Bank 6 MSS DDR	1	1	_	1	1	_	1	_	_	1	_

Note: 1. The guidelines are provided on how to effectively decouple only the PolarFire SoC device. If the power source is placed on a different PCB or delivered through interconnects (flex cables or connectors), ensure an effective power delivery to the PolarFire SoC device. Follow the recommended operational conditions as per PolarFire SoC FPGA Advance Datasheet.

Decoupling capacitors other than those listed in the preceding tables can be used, if the physical sizes of capacitors meet or exceed the performance of the network given in this example. Substitution would require analyzing the resulting power distribution system's impedance versus frequency to ensure that no resonant impedance spikes the result. See Figure 1-1 for power supply design.

For more information about the internal package capacitance for power supplies associated with PolarFire SoC packages, see UG0902: PolarFire SoC FPGA Packaging and Pin Descriptions User Guide.

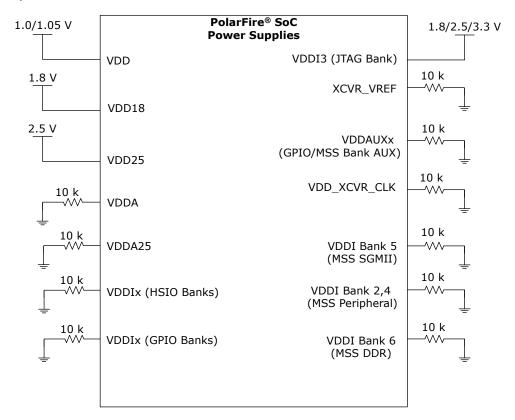
The following table lists the required decoupling capacitors for PolarFire SoC packages.

Table 1-4. Recommended Decoupling Capacitors For PolarFire SoC Devices

De-Cap Value	Part Number	Package	Description
1 nF	CL05B102KO5NNNC	0402	For 1 mm package
2.2 nF	GRM155R71C223KA01D	0402	For 1 mm package
10 nF	GRM155R71C103KA01D	0402	For 1 mm package
0.1 μF	GRM155R71C104KA88D	0402	For 1 mm package
10 nF	GRM15XR11C103KA86	0402	For 1 mm package
4.7 nF	GRM155R11H472KA01	0402	For 1 mm package
10 μF	GRM21BR71A106KE51	0805	Bulk Caps (for 0.5, 0.8, and 1 mm)
47 μF	GRM31CR61A476KE15	1206	Bulk Caps (for 0.5, 0.8, and 1 mm)
330 µF	T495D337K010ATE150	2917	Bulk Caps (for 0.5, 0.8, and 1 mm)
1 nF	GRM033R71C102KA01	0201	For 0.8 and 0.5 mm package
2.2 nF	GRM033R71A103KA01	0201	For 0.8 and 0.5 mm package
10 nF	GRM033R71A103KA01	0201	For 0.8 and 0.5 mm package
0.1 μF	GRM033C71C104KE14	0201	For 0.8 and 0.5 mm package

Note: Equivalent capacitor values can be used from a different vendor. For more information about the Packaging Decoupling Capacitors, see UG0902: PolarFire SoC FPGA Packaging and Pin Descriptions User Guide.

1.1.2 Unused Power Supply


The following figure shows how power supplies may be configured when not in use and also to reduce leakage and power for the system.

© 2021 Microchip Technology Inc.

User Guide

DS60001681B-page 7

Figure 1-2. Option 1 for Unused Connections

The following figure shows the power configuration of unused supplies. This option can be used when there is an intent to power-up the various supplies at a later time in the system, and the I/Os are not being used.

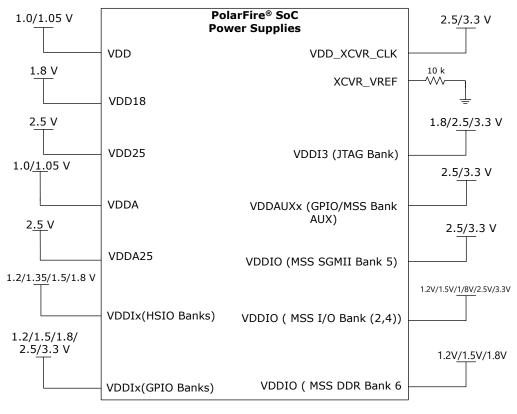


Figure 1-3. Option 2 for Unused Connections

Note: To simplify the board-level routing, multiple 10 k Ω resistors can be used as required. The power supplies can also be grouped into a single 10 k Ω resistor and tied-off to VSS.

1.1.3 Pin Assignment Tables

PolarFire SoC Packaging Pin Assignment Table (PPAT) contains information about the recommended DDR pinouts, PCI EXPRESS capability for XCVR-0, DDR Lane information for I/O CDR, generic IOD interface pin placement, and unused condition for package pins.

1.2 I/O Glitch

A glitch may occur during power-up or power-down for GPIO or HSIO outputs in PolarFire SoC devices. Glitch can occur before or after the device reaches a functional state. These glitches are not observed on LVDS outputs or Transceiver I/Os. No reliability issues are caused by either of the glitch types. Following are the types of glitches that can occur.

- Parasitic glitches may occur for GPIOs or HSIOs before the device reaches functional state with a maximum glitch of 1V with a 0.4 ms width. This type of glitch can typically be ignored. It is recommended to use a 100K pull-down resistor on critical signals of the GPIO or HSIO pins, if this type of glitch cannot be ignored. No glitches are observed once the mitigation recommendations are placed.
- Another type of glitch may occur on GPIOs and HSIOs during power-on sequencing or boot-up. This is due to a
 weak pull-up resistor being enabled by default on an input, output or bidirectional I/O. To mitigate this glitch, use
 the Libero SoC I/O Editor or PDC constraint to program a weak pull-down on the output buffer on the specified
 I/O.
- The last type of glitch may occur after the device reaches functional state. This type of glitch is related to the power-up and power-down sequence of VDDI and VDDAUX supplies. This occurs only on GPIOs where the VDDI is 1.5V or 1.8V only with a maximum glitch of 1V with a 0.8 ms width during power-up and a maximum

¹ Critical outputs such as reset or clock of the HSIO or GPIOs going into another device.

glitch of 1.8V with a 1 ms width during power-down. To mitigate the post functional state glitch, follow the recommendations as in the following table.

Table 1-5. Power Sequencing¹

Use Cases f	or GPIO	Power-up Sequencing Requirement for Mitigating Glitches ²	Power-down Sequencing Requirement for Mitigating Glitches ²		
VDDI	VDDAUX	_	_		
1.2V	2.5V	No glitch occurs	No glitch occurs		
1.5V	2.5V	Power-up VDDAUX before VDDI of that bank	Power-down VDDI before VDDAUX of that bank		
1.8V	2.5V	Power-up VDDAUX before VDDI of that bank	Power-down VDDI before VDDAUX of that bank		
2.5V	2.5V	Power VDDAUX and VDDI from the same Regulator	No glitch occurs		
3.3V	3.3V	Power VDDAUX and VDDI from the same Regulator	No glitch occurs		

⁽¹⁾ No glitches are observed after placing the mitigation recommendations.

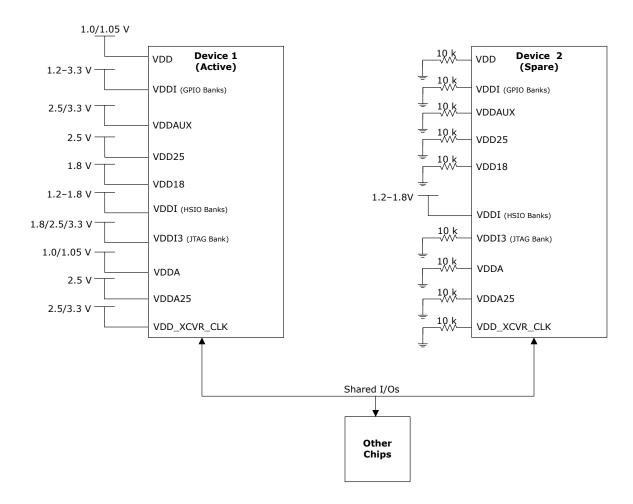
1.3 User I/O

PolarFire SoC FPGAs have two types of I/O buffers: HSIO and GPIO. HSIO buffers are optimized for single-ended buffers with supplies from 1.2V to 1.8V. GPIO buffers support single-ended and true differential interfaces with supplies from 1.2V to 3.3V. PolarFire SoC FPGAs support the following types of I/O Banks:

- GPIO Banks—These Banks support I/O buffers for single-ended and true differential signals from 1.2V to 3.3V.
- HSIO Banks—These Banks support optimized I/O buffers for single-ended and true differential signals from 1.2V to 1.8V.
- MSS I/Os—These banks can support I/O buffer for single-ended signals from 1.2V to 3.3V.
- MSS DDR I/Os—These banks can support I/O buffer for single-ended and differential per the Pin table signals at 1.2V, 1.5V to 1.8V.
- MSS SGMII I/Os—These banks can support I/O buffer for single-ended and differential per the Pin table signals at 2.5V or 3.3V.

Note: When the HSIO bank is configured as an LVDS receiver, the concerned I/Os must be connected externally by a 100Ω resistor.

For more information about key features of I/O buffers and supported standards, see UG0902: PolarFire SoC FPGA Packaging and Pin Descriptions User Guide and PolarFire FPGA and PolarFire SoC FPGA User I/O User Guide.


1.3.1 Cold Sparing

PolarFire SoC devices support cold sparing for GPIO and HSIO. Cold sparing is implemented by connecting the devices as shown in the following figure. The system board has two PolarFire SoC devices in parallel, and the devices share I/Os. The spare device has its HSIO VDDI banks powered-up to prevent I/O leakage through the ESD diodes. As a result, low power and a protected state for the spare device is established. The spare device can be changed to active device by powering-up all the supplies. The active device can be changed to spare device by powering down all the supplies, except HSIO VDDI banks.

A typical cold sparing application integrates two parallel devices with shared I/O connections, as shown in the following figure.

⁽²⁾ The preceding power sequence does not mitigate any parasitic glitches. As mentioned above, add a 100K pull-down resistors to critical signals of GPIO or HSIO pins for mitigation of parasitic glitches.

Figure 1-4. Cold Sparing

Note: Transceiver and JTAG pins do not support the cold sparing feature.

1.3.2 Hot Socketing (GPIO Only)

Hot socketing (also known as hot swapping or hot plug-in) prevents damage to the PolarFire SoC FPGA if, at any time, voltage is detected at I/O while the device is powered OFF. It also helps prevent disruptions that may occur in the rest of the system if the I/O of a device are connected without a valid power supply.

Only GPIOs support hot socketing. In hot socketing, GPIOs are in high-impedance (hi-Z) state.

The GPIO maintains the following high-impedance state until the power supplies are at a valid state.

- VDDAUx is greater than or equal to 1.6 V
- · VDDIx is greater than or equal to 0.8 V
- VDD and VDD25 are both high and the PolarFire SoC FPGA controller has asserted the global I/O ring signal (IO_EN)

1.3.2.1 Over-Voltage Tolerance for GPIO

If GPIO is configured with the following settings, GPIO supports over-voltage tolerance, ensuring that the I/O signal at the pad is at a higher potential than the VDDIx power supply.

Table 1-6. Over-Voltage Tolerance

Standard	OE	Clamp Diode	VREF (Input)	Weak Pull-Up/ Pull-Down	Termination	Hot-plug
PCI	x	ON	ON	ON	ON	Disabled
GPIO	1	ON	ON	ON	ON	Disabled
	0	OFF	OFF	OFF	OFF	Enabled

For recommended operating conditions about over-voltage tolerance, see PolarFire SoC FPGA Advance Datasheet.

1.4 MSS I/Os

PolarFire SoC FPGAs support the following type of MSS I/O buffers.

- 1.4.1 MSS DDR I/Os
- 1.4.2 MSS SGMII I/Os
- 1.4.3 MSS-Specific I/O

1.4.1 MSS DDR I/Os

The MSS DDR I/Os are a dedicated set of pins for x32 width DDR interface with ECC support. The dedicated set of pins are as follows:

- MSS DDR DQ[0:35]
- MSS DDR DQSP[0:4], MSS DDR DQSN[0:4]
- MSS_DDR_DM[0:4]
- MSS DDR A[0:16]
- MSS_DDR_CK_0, MSS_DDR_CK_N0
- MSS_DDR_CK_1, MSS_DDR_CK_N1
- MSS DDR RAM RST N
- MSS DDR VREF IN
- MSS_DDR_BA0, MSS_DDR_BA1
- MSS DDR BG0, MSS DDR BG1
- MSS DDR CS0, MSS DDR CS1
- MSS_DDR_CKE0, MSS_DDR_CKE1
- MSS DDR ODT0, MSS DDR ODT1
- MSS DDR ACT N
- MSS DDR WE N
- MSS DDR ALERT N
- MSS DDR PARITY

The interface supports the following types of DDR memories:

- DDR4 Single and Dual Rank
- DDR3 Single and Dual Rank
- LPDDR4
- LPDDR3

For more details about pin mapping and DDR user models, see PolarFire SoC Packaging Pin Assignment Table (PPAT) and PolarFire FPGA and PolarFire SoC FPGA Memory Controller User Guide.

1.4.2 MSS SGMII I/Os

The MSS SGMII I/Os are a dedicated set of pins. Two sets of pins are for transceiver and one set for sourcing the reference clock. The MSS SGMII pins are listed as follows:

- MSS_SGMII_TXP0, MSS_SGMII_TXN0
- MSS SGMII RXP0, MSS SGMII RXN0
- MSS_SGMII_TXP1, MSS_SGMII_TXN1
- MSS_SGMII_RXP1, MSS_SGMII_RXN1
- MSS_REFCLK_IN_P, MSS_REFCLK_IN_N

1.4.3 MSS-Specific I/O

There are 38 MSS I/Os that can be configured using Libero SoC to interface with various peripherals (see Figure 1-5,). For the MSS I/Os pinout information, see PolarFire SoC Packaging Pin Assignment Table. The PPAT lists the MSS I/Os and the peripherals they support. MSS I/Os are configured using Libero SoC > PFSOC_MSS SgCore IP Configurator.

Figure 1-5. Peripherals

BANK	IO MUX	Package Pin	•VDIC	USB	SD	MAC	QSPI	SPI	MMUART	12C	CAN	GPIO
	0	AAS	EMMC_CLK		SD_CLK		QSPI_CLK	SPI_0_CLK				GP10_0_0
	1	AAS	EMMC_CMD		SD_CMD				MMUART_3_RXD	12C_0_SCL		G910_0_1
	2	AA7	EMMC_DATA0		SD_DATA0				MMUART_3_TXD	12C_0_SDA		0960_0_0
	3	Y6	EMMC_DATA1		SD_DATA1				MMUART_4_RXD		CAN_O_TXBUS	GP10_0_1
	4	AA10	EMDIC_DATA2		SD_DATA2				MMUART_4_TXD		CAN_O_RXBUS	GP50_0_4
В	5	AA13	EMMC_DATA3		SD_DATA3				MMUART_0_RXD (A)		CAN_O_TX_EBL_N	GP80_0_5
A N	6	Y10	EMMC_STRB		SD_CD				MMUART_0_TXD (A)			GP10_0_6
K	7	¥7	EMMC_RSTN		SD_WP	MAC_1_MDC			MMUART_2_RXD	12C_1_SCL		GP00_0_1
4	8	Y14	EMBIC_DATA4		SD_POW	MAC_1_MDIO	QSPI_SS0		MMUART_2_TXD	12C_1_SDA		GP00_0_8
	9	Y13	EMMC_DATA5		SD_VOLT_SEL	MAC_0_MDC	QSPI_DATA0		MMUART_0_RXD (B)			QP10_0_9
	10	Y8	EMMC_DATA6		SD_VOLT_EN	MAC_0_MDIO	QSPI_DATA1		MMUART_0_TXD (B)			GP10_0_1
	11	YII	EMMC_DATA7		SD_VOLT_CMD_DIR		QSPI_DATA2	SM_0_DO	MIMUART_1_RXD		CAN_1_TXBUS	G990_0_1
	12	AA12			SD_VOLT_DUR_0		QSPI_DATA3	SPI_0_DI	MOMUART_1_TXD		CAN_1_RXBUS	GP00_0_1
	13	Y12			SD_VOLT_DIR_1_3			SPI_0_SS0			CAN_I_TX_EBL_N	GP10_0_1
	14	W6		USB_CLK			QSPI_CLK (A)	SM_1_CLK (A)				G900_1_0
	15	V6		USB_DIR.		MAC_I_MDC (A)		SPI_1_DO (A)	MMUART_4_RXD			GP00_1_1
	16	WS		USB_NXT		MAC_1_MDIO (A)		SPI_I_DI (A)	MMUART_4_TXD			GP10_1_2
	17	V8		USB_STP				SPI_1_SSO (A)	MMUART_0_RXD (A)			G900_1_3
	18	V4		USB_DATA0					MOMUART_0_TXD (A)			0900_1_4
	19	US		USB_DATA1					MMUART_1_RXD			GP10_1_5
	20	W9		USB_DATA2					MMUART_1_TXD	12C_0_SCL (A)		G910_1_6
	21	U7		USB_DATA3					MMUART_2_RXD	12C_0_SDA (A)	CAN_0_TX_EBL_N (A)	G900_1_7
	22	U6		USB_DATA4					MMUART_2_TXD		CAN_O_TXBUS (A)	OPIO_1_8
	23	V7		USB_DATA5				SP1_0_SS0	MMUART_3_RXD		CAN_0_RXBUS (A)	GP00_1_9
В	24	7.9		USB_DATAS		MAC_0_MDC (A)		SPI_0_DI	MMUART_3_TXD	12C_1_SCL (A)		GP00_1_1
A N	25	U9		USB_DATA7		MAC_0_MDIO (A)		SPI_0_DO		12C_1_SDA (A)		OPIO_1_1
K	26	V14			SD_LED (A)					12C_1_SCL (B)		GP10_1_1
2	27	V13			SD_VOLT_0 (A)					12C_1_SDA (B)	CAN_1_TX_EBL_N (A)	G900_1_1
	28	W10			SD_VOLT_I (A)	MAC_1_MDC (B)			MMUART_0_RMD (B)		CAN_I_TXBUS (A)	0910_1_1
	29	WII			SD_VOLT_2 (A)	MAC_I_MDIO (B)			MMUART_0_TXD (B)		CAN_1_RXBUS (A)	GP10_1_1
	30	W14					QSPI_CLK (B)	SM_1_CLK (B)				GP10_1_1
	31	W13					QSPI_SS0	SP[_1_SS0 (B)			CAN_0_TXBUS (B)	GP10_1_1
	32	un			SD_CLE		QSPL_DATA0	SPI_1_DO (B)			CAN_0_RXBUS (B)	GP10_1_1
	33	U12			SD_LED (B)		QSPI_DATA1	SP(_1_Df (B)			CAN_O_TX_EBL_N (B)	GP10_1_1
	34	vn			SD_VOLT_0 (B)		QSPI_DATA2				CAN_I_TXBUS (B)	GP10_1_2
	35	U10			SD_VOLT_1 (B)	MAC_0_MDC (B)	QSPI_DATA3		MMUART_0_RXD (C)	12C_0_SCL (B)	CAN_I_RXBUS (B)	OPIO_1_2
	36	U14			SD_VOLT_2 (B)	MAC_0_M010 (B)			MMUART_0_TXD (C)	12C_0_SDA (B)	CAN_1_TX_EBL_N (B)	GP10_1_1
	37	V12					QSPI_CLK (C)	SPI_0_CLK				G900_1_2

1.5 Clocks

PolarFire SoC devices offer two on-chip RC oscillators (one 2 MHz and one 160 MHz) to generate free-running clocks. The clocks do not have any I/O pads and do not require external components to operate.

The following table lists the number of RC oscillators available in PolarFire SoC devices.

Table 1-7. RC Oscillator Count

Resource	Supported Range (MHz)	MPFS250
On-chip oscillator	2	1
	160	1

For more information about clocking in PolarFire SoC devices, see PolarFire FPGA and PolarFire SoC FPGA Clocking Resources User Guide.

1.6 Reset

For designing a robust system, users may use the dedicated DEVRST N pin or a general purpose reset signal using any GPIO/HSIO as a global system level reset.

For the following cases, the users must use the DEVRST N as a warm reset for the device:

- A user design modifies auto-initialized fabric RAMs or PCIe configuration during operation.
- A user design is using PCle, transceivers or user crypto. For all other use cases, it is recommended to use a general purpose reset signal using any GPIO/HSIO IO because they take much shorter time for design to come out of reset.

If the dedicated DEVRST N is not used for warm resets, the DEVRST N pin must be configured using one of the following methods:

- Drive the signal with a POR chip or an external device and keep the DEVRST N asserted till the system/clocks are stable and the chip is properly powered up.
- Connect DEVRST N to VDDI3 through a 1 kΩ resistor per pin without sharing with any other pins.
 - In this case, the user needs to ensure that all clocks are stable going to the device before the user design is released from power-on reset. The details of the minimum time taken for the fabric design to be activated after power-on is specified in the Power-Up To Functional section of PolarFire SoC FPGA Advance Datasheet.

1.7 **DDR**

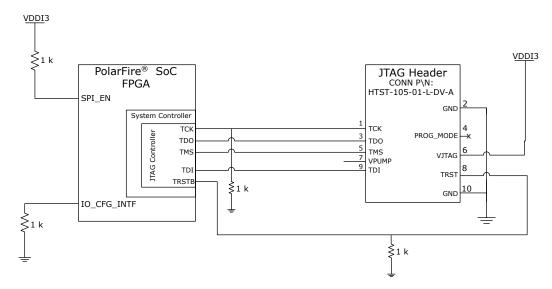
PolarFire SoC devices support DDR3, LPDDR4, LPDDR3, and DDR4. For more information about the DDR support in PolarFire SoC devices, see PolarFire SoC FPGA Advance Datasheet.

The reliability of the DDR interface depends on the quality of the layout. For detailed information on board layout and routing, see PolarFire FPGA and PolarFire SoC FPGA Memory Controller User Guide.

1.8 **Device Programming**

The PolarFire SoC device can be programmed using one of the two dedicated interfaces: JTAG or SPI. These two interfaces support the following programming modes:

- JTAG programming
- SPI master mode programming
- SPI slave mode programming


The PolarFire SoC FPGA supports programming modes through an internal system controller using SPI master mode or an external master using JTAG or SPI interfaces. For detailed information on hardware connections for each programming mode, see PolarFire FPGA and PolarFire SoC FPGA Programming User Guide.

1.8.1 JTAG Programming

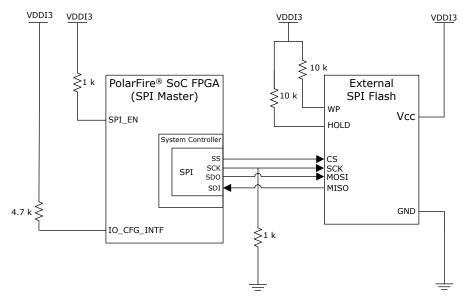
The JTAG interface is used for the device programming and testing, or for debugging the firmware. When the device reset (DEVRST N) is asserted, JTAG I/Os are not accessible. JTAG I/Os are powered by Bank 3 VDDI.

The following figure shows the board-level connectivity for JTAG programming mode in PolarFire SoC devices.

Figure 1-6. JTAG Programming

The following table lists the JTAG pin names and descriptions.

Table 1-8. JTAG Pins


Pin Names	Direction	Unused Condition	Description
TMS	Input	DNC	JTAG test mode select.
TRSTB	Input	Must be connected to VDDI3 through a 1 $k\Omega$ resistor	JTAG test reset. Must be held low during device operation.
TDI	Input	DNC	JTAG test data in.
TCK	Input	Must be connected to VSS through a 10 $k\Omega$ resistor	JTAG test clock.
TDO	Output	DNC	JTAG test data out.

1.8.2 SPI Master Mode Programming

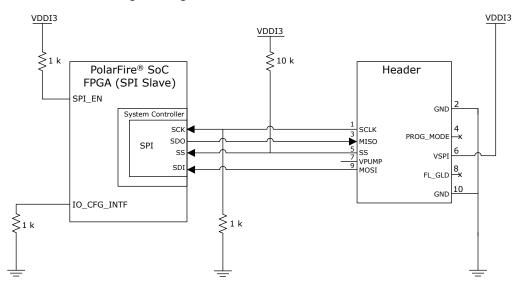
The embedded system controller contains a dedicated SPI block for programming, which can operate in master or slave mode. In master mode, the PolarFire SoC device interfaces are used to download programming data through the external SPI flash. In slave mode, the SPI block communicates with a remote device that initiates download of programming data to the device.

The following figure shows the board-level connectivity for SPI master mode programming in PolarFire SoC devices.

Figure 1-7. SPI Master Mode Programming

The following table lists the SPI master mode programming pins.

Table 1-9. SPI Master Mode Programming Pins


SPI Pin Name	Direction	Unused Condition	Description
SCK	Bidirectional	Connect to VSS through a 10 kΩ resistor	SPI clock. ¹
SS	Bidirectional	Connect to VSS through a 10 kΩ resistor	SPI slave select. ¹
SDI	Input	Connect to VDDI3 through a 10 kΩ resistor	SDI input. ¹
SDO	Output	DNC	SDO output. ¹
SPI_EN	Input	Connect to VSS through a 10 kΩ resistor	SPI enable. 0: SPI output tri-stated 1: Enabled Pulled up or down through a resistor or driven dynamically from an external source to enable or tri-state the SPI I/O.
IO_CFG_INTF	Input	Connect to VSS through a 10 kΩ resistor	SPI I/O configuration. 0: SPI slave interface 1: SPI master interface Pulled up or down through a resistor or driven dynamically from an external source to indicate whether the shared SPI is a master or slave.

⁽¹⁾ The SCK, SS, SDI, and SDO pins are shared between the system controller and the FPGA fabric. When the system controller's SPI is enabled and configured as a master, the system controller hands over the control of the SPI to the fabric (after device power-up).

1.8.3 SPI Slave Mode Programming

The following figure shows the board-level connectivity for SPI slave mode programming in PolarFire SoC devices.

Figure 1-8. SPI Slave Mode Programming

1.9 Special Pins

For information about special pins, see UG0902: PolarFire SoC FPGA Packaging and Pin Descriptions User Guide.

1.10 Transceiver

Transceiver blocks are located on the east corner of the PolarFire SoC device. PolarFire SoC devices support PCle interface, which supports only Transceiver quad 0.

For more information about implementing PCle interfaces, see PolarFire FPGA and PolarFire SoC FPGA PCI Express User Guide. For more information about implementing other transceiver based interfaces and power supplies, see PolarFire FPGA and PolarFire SoC FPGA Transceiver User Guide.

The PolarFire SoC MPFS250T-FCG1152 device includes:

- Four Transceiver Quads (4 Lanes per Quad) XCVR_[3:0].
- The embedded PCIe controller subsystem (PCIESS) is available only within Quad 0 or XCVR 0 Lane.

For more information about supported I/O standards, see PolarFire FPGA and PolarFire SoC FPGA User I/O User Guide.

1.10.1 Reference Clock

A transceiver reference clock is delivered to each transmit PLL for transmit functions and to each receiver lane for receive clock data recovery (CDR).

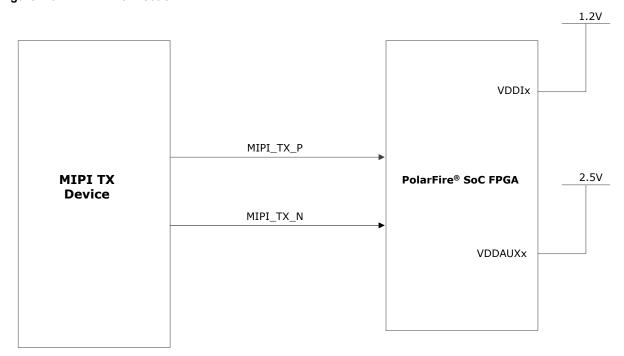
1.10.1.1 Transceiver Reference Clock Requirements

The following are requirements for the transceiver reference clock:

- · When differential clock input is provided to the reference clock:
 - ODT must be enabled for transceiver reference clock pins.
 - Must be within the range of 20 MHz to 400 MHz.
- Must be within the tolerance range of I/O standards. The reference input buffer is provided and is expected to support these input standards directly without external components on the board. The reference I/O standards

such as LVCMOS25, SSTL18, LVDS25, and HCSL25 are supported. For more information, see the "Reference Clock Input Buffer Standards" table in PolarFire FPGA and PolarFire SoC FPGA Transceiver User Guide.

See the PCI Express Base specification Rev 2.1 for detailed PHY specifications. Also, see the PCIe Add-in Card Electro-Mechanical (CEM) specifications.


1.11 MIPI Hardware Design Guidelines

The following sections discuss the guidelines for MIPI RX and TX interface with PolarFire SoC device.

1.11.1 MIPI RX

The MIPI RX is supported only in GPIO Bank. The corresponding Bank voltage (VDDI), and VDDAUX voltage must be connected as shown in the following figure.

Figure 1-9. MIPI RX Connection

MIPI RX signal connections are as follows:

- · Four data and clock must be within one DDR Lane.
- Connect the data signals to adjacent DDR Lanes, if more than four data signals are available.
- The MIPI RX clock must be connected to a CLKIN pin.

For more information about DDR_Lane, see PolarFire SoC Packaging Pin Assignment Table.

1.11.2 MIPI TX

The MIPI Low Power (LP) signals should be connected to a 1.2 V GPIO/HSIO Bank supply. High-speed signals should be connected to a 2.5 V GPIO Bank supply. Select the HS and LP pins in adjacent pins to minimize the LP stub. The HS data and clock signals should be in one DDR_Lane. For more information about DDR_Lane information, see PolarFire SoC Packaging Pin Assignment Table.

The MIPI TX standard can be implemented by using the resistor divider network for Low Power (LP) and High Speed (HS) signals, as shown in the following figure. The resistor values mentioned in the following provide a throughput upto of 1 Gpbs.

PolarFire® SoC FPGA VDDI = 1.2 VLP-N 49.9 Ω MIPI TX N LVCMOS12 **GPIO/HSIO** MIPI RX Bank **Device** LP-P 49.9 Ω MIPI TX P LVCMOS12 VDDI = 2.5 V330 Ω HS-P $\Lambda\Lambda\Lambda$ LVCMOS25 330 Ω HS-N **GPIO Bank W**

Figure 1-10. MIPI TX Connections

Note: Run the PDC verification in the Libero SoC tool before moving to layout. To know about MIPI RX electrical characteristics, see PolarFire SoC FPGA Advance Datasheet.

For information about the MIPI layout guidelines, see 3.1 MIPI.

1.12 AC and DC Coupling

Each transmit channel of a PCIe lane must be AC-coupled to allow link detection. Capacitors used for AC coupling must be external to the device and large enough to avoid excessive low-frequency drops when the data signal contains a long string of consecutive identical bits. For non-PCIe applications, Microchip recommends that a PolarFire SoC device receives inputs that are AC-coupled to prevent common-mode mismatches between devices. Suitable values (for example, $0.1~\mu\text{F}$) for AC-coupling capacitors must be used to maximize link signal quality and must conform to PolarFire SoC FPGA Advance Datasheet electrical specifications.

For lower data rates as per the datasheet, DC coupling is supported by PolarFire SoC Transceiver Tx and Rx interfaces through a configuration option. If a PolarFire SoC transmitter is used to drive a PolarFire SoC receiver in DC-coupled mode, select the lowest common mode settings for the transmitter.

1.13 Brownout Detection

The PolarFire SoC FPGA functionality is guaranteed only if VDD is above the recommended level specified in the Datasheet. Brownout detection occurs when VDD drops below the minimum recommended operating voltage. When this occurs, the device operation may not be reliable. The design might continue to malfunction even after the supply is brought back to the recommended values because parts of the device might have lost functionality during brownout. The VDD supply is protected by an built-in brownout detection circuit.

2. Board Design Checklist

This chapter provides a set of hardware board design checks for designing hardware using Microchip PolarFire SoC FPGAs. The checklists provided in this chapter are a high-level summary checklist to assist the design engineers in the design process.

2.1 Prerequisites

Ensure to go through the following before reading this chapter:

- Introduction
- Appendix: General Layout Design Practices

This checklist is intended as a guideline only. The PolarFire SoC family consists of SoC FPGAs ranging from densities of 100K to 400K Logic Elements (LEs).

2.2 Design Checklist

The following table lists the various checks that design engineers must take care while designing a system.

Table 2-1. Design Checklist

Guideline	Yes/No	Remarks
Prerequisites		
 See PolarFire SoC FPGA Advance Datasheet. See PolarFire SoC FPGA Packaging and Pin Descriptions User Guide. 	_	_
Refer to the board-level schematics of PolarFire SoC Evaluation Kit	_	_
Device Selection		
Check for available device variants for PolarFire SoC FPGA — Select a device based on I/O pin count, transceivers, package, phase-locked loops (PLLs), and speed grade	_	_
Check device errata in PolarFire SoC FPGA Errata (yet to be published)	_	_
Design Checklist		
Power Analysis Download the PolarFire SoC FPGA Power Estimator and check for the power budget. For more information, see UG0897: PolarFire SoC FPGA Power Estimator User Guide.	_	_
Power Supply Checklist See Power Supplies for used power rails. See Unused Power Supply and Figure 1-3 for unused rails.	_	_
Decoupling Capacitors Follow f06a0512d91123c599abf9589d45000f356cec8f.xml. Perform PI Analysis for any deviation from the recommended capacitors.	_	_
Clocks		
For more information about dynamic phase shift ports, see Table 6 of PolarFire FPGA and PolarFire SoC FPGA Clocking Resources User Guide. The XCVR reference clock ranges from 20 MHz to 400 MHz.	_	_

continued Guideline	Yes/No	Remarks
The global clock network can be driven by any of the following: - Preferred clock inputs (CLKIN_z_w)	_	_
- On-chip oscillators		
- CCC (PLL/DLL)		
- XCVR interface clocks		
High-Speed I/O Clocks		
High-speed I/O clock networks can be driven by I/O or CCCs. The high-speed I/O clocks can feed reference clock inputs of adjacent CCCs through hardwired connections.		
ccc		
The CCC can be configured to have a PLL or DLL clock output, driving a high-speed I/O clock network.		
Global buffer (GB) can be driven through the dedicated global I/O, CCC or fabric (regular I/O) routing. The global network is composed of GBs to distribute low-skew clock signals or high-fanout nets. Dedicated global I/O drive the GBs directly and are the primary source for connecting external clock inputs (to minimize the delay) to the internal global clock network.	_	_
For more information about global clock network, see PolarFire FPGA and PolarFire SoC FPGA Clocking Resources User Guide.		
Reset	1	1
For more information about DEVRST_N and user reset, see 1.6 Reset.	_	_
DDR Interface		
For more information about DDR routing and topology, see PolarFire FPGA and PolarFire SoC FPGA Memory Controller User Guide.	_	_
Programming and Debugging Scheme For programming and debugging information, see 1.8 Device Programming.	_	_
XCVR		
For more information about XCVR, see PolarFire FPGA and PolarFire SoC FPGA Transceiver User Guide.	_	_
For I/O gearing interfaces, place the clocks and data based on the defined requirements by selecting the correct I/O. For more information about the placement of User I/O, see PolarFire FPGA and PolarFire SoC FPGA User I/O User Guide.	_	_
There is one IO_CFG_INTF pin available, which can be used as input.	_	_
See the bank location diagrams in the UG0902: PolarFire SoC FPGA Packaging and Pin Descriptions User Guide to assess the preliminary placement of major components on PCB.	_	_

2.3 Layout Checklist

The following table lists the layout checklist.

Table 2-2. Layout Checklist

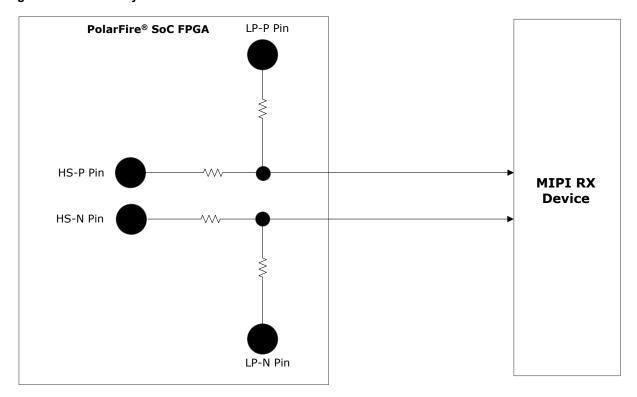
Guideline	Yes/No
Power	
Are the 0402 or lesser size capacitors used for all decapacitors?	_
Is the required copper shape provided to core voltage?	_
Are the required copper shape and sufficient vias provided to voltages?	_
Are VREF planes for the DDRx reference supply isolated from the noisy planes?	_
Are sufficient number of decoupling capacitors used for the DDRx core and VTT supply?	_
Is one 0.1 µF capacitor for two VTT termination resistors used for DDRx?	_
Is the VTT plane width sufficient?	_
DDR Memories	
Are the length-match recommended by Micron followed for DDR memories?	_
XCVR	
Are the length-match recommendations for XCVR followed?	_
Are DC blocking capacitors required for PCle interface?	_
Is tight-controlled impedance maintained along the XCVR traces?	_
Are differential vias well designed to match XCVR trace impedance?	_
Are DC blocking capacitor pads designed to match XCVR trace impedance?	_
Dielectric Material	
Is proper PCB material selected for critical layers?	_

3. **Appendix: General Layout Design Practices**

This chapter provides guidelines for the hardware board layout that incorporates PolarFire SoC devices. The guidelines mentioned in this document act as a supplement to the standard board-level layout practices.

This chapter is intended for readers who are familiar with the PolarFire SoC FPGA chip, experience in digital board layout, and know about line theory and signal integrity.

3.1 MIPI


MIPI RX Layout Guidelines:

The data and clock must be matched within 20 mils in PCB.

MIPI TX Layout Guidelines:

As shown in Figure 3-1, the LP and HS resistors must be close to the PolarFire SoC device pin. The HS signals should be routed to LP resistors to minimize the LP signals PCB stub length. The LP signals stub should be less than 500 mils. The data lane and clock should be length matched within 20 mils. Eight inches are the maximum length supported.

Figure 3-1. MIPI TX Layout

3.2 **Transceiver**

Transceivers are high-speed serial connectivity with

built-in, multi-gigabit, and multi-protocol transceivers from 250 Mbps to 12.7 Gbps. For these transceiver-based interfaces, the system designer must be familiar with the industry specifications, transceivers technology, or RF/microwave PCB design. However, the PCB design can be evaluated by a knowledgeable highspeed digital PCB designer.

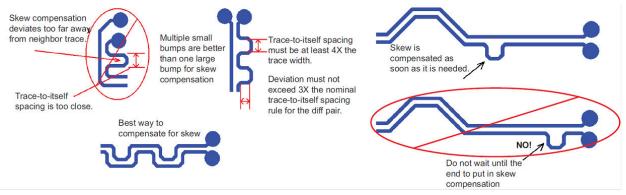
DS60001681B-page 23 **User Guide** © 2021 Microchip Technology Inc.

3.2.1 **Layout Considerations**

This section describes differential traces and skew matching, which must be taken care while designing the PCB layout.

3.2.1.1 **Differential Traces**

A well-designed differential trace must have the following qualities:


- No mismatch in impedance
- Insertion loss and return loss
- Skew within the differential traces The following points must be considered while routing the high-speed differential traces to meet the previous qualities.
- The traces should be routed with tight length matching (skew) within differential traces. Asymmetry in length causes conversion of differential signals in Common mode signals.
- The differential pair should be routed such that the skew within differential pairs is less than 5 mils. The length match should be used by matching techniques.

3.2.1.2 Skew Matching

The length of differential lanes should be matched within the TX and RX group. This applies only to specific protocols such as XAUI.

The following figure shows the skew matching.

Figure 3-2. Skew Matching

Differential pairs should be routed symmetrically in-to and out of structures, as shown in the following figure.

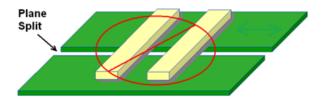
Figure 3-3. Example of Asymmetric and Symmetric Differential Pairs Structure

Skin effect dominates as the speed increases. To reduce the skin effect, the width of the trace must be increased (loosely coupled differential traces). Increase in trace width causes increase in dielectric losses. To minimize dielectric loss, use low dissipation factor (DF) PCB materials such as

Nelco 4000-13EP SI. Cost is significantly higher than FR4 PCB material, but FR4 PCB material cannot provide increased eye-opening when longer trace interconnections are required. Ensure that a 85 - 100 Ω differential impedance is maintained. This is an important guideline to be followed if the data rate is 5 Gbps or higher.

Far end crosstalk is eliminated by using stripline routing. However, this type of routing in stripline causes more dielectric loss. In order to minimize dielectric loss, it is better to route as a microstrip if there is enough space between differential pairs (>4 times the width of the conductor). Simulations are recommended to see the best possible routing.

Instruct the fabrication vendor to use these PCB materials before manufacturing.


DS60001681B-page 24 **User Guide** © 2021 Microchip Technology Inc.

Transceiver traces must be kept away from the aggressive nets or clock traces. For example, on MPF300 devices, the transceiver and DDR traces should not be adjacent to each other. Trace stubs must be avoided.

It is recommended to use low roughness, that is, smooth copper. As the speed increases, insertion loss due to the copper roughness increases. The attenuation due to skin effect is increased proportional to the square root of frequency. Microchip recommends instructing the PCB fabrication house to use smooth copper, if the frequency exceeds 2 Gbps.

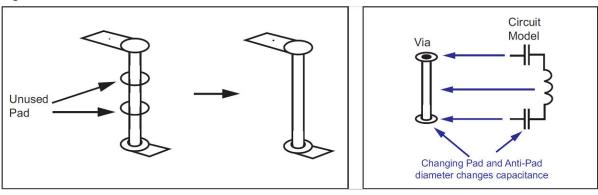
Split reference planes should be avoided. Ground planes must be used for reference for all transceiver lanes.

Figure 3-4. Ground Planes for Reference

3.2.1.3 Via

The target impedance of vias is designed by adjusting the pad clearance (anti-pad size). Field solver should be used to optimize the via according to the stack-up.

Anti-Pad
Pad
Via Barrel
Copper Planes Typ.


Figure 3-5. Via Illustration

- · Many vias on different traces should be avoided or minimized as much as possible.
- The length of via stubs should be minimized by back-drilling the vias, routing signals from the near-top to the near-bottom layer, or using blind or buried vias. Using blind-vias and back drilling are good methods to eliminate via stubs and reduce reflections.

DS60001681B-page 25

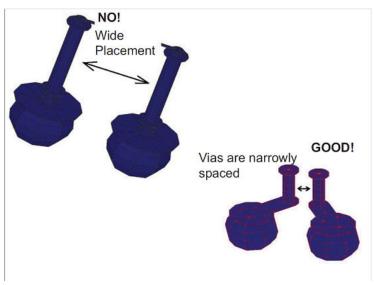

• If feasible, non-functional pads should be removed. Non-functional pads on-via are the pads where no trace is connected. This reduces the via capacitance and stub effect of pads.

Figure 3-6. Non-Functional Pads of Via

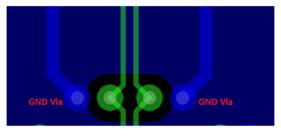
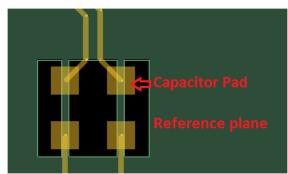

Using tight via-to-via pitches helps reducing the effect of crosstalk, as shown in the following figure.

Figure 3-7. Via-to-Via Pitch

Symmetrical ground vias (return vias) should be used to reduce discontinuity for Common mode signal components, as shown in the following figure. Common mode of part of the signal requires continuous return path for TX and RX to GND. Return vias help maintain the continuity.

Figure 3-8. GND Via or Return Via



3.2.2 DC Blocking Capacitors

The plane underneath the pads of DC blocking capacitors should be removed, as shown in the following figure, to match the impedance of the pad to 50 Ω .

DS60001681B-page 26

Figure 3-9. Capacitor Pad Reference Plane

4. Revision History

The revision history describes the changes that were implemented in the document. The changes are listed by revision, starting with the current publication.

Revision	Date	Description
В	10/2021	 The following is a summary of changes made in this revision. Updated Table 1-5 for power-up and power-down sequencing requirements for mitigating I/O glitch. Added recommended 1 nF, 2.2 nF, 10 nF, and 0.1 µF decoupling capacitors of the 0402 size for the 1 mm package. See Table 1-4. Added more information in new footnotes for VDD and VDDA in Table 1-1. Added footnotes for Table 1-2 and Table 1-3 to specify the objective of decoupling capacitors.
A	01/2021	 The following is a summary of changes made in this revision. Updated 1.2 I/O Glitch. Updated 1.1.2 Unused Power Supply. Migrated this document from Microsemi format to Microchip format. Document number is changed from 50200901 to DS60001681A
1.0	_	The first publication of this document.

Microchip FPGA Support

Microchip FPGA products group backs its products with various support services, including Customer Service, Customer Technical Support Center, a website, and worldwide sales offices. Customers are suggested to visit Microchip online resources prior to contacting support as it is very likely that their queries have been already answered.

Contact Technical Support Center through the website at www.microchip.com/support. Mention the FPGA Device Part number, select appropriate case category, and upload design files while creating a technical support case.

Contact Customer Service for non-technical product support, such as product pricing, product upgrades, update information, order status, and authorization.

- From North America, call 800.262.1060
- From the rest of the world, call 650.318.4460
- Fax, from anywhere in the world, 650.318.8044

The Microchip Website

Microchip provides online support via our website at www.microchip.com/. This website is used to make files and information easily available to customers. Some of the content available includes:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's
 guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQs), technical support requests, online discussion groups, Microchip design partner program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

Product Change Notification Service

Microchip's product change notification service helps keep customers current on Microchip products. Subscribers will receive email notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, go to www.microchip.com/pcn and follow the registration instructions.

Customer Support

Users of Microchip products can receive assistance through several channels:

- · Distributor or Representative
- Local Sales Office
- Embedded Solutions Engineer (ESE)
- Technical Support

Customers should contact their distributor, representative or ESE for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in this document.

Technical support is available through the website at: www.microchip.com/support

Microchip Devices Code Protection Feature

Note the following details of the code protection feature on Microchip devices:

- · Microchip products meet the specifications contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is secure when used in the intended manner and under normal conditions.

DS60001681B-page 29

- There are dishonest and possibly illegal methods being used in attempts to breach the code protection features of the Microchip devices. We believe that these methods require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Attempts to breach these code protection features, most likely, cannot be accomplished without violating Microchip's intellectual property rights.
- Microchip is willing to work with any customer who is concerned about the integrity of its code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code protection does not mean that we are guaranteeing the product is "unbreakable." Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Legal Notice

Information contained in this publication is provided for the sole purpose of designing with and using Microchip products. Information regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications.

THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS". MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED. WRITTEN OR ORAL. STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT. SPECIAL, PUNITIVE, INCIDENTAL OR CONSEQUENTIAL LOSS, DAMAGE, COST OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW. MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THE INFORMATION. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk. and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AnyRate, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, HELDO, IGLOO, JukeBlox, KeeLog, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PackeTime, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AgileSwitch, APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, FlashTec, Hyper Speed Control, HyperLight Load, IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider, WinPath, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, Augmented Switching, BlueSky, BodyCom, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, Espresso T1S, EtherGREEN, IdealBridge, In-Circuit Serial Programming, ICSP, INICnet, Intelligent Paralleling, Inter-Chip Connectivity, JitterBlocker, maxCrypto, maxView, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, RTAX, RTG4, SAM-ICE, Serial Quad I/O, simpleMAP, SimpliPHY, SmartBuffer, SMART-I.S., storClad, SQI, SuperSwitcher, SuperSwitcher II, Switchtec, SynchroPHY, Total Endurance, TSHARC, USBCheck, VariSense,

VectorBlox, VeriPHY, ViewSpan, WiperLock, XpressConnect, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2021, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-5224-9105-7

Quality Management System

For information regarding Microchip's Quality Management Systems, please visit www.microchip.com/quality.

Worldwide Sales and Service

AMERICAS	ASIA/PACIFIC	ASIA/PACIFIC	EUROPE
Corporate Office	Australia - Sydney	India - Bangalore	Austria - Wels
2355 West Chandler Blvd.	Tel: 61-2-9868-6733	Tel: 91-80-3090-4444	Tel: 43-7242-2244-39
Chandler, AZ 85224-6199	China - Beijing	India - New Delhi	Fax: 43-7242-2244-393
Tel: 480-792-7200	Tel: 86-10-8569-7000	Tel: 91-11-4160-8631	Denmark - Copenhagen
Fax: 480-792-7277	China - Chengdu	India - Pune	Tel: 45-4485-5910
Technical Support:	Tel: 86-28-8665-5511	Tel: 91-20-4121-0141	Fax: 45-4485-2829
www.microchip.com/support	China - Chongqing	Japan - Osaka	Finland - Espoo
Web Address:	Tel: 86-23-8980-9588	Tel: 81-6-6152-7160	Tel: 358-9-4520-820
www.microchip.com	China - Dongguan	Japan - Tokyo	France - Paris
Atlanta	Tel: 86-769-8702-9880	Tel: 81-3-6880- 3770	Tel: 33-1-69-53-63-20
Duluth, GA	China - Guangzhou	Korea - Daegu	Fax: 33-1-69-30-90-79
Tel: 678-957-9614	Tel: 86-20-8755-8029	Tel: 82-53-744-4301	Germany - Garching
Fax: 678-957-1455	China - Hangzhou	Korea - Seoul	Tel: 49-8931-9700
Austin, TX	Tel: 86-571-8792-8115	Tel: 82-2-554-7200	Germany - Haan
Tel: 512-257-3370	China - Hong Kong SAR	Malaysia - Kuala Lumpur	Tel: 49-2129-3766400
Boston	Tel: 852-2943-5100	Tel: 60-3-7651-7906	Germany - Heilbronn
Westborough, MA	China - Nanjing	Malaysia - Penang	Tel: 49-7131-72400
Tel: 774-760-0087	Tel: 86-25-8473-2460	Tel: 60-4-227-8870	Germany - Karlsruhe
Fax: 774-760-0088	China - Qingdao	Philippines - Manila	Tel: 49-721-625370
Chicago	Tel: 86-532-8502-7355	Tel: 63-2-634-9065	Germany - Munich
Itasca, IL	China - Shanghai	Singapore	Tel: 49-89-627-144-0
Tel: 630-285-0071	Tel: 86-21-3326-8000	Tel: 65-6334-8870	Fax: 49-89-627-144-44
Fax: 630-285-0075	China - Shenyang	Taiwan - Hsin Chu	Germany - Rosenheim
Dallas	Tel: 86-24-2334-2829	Tel: 886-3-577-8366	Tel: 49-8031-354-560
Addison, TX	China - Shenzhen	Taiwan - Kaohsiung	Israel - Ra'anana
Tel: 972-818-7423	Tel: 86-755-8864-2200	Tel: 886-7-213-7830	Tel: 972-9-744-7705
Fax: 972-818-2924	China - Suzhou	Taiwan - Taipei	Italy - Milan
Detroit	Tel: 86-186-6233-1526	Tel: 886-2-2508-8600	Tel: 39-0331-742611
Novi, MI	China - Wuhan	Thailand - Bangkok	Fax: 39-0331-466781
Tel: 248-848-4000	Tel: 86-27-5980-5300	Tel: 66-2-694-1351	Italy - Padova
Houston, TX	China - Xian	Vietnam - Ho Chi Minh	Tel: 39-049-7625286
Tel: 281-894-5983	Tel: 86-29-8833-7252	Tel: 84-28-5448-2100	Netherlands - Drunen
Indianapolis	China - Xiamen		Tel: 31-416-690399
Noblesville, IN	Tel: 86-592-2388138		Fax: 31-416-690340
Tel: 317-773-8323	China - Zhuhai		Norway - Trondheim
Fax: 317-773-5453	Tel: 86-756-3210040		Tel: 47-72884388
Tel: 317-536-2380			Poland - Warsaw
Los Angeles			Tel: 48-22-3325737
Mission Viejo, CA			Romania - Bucharest
Tel: 949-462-9523			Tel: 40-21-407-87-50
Fax: 949-462-9608			Spain - Madrid
Tel: 951-273-7800			Tel: 34-91-708-08-90
Raleigh, NC			Fax: 34-91-708-08-91
Tel: 919-844-7510			Sweden - Gothenberg
New York, NY Tel: 631-435-6000			Tel: 46-31-704-60-40 Sweden - Stockholm
San Jose, CA			Tel: 46-8-5090-4654
Tel: 408-735-9110			UK - Wokingham
Tel: 408-436-4270			Tel: 44-118-921-5800
Canada - Toronto Tel: 905-695-1980			Fax: 44-118-921-5820
Fax: 905-695-2078			
I an. 300-030-2070			