PolarFire FPGA

Tcl Commands Reference Guide
Libero SoC v12.2

NOTE: PDF files are intended to be viewed on the printed page; links and cross-references in this PDF file
may point to external files and generate an error when clicked. View the online help included with
software to enable all linked content.

& Microsemi

a KX\ MicrocHIP company

PolarFire FPGA Tcl Commands Reference Guide

& Microsemi

a A\ MicrocHIP company

Microsemi Corporate
Headquarters

One Enterprise, Aliso Viejo,

CA 92656 USA

Within the USA: +1 (800) 713-4113
Outside the USA: +1 (949) 380-6100
Fax: +1 (949) 215-4996

Email:
sales.support@microsemi.com
www.microsemi.com

©2019 Microsemi Corporation. All
rights reserved. Microsemi and the
Microsemi logo are registered
trademarks of Microsemi
Corporation. All other trademarks and
service marks are the property of
their respective owners.

& Microsemi

a RS\ MicrocHIP company

Microsemi makes no warranty, representation, or guarantee regarding the information contained
herein or the suitability of its products and services for any particular purpose, nor does
Microsemi assume any liability whatsoever arising out of the application or use of any product or
circuit. The products sold hereunder and any other products sold by Microsemi have been
subject to limited testing and should not be used in conjunction with mission-critical equipment
or applications. Any performance specifications are believed to be reliable but are not verified,
and Buyer must conduct and complete all performance and other testing of the products, alone
and together with, or installed in, any end-products. Buyer shall not rely on any data and
performance specifications or parameters provided by Microsemi. It is the Buyer's responsibility
to independently determine suitability of any products and to test and verify the same. The
information provided by Microsemi hereunder is provided “as is, where is” and with all faults,
and the entire risk associated with such information is entirely with the Buyer. Microsemi does
not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP rights,
whether with regard to such information itself or anything described by such information.
Information provided in this document is proprietary to Microsemi, and Microsemi reserves the
right to make any changes to the information in this document or to any products and services
at any time without notice.

About Microsemi

Microsemi Corporation (NASDAQ: MSCC) offers a comprehensive portfolio of semiconductor
and system solutions for aerospace & defense, communications, data center and industrial
markets. Products include high-performance and radiation-hardened analog mixed-signal
integrated circuits, FPGAs, SoCs and ASICs; power management products; timing and
synchronization devices and precise time solutions, setting the world's standard for time; voice
processing devices; RF solutions; discrete components; enterprise storage and communication
solutions; security technologies and scalable anti-tamper products; Ethernet solutions; Power-
over-Ethernet ICs and midspans; as well as custom design capabilities and services. Microsemi
is headquartered in Aliso Viejo, California, and has approximately 4,800 employees globally.
Learn more at www.microsemi.com.

5-02-00754-9/08.19

http://www.microsemi.com/
mailto:sales.support@microsemi.com
http://www.microsemi.com/

PolarFire FPGA Tcl Commands Reference Guide

& Microsemi

a A3\ MicrRocHIP company

Table of Contents

Table of CoONtENtSoeiieiieie e ee e e e enas

Introduction to Tcl Scripting........ccooeciciiinnnniinnneee.

Tcl Commands and Supported Families.............ccccevvveeiiiiennnnn,
Tcl Command Documentation Conventionscccceeevvveeeeeee.
BasiC SYNtaX ...ccoiiiiiiiiiiiiiiieee e
Types of Tcl commands...........uveeeiiiiiiiieiice e
Variables ..o
Command substitution.................c
Quotes and braces ...
ListS @Nd @rrayscccovvviiiiiiiii e
Control Structurescoiiiiiiiiee e
Print statement and Return values.................coo
Running Tcl Scripts from the Command Line.................cccevuneen.
Exporting Tcl Scripts.......viiiii
extended run_lib.......ccooooiiiiiii e
Sample Tcl Script - Project Manager............ccccuveeeeieeiniiiiiiieenn.
How to Derive Required Part Information from A "Part Number"

Project Manager Tcl Commands.........ccccceeveveveeenenns

add_file_to_libraryceeeviiiiiiiiiiiiiiiiiieeeeeeee e
Add_lIBraryooooeie e
add_modelsim_path ...
add_Profileooeeiiie s
associate_StmuUIUS ..o
change liNK_SOUICE.........coiiiiiiiieiice e
change_vault_locationcooevviiiiiiiiiieecee e
check_fdc_constraints..........ccccoooiiiii
CheCk Ndl.......oeiii i
check_ndc_constraints ...
check pdc _constraints.........ccooveviiiiiii e
check_sdc_constraints ...
(o1 [0 XYY o L=< o | o 1S PSSP
ClOSE_PrOJECE ... e
(ofo] 0] o[V (I ole TSRS
(ofo]) o [(=100 (oo] SRR
create_and_configure_core............cccccoeeeiiiii
Create _Sel ...
Create liNKSo e
create_sMartdesSigncoevveeiiieiiiiii e
delete_component....... ..o

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

o o)] (o= To [oo (X 34
fo o)] oT=To [F=1 (=15 A oo] (=Y SR 35
1= L1 G o) 1= T 35
L= Te L A= LT 1 RPN 36
Lo Yo T o X TN 11T S 36
export_bitstream _fil€oooiiiii i e 37
L=t o Yo o X=To I 11 Y 39
export._component t0 fCl.. ... 40
(oo Te g ae LY o TS 10 0 0] 4 F= TSP 40
1= o Yo o T Yo [41
eXPOIt_IDIS_flE ...oiieeeieei i e aaaana 41
(=3 o o S o T oY o PRI 41
eXPOrt_ NELIST file.....uuee i 42
(o3 ool i o) [T (=] 0T 1 £ TP 42
[(o To L A o) o)1 1T 43
(=3 o To T i o] (oo 1 (o] TSR 44
Lo To L A= d 1] o) SRR 45
(o[g LT = 1 (=T o] ¥ o 1o 1 1= o | 45
generate_sdc_constraint_COVEIageo.uuu i eaeeeees 46
IMPOrt_files (LIDEIO SOC) ...uiuuiii it e e e e et e e e e e e e e aaaaan s 46
T2 o (o] =T o ST 48
o] o= T o (] =T o1 SRR 51
[o] o =T a1 0 0 F= Ty (o L= o o RSP 52
ol Yo =l v4= R ofo) a 1] (=11 0] £ SPP 52
OFQJANIZE_SOUFCES ...eeeeeeeieiietieieeeteeeeeeeeeeeeee et et e et e e e et s st et e et s ettt ettt e e ettt ettt st e et e et et e e bbb bbb bbb bbnbnnnes 53
Lol yo F= 1] v4= Y (o To] I 11T PP 54
o] o)1= Yo Y= 4] o [55
T TS N 56
=Y 00101 7= o] = 57
FEMOVE_IDraryo 57
=10 LoV =Y o] (o1 = S 57
rename _file ... 58
=T F=Ta =T 1 o] = o 58
0 T (o o | PR 58
LT V=T o) o) [=ox S = 1 PPN 60
LSz 1YL= o T PP 61
LT V=T o] o)< T SSPRRR 62
L2 =TT 0 = L (o [T oo PP 62
LT[o A o) 1 = 62
Sset_actel_lID OPtiONS ... 63
ST = Eo T =1 o = O PR 63
set_device (ProjeCt Manager)cioeiiiiiiiii e e e e e e e e eaae 64
Set_MOdelSIM_OPHIONSot eaaenae 65
= 1 0] o[Y 66
L1100) 1 o] TSRS 67
LT (oo AR RPN 67

PolarFire FPGA Tcl Commands Reference Guide

set_user_lib_options...........oooeiiiiiiii
UNINK oo
unset_as_target.........ccoooiiiiiiiiiii
use_source fileccvviiiiiiii

SmartDesign Tcl Commands

sd_add_pins_to_groupcceeeuiiiiiiiiiiiiiiie e,
sd_clear_pin_attributes.........ccccccoooiiiiiiiiiiii
sd_configure_core_instance.........ccccccvevveveevveveeeennnns
sd_connect_instance_pins_to ports...............cceeees
sd_connect_net to pinS.......coeiiiiiiiiii e,
sd_connect_pins _to _constant.............ccccceeeeiiiiennne,
sd_connect_pin_to port.........ccccceeveiiiiiiiiiii e,
SA_CONNECE_PINS....ocuvuiiiiiiiiiiiiie e
sd_create bif net. ...,
sd_create_bif port........ccccevviviiiiiiiiiiiiiiiiieias
sd_create bus Net..........cceevvvviiiiiiiiiee e,
sd_create_bus_port.........coooiiiii
sd_create _pin_group.......cccceevvveeiiieeeeeeiee e
sd_create_pin_sliCes ..o,
sd_create_scalar net.........cccccceeeiiiiiiieiiiiee e,
sd_create_scalar_port........cccccceeeiiiiiiieiiiii e,
sd_delete_instances...........iiiiiiiiiiii
sd_delete nets........cceeiiiiiiiiiice e,
sd_delete_pin_groupccooeeuiiiiiiiiiii e,
sd_delete_pin_slicesccccvvvveeiiiiiiieiiiie e,
sd_delete_ports..........oiiiiiiii
sd_disconnect _instance.............ccoooeevveeiiiiiiiiee e,
sd_disconnect_pPiNs.........coovveiiiiiiiiiii e
sd_duplicate_instance.........cccccceeeiiiiiieiiiiein e,
sd_hide_bif pins......ccccooviiiiiiiiii e,
sd_instantiate_component...............cccccoiiii.
sd_instantiate_Ccoreccccciiiiii e,
sd_instantiate_hdl _core........cc.cccooiiiiiiii,
sd_instantiate_hdl module..............ccoeeviiiiiiiiinnnnn.
sd_instantiate_macro..........cccccceiii i,
SA_INVErt_PINS ...cooveiiieiie e
sd_mark_pins_unused..........coeiiiiiiiiiiiiii e
sd_remove_pins_from_groupcccceveviiieiiiieneennnns
sd_rename_instancecccccceeiiiiiiieeicee e,
sd_rename net ..o,
sd_rename_pin_group........ceeuvveeeeeeereeeerinineeeeeeeeennnn
Sd_rename _pPortoiiiiiiiiii e
sd_save_core_instance_config..........ccccccvieeiiiiennnnnns
sd_show_bif PiNS.......cceeviiiiiiiiiiiiiiiiiiiiiieeeeeeeeiieees
sd_update_instanceccccccviiiiiiiieiiee e,

& Microsemi

a A3\ MicrRocHIP company

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

HDL Core Tcl Commandscoeceeeiiiiiiiiiicceccss s eessescsssss s s s e s e s enmmnssssnsseenes 94
(o= | (=T o | oo YR 94
hdl_core_add_bif.........coooiiiii 94
hdl_core_assign_bif Signal...........ooouuiiiiii i 95
hdl_core_delete_parameEtersoouuuiiiii i 95
hdl_core_extract_ports_and_parameters 96
hdl_Core_remoVve Dif ... e ———— 96
hdl_core_rename_bif...........cccoiiiiii 97
hdl_core_unassign_bif Signal..............ccoiiiiiiiiiiiii e 97
(=10 LoV =Y o Lo | I o] ST 98
(02074104 F=1 2 1o I IX'e T 1 £= 0P 929
CONFIGURE_CHAIN 99
CONFIGURE_PROG _OPTIONS ... 100
GENERATEPROGRAMMINGFILE ... 100
IO_PROGRAMMING _STATEttt a e e e e e e e e e a e e e a s 101
PLACEROUTE ... 101
PROGRAMDEVICE.......co o 104
PROGRAM_SPI_FLASH_IMAGE.........coi it 105
PROGRAMMER _INFO.. .o 106
S M ettt et et e ———t—————————————————————————————_ 107
SYNTHESIZE 110
VERIFYPOWER.uuittiiiiiiiiii s a e e s s s e s e e e e a e e s s e e s e s aaaaenanneeaenennenas 112
VERIFYTIMING ...ttt e e e e e e e e e e e e e e e e a e e e e e e e e e e eeeas 113
SIMULATE ...ttt ettt ettt ettt e e et e e et et et —a— e e a—aa—tararaaaaa 114
SmartTime Tcl Commands ... s s e e e e nnne 115
Lo (== 1 (T o [0 T G 115
create_generated_ClOCK..........ooo e 116
Lo == | (T S 118
123 T= Lo [- |1 o 119
1S3 G o = {1 121
(== o [122
(=T 0 1o A= T = PP 123
1= 0o o S 123
T2 1V RPN 127
L1 (o o3 QR = (=T o o2 A 127
LT A £ 1T Y o - L1 128
LT A] o101 L1 = 129
SEL MAX _AEIAY ... 131
L1 o 01 T L1 = 132
set_ MUIEICYCIE Path...... e 133
L1 o]] 1] 1= 134

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

SmartPower Tcl Commands..........ooiiieeeeiciiiiiiirrecescs e s s e e e s eennnes 137
[gab=Tad oo V=T = To [o [o LoV Aot =Y F- 4 o TP 137
smartpower_add_pin_iN_dOM@iNooouiuuiii i 137
smartpower_battery SettiNgS........coiii i 138
smartpower_change_clock statistiCS............cviiiiiiiiiiiii e 139
smartpower_change_setofpin_statiStiCS.............oviviiiiiiiiiiiiiiiiieeeee 140
[T gab=Td oo /=T o otoT o1 o V1 AP 140
smartpower_CoOmMPULE VECIOMESS.......coiiiiiiii e 141
[gab=Tad oo V=T ot 1= Y= | (=Y e (o]0 = 11 o 1 141
(ST ga b= ad ooy =T Yo 11 G Tot =Y o P-4 o TR 141
[T gab=Tad oo V=T o ¥ o ol o ANV, ot FOR 142
[T ga b= ad oo Y=t T o V1 Ao [T 144
smartpower_init_set_CloCKS OPLIONS.........uuvuiiiiiiiiecce e 146
smartpower _init_set_combinational _OptioNS..............uiiiiiiiiiiii 147
smartpower_init_set_enables_OptioNScooi i 147
smartpower _init_set_primaryinputs_ OptioNS...........oouviiii it 148
smartpower_init_set_registers _ Optionscooo i 148
smartpower_init_setofpins_ ValUEScoouiiiiiiii e 149
smartpower_remove_all_annotations..............ooooiiiii e 149
sSMartpOWeEr_reMOVE_filE.......ooiiiiiii i 150
SMArtPOWEr_FEMOVE_ SCENAIO ... eeeeeeeiiiee e e e e e ee e et a e e e e e e eeeaaa e e e aeeeeeesana e eaaaeenennnnnaaaaans 151
[T gab=Tad oo =T o (=Y oo A Yo 1Y 151
smartpower_set_ Mode _for PAPFcooiiiiiii e 158
smartpower_set_operating_Condition.............cooo i 159
smartpower_set_operating_ conditioNS..........ccooviiiiiiiiiiiii e 159
SMAMPOWET_SEE PIrOCESS ... ceetuieiiit e eeei ettt e e et e et e e et ea e e e eaa e e e eeaa e aeeaa e aeatanaaaeennaaae 160
smartpower_set_temperature_ OPCONG..........coiiiiiiiiiiiiiiie e 161
smartpower_set_voltage OPCONG ..o 161
smartpower_temperature_opcond_set_design Wide€...........ccoevvvviiiiiiiiiieeiiiice e 163
smartpower_temperature_opcond_set_ mode _SpecifiC...............eeeiiiiiiiiiiiiiiii 163
smartpower_voltage opcond_set _design_Widecceiiiiiiiiiiiiiiii e 164
smartpower_voltage opcond_set_ mode _SpecCifiCcccoiviiiiiiiiiiii i, 165
Programming and Configuration Tcl Commands..........cccocceeiiimmrnnnnnnnnne 167
configure_design_initialization_data..............cccoooiiiiiiiii 167
[odo)) e 18] (=T - 10 169
(oo a1 Te TSI 0 1Y/ o [T 169
configure_SPIflash..........uui i ————————— 169
T 1Y O = PPPUPPRRRPPRPPN 170
[odo)) e 18] (=0 1 o o P 172
(oo Yo u Yoy = Y a1 0 = Vo TS 172
generate_design_initialization_data.............cccoooiiiiiiiii 172
generate_initialization_mem_fil€Soooviiiiiiiiiiiiiiiiiiieieeeeeee e 173
remove _PermManent lOCKS.coiiiiiiiie e 174
L1 =Tt T e =1 141 0 =T 174
set_auto_update MOAEo 175

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

set_cipher_text_auth_cCliento 175
LT S 1Y o RSP 176
set_data_storage _Client..... ... i 177
LTS A b= 11U =T (1 =T 178
set_plain_text_auth_client ... 179
Set_Plain_teXt ClIENT......i i e 180
set_programming_iNTEMACEoiiiiiiiiiiiiiiiiiiieeeee ettt e e e seeeerrrrrr e rrrrrre 181
L1 S 1= G o 1= o 181
FlashPro Express Tcl Commandsccccoiiiiiiiiiemmmnnnnn s 183
o] 01T Y o] o= (O 183
configure_flashpProB3 Prg......coooiiiuiiiii i 183
configure_flashpProd Prg.......ooo oo 184
configure_flashproS _Prg.......ccoooi i 184
configure_flashpProB Prg.......cooooiuiiiiiii i 185
create_job_ProjeCt ... 185
Lo 18 a 0] o (o =0T o] o Yo P 186
o] o= o T o (1= o2 A 186
11T TR o]« 186
refresh_prg list. ..o 187
=10 Lo Y=Y o] (o 187
0] T 1= (= Yor =T =Tt 4o] T 187
2= 1Y T Lo o F N 188
L2 1YL= T o (o) (= o1 S 188
[<Ter=T g o2 o =11 o 1 o [189
L1 L (Y3 A o] o TSP 189
1= o] (o T = 0 1 = 2P 189
set_ programming_ACHIONuuuuiiiii e 190
L A Ty o= Ta a a1 aTo TR 1 LY 190
SmartDebug Tcl Commands..........ccccociririrnnrnrirrr s 192
SmartDebug TCl SUPPOIT ..o 192
add_probe _iNSertion _PoOINtcoooiiiiiiii e 194
E= T (o IR (o T o1y o) o T o | {011] R 194
construct_chain_automatically ... 195
Lol =T (ST o] (o] oY o | (o U] o TR 195
Lo =1 L= Lol 1A T o] (o] o1 TR 195
ENADIE ABVICE ... it e et e e e e e e e e e e e e e aea 196
LY=L o010 | (= 196
export_smart_debug_data....... ... 197
L 01 I o7 114 o) RPN 198
L0 L= a LoV 4 T 1 () 199
Lo (=10 ol el [r=Ta gl 0 4= T 1 (o TP 200
load_active_probe list........coooiiiiii 200
[oTo] o] o= Tor (G 14 (oo [= TS PP 200
MOVE_t0_ProDE _GrOUD...cco oo 201

PolarFire FPGA Tcl Commands Reference Guide

program_probe_insertion..............coooiiiiiiiiiiiii e
read_active_probe..........ccccceeeiiiiiiiiiiiiii e,
read_ISramuei e
== Lo IV E] =1 1 o ISP
remove_from_probe _groupcccccceeeiiiiiiiieicee e,
remove_probe_insertion_point...............iiiiieieennn.
run_selected_actions..............cccvveviiiiii e,
save_active_probe_list..........ccoiiiiiiii
SCAN_ChaIN_Prg..ccoieiiiiiii i
select_active_probe...........oooooiiiii
Set_liVe Probe.......oocuiiiiiiii i
set_debug_programmer...............ciiiiiiiiiiiii e
set_programming_actioncccceveeiiiiiiiiiiiin e
set_programming_filecccovviiiiiiiii
smartbert_test ...
static_pattern_transmit..........ccccooeei i,
UNGIOUD ittt ettt ettt e aaaaaaaaaaaaaaaaaaaes
unset_live probe..........oooiiiiiiiiiii e,
UProm_read_MEMOTYccoovvieiieieeeeee e
write_active_probeccccciiiii i
WIEE_ISFaM ...
AL LT VT =1 o RPN
XCVr_read _register.......ccooiveiiiiiiiiiiii e
XCVI_WIite_ regiSterooi i

Configure JTAG Chain Tcl Commands

add_actel_deviCe.......cccoeiiiiiiiiiiie e
add_non_actel_ deviCe.........ooooiiuiiiiiiiei e
add_non_actel _device to database..............cccceevvvinnnnnnn.
construct_chain_automaticallyccccoooiiiii .
(ofo] o)A o (1] (o1 T
(o1U | o [[
enable _deviCeouvviiiiiiiice e
PASte _dEVICEeueii e
FEMOVE _AEVICE ..uvuuiiiiiiiiieiiiee e e e
remove_non_actel_device from_database........................
select_libero_design_deviCecooooiiiiiiiiiiiiiiiiiiiii.
set_ bsdl_file ..o
Set_deVviCe il ...
set_device Namecccevvieiiiiiiic e
set_device _order.........coov oo
set_device tCK.......oouviiiiiii i

& Microsemi

a A3\ MicrRocHIP company

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

L1 o oAVt 1 o = 227
set_ programming_ACHIONcouuuuiiiii e 227
L= A Ty o= Ta L a a1 TaTo TR 1 L 228

& Microsemi

PolarFire FPGA Tcl Commands Reference Guide
a A3\ MicrRocHIP company

Introduction to Tcl Scripting

Tcl, the Tool Command Language, pronounced fickle, is an easy-to-learn scripting language that is compatible

with Libero SoC software. You can run scripts from either the Windows or Linux command line or store and run a

series of commands in a *.tcl batch file.
This section provides a quick overview of the main features of Tcl:

e Basic syntax
e Types of Tcl commands

e Variables
e Command substitution
e Quotes and braces

e Lists and arrays
e Control structures

e Print statement and Return values

For complete information on Tcl scripting, refer to one of the books available on this subject. You can also find
information about Tcl at web sites such as http://www.tcl.tk.

Libero SoC provides additional capabilities and built-in Tcl Commands:

e Exporting Tcl scripts

e extended run lib
e Tcl Commands as specified in this document

Tcl Commands and Supported Families

When we specify a family name, we refer to the device family and all its derivatives, unless otherwise specified.
See Supported Families in the Tcl command help topics for the families supported for a specific Tcl command.

Tcl Command Documentation Conventions

The following table shows the typographical conventions used for the Tcl command syntax.

Syntax Notation Description

command - Commands and arguments appear in Courier New typeface.
argument

variable Variables appear in blue, italic Courier New

typeface. You must substitute an appropriate value

for the variable.

[-argumentvalue] | Optional arguments begin and end with a square bracket with
[variable]+ one exception: if the square bracket is followed by a plus sign
(+), then users must specify at least one argument. The plus
sign (+) indicates that items within the square brackets can
be repeated. Do not enter the plus sign character.

Note: All Tcl commands are case sensitive. However, their arguments are not.

10

http://www.tcl.tk/

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

Examples
Syntax for the get_clocks command followed by a sample command:

get clocks variable

get clocks clkl
Syntax for the backannotate command followed by a sample command:

backannotate -name file name -format format type —language language —dir directory name [-
netlist] [-pin]

backannotate -dir \

{..\design} -name "fanouttest ba.sdf" -format "SDF" -language "VERILOG" \
-netlist

Wildcard Characters

You can use the following wildcard characters in names used in Tcl commands:

Wildcard What it Does
\ Interprets the next character literally
? Matches any single character

Matches any string

[1 Matches any single character among those listed between brackets
(that is, [A-Z] matches any single character in the A-to-Z range)

Note: The matching function requires that you add a slash (\) before each slash in the port, instance, or net
name when using wildcards in a PDC command. For example, if you have an instance named
“A/B12” in the netlist, and you enter that name as “A\VB*” in a PDC command, you will not be able to
find it. In this case, you must specify the name as A\WB*.

Special Characters[], { }, and \

Sometimes square brackets ([]) are part of the command syntax. In these cases, you must either enclose the
open and closed square brackets characters with curly brackets ({ }) or precede the open and closed square
brackets ([]) characters with a backslash (\). If you do not, you will get an error message.

For example:
pin_assign -port {LFSR OUT[0]} -pin 15
or
pin assign -port LFSR OUT\[0\] -pin 180
Note: Tcl commands are case sensitive. However, their arguments are not.

Entering Arguments on Separate Lines

To enter an argument on a separate line, you must enter a backslash (\) character at the end of the preceding line
of the command as shown in the following example:

backannotate -dir \
{..\design} -name "fanouttest ba.sdf" -format "SDF" -language "VERILOG" \
-netlist

See Also
Introduction to Tcl scripting
Basic syntax

11

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

Basic Syntax

Tcl scripts contain one or more commands separated by either new lines or semicolons. A Tcl command consists
of the name of the command followed by one or more arguments. The format of a Tcl command is:

command argl ... argN
The command in the following example computes the sum of 2 plus 2 and returns the result, 4.

expr 2 + 2
The expr command handles its arguments as an arithmetic expression, computing and retuming the result as a
string. All Tcl commands return results. If a command has no result to return, it returns an empty string.
To continue a command on another line, enter a backslash (\) character at the end of the line. For example, the
following Tcl command appears on two lines:

import -format "edif" -netlist naming "Generic" -edif flavor "GENERIC" {prepi.edn}
Comments must be preceded by a hash character (#). The comment delimiter (#) must be the first character on a
line or the first character following a semicolon, which also indicates the start of a new line. To create a multi-line
comment, you must put a hash character (#) at the beginning of each line.

Note: Be sure that the previous line does not end with a continuation character (\). Otherwise, the comment
line following it will be ignored.

Special Characters

Square brackets ([]) are special characters in Tcl. To use square brackets in names such as port names, you
must either enclose the entire port name in curly braces, for example, pin_assign -port {LFSR_OUT[15]} -iostd
Ivttl -slew High, or lead the square brackets with a slash (\) character as shown in the following example:

pin_assign -port LFSR _OUT\[15\] -iostd lvttl -slew High

Sample Tcl Script
#Create a new project and set up a new design
new project -location {D:/2Work/my pf proj} -name {my pf proj} -project description {}\
-block _mode 0 -standalone peripheral initialization 0 -use_enhanced constraint flow 1\
-hdl {VERILOG} -family {PolarFire} -die {MPF300TS_ES} -package {FCG1152} -speed {-1} \
-die voltage {1.0} -part range {EXT} -adv options {IO DEFT STD:LVCMOS 1.8V}\
-adv_options {RESTRICTPROBEPINS:1} -adv_options {RESTRICTSPIPINS:0}\
-adv_options {SYSTEM CONTROLLER SUSPEND MODE:1} -adv_options {TEMPR:EXT} \
-adv_options {VCCI_ 1.2 VOLTR:EXT} -adv_options {VCCI_ 1.5 VOLTR:EXT} \
-adv_options {VCCI_ 1.8 VOLTR:EXT} -adv_options {VCCI 2.5 VOLTR:EXT} \
-adv_options {VCCI_3.3 VOLTR:EXT} -adv_options {VOLTR:EXT}
#Import HDL source file
import files -convert EDN to HDL 0 -hdl source {C:/test/prepl.v}
#Import HDL stimulus file
import files -convert EDN to HDL 0 -stimulus {C:/test/prepltb.v}
#set the top level design name
set_root -module {prepl::work}
#Associate SDC constraint file to Place and Route tool
organize tool files -tool {PLACEROUTE} -file {D:/2Work/my pf proj/constraint/user.sdc} \
-module {prepl::work} -input type {constraint}
#Associate SDC constraint file to Verify Timing tool
organize tool files -tool {VERIFYTIMING} -file
{D:/2Work/my pf proj/constraint/user.sdc}\
-module {prepl::work} -input type {constraint}
#Run synthesize
run_tool -name {SYNTHESIZE}
#Configure Place and Route tool
configure_tool -name {PLACEROUTE} -params {DELAY ANALYSIS:MAX} -params
{EFFORT_LEVEL:false}\

-params {INCRPLACEANDROUTE:false} -params {MULTI_PASS CRITERIA:VIOLATIONS}\
-params {MULTI_PASS LAYOUT:false} -params {NUM MULTI_ PASSES:5} -params {PDPR:false}\

12

PolarFire FPGA Tcl Commands Reference Guide

& Microsemi

a A3\ MicrRocHIP company

-params {RANDOM_SEED:0} -params {REPAIR MIN DELAY:false} -params
{SLACK_CRITERIA:WORST_ SLACK} \

-params {SPECIFIC CLOCK:} -params {START SEED INDEX:1} -params

{STOP_ON_FIRST PASS:false}\

-params {TDPR:true}

#Run Place and Route
run_tool -name {PLACEROUTE}

#Configure Timing Report Generation
configure tool -name {VERIFYTIMING} -run_tool -name {PLACEROUTE}params

{CONSTRAINTS COVERAGE:1}\
-params {FORMAT:XML} -params {MAX TIMING FAST HV LT:0} -params {MAX TIMING SLOW LV HT:1}
\
-params {MAX TIMING SLOW LV LT:0} -params {MAX TIMING VIOLATIONS FAST HV LT:0} \
-params {MAX TIMING VIOLATIONS SLOW LV HT:1} -params

{MAX TIMING VIOLATIONS SLOW LV LT:0}\
-params {MIN TIMING FAST HV LT:1} -params {MIN TIMING SLOW LV HT:0} -params

{MIN TIMING SLOW LV _LT:0} -params {MIN TIMING VIOLATIONS FAST HV LT:1} -params

{MIN TIMING VIOLATIONS SLOW LV _HT:0} \

-params {MIN_ TIMING VIOLATIONS SLOW LV LT:0}

#Run Verify Timing tool

run_tool -name {VERIFYTIMING}

#Run Power Verification tool

run_tool -name {VERIFYPOWER}

#Export bitstream
export bitstream file -file name {prepl} \

-—export dir {D:\2Work\my pf proj\designer\prepl\export} -format {STP} -master file 0 \
-master file components {} -encrypted uekl file 0 -encrypted uekl file components {} \
-encrypted uek2 file 0 -encrypted uek2 file components {} \

-trusted facility file 1 -trusted facility file components {FABRIC}

Types of Tcl commands

This section describes the following types of Tcl commands:

Built-in commands

Procedures created with the proc command

Built-in commands

Built-in commands are provided by the Tcl interpreter. They are available in all Tcl applications. Here are some
examples of built-in Tcl commands:

Tcl provides several commands for manipulating file names, reading and writing file attributes, copying files,
deleting files, creating directories, and so on.

exec - run an external program. Its return value is the output (on stdout) from the program, for example:

set tmp [exec myprog]
puts stdout S$tmp
You can easily create collections of values (lists) and manipulate them in a variety of ways.

You can create arrays - structured values consisting of name-value pairs with arbitrary string values for the
names and values.

You can manipulate the time and date variables.

You can write scripts that can wait for certain events to occur, such as an elapsed time or the availability of
input data on a network socket.

13

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

Procedures created with the proc command

You use the proc command to declare a procedure. You can then use the name of the procedure as a Tcl
command.

The following sample script consists of a single command named proc. The proc command takes three
arguments:
e The name of a procedure (myproc)
o Alist of argument names (arg1 arg2)
e The body of the procedure, which is a Tcl script
proc myproc { argl arg2 } {
procedure body
}

myproc a b

Variables

With Tcl scripting, you can store a value in a variable for later use. You use the set command to assign variables.
For example, the following set command creates a variable named x and sets its initial value to 10.
set x 10

A variable can be a letter, a digit, an underscore, or any combination of letters, digits, and underscore characters.
All variable values are stored as strings.

In the Tcl language, you do not declare variables or their types. Any variable can hold any value. Use the dollar
sign ($) to obtain the value of a variable, for example:

set a l

set b $a

set cmd expr

set x 11

Scmd $x*$x

The dollar sign $ tells Tcl to handle the letters and digits following it as a variable name and to substitute the
variable name with its value.

Global Variables
Variables can be declared global in scope using the Tcl global command. All procedures, including the declaration
can access and modify global variables, for example:
global myvar

Command substitution

By using square brackets ([]), you can substitute the result of one command as an argument to a subsequent
command, as shown in the following example:

set a 12
set b [expr $a*4]
Tcl handles everything between square brackets as a nested Tcl command. Tcl evaluates the nested command

and substitutes its result in place of the bracketed text. In the example above, the argument that appears in
square brackets in the second set command is equal to 48 (that is, 12* 4 = 48).

Conceptually,
set b [expr $a * 4]

expands to

set b [expr 12 * 4]
and then to

set b 48

14

PolarFire FPGA Tcl Commands Reference Guide

& Microsemi

a A3\ MicrRocHIP company

Quotes and braces

The distinction between braces ({ }) and quotes (" ") is significant when the list contains references to variables.
When references are enclosed in quotes, they are substituted with values. However, when references are
enclosed in braces, they are not substituted with values.

Example
With Braces With Double Quotes
setb 2 setb 2
sett{1$b3} sett"1$b3"
sets{[expr$b + $b]} sets"[expr$b + $b]"
puts stdout $t puts stdout $t
puts stdout $s puts stdout $s
will output
1 b 3 VS. 123
[expr $b + $b] 4
Filenames

In Tcl syntax, filenames should be enclosed in braces { } to avoid backslash substitution and white space
separation. Backslashes are used to separate folder names in Windows-based filenames. The problem is that
sequences of “\n” or “\t” are interpreted specially. Using the braces disables this special interpretation and
specifies that the Tcl interpreter handle the enclosed string literally. Alternatively, double-backslash “\n” and “\t”
would work as well as forward slash directory separators “/n” and “/t".For example, to specify a file on your
Windows PC at c:\newfiles\thisfile.adb, use one of the following:

{C:\newfiles\thisfile.adb}
C:\\newfiles\\thisfile.adb
"C:\\newfiles\\thisfile.adb"
C:/newfiles/thisfile.adb
"C:/newfiles/thisfile.adb"
If there is white space in the filename path, you must use either the braces or double-quotes. For example:
C:\program data\thisfile.adb
should be referenced in Tcl script as
{C:\program data\thisfile.adb} or "C:\\program data\\thisfile.adb"
If you are using variables, you cannot use braces {} because, by default, the braces turn off all special

interpretation, including the dollar sign character. Instead, use either double-backslashes or forward slashes with
double quotes. For example:

"$design name.adb"
Note: To use a name with special characters such as square brackets [], you must put the entire name
between curly braces { } or put a slash character \ immediately before each square bracket.
The following example shows a port name enclosed with curly braces:
pin_assign -port {LFSR_OUT[15]} -iostd lvttl -slew High
The next example shows each square bracket preceded by a slash:
pin_assign -port LFSR OUT\[15\] -iostd lvttl -slew High

15

PolarFire FPGA Tcl Commands Reference Guide

& Microsemi

a A3\ MicrRocHIP company

Lists and arrays

Arrays

A list is a way to group data and handle the group as a single entity. To define a list, use curly braces { } and
double quotes “ “. For example, the following set command {1 2 3 }, when followed by the list command, creates a
list stored in the variable "a." This list will contain the items "1," "2," and "3."

set a { 1 2 3}
Here's another example:

set e 2

set £ 3

set a [list b c d [expr $e + S$f]]

puts $a
displays (or outputs):

bcdb5

Tcl supports many other list-related commands such as lindex, linsert, llength, Irange, and lappend. For more
information, refer to one of the books or web sites available on this subject.

An array is another way to group data. Arrays are collections of items stored in variables. Each item has a unique
address that you use to access it. You do not need to declare them nor specify their size.

Array elements are handled in the same way as other Tcl variables. You create them with the set command, and
you can use the dollar sign ($) for their values.

set myarray(0) "Zero"
set myarray(l) "One"
set myarray(2) "Two"

for {set i 0} {$i < 3} {incr i 1} {
Output:

Zero

One

Two

In the example above, an array called "myarray" is created by the set statement that assigns a value to its first
element. The for-loop statement prints out the value stored in each element of the array.

Special arguments (command-line parameters)

You can determine the name of the Tcl script file while executing the Tcl script by referring to the $argv0 variable.
puts “Executing file $argv0”
To access other arguments from the command line, you can use the 1index command and the argv variable:
To read the the Tcl file name:
lindex $argv 0
To read the first passed argument:
lindex $argv 1
Example
puts "Script name is $argv0" ; # accessing the scriptname
puts "first argument is [lindex S$argv 0]"
puts "second argument is [lindex $argv 11"
puts "third argument is [lindex S$argv 2]"
puts "number of argument is [llength Sargv]"
set des _name [lindex $argv 0]

puts "Design name is $des name"

16

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

Control structures

Tcl control structures are commands that change the flow of execution through a script. These control structures
include commands for conditional execution (if-then-elseif-else) and looping (while, for, catch).

An "if" statement only executes the body of the statement (enclosed between curly braces) if the Boolean
condition is found to be true.

iflelse statements

if { “Sname” == “paul” } then {

body if name is paul
} elseif { $code == 0 } then {

body if name is not paul and if value of variable code is zero

} else {

body if above conditions is not true

for loop statement

A "for" statement will repeatedly execute the body of the code as long as the index is within a specified limit.
for { set 1 0 } { $1i < 5 } { incr i } {

body here
}

while loop statement

A "while" statement will repeatedly execute the body of the code (enclosed between the curly braces) as long as
the Boolean condition is found to be true.

while { $p > 0 } |

catch statement

A "catch" statement suspends normal error handling on the enclosed Tcl command. If a variable name is also
used, then the return value of the enclosed Tcl command is stored in the variable.

catch { open “$inputFile” r } myresult

Print statement and Return values

Print Statement
Use the puts command to write a string to an output channel. Predefined output channels are “stdout” and
“stderr.” If you do not specify a channel, then puts display text to the stdout channel.
Note: The STDIN Tcl command is not supported by Microsemi SoC tools.
Example:
set a [myprog argl arg2]
puts "the answer from myprog was $a (this text is on stdout)"

puts stdout “this text also is on stdout”

17

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

Return Values
The return code of a Tcl command is a string. You can use a return value as an argument to another function by
enclosing the command with square brackets [1.
Example:
set a [prog argl arg2]
exec $a
The Tcl command “exec” will run an external program. The return value of “exec” is the output (on stdout) from
the program.
Example:
set tmp [exec myprog |

puts stdout S$tmp

Running Tcl Scripts from the Command Line

You can run Tcl scripts from your Windows or Linux command line as well as pass arguments to scripts from the
command line.

To execute a Tcl script file in the Libero SoC Project Manager software from a shell command line:

At the prompt, type the path to the Microsemi SoC software followed by the word "SCRIPT" and a colon, and then
the name of the script file as follows:

<location of Microsemi SoC software>\bin\libero SCRIPT:<filename>
where <location of Microsemi SoC software> is the root directory in which you installed the Microsemi
SoC software, and <filename> is the name, including a relative or full path, of the Tcl script file to
execute. For example, to run the Tcl script file "myscript.tcl", type:

C:\libero\designer\bin\libero SCRIPT:myscript.tcl
If myscript.tcl is in a particular folder named "mydesign", you can use SCRIPT_DIR to change the current
working directory before calling the script, as in the following example:

C:\libero\designer\bin\libero SCRIPT:myscript.tcl "SCRIPT DIR:C:\actelprj\mydesign"

To pass arguments from the command line to your Tcl script file:
At the prompt, type the path to the Microsemi SoC software followed by the SCRIPT argument:

<location of Microsemi SoC software>\bin\designer SCRIPT:<filename "argl arg2 ...>" <--
For Libero

where <location of Microsemi SoC software> iS the root directory in which you installed the
Microsemi SoC software, and <filename argl arg2 ...>is the name, including a relative or
full path, of the Tcl script file and arguments you are passing to the script file.

For example,
C:\libero\designer\bin\designer SCRIPT:myscript.tcl SCRIPT ARGS:”one two three"
To obtain the output from the log file:

At the prompt, type the path to the Microsemi SoC software followed by the SCRIPT and LOGFILE arguments.

<location of Microsemi SoC software> SCRIPT:<filename> SCRIPT ARGS:"a b c"
LOGFILE:<output.log>

where

. location of Microsemi SoC software is the root directory in which you installed the Microsemi SoC
software

e filename is the name, including a relative or full path, of the Tcl script file
e SCRIPT_ARGS are the arguments you are passing to the script file
e output.log is the name of the log file

For example,

C:\libero\designer\bin\designer SCRIPT:testTCLparam.tcl SCRIPT ARGS:"a b c"
LOGFILE:testTCLparam.log

18

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

Exporting Tcl Scripts

You can write out a Tcl script file that contains the commands executed in the current session. You can then use
this exported Tcl script to re-execute the same commands interactively or in batch. You can also use this
exported script to become more familiar with Tcl syntax.

You can export Tcl scripts from the Project Manager.
To export a Tcl session script from the Project Manager:

1. From the File menu, choose Export Script File. The Export Script dialog box appears.
2. Click OK. The Script Export Options dialog box appears:

(® Export Script M

Saript file: D:\2Work\exported. td| [D

| Indude commands from current session only.

Files name formatting

Relative file names (relative to the script file location)
@ Qualified file names (full path; induding directory name)

ox || concel |

Figure 1 - Script Export Options

3. Check the Include Commands from Current Design [Project] Only checkbox. This option applies only if
you opened more than one design or project in your current session. If so, and you do not check this box,
Project Manager exports all commands from your current session.

4. Select the radio button for the appropriate flename formatting. To export filenames relative to the current
working directory, select Relative filenames (default) formatting. To export flenames that include a fully
specified path, select Qualified filenames (full path; including directory name) formatting.

Choose Relative filenames if you do not intend to move the Tcl script from the saved location, or Qualified
filenames if you plan to move the Tcl script to another directory or machine.

5. Click OK.
Project Manager saves the Tcl script with the specified filename.
Note:

e When exporting Tcl scripts, Project Manager always encloses filenames in curly braces to ensure portability.

e Libero SoC software does not write out any Tcl variables or flow-control statements to the exported Tcl file,
even if you had executed the design commands using your own Tcl script. The exported Tcl file only
contains the tool commands and their accompanying arguments.

extended run_lib

Note: This is not a Tcl command; it is a shell script that can be run from the command line.

The extended_run_lib Tcl script enables you to run the multiple pass layout in batch mode from a
command line.

$ACTEL SW DIR/bin/libero script:S$ACTEL SW DIR/scripts/extended run lib.tcl
logfile:extended run.log “script args:-root path/designer/module name [-n numPasses] [-—
starting seed index numIndex] [-compare criteria value] [-c clockName] [-analysis value] [-

19

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

slack criteria value] [-stop on success] [-timing driven|-standard] [-power driven value]
[-placer high effort valuel”

Note:

e There is no option to save the design files from all the passes. Only the (Timing or Power) result reports
from all the passes are saved.

Arguments
-root path/designer/module name
The path to the root module located under the designer directory of the Libero project.
[-n numPasses]
Sets the number of passes to run. The default number of passes is 5.
[-starting_seed index numIndex]
Indicates the specific index into the array of random seeds which is to be the starting point for the passes.
Value may range from 1 to 100. If not specified, the default behavior is to continue from the last seed
index that was used.
[-compare criteria value]
Sets the criteria for comparing results between passes. The default value is set to frequency when the —c
option is given or timing constraints are absent. Otherwise, the default value is set to violations.

Value Description

frequency Use clock frequency as criteria for comparing the results between passes. This
option can be used in conjunction with the -c option (described below).

violations Use timing violations as criteria for comparing the results between passes. This
option can be used in conjunction with the -analysis, -slack_criteria and -
stop_on_success options (described below).

power Use total power as criteria for comparing the results between passes, where lowest
total power is the goal.

[-c clockName]

Applies only when the clock frequency comparison criteria is used. Specifies the particular clock that is to
be examined. If no clock is specified, then the slowest clock frequency in the design in a given pass is
used. The clock name should match with one of the Clock Domains in the Summary section of the Timing
report.

[-analysis value]

Applies only when the timing violations comparison criteria is used. Specifies the type of timing violations
(the slack) to examine. The following table shows the acceptable values for this argument:

Value Description

max Examines timing violations (slack) obtained from maximum delay analysis. This is
the default.

min Examines timing violations (slack) obtained from minimum delay analysis.

[-slack criteria value]

Applies only when the timing violations comparison criteria is used. Specifies how to evaluate the timing
violations (slack). The type of timing violations (slack) is determined by the -analysis option. The following
table shows the acceptable values for this argument:

20

PolarFire FPGA Tcl Commands Reference Guide

& Microsemi

a A3\ MicrRocHIP company

Value Description
worst Sets the timing violations criteria to Worst slack. For each pass obtains the most
amount of negative slack (or least amount of positive slack if all constraints are met)
from the timing violations report. The largest value out of all passes will determine
the best pass. This is the default.
tns Sets the timing violations criteria to Total Negative Slack (tns). For each pass it
obtains the sum of negative slack values from the first 100 paths from the timing
violations report. The largest value out of all passes determines the best pass. If no
negative slacks exist for a pass, then the worst slack is used to evaluate that pass.
[-stop_on_success]
Applies only when the timing violations comparison criteria is used. The type of timing violations (slack) is
determined by the -analysis option. Stops running the remaining passes if all timing constraints have been
met (when there are no negative slacks reported in the timing violations report).
[-timing driven|-standard]
Sets layout mode to timing driven or standard (non-timing driven). The default is -timing_driven or the
mode used in the previous layout command.
[-power driven value]
Enables or disables power-driven layout. The default is off or the mode used in the previous layout
command. The following table shows the acceptable values for this argument:
Value Description
off Does not run power-driven layout.
on Enables power-driven layout.
[-placer_high_effort value]
Sets placer effort level. The default is off or the mode used in the previous layout command. The following
table shows the acceptable values for this argument:
Value Description
off Runs layout in regular effort.
on Activates high effort layout mode.
Return
A non-zero value will be returned on error.
Exceptions
None
See Also

Place and Route - PolarFire
Multiple Pass Layout - PolarFire

See the online help for more information.

21

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

Sample Tcl Script - Project Manager

The following Tcl commands create a new project and set your project options.

new project -location {D:/2Work/my pf proj} -name {my pf proj} -project description {}\
-block_mode 0 -standalone peripheral initialization 0 -use_enhanced constraint_ flow 1\
-hdl {VERILOG} -family {PolarFire} -die {MPF300TS ES} -package {FCG1152} -speed {-1} \
-die voltage {1.0} -part_range {EXT} -adv_options {IO_DEFT STD:LVCMOS 1.8V}I\
-adv_options {RESTRICTPROBEPINS:1} -adv_options {RESTRICTSPIPINS:0}\

-adv_options {SYSTEM CONTROLLER SUSPEND MODE:1} -adv_options {TEMPR:EXT} \
-adv_options {VCCI 1.2 VOLTR:EXT} -adv_options {VCCI 1.5 VOLTR:EXT} \

-adv_options {VCCI_1.8 VOLTR:EXT} -adv_options {VCCI_2.5 VOLTR:EXT} \

-adv_options {VCCI 3.3 VOLTR:EXT} -adv options {VOLTR:EXT}

#Import HDL source file

import files -convert EDN to HDL 0 -hdl source {C:/test/prepl.v}

#Import HDL stimulus file

import files -convert EDN_to HDL 0O -stimulus {C:/test/prepltb.v}

#set the top level design name

set root -module {prepl::work}

#Associate SDC constraint file to Place and Route tool

organize tool files -tool {PLACEROUTE} -file {D:/2Work/my pf proj/constraint/user.sdc} \
-module {prepl::work} -input type {constraint}

#Associate SDC constraint file to Verify Timing tool

organize tool files -tool {VERIFYTIMING} -file {D:/2Work/my pf proj/constraint/user.sdc}\
-module {prepl::work} -input type {constraint}

#Run synthesize

run_tool -name {SYNTHESIZE}

#Configure Place and Route tool

configure tool -name {PLACEROUTE} -params {DELAY ANALYSIS:MAX} -params
{EFFORTiLEVEL:false}\

-params {INCRPLACEANDROUTE: false} -params {MULTIiPA587CRITERIA:VIOLATIONS}\

-params {MULTI_PASS LAYOUT:false} -params {NUM MULTI PASSES:5} -params {PDPR:false}\
-params {RANDOM_ SEED:0} -params {REPAIR MIN DELAY:false} -params

{SLACK CRITERIA:WORST SLACK} \

-params {SPECIFIC_ CLOCK:} -params {START_SEED INDEX:1} -params

{STOP_ON_FIRST PASS:false}\

-params {TDPR:true}

#Run Place and Route
run_tool -name {PLACEROUTE}
#Configure Timing Report Generation

configure tool -name {VERIFYTIMING} -run_tool -name {PLACEROUTE}params
{CONSTRAINTS COVERAGE:1}\

-params {FORMAT:XML} -params {MAX TIMING FAST HV LT:0} -params {MAX TIMING SLOW LV HT:1}
\

-params {MAX TIMING SLOW LV LT:0} -params {MAX TIMING VIOLATIONS FAST HV LT:0} \
-params {MAX TIMING VIOLATIONS_ SLOW_LV_HT:1} -params

{MAX TIMING VIOLATIONS SLOW_ LV LT:0}\

-params {MIN_TIMING FAST HV_LT:1} -params {MIN_TIMING SLOW_LV_HT:0} -params

{MIN TIMING SLOW LV LT:0} -params {MIN TIMING VIOLATIONS FAST HV LT:1} -params
{MIN TIMING VIOLATIONS SLOW LV HT:0} \

-params {MIN TIMING VIOLATIONS SLOW LV LT:0}

#Run Verify Timing tool
run_tool -name {VERIFYTIMING}
#Run Power Verification tool
run_tool -name {VERIFYPOWER}
#Export bitstream
export bitstream file -file name {prepl} \
-—export dir {D:\2Work\my pf proj\designer\prepl\export} -format {STP} -master file 0 \

-master file components {} -encrypted uekl file 0 -encrypted uekl file components {} \

22

PolarFire FPGA Tcl Commands Reference Guide

& Microsemi

a A3\ MicrRocHIP company

-encrypted uek2 file 0 -encrypted uek2 file components {} \
-trusted facility file 1 -trusted facility file components {FABRIC}

How to Derive Required Part Information from A "Part Number"

To use Tcl Commands such as set_device or new_design; certain part information items must be specified. Many
of these items can be derived from the "Part Number" you have chosen. For example, suppose the Part Number
is: MPF300XT-1FCG784l

-family <family name>

The <family name> usually known, e.g.
-family {PolarFire}

-die <die name>

From the Part Number, the characters before the "-": MPF300XT-1FCG784I|
-die {MPF300XT}

-speed <speed grade>
If there is a digit immediately after the "-", -<digit> will be the <speed grade> value (preceeded by a "-"). In
this case: MPF300XT-1FCG784
-speed {-1}
e NOTE: If there is no digit, the default speed grade is STD.

-package <package name>

The next sequence of letters, followed by a sequence of digits will constitute the package type and "size".
NOTE: If there is a trailing letter after the <digits>; this letter is not part of the <package name>; but is rather
part of the <part range> (see below).

e For PolarFire, this combination will simply constitute the <package name> e.g.: MPF300XT-
1FCG784I
-package {FCG784}
-part_range <part range>
The last letter (if any) will indicate the <part_range> according to the following table:

last letter expansion value
I IND
E EXT
M MIL
<none> COM

e In this case: MPF300XT-1FCG784l
-part _range {IND}

23

PolarFire FPGA Tcl Commands Reference Guide

& Microsemi

a A3\ MicrRocHIP company

Project Manager Tcl Commands

add_file_to_library
Tcl command; adds a file to a library in your project.

add file to library
-library name
—file name

Arguments

-library name

Name of the library where you wish to add your file.

-file name

Specifies the new name of the file you wish to add (must be a full pathname).
Example

Add a file named foo.vhd from the ./project/hdl directory to the library 'my_lib'
add file to library -library my lib -file ./project/hdl/foo.vhd

See Also
add library
remove library

rename library

add_library

Tcl command; adds a VHDL library to your project.

add library
-library name

Arguments
-library name

Specifies the name of your new library.

Example
Create a new library called 'my_lib'.
add library —-library my 1lib

See Also
remove library

rename library

add_modelsim_path

Tcl command; adds a ModelSim simulation library to your project.

24

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

add modelsim path -1ib library name [-path library path] [-remove " "]

Arguments
-1lib library name
Name of the library you want to add.
-path library path
Path to library that you want to add.

—remove

Name of library you want to remove (if any).

Example

Add the ModelSim library 'msim_update2' located in the c:\modelsim\libraries directory and remove the
library 'msim_update1':

add_modelsim path -1lib msim update2 [-path c:\modelsim\libraries] [-remove msim updatel]

add_profile

Tcl command; sets the same values as the Add or Edit Profile dialog box. The newly added profile becomes the
active tool profile for the specified type of tool. See the online help for more information.

add profile -name profilename -type value -tool profiletool -location tool location [-args
tool parameters] [-batch valuel

Arguments
-name profilename
Specifies the name of your new profile.
-type value
Specifies your profile type, where value is one of the following:

Value Description
synthesis New profile for a synthesis tool
simulation New profile for a simulation tool
stimulus New profile for a stimulus tool
flashpro New FlashPro tool profile

-tool profiletool

Name of the tool you are adding to the profile.

-location tool location

Full pathname to the location of the tool you are adding to the profile.
-args tool parameters

Profile parameters (if any).

-batch value

Runs the tool in batch mode (if TRUE). Possible values are:

Value Description

TRUE Runs the profile in batch mode

25

PolarFire FPGA Tcl Commands Reference Guide

Example

& Microsemi

a A3\ MicrRocHIP company

Value

Description

FALSE

Does not run the profile in batch mode

Create a new Synthesis tool profile called 'synpol' linked to a Synplify Pro ME installation in my
/sqatest/bin directory

add_profile -type synthesis -name synpol -tool "Synplify Pro ME" -location
"/sgatest9/bin/synplify pro" -batch FALSE

associate stimulus

Tcl command; associates a stimulus file in your project.

associate stimulus

[-file name] *
[-mode value]
-module value

Arguments

-file name

Specifies the name of the file to which you want to associate your stimulus files.

-mode value

Specifies whether you are creating a new stimulus association, adding, or removing; possible values are:

Value

Description

new

Creates a new stimulus file association

add

Adds a stimulus file to an existing association

remove

Removes an stimulus file association

Example

-module value

Sets the module, where value is the name of the module.

The example associates a new stimulus file 'stim.vhd' for stimulus.

associate stimulus -file stim.vhd -mode new -module stimulus

change_link_source

Tcl command; changes the source of a linked file in your project.

change link source -file filename -path new source path

Arguments

-file filename

Name of the linked file you want to change.

-path new source path

26

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

Location of the file you want to link to.

Example

Change the link to a file 'sim1.vhd' in your project and link it to the file in
c:\microsemillink_source\simulation_test.vhd

change_link source -file siml.vhd -path c:\microsemillink source\simulation_ test.vhd

change_vault_location
Tcl command; changes the location of the vault.

Note: This command overrides the vault location for all projects.

change vault location \
-location location

Arguments

-location location

Specifies the new vault location. Value must be a file path.lt is mandatory

Examples

change_vault location -location {../vault}

See Also
Tcl Command Documentation Conventions

check fdc_constraints

This Tcl command checks FDC constraints files associated with the Synthesis tool.

check fdc constraints -tool {synthesis}

Arguments
-tool {synthesis}

Example

check fdc_constraints -tool {synthesis}

Return Value
This command returns “0” on success and “1” on failure.

check hdl

Tcl com mand; checks the HDL in the specified file.

check hdl -file filename

Arguments

-file filename

Name of the HDL file you want to check.

27

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

Example

Check HDL on the file hdl1.vhd.
check_hdl -file hdll.vhd

check ndc_constraints

This Tcl command checks NDC constraints files associated with the Synthesis tool. NDC constraints are used to
optimize the post-synthesis netlist with the Libero SoC Compile engine.

check ndc constraints —-tool {synthesis}

Arguments
-tool {synthesis}

Example

check ndc_constraints -tool {synthesis}

check pdc_constraints

This Tcl command checks PDC constraints files associated with the Libero Place and Route tool.

check pdc constraints —-tool {designer}

Arguments

-tool {designer}

Example

check pdc_constraints -tool {designer}

Return Value
This command returns “0” on success and “1” on failure.

check sdc constraints

This Tcl command checks SDC constraints files associated with the Libero tools: designer, synthesis, or timing.

check sdc constraints —-tool {tool name}

Arguments

-tool {synthesis|designer|timing}

Example
This command checks the SDC constraint files associated with Timing Verifcation.
check sdc constraints -tool {timing}
This command checks the SDC constraint files associated with Place and Route.
check sdc_constraints -tool {designer}
This command checks the SDC constraint files associated with Synthesis.

check sdc_constraints -tool {synthesis}

28

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

Return Value
The command returns “0” on success and “1” on failure.

close_design

Tcl command; closes the current design and brings Designer to a fresh state to work on a new design.
This is equivalent to selecting the Close command from the File menu.

close design

Arguments
None
Example
if { [catch { close design }] {
Puts “Failed to close design”
Handle Failure
} else {
puts “Design closed successfully”
Proceed with processing a new design
}
See Also

close design
new_design

open_design

See the online help for more information.

close project

Tcl command; closes the current project in Libero SoC. Equivalent to clicking the File menu, and choosing
Close Project.

close project

Arguments

None
Example

close project
See Also

open project

configure_core

Tcl command; modifies the configuration of an existing core component in the SmartDesign. This command works
for core components created for different types of cores namely, Sg cores, System Builder cores and Direct

cores.

29

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

Limitations: The command does not work for SmartFusion2/IGLOO2 System Builder components, SmartFusion2
MSS component, and RTG4 PCIE_SERDES_IF_INIT(RTG4 High Speed Serial Interface 1 - EPCS and XAUI -
with Initialization), NPSS_SERDES_IF_INIT(RTG4 High Speed Serial Interface 2 - EPCS and XAUI - with
Initialization) and RTG4FDDRC_INIT(RTG4 DDR Memory Controller with initialization) core components.

configure core \
—component name component name \
-params core parameters

Arguments
—component name component name
Specifies the name of the component to be configured. It is mandatory.
—params core parame ters
Specifies the parameters needed to configure the core component. It is mandatory. This command will fail
if none of the core parameters are specified.
Examples

configure core -component name {PF_CCC_CO} -params "GL1 0 IS USED:false"
"GLO 0 IS USED:true” “GLO 0 OUT FREQ:200"}

configure core -component name {Core UART} -params {"BAUD_ VAL FRCTN_EN:false"
"RX_FIFO:0" "RX LEGACY MODE:Q" "TX FIFO:1" "USE SOFT FIFO:1"}

See Also

Tcl Command Documentation Conventions

configure_tool

configure_tool is a general-purpose Tcl command that is used to set the parameters for any tool called by Libero.
The command requires the name of the tool and one or more parameters in the format tool parameterivalue.

These parameters are separated and passed to the tool to set up its run.

configure tool

-name {<tool name>} # Each tool name has its own set of parameters

-params {<parameter>:<value>} # List of parameters and values

tool name ::= CONFIGURE PROG OPTIONS | SYNTHESIZE | PLACEROUTE |
GENERATEPROGRAMMINGFILE | PROGRAMDEVICE | PROGRAMMER INFO |IO PROGRAM STATE | SPM |
VERIFYTIMING |PROGRAM_SPI_FLASH_IMAGE |SPM_OTP

Supported tool_names
The following table lists the supported tool_names.

tool_name Parameter (-params) Description

"CONFIGURE_PROG_OPTIONS " on See the topic for parameter names | See the topic for

page 100 and values. description.

SYNTHESIZE See the topic for parameter names | See the topic for
and values. description.

PLACEROUTE See the topic for parameter names | See the topic for
and values. description.

"GENERATEPROGRAMMINGFILE" on See the topic for parameter names | See the topic for
page 100 and values. description.

30

PolarFire FPGA Tcl Commands Reference Guide

& Microsemi

a A3\ MicrRocHIP company

tool_name

Parameter (-params)

Description

PROGRAMDEVICE

See the topic for parameter names
and values.

See the topic for
description.

PROGRAMMER INFO

See the topic for parameter names
and values.

See the topic for
description.

IO PROGRAMMING STATE

See the topic for parameter names
and values.

See the topic for
description.

and values.

SPM See the topic for parameter names | See the topic for
and values. description.
VERIFYTIMING See the topic for parameter names | See the topic for

description.

"PROGRAM_SPI_FLASH_IMAGE" on
page 105

See the topic for parameter names
and values.

See the topic for
description.

SPM _OTP

See the topic for parameter names
and values.

See the topic for
description.

See Also

Tcl documentation conventions

create_and_configure_core

Tcl command; creates a configured core component for a core selected from the Libero Catalog.

To use this command to create a configured core component with valid parameters and values, it is
recommended to use the GUI to configure the core as desired. Then export the core configuration Tcl description
by selecting the “Export Component Description(Tcl)” action on the right-click menu of the component in the
Design Hierarchy. You can then use the exported Tcl command to create the configured core in a regular Tcl
script.

create_and configure core \

-core vlnv Vendor:Library:Name:version \
—-component name component name \
[-params core parameters]

Arguments
-core vlnv Vendor:Library:Name:Version
Specifies the version identifier of the core being configured. It is mandatory.
—-component name component name
Specifies the name of the configured core component. It is mandatory.
—params core parame ters

Specifies the parameters that need to be configured for the core component. It is optional. If the core
parameters are not specified with this argument, the component is configured and generated with the
core's default configuration. It is recommended to specify all the core parameters of interest as a part of
this argument in this command.

31

PolarFire FPGA Tcl Commands Reference Guide

& Microsemi

a A3\ MicrRocHIP company

create and configure core -core vlnv {Actel:SgCore:PF CCC:1.0.115} -
component name {PF CCC C3} -params { \

}

Examples
"PLL IN FREQ 0:25" \
"GLO 0 IS USED:true" \
"GLO 0 OUT FREQ:150" \
"GLO 1 IS USED:true" \
"GLO 1 OUT FREQ:50"
Notes

For DirectCore and Solutions cores, refer to the core handbook or the core user guide for a list of valid

parameters and values.

See Also

Tcl Command Documentation Conventions

create set

Tcl command; creates a set of paths to be analyzed. Use the arguments to specify which paths to include. To
create a set that is a subset of a clock domain, specify it with the -c1ock and -type arguments. To create a set
that is a subset of an inter-clock domain set, specify it with the -source clock and -sink clock arguments. To
create a set that is a subset (filter) of an existing named set, specify the set to be filtered with the -parent set

argument.

create set\ -name <name>\ -parent set <name>\ -type <set type>\ -clock <clock name>\ -
source_clock <clock name>\ -sink clock <clock name>\ -in to out\ -source <port/pin pattern>\

-sink <port/pin pattern>

Arguments

—name <name>

Specifies a unique name for the newly created path set.

~parent_set <name>

Specifies the name of the set to filter from.

-clock <clock name>

Specifies that the set is to be a subset of the given clock domain. This argument is valid only if you also
specify the -type argument.

-type <value>

Specifies the predefined set type on which to base the new path set. You can only use this argument with
the -clock argument, not by itself.

Value

Description

reg_to_reg

Paths between registers in the design

async_to reg

Paths from asynchronous pins to registers

reg _to _async

Paths from registers to asynchronous pins

external_recovery

The set of paths from inputs to asynchronous pins

external_removal

The set of paths from inputs to asynchronous pins

external_setup

Paths from input ports to registers

32

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

Value Description
external_hold Paths from input ports to registers
clock to out Paths from registers to output ports

-in to out

Specifies that the set is based on the “Input to Output” set, which includes paths that start at input ports
and end at output ports.

-source_clock <clock name>

Specifies that the set will be a subset of an inter-clock domain set with the given source clock. You can
only use this option with the -sink _clock argument.

-sink_clock <clock name>

Specifies that the set will be a subset of an inter-clock domain set with the given sink clock. You can only
use this option with the -source clock argument.

-source <port/pin pattern>

Specifies a filter on the source pins of the parent set. If you do not specify a parent set, this option filters
all pins in the current design.

-sink <port/pin pattern>

Specifies a filter on the sink pins of the parent set. If you do not specify a parent set, this option filters all
pins in the current design.

Examples
create set -name { my user set } -source { C* } —-sink { D* }
create set -name { my other user set } -parent set { my user set } -source { CL* }
create_set -name { adder } -source { ALU_CLOCK } -type { REG_TO_REG } -sink { ADDER*}
create_set -name { another set } -source_clock { EXTERN CLOCK } -sink clock f{
MY GEN CLOCK }

create_links

Tcl command; creates a link (or links) to a file/files in your project.

create links [-hdl source filel* [-stimulus file]l* [-sdc file]* [-pin file]l* [-dcf filel* [-
gcf file]l* [-pdc filel* [-crt file]* [-vcd file]*

Arguments
-hdl_source file
Name of the HDL file you want to link.
-stimulus file
Name of the stimulus file you want to link.
-sdc file
Name of the SDC file you want to link.
-pin file
Name of the PIN file you want to link.
-dcf file
Name of the DCF file you want to link.
-gcf file
Name of the GCF file you want to link.
-pdc file

33

& Microsemi

PolarFire FPGA Tcl Commands Reference Guide -
a A3\ MicrRocHIP company

Name of the PDC file you want to link.
-crt file

Name of the crt file you want to link.
-ved file

Name of the VCD file you want to link.

Example

Create a link to the file hdl1.vhd.
create links [-hdl_source hdll.vhd]

create_smartdesign
Tcl command; creates a SmartDesign.

create smartdesign \
-sd _name smartdesign component name

Arguments

-sd_name smartdesign component name

Specifies the name of the SmartDesign component to be created. It is mandatory.
Examples
create smartdesign -sd name {top}

See Also
Tcl Command Documentation Conventions

delete_component

Tcl command; deletes a component from the Design Hierarchy.

delete component \
—-component name component name

Arguments

—-component name component name

Specifies the name of the component to be deleted. It is mandatory.

Examples
delete component -component name {component}

delete component -component name {shifter}

See Also
Tcl Command Documentation Conventions

download core

Tcl command; downloads a core and adds it to your repository.

download core [-vlnv "vinv"]+ [-location "location"]

34

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

Arguments
-vlnv vinv
Vendor, library, name and version of the core you want to download.
-location core name
Location of the repository where you wish to add the core.
Example

Download the core CoreAXIl to the repository www.actel-ip.com/repositories/SgCore:

download _core -vlnv {Actel:SystemBuilder:PF DDR4:1.0.102} -location {www.actel-
ip.com/repositories/SgCore}

download_latest cores

This Tcl command is used to download the latest cores into the vault. A project does not need to be open to run
this command.

download latest cores

This command takes no arguments.
If there are no cores to be downloaded, you will see the following message:

Info:All the latest cores are present in the vault.

edit_profile

Tcl command; sets the same values as the Add or Edit Profile dialog box. See the online help for more
information.

edit profile -name profilename -type value -tool profiletool -location profilelocation [-args
parameters] [-batch value] [-new name name]

Arguments
-name profilename

Specifies the name of your new profile.

-type value
Specifies your profile type, where value is one of the following:
Value Description
synthesis New profile for a synthesis tool
simulation New profile for a simulation tool
stimulus New profile for a stimulus tool
flashpro New FlashPro tool profile

-tool profiletool

Name of the tool you are adding to the profile.

-location profilelocation

Full pathname to the location of the tool you are adding to the profile.
—-args parameters

Profile tool parameters (if any).

-batch value

35

& Microsemi

PolarFire FPGA Tcl Commands Reference Guide

a A3\ MicrRocHIP company

Runs the tool in batch mode (if TRUE). Possible values are:

Value Description
TRUE Runs the profile in batch mode
FALSE Does not run the profile in batch mode

—new_name name

Name of new profile.

Example

Edit a FlashPro tool profile called 'myflashpro' linked to a new FlashPro installation in my
c:\programs\actel\flashpro\bin directory, change the name to updated_flashpro.

edit profile -name myflashpro -type flashpro -tool flashpro.exe -location
c:\programs\actel\flashpro\bin\flashpro.exe -batch FALSE -new name updated flashpro

export_as_link
Tcl command; exports a file to another directory and links to the file.

export as link -file filename -path 1link path

Arguments
-file filename
Name of the file you want to export as a link.
-path link path
Path of the link.
Example

Export the file hdl1.vhd as a link to c:\microsemillink_source.

export_as_link -file hdll.vhd -path c:\microsemi\link_ source

export_ba_files

Tcl command to export the backannotated files. The backannotated files are <design_name>_ba.v
(Verilog backannotated netlist) or <design_name>_ba.vhd (VHDL backannotated netlist) and
<design_name>_ba.sdf (Standard Delay Format) timing file. These files are passed to the default
simulator for postlayout simulation.

export ba files

-export dir {absolute path to folder location}
-export file name {name of file}

-vhdl {value}

-min delay {value}

Arguments
-export dir {absolute path to directory/folder location}
Folder/directory location.
-export file name {name of file}
File name to generate the files. If not specified, it takes <design_name> as the default.
-vhdl {value}

36

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

Generates the <design_name>_ba.v and <design_name>_ba.sdf when set to 0 and
<design_name>_ba.vhd and <design_name>_ba.sdf when set to 1. Default is 0.

-min_delay {value}

Set to 1 to export enhanced min delays to include your best-case timing results in your Back Annotated file.
Default is 0.

Returns
Returns 0 on success, 1 on failure.

Example
export_ba_files\
—export dir {E:\designs\export\sdl}\
-export_file name {test}\
-vhdl 0\
-min_delay 1

export_bitstream_file
Configures the parameters for the bitstream to be exported from Libero.

export bitstream file

[-file name file]

[-export dir dir]

[-format PPD | STP | DAT | SPI | HEX]

[-for ihp 0 | 1]

[-master file 0 | 1]

[-master file components SECURITY | FABRIC | SNVM]
[-encrypted uekl file 1 | 0]
[-encrypted uekl file components FABRIC | SNVM]
[-encrypted uek2 file 1 | 0]
[-encrypted uek2 file components FABRIC | SNVM]
[-trusted facility file 1 | 0]
[-trusted facility file components FABRIC | SNVM]
[-zeroization_likenew_action 0 | 1]
[-zeroization_unrecoverable_action 0 | 1]
[-master_backlevel_bypass 0 | 1]
[-uek1_backlevel_bypass 0 | 1]

[-uek2_backlevel_bypass 0 | 1]

[-master include plaintext passkey 0 | 1]
[-uekl include plaintext passkey 0 | 1]
[-uek2 include plaintext passkey 0 | 1]

Arguments
-file name file
The name of the file. File name must start with design name. If omitted, design name will be used.
-export_dir dir
Location where the bitstream file will be exported. If omitted, design export folder will be used.
-format PPD | STP | CHAIN STP | DAT | SPI | HEX

Specifies the bitstream file formats to be exported. Space is used as a delimiter. If omitted, PPD and DAT
files will be exported.

-for_ihp 0 | 1I
Specifies to export the bitstream files for Microsemi In House Programming(IHP).

37

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

Zeroization Options:
-zeroization likenew_action 0 | 1

Specifies that all the data will be erased and the device can be reprogrammed immediately

-zeroization unrecoverable action 0 | 1
Specifies that all the data will be erased and the device cannot be reprogrammed and it must be
scrapped.

Security-related options:

Note: One of the trusted_facility file or master_file or encrypted_uek1_file or encrypted_uek2_file must be set to
“1”. 1 indicates that this particular file type will be exported; 0 indicates that it will not be exported. For example, if
trusted facility fileis setto 1, all other file types must be set to 0.

Or, if trusted facility fileis setto 0, a combination of master file and uekl file and uek2 filecan be
set to 1. In this case, master file must be setto 1.

Bitstream encryption with default key (default security):

-trusted_facility file 1 | 0

Specifies the bitstream file to be exported.

-trusted facility file components FABRIC | SNVM

Specifies the components of the design that will be saved to the bitstream file. The value can only be

FABRIC and SNVM.

Custom security options:

-master_file 0 | 1

Specifies the bitstream files to be exported. Depends on the selected security.

Note: If -master fileis 1, SECURITY must be selected.

-master_file components SECURITY | FABRIC | SNVM

Specifies the components in the design that will be saved to the bitstream file. The value can be any
either SECURITY or SECURITY, FABRIC and SNVM

Notes:

1. The SECURITY option is available in -bitstream_file_components only when file type is MASTER in —
bitstream_file_type.

2. SNVM should be programmed with FABRIC

3. Security only programming must be performed only on erased or new devices. If performed on device
with fabric programmed, the fabric will be disabled after performing security only programming. You must
reprogram the fabric to re-enable it.

-encrypted uekl file 0 | I

-encrypted uekl file components FABRIC | SNVM

Specifies the components of the design that will be saved to uek1 bitstream.

Note: SNVM should be programmed with FABRIC

-encrypted uek2 file 0 | I

-encrypted uek2 file components FABRIC | SNVM

Specifies the components of the design that will be saved to uek2 bitstream.

Note: SNVM should be programmed with FABRIC

-master_include plaintext passkey 0 | I

Specifies that the master file includes plaintext passkey. This argument is optional.

-uekl include plaintext passkey 0 | I

Specifies that uek1 includes plaintext passkey. This argument is optional.

-uek2 include plaintext passkey 0 | I

Specifies that uek?2 includes plaintext passkey. This argument is optional.
Bypass Back Level Protection Options:

-master_backlevel bypass 0 | 1

Specifies the Bypass Back Level protection for Golden/Recovery bitstream if back level protection is
enabled in _master file.

38

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

-uekl backlevel bypass 0 | 1

Specifies the Bypass Back Level Protection for Golden/Recovery bitstream if back level protection is
enabled in _uek1 file.

-uek2 backlevel bypass 0 | 1

Specifies the Bypass Back Level Protection for Golden/Recovery bitstream if back level protection is
enabled in _uek2 file.

Bitstream file to be exported and the components of the design that will be saved to the bitstream file are
required.

Note: A TCL script file exported from Libero will include all command options. You can modify options you need
and remove options you do not need.

Example
Export a bitstream file:
Export bitstream file for design with default security
export bitstream file \
-trusted facility file 1
-trusted facility file components {FABRIC SNVM}
Export bitstream file for design with custom security options
Export bitstreams to master, uek1 and uek2 encrypted files. Master file to include security, fabric and SNVM
components and Export Pass Key in Plaintext, uek1 and uek2 encrypted files to include FABRIC and SNVM with
Like new Zeroization option enabled.
export_bitstream file\
-file name {fftousram new} \
-export_dir

{X:\10_docs_review\pf2.2 spl\Programming sars\99412\clkint_fftousram ac_latch_launch\des
igner\fftousram new\export} \

-format {PPD DAT STP HEX} \

-for ihp 1 \

-master_file 1 \

-master_ file components {SECURITY FABRIC SNVM} \
-encrypted uekl file 1 \
-encrypted uekl file components {FABRIC SNVM} \
-encrypted uek2 file 1 \
-encrypted uek2 file components {FABRIC SNVM} \
-trusted facility file 0 \

-trusted facility file components {} \
-zeroization_likenew_action 1 \
-zeroization_unrecoverable action 0 \

-master backlevel bypass 0 \

-uekl backlevel bypass 0 \

-uek2 backlevel bypass 0

-master include plaintext passkey 1 \

-uekl include plaintext passkey 0 \

-uek2 include plaintext passkey 0

export_bsdl file
Tcl command to export the BSDL to a specified file. The exported file has a *.bsd file name extension.

export bsdl file
—-file {absolute path and name of BSDL file}

39

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

Arguments

-file {absolute path and name of BSDL file}
Specifies the *.bsd file.

Returns

Returns 0 on success, 1 on failure.

Example
export bsdl file\
-file {E:/designs/export/sdl.bsd}

export_component to tcl

Tcl command; exports the Tcl command for the selected component. The components can be SmartDesign
components, configured cores and HDL+ cores.

export component to tcl \
-component component name \
[-library library name] \
[-package package name] \
-file file path

Arguments
—-component component name
Specifies the name of the component for which the Tcl command is exported. It is mandatory.
-library library name
Specifies the name of the library the component belongs to. It is optional.
-package package name
Specifies the name of the package the HDL+core belongs to. It is optional.
-file file path
Specifies the path where you wish to export the Tcl file. It is mandatory.
Example

export component to_tcl -component {pattern_gen checker} -library {work} -package {} -
file {./pattern gen checker.tcl}

export_design_summary

This Tcl command exports an HTML file containing information about your root SmartDesign in your project. The
HTML report provides information on:

* Generated Files

* 1/Os

* Hardware Instances
* Firmware

* Memory Map

export design summary -file {D: /Designs/test/sdl.html}

Returns

Returns 0 on success, 1 on failure.

40

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

export_fp_pdc

Tcl command to export the Floorplanning Physical Design Constraint (*.pdc) File. The exported file has a
*_fp.pdc file name extension.

export fp pdc
-file {absolute path and name of * fp.pdc file}
-mode {PDCiPLACE | PDCfFULLiPLACEMENT}

Arguments
-file {absolute path and name of * fp.pdc file}
Specifies the *_fp.pdc file.
-mode {PDC_PLACE | PDC_FULL PLACEMENT}
Use PDC_PLACE to export user’s floorplanning constraints, for example, fixed logic and regions.
Use PDC_FULL_PLACEMENT to export information about all of the physical design constraints (I/O
constraints, /0 Banks, routing constraints, region constraints, global and local clocks).

Returns

Returns 0 on success, 1 on failure.

Example
export fp pdc)\
-file {E:/designs/export/sdl fp.pdc}\
-mode {PDC FULL PLACEMENT }

export_ibis_file

Tcl command to export the IBIS (Input/Output Buffer Information Specification) model report. The
exported file has a *.ibs file name extension.

export ibis file
—-file {absolute path and name of *.ibs file}

Arguments
-file {absolute path and name of *.ibs file}
Specifies the IBIS file to export.

Returns
Returns 0 on success, 1 on failure.

Example
export ibis file\

-file {E:/designs/export/sdl.ibs}

export_io_pdc

Tcl command to export the I/0 constraints Physical Design Constraint (*.pdc) File. The exported file has a
*_io.pdc file name extension.

41

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

export io pdc
-file {absolute path and name of * io.pdc file}

Arguments
-file {absolute path and name of * io.pdc file}

Specifies the *_io.pdc file.

Returns
Returns 0 on success, 1 on failure.

Example
export io pdc\
-file {E:/designs/export/sdl io.pdc}

export_netlist_file

Tcl command to export the netlist after the compile state has completed. The netlist can be either Verilog
or VHDL. Microsemi recommends exporting the netlist after the compile state has successfully completed.

export netlist file
—-file {absolute path and filename for netlist}
-vhdl {value}

Arguments
-file {absolute path and filename}
Specifies the path and name of netlist file.
-vhdl {value}
Generates the netlistin VHDL (when set to 1) or Verilog (when set to 0). Default is 0 (Verilog netlist).
Returns

Returns 0 on success, 1 on failure.

Example
export netlist files\
-file {E:/designs/export/sdl/sdl.v}\
-vhdl 0

export_pin_reports
Tcl command to configure and export a pin report file to a specified folder/directory location.

export pin reports

-export dir {absolute path to folder location}
-pin _report by name {value}

-pin report by pkg pin {value}

-bank report {value}}

-io report {value}

42

PolarFire FPGA Tcl Commands Reference Guide

Arguments

& Microsemi

a A3\ MicrRocHIP company

-export dir {absolute or relative path to the folder for pin report file}
Specifies the folder.

-pin_report by name {value}

Set to 1 to have the pin report sorted by pin name. Default is 1.

- pin_report by pkg pin {value}

Set to 1 to have pin report sorted by package pin number, 0 to not sort by package pin number. Default is
1.

- bank_report {value}
Set to 1 to generate the I/O bank report, 0 to not generate the report. Defaultis 1.
- lo_report {value}

Set to 1 to generate the 1/O report, 0 to not generate the report. Default is 1.

At least one argument must be specified for this command.

Returns

Returns 0 on success, 1 on failure.

Example

export pin reports\

—export dir {E:/designs/export}\
-pin report by name {1}\

-pin report by pkg pin {0}\
-bank report {1}\

-io_report {1}

export_profiles

Tcl command; exports your tool profiles. Performs the same action as the Export Profiles dialog box. See the
online help for more information.

export profile -file name [-export value]

Arguments
-file name
Specifies the name of your exported profile.
—export value
Specifies your profile export options. The following table shows the acceptable values for this argument:
Value Description
predefined Exports only predefined profiles
user Exports only user profiles
Exports all profiles
Example

The following command exports all profiles to the file 'all_profiles":

43

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

export profiles -file all profiles [-export all]

export_prog_job
Tcl command; configures the parameters for the FlashPro Express programming job to be exported.
export prog job
-job file name file
-export dir dir
-bitstream file type TRUSTED FACILITY | MASTER | UEK1 | UEK2
-bitstream file components SECURITY | FABRIC | SNVM
-zeroization_likenew_action 0 | 1
-zeroization_unrecoverable_action 0 | 1
-program design 0 | 1
-program spi flash 0 | 1
-include plaintext passkey 0 | I-design bitstream format PPD | STP

Arguments
-job_file name file
The name of the file. Name must start with design name. If omitted, design name will be used.
-export_dir dir
Location where the job file will be saved; any folder can be specified. The default folder is the Libero
export folder.
-bitstream file type TRUSTED FACILITY | MASTER | UEKI | UEK2
Bitstream file to be included in the programming job. Only one bitstream file can be included in a
programming job.
-bitstream file components SECURITY | FABRIC | SNVM
The list of components to be included in the programming job. Components should be delimited by space.
bitstream_file_components can be any one of SECURITY or SECURITY, FABRIC and SNVM
Notes:

1. The SECURITY option is available in -bitstream_file_components only when file type is MASTER in —
bitstream_file_type.

2. SNVM must always be programmed with FABRIC.

3. Security-only programming must be performed only on erased or new devices. If performed on a device
with fabric programmed, the fabric will be disabled after performing security-only programming. You must
reprogram the fabric to re-enable it.

-zeroization likenew_action 0 | 1

Specifies that all data will be erased and the device can be reprogrammed immediately.
-zeroilzation unrecoverable action 0 | 1

Specifies that all data will be erased. The device cannot be reprogrammed and it must be scrapped.
-program design 0 | 1

Specifies to program the design. This argument is optional.

-program spi flash 0 | 1

Specifies to program SPI Flash. This argument is optional.

-include plaintext passkey 0 | 1

Specifies to include plaintext passkey. This argument is optional.
-design_bitstream format PPD | STP

Specifies the Bitstream file format. If omitted, the bitstream file will be in PPD format.

Example
export prog job \

44

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

-job_file name {fftousram new} \

-export_dir
{X:\10_docs_review\1l2.0 Release\102018\clkint fftousram ac latch launch\designer\fftousra
m new\export} \

-bitstream file type {MASTER} \
-bitstream file components {SECURITY FABRIC SNVM} \
-zeroization_likenew_action 0 \
-zeroization_unrecoverable action 0 \

-program design 1 \

-program spi flash 0 \

-include plaintext passkey 0 \
-design_bitstream format {PPD}

export_script

Tcl command; export_script is a command that explicitly exports the Tcl command equivalents of the current
Libero session. You must supply a file name with the -file parameter. You may supply the optional -relative_path
parameter to specify whether an absolute or relative path is used in the exported script file.

export script\
-file {<absolute or relative path to constraint file>} \
-relative path <value> \

Arguments
-file {<absolute or relative path to constraint file>}
Specifies the absolute or relative path to the constraint file; there may be multiple -file arguments (see
example below).
-relative path {<value>}
Sets your option to use a relative or absolute path in the exported script; use 1 for relative path, 0 for
absolute.

Example

export script -file {./exported.tcl} -relative path 1

generate_component
Tcl command; generates a SmartDesign or a core component.

generate component \
—-component name component name \
[-recursive 0]1]

Arguments

—-component name component name

Specifies the name of the SmartDesign component or the core component to be generated. It is
mandatory.

-recursive 0|1

Specifies if a SmartDesign component needs to be generated recursively. It is optional. It is ‘0’ by default
and generates only the specified component. If set to ‘1’, all the dependent components which are in
ungenerated state will be generated along with the SmartDesign component. It is recommended to
generate all components individually.

45

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

Examples
The following command generates SmartDesign "sd2" only.
generate component -component name {sd2}

The following command generates SmartDesign "TOP" and all its dependent components which are in
ungenerated state.

generate component -component name {TOP} -recursive 1

See Also
Tcl Command Documentation Conventions

generate_sdc_constraint_coverage

Tcl command to generate the constraint coverage report. The constraint coverage report contains information
about the coverage of the paths from associated SDC constraints in the design. Two constraints coverage reports
can be generated, one for Place and Route and one for Timing Verification.

To run this command, there is no need to run Place-and-Route first, but the design must be in the post-synthesis
state. The generated constraint coverage reports (*.xml) are listed in the Reports tab and are physically located in
<prj_folder>/designer/<module>/*constraints_coverage.xml.

generate sdc constraint coverage —-tool {PLACEROUTE | VERIFYTIMING}

Arguments
-tool {PLACEROUTE|VERIFYTIMING}

Specifies whether the constraint coverage report is based on the SDC constraint file associated with Place and
Route or associated with Timing Verification.

Returns
Returns 0 on success, 1 on failure.
Example
This command generates the SDC Constraint Coverage report for the SDC file associated with Place and Route:
generate sdc_constraint coverage -tool {PLACEROUTE}
This command generates the SDC Constraint Coverage report for the SDC file associated with Timing
Verification:
generate sdc_constraint coverage -tool {VERIFYTIMING}
See Also

Understanding Constraints Coverage Reports

import_files (Libero SoC)
Tcl command; enables you to import design source files and constraint files.
import files
—smartgenicore {file}
-ccp (file}

-stimulus ({file}
-hdl source f{file}

—edif {file}
-sdc {(file}

46

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

-pin {file}
—dcf {(file}
-pdc {file}

-ved (file}

-sailf (file}

-crt {file}
-simulation {file}
-profiles (file}
-cxf (file}
—-templates {file}
—-Cccz {file}

-wf stimulus (file}
-modelsim ini {file}
-library {file}
-convert EDN to HDL {true | false

Arguments
-smartgen core {file}
Specifies the cores you wish to import into your project. Type parameter must be repeated for each file.
-ccp {file}
Specifies the ARM or Cortex-M1 cores you wish to import into your project. Type parameter must be
repeated for each file.
-stimulus {file}

Specifies HDL stimulus files you wish to import into your project. Type parameter must be repeated for
each file.

-hdl_source {(file}

Specifies the HDL source files you wish to import into your project. Type parameter must be repeated for
each file.

-edif {file}

Specifies the EDIF files you wish to import into your project. Type parameter must be repeated for each
file. This is a mandatory option if you want to convert EDIF to HDL with the —can_convert EDN_to_HDL
option.

-convert EDN to HDL {true |false |1 | 0} #Boolean {true | false | 1 | 0}

The —edif option is mandatory. If the —edif option is not specified or the —convert EDN_to_HDL is used
with another option, EDIF to HDL conversion will fail.

-constraint _sdc {file}

Specifies the SDC constraint files you wish to import into your project. Type parameter must be repeated
for each file.

-constraint pin {file}

Specifies the PIN constraint files you wish to import into your project. Type parameter must be repeated
for each file.

-constraint dcf {file}

Specifies the DCF constraint files you wish to import into your project. Type parameter must be repeated
for each file.

-constraint pdc {file}

Specifies the PDC constraint files you wish to import into your project. Type parameter must be repeated
for each file.

-constraint gcf {file}

Specifies the GCF constraint files you wish to import into your project. Type parameter must be repeated
for each file.

47

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

-constraint vcd {file}

Specifies the VCD constraint files you wish to import into your project. Type parameter must be repeated
for each file.

-constraint saif {(file}

Specifies the SAIF constraint files you wish to import into your project. Type parameter must be repeated
for each file.

-constraint crt {file}

Specifies the CRT constraint files you wish to import into your project. Type parameter must be repeated
for each file.

-simulation {file}
Specifies the simulation files you wish to import into your Libero SoC project. Type parameter must be
repeated for each file.

-profiles {file}

Specifies the profile files you wish to import into your Libero SoC project. Type parameter must be
repeated for each file.

-cxf {(file}

Specifies the CXF file (such as SmartDesign components) you wish to import into your Libero SoC
project. Type parameter must be repeated for each file.

-templates {(file}

Specifies the template file you wish to import into your project.

-ccz {file}

Specifies the IP core file you wish to import into your project.

-wf stimulus {file}

Specifies the WaveFormer Pro stimulus file you wish to import into your project.

-modelsim ini {file}

Specifies the ModelSIM INI file that you wish to import into your project.

-library {file}

Specifies the library file that you wish to import into your project. If a library file is not available it will be
created and added to the library.

Example

The command below imports the HDL source files file1.vhd and file2.vhd:
import files -hdl source filel.vhd -hdl source file2.vhd

new_project

Tcl command; creates a new project in Libero SoC. If you do not specify a location, Libero SoC saves the
new project in your current working directory.

new project -name project name\

-location project location -family family name\
-project description brief text description of project\
—die device die -package package name -hdl HDL type\
-speed speed grade -die voltage value\
-ondemand_build_dh {1 | O} \

-adv_options value\

48

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

Arguments
-name project name
The name of the project. This is used as the base name for most of the files generated from Libero SoC.
-location project location
The location of the project. Must not be an existing directory.
-project _description project description
A brief text description of the design in your project.
-family family name
The Microsemi SoC device family for your targeted design.
-die device die
Die for your targeted design.
-package package name
Package for your targeted design.
-hdl HDL type
Sets the HDL type for your new project.

Value Description

VHDL Sets your new projects HDL type to VHDL

VERILOG Sets your new projects to Verilog

-speed speed grade

Sets the speed grade for your project. Possible values depend on your device, die and package. See your
device datasheet for details.

-die_voltage value

Sets the die voltage for your project. Possible values depend on your device. See your device datasheet
for details.

-ondemand_build dh {1 | 0}

Enter "1" to enable or "0" (default) to disable On Demand Build Design Hierarchy.

-adv_options value

Sets your advanced options, such as operating conditions.

Value Description

IO_DEFT_STD:LVTTL Sets your I/O default value to LVTTL. This value defines the default
I/0 technology to be used for any I/Os that the user does not
explicitly set a technology for in the 1/O Editor. It could be any of :

e LVTTL

e LVCMOS 3.3V
e LVCMOS 2.5V
e LVCMOS 1.8V
e LVCMOS 1.5V
e LVCMOS 1.2V

RESTRICTPROBEPINS This value reserves your pins for probing if you intend to debug
using SmartDebug. Two values are available:

e 1 (Probe pins are reserved)
e 0 (No probe pins are reserved)

49

PolarFire FPGA Tcl Commands Reference Guide

& Microsemi

a A3\ MicrRocHIP company

Value Description

SYSTEM_CONTROLLER_SUSPE | Enables designers to suspend operation of the System Controller.
ND_MODE Enabling this bit instructs the System Controller to place itselfin a

reset state once the device is powered up. This effectively
suspends all system services from being performed. For a list of
system services, refer to the PolarFire FPGA Fabric User Guide for
your device on the Microsemi website.

Two values are available:
e 1 (System Controller Suspend Mode is enabled)
e 0 (System Controller Suspend Mode is disabled

The following options are for Analysis Operating Conditions so that Timing and Power analysis can be
performed at different operating conditions.

TEMPR

Sets your default temperature range for operating condition
analysis to EXT or IND

VCCI_1.2_VOLTR Sets the Default /O Voltage Range for 1.2V to EXT or IND

These settings are propagated to Verify Timing, Verify Power and
Backannotated Netlist to perform Timing/Power Analysis

VCCI_1.5_VOLTR Sets the Default /O Voltage Range for 1.5V to EXT or IND

These settings are propagated to Verify Timing, Verify Power and
Backannotated Netlist to perform Timing/Power Analysis

VCCI_1.8_VOLTR Sets the Default I/O Voltage Range for 1.8V to EXT or IND

These settings are propagated to Verify Timing, Verify Power and
Backannotated Netlist to perform Timing/Power Analysis

VCCI_2.5_VOLTR Sets the Default I/O Voltage Range for 2.5V to EXT or IND

These settings are propagated to Verify Timing, Verify Power and
Backannotated Netlist to perform Timing/Power Analysis

VCCI_3.3_VOLTR Sets the Default I/O Voltage Range for 3.3V to EXT or IND

These settings are propagated to Verify Timing, Verify Power and
Backannotated Netlist to perform Timing/Power Analysis

VOLTR

Sets the core voltage range for operating condition analysis to EXT
or IND. This setting is propagated to Verify Timing, Verify Power
and Backannotated Netlist to perform Timing/Power Analysis.

PART_RANGE Sets your default temperature range for your project to EXT or IND.

Example

#Create a new project and set up a new design

new _project -location ({D:/2Work/my pf proj} -name {my pf proj} -project description {}\-
block mode 0 -standalone peripheral initialization 0 -use enhanced constraint flow 1\-
hdl {VERILOG} -family {PolarFire} -die {MPF300TS_ES} -package {FCG1152} -speed {-1} \ -
die voltage {1.0} -part range {EXT} -adv_options {IO DEFT STD:LVCMOS 1.8V}\-adv_ options
{RESTRICTPROBEPINS:1} -adv_options {RESTRICTSPIPINS:O}\—advioptions
{SYSTEM_CONTROLLER SUSPEND MODE:1} -adv_options {TEMPR:EXT} \-adv_options

50

PolarFire FPGA Tcl Commands Reference Guide

See Also

& Microsemi

a A3\ MicrRocHIP company

{VCCI 1.2 VOLTR:EXT} -adv_options {VCCI_1.5 VOLTR:EXT} \-adv_options
{VCCI 1.8 VOLTR:EXT} -adv_options {VCCI_ 2.5 VOLTR:EXT} \-adv_ options
{VCCI_3.3 VOLTR:EXT} -adv_options {VOLTR:EXT}

#Import HDL source file

import files -convert EDN to HDL O -hdl source {C:/test/prepl.v}
#Import HDL stimulus file

import files -convert EDN to HDL 0 -stimulus {C:/test/prepltb.v}
#set the top level design name

set_root -module {prepl::work}

#Associate SDC constraint file to Place and Route tool
organize tool files -tool {PLACEROUTE} -file {D:/2Work/my pf proj/constraint/user.sdc}
\-module {prepl::work} -input type {constraint}

#Associate SDC constraint file to Verify Timing tool

organize tool files -tool {VERIFYTIMING} -file
{D:/2Work/my pf proj/constraint/user.sdc}\ -module {prepl::work} -input type
{constraint}

#Run synthesize

run_tool -name {SYNTHESIZE}

#Configure Place and Route tool

configure tool -name {PLACEROUTE} -params {DELAY ANALYSIS:MAX} -params
{EFFORT_LEVEL:false)\ -params {INCRPLACEANDROUTE:false} -params
{MULTIiPA557CRITERIA:VIOLATIONS}\ -params {MULTI_ PASS LAYOUT:false} -params
{NUM MULTI PASSES:5} -params {PDPR:false}\ -params {RANDOM SEED:0} -params
{REPAIR_MIN_DELAY:false} —params {SLACK_CRITERIA:WORST_SLACK} \ —params
{SPECIFIC_CLOCK:} -params {START_SEED INDEX:1} -params {STOP_ON_FIRST_PASS:false}\ -
params {TDPR:true}

How to Derive Required Part Information from A "Part Number"

open_project

Tcl command; opens an existing Libero SoC project.

open project project name-do backup on convert value-backup file backup filename

Arguments

project name
Must include the complete path to the PRJ file. If you do not provide the full path, Libero SoC infers that
you want to open the project from your current working directory.
-do_backup_on_convert value
Sets the option to backup your files if you open a project created in a previous version of Libero SoC.
Value Description
TRUE Creates a backup of your original project before opening

FALSE Opens your project without creating a backup

-backup_file backup filename
Sets the name of your backup file (if you choose to do_backup_on_convert).

51

PolarFire FPGA Tcl Commands Reference Guide

Example

Open project.prj from the c:/netlists/test directory.

open project c:/netlists/test/project.prj

See Also

close project

new project

save project

open_smartdesign

Tcl command; opens a SmartdDesign. You must either open or create a SmartDesign before using any of the
SmartDesign specific commands "sd_*".

open smartdesign \

-sd name smartdesign component name

Arguments

-sd_name smartdesign component name

Specifies the name of the SmartDesign component to be opened. It is mandatory.

Examples

open smartdesign -sd name {top}

Notes

& Microsemi

a A3\ MicrRocHIP company

This command is not required to build a SmartDesign component. This command maps to an interactive user
action in the SmartDesign Canvas and will not be present in the exported SmartDesign component Tcl

description.

See Also

Tcl Command Documentation Conventions

organize _constraints

Tcl command; organizes the constraint files in your project.

-organize constraints

[-file namel]™*
[-mode value]
—-designer view name
-module value

-tool value

Arguments

-file name

Specifies the name of the file to which you want to associate your stimulus files.

-mode value

Specifies whether you are creating a new stimulus association, adding, or removing; possible values are:

Value

Description

new

Creates a new stimulus file association

52

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

Value Description
add Adds a stimulus file to an existing association
remove Removes an stimulus file association

-designer_view name

Sets the name of the Designer View in which you wish to add the constraint file, where name is the name
of the view (such as impl1).

-module value

Sets the module, where value is the name of the module.

-tool value

Identifies the intended use for the file, possible values are:

Value Description
synthesis File to be used for synthesis
designer File to be used in Designer
phsynth File to be used in physical synthesis

Example

The example adds the constraint file delta.vhd in the Designer View impl2 for the Designer tool.

-organize constraints -file delta.vhd -mode new -designer view impl2 -module constraint
-tool designer

organize_sources

Tcl command; organizes the source files in your project.

Arguments

-organize sources
[-file namel]™*

[-mode value]
-module value

-tool value

[-use default value]

Arguments

-file name

Specifies the name of the file to which you want to associate your stimulus files.

-mode value

Specifies whether you are creating a new stimulus association, adding, or removing; possible values are:

Value Description
new Creates a new stimulus file association
add Adds a stimulus file to an existing association

53

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

Value Description

remove Removes an stimulus file association

-module value

Sets the module, where value is the name of the module.

-tool value

Identifies the intended use for the file, possible values are:

Value Description
synthesis File to be used for synthesis
simulation File to be used for simulation

-use_default value

Uses the default values for synthesis or simulation; possible values are:

Value Description
TRUE Uses default values for synthesis or simulation.
FALSE Uses user-defined values for synthesis or simulation

Example
The example organizes a new stimulus file 'stim.vhd' using default settings.
-organize sources -file stim.vhd -mode new -module stimulus -tool synthesis -use default
TRUE

See Also

Project Manager Tcl Command Reference

organize_tool files
This Tcl command is used to specify specific constraint files to be passed to and used by a Libero tool.

organize tool files \

-tool {tool name}

—-params {tool parameters}

-file {<absolute or relative path to constraint file>} \
-module {$design::work} \

-input type {value}

Arguments
-tool {<tool name>}
Specifies the name of the tool files you want to organize. Valid values are:

SYNTHESIZE | PLACEROUTE | SIM PRESYNTH | SIM POSTSYNTH | SIM POSTLAYOUT |
VERIFYTIMING

-file {<absolute or relative path to constraint file>}

54

https://coredocs.s3.amazonaws.com/Libero/12_2_0/Tool/libero_soc_tcl_cmd_ref_ug.pdf

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

Specifies the absolute or relative path to the constraint file; there may be multiple -fi1e arguments (see
example below).

-module {<design::work>}
Module definition, format is <$design:work>.
-input_type {<constraint>}

Specifies type of input file. Possible values are: constraint | source | simulation | stimulus |
unknown

Example
The following command organizes the test_derived.sdc and user.sdc files of SDC file type for the tool
VERIFYTIMING for the sd1: work design.

organize tool files \
-tool {VERIFYTIMING} \
-file {D:/Designs/my proj/constraints/test derived.sdc} \
-file {D:/Designs/my proj/constraints/user.sdc} \
-module {sdl::work} \
-input type {constraint}

project_settings
This Tcl command modifies project flow settings for your Libero SoC project.
project settings [-hdl "VHDL | VERILOG"]\
[-verilog mode {VERILOG 2K | SYSTEM VERILOG}] \
[-vhdl mode ({VHDL 2008 | VHDL 93}]\
[-auto update modelsim ini "TRUE | FALSE"™]\

[~auto update viewdraw ini "TRUE | FALSE"]\
[-block mode "TRUE | FALSE"]\

[-auto generate synth hdl "TRUE | FALSE"]\

[-auto _run drc "TRUE | FALSE"]\

[-auto _generate viewdraw hdl "TRUE | FALSE"\
[-auto_file detection "TRUE | FALSE"]\
[-standalone peripheral initialization "1 | 0"]\

[-ondemand_build_dh "1 | o"|\
[-enable design separation "I | 0"\
[-enable set mitigation "1 | 0"]\
[-display fanout limit {integer}]

Arguments
-hdl "VHDL | VERILOG"
Sets your project HDL type.
-verilog mode {VERILOG 2K | SYSTEM VERILOG}
Sets the Verilog standard to Verilog-2001 or System Verilog.
-vhdl mode {VHDL 2008 | VHDL 93}
Sets the VHDL standard to VHDL-2008 or VHDL-1993.
—auto _update modelsim ini "TRUE | FALSE"
Sets your auto-update modelsim.ini file option. TRUE updates the file automatically.
—auto _update viewdraw ini "TRUE | FALSE"
Sets your auto-update viewdraw.ini file option. TRUE updates the file automatically.
-block mode "TRUE | FALSE"
Puts the Project Manager in Block mode, enables you to create blocks in your project.

55

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

-auto generate synth hdl "TRUE | FALSE"

Auto-generates your HDL file after synthesis (when set to TRUE).

—auto_run_drc "TRUE | FALSE"

Auto-runs the design rule check immediately after synthesis (when set to TRUE).
-auto_generate viewdraw _hdl "TRUE | FALSE"

Auto-generates your HDL netlist after a Save & Check in ViewDraw (when set to TRUE).
-auto_file detection "TRUE | FALSE"

Automatically detects when new files have been added to the Libero SoC project folder (when set to
TRUE).

-standalone peripheral initialization "I | 0"

When set to 1, this option instructs System Builder not to build the initialization circuitry for your
Peripherals. Set this option to 1 if you want to build your own peripheral initialization logic in SmartDesign
to initialize each of the peripherals (MDDR/FDDR/SERDES) independently.

-ondemand build dh "1 | 0"

Enter "1" to enable or "0" (default) to disable On Demand Build Design Hierarchy.
-enable_design_separation "1 | 0"

Set it to “1” if your design is for security and safety critical applications and you want to make your
design’s individual subsystems (design blocks) separate and independent (in terms of physical layout and
programming) to meet your design separation requirements. When set to “1”, Libero generates a
parameter file (MSVT.param) that details design blocks present in the design and the number of signals
entering and leaving a design block. Microsemi provides a separate tool, known as Microsemi Separation
Verification Tool (MSVT), which checks the final design place and route result against the MSVT.param
file and determines whether the design separation meets your requirements.

-display fanout limit {integer}

Use this option to set the limit of high fanout nets to be displayed; the default value is 10. This means the
top 10 nets with the highest fanout will appear in the <root>_compile_netlist.log file.

Example
The following example sets your project to VHDL, disables the auto-update of the ModelSim INI or ViewDraw INI
files, enables the auto-generation of HDL after synthesis, enables auto-detection for files, sets the display of high
fanout nets to the top 12 high fanout nets, enables SET filters to mitigate radiation-induced transients, and
enables design separation methodology for the design.
project settings -hdl "VHDL" \
-auto update modelsim ini "FALSE" \
-auto _update viewdraw ini "FALSE"\
-block_mode "FALSE" -auto _generate synth hdl "TRUE”\
—auto file detection "TRUE"\
-display fanout limit {12}\
-enable set mitigation {1}\
-enable design separation {1}
refresh
Tcl command; refreshes your project, updates the view and checks for updated links and files.
refresh .
Example

refresh .

56

PolarFire FPGA Tcl Commands Reference Guide

remove_core

Tcl command; removes a core from your project.

remove CcCore —name core name

Arguments

—hame core name

Name of the core you want to remove.

Example
Remove the core ip-beta2:

remove_core -name ip-beta2.ccz

remove_library

Tcl command; removes a VHDL library from your project.

remove library
-library name

Arguments

-library name

Specifies the name of the library you wish to remove.
Example

Remove (delete) a library called 'my_lib".

remove_ library —-library my 1lib
See Also

add library

rename library

remove_profile

Tcl command; deletes a tool profile.

remove profile -name profilename

Arguments

-name profilename

Specifies the name of the profile you wish to delete.

Example

The following command deletes the profile ‘custom1":

remove profile -name customl

& Microsemi

a A3\ MicrRocHIP company

57

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

rename_file

This Tcl command renames a constraint file specified by the -fi1e parameter to a different name specified by the
—-target parameter.

rename file -file {filename} -target {new filename}

Arguments
-file {filename}
Specifies the original name of the file.
-target {new filename}
Specifies the new name of the file.
Example

This command renames the file a.sdc to b.sdc.

rename_file -file {c:/user/a.sdc} -target {c:/user/b.sdc}

Return Value
This command returns 0 on success and 1 on failure.

rename_library

Tcl command; renames a VHDL library in your project.

rename library
-library name
—name name

Arguments
-library name
Identifies the current name of the library that you wish to rename.
—name name
Specifies the new name of the library.
Example
Rename a library from 'my_lib' to 'test_lib1'
rename_library —-library my lib -name test 1ibl
See Also
add library
remove library
run_tool

run_tool starts the specified tool. For tools that support command files, an optional command file can be supplied
through the -script parameter.

run_tool
-name {<tool name >} \
—-script {<absolute or relative path to script file>}

58

PolarFire FPGA Tcl Commands Reference Guide

& Microsemi

-script is an optional parameter.

= SYNTHESIZE | COMPILE | SIM PRESYNTH | SIM POSTSYNTH | PLACEROUTE |
VERIFYTIMING | VERIFYPOWER | GENERATEPROGRAMMINGFILE | GENERATE MEMORY MAP |

tool name ::

PROGRAMDEVICE | CONFIGURE CHAIN | SMARTDEBUG | SSNANALYZER

| PROGRAM_SPI_FLASH_IMAGE

Supported tool_names
The following table lists tool_names for run_tool —name {tool name}.

run_tool returns 0 on success and 1 on failure.

a A3\ MicrRocHIP company

| GENERATE_SPI_FLASH_IMAGE

tool_name Parameter Description
SYNTHESIZE -script Runs synthesis on your design.
{script fi
le}
COMPILE N/A Runs Compile with default or configured settings.
SIM_PRESYNT | N/A Runs pre-synthesis simulation with your default
H simulation tool
SIM_POSTSYN | N/A Runs post-synthesis simulation with your default
TH simulation tool.
PLACEROUTE [N/A Runs Layout with default or configured settings.
VERIFYTIMING | -script Runs timing analysis with default
{script_f£i | settings/configured settings in script file.
le}
VERIFYPOWER | -script Runs power analysis with default
{script f£i | settings/configured settings in script file.
le}
GENERATEPR | N/A Generates the bitstream used for programming
OGRAMMINGFI within Libero.
LE
GENERATE_ME | N/A Exports an XML file in <prj_folder>
MORY_MAP component/work/<design>
/<design>_DataSheet.xml. The file contains
information about your root SmartDesign in your
project.
PROGRAMDEVI | N/A Programs your device with configured
CE parameters.
CONFIGURE_C | -script Takes a script that contains FlashPro-specific Tcl
HAIN {script_f£i | commands and passes them to FlashPro Express
le} for execution.
SMARTDEBUG | -script Takes a script that contains SmartDebug-specific
{script_f£i | Tcl commands and passes them to SmartDebug
le} for execution.

59

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

tool_name Parameter Description
GENERATE_SP | N/A Generates SPI Flash Image file used for
I_FLASH_IMAG programming SPI FLASH Image within Libero.
E
PROGRAM_SPI [N/A Programs SPI Flash Image with configured
_FLASH_IMAGE parameters.

-script {absolute or relative path to script file}

Script file location.

Example
run_tool \
-name {COMPILE}
run_tool \
-name {SYNTHESIZE} -script {./control synopsys.tcl}
#control _synopsys.tcl contains the synthesis-specific Tcl commands
run_tool \
-name {VERIFYTIMING} \
-script {./SmartTime.tcl}
Script file contains SmartTime-specific Tcl commands
run_tool \
-name {VERIFYPOWER} \
-script {./SmartPower.tcl}
Script file contains SmartPower-specific Tcl commands
run_tool \
-name {SMARTDEBUG}
-script {./sd test.tcl}
Script file contains SmartDebug-specific Tcl commands
Note

Where possible, the value of tool name corresponds to the name of the tool in Libero SoC.

Invoking some tools will cause Libero SoC to automatically run some upstream tools in the design flow. For
example, invoking Place and Route will invoke Synthesis (if not already run) before it runs Place and Route.

save_project_as

Tcl command; the save_project_as command saves the current project in Libero SoC with a different
name and in a specified directory. You must specify a location with the -location parameter.

save project as

—name project name
-location project location
-files value

-designer views value
-replace links value

Arguments

-name project name

Specifies the name of your new project.

60

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

-location project location

Must include the complete path of the PRJ file. If you do not provide the full path, Libero SoC infers that
you want to save the project to your current working directory. This is a required parameter.

-files value

Specifies the files you want to copy into your new project.

Value Description

all Copies all your files into your new project

project | Copies only your Libero SoC project files into your new project

source Copies only the source files into your new project

none Copies none of the files into your new project; useful if you wish to manually copy only specific
project files

-designer_views value

Specifies the Designer views you wish to copy into your new project.

Value Description
all Copies all your Designer views into your new project
current Copies only your current Designer fiew files into your new project
none Copies none of your views into your new project

-replace_links value

Specifies whether or not you want to update your file links in your new project.

Value Description
true Replaces (updates) the file links in your project during your save
false Saves your project without updating the file links

Example
Saves your current Libero SoC project as mydesign.prj in the c:/netlists/testprj/mydesign directory:
save project as -location c:/netlists/testprj/mydesign -name mydesign.prj
See Also
new project
open project
save project
save_log

Tcl command; saves your Libero SoC log file.

save log -file value

61

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

Arguments

-file value

Value is your name for the new log file.
Example

Save the log file file_log.

save_log -file file log
See Also

close project

new project

save_project
Tcl command; the save_project command saves the current project in Libero SoC.

save project

Arguments
None

Example
Saves the project in your current working directory:
save_project

See Also

new project

open project

save_smartdesign
Tcl command; saves all the changes made in a SmartDesign component.

save smartdesign \
-sd_name smartdesign component_name

Arguments
-sd_name smartdesign component name

Specifies the name of the SmartDesign component to be saved. It is mandatory.

Examples

save smartdesign -sd name {top}

See Also
Tcl Command Documentation Conventions

select_profile

Tcl command; selects a profile to use in your project.

62

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

select profile -name profilename

Arguments
-name profilename

Specifies the name of the profile you wish to use.

Example
The following command selects the profile 'custom1":

select profile -name customl

set_actel lib_options

Tcl command; the set_actel_lib_options command sets your simulation library to default, or to another
library (when you specify a path.

set actel 1ib options -use default sim path value -sim path {path}

Arguments
-use_default sim path value
Possible values are:
Value Description
TRUE Uses the default simulation library.
FALSE | Disables the default simulation library; enables you to specify a different
simulation library with the -sim_path {path} option.
-sim_path {path}
Specifies the path to your simulation library.
Example

Uses a simulation library in the directory c:\sim_lib\test.
set _actel lib options -use default sim path FALSE -sim path {c:\sim lib\test}

set_as_target
This Tcl command sets a SDC, PDC or FDC file as the target file to receive and store new constraints.

set _as_target -type {constraint file type} \
-file {constraint file path}

Arguments
-type {sdc | pdc | fdc}
Specifies the file type: SDC, PDC, or FDC.

Example

This command sets the SDC file <project_folder> /constraints/user.sdc as the target to receive and store new
SDC commands.

set _as_target -type {sdc} -file {./constraint/user.sdc}

63

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

This command sets the PDC file <project_folder> /constraints/user.pdc as the target to receive and store new
PDC commands.
set_as_target -type {pdc} -file {./constraint/user.pdc}

Return Value
This command returns 0 on success and 1 on failure.

set_device (Project Manager)
Tcl command; sets your device family, die, and package in the Project Manager.

set device [-family family] [-die die] [-package package] .[-speed speed grade] [-adv options

value]

Arguments
—family family
Sets device family.
-die die
Sets device die.
-package package
Sets device package.
-speed speed grade
Sets device speed grade.
-adv_options value

Sets your advanced options, such as temperature and voltage settings.

Value Description
IO_DEFT_STD:LVTTL Sets your I/O default value to LVTTL
TEMPR:COM Sets your default temperature range; can be COM (Commercial), MIL
(Military) or IND (industrial).

VCCI_1.5_VOLTR:COM Sets VCCI to 1.5 and voltage range to Commercial
VCCI_1.8_VOLTR:COM Sets VCCI to 1.8 and voltage range to Commercial

VCCI_2.5 VOLTR:COM Sets VCCI to 2.5 and voltage range to Commercial
VCCI_3.3_VOLTR:COM Sets VCCI to 3.3 and voltage range to Commercial

VOLTR:COM Sets your voltage range; can be COM (Commercial), MIL (Military) or

IND (industrial).

RESTRICTPROBEPINS:1 (For SmartFusion2, IGLOO2 and RTG4 only) Sets to 1 to reserve your
pins for probing if you intend to debug using SmartDebug.

See Also

How to Derive Required Part Information from A "Part Number"

64

PolarFire FPGA Tcl Commands Reference Guide

set_modelsim_options
Tcl command; sets your ModelSim simulation options.

set modelsim options

[-use automatic do file value]
[-user do file {path}]
[-sim runtime {value}]

[-tb _module name {value}]
[-tb_top level name {value}]
[-include do file value
[-included do file {value}]
[-type {value}]

[-resolution {value}]
[-add vsim options {value}]
[-display dut wave value]
[-log all signals value]
[-do _file args value]
[-dump vcd "TRUE | FALSE"]
[-ved file "VCD file name"]

& Microsemi

a A3\ MicrRocHIP company

Arguments
-use_automatic do file value
Uses an automatic.do file in your project. Possible values are:
Value Description

TRUE [Uses the default automatic.do file in your project.

FALSE | Uses a different *.do file; use the other simulation options to specify it.

-user do file {path}
Specifies the location of your user-defined *.do file.

-sim_runtime {value}

Sets your simulation runtime. Value is the number and unit of time, such as {1000ns}.

-tb module name {value}

Specifies your testbench module name, where value is the name.

-tb_top_level name {value}

Sets the top-level instance name in the testbench, where value is the name.

-include _do_file value

Includes a *.do file; possible values are:

Value Description
TRUE Includes the *.do file.
FALSE Does not include the *.do file

-included do_file {value}

Specifies the path of the included *.do file, where value is the name of the file.

-type {value}
Resolution type; possible values are:

65

PolarFire FPGA Tcl Commands Reference Guide

Example

& Microsemi

a A3\ MicrRocHIP company

Value Description
min Minimum
typ Typical
max Maximum

-resolution {vaiue}

Sets your resolution value, such as {1ps}.

-add_vsim options {value}

Adds more Vsim options, where value specifies the option(s).

-display_dut_wave value

Enables ModelSim to display signals for the tested design; possible values are:

Value Description
0 Displays the signal for the top_level_testbench
1 Enables ModelSim to display the signals for the tested design

-log_all_signals vaiue

Enables you to log all your signals during simulation; possible values are:

Value

Description

TRUE

Logs all signals

FALSE

Does notlog all s

ignals

-do_file args value

Specifies *.do file command parameters.

—-dump_vcd value

Dumps the VCD file when simulation is complete; possible values are:

Value

Description

TRUE

Dumps the VCD file

FALSE

Does not dump the VCD file

-ved_file {value}

Specifies the name of the dumped VCD file, where value is the name of the file.

Sets ModelSim options to use the automatic *.do file, sets simulation runtime to 1000ns, sets the
testbench module name to "testbench", sets the testbench top level to <top>_0, sets simulation type to
"max", resolution to 1ps, adds no vsim options, does not log signals, adds no additional DO file
arguments, dumps the VCD file with a name power.vcd.

set _modelsim options -use_automatic _do_file 1 -sim runtime {1000ns} -tb module name
{testbench} -tb top level name {<top> 0} -include do file 0 -type {max} -resolution

66

PolarFire FPGA Tcl

& Microsemi

a A3\ MicrRocHIP company

Commands Reference Guide

{lps} -add_vsim options {} -display dut wave 0 -log_all signals 0 -do_file args {} -

dump ved 0 -ved file {power.vcd}

set_option

set option [

Arguments

Example

Tcl command; sets your synthesis and FPGA Hardware Breakpoint Auto Instantiation options on a
module.

-synth "TRUE | FALSE"] [-fhb "TRUE | FALSE"] [-module "module name"]

-synth "TRUE | FALSE"

Runs synthesis (for a value of TRUE).

-fhb "TRUE | FALSE"

Enable/disable FPGA Hardware Breakpoint Auto Instantiation.
-module module name

Identifies the module on which you will run synthesis.

Run synthesis on the module test1.vhd:

set root

set root mod

Arguments

Example

set_user _li

set_option [-synth TRUE] [-module <module name>]

Tcl command; sets the module you specify as the root.

ule name

set_root module name

Specifies the name the module you want to set as root.

Set the module mux8 as root:

set root mux8

b _options
Tcl command; sets your user library options during simulation. If you do not use a custom library these
options are not available.

set user lib options
-name {value}

-path {path}
-option {val

Arguments

ue}

-name {value}

Sets the name of your user library.
-path {path}

Sets the pathname of your user library.

67

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

-option {value}

Sets your default compile options on your user library; possible values are:

Value Description
do_not_compile User library is not compiled
refresh User library is refreshed
compile User library is compiled
recompile User library is recompiled
refresh_and_compile User library is refreshed and compiled

Example
The example below sets the name for the user library to "test1", the path to
c:/msemi_des_files/libraries/test1, and the compile option to "do not compile".
set user lib options -name {testl} -path {c:/msemi des files/libraries/testl} -option
{do_not_compile}

unlink

Tcl command; removes a link to a file in your project.

unlink -file filename [-local local filename]

Arguments
-file filename
Name of the linked (remote) file you want to unlink.
-local local filename
Name of the local file that you want to unlink.
Example

Unlink the file hdl1.vhd from my local file test.vhd
unlink -file hdll.vhd [-local test.vhd]

unset_as_target

This Tcl command unsets a target file in the Constraints view.

unset as target -file {filename}

Arguments

-file {filename}

Specifies the name of the file to be unset as a target.

Example
This command unsets the PDC file <project_folder> /constraints/user.pdc:

unset as_target -file {c:/user/a io.pdc}

68

PolarFire FPGA Tcl Commands Reference Guide

Return Value
This command returns 0 on success and 1 on failure.

use_source_file

Tcl command; defines a module for your project.

use source file
-file value
-module value

& Microsemi

a A3\ MicrRocHIP company

Arguments
-file value
Specifies the Verilog or VHDL file. Value is the name of the file you wish use (including the full pathname).
-module value
Specifies the module in which you want to use the file.
Example
Specify file1.vhd in the ./project/hdl directory, in the module named top.
use source file -file “./project/hdl/filel.vhd” -module “top"
See Also

use file

69

https://coredocs.s3.amazonaws.com/Libero/12_2_0/Tool/pf_tcl_cmd_ref_ug.pdf

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

SmartDesign Tcl Commands

The SmartDesign Tcl commands can be used to create a design in the SmartDesign. You must either create or
open a SmartDesign before you can use any of the SmartDesign commands - sd_* .

All SmartDesign Tcl commands are supported by the PolarFire family.

sd_add_pins_to_group
Tcl command; adds one or more pins to a pin group on an instance in a SmartDesign component.

sd_add pins_to group \

-sd_name smartdesign component name \
-instance name instance name \
—group_name group name \

-pin_names pin names

Arguments
-sd_name smartdesign component name
Specifies the name of the SmartDesign component. It is mandatory.
-instance_name instance name
Specifies the name of the instance on which the pin group is present. It is mandatory.
-group_name group name
Specifies the name of the group to add the pins to. It is mandatory.
-pin_names pin names
Specifies the list of instance pins to be added to the pin group. It is mandatory.
Examples

sd _add pins_ to group -sd name {TOP} -instance name
{COREAXI4INTERCONNECT CO O} -group name {Group} -pin names {ARESETN ACLK}

See Also
Tcl Command Documentation Conventions

sd_clear_pin_attributes

Tcl command,; clears all attributes on one or more pins/ports in a SmartDesign. Pin attributes include pin
inversion, mark as unused and constant value settings.

sd clear pin attributes \
-sd _name smartdesign component name \
-pin _names port or pin names

Arguments
-sd_name smartdesign component name
Specifies the name of the SmartDesign component. It is mandatory.
-pin_names port or pin names

Specifies the name of the port/pin for which all the attributes must be cleared. It is mandatory.

70

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

Examples
sd clear pin attributes -sd name {sdl} -pin names {RAM1K18 0:A DOUT CLK}
sd clear pin attributes -sd name {top} -pin names {CARRY OUT}

Notes

This command will not work on multiple pins/ports in this release. Support for multiple pins/ports will be provided
in the next Libero release. This command is not required to build a SmartDesign component. This command
maps to an interactive user action in the SmartDesign Canvas and will not be present in the exported
SmartDesign component Tcl description.

See Also
Tcl Command Documentation Conventions

sd_configure core_instance

Tcl command; configures the parameters of a core instance (Direct Instantiation) in a SmartDesign component.
This command is typically used after instantiating a core from the catalog directly into a SmartDesign component
(Direct Instantiation) without first creating a component for the core (using sd_instantiate_core). This command
can configure multiple core parameters at a time.

sd_configure core instance \

-sd name smartdesign component name \
-instance name core instance name \
-params core parameters \

[-validate rules 0|1]

Arguments
-sd_name smartdesign component name
Specifies the name of the SmartDesign component. It is mandatory.
-instance_name instance name
Specifies the name of the core instance in the SmartDesign which needs to be configured. It is
mandatory.
—params core parame ters
Specifies the parameters that need to be configured for the core instance. It is mandatory.
-validate rules 0|1
Validates the rules of the updated configuration. It is optional.
Examples
sd _configure core instance -sd name {SDl} -instance name {COREFIFO 0} -
params {"SYNC:0" "param2:value2" "param3:value3"} -validate rules 0
See Also

Tcl Command Documentation Conventions

sd_connect_instance pins_to ports
Tcl command; connects all pins of an instance to new SmartDesign top level ports.

sd_connect instance pins to ports \
-sd_name smartdesign component name \
-instance name instance name

71

PolarFire FPGA Tcl Commands Reference Guide

Arguments

Examples

Notes

& Microsemi

a A3\ MicrRocHIP company

-sd_name smartdesign component name

Specifies the name of the SmartDesign component. It is mandatory.

-instance name instance name

Specifies the instance name for which all the pins must be connected to top level ports. It is mandatory.
The instance pins are connected to new top level ports created with the same instance pin names. If a top
level port with the same name already exists, then the tool automatically creates a new port with name
<port_name>_<index> (index is an automatically generated integer starting at 0 such that the port name
is unique in the SmartDesign).

sd connect instance pins to ports -sd name {top} -instance name
{CORESPI CO 0}

sd connect instance pins to ports -sd name {top} -instance name
{ddr _out 0}

This command is not required to build a SmartDesign component. This command maps to an interactive user
action in the SmartDesign Canvas and will not be present in the exported SmartDesign component Tcl
description.

See Also

Tcl Command Documentation Conventions

sd_connect_net to pins

Tcl command; connects a list of SmartDesign top level ports and/or instance pins to a net.

sd_connect net to pins \

-sd name smartdesign component name \

-net name net name \—pin_names port or pin names

Arguments

Examples

-sd_name smartdesign component name
Specifies the name of the SmartDesign component. It is mandatory.
-net_name net name

Specifies the name of the net to be connected to pins/ports in the SmartDesign component. It is
mandatory.

-pin_names port or pin names

Specifies the name of the ports/pins to be connected to the net in the SmartDesign. It is mandatory. The
command will fail if:

- The ports/pins do not exist.
- The ports/pins and the net being connected are of different range/size.
- There is more than one port/pin driving the net.

sd _connect net to pins -sd name {shifter} -net name {ready net} -pin names {"READY"}

sd _connect net to pins -sd name {top} -net name {clk net} -pin names {CLK
RAM64x12 0:R CLK RAM64x12 0:W_CLK}

72

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

Notes

This command is not required to build a SmartDesign component. It is not exported when you select Libero
Project - "Export Script File’ or ‘Export Component Description(Tcl)’ on a SmartDesign component. This
command is typically used in conjunction with 'sd_create_*_net' command to connect two or more ports/pins to a
net.

See Also

Tcl Command Documentation Conventions

sd_connect_pins_to_constant
Tcl command; connects SmartDesign top level output ports or input instance pins to constant values.

sd_connect pins to constant \
-sd_name smartdesign component name \
-pin names port or pin names \
-value constant value

Arguments
-sd_name smartdesign component name
Specifies the name of the SmartDesign component. It is mandatory.
-pin_names port or pin names
Specifies the names of the top level output ports or the instance level input pins to be tied to constant
values. It is mandatory. Bus pins/ports and pin/port slices can also be tied to constant values. This
command will fail if the specified port/pin does not exist. The command will also fail if the assigned object
is a port of direction IN/INOUT or a pin of direction OUT/INOUT.
-value constant value
Specifies the constant value to be assigned to the port/pin. It is mandatory. The acceptable values to this
argument are GND/VCC/hexadecimal numbers.
Examples
sd_connect pins to constant -sd name {top} -pin name {bypass} -value
{GND}
sd_connect pins to constant -sd name {top} -pin name {sle O:en} -value
{vccy
sd connect pins to constant -sd name {top} -pin name {ram64x12 O:w data}
-value {0x7f}
Notes

This command will not work on multiple pins/ports in this release. Support for multiple pins/ports will be provided
in the next Libero release.

See Also
Tcl Command Documentation Conventions

sd_connect_pin_to_port

Tcl command; connects a SmartDesign instance pin to a new top level port. This command is equivalent to the
‘Promote to Top Level’ GUI action on an instance pin.

sd _connect pin to port \
-sd name smartdesign component name \

73

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

-pin name pin name \
[-port name port name]

Arguments
-sd_name smartdesign component name
Specifies the name of the SmartDesign component. It is mandatory.
-pin_name pin name
Specifies the name of the instance level pin that needs to be connected to a top level port. It is mandatory.
-port name port name
Specifies the name of the new top level port that the instance pin will be connected to. It is optional. If the
port name is not specified, the new port takes the name of the instance pin. If the port name as defined by
these rules already exists, the tool automatically creates a new port with name <port_name>_<index>
(index is an automatically generated integer starting at O such that the port name is unique in the
SmartDesign).
Examples
sd_connect pin to port -sd name {top} -pin name {DFN1 0:D}
sd connect pin to port -sd name {top} -pin name {DFN1 0:Q} -port name
{Q_OuT}
Notes

This command is not required to build a SmartDesign component. This command maps to an interactive user
action in the SmartDesign Canvas and will not be present in the exported SmartDesign component Tcl
description.

See Also
Tcl Command Documentation Conventions

sd_connect_pins
Tcl command; connects a list of SmartDesign top level ports and/or instance pins together.

sd_connect pins \
-sd _name smartdesign component name \
-pin_names port or pin or slice names_

Arguments
-sd_name smartdesign component name
Specifies the name of the SmartDesign component. It is mandatory.
-pin_names port or pin or slice names
Specifies the port names, pin names and/or slice names to be connected together. It is mandatory. This
command will fail if the ports, pins or slices do not exist. This command will also fail if the ports, pins
and/or slices are not of the same size/range.
Examples
sd connect pins -sd name {top} -pin names {CLK MACC PA 0:CLK DFN1 0:CLK}
sd connect pins -sd name {top} -pin names {MACC PA 0:A
RAMIK20 0:A DIN[17:0]}
See Also

Tcl Command Documentation Conventions

74

PolarFire FPGA Tcl Commands Reference Guide

& Microsemi

a A3\ MicrRocHIP company

sd_create bif net

Tcl command; creates a bus interface (BIF) net in a SmartDesign component. Any net created must be connected
to two or more ports/pins using the command “sd_connect_net_to_pins”.

sd_create bif net \
-sd_name smartdesign component name \
-net name net name

Arguments
-sd_name smartdesign component name
Specifies the name of the SmartDesign component. It is mandatory.
-net_name net_name
Specifies the name of the net to be added in the SmartDesign component. It is mandatory. The command
will fail if there is an already existing net with the same name.
Examples

Notes

sd create bif net -sd name {TOP} -net name {bifnetl}
Note: This new bif net is visible in the Ul only when it is connected to two or more ports/pins using the command
“sd_connect_net_to_pins” as shown below.

sd_connect net to pins -sd _name {TOP} -net name {bifnetl} -pin names {"AHBmmaster(Q"
"CoreAHBLite CO_O:AHBmmasterO"}

This command is not required to build a SmartDesign component. It is not exported when you select Libero
Project - "Export Script File’ or ‘Export Component Description(Tcl) on a SmartDesign component. This
command is used to manually create a Tcl script and specify a new name to the net that connects two or more
ports/pins.

See Also
Tcl Command Documentation Conventions

sd_create bif port

Tcl command; creates a SmartDesign Bus Interface port of a given type. This command is used to create top
level Bus Interface ports in a SmartDesign component to connect to the instance level Bus Interface ports of the
same type.

To use this command, it is recommended to first use the GUI to instantiate the core component or the HDL
module with Bus Interface port to be promoted in the SmartDesign. Then use the Ul action "Promote to Top
Level" on the Bus Interface port of interest and export the Tcl script for the SmartDesign component by selecting "
Export Component Description(Tcl)" on the right-click menu of the SmartDesign component in the Design
Hierarchy. You can then use the Tcl command ‘sd_create_bif_port’ from the exported Tcl script (note to change
the SmartDesign name in the command) to create a bus interface port anywhere in a regular Libero script. Note
that there can be different Bus Interface types and roles defined by the arguments —port_bif vinvand —
port_bif_role.

sd_create bif port \

-sd name smartdesign component name \

-port name port name \

-port bif vlnv vendor:library:name:version \
-port bif role port bif role \
-port bif mapping [bif port name:port name]+

75

PolarFire FPGA Tcl Commands Reference Guide

Arguments

Examples

-sd_name smartdesign component name

& Microsemi

a A3\ MicrRocHIP company

Specifies the name of the SmartDesign component. It is mandatory.

-port_name port name

Specifies the name of the Bus Interface port to be added in the SmartDesign. It is mandatory.

-port _bif vlnv {vendor:library:name:version}

Specifies the version identifier of the Bus Interface port to be added in the SmartDesign. It is mandatory.

-port _bif role {port bif role}

Specifies the role of the Bus Interface port to be added in the SmartDesign. Role values depend on the
type of Bus Interface (VLNV) that is being defined for the port. The figure below shows the roles for
different Bus Interface ports supported by Libero.

Marne Yendor Library Rale
{AHE AnBA, AbABAZ master
AHEB AMBA, AbABAZ slave
AHE ARABL, AbgBS2 mirroredhdaster
AHE ArABL, AbgBS2 mirroredlave
APEB ArABS, ArABS2 master
APB ArABA AbABAZ slave
APB AbARA, AbABAZ mirroredhdaster
APB ARABA, AkABLZ mirroredslave
AT ARABL, ArBLZ master
A3 ArBA, AbABAZ slave
AT ARABD, ArABLSZ mirroredhdaster
AT ARABA, AriBASZ mirroredslave
Al L8B4, AnABAS systermn
Ax14 ARABS, AnBDSA master
AxT4 AnBA, ApdBAA slave
Ax14 ARABS, AbgBSA mirroredhdaster
A4 ArABL, AbABSS mirroredslave
DDR3 Actel busdef.mermory rmaster
DOR3 Sctel busdefirmermory slawve
PF_APE _LIME Actel busdef.link master
PF_APE_LIME Actel busdef.link slawe
PF_COR_CLK Actel busdef.clock master
PF_CDR_CLK Actel busdef.clock slawve
PF_DRI Actel busdef.dn master
PF_DRI Actel busdef.dri slawve
PF_DRI Artel husdef.dri mmirraredhdaster
PF_DRI Artel busdef.dri rmirrared slave
PF THPLL_®CWE_CLE Actel bhusdef.clock master
PF_THPLL_XCWR_CLE Actel busdef.clock ilave

-port bif mapping {[bif port name:port name]+}

Specifies the mapping between the bus interface formal names and the SmartDesign ports mapped onto

that bus interface port. It is mandatory.

sd create bif port -sd name {sdl} -port name {BIF 1} -port bif vlnv
{AMBA:AMBA2:APB:r0p0} -port bif role {slave} -port bif mapping {\

"PADDR: PADDR"

"PSELx:pselx" \

"PENABLE : PENABLE" \

76

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

"PWRITE: PWRITE" \
"PRDATA: PRDATA" \
"PWDATA : PWDATA" \
"PREADY : PREADY" \
"PSLVERR:PSLVERR" }

See Also

Tcl Command Documentation Conventions

sd_create bus net

Tcl command; creates a bus net of a given range in a SmartDesign component. Any net created must be
connected to two or more ports/pins using the command “sd_connect_net_to_pins”.

sd_create bus net \

-sd_name smartdesign component name \

-net name net name \

-net range [left index range:right index range]

Arguments
-sd_name smartdesign component name
Specifies the name of the SmartDesign component. It is mandatory.
-net_name net name
Specifies the name of the net to be added in the SmartDesign component. It is mandatory.
-net_range [left index range:right index range]
Specifies the range of the net added to the SmartDesign component. The range is defined by its left and
right range indices. It is mandatory.

Examples

sd_create bus net -sd name {top} -net name {abl} -net range {[5:0]]}

Note: This new net is visible in the Ul only when it is connected to two or more ports/pins using the command
“sd_connect_net_to_pins” as shown below.

sd_connect net to pins -sd name {top} -net name {abl} -pin names {a RAM64x12 0:R_ADDR}

Notes

This command is not required to build a SmartDesign component. It is not exported when you select Libero
Project - "Export Script File’ or ‘Export Component Description(Tcl)’ on a SmartDesign component. This
command is used to manually create a Tcl script and specify a new name to the net that connects two or more
ports/pins.

See Also
Tcl Command Documentation Conventions

sd_create bus_port
Tcl command; creates a bus port of a given range in a SmartDesign component.

sd _create bus port \
-sd _name smartdesign component name \

77

PolarFire FPGA Tcl Commands Reference Guide

& Microsemi

a A3\ MicrRocHIP company

—port name port name \-port direction IN|OUT|INOUT \
—-port range {[left range index:right range index]}

Arguments

Examples

-sd_name smartdesign component name
Specifies the name of the SmartDesign component. It is mandatory.
-port name port name
Specifies the name of the bus port added to be SmartDesign component. It is mandatory.
-port direction IN|OUT|INOUT
Specifies the direction of the bus port added to the SmartDesign component. It is mandatory.
-port_range {[left range index:right range index]}
Specifies the range of the bus port added to the SmartDesign component. The range is defined by the left
and right indices. It is mandatory. The range must be specified inside the square brackets.
sd create bus port -sd name {top} -port name {test portl3} -port direction {OUT} -
port range {[9:36]}
sd _create bus port -sd name {top} -port name {test port4d} -port direction {IN} -
port _range {[31:0]}

See Also

Tcl Command Documentation Conventions

sd_create pin_group

Tcl command; creates a group of pins in a SmartDesign component. A pin group is only used to manage the
complexity of the SmartDesign canvas. There is no actual netlist functionality related to pin group commands. Pin
groups cannot be created for top level ports.

sd_create pin group \

-sd_name smartdesign component name \
-instance name instance name \

[-group name group name] \

[-pin names pin to be added to the group]

Arguments

Examples

-sd_name smartdesign component name

Specifies the name of the SmartDesign component. It is mandatory.

-instance name instance name

Specifies the name of the instance on which the pin group is added. It is mandatory.

—group_name group name

Specifies the name of the pin group. It is optional. If the group name is not specified, the default name will

be 'Group'. If the name 'Group' is already taken, then the group name will be 'Group_<index>' (index is
auto-incremented).

-pin _names pins to be added to the group

Specifies the list of instance pins to be added to the pin group. It is optional.

sd _create pin group -sd name {TOP} -instance name
{COREAXI4INTERCONNECT CO O} -group name {MyGroup} -pin names {ACLK
ARESETN}

78

PolarFire FPGA Tcl Commands Reference Guide

& Microsemi

a A3\ MicrRocHIP company

See Also

Tcl Command Documentation Conventions

sd_create pin_slices

Tcl command; creates slices for a SmartDesign top level bus port or an instance level bus pin.

sd_create pin slices \

-sd name smartdesign component name \

-pin name port or pin name \

-pin _slices port or pin slices

Arguments

Examples

-sd_name smartdesign component name
Specifies the name of the SmartDesign component. It is mandatory.
-pin_name port or pin name
Specifies the name of the bus port or bus pin to be sliced. It is mandatory. This command will fail if the
port/pin is scalar or if the bus port/pin does not exist.
-pin_slices port or pin slices
Specifies the port/pin slices as a list of bus ranges which must be contained within the port/pin bus range.
It is mandatory. This command will fail if the sliced object is top level OUT/INOUT port and the slice
ranges overlap. This command will also fail if the sliced object is an instance level IN/INOUT pin and the
slice ranges overlap.
sd create pin slices -sd name {sub} -pin name {Rdata} -pin slices {[4:3] [2:0]} # top
level port slicing
sd_create pin slices -sd name {sub} -pin_name {DDR memory arbiter CO_O0:VIDEO_ RDATA 4 O}
-pin _slices {[3:3] [2:0]} # instance level pin slicing

See Also

Tcl Command Documentation Conventions

sd_create scalar_net

Tcl command; creates a scalar net in a SmartDesign component. Any net created must be connected to two or
more ports/pins using the command “sd_connect_net_to_pins”.

sd_create scalar net \

-sd _name smartdesign component name \
-net name net name

Arguments

Examples

-sd_name smartdesign component name
Specifies the name of the SmartDesign component. It is mandatory.
-net_name net name

Specifies the name of the net added to the SmartDesign component. It is mandatory.

sd_create_ scalar_net -sd name {top} -net name {clk net}

Note: This new net is visible in the Ul only when it is connected to two or more ports/pins using the command
“sd_connect_net_to_pins” as shown below

79

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

sd_connect net to pins -sd name {top} -net name {clk net} -pin names {CLK
RAM64x12 0:R _CLK RAM64x12 0:W CLK}

Notes

This command is not required to build a SmartDesign component. It is not exported when you select Libero
Project - "Export Script File’ or ‘Export Component Description(Tcl) on a SmartDesign component. This
command is used to manually create a Tcl script and specify a new name to the net that connects two or more
ports/pins.

See Also
Tcl Command Documentation Conventions

sd_create_scalar_port
Tcl command; creates a scalar port in a SmartDesign component.

sd_create scalar port \

-sd name smartdesign component name \
-port name port name \

-port direction IN|OUT|INOUT

Arguments

-sd_name smartdesign component name

Specifies the name of the SmartDesign component. It is mandatory.

-port name port name

Specifies the name of the port added to the SmartDesign component. It is mandatory.

-port_direction IN|OUT|INOUT

Specifies the direction of the port added to the SmartDesign component. It is mandatory.
Examples

sd_create scalar_port -sd name {main} -port_name {po2} -port direction {INOUT}

See Also

Tcl Command Documentation Conventions

sd_delete _instances
Tcl command; deletes one or more instances from a SmartDesign component.

sd_delete instances \
-sd name smartdesign component name \
-instance names instance names

Arguments
-sd_name smartdesign component name
Specifies the name of the SmartDesign component. It is mandatory.
-instance_names instance names
Specifies the instance names to be deleted. It is mandatory.
Examples

sd _delete instances -sd name {top} -instance names {RAM64X12 0}

80

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

sd delete instances -sd name {SUB} -instance names {coreahblite cO O
coreriscv_axid4 c0 0 pf ccc cO 0}

Notes

This command is not required to build a SmartDesign component. This command maps to an interactive user
action in the SmartDesign Canvas and will not be present in the exported SmartDesign component Tcl
description.

See Also
Tcl Command Documentation Conventions

sd_delete nets

Tcl command; deletes one or more nets from the SmartDesign component.

sd_delete nets \
-sd name smartdesign component name \
-net names net_ names

Arguments

-sd_name smartdesign component name

Specifies the name of the SmartDesign component. It is mandatory.

-net_names net names

Specifies the net names to be deleted. It is mandatory.
Examples

sd_delete_nets -sd_name {topp} -net_names {B_REN_0}
Notes

This command will not delete multiple nets in this release. Support for deleting multiple nets will be provided in the
next Libero release. This command is not required to build a SmartDesign component. This command maps to an
interactive user action in the SmartDesign Canvas and will not be present in the exported SmartDesign
component Tcl description.

See Also
Tcl Command Documentation Conventions

sd_delete pin_group
Tcl command; deletes a pin group from an instance in a SmartDesign component.

sd_delete pin group \

-sd name smartdesign component name \
-instance name instance name \
-group_name group name

Arguments
-sd_name smartdesign component name
Specifies the name of the SmartDesign component. It is mandatory.
-group_name group name
Specifies the name of the pin group to be deleted. It is mandatory.

-instance name instance name

81

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

Specifies the name of the instance from which the group pin needs to be deleted. It is mandatory.

Examples

sd delete pin group -sd name {TOP} -instance name
{COREAXI4INTERCONNECT CO O} -group name {Group}

See Also
Tcl Command Documentation Conventions

sd_delete pin_slices
Tcl command; deletes SmartDesign top level port slices or instance pin slices.

sd _create pin slices \

-sd name smartdesign component name \
-pin name port or pin name \

-pin _slices port or pin slices

Arguments
-sd_name smartdesign component name
Specifies the name of the SmartDesign component. It is mandatory.
-pin_name port or pin name
Specifies the name of the bus port or bus pin for which the slices must be deleted. It is mandatory.
-pin_slices port or pin slices
Specifies the ranges of the port and/or pin slices to be deleted. It is mandatory.
Examples
sd delete pin slices -sd name {top} -pin name {MACC pa O:p} -pin slices
{[21] [13] [28]} # deletes instance pin slices
sd delete pin slices -sd name {top} -pin name {A} -pin slices {[17:16]
[15:1] [0]} # deletes top level port slices
Notes

This command is not required to build a SmartDesign component. This command maps to an interactive user
action in the SmartDesign Canvas and will not be present in the exported SmartDesign component Tcl
description.

See Also
Tcl Command Documentation Conventions

sd_delete ports
Tcl command; deletes one or more ports from the SmartDesign component.

sd_delete ports \
-sd name smartdesign component name \
-port names port names

Arguments
-sd_name smartdesign component name

Specifies the name of the SmartDesign component. It is mandatory.

82

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

-port names port names

Specifies the names of the ports to be deleted. It is mandatory.

Examples
sd_delete_ports -sd_name {sd1} -port_names {REF_CLK_0}

Notes

This command will not work on multiple ports in this release. Support for multiple ports will be provided in the next
Libero release. This command is not required to build a SmartDesign component. This command maps to an
interactive user action in the SmartDesign Canvas and will not be present in the exported SmartDesign
component Tcl description.

See Also
Tcl Command Documentation Conventions

sd_disconnect_instance
Tcl command,; clears all the connections on an instance in a SmartDesign component.

sd_disconnect instance \
-sd_name smartdesign component name \
-instance name instance name

Arguments

-sd_name smartdesign component name

Specifies the name of the SmartDesign component. It is mandatory.

-instance_name instance name

Specifies the name of the instance for which all the connections must be cleared. It is mandatory.
Examples

sd disconnect instance -sd name {sdl} -instance name {RAMI1KI18 1}

Notes

This command is not required to build a SmartDesign component. This command maps to an interactive user
action in the SmartDesign Canvas and will not be present in the exported SmartDesign component Tcl
description.

See Also
Tcl Command Documentation Conventions

sd_disconnect_pins

Tcl command; disconnects a list of SmartDesign top level ports and/or instance pins from the net they are
connected to.

sd_disconnect pins \
-sd_name smartdesign component name \
-pin names port or pin or slice names

Arguments

-sd_name smartdesign component name

83

PolarFire FPGA Tcl Commands Reference Guide

Examples

Notes

& Microsemi

a A3\ MicrRocHIP company

Specifies the name of the SmartDesign component. It is mandatory.

-pin_names port or pin or slice names

Specifies the port, pin and/or slice names to be disconnected. It is mandatory. This command will fail if the
ports, pins and/or slices do not exist.

sd disconnect pins -sd name {topp} -pin names {B ren

RAM1K20 0:B ADRR[12]}

sd disconnect pins -sd name {SDl} -pin names {AND2 0:B AND3 0:B AND3 0:A
PF XCVR ERM CO 0:LANEO RX READY}

This command is not required to build a SmartDesign component. This command maps to an interactive user
action in the SmartDesign Canvas and will not be present in the exported SmartDesign component Tcl
description.

See Also

Tcl Command Documentation Conventions

sd_duplicate _instance

Tcl command; creates a new instance in a SmartDesign with the same module/component as the original
instance.

sd duplicate instance \
—-sd _name smartdesign component name \

-instance name instance name \[-duplicate_ instance name duplicate instance name]

Arguments

Examples

Notes

-sd_name smartdesign component name

Specifies the name of the SmartDesign component. It is mandatory.
-instance_name instance name

Specifies the name of the instance to be duplicated. It is mandatory.
-duplicate_instance name duplicate instance name

Specifies the name of the duplicate instance. It is optional. If the duplicate_instance_name is not
specified, it will be automatically generated as <instance_name><index> (index is an automatically
generated integer starting at 0 such that the instance name is unique in the SmartDesign).

sd duplicate instance -sd name {top} -instance name {PF CCC CO 0}

sd duplicate instance -sd name {top} -instance name {SUB 0} -
duplicate instance name {T1}

This command is not required to build a SmartDesign component. This command maps to an interactive user
action in the SmartDesign Canvas and will not be present in the exported SmartDesign component Tcl
description.

See Also

Tcl Command Documentation Conventions

84

PolarFire FPGA Tcl Commands Reference Guide

& Microsemi

a A3\ MicrRocHIP company

sd_hide_bif pins

Tcl command; hides one or more already exposed internal scalar or bus pins/ports of a Bus Interface pin/port.

sd_hide bif pins \
-sd_name smartdesign component name \

-bif pin name name of the bif pin or port \-pin names pins or ports to be exposed

Arguments

Examples

-sd_name smartdesign component name

Specifies the name of the SmartDesign component. It is mandatory.

-bif pin name name of the bif pin name

Specifies the name of the Bus Interface pin for which the internal pins must be hidden. It is mandatory.
-pin_name pins to be exposed

Specifies the bus interface internal pin/port names to be hidden. It is mandatory.

sd hide bif pins -sd name {sdl} -bif pin name {COREAXI4INTERCONNECT CO 0:AXI4mmaster(O} -
pin_names {COREAXI4INTERCONNECT CO 0:MASTERO AWADDR}

sd hide bif pins -sd name {SD1} -bif pin name {CLKS FROM TXPLL O} -pin names
{TX PLL LOCK 0}

Notes

This command will not hide multiple pins/ports in this release. Support to hide multiple pins/ports will be provided
in the next Libero release. This command is not required to build a SmartDesign component. This command
maps to an interactive user action in the SmartDesign Canvas and will not be present in the exported
SmartDesign component Tcl description.

See Also

Tcl Command Documentation Conventions

sd_instantiate_component

Tcl command; instantiates a Libero SmartDesign component or a core component into another SmartDesign
component.

sd_instantiate component \
-sd_name smartdesign component name \
—-component name component module name \

[-instance name instance name]

Arguments

-sd_name smartdesign component name

Specifies the name of the SmartDesign component in which other components will be instantiated. It is
mandatory.

—-component_ name component module name

Specifies the name of the component being instantiated in the SmartDesign component. It is mandatory.
The components include SmartDesign components, core components created for different types of cores
from the catalog and blocks.

-instance name instance name

85

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

Specifies the instance name of the Libero component being instantiated in the SmartDesign component. It
is optional. By default, the instance name is <component_module_name>_<index> (index is an
automatically generated integer starting at 0 such that the instance name is unique in the SmartDesign).

Examples

sd_instantiate component -sd name {sub} -component name {sdl} -
instance name {sdl 0}

sd_instantiate component -sd name {top} -component name {PF CCC CO}

See Also
Tcl Command Documentation Conventions

sd_instantiate core

Tcl command; instantiates a core from the catalog directly into a SmartDesign component (Direct
Instantiation) without first having to create a component for the core. The file-set related to the core is
generated only when the SmartDesign in which the core is instantiated is generated. The GUI equivalent
of this command is not currently supported in Libero. To instantiate a core in a SmartDesign component in
the GUI, you have to first create a component for the core.

sd instantiate core \
-sd_name smartdesign component name \-core vlnv vendor:library:name:verison \[-instance name

instance name]

Arguments
-sd_name smartdesign component name
Specifies the name of the SmartDesign component. It is mandatory.
-core vlnv vendor:library:name:verison

Specifies the version identifier of the core being instantiated in the SmartDesign component. It is
mandatory.

-instance_name instance name

Specifies the instance name of the core being instantiated in the SmartDesign. It is optional. By default,
the instance name is <core_name>_<index> (index is an automatically generated integer starting at 0
such that the instance name is unique in the SmartDesign).

Examples

sd _instantiate core -sd name {top} -core vlnv
{Actel:DirectCore:COREAXI4INTERCONNECT:2.5.100} -instance name
{COREAXI4INTERCONNECT CO 0}

See Also

Tcl Command Documentation Conventions

sd_instantiate_hdl core

Tcl command; instantiates a HDL+ core in a SmartDesign component. HDL+ core definition must be created on a
HDL module before using this command.

sd_instantiate hdl core \

-sd_name smartdesign component name \
-hdl core name hdl core module name \
[-instance name instance_namd

86

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

Arguments
-sd_name smartdesign component name
Specifies the name of the SmartDesign component. It is mandatory.
-hdl_core_name hdl core module name
Specifies the name of the HDL+ core module being instantiated in the SmartDesign component. It is
mandatory.
-instance_name instance name
Specifies the instance name of the HDL+ core being instantiated in the SmartDesign. It is optional. By
default, the instance name is <hdl_core_module_name>_<index> (index is an automatically generated
integer starting at 0 such that the instance name is unique in the SmartDesign).
Examples
sd _instantiate hdl core -sd name {top} -hdl core name {temp} -instance name {temp3}
See Also

Tcl Command Documentation Conventions

sd_instantiate_hdl_module

Tcl command; instantiates a HDL module in a SmartDesign component. The HDL file in which the HDL module is
defined must be imported/linked before running this command.

sd_instantiate hdl module \
-sd name smartdesign component name \-hdl module name hdl module name \-hdl file hdl file \
[—instance_name instance name]

Arguments
-sd_name smartdesign component name
Specifies the name of the SmartDesign component. It is mandatory.
-hdl_module name hdl module name
Specifies the name of the HDL module being instantiated in the SmartDesign component. It is mandatory.
-hdl file hdl file
Specifies the path of the HDL file in which the HDL module is defined. The HDL file path can be relative to
project folder for imported files but the path has to be complete for linked files. It is mandatory.
-instance_name instance name
Specifies the instance name of the HDL module. It is optional. By default, the instance name is
<hdl_module_name>_<index> (index is an automatically generated integer starting at 0 such that the
instance name is unique in the SmartDesign).

Examples
sd_instantiate hdl module -sd name {top} -hdl module name {andl} -hdl file {hdl\andl.v}
sd _instantiate hdl module -sd name {top} -hdl module name {and ex} -hdl file
{hdl\and_ex.v} -instance_name {test_hdl hdl module name plusl 1}

See Also

Tcl Command Documentation Conventions

sd_instantiate_macro

Tcl command; instantiates a Microsemi primitive macro in a SmartDesign component.

87

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

sd_instantiate macro \

-sd _name smartdesign component name \
-macro_name macro module name |
[-instance name instance name]

Arguments
-sd_name smartdesign component name
Specifies the name of the SmartDesign component. It is mandatory.
-macro_name macro module name
Specifies the name of the macro being instantiated in the SmartDesign component. It is mandatory.
-instance_name instance name
Specifies the instance name of the macro. It is optional. By default, the instance name is <macro
name>_<index> (index is an automatically generated integer starting at 0 such that the instance name is
unique in the SmartDesign).
Examples
sd _instantiate macro -sd name {TOP} -macro name {MX2} -instance name {MX2 0}
sd_instantiate_macro -sd_name {TOP} -macro_name {MACC_PA}
See Also

Tcl Command Documentation Conventions

sd_invert_pins
Tcl command; inverts one or more top level ports or instance level pins in a SmartDesign.

sd_invert pins \
-sd _name smartdesign component name \
-pin _names port or pin names

Arguments
-sd_name smartdesign component name
Specifies the name of the SmartDesign component. It is mandatory.
-pin_names port or pin names
Specifies the port or pin names to be inverted. It is mandatory. This parameter can take multiple values.
This command will fail if the port/pin does not exist.
Examples
sd invert pins -sd name {main} -pin names {A}
sd_invert _pins -sd_name {main} -pin_names {MX2_1:S MX2 1:Y A B}
See Also

Tcl Command Documentation Conventions

sd_mark_pins_unused

Tcl command; marks one or more SmartDesign instance level output pins as unused. When an output pin is
marked as unused, no Design Rule Check (DRC) warning will be printed for floating output pins while generating
the SmartDesign.

88

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

sd mark pins unused \
-sd name smartdesign component name \
-pin _names port or pin names

Arguments

-sd_name smartdesign component name

Specifies the name of the SmartDesign component. It is mandatory.

-pin_names port or pin names

Specifies the names of the instance pins to be marked as unused. It is mandatory.
Examples

sd mark pins unused -sd name {top} -pin names {PF CCC CO O:PLL LOCK 0}

Notes

This command will not work on multiple pins in this release. Support for multiple pins will be provided in the next
Libero release.

See Also
Tcl Command Documentation Conventions

sd_remove_pins_from_group
Tcl command; removes one or more pins from a pin group on an instance in a SmartDesign.

sd_remove pins from group \

-sd _name smartdesign component name \
-instance name instance name \
-group_name group name \

-pin _names pin names

Arguments
-sd_name smartdesign component name
Specifies the name of the SmartDesign component. It is mandatory.
-instance_name instance name
Specifies the name of the instance on which the pin group is present. It is mandatory.
-group_name group name
Specifies the name of the pin group from which pins need to be removed. It is mandatory.
-pin_names pin names
Specifies the list of pin names to be removed from the pin group. It is mandatory.
Examples

sd remove pins from group -sd name {TOP} -instance name
{COREAXI4INTERCONNECT CO O} -group name {Group} -pin names {ARESETN ACLK}

See Also
Tcl Command Documentation Conventions

89

PolarFire FPGA Tcl Commands Reference Guide

& Microsemi

a A3\ MicrRocHIP company

sd_rename_instance

Tcl command; renames an instance in a SmartDesign component. This command can be used to rename any
type of instances (instances of other SmartDesigns components, core components, HDL modules, HDL+ cores
and Microsemi macros) in a SmartDesign.

sd_rename_ instance \
-sd _name component name \
-current instance name instance name \

-new_instance name new_instance_name

Arguments

Examples

Notes

-sd_name component_ name

Specifies the name of the SmartDesign component in which the instance name has to be renamed. It is
mandatory.

-current instance name instance name
Specifies the name of the instance to be renamed. It is mandatory.
-new_instance_name new_instance name

Specifies the new instance name. It is mandatory.

sd_rename instance -sd name {top} -current instance name {DFN1l 0} -
new_instance name {DFN1 new}

This command is not required to build a SmartDesign component. This command maps to an interactive user
action in the SmartDesign Canvas and will not be present in the exported SmartDesign component Tcl
description.

See Also

Tcl Command Documentation Conventions

sd_rename_net

Tcl command; renames a net in a SmartDesign component.

sd_rename net \
-sd_name smartdesign component name \

-current net name current net name \-new net name new net name

Arguments

Examples

-sd_name smartdesign component name

Specifies the name of the SmartDesign component. It is mandatory.
-current_net name current_net name

Specifies the name of the net to be renamed in the SmartDesign. It is mandatory.
-new_net name new _net name

Specifies the new name of the net in the SmartDesign. It is mandatory.

sd_rename net -sd name {top} -current net name {clk net} -new _net name {clk rclk wclk}

sd_rename_net -sd name {PCIe EP Demo} -current net name {USER_RESETN} -new net name
{reset input}

90

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

Notes

This command is not required to build a SmartDesign component. This command maps to an interactive user
action in the SmartDesign Canvas and will not be present in the exported SmartDesign component Tcl
description.

See Also
Tcl Command Documentation Conventions

sd_rename_pin_group

Tcl command; renames a pin group on an instance in a SmartDesign component.

sd_rename pin group \

-sd _name smartdesign component name \
-instance name instance name \

—current group name current pin group name \
-new pin group name new_pin group name

Arguments
-sd_name smartdesign component name
Specifies the name of the SmartDesign component. It is mandatory.
-instance name instance name
Specifies the name of the instance on which the pin group is present. It is mandatory.
-current group name current pin group name
Specifies the name of the pin group to be renamed. It is mandatory.
-new_group_name new_group_name

Specifies the new name of the pin group. It is mandatory.

Examples

sd_rename pin group -sd name {TOP} -instance name
{COREAXI4INTERCONNECT CO O} -current group name {Group} -new_group name
{MyNewGroup}

See Also
Tcl Command Documentation Conventions

sd_rename_port

Tcl command; renames a SmartDesign port.

sd_rename port \

-sd_name smartdesign component name \
-current port name port name \
-new_port name new port name

Arguments
-sd_name smartdesign component name
Specifies the name of the SmartDesign component. It is mandatory.
-current port name port name

Specifies the name of the port to be renamed in the SmartDesign component. It is mandatory. Note that
only port names can be renamed, and not port types (scalar ports cannot be renamed as bus ports and
vice versa).

91

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

-new_port_name new _port name

Specifies the new name of the specified port. It is mandatory.

Examples
sd rename port -sd name {top} -library {work} -current port name {cl} -new port name
{c2}

Notes

This command is not required to build a SmartDesign component. This command maps to an interactive user
action in the SmartDesign Canvas and will not be present in the exported SmartDesign component Tcl
description.

See Also
Tcl Command Documentation Conventions

sd_save_core_instance_config

Tcl command; this command is used to save the core instance configuration specified using one or more
'sd_configure_core_instance' commands. This command is typically used after configuring a core instance in a
SmartDesign, to save that core instance's configuration.

sd_save core instance config \
-sd name smartdesign component name \
-instance name core instance name

Arguments
-sd_name smartdesign component name
Specifies the name of the SmartDesign component. It is mandatory.
-instance name instance name
Specifies the name of the core instance in the SmartDesign for which the configuration must be saved. It
is mandatory.
Examples
sd_save core instance config -sd name {SDl} -instance name {COREFIFO 0}
See Also

Tcl Command Documentation Conventions

sd_show_bif pins
Tcl command; exposes one or more internal scalar or bus pins/ports of a Bus Interface pin/port. A Bus Interface
pin/port is usually a group of normal scalar or bus pins/ports grouped together and used to connect instances that
have similar interfaces. The internal pins/ports underneath the Bus Interface pin/port may have to be exposed in
some cases to connect to some logic in the design.

sd_show _bif pins \

-sd _name smartdesign component name \
-bif pin name name of the bif pin or port \
-pin names pins or ports to be exposed

Arguments

-sd_name smartdesign component name

92

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

Specifies the name of the SmartDesign component. It is mandatory.

-bif pin name name of the bif pin or port

Specifies the name of the Bus Interface pin/port for which the internal pins/ports need to be exposed. It is
mandatory.

-pin_names pins or ports to be exposed

Specifies the names of the Bus Interface internal pins/ports to be exposed. It is mandatory.

Examples

sd_show_bif pins -sd name {TOP} -bif pin name {COREAXI4INTERCONNECT CO_0:AXI4mmasterQO} -
pin names {COREAXI4INTERCONNECT CO 0:MASTERO AWADDR}

sd show bif pins -sd name {SD1} -bif pin name {CLKS FROM TXPLL 0} -pin names
{TX PLL LOCK 0}

Notes

This command will not expose multiple pins/ports in this release. Support to expose multiple scalar or bus
pins/ports will be provided in the next Libero release.

See Also

Tcl Command Documentation Conventions

sd_update_instance

Tcl command; updates an instance in a SmartDesign with its latest definition. This command is useful when the
interface (port-list) of the component/module instantiated in a SmartDesign has changed. This command can be
used to update any type of instance such as instances of other SmartDesign components, core components, HDL
modules and HDL+ cores in a SmartDesign.

sd _update instance \
-sd _name smartdesign component name \
-instance name instance name

Arguments

-sd_name smartdesign component name

Specifies the name of the SmartDesign component. It is mandatory.

-instance_name instance name

Specifies the name of the instance to be updated. It is mandatory.
Examples

sd update instance -sd name {top} -instance name {CORESMIP CO 0}

Notes

This command is not required to build a SmartDesign component. This command maps to an interactive user
action in the SmartDesign Canvas and will not be present in the exported SmartDesign component Tcl
description.

See Also
Tcl Command Documentation Conventions

93

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

HDL Core Tcl Commands

create hdl _core
This Tcl command is used to create a core component from an HDL core.

create hdl core \
-module {module name} \
-file {file path}
-library {library name} \
-package {package name}

Arguments
-module {module name}
Specify the module name for which you want to create a core component. This is a mandatory argument.
-file {file path}
Specify the file path of the module from which you create a core component. This is a mandatory
argument.

-library {library name}

Specify the library name from which you want to create a HDL core. This is an optional argument.
-package {package name}

Specify the package name from which you want to create a core component. This is an optional
argument.

Example
create hdl core -file {./HDL CORE TEST/hdl/hdl core.v} -module {test hdl core}

See Also
Tcl Command Documentation Conventions

hdl_core _add_Dbif

This Tcl command adds a bus interface to an HDL core.

hdl core add bif \

-hdl core name {hdl core name} \

-bif definition {Name:Vendor:Library:Role} \
-bif name {bus interface name} \

[-signal map {signal map}]

Arguments
-module {module name}
Specify the HDL core name to which the bus interface needs to be added. This is a mandatory argument.
-bif definition {Name:Vendor:Library:Role}

Specify the Bus Interface Definition Name, Vendor, Library and Bus Role of the core in the format
{N:V:L:R}. This is a mandatory argument.

-bif name {bus interface name}

Specify the bus interface port name being added to the HDL core. This is a mandatory argument.

94

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

-signal map {signal map}

This argument is used to specify the signal map of the bus interface. This is an optional argument.

Example

hdl core add bif -hdl core name {test hdl core} -bif definition {AHB:AMBA:AMBAZ:master} -
bif name {BIF 1}

See Also
Tcl Command Documentation Conventions

hdl_core assign_bif signal
Maps a bus interface signal definition name to an HDL core module port name.

hdl core assign bif signal

-hdl core name {hdl core name} \
-bif name {bus interface name} \
-bif signal name {bif signal name} \
-core signal name {core signal name}

Arguments
-hdl_core_name {hdl core name}
Specify the HDL core name to which the bus interface signal needs to be added. This is a mandatory
argument.
-bif name {bus interface name}
Specify the bus interface name for which you want to map a core signal. This is a mandatory argument.
-bif signal name {bus interface signal name}
Specify the bus interface signal name that you want to map with the core signal name. This is a
mandatory argument.
-core_signal_name {core signal name}
Specify the core signal name for which you want to map the bus interface signal name. This is a
mandatory argument.

Example

hdl core assign _bif signal -hdl core name {test hdl core} -bif name {BIF_1} -
bif signal name {HWRITE} -core signal name {myHRESULT}

See Also
Tcl Command Documentation Conventions

hdl core delete parameters

This Tcl command deletes parameters from a HDL core definition.

hdl core delete parameters
-hdl core name {module name} \
-parameters {parameter list}

Arguments
-hdl_core name {hdl core name}
Specify the HDL core name from which you want to delete parameters. This is a mandatory argument.

-parameters {parameter list}

95

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

Specify the list of parameters from a HDL core. This is typically done to remove parameters from the list of
parameters that was automatically extracted using the hdl_core_extract_ports_and_params command.
This is a mandatory argument.

Example
hdl core delete parameters -hdl core name {test hdl core} -parameters {WIDTH}

See Also
Tcl Command Documentation Conventions

hdl core extract ports and_parameters

This Tcl command automatically extracts ports and generic parameters from an HDL core module description.

hdl core extract ports and parameters \
-hdl core name {hdl core name}

Arguments
-hdl_core_name hdl core name}
Specifies the HDL core name from which you want to extract signal names and generic parameters. This
is a mandatory argument.

Example

hdl core extract ports_and params -hdl core name {test hdl core}

See Also
Tcl Command Documentation Conventions

hdl_core_remove_bif

Remove an existing bus interface from an HDL core.

hdl core remove bif \
-hdl core name {hdl core name} \
-bif name {bus interface name}

Arguments
-module {module name}
Specify the HDL core name from which the bus interface needs to be removed. This is a mandatory
argument.
-bif name {bus interface name}
Specify the bus interface name that needs to be removed from the HDL core. This is a mandatory
argument.

Example
hdl core remove bif -hdl core name {modl} -bif name {BIF_ 1}

See Also
Tcl Command Documentation Conventions

96

PolarFire FPGA Tcl Commands Reference Guide

& Microsemi

a A3\ MicrRocHIP company

hdl_core_rename_bif

Rename an existing bus interface port of a HDL core.

hdl core rename bif
-hdl core name {hdl core name} \
-current bif name {current bus interface name} \

-new bif name {new bus interface name}

Arguments

Example

-hdl_core name {hdl core name}

Specify the HDL core name for which the bus interface needs to be renamed. This is a mandatory
argument.

-current bif name {current bus interface name}

Specify the bus old bus interface name that needs to be renamed for the HDL core. This is a mandatory
argument.

-new_bif name {new bus interface name}

Specify the new bus interface name that needs to be updated for the HDL core. This is a mandatory
argument.

hdl core rename bif -hdl core name {test hdl plus} -current bif name {BIF 2} -

new bif name {BIF 3}

See Also

Tcl Command Documentation Conventions

hdl_core unassign_bif signal

Unmap an existing bus interface signal from a bus interface.

hdl core unassign bif signal
-hdl core name {hdl core name} \
-bif name {bus interface name} \
-bif signal name {bif signal name}

Arguments

Example

-hdl_core name {hdl core name}

Specify the HDL core name from which the bus interface signal needs to be deleted. This is a mandatory
argument.

-bif name {bus interface name}

Specify the bus interface name for which you want to unassign a core signal. This is a mandatory
argument.

-bif signal name {bus interface signal name}

Specify the bus interface signal name for which you want to unassign a core signal. This argument is
mandatory.

hdl core unassign bif signal -hdl core name {test hdl plus} -bif name {BIF 2} -
bif signal name {PENABLE}

See Also

Tcl Command Documentation Conventions

97

& Microsemi

PolarFire FPGA Tcl Commands Reference Guide -
a A3\ MicrRocHIP company

remove_hdl core

This Tcl command removes an HDL core component from the current project.

remove hdl core \
-hdl core name {hdl core name}

Arguments
-hdl_core_name {hdl core name}
Specify the module name from which you want to delete a core component. This is a mandatory
argument.

Example

remove hdl core -hdl core name {test hdl core}

See Also
Tcl Command Documentation Conventions

98

PolarFire FPGA Tcl Commands Reference Guide

& Microsemi

a A3\ MicrRocHIP company

Command Tools

CONFIGURE_CHAIN

CONFIGURE_CHAIN is a command tool used in run_tool. The command run_tool -name {CONFIGURE_CHAIN}
takes a script file that contains specific Tcl commands and passes them to FlashPro Express for execution.

run_tool -name {CONFIGURE CHAIN} -script {fpro cmds.tcl}

fpro_cmds. tcl is a Tcl script that contains specific Tcl commands to configure JTAG chain. For details on JTAG
chain programming Tcl commands, refer to the Tcl commands section in the Libero SoC Online Help.

Do not include any project-management commands such as open_project, save_project, or close_project in this
fpro_cmds. tcl script file. The run_tool —name {CONFIGURE_CHAIN} command generates these project-
management commands for you.

Note: For a new Libero project without a JTAG chain, executing this command causes Libero to first add the
existing design device to the JTAG chain and then execute the commands from the script. If, for example, the
script fpro_cmds. tcl contains commands to add four devices, executing the command run_tool —-name
{CONFIGURE_CHAIN} -script {fpro_cmds. tc1} will create a JTAG chain of the Libero design device and the four
devices. For existing Libero projects that already have a JTAG chain, the command is executed on the existing
JTAG chain.

run_tool -name {CONFIGURE CHAIN} -script {d:/fpro cmds.tcl}
#Example fpro_cmds.tcl command file for the —script parameter
add actel device \
-file {./sd prj/sp_g3/designer/impll/sdl.stp} \
-name {devl}
enable device -name {MPF300TS_ES} -enable 0
add non actel device \
-ir 2\
-tck 1.00 \
-name {Non-Microsemi Device}
add non_actel device \
-ir 2\
-tck 1.00 \
-name {Non-Microsemi Device (2)}
remove_device -name {Non-Microsemi Device}
set device to highz -name {MPF300TS_ES} -highz 1
add_actel device \
-device {MPF300TS_ES} \
-name {MPF300TS_ES (3)}
select libero design device -name {MPF300TS_ES(3)}

Returns 0 on success and 1 on failure.

99

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

CONFIGURE_PROG_OPTIONS

CONFIGURE_PROG_OPTIONS is a command tool used in configure_tool. Configure_tool -name
{CONFIGURE_PROG_OPTIONS} sets the programming options.

configure tool -name {CONFIGURE PROG OPTIONS}
-params {design version:<value>}
-params {silicon signature:<value>}

The following table lists the parameter names and values.

configure_tool —-name {CONFIGURE_PROG_OPTIONS} parameter:value pair

Name Value Description

design_version Integer {0 through 65535} | Sets the design version. It must be greater than
the Back level version in SPM Update Policy.

silicon_signature Hex {<max length 8 Hex 32-bit (8 hex characters) silicon signature to be
characters>} programmed into the device. This field can be
read from the device using the JTAG USERCODE
instruction.
Example

configure tool -name {CONFIGURE PROG OPTIONS}\

-params {design version:255}

-params {silicon_signature:abcdef}

Return
Returns 0 on success and 1 on failure.

GENERATEPROGRAMMINGFILE

GENERATEPROGRAMMINGFILE is a command tool used in the configure_tool and run_tool commands. The
configure_tool -name {GENERATEPROGRAMMINGFILE} Tcl command configures tool options. The run_tool Tcl
command runs the specified tool with the options specified in configure_tool.

configure tool \
-name {GENERATEPROGRAMMINGFILE} \
-params {program fabric:true| false} \
-params {program security:true|false} \
-params {program snvm: true| false}

run tool -name {GENERATEPROGRAMMINGFILE }

The following tables list the parameter names and values.

configure_tool —-name {GENERATEPROGRAMMINGFILE} parameter:value pair

Name Value Description

program_fabric true | false Include fabric component in the programming
bitstream.

100

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

Name Value Description

program_security true | false Include custom security component in the
programming bitstream (“true” only if custom
security was defined).

program_snvm true | false Include sNVM component in the programming
bitstream (“true” only if SNVM available in the
design).

run_tool —-name {GENERATEPROGRAMMINGFILE}

This command takes no parameters.

IO_PROGRAMMING_STATE

I0_PROGRAMMING_STATE is a command tool used in the configure_tool Tcl command. The configure_tool -
name {IO_PROGRAMMING_STATE } Tcl command loads the I/O State information from a file during
programming. The file used for loading the I/O State informatio during programming is specified in a parameter to
the command. Refer to the Specify I/O States During Programming Dialog Box for details .

configure tool -name {IO PROGRAMMING STATE} -params\
{ios file:absolute path to i/o state information file}

Example
configure tool -name {IO_PROGRAMMING STATE} -params\
{ios file:d:\sd prj\tony sf2\designer\sdl\sdl.ios}

Return
Returns 0 on success and 1 on failure.

PLACEROUTE

To place and route a design in Libero SoC, you must first configure the PLACEROUTE tool with the
configure_tool command and then execute the PLACEROUTE tool with the run_tool command.

configure_tool

configure tool -name {PLACEROUTE} [-params {[name:value]+}]+

Parameters
Name Value Description
TDPR true |false | 1]0 Set to true or 1 to enable Timing-Driven
Place and Route. Defaultis 1.
PDPR true |false | 1|0 Set to true or 1 to enable Power-Driven
Place and Route. Default is false or 0.

101

https://coredocs.s3.amazonaws.com/Libero/12_2_0/Tool/libero_ecf_ug.pdf

PolarFire FPGA Tcl Commands Reference Guide

& Microsemi

a A3\ MicrRocHIP company

Name

Value

Description

IOREG_COMBINING

true |false | 1]0

Set to true or 1 to enable I/O Register
Combining. Default is false or 0.

GB_DEMOTION | true |false|1]0 Set to true or 1 to enable Global Pins
Demotion. Default is true or 1
REPLICATION true |false | 1|0 Set to true or 1 to enable Driver Replication.

Default is false or 0

EFFORT_LEVEL

true |false | 1|0

Set to true or 1 to enable High Effort Layout
to optimize design performance. Default is
false or 0.

INCRPLACEANDROUTE

true |false | 1]0

Set to true or 1 to use previous placement

Default is false or 0.

data as the initial placement for the next run.

REPAIR_MIN_DELAY

true |false | 1|0

Set to 1 to enable Repair Minimum Delay
violations for the router when TDPR option
is set to true or 1. Default is false.

NUM_MULTI_PASSES 1-25 Specifies the number of passes to run. The
default is 5. Maximum is 25.
START_SEED_INDEX 1-100 Indicates the random seed index which is

the starting point for the passes. Its value
should range from 1 to 100. If not specified,
the default behavior is to continue from the
last seed index which was used.

MULTI_PASS_LAYOUT

true |false | 1]0

Set to true or 1 to enable Multi-Pass Layout
Mode for Place and Route. Default is false
or 0.

MULTI_PASS_CRITERIA

SLOWEST_CLOCK
SPECIFIC_CLOCK
VIOLATIONS
TOTAL_POWER

Specifies the criteria used to run multi-pass
layout:

e SLOWEST_CIOCK: Use the slowest
clock frequency in the design in a given
pass as the performance reference for
the layout pass.

e SPECIFIC_CLOCK: Use a specific
clock frequency as the performance
reference for all layout passes.

e VIOLATIONS: Use the pass that best
meets the slack or timing-violations
constraints. This is the default.

e TOTAL POWER: Specifies the best
pass to be the one that has the lowest
total power (static + dynamic) out of all
layout passes.

SPECIFIC_CLOCK

Clock_Name

Applies only when
MULTI_PASS_CRITERIA is set to

SPECIFIC_CLOCK. It specifies the name of

102

PolarFire FPGA Tcl Commands Reference Guide

& Microsemi

a A3\ MicrRocHIP company

Name Value Description
the clock in the design used for Timing
Violation Measurement.
DELAY_ANALYSIS max | min Used only when MULTI_PASS_CRITERIA

is set to “VIOLATIONS”. Specifies the type
of timing violations (slacks) to be examined.
The default is 'max'.
e max: Use timing violations (slacks)
obtained from maximum delay analysis
e min: Use timing violations (slacks)
obtained from minimum delay analysis.

STOP_ON_FIRST_PASS

true |false | 1|0

Applies only when
MULTI_PASS_CRITERIA is set to
“VIOLATIONS”. It stops performing
remaining passes if all timing constraints
have been met (when there are no negative
slacks reported in the timing violations
report). Note: The type of timing violations
(slacks) used is determined by the
'DELAY_ANALYSIS ' parameter.

SLACK_CRITERIA

WORST_SLACK

TOTAL_NEGATIVE_SLA
CK

Applies only when
MULTI_PASS_CRITERIA is set to
VIOLATIONS. Specifies how to evaluate the
timing violations (slacks). The default is
WORST_SLACK.

e WORST_SLACK: The largest amount
of negative slack (or least amount of
positive slack if all constraints are met)
for each pass is identified and then the
largest value out of all passes will
determine the best pass. This is the
default.

o TOTAL_NEGATIVE_SLACK: The sum
of negative slacks from the first 100
paths for each pass in the Timing
Violation report is identified. The
largest value out of all passes will
determine the best pass. If no negative
slacks exist for a pass, then use the
worst slack to evaluate that pass.
Note: The type of timing violations
(slacks) used is determined by the
'DELAY_ANALYSIS’ parameter.

RGB_COUNT

Allows an entity to override the placer's
RGB/RCLK bandwidth constraint. This
option is useful for Block Creation.

Return Value

Returns 0 on success and 1 on failure.

103

PolarFire FPGA Tcl Commands Reference Guide

run_tool

Example

run_tool -name {PLACEROUTE}

Parameters
None

Return Value
Returns 0 on success and 1 on failure.

configure tool -name {PLACEROUTE}\
-params {EFFORT LEVEL:true}\

-params {GB DEMOTION:true}\

-params {INCRPLACEANDROUTE:false}\
-params {IOREG COMBINING:false}\

-params {MULTI PASS CRITERIA:VIOLATIONS}\

-params {MULTI PASS LAYOUT:false}\
-params {NUM MULTI PASSES:5}\

-params {PDPR:false}\

—-params {REPAIR_MIN_DELAY:true)\
-params {REPLICATION:false}\
—-params {SLACK7CRITERIA:WORSTisLACK}\

-params {SPECIFIC CLOCK:}\

-params {START SEED INDEX:1}\
-params {STOP_ON FIRST PASS:false}\

-params {TDPR:true}\

-params {USE RAM MATH INTERFACE LOGIC:false}

run_tool —-name{PLACEROUTE}

PROGRAMDEVICE

PROGRAMDEVICE is a command tool used in configure_tool and run_tool. Configure_tool allows you to
configure the tool’s parameters and values prior to executing the tool. Run_tool executes the tool with the

configured parameters.

To program the design in Libero SoC, you must first configure the PROGRAMDEVICE tool with configure_tool

& Microsemi

a A3\ MicrRocHIP company

command and then execute the PROGRAMDEVICE command with the run_tool command.

Use the commands to configure your programming action and the programming procedures associated with the

program action.

configure tool -name {PROGRAMDEVICE }
-params {prog action:params value}
-params {prog optional procedures:params value}

-params {skip_recommended_procedures:params value}

run_tool -name {PROGRAMDEVICE}

configure_tool —-name {PROGRAMDEVICE} parameter:value pair

Name Value

Description

prog_action

DEVICE_INFO |

String { PROGRAM |
VERIFY | ERASE |

PROGRAM - Programs all selected family
features: FPGA Array, targeted eNVM clients and

security settings.

104

PolarFire FPGA Tcl Commands Reference Guide

& Microsemi

a A3\ MicrRocHIP company

Name

Value

Description

READ_IDCODE |
ENC_DATA_AUTHENTI
CATION |
VERIFY_DIGEST}

VERIFY — Verifies all selected family features:
FPGA Array, targeted eNVM clients and security
settings.

ERASE - Erases the selected family features:
FPGA Array and security settings.

DEVICE_INFO — Displays the IDCODE, the design
name, the checksum, and device security settings
and programming environment information
programmed into the device. READ_IDCODE —
Reads the device ID code from the device.
ENC_DATA_AUTHENTICATION - Encrypted
bitstream authentication data.

VERIFY_DIGEST — Calculates the digests for the
components included in the bitstream and
compares them against the programmed values

prog_optional_procedur
es

Depends on the action
from the prog_action
parameter.

This parameter is optional. It is only required when
the user wants to enable optional procedure.

skip_recommended_pro
cedures

Depends on the action
from the prog_action

This parameter is optional. It is used to deselect
recommended procedures.

parameter.

run_tool —-name {PROGRAMDEVICE} Parameter:value pair

Name Value Description
None
Example
configure_ tool \
-name {PROGRAMDEVICE} \
-params {prog action:VERIFY DIGEST} \
-params {prog_optional procedures:DO_ENABLE_USER PUBLIC_KEY } \
-params {skip recommended procedures:DO_ENABLE FABRIC DO ENABLE_ SNVM }
configure tool -name {PROGRAMDEVICE} -params {prog action:DEVICE INFO}
run_tool -name {PROGRAMDEVICE} #Takes no parameters
Return

configure tool -name {PROGRAMDEVICE} returns 0 on success and 1 on failure.
run_tool -name {PROGRAMDEVICE} returns O on success and 1 on failure.

PROGRAM_SPI_FLASH_IMAGE

This Tcl command used in configure_tool and run_tool to program SPI Flash Image with configured parameters.

1056

& Microsemi

PolarFire FPGA Tcl Commands Reference Guide

configure tool \
-name {PROGRAM SPI FLASH IMAGE} \
-params {spi flash prog action: PROGRAM SPI FLASH}

run_tool \
-name {PROGRAM SPI FLASH TMAGE}

PROGRAMMER_INFO

PROGRAMMER _INFO is a command tool used in configure_tool. Configure_tool -name
{PROGRAMMER_INFQ} sets the programmer settings, similar to the way FlashPro commands set the
programmer settings. This command supports FlashPro3, FlashPro4, FlashPro5, and FlashPro6.

configure tool -name {PROGRAMMER INFO}
-params [{name:value}]

The following tables list the parameter names and values.

configure_tool —-name {PROGRAMMER_INFO} Parameter:value (FlashPro6)

Name Value Description
Flashpro6_force_freq String {OFF | ON} For FlashPro6 Programmer only.
Flashpro6_ freq Integer (Hertz) For FlashPro6 Programmer only.

configure_tool —-name {PROGRAMMER_INFO} Parameter:value (FlashPro5)

Name Value Description

flashpro5_clk_mode String {free_running_clk | | For FlashPro5 Programmer only.
discrete_clocking}

flashpro5_force_freq String {OFF | ON} For FlashPro5 Programmer only.
flashpro5_ freq Integer (Hertz) For FlashPro5 Programmer only.
flashpro5_vpump String {ON | OFF} For FlashPro5 Programmer only.

configure_tool —-name {PROGRAMMER_INFO} Parameter:value (FlashPro4)

Name Value Description

flashpro4_clk_mode String {free_running_clk | | For FlashPro4 Programmer only.
discrete_clocking}

flashpro4_force_freq String {OFF | ON} For FlashPro4 Programmer only.
flashpro4 freq Integer (Hertz) For FlashPro4 Programmer only.
flashpro4_vpump String {ON | OFF} For FlashPro4 Programmer only.

a A3\ MicrRocHIP company

106

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

configure_tool —-name {PROGRAMMER_INFO} parameter:value (FlashPro3)

Name Value Description

flashpro3_clk_mode String {free_running_clk | | For FlashPro3 Programmer only.
discrete_clocking}

flashpro3_force_freq String {OFF | ON} For FlashPro3 Programmer only.
flashpro3_ freq Integer (Hertz) For FlashPro3 Programmer only.
flashpro3_vpump String {ON | OFF} For Flash For FlashPro3 Programmer only.

For a detailed description of the parameters and values, refer to Programmer Settings in the Libero Online Help.

Examples
For FlashPro3 programmer
configure tool -name {PROGRAMMER INFO}\
-params {flashpro3 clk mode:free running clk}\
-params {flashpro3 force freq:0FF}\
-params {flashpro3 freqg:400000}\
-params {flashpro3 vpump:ON}

For FlashPro4 programmer
configure tool -name {PROGRAMMER INFO}\
-params {flashpro4 clk mode:free running clk\}
-params {flashprod4 force freq:0FF}\
-params {flashprod4 freqg:400000}\
-params {flashpro4 vpump:ON}

For FlashPro5 programmer
configure tool -name {PROGRAMMER_INFO}\
-params {flashpro5 clk mode:free running clk}\
-params {flashpro5 force freq:0FF}\
-params {flashpro5 freq:400000}\
-params {flashpro5 vpump:ON}

For FlashPro6 programmer
configure tool -name {PROGRAMMER INFO}\
-params {flashpro6 force freq:0FF}\
-params {flashpro6 freq:400000}

Return
Returns 0 on success and 1 on failure.

SPM

To configure security using Tcl, you must use the configure_tool Tcl command to pass the SPM configuration
parameters.

107

https://coredocs.s3.amazonaws.com/Libero/12_2_0/Tool/flashpro_express_ug.pdf

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

configure tool -name {SPM}
-params {name:value}
[-params {name:value}]+

configure_tool —name {SPM} parameter:value pair

Note: true | 1 will select the checkbox in the SPM Ul

Name Type Value Description
back_level_protectio | bool false |true [1]0 If true, will set back level protection;
n Update Policy
back_level_update_ | Integer 0-65535 Set back level version; Update Policy
version
debug_passkey hex 64 hex characters | Value of DPK; Debug Policy
disable_authenticate | bool false [true |1]0 Disables Authenticate action
_action
disable_autoprog_ia | bool false [true |1]0 Disables Auto Programming and IAP
p_services Services
disable_debug_jtag_ | bool false |true [1]0 Disables debug JTAG Boundary Scan
boundary_scan
disable_debug_read | bool false |true [1]0 Disables reading temperature and
_temp_volt voltage sensor (JTAG/SPI Slave)
disable_debug_ujtag | bool false |true [1]0 Disables debug UJTAG
disable_ext_zeroizat | bool false |true [1]0 Disables external zeroization through
ion JTAG/SPI Slave
disable_external_dig | bool false |true [1]0 Disables external Fabric/sNVM digest
est_check requests through JTAG/SPI Slave
disable_jtag bool false |true [1]0 Disables JTAG
disable_program_ac | bool false |true |1]0 Disables Program action
tion
disable_puf_emulati | bool false [true |1]0 Disables external access to PUF
on emulation through JTAG/SPI Slave
disable_smartdebug | bool false |true |1]0 Disables user debug access and active
_debug probes
disable_smartdebug | bool false |true [1]0 Disables SmartDebug Live Probe
_live_probe
disable_smartdebug | bool false |true [1]0 Disables SmartDebug sNVM
_snvm
disable_spi_slave bool false |true [1]0 Disables SPI Slave interface

108

PolarFire FPGA Tcl Commands Reference Guide

& Microsemi

a A3\ MicrRocHIP company

Name Type Value Description
disable_user_encryp | bool false [true |1]0 If true, disables UEK1; Key Mode
tion_key 1 Policy
disable_user_encryp | bool false [true |1]0 If true, disables UEK2; Key Mode
tion_key 2 Policy
disable_user_encryp | bool false |true [1]0 If true, disables UEK3
tion_key 3
Note: UEKS is only available for
M2S060, M2GL060, M2S090,
M2GL090, M2S150, and M2GL150
devices. All other devices will set this to
false by default. See the SmartFusion2
SoC FPGA and IGLOO2 FPGA
Security Best Practices User Guide for
details.
Key Mode Policy

disable_verify_actio | bool false |true [1]0 Disables Verify action

n

fabric_update_prote | string open | disabled Fabric update protection. Open —

ction updates allowed using user defined
encryption keys. Disabled — disables
Erase/Write operations.

security_factory_acc | string open | disabled Microsemi factory test mode access.

ess Open — factory test mode access
allowed. Disabled — disables factory
test mode access.

security_key _mode | string custom | default Default — bitstream encryption with
default key. Custom — custom security
options

snvm_update_prote | string open | disabled sNVM update protection. Open —

ction updates allowed using user defined
encryption keys. Disabled — disables
Write operations.

user_encryption_key | hex 64 hex characters | Value of UEK1

1

user_encryption_key [hex 64 hex characters | Value of UEK2

2

user_passkey_1 hex 64 hex characters | Value of Flashlock/UPK1

user_passkey_2 hex 64 hex characters | Value of UPK2

Example

configure tool \

109

http://www.microsemi.com/document-portal/doc_download/132037-ug0443-smartfusion2-and-igloo2-fpga-security-best-practices-user-guide
http://www.microsemi.com/document-portal/doc_download/132037-ug0443-smartfusion2-and-igloo2-fpga-security-best-practices-user-guide
http://www.microsemi.com/document-portal/doc_download/132037-ug0443-smartfusion2-and-igloo2-fpga-security-best-practices-user-guide

PolarFire FPGA Tcl Commands Reference Guide

-name {SPM} \

-params
-params
-params
-params
-params

-params

Return

Returns 0 on success and 1 on failure.

SYNTHESIZE

SYNTHESIZE is a command tool used in configure_tool and run_tool. Configure_tool is a general-purpose Tcl

& Microsemi

a A3\ MicrRocHIP company

{back_level protection:false} \

{back level update version: 32} \
{disable smartdebug live probe:false} \
{disable_smartdebug snvm:false} \
{disable user encryption key l:false} \

{disable user encryption key 2:false} \

command that allows you to configure a tool’'s parameters and values prior to executing the tool. The run_tool Tcl
command then executes the specified tool with the configured parameters.

To synthesize your design in Libero SoC, you first configure the synthesize tool with the configure_tool command
and then execute the command with the run_tool command.

configure tool -name {SYNTHESIZE}
-params {name:value}

[-params {name:value}]
run tool -name {SYNTHESIZE}

The following tables list the parameter names and values.

configure_tool —-name {SYNTHESIZE} parameter:value pair

Name Value Description
CLOCK_ASYNC Integer Specifies the threshold value for asynchronous
pin promotion to a global net. The default is 12.
CLOCK_GLOBAL Integer Specifies the threshold value for Clock pin

promotion. The default is 2.

CLOCK_DATA

Integer value between 1000
and 200,000.

Specifies the threshold value for data pin
promotion. The default is 5000.

RAM_OPTIMIZED_F

Boolean {true | false | 1 | O}

Set to true or 1 to optimize RAM for Low

OR_POWER Power; RAMS are inferred and configured to
ensure the lowest power consumption. Set to
false or 0 to optimize RAM for High Speed at
the expense of more FPGA resources.

RETIMING Boolean {true | false | 1| O} Set to true or 1 to enable Retiming during

synthesis. Set to false or 0 to disable Retiming
during synthesis.

AUTO_COMPILE_PO
INT

Boolean {true | false | 1 | 0}

Set to true or 1 to enable Automatic Compile
Point during synthesis. Set to false or 0 to
disable Automatic Compile Point during
synthesis. The default is 0 or false.

SYNPLIFY_OPTIONS

String

Specifies additional synthesis-specific options.
Options specified by this parameter override

110

PolarFire FPGA Tcl Commands Reference Guide

& Microsemi

a A3\ MicrRocHIP company

Name

Value

Description

the same options specified in the user Tcl file if
there is a conflict.

SYNPLIFY_TCL_FILE

String

Specifies the absolute or relative path name to
the user Tcl file containing synthesis-specific
options.

BLOCK_MODE

Boolean {true | false | 1 | 0}

Set to true or 1 when you have blocks in your
design and you want to enable the Block
mode. Set it to false or 0 if you don’t have
blocks in your design. Default is false or 0.

BLOCK_PLACEMENT
_CONFLICTS

String
{ERROR|KEEP|LOCK|DISCAR
D}

Instructs the COMPILE engine what to do
when the software encounters a placement
conflict. When set to: ERROR - Compile errors
out if any instance from a Designer block
becomes unplaced. This is the default.

KEEP - If some instances get unplaced for any
reason, the non-conflicting elements remaining
are preserved but not locked. Therefore, the
placer can move them into another location if
necessary. LOCK - If some instances get
unplaced for any reason, the non-conflicting
elements remaining are preserved and locked.

DISCARD - Discards any placement from the
block, even if there are no conflicts.

BLOCK_ROUTING_C
ONFLICTS

String
{ERROR|KEEP|LOCK|DISCAR
D}

Instructs the COMPILE engine what to do
when the software encounters a routing
conflict. When set to: ERROR - Compile errors
out if any route in any preserved net from a
Designer block is deleted. This is the defaullt.

KEEP - If a route is removed from a net for
any reason, the routing for the non-conflicting
nets is kept unlocked. The router can re-route
these nets. LOCK - If routing is removed from
a net for any reason, the routing for the non-
conflicting nets is kept as locked, and the
router will not change them.

DISCARD - Discards any routing from the
block, even if there are no conflicts.

PA4_GB_COUNT

Integer

The number of available global nets is
reported. Minimum for all dies is “0”. Default
and Maximum values are die-dependent:
005/010 die: Default = Max = 8
025/050/060/090/150 die: Default=Max=16
RT4G075/RT4G150: Default=24, Max=48.

PA4_GB_MAX_RCLK
INT_INSERTION

Integer

Specifies the maximum number of global nets
that could be demoted to row-globals. Default
is 16, Min is 0 and Max is 50.

111

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

Name Value Description
PA4_GB_MIN_GB_F | Integer Specifies the Minimum fanout of global nets
ANOUT_TO_USE_RC that could be demoted to row-globals. Default
LKINT is 300. Min is 25 and Max is 5000.
SEQSHIFT_TO_URA | Boolean {0,1} Specifies whether the Sequential-Shift
M Registers are to be mapped to Registers or

64x12 RAMSs. If set to 1 (the default), the logic
mapping is to RAMs. If set to 0, the logic
mapping is to Registers.

LANGUAGE_SYSTE [Boolean {true | false} Set to true if the Verilog files contain System
M_VLOG Verilog constructs.

LANGUAGE_VERILO | Boolean {true | false} Set to true if Verilog files contain Verilog 2001
G_2001 constructs.

run_tool —-name {SYNTHESIZE}

Example
configure tool -name {SYNTHESIZE} -params {BLOCK MODE:false}\
-params {BLOCK_PLACEMENT_CONFLICTS:ERROR} -params\
{BLOCK_ROUTING CONFLICTS:ERROR} -params {CLOCK ASYNC:12}\
-params {CLOCK DATA:5010} -params {CLOCK GLOBAL:2} -params\
-params {PA4 GB MAX RCLKINT INSERTION:16} —params\
{PA4 GB MIN GB_ FANOUT TO USE RCLKINT:299} -params\
{RAM_OPTIMIZED FOR POWER:false} -params {RETIMING:false}
-params {AUTO_COMPILE_POINT:true} -params {SYNPLIFY OPTIONS:
set _option -run prop extract 1;
set option -maxfan 10000;
set option -clock globalthreshold 2;
set_option -async_globalthreshold 12;
set_option -globalthreshold 5000;
set option -low power ram decomp 0;}\
-params {SYNPLIFY TCL FILE:C:/Users/userl/Desktop/tclflow/synthesis/test.tcl}
run_tool -name {SYNTHESIZE} #Takes no parameters
Return

configure tool -name {SYNTHESIZE}

Returns 0 on success and 1 on failure.
run_tool -name {SYNTHESIZE}

Returns 0 on success and 1 on failure.

VERIFYPOWER

VERIFYPOWER is a command tool used in run_tool. The command run_tool passes a script file that contains
power-specific Tcl commands to the VERIFYPOWER command and executes it.

run tool -name {VERIFYPOWER} —-script {power analysis.tcl}

where

<power_analysis.tcl> is a script that contains power-specific Tcl commands. You can include power-specific Tcl
commands to generate power reports. See the sample power_analysis Tcl Script below for details.

112

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

Return
Returns 0 on success and 1 on failure.

Example
run_tool —name {VERIFYPOWER} -script {<power analysis.tcl>}

Sample power_analysis Tcl Script <power_analysis.tcl>

The following example changes SmartPower operating condition settings from the default to 40C junction
temperature and 1.25V VDD.
It then creates a report called A4P5000_uSRAM_POWER_64X18_power_report.txt.
Change from pre-defined temperature and voltage mode (COM,IND,MIL) to SmartPower custom
smartpower set temperature opcond -use "design"
smartpower:set:voltage_opcgnd -voltage "VDD" -use "design"
Set the custom temperature to 40C ambient temperature.
smartpower temperature opcond set design _wide -typical 40 -best 40 -worst 40
Set the custom voltage to 1.25V

smartpower voltage opcond set design wide -voltage "VDD" —-typical 1.25 -best 1.25 -worst
1.25

VERIFYTIMING

VERIFYTIMING is a command tool used in run_tool. Run_tool passes a script file that contains timing-
specific Tcl commands to the VERIFYTIMING command and executes it.

run_tool -name {VERIFYTIMING} -script {timing.tcl}

where

<timing.tcl> is a script that contains SmartTime-specific Tcl commands. You can include SmartTime-
specific Tcl commands to create user path sets and to generate timing reports. See sample the Sample
SmartTime Tcl Script below for details.

Example

run_tool -name {VERIFYTIMING} -script {<timing.tcl>}

Return
Returns 0 on success and 1 on failure.

Sample SmartTime Tcl Script <timing.tcl>

Create user path set -from B_reg
create set -name from B reg \
-source {B reg*[*]:CLK} \
-sink {*}
Create user set -from A, B, C
create set -name from in ports \
-source {A B C} \
-sink {*}
Generate Timing Reports
report \
-type timing \

113

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

—-analysis min \
-format text \
-max_paths 10 \
-print_paths yes \
-max_expanded paths 10 \
-include user sets yes \
min_timing.rpt
Export SDC
write sdc -scenario {Primary} exported.sdc
#save the changes

save

SIMULATE

Use the run_tool command to run simulation with your default simulation tool.

#Run Pre-synthesis simulation
run tool -name {SIM PRESYNTH}
#Run Post-synthesis simulation
run tool -name {SIM POSTSYNTH}

Return Value
Returns 0 on success and 1 on failure.

114

PolarFire FPGA Tcl Commands Reference Guide

& Microsemi

a A3\ MicrRocHIP company

SmartTime Tcl Commands

create clock

Tcl command; creates a clock constraint on the specified ports/pins, or a virtual clock if no source other
than a name is specified.

create clock [-name clock name] [-add] -period period value

[-waveform> edge list] [source objects]

Arguments

Description

Examples

-period period value

Specifies the clock period in nanoseconds. The value you specify is the minimum time over which the
clock waveform repeats. The period_value must be greater than zero.

-name clock name
Specifies the name of the clock constraint. You must specify either a clock name or a source.
-add

Specifies that a new clock constraint is created at the same source port as the existing clock without
overriding the existing constraint. The name of the new clock constraint with the -add option must be
different than the existing clock constraint. Otherwise, it will override the existing constraint, even with the
-add option. The -name option must be specified with the -add option.

-waveform edge list

Specifies the rise and fall times of the clock waveform in ns over a complete clock period. There must be
exactly two transitions in the list, a rising transition followed by a falling transition. You can define a clock
starting with a falling edge by providing an edge list where fall time is less than rise time. If you do not
specify -waveform option, the tool creates a default waveform, with a rising edge at instant 0.0 ns and a
falling edge at instant (period_value/2)ns.

source objects

Specifies the source of the clock constraint. The source can be ports, pins, or nets in the design. If you
specify a clock constraint on a pin that already has a clock, the new clock replaces the existing one. You
must specify either a source or a clock name.

Creates a clock in the current design at the declared source and defines its period and waveform. The
static timing analysis tool uses this information to propagate the waveform across the clock network to the
clock pins of all sequential elements driven by this clock source.

The clock information is also used to compute the slacks in the specified clock domain that drive
optimization tools such as place-and-route.

The following example creates two clocks, one on port CK1 with a period of 6, and the other on port CK2 with a
period of 6, a rising edge at 0, and a falling edge at 3:

create clock -name {my user clock} -period 6 CKI1

create clock -name {my other user clock} -period 6 -waveform {0 3} {CK2}

The following example creates a clock on port CK3 with a period of 7, a rising edge at 2, and a falling edge at 4:

create clock -period 7 -waveform {2 4} [get ports {CK3}]

The following example creates a new clock constraint clk2, in addition to clk1, on the same source port clk1
without overriding it.

115

PolarFire FPGA Tcl Commands Reference Guide

& Microsemi

a A3\ MicrRocHIP company

create clock -name clkl -period 10 -waveform {0 5} [get ports clkl]

create clock -name clk2 -add -period 20 -waveform {0 10} [get ports clkl]

The following example does not add a new clock constraint, even with the -add option, but overrides the existing
clock constraint because of the same clock names. Note: To add a new clock constraint in addition to the existing
clock constraint on the same source port, the clock names must be different.

create clock -name clkl -period 10 -waveform {0 5} [get ports clkl]

create clock -name clkl -add -period 50 -waveform {0 25} [get ports clkl]

See Also

create generated clock

Tcl Command Documentation Conventions

create_generated clock

Tcl command; creates an internally generated clock constraint on the ports/pins and defines its
characteristics.

create generated clock [-name clock name] [-add] [-master clock clock name] -source
reference pin [-divide by divide factor] [-multiply by multiply factor] [-invert] source[-edges
values] [-edge shift values]

Arguments

—-name clock name

Specifies the name of the clock constraint.

-add

Specifies that the generated clock constraint is a new clock constraint in addition to the existing one at the
same source. The name of the clock constraint should be different from the existing clock constraint. With
this option, -master_clock option and -name options must be specified.

-master_clock clock name

Specifies the master clock used for the generated clock when multiple clocks fan into the master pin. This
option must be used in conjunction with -add option of the generated clock.

Notes:

1.
2.

The master_clock option is used only with the -add option for the generated clocks.

If there are multiple master clocks fanning into the same reference pin, the first generated clock specified will
always use the first master clock as its source clock.

The subsequent generated clocks specified with the -add option can choose any of the master clocks as
their source clock (including the first master clock specified).

-source reference pin

Specifies the reference pin in the design from which the clock waveform is to be derived.

-divide_by divide factor

Specifies the frequency division factor. For instance if the divide_factoris equal to 2, the generated clock
period is twice the reference clock period.

-multiply by multiply factor

Specifies the frequency multiplication factor. For instance if the multiply_factor is equal to 2, the generated
clock period is half the reference clock period.

-invert

Specifies that the generated clock waveform is inverted with respect to the reference clock.

source

Specifies the source of the clock constraint on internal pins of the design. If you specify a clock constraint
on a pin that already has a clock, the new clock replaces the existing clock. Only one source is accepted.
Wildcards are accepted as long as the resolution shows one pin.

116

PolarFire FPGA Tcl Commands Reference Guide

Description

Examples

& Microsemi

a A3\ MicrRocHIP company

-edges values

Specify the integer values that represent the edges from the source clock that form the edges of the
generated clock. Three values must be specified to generate the clock. If you specify less than three, a
tool tip indicates an error.

-edge_shift values

Specify a list of three floating point numbers that represents the amount of shift, in nanoseconds, that the
specified edges are to undergo to yield the final generated clock waveform. These floating point values
can be positive or negative. Positive value indicates a shift later in time, while negative indicates a shift
earlier in time.

For example: An edge shift of {1 1 1} on the LSB generated clock, would shift each derived edge by 1
nanosecond.

To create a 200MHz clock from a 100MHz clock, use edge { 1 2 3} and edge shift {0 -2.5 -5.0}.

Creates a generated clock in the current design at a declared source by defining its frequency with
respect to the frequency at the reference pin. The static timing analysis tool uses this information to
compute and propagate its waveform across the clock network to the clock pins of all sequential elements
driven by this source.

The generated clock information is also used to compute the slacks in the specified clock domain that
drive optimization tools such as place-and-route.

The following example creates a generated clock on pin U1/reg1:Q with a period twice as long as the period at
the reference port CLK.

create generated clock -name {my user clock} -divide by 2 -source [get ports
{CLK}] Ul/regl:Q

The following example creates a generated clock at the primary output of myPLL with a period % of the period at
the reference pin clk.

create generated clock -divide by 3 -multiply by 4 -source clk [get pins {myPLL:CLK1}]

The following example creates a new generated clock gen2 in addition to gen1 derived from same master clock
as the existing generated clock, and the new constraint is added to pin r1/CLK.

create generated clock -name genl -multiply by 1 -source [get ports clkl] [get pins
rl/CLK]

create generated clock -name gen2 -add -master clock clkl -source [get ports clkl] -
multiply by 2 [get pins rl/CLK]

The following example does not create a new generated clock constraint in addition to the existing clock, but will
override even with the -add option enabled, because the same names are used.

create generated clock -name gen2 -source [get ports clkl] -multiply by 3 [get pins
r1/CLK]

create generated clock -name gen2 -source [get ports clkl] -multiply by 4 -master clock
clkl -add [get pins rl/CLK]

See Also
create clock

Tcl Command Documentation Conventions

117

PolarFire FPGA Tcl Commands Reference Guide

create_set

& Microsemi

a A3\ MicrRocHIP company

Tcl command; creates a set of paths to be analyzed. Use the arguments to specify which paths to include. To
create a set that is a subset of a clock domain, specify it with the -c1ock and -type arguments. To create a set
that is a subset of an inter-clock domain set, specify it with the -source clock and -sink_clock arguments. To
create a set that is a subset (filter) of an existing named set, specify the set to be filtered with the -parent set

argument.

create set\ -name <name>\ -parent set <name>\ -type <set type>\ -clock <clock name>\ -
source_clock <clock name>\ -sink clock <clock name>\ -in to out\ -source <port/pin pattern>\

-sink <port/pin pattern>

Arguments

—name <name>

Specifies a unique name for the newly created path set.

-parent_set <name>

Specifies the name of the set to filter from.

-clock <clock name>

Specifies that the set is to be a subset of the given clock domain. This argument is valid only if you also
specify the -type argument.

-type <value>

Specifies the predefined set type on which to base the new path set. You can only use this argument with
the -clock argument, not by itself.

Value

Description

reg to reg

Paths between registers in the design

async_to reg

Paths from asynchronous pins to registers

reg _to async

Paths from registers to asynchronous pins

external_recovery

The set of paths from inputs to asynchronous pins

external_removal

The set of paths from inputs to asynchronous pins

external_setup

Paths from input ports to registers

external_hold

Paths from input ports to registers

clock_to_out

Paths from registers to output ports

-in to_out

118

PolarFire FPGA Tcl Commands Reference Guide

Examples

& Microsemi

a A3\ MicrRocHIP company

Specifies that the set is based on the “Input to Output” set, which includes paths that start at input ports
and end at output ports.

-source_clock <clock name>

Specifies that the set will be a subset of an inter-clock domain set with the given source clock. You can
only use this option with the -sink _clock argument.

-sink_clock <clock name>

Specifies that the set will be a subset of an inter-clock domain set with the given sink clock. You can only
use this option with the -source clock argument.

-source <port/pin pattern>

Specifies a filter on the source pins of the parent set. If you do not specify a parent set, this option filters
all pins in the current design.

-sink <port/pin pattern>

Specifies a filter on the sink pins of the parent set. If you do not specify a parent set, this option filters all
pins in the current design.

create set -name { my user set } -source { C* } —-sink { D* }

create set -name { my other user set } -parent set { my user set } -source { CL* }
create_set -name { adder } -source { ALU_CLOCK } -type { REG_TO_REG } -sink { ADDER*}
create_set -name { another set } -source_clock { EXTERN CLOCK } -sink clock f{

MY GEN CLOCK }

expand_path

Tcl command; displays expanded path information (path details) for paths. The paths to be expanded are
identified by the parameters required to display these paths with list_paths. For example, to expand the first path
listed with list_paths -clock {MYCLOCK} -type {register_to_register}, use the command expand_path -clock
{MYCLOCK} -type {register_to_register}. Path details contain the pin name, type, net name, cell name, operation,
delay, total delay, and edge as well as the arrival time, required time, and slack. These details are the same as
details available in the SmartTime Expanded Path window.

expand path
—-index value
—-set name

—-clock clock name

-type set type
—analysis {max| min}
—-format {csv | text}
-from clock clock name
-to clock clock name

Arguments

-index value

Specify the index of the path to be expanded in the list of paths. Default is 1.

—analysis {max | min}

Specify whether the timing analysis is done is max-delay (setup check) or min-delay (hold check). Valid
values: max or min.

-format {csv | text}

Specify the list format. It can be either text (default) or csv (comma separated values). The former is
suited for display the latter for parsing.

—-set name

Displays a list of paths from the named set. You can either use the -set option to specify a user set by its
name or use both -clock and -type to specify a set.

119

PolarFire FPGA Tcl Commands Reference Guide

& Microsemi

a A3\ MicrRocHIP company

—-clock clock name

Displays the set of paths belonging to the specified clock domain. You can either use this option along
with -type to specify a set or use the -set option to specify the name of the set to display.

-type set type

Specifies the type of paths in the clock domain to display in a list. You can only use this option with the -

clock option. You can either use this option along with -clock to specify a set or use the -set option to
specify a set name.

Value Description
reg_to_reg Paths between registers in the design
external_setup Path from input ports to registers
external_hold Path from input ports to registers
clock to out Path from registers to output ports
reg_to_async Path from registers to asynchronous pins
external_recovery Set of paths from inputs to asynchronous pins
external_removal Set of paths from inputs to asynchronous pins
async_to_reg Path from asynchronous pins to registers

-from_clock clock name

Displays a list of timing paths for an inter-clock domain set belonging to the source clock specified. You
can only use this option with the -to_clock option, not by itself.

-to_clock clock name

Displays a list of timing paths for an inter-clock domain set belonging to the sink clock specified. You can
only use this option with the -from_clock option, not by itself.

—analysis name

Specifies the analysis for the paths to be listed. The following table shows the acceptable values for this
argument.

Value Description

maxdelay

Maximum delay analysis

mindelay

Minimum delay analysis

-index list of indices

Specifies which paths to display. The index starts at 1 and defaults to 1. Only values lower than the
max_paths option will be expanded.

-format value

Specifies the file format of the output. The following table shows the acceptable values for this argument:

Value Description

text

ASCII text format

Ccsv

Comma separated value file format

120

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

Examples
Note: The following example returns a list of five paths:
puts [expand path -clock { myclock } -type {reg to reg }]
puts [expand path -clock {myclock} -type {reg to reg} -index { 1 2 3 } -format text]

See Also
list paths

list_paths

Tcl command; returns a list of the n worst paths matching the arguments. The number of paths returned can be
changed using the set_options -limit_max_paths <value> command.

list paths

-analysis <max | min>
-format <csv | text>
-set <name>

—-clock <clock name>
—-type <set type>

-from clock <clock name>
-to_clock <clock name>
-in to out

—-from <port/pin pattern>
-to <port/pin pattern>

Arguments
—analysis <max | min>

Specifies whether the timing analysis is done for max-delay (setup check) or min-delay (hold check). Valid
values are: max or min.

-format < text | csv >

Specifies the list format. It can be either text (default) or csv (comma separated values). Text formatis
better for display and csv format is better for parsing.

-set <name>

Returns a list of paths from the named set. You can either use the -set option to specify a user set by its
name or use both -clock and -type to specify a set.

-clock <clock name>

Returns a list of paths from the specified clock domain. This option requires the -type option.
-type <set type>

Specifies the type of paths to be included. It can only be used along with -clock. Valid values are:
reg_to_reg -- Paths between registers

external_setup -- Path from input ports to data pins of registers

external_hold -- Path from input ports to data pins of registers

clock_to_out -- Path from registers to output ports

reg_to_async -- Path from registers to asynchronous pins of registers

external_recovery -- Path from input ports to asynchronous pins of registers

external_removal -- Path from input ports to asynchronous pins of registers

async_to_reg -- Path from asynchronous pins to registers

-from_clock <clock name>

Used along with -to_clock to get the list of paths of the inter-clock domain between the two clocks.
-to clock <clock name>

Used along with -from_clock to get the list of paths of the inter-clock domain between the two clocks.

121

PolarFire FPGA Tcl Commands Reference Guide

Example

& Microsemi

a A3\ MicrRocHIP company

-in_to_out

Used to get the list of path between input and output ports.

-from <port/pin pattern>

Filter the list of paths to those starting from ports or pins matching the pattern.
-to <port/pin pattern>

Filter the list of paths to those ending at ports or pins matching the pattern.

The following command displays the list of register to register paths of clock domain clk1:
puts [list paths -clock clkl -type reg to reg]

See Also
create set

expand path
set options

read_sdc

The read_sdc Tcl command evaluate an SDC file, adding all constraints to the specified scenario (or the
current/default one if none is specified). Existing constraints are removed if -add is not specified.

read sdc
-add

-scenario scenario name

-netlist

(user | optimized)

-pin_separator (: | /)

file name

Arguments

Example

—add

Specifies that the constraints from the SDC file will be added on top of the existing ones, overriding them
in case of a conflict. If not used, the existing constraints are removed before the SDC file is read.

-scenario scenario name

Specifies the scenario to add the constraints to. The scenario is created if none exists with this name.
-netlist (user | optimized)

Specifies whether the SDC file contains object defined at the post-synthesis netlist (user) level or physical
(optimized) netlist (used for timing analysis).

—pin_separator sep

Specify the pin separator used in the SDC file. It can be either "' or '/'.

file name

Specify the SDC file name.

The following command removes all constraints from the current/default scenario and adds all constraints
from design.sdc file to it:

read sdc design.sdc

See Also

write sdc

122

https://coredocs.s3.amazonaws.com/Libero/12_2_0/Tool/libero_soc_tcl_cmd_ref_ug.pdf

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

remove_set

Tcl command; removes a set of paths from analysis. Only user-created sets can be deleted.

remove set —-name name

Parameters
—name name
Specifies the name of the set to delete.
Example
The following command removes the set named my_set:
remove_set -name my_set
See Also
create set
report

Tcl command; specifies the type of reports to generate and what to include in the reports.

report -type (timing | violations | datasheet | bottleneck | constraints coverage |
combinational loops) \
-analysis <max|min> \
—-format (csv|text) \
<filename>
timing options
-max parallel paths <number>
-max paths <number>
-print summary (yes|no)
-use_slack threshold (yes|no)
-slack_threshold <double>
-print paths (yes|no)
-max expanded paths <number>
-include user sets (yes|no)
—include clock domains (yes|no)
-select clock domains <clock name list>
-limit max paths (yes|no)
-include pin to pin (yes|no)
bottleneck options
-cost type (path count|path cost)
-max instances <number>
-from <port/pin pattern>
-to <port/pin pattern>
-set type <set type>
-set name <set name>
—-clock <clock name>
-from clock <clock name>
-to_clock <clock name>
-in to out

Arguments

-type
Specifies the type of the report to be generated. It is mandatory.

123

PolarFire FPGA Tcl Commands Reference Guide

& Microsemi

a A3\ MicrRocHIP company

Value Description

timing Timing Report
violations Timing Violation Report
datasheet Datasheet Report
bottleneck Bottleneck Report

constraints_coverage

Constraints Coverage Report

combinational_loops

Combinational Loops Report

-analysis

Specifies the type of Analysis(Max Delay or Min Delay) Performed to generate the reports. It is optional.

Note: This argument should not be used to generate datasheet reports. The command may fail if this

argument is used to generate datasheet report.

Value Description
max Timing report considers maximum analysis (default).
min Timing report considers minimum analysis.
-format
Specifies the format in which the report is generated. It is optional.
Value Description
text Generates a text report (default).
csv Generates the report in a comma-separated value format which you
can import into a spreadsheet.
-filename

Specifies the file name of the generated report. It is mandatory.

Timing Options and Values

Parameter/Value

Description

-max_parallel_paths <number>

Specifies the max number of parallel paths. Parallel paths are timing
paths with the same start and end points.

-max_paths <number>

Specifies the max number of paths to display for each set. This value
is a positive integer value greater than zero. Default is 100.

-print_summary <yes|no>

Yes to include and No to exclude the summary section in the timing
report.

-use_slack_threshold <yes|no>

Yes to include slack threshold and no to exclude threshold in the
timing report. The default is to exclude slack threshold.

124

PolarFire FPGA Tcl Commands Reference Guide

& Microsemi

a A3\ MicrRocHIP company

Parameter/Value

Description

-slack_threshold <double>

Specifies the threshold value to consider when reporting path slacks.
This value is in nanoseconds (ns). By default, there is no threshold
(all slacks reported).

-print_paths (yes|no)

Specifies whether the path section (clock domains and in-to-out
paths) will be printed in the timing report. Yes to include path sections
(default) and no to exclude path sections from the timing report.

-max_expanded_paths <number>

Specifies the max number of paths to expand per set. This value is a
positive integer value greater than zero. Default is 100.

-include_user_sets (yes|no)

If yes, the user set is included in the timing report. If no, the user set
is excluded in the timing report.

-include_clock _domains (yes|no)

Yes to include and no to exclude clock domains in the timing report.

-select_clock_domains
<clock_name_list>

Defines the clock domain to be considered in the clock domain
section. The domain list is a series of strings with domain names
separated by spaces. Both the summary and the path sections in the
timing report display only the listed clock domains in the
clock_name_list.

-limit_max_paths (yes|no)

Yes to limit the number of paths to report. No to specify that there is
no limit to the number of paths to report (the default).

-include_pin_to_pin (yes|no)

Yes to include and no to exclude pin-to-pin paths in the timing report.

Bottleneck Options and Values

Parameter/Value

Description

-cost_type
<path_count|path_cost>

Specifies the cost_type as either path_count or path_cost. For
path_count, instances with the greatest number of path violations
will have the highest bottleneck cost. For path_cost, instances with
the largest combined timing violations will have the highest
bottleneck cost.

-max_instances <number>

Specifies the maximum number of instances to be reported. Default
is 10.

-from <port/pin pattern>

Reports only instances that lie on violating paths that start at
locations specified by this option.

-to <port/pin pattern>

Reports only instances that lie on violating paths that end at
locations specified by this option.

-clock <clock name>

This option allows pruning based on a given clock domain. Only
instances that lie on these violating paths are reported.

-set_name <set name>

Displays the bottleneck information for the named set. You can
either use this option or use both -clock and -type. This option allows
pruning based on a given set. Only paths that lie within the named
set will be considered towards bottleneck.

125

PolarFire FPGA Tcl Commands Reference Guide

& Microsemi

a A3\ MicrRocHIP company

Parameter/Value

Description

-set_type <set_type>

This option can only be used in combination with the -clock option,
and not by itself. The options allows you to filter which type of paths
should be considered towards the bottleneck:

e reg_to_reg - Paths between registers in the design

e async_to_reg - Paths from asynchronous pins to
registers

e reg_to_async - Paths from registers to asynchronous
pins

e external_recovery - The set of paths from inputs to
asynchronous pins

e external_removal - The set of paths from inputs to
asynchronous pins

e external_setup - Paths from input ports to registers
e external_hold - Paths from input ports to registers
e clock_to_out - Paths from registers to output ports

-from_clock <clock name>

Reports only bottleneck instances that lie on violating timing paths of
the inter-clock domain that starts at the source clock specified by
this option. This option can only be used in combination with -
to_clock.

-to_clock <clock name>

Reports only instances that lie on violating paths that end at
locations specified by this option.

-in_to_out

Reports only instances that lie on violating paths that begin at input
ports and end at output ports.

Example

The following example generates a timing violation report named timing_viol.txt. The report considers an analysis

using maximum delays and does not filter paths based on slack threshold. It reports two paths per section and

one expanded path per section.
report \
-type violations \

-analysis max \

-use_slack threshold no \

-limit max paths yes \

-max_paths 2 \

-max_expanded paths 1 \

timing viol.txt

The following example generates a datasheet report named datasheet.csvin CSV format.

report \
-type datasheet \
-format csv \

datasheet.csv

126

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

save

Tcl command; saves all changes made prior to this command. This includes changes made on constraints,
options and sets.

save

Arguments
None

Example
The following script sets the maximum number of paths reported by list_paths to 10, reads an SDC file, and save
both the option and the constraints into the design project:
set_options -limit max_paths 10
read_sdc somefile.sdc

save

See Also

set options

set_clock_latency

Tcl command; defines the delay between an external clock source and the definition pin of a clock within
SmartTime.

set clock latency -source [-rise][-fall][-early][-late] delay clock

Arguments

—source

Specifies the source latency on a clock pin, potentially only on certain edges of the clock.

-rise

Specifies the edge for which this constraint will apply. If neither or both rise are passed, the same latency
is applied to both edges.

-fall

Specifies the edge for which this constraint will apply. If neither or both rise are passed, the same latency
is applied to both edges.

—-invert

Specifies that the generated clock waveform is inverted with respect to the reference clock.

-late

Optional. Specifies that the latency is late bound on the latency. The appropriate bound is used to provide
the most pessimistic timing scenario. However, if the value of "-late" is less than the value of "-early",
optimistic timing takes place which could result in incorrect analysis. If neither or both "-early" and "-late"
are provided, the same latency is used for both bounds, which results in the latency having no effect for
single clock domain setup and hold checks.

-early

Optional. Specifies that the latency is early bound on the latency. The appropriate bound is used to
provide the most pessimistic timing scenario. However, if the value of "-late" is less than the value of "-
early", optimistic timing takes place which could result in incorrect analysis. If neither or both "-early" and
"-late" are provided, the same latency is used for both bounds, which results in the latency having no
effect for single clock domain setup and hold checks.

delay

Specifies the latency value for the constraint.

127

PolarFire FPGA Tcl Commands Reference Guide

Description

Examples

& Microsemi

a A3\ MicrRocHIP company

clock

Specifies the clock to which the constraint is applied. This clock must be constrained.

Clock source latency defines the delay between an external clock source and the definition pin of a clock
within SmartTime. It behaves much like an input delay constraint. You can specify both an "early" delay
and a"late" delay for this latency, providing an uncertainty which SmartTime propagates through its
calculations. Rising and falling edges of the same clock can have different latencies. If only one value is
provided for the clock source latency, it is taken as the exact latency value, for both rising and falling
edges.

The following example sets an early clock source latency of 0.4 on the rising edge of main_clock. It also
sets a clock source latency of 1.2, for both the early and late values of the falling edge of main_clock. The
late value for the clock source latency for the falling edge of main_clock remains undefined.

set_clock latency -source -rise -early 0.4 { main_clock }

set clock latency -source -fall 1.2 { main clock }

See Also

create clock

create generated clock

Tcl Command Documentation Conventions

set false path

Tcl command; identifies paths that are considered false and excluded from the timing analysis in the
current timing scenario.

set false path [-ignore errors] [-from from list] [-through through list] [-to to list]

Arguments

Description

-ignore_errors

Specifies to avoid reporting errors for derived constraints targeting the logic that becomes invalid due to
logic optimization. It is an optional argument. Some IPs may have extra logic present depending on other
IPs used in the design but the synthesis tool will remove this logic if fewer IPs were used. In such cases,
the implementation flow will halt without -ignore_errors flag.

Note: It is not recommended to use this flag outside similar use cases.

-from from list

Specifies a list of timing path starting points. A valid timing starting point is a clock, a primary input, an
inout port, or a clock pin of a sequential cell.

-through through list

Specifies a list of pins, ports, cells, or nets through which the disabled paths must pass.

-to to list

Specifies a list of timing path ending points. A valid timing ending point is a clock, a primary output, an
inout port, or a data pin of a sequential cell.

The set_false path command identifies specific timing paths as being false. The false timing paths are
paths that do not propagate logic level changes. This constraint removes timing requirements on these
false paths so that they are not considered during the timing analysis. The path starting points are the
input ports or register clock pins, and the path ending points are the register data pins or output ports.
This constraint disables setup and hold checking for the specified paths.

128

PolarFire FPGA Tcl Commands Reference Guide

Examples

& Microsemi

a A3\ MicrRocHIP company

The false path information always takes precedence over multiple cycle path information and overrides
maximum delay constraints. If more than one object is specified within one -through option, the path can
pass through any objects.

You must specify at least one of the —from, -to, or —-through arguments for this constraint to be valid.

The following example specifies all paths from clock pins of the registers in clock domain clk1 to data pins
of a specific register in clock domain clk2 as false paths:

set false path —-from [get clocks {clkl}] -to reg 2:D
The following example specifies all paths through the pin UO/U1:Y to be false:
set false path -through U0/Ul:Y

The following example specifies a derived false path constraint through the pin
PCle_Demo_0/SYSRESET_POR/POWER_ON_RESET_N

set false path -ignore_errors -through [get pins
{PCIe Demo 0/SYSRESET POR/POWER_ON RESET N }]

See Also

Tcl Command Documentation Conventions

set_input_delay

Tcl command; creates an input delay on a port list by defining the arrival time of an input relative to a
clock in the current scenario.

set_input delay delay value -clock clock ref [-max] [-min] [-clock fall] [-rise] [-fall] [-add_delay]

input list

Arguments

delay value

Specifies the arrival time in nanoseconds that represents the amount of time for which the signal is
available at the specified input after a clock edge.

—-clock clock ref

Specifies the clock reference to which the specified input delay is related. This is a mandatory argument.
If you do not specify -max or -min options, the tool assumes the maximum and minimum input delays to
be equal.

—max

Specifies that delay_value refers to the longest path arriving at the specified input. If you do not specify -
max or -min options, the tool assumes maximum and minimum input delays to be equal.

—min

Specifies that delay_value refers to the shortest path arriving at the specified input. If you do not specify -
max or -min options, the tool assumes maximum and minimum input delays to be equal.

-clock fall

Specifies that the delay is relative to the falling edge of the clock reference. The default is the rising edge.
-rise

Specifies that the delay is relative to a rising transition on the specified port(s). If -rise or -fall is not
specified, then rising and falling delays are assumed to be equal.

-fall

Specifies that the delay is relative to a falling transition on the specified port(s). If -rise or -fall is not
specified, then rising and falling delays are assumed to be equal.

129

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

-add_delay

Specifies that this input delay constraint should be added to an existing constraint on the same port(s).
The -add_delay option is used to capture information on multiple paths with different clocks or clock edges
leading to the same input port(s).

input list
Provides a list of input ports in the current design to which delay_value is assigned. If you need to specify
more than one object, enclose the objects in braces ({}).

Description

The set_input_delay command sets input path delays on input ports relative to a clock edge. This usually
represents a combinational path delay from the clock pin of a register external to the current design. For
in/out (bidirectional) ports, you can specify the path delays for both input and output modes. The tool adds
input delay to path delay for paths starting at primary inputs.

A clock is a singleton that represents the name of a defined clock constraint. This can be:

e asingle port name used as source for a clock constraint

e asingle pin name used as source for a clock constraint; for instance reg1:CLK. This name can be
hierarchical (for instance toplevel/block1/reg2:CLK)

e an object accessor that will refer to one clock: [get_clocks {clk}]

Examples

The following example sets an input delay of 1.2ns for port data1 relative to the rising edge of CLK1:
set_input delay 1.2 -clock [get clocks CLK1] [get ports datal]

The following example sets a different maximum and minimum input delay for port IN1 relative to the
falling edge of CLK2:

set_input delay 1.0 -clock fall -clock CLK2 -min {IN1}
set_input delay 1.4 -clock fall -clock CLK2 -max {IN1}
The following example demonstrates an override condition of two constraints. The first constraint is
overridden because the second constraint specifies a different clock for the same input:
set input delay 1.0 -clock CLKl -max {IN1}
set input delay 1.4 -clock CLK2 -max {IN1}
The next example is almost the same as the previous one, however, in this case, the user has specified -
add_delay, so both constraints will be honored:
set_input delay 1.0 -clock CLKl -max {IN1}
set_input delay 1.4 -add delay -clock CLK2Z -max {INl}
The following example is more complex:
e All constraints are for an input to port PAD1 relative to a rising edge clock CLK2. Each combination of {-rise,

-fall} x {-max, -min} generates an independent constraint. But the max rise delay of 5 and the max rise delay
of 7 interfere with each other.

e For a -max option, the maximum value overrides all lower values. Thus the first constraint will be overridden
and the max rise delay of 7 will survive.

set_input delay 5 -max -rise -add_delay [get clocks CLK2] [get ports PAD1] # will be
overridden

set_input delay 3 -min -fall -add delay [get clocks CLK2] [get ports PAD1]
set input delay 3 -max -fall -add delay [get clocks CLK2] [get ports PAD1]
set _input delay 7 -max -rise -add_delay [get clocks CLK2] [get ports PAD1]

See Also
set output delay

Tcl Command Documentation Conventions

130

PolarFire FPGA Tcl Commands Reference Guide

& Microsemi

a A3\ MicrRocHIP company

set_max_delay

Tcl command; specifies the maximum delay for the timing paths in the current scenario.

set max delay delay value [-from from list] [-to to list] [-through through list]

Arguments

Description

Examples

delay value
Specifies a floating point number in nanoseconds that represents the required maximum delay value for
specified paths.
o [f the path starting point is on a sequential device, the tool includes clock skew in the
computed delay.

e [f the path starting point has an input delay specified, the tool adds that delay value to the
path delay.

o [f the path ending point is on a sequential device, the tool includes clock skew and library
setup time in the computed delay.

o [f the ending point has an output delay specified, the tool adds that delay to the path
delay.

-from from list

Specifies a list of timing path starting points. A valid timing starting point is a clock, a primary input, an
inout port, or a clock pin of a sequential cell.

-to to 1list

Specifies a list of timing path ending points. A valid timing ending point is a clock, a primary output, an
inout port, or a data pin of a sequential cell.

-through through list

Specifies a list of pins, ports, cells, or nets through which the timing paths must pass.

This command specifies the required maximum delay for timing paths in the current design. The path
length for any startpoint in from_list to any endpoint in to_list must be less than delay_value.

The timing engine automatically derives the individual maximum delay targets from clock waveforms and
port input or output delays.

The maximum delay constraint is a timing exception. This constraint overrides the default single cycle
timing relationship for one or more timing paths. This constraint also overrides a multicycle path
constraint.

You must specify at least one of the -from, -to, or ~-through arguments for this constraint to be valid.

The following example sets a maximum delay by constraining all paths from ff1a:CLK or ff1b:CLK to
ff2e:D with a delay less than 5 ns:

set max delay 5 -from {ffla:CLK fflb:CLK} -to {ff2e:D}

The following example sets a maximum delay by constraining all paths to output ports whose names start
by “out” with a delay less than 3.8 ns:

set max delay 3.8 -to [get ports out*]

See Also

set min delay

remove max delay

Tcl Command Documentation Conventions

131

https://coredocs.s3.amazonaws.com/Libero/12_2_0/Tool/libero_soc_tcl_cmd_ref_ug.pdf

PolarFire FPGA Tcl Commands Reference Guide

& Microsemi

a A3\ MicrRocHIP company

set_min_delay

Tcl command; specifies the minimum delay for the timing paths in the current scenario.

set min delay delay value [-from from list] [-to to list] [-through through list]

Arguments

Description

Examples

delay value
Specifies a floating point number in nanoseconds that represents the required minimum delay value for
specified paths.
o [f the path starting point is on a sequential device, the tool includes clock skew in the
computed delay.

e [f the path starting point has an input delay specified, the tool adds that delay value to the
path delay.

o [f the path ending point is on a sequential device, the tool includes clock skew and library
setup time in the computed delay.

o [f the ending point has an output delay specified, the tool adds that delay to the path
delay.

-from from list

Specifies a list of timing path starting points. A valid timing starting point is a clock, a primary input, an
inout port, or a clock pin of a sequential cell.

-to to 1list

Specifies a list of timing path ending points. A valid timing ending point is a clock, a primary output, an
inout port, or a data pin of a sequential cell.

-through through 1list

Specifies a list of pins, ports, cells, or nets through which the timing paths must pass.

This command specifies the required minimum delay for timing paths in the current design. The path
length for any startpoint in from_list to any endpoint in to_list must be less than delay_value.

The timing engine automatically derives the individual minimum delay targets from clock waveforms and
port input or output delays.

The minimum delay constraint is a timing exception. This constraint overrides the default single cycle
timing relationship for one or more timing paths. This constraint also overrides a multicycle path
constraint.

You must specify at least one of the —from, -to, or ~-through arguments for this constraint to be valid.

The following example sets a minimum delay by constraining all paths from ff1a:CLK or ff1b:CLK to ff2e:D
with a delay less than 5 ns:

set min delay 5 -from {ffla:CLK fflb:CLK} -to {ff2e:D}

The following example sets a minimum delay by constraining all paths to output ports whose names start
by “out” with a delay less than 3.8 ns:

set min delay 3.8 -to [get ports out*]

See Also
set max delay

remove min delay

Tcl Command Documentation Conventions

132

https://coredocs.s3.amazonaws.com/Libero/12_2_0/Tool/libero_soc_tcl_cmd_ref_ug.pdf

PolarFire FPGA Tcl Commands Reference Guide

& Microsemi

a A3\ MicrRocHIP company

set_multicycle path

Tcl command; defines a path that takes multiple clock cycles in the current scenario.

set multicycle path ncycles [-setup] [-hold] [-setup only] [-from from list] [-through

through 1ist]

Arguments

Description

Exceptions

[-to to list]

ncycles

Specifies an integer value that represents a number of cycles the data path must have for setup or hold
check. The value is relative to the starting point or ending point clock, before data is required at the ending
point.

—-setup

Optional. Applies the cycle value for the setup check only. This option does not affect the hold check. The
default hold check will be applied unless you have specified another set_multicycle_path command for the
hold value.

-hold
Optional. Applies the cycle value for the hold check only. This option does not affect the setup check.

Note: If you do not specify "-setup” or "-hold", the cycle value is applied to the setup check and the
default hold check is performed (ncycles -1).

-setup_only

Optional. Specifies that the path multiplier is applied to setup paths only. The default value for hold check
(which is 0) is applied.

-from from list

Specifies a list of timing path starting points. A valid timing starting point is a clock, a primary input, an
inout port, or a clock pin of a sequential cell.

-through through list
Specifies a list of pins or ports through which the multiple cycle paths must pass.
-to to list

Specifies a list of timing path ending points. A valid timing ending point is a clock, a primary output, an
inout port, or a data pin of a sequential cell.

Setting multiple cycle paths constraint overrides the single cycle timing relationships between sequential
elements by specifying the number of cycles that the data path must have for setup or hold checks. If you
change the multiplier, it affects both the setup and hold checks.

False path information always takes precedence over multiple cycle path information. A specific maximum
delay constraint overrides a general multiple cycle path constraint.

If you specify more than one object within one -through option, the path passes through any of the
objects.

You must specify at least one of the -from, -to, or —~through arguments for this constraint to be valid.

Multiple priority management is not supported in Microsemi SoC designs. All multiple cycle path constraints are
handled with the same priority.

Examples

The following example sets all paths between reg1 and reg2 to 3 cycles for setup check. Hold check is
measured at the previous edge of the clock at reg2.

133

PolarFire FPGA Tcl Commands Reference Guide

& Microsemi

a A3\ MicrRocHIP company

set multicycle path 3 -from [get pins {regl}] -to [get pins {reg2}]

The following example specifies that four cycles are needed for setup check on all paths starting at the
registers in the clock domain ck1. Hold check is further specified with two cycles instead of the three
cycles that would have been applied otherwise.

set multicycle path 4 -setup -from [get clocks {ckl}]
set multicycle path 2 -hold -from [get clocks {ckl}]

The following example specifies that four cycles are needed for setup only check on all paths starting at
the registers in the clock domain REF_CLK_0.

set multicycle path -setup only 4 -from [get clocks { REF CLK 0 }]

See Also

remove multicycle path

Tcl Command Documentation Conventions

set_options

SmartTime-specific Tcl command; sets options for timing analysis. Some options will also affect timing-
driven place-and-route. The same parameters can be changed in the SmartTime Options dialog box in the
SmartTime GUL.

set options

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

-max opcond value]

-min opcond value]
-interclockdomain analysis value]
-use bibuf loopbacks value]
-enable recovery removal checks value]
-break at async value]
-filter when slack below value]
-filter when slack above value]
-remove slack filters]
-limit max paths value]
-expand clock network value]
-expand parallel paths value]
-analysis scenario value]

-tdpr scenario value]

-reset]

Arguments

-max_opcond value
Sets the operating condition to use for Maximum Delay Analysis.
The acceptable Values for max_opcode for PolarFire is shown in the below table. Default is slow_Iv_lt.

Value Description

slow_Iv_It Use slow_lv_It conditions for Maximum Delay Analysis

slow_hv_It Use slow_hv_It conditions for Maximum Delay Analysis

fast_hv_It Use fast_hv_It conditions for Maximum Delay Analysis

-min_opcond value
Sets the operating condition to use for Minimum Delay Analysis.
The acceptable Values for min_opcode for PolarFire is shown in the below table. Default is fast_hv_It.

134

https://coredocs.s3.amazonaws.com/Libero/12_2_0/Tool/libero_soc_tcl_cmd_ref_ug.pdf

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

Value Description
fast_hv_It Use fast_hv_It conditions for Maximum Delay Analysis
slow_hv_It Use slow_hv_It conditions for Maximum Delay Analysis
slow_Iv_It Use slow_Iv_lIt conditions for Maximum Delay Analysis

-interclockdomain_analysis value
Enables or disables inter-clock domain analysis. Default is yes.

Value Description
yes Enables inter-clock domain analysis
no Disables inter-clock domain analysis

-use_bibuf_loopbacks value

Instructs the timing analysis whether to consider loopback path in bidirectional buffers (D->Y, E->Y)as
false-path {no}. Default is yes; i.e., loopback are false paths.

Value Description
yes Enables loopback in bibufs
no Disables loopback in bibufs

-enable_recovery_removal_checks vaiue

Enables recovery checks to be included in max-delay analysis and removal checks in min-delay analysis.
Default is yes.

Value Description
yes Enables recovery and removal checks
no Disables recovery and removal checks

-break_at_async vaiue

Specifies whether or not timing analysis is allowed to cross asynchronous pins (clear, reset of sequential
elements). Default is no.

Value Description
yes Enables breaking paths at asynchronous ports
no Disables breaking paths at asynchronous ports

-filter_when_slack_below vaiue

Specifies a minimum slack value for paths reported by list_paths. Not set by default.
-filter_when_slack_above vaiue

Specifies a maximum slack value for paths reported by list_paths. Not set by default.
-remove_slack_filters

135

PolarFire FPGA Tcl Commands Reference Guide

xamples

& Microsemi

a A3\ MicrRocHIP company

Removes the slack minimum and maximum set using -filter_when_slack_below and

filter_when_slack_above.
-limit_max_paths value

Specifies the maximum number of paths reported by list_paths. Defaultis 700.

-expand_clock_network value

Specify whether or not clock network details are reported in expand_path. Default is yes.

Value Description
yes Enables expanded clock network information in paths
no Disables expanded clock network information in paths

-expand_parallel_paths value

Specify the number of parallel paths {paths with the same ends} to include in expand_path. Default is 7.

-analysis_scenario value

Specify the constraint scenario to be used for timing analysis. Default is Primary, the default scenario.

-tdpr_scenario value

Specify the constraint scenario to be used for timing-driven place-and-route. Default is Primary, the

default scenario.
-reset

Reset all options to the default values, except those for analysis and TDPR scenarios, which remain

unchanged.

The following script commands the timing engine to use best operating conditions for both max-delay analysis
and min-delay analysis:

set options -max opcond {best} -min opcond {best}

The following script changes the scenario used by timing-driven place-and-route and saves the change in the
Libero project for place-and-route tools to see the change.

set options -tdpr scenario {My TDPR Scenario}

See Also

save

136

PolarFire FPGA Tcl Commands Reference Guide

& Microsemi

a A3\ MicrRocHIP company

SmartPower Tcl Commands

smartpower _add_new_scenario

Tcl command; creates a new scenario.

smartpower add new scenario -name {value} -description {value} -mode {value}

Arguments

Examples

-name {value}

Specifies the name of the new scenario.
—-description {value}

Specifies the description of the new scenario.
-mode {<operating mode>:<duration>}+

Specifies the mode(s) and duration(s) for the specified scenario.

This example creates a new scenario called myscenario:
smartpower add new scenario -name "MyScenario" -mode "Custom 1:50.00"

"Custom_2:25.00" -mode "Active:25.00"

See Also

Tcl documentation conventions

smartpower_add_pin_in_domain

Tcl command; adds a pin into a clock or set domain.

smartpower add pin in domain -pin name {pin name} -pin type {value} —-domain name
{domain name} -domain type {value}

Arguments

-pin_name {pin name}

Specifies the name of the pin to add to the domain.

-pin_type {value}

Specifies the type of the pin to add. The following table shows the acceptable values for this argument:

Value Description

clock The pin to add is a clock pin

data The pin to add is a data pin

-domain name {domain name}
Specifies the name of the domain in which to add the specified pin.
-domain_type {value}

Specifies the type of domain in which to add the specified pin. The following table shows the acceptable
values for this argument:

137

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

Value Description
clock The domain is a clock domain
set The domain is a set domain

Notes

e The domain name must be a name of an existing domain.

e The pin_name must be a name of a pin that exists in the design.

Examples

The following example adds a clock pin to an existing Clock domain:

smartpower_add_pin_in domain -pin_name { XCMP3/U0/Ul:Y } -pin_type {clock} —-domain_name
{clkl} -domain type {clock}

The following example adds a data pin to an existing Set domain:

smartpower_add_pin_in domain -pin_name {XCMP3/U0/Ul:Y} -pin_type {data} -domain_ name
{myset} -domain type {set}

See Also
Tcl documentation conventions

smartpower_battery settings

This SmartPower Tcl command sets the battery capacity in SmartPower. The battery capacity is used to
compute the battery life of your design.

smartpower battery settings -capacity {decimal value}

Parameters
—capacity {decimal value}
Value must be a positive decimal.
This parameter is mandatory.
Exceptions
None
Returns
This command does not return a value.
Usage
The following table lists the parameters for the command, their types, and the values they can be set to.
smartpower_battery_settings Type Value Description
capacity Decimal Positive decimal Specify the battery capacity in mA*Hours

138

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

Example

This example sets the battery capacity to 1800 mA * Hours.
smartpower battery settings -capacity {1800}

smartpower_change clock_statistics
Tcl command; changes the default frequencies and probabilities for a specific domain.

smartpower change clock statistics -domain name {value} -clocks freq {value} -

clocks proba {value} -registers freq {value} -registers proba {value} -set reset freq
{value} -set reset proba {value} -primaryinputs freq {value} -primaryinputs proba {value} -
combinational freq {value} -combinational proba {value}

Arguments
-domain name{value}
Specifies the domain name in which to initialize frequencies and probabilities.
-clocks_freqg {value}
Specifies the user input frequency in Hz, KHz, or MHz for all clocks.
-clocks_proba {value}
Specifies the user input probability in % for all clocks.
-registers_freq {value}

Specifies the user input frequency (in Hz, KHz, or MHz) or the toggle rate (in %). If the unit is not provided
and toggle rate is active, the value is handled as a toggle rate; if toggle rate is not active, the value is
handled as a frequency.

-registers_proba {value}
Specifies the user input probability in % for all registers.
-set_reset freq {value}

Specifies the user input frequency (in Hz, KHz, or MHz) or the toggle rate (in %). If the unit is not provided
and toggle rate is active, the value is handled as a toggle rate; if toggle rate is not active, the value is
handled as a frequency.

-set reset proba {value}

Specifies the user input probability in % for all set/reset nets.

-primaryinputs_freq {value}

Specifies the user input frequency (in Hz, KHz, or MHz) or the toggle rate (in %). If the unit is not provided

and toggle rate is active, the value is handled as a toggle rate; if toggle rate is not active, the value is
handled as a frequency.

-primaryinputs proba {value}
Specifies the user input probability in % for all primary inputs.
-combinational freq {value}

Specifies the user input frequency (in Hz, KHz, or MHz) or the toggle rate (in %). If the unit is not provided
and toggle rate is active, the value is handled as a toggle rate; if toggle rate is not active, the value is
handled as a frequency.

-combinational proba {value}
Specifies the user input probability in % for all combinational combinational output.
Note: This command is associated with the functionality of Initialize frequencies and probabilities dialog box.

139

https://coredocs.s3.amazonaws.com/Libero/12_2_0/Tool/smartpower_ug.pdf

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

Examples

The following example initializes all clocks with:

smartpower change clock statistics -domain name {my domain} -clocks freq {10 MHz} -
clocks proba {20} -registers freq {10 MHz} -registers proba {20} -set reset freg {10
MHz} -set reset proba {20} -primaryinputs freq {10 MHz} -primaryinputs proba {20} -
combinational freq {10 MHz} -combinational proba {20}

See Also
Tcl documentation conventions

smartpower_change_setofpin_statistics
Tcl command; changes the default frequencies and probabilities for a specific set.

smartpower change setofpin statistics -domain name {value} -data freq {value} -
data proba {value}

Arguments
-domain name{value}
Specifies the domain name in which to initialize data frequencies and probabilities.
-data freq {value}
Specifies the user input data frequency in Hz, KHz, or MHz for all sets of pins.
-data_proba {value}

Specifies the user input data probability in % for all sets of pins.

Notes

This command is associated with the functionality of Initialize frequencies and probabilities dialog box.

Examples
The following example initializes all clocks withs:

smartpower change_ setofpin statistics -domain_name {my domain} -data freq {10 MHz} -
data_proba {20}

See Also
Tcl documentation conventions

smartpower_commit
Tcl command; saves the changes to the design file.

smartpower commit

Arguments
None

Examples

smartpower commit

See Also
Tcl documentation conventions

140

https://coredocs.s3.amazonaws.com/Libero/12_2_0/Tool/smartpower_ug.pdf

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

smartpower _compute vectorless

This Tcl command executes a vectorless analysis of the current operating mode.

Arguments
None
Example
smartpower compute vectorless
See Also

Tcl Command Documentation Conventions

smartpower_create _domain
Tcl command; creates a new clock or set domain.

smartpower create domain -domain type {value} -domain name {domain name}

Arguments
-domain_ type {value}
Specifies the type of domain to create. The following table shows the acceptable values for this argument:
Value Description
clock The domain is a clock domain
set The domain is a set domain
-domain_name {domain name}
Specifies the name of the new domain.
Notes

The domain name cannot be the name of an existing domain.
The domain type must be either clock or set.

Examples
The following example creates a new clock domain named "clk2":

smartpower create domain -domain type {clock} -domain name {clk2}

The following example creates a new set domain named "myset":

smartpower create domain -domain type {set} -domain name {myset}

See Also
Tcl documentation conventions

smartpower_edit_scenario

Tcl command; edits a scenario.

smartpower edit scenario -name {value} -description {value} -mode {value} -new name {value}

141

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

Arguments
-name {value}
Specifies the name of the scenario.
—-description {value}
Specifies the description of the scenario.
-mode {<operating mode>:<duration>}
Specifies the mode(s) and duration(s) for the specified scenario.
-new_name {value}

Specifies the new name for the scenario

Examples
This example edits the name of myscenario to finalscenario:

smartpower edit scenario -name myscenario -new_name finalscenario

See Also
Tcl documentation conventions

smartpower_import_vcd

This SmartPower Tcl command imports into SmartPower a VCD file generated by a simulation tool. SmartPower
extracts the frequency and probability information from the VCD.

import vcd -file "VCD file" [-opmode "mode name"] [-with vectorless "TRUE | FALSE"] [-
partial parse\ "TRUE | FALSE"] [-start time "decimal value"] [-end time "decimal value"]

\

[-auto detect top level name "TRUE | FALSE"] [-top level name "top level name"] [-
glitch filtering\ "false | auto | true"] [-glitch threshold "integer value"] [-stop time
"decimal value"]

Parameters
-file "VCD file"
Value must be a file path. This parameter is mandatory.
[-opmode "mode name"]
Value must be a string. This parameter is optional.
[-with vectorless "TRUE | FALSE"]
Value must be a boolean. This parameter is optional.
[-partial parse "TRUE | FALSE"]
Value must be a boolean. This parameter is optional.
[-start_time "decimal value"]
Value must be a positive decimal. This parameter is optional.
[-end_time "decimal value"]
Value must be a positive decimal. This parameter is optional.
[rauto _detect top level name "TRUE | FALSE"]
Value must be a boolean. This parameter is optional.
[-top level name "top level name"]
Value must be a string. This parameter is optional.
[-glitch filtering "false | auto | true"]
Value must be one of false | auto | true. This parameter is optional.
[-glitch_threshold "integer value"]
Value must be a positive integer. This parameter is optional.

142

PolarFire FPGA Tcl Commands Reference Guide

Exceptions
None

Returns

This command does not return a value.

Usage

& Microsemi

a A3\ MicrRocHIP company

This section lists all the parameters for the command, their types, and the values they can be set to. The default

value is always listed first.

smartpower_import_vcd

Type

Values

Description

file

String

Path to a VCD file

Path to a VCD file.

opmode

String

Operating mode name
“Active” by default

Operating mode in which the VCD
will be imported. If the mode
doesn’t exist, it will be created.

with_vectorless

Boolean

TRUE|FALSE

Specify the method to set the
frequency and probability
information for signals not
annotated by the VCD TRUE: use
the vectorless analysis FALSE: use
average value computed from the
VCD.

partial_parse

Boolean

FALSE|TRUE

Enable partial parsing of the VCD.
Start time and end time need to be
specified when TRUE.

start_time

Decimal
value

positive decimal
nanoseconds (ns)

Specify the starting timestamp of
the VCD extraction in ns. It must be
lower than the specified end_time.
It must be lower than the last
timestamp in the VCD file.

end_time

Decimal
value

positive decimal
nanoseconds (ns)

Specify the end timestamp of the
VCD extraction in ns. It must be
higher than the specified start_time.

auto_detect_top_level_name

Boolean

TRUE|FALSE

Enable the auto detection of the top
level name in the VCD file.
Top_level_name needs to be
specified when FALSE.

top_level_name

Boolean

Full hierarchical name

Specify the full hierarchical name of
the instance of the design in the
VCD file.

glitch_filtering

Boolean

Auto|FALSE|TRUE

AUTO: Enable glitch filtering with
predefined thereshold based on the
family

TRUE: Enable glitch filtering,
glitch_threshold must be specified
FALSE: Disable glitch filtering.

143

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

smartpower_import_vcd Type Values Description

glitch_threshold Integer Positive integer Specify the threshold in ps below
which glitches are filtered out.

Examples
The Tcl command below imports the power.vcd file generated by the simulator into SmartPower:

w

smartpower_ import_ved -file “../../simulation/power.vcd”
The Tcl command below extracts information between 1ms and 2ms in the simulation, and stores the information
into a custom mode:

Y

smartpower import ved -file “../../simulation/power.vcd” -partial parse TRUE -start time
1000000 -end time 2000000 -opmode “power lms to 2ms”

smartpower _init_do
Tcl command; initializes the frequencies and probabilities for clocks, registers, set/reset nets, primary

inputs, combinational outputs, enables and other sets of pins, and selects a mode for initialization.

smartpower init do -with {value} -opmode {value} -clocks {value} -registers {value} -
set reset {value} -primaryinputs {value} -combinational {value} -enables {value} -othersets
{value}

Arguments
-with{value}

This sets the option of initializing frequencies and probabilities with vectorless analysis or with fixed
values. The following table shows the acceptable values for this argument:

Value Description

vectorless | Initializes frequencies and probabilities with vectorless analysis

fixed Initializes frequencies and probabilities with fixed values

—-opmode {value}
Optional; specifies the mode in which to initialize frequencies and probabilities. The value must be Active
or Flash*Freeze.
-clocks {value}

This sets the option of initializing frequencies and probabilities for all clocks. The following table shows the
acceptable values for this argument:

Value Description
true Initializes frequencies and probabilities for all clocks
false Does not initialize frequencies and probabilities for all clocks

-registers {value}

This sets the option of initializing frequencies and probabilities for all registers. The following table shows
the acceptable values for this argument:

144

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

Value Description
true Initializes frequencies and probabilities for all registers
false Does not initialize frequencies and probabilities for all registers

-set_reset {value}

This sets the option of initializing frequencies and probabilities for all set/reset nets. The following table
shows the acceptable values for this argument:

Value Description
true Initializes frequencies and probabilities for all set/reset nets
false Does not initialize frequencies and probabilities for all set/reset nets

-primaryinputs{value}
This sets the option of initializing frequencies and probabilities for all primary inputs. The following table
shows the acceptable values for this argument:

Value Description
true Initializes frequencies and probabilities for all primary inputs
false Does not initialize frequencies and probabilities for all primary inputs

—-combinational {value}

This sets the option of initializing frequencies and probabilities for all combinational outputs. The following
table shows the acceptable values for this argument:

Value Description
true Initializes frequencies and probabilities for all combinational outputs
false Does not initialize frequencies and probabilities for all combinational
outputs

—-enables {value}

This sets the option of initializing frequencies and probabilities for all enable sets of pins. The following
table shows the acceptable values for this argument:

Value Description
true Initializes frequencies and probabilities for all enable sets of pins
false Does not initialize frequencies and probabilities for all enable sets of
pins

-othersets {value}

This sets the option of initializing frequencies and probabilities for all other sets of pins. The following table
shows the acceptable values for this argument:

145

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

Value Description
true Initializes frequencies and probabilities for all other sets of pins
false Does not initialize frequencies and probabilities for all other sets of
pins

Note: This command is associated with the functionality of Initialize frequencies and probabilities dialog box.

Examples

The following example initializes all clocks with:

smartpower init do -with {vectorless} -opmode {my mode} -clocks {true} -registers ({true}
—asynchronous {true} -primaryinputs {true} -combinational {true} -enables {true} -
othersets {true}

See Also
Tcl documentation conventions

smartpower _init_set clocks options
Tcl command; initializes the clock frequency options of all clock domains.

smartpower init set clocks options -with clock constraints {value} -
with default values {value} -freq {value} -duty cycle {value}

Arguments
-with _clock_constraints {value}

This sets the option of initializing the clock frequencies with frequency constraints from SmartTime. The
following table shows the acceptable values for this argument:

Value Description

true Sets initialize clock frequencies with clock constraints ON

false Sets initialize clock frequencies with clock constraints OFF

-with_default values {value}

This sets the option of initializing the clock frequencies with a user input default value. The following table
shows the acceptable values for this argument:

Value Description

true Sets initialize clock frequencies with default values ON

false Sets initialize clock frequencies with default values OFF

-freq {value}

Specifies the user input frequency in Hz, KHz, or MHz.
-duty cycle {value}

Specifies the user input duty cycles in %.

146

https://coredocs.s3.amazonaws.com/Libero/12_2_0/Tool/smartpower_ug.pdf

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

Notes
This command is associated with the functionality of Initialize frequencies and probabilities dialog box.

Examples
The following example initializes all clocks after executing smartpower init do With -clocks {true}:

smartpower_init set clocks_options -with_clock_constraints {true} -with default_ values
{true} -freq {10 MHz} -duty cycle {20}

See Also
Tcl documentation conventions

smartpower _init_set combinational options
Tcl commands; initializes the frequency and probability of all combinational outputs.

smartpower init set combinational options -freq {value} -proba {value}

Arguments

-freq {value}

Specifies the user input frequency (in Hz, KHz, or MHz) or the toggle rate (in %). If the unit is not provided
and toggle rate is active, the value is handled as a toggle rate; if toggle rate is not active, the value is
handled as a frequency.

-proba {value}

Specifies the user input probability in %.

Notes
This command is associated with the functionality of Initialize frequencies and probabilities dialog box.

Examples

The following example initializes all combinational signals after executing smartpower init do with -
combinational {true}

smartpower init set combinational options -freg {10 MHz} -proba {20}

See Also
Tcl documentation conventions

smartpower _init_set enables options
Tcl command; initializes the clock frequency of all enable clocks with the initialization options.

smartpower init set enables options -freq {value} -proba {value}

Arguments
-freq {value}
Specifies the user input frequency (in Hz, KHz, or MHz).
-proba {value}
Specifies the user input probability in %.
Notes

This command is associated with the functionality of Initialize frequencies and probabilities dialog box.

147

https://coredocs.s3.amazonaws.com/Libero/12_2_0/Tool/smartpower_ug.pdf
https://coredocs.s3.amazonaws.com/Libero/12_2_0/Tool/smartpower_ug.pdf
https://coredocs.s3.amazonaws.com/Libero/12_2_0/Tool/smartpower_ug.pdf

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

Examples
The following example initializes all clocks after executing smartpower init do With -enables
{true}:
smartpower_ init set enables options -freq {10 MHz} -proba {20}
See Also

Tcl documentation conventions

smartpower _init_set primaryinputs_options
Tcl command; initializes the frequency and probability of all primary inputs.

smartpower init set primaryinputs options -freq {value} -proba {value}

Arguments
-freq {value}

Specifies the user input frequency (in Hz, KHz, or MHz) or the toggle rate (in %). If the unit is not provided
and toggle rate is active, the value is handled as a toggle rate; if toggle rate is not active, the value is
handled as a frequency.

-proba {value}

Specifies the user input probability in %.

Notes

This command is associated with the functionality of Initialize frequencies and probabilities dialog box.

Examples

The following example initializes all primary inputs after executing smartpower init do Wwith -
primaryinputs {true}

smartpower init set primaryinputs options -freq {10 MHz} -proba {20}

See Also
Tcl documentation conventions

smartpower _init_set registers_options
Tcl command; initializes the frequency and probability of all register outputs.

smartpower init set registers options -freq {value} -proba {value}

Arguments
-freq {value}

Specifies the user input frequency (in Hz, KHz, or MHz) or the toggle rate (in %). If the unit is not provided
and toggle rate is active, the value is handled as a toggle rate; if toggle rate is not active, the value is
handled as a frequency.

-proba {value}

Specifies the user input probability in %.

Notes

This command is associated with the functionality of Initialize frequencies and probabilities dialog box.

148

https://coredocs.s3.amazonaws.com/Libero/12_2_0/Tool/smartpower_ug.pdf
https://coredocs.s3.amazonaws.com/Libero/12_2_0/Tool/smartpower_ug.pdf

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

Exceptions
None

Examples
The following example initializes all register outputs after executing smartpower init do with -

registers {true}.

smartpower init set registers options -freq {10 MHz} -proba {20}

See Also
Tcl documentation conventions

smartpower _init_setofpins_values

Tcl command; initializes the frequency and probability of all sets of pins.

smartpower init setofpins values -domain name {name} -freq {value} -proba {value}

Arguments
—-domain name{name}
Specifies the set of pins that will be initialized. The following table shows the acceptable values for this
argument:
Value Description
IOsEnableSet Specifies that the I0sEnableSet set of pins will be
initialized
MemoriesEnableSet Specifies that the MemoriesEnableSet set of pins will
be initialized
-freq {value}
Specifies the user input frequency in Hz, MHz, or KHz.
-proba {value}
Specifies the user input probability in %.
Notes

This command is associated with the functionality of Initialize frequencies and probabilities dialog box.

Examples
The following example initializes all primary inputs after executing smartpower init do Wwith -

othersets {true}:

smartpower init setofpins_values -domain_name {IOsEnableSet} -freq {10 MHz} -proba {20}

See Also
Tcl documentation conventions

smartpower_remove_all _annotations

Tcl command; removes all initialization annotations for the specified mode.

smartpower remove all annotations -opmode {value}

149

https://coredocs.s3.amazonaws.com/Libero/12_2_0/Tool/smartpower_ug.pdf

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

Arguments
—-opmode {value}
Removes all initialization annotations for the specified mode, where value must be Active or
Flash*Freeze.

Notes

This command is associated with the functionality of Initialize frequencies and probabilities dialog box.

Examples
The following example initializes all clocks with opmode Acitve:
smartpower remove_all annotations -opmode {Active}
See Also
Tcl documentation conventions

smartpower_remove _file

Tcl command; removes a VCD file from the specified mode or all operating mode. Frequency and probability
information of signals annotated by the VCD are set back to the default value.

remove file
—file {value} \
—-format {value} \
-opmode {value} \

Arguments
-file {value}
Specifies the file to be removed. This is mandatory.
-format VCD
Specifies that the type to be removed is a VCD file. This is mandatory.
[-opmode {value}]
Specifies the operating mode. This is optional. The following table shows the acceptable values for this
argument:
Value Description
Active The operating mode is set to active
Static (PolarFire) The operating mode is set to Static
Flash*Freeze The operating mode is set to Flash*Freeze
Examples

This example removes the file test.vcd from the Active mode.
smartpower remove file -file "test.vcd" -format VCD -opmode "Active"
This example removes the VCD file power1.vcd from all operating modes:

smartpower remove file -file “powerl.vcd” -format VCD

See Also
Tcl documentation conventions

150

https://coredocs.s3.amazonaws.com/Libero/12_2_0/Tool/smartpower_ug.pdf

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

smartpower_remove_scenario
Tcl command; removes a scenario from the current design.

smartpower remove scenario -name {value}

Arguments

-name {value}

Specifies the name of the scenario.

Examples
This example removes a scenario from the current design:
smartpoweriremoveiscenario —name myscenario
See Also
Tcl documentation conventions

smartpower_report_power

Tcl command; creates a Power report, which enables you to detemine if you have any power consumption
problems in your design. It includes information about the global device and SmartPower preferences selection,
and hierarchical detail (including gates, blocks, and nets), with a block-by-block, gate-by-gate, and net-by-net
power summary SmartPower results.

smartpower report power\
[-powerunit {value}] \
[-frequnit {value}] \

[-opcond {value}] \

[-opmode {value}] \

[-toggle {value}] \

[-power summary {value}] \
[-rail breakdown{value}] \
[-type breakdown{ value}] \
[-clock breakdown{value}] \
[-thermal summary {value}] \
[-battery life {value}] \
[-opcond summary {value}] \
[-clock summary {value}] \
[-style {value}] \

[-sortorder {value}] \

[-sortby {value}] \

[-instance breakdown {value}] \
[-power threshold {value}] \
[-filter instance {value}] \
[-min power {number}] \
[-max_instance {integer >= 0}] \
[~activity sortorder {value}] \
[-activity sortby {value}] \
[-activity summary {value}] \
[-frequency threshold {value}] \
[-filter pin {value}] \

[-min frequency {value}] \
[-max_pin {value}] \
[-enablerates sortorder {value}] \
[-enablerates sortby {value}] \
[-enablerates summary {value}] \

151

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

[-with annotation coverage {value}] \
{filename}

Arguments

-powerunit {value}

Specifies the unit in which power is set. The following table shows the acceptable values for this

argument:
Value Description
W The power unit is set to watts
mwW The power unit is set to milliwatts
uw The power unit is set to microwatts

-frequnit {value}

Specifies the unit in which frequency is set. The following table shows the acceptable values for this

argument:
Value Description
Hz The frequency unit is set to hertz
kHz The frequency unit is set to kilohertz
MHz The frequency unit is set to megahertz

-opcond {value}

Specifies the operating condition. The following table shows the acceptable values for this argument:

Value Description
worst The operating condition is set to worst case
typical The operating condition is set to typical case
best The operating condition is set to best case

—-opmode {value}

Specifies the operating mode. The following table shows the acceptable values for this argument:

Value Description
Active The operating mode is set to Active
Standby The operating mode is set to Standby
Flash*Freeze The operating mode is set to Flash*Freeze

-toggle {value}

Specifies the toggle. The following table shows the acceptable values for this argument:

152

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

Value

Description

true

The toggle is set to true

false

The toggle is set to false

-power summary

Specifies whether to include the power summary, which shows the static and dynamic values in the

{value}

report. The following table shows the acceptable values for this argument:

Value Description
true Includes the power summary in the report
false Does not include the power summary in the report

-rail_breakdown {value}

Specifies whether to include the breakdown by rail summary in the report. The following table shows the
acceptable values for this argument:

Value Description
true Includes the breakdown by rail summary in the report
false Does not include the breakdown by rail summary in the

report

-type breakdown {value}

Specifies whether to include the breakdown by type summary in the report. The following table shows the
acceptable values for this argument:

Value Description
true Includes the breakdown by type summary in the report
false Does not include the breakdown by type summary in the

report

-clock_breakdown {value}

Specifies whether to include the breakdown by clock domain in the report. The following table shows the
acceptable values for this argument:

Value Description
true Includes the breakdown by clock domain summary in the
report
false Does not include the breakdown by clock domain summary

in the report

-thermal summary {value}

Specifies whether to include the thermal summary in the report. The following table shows the acceptable
values for this argument:

153

PolarFire FPGA Tcl Commands Reference Guide

& Microsemi

Value Description
true Includes the thermal summary in the report
false Does not include the thermal summary in the report

-battery life {value}

Specifies whether to include the battery life summary in the report. The following table shows the

acceptable values for this argument:

Value Description
true Includes the battery life summary in the report
false Does not include the battery life summary in the report

-opcond_summary {value}

Specifies whether to include the operating conditions summary in the report. The following table shows

the acceptable values for this argument:

Value Description
true Includes the operating conditions summary in the report
false Does not include the operating conditions summary in the

report

-clock summary {value}

Specifies whether to include the clock domains summary in the report. The following table shows the

acceptable values for this argument:

Value Description
true Includes the clock summary in the report
false Does not include the clock summary in the report

-style {value}

a A3\ MicrRocHIP company

Specifies the format in which the report will be exported. The following table shows the acceptable values

for this argument:

Value Description
Text The report will be exported as Text file
CSv The report will be exported as CSV file

-sortby {value}

Specifies how to sort the values in the report. The following table shows the acceptable values for this

argument:

154

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

Value Description
power values Sorts based on the power values
alphabetical Sorts in an alphabetical order

-sortorder {value}

Specifies the sort order of the values in the report. The following table shows the acceptable values for
this argument:

Value Description
ascending Sorts the values in ascending order
descending Sorts the values in descending order

-instance_breakdown {value}

Specifies whether to include the breakdown by instance in the report. The following table shows the
acceptable values for this argument:

Value Description
true Includes the breakdown by instance in the report
false Does not include the breakdown by instance in the report

-power_ threshold {value}

This specifies whether to include only the instances that consume power above a certain minimum value.
When this command is set to true, the -min_power argument must also be used to specify that only the
instances that consume power above this minimum power value are the ones that are included in the
report. The following table shows the acceptable values for this argument:

Value Description
true Includes the power threshold in the report
false Does not include the power threshold in the report

-filter_instance {value}

This specifies whether to have a limit on the number of instances to include in the Power report. When
this command is set to true, the -max_instance argument must also be used to specify the maximum
number of instances to be included into the Power report. The following table shows the acceptable
values for this argument:

Value Description

true Indicates that you want to have a limit on the number of
instances to include in the Power report

false Indicates that you do not want to have a limit on the
number of instances to include in the Power report

-min_power {number}

155

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

Specifies which block to expand based on the minimum power value of a block.

-max_instance {integer >= 0}

Sets the maximum number of instances to a specified integer greater than or equal to 0 (zero). This will
limit the maximum number of instances to be included in the Power report.

-activity sortorder {value}

Specifies the sort order for the activity summary. The following table shows the acceptable values for this

argument:
Value Description
ascending Sorts the values in ascending order
descending Sorts the values in descending order

—activity sortby {value}

Specifies how to sort the values for the activity summary. The following table shows the acceptable values
for this argument:

Value Description
pin name Sorts based on the pin name
net name Sorts based on thepnet name
domain Sorts based on the clock domain
frequency Sorts based on the clock frequency
source Sorts based on the clock frequency source

-activity summary {value}

Specifies whether to include the activity summary in the report. The following table shows the acceptable

values for this argument:

Value Description
true Includes the activity summary in the report
false Does not include the activity summary in the report

-frequency threshold {value}

Specifies whether to add a frequency threshold. The following table shows the acceptable values for this

argument:
Value Description
true Adds a frequency threshold
false Does not add a frequency threshold

-filter_pin {value}
Specifies whether to filter by maximum number of pins. The following table shows the acceptable values
for this argument:

156

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

Value Description
true Filters by maximum number of pins
false Des not filter by maximum number of pins

-min_frequency {value}

Sets the minimum frequency to {decimal value [unit { Hz | KHz | MHZ}]}.
-max_pin {value}

Sets the maximum number of pins.

-enablerates sortorder {value}

Specifies the sort order for the probabilities summary. The following table shows the acceptable values for
this argument:

Value Description

ascending Sorts the values in ascending order

descending Sorts the values in descending order

-enablerates sortby {value}

Specifies how to sort the values for the probabilities summary. The following table shows the acceptable
values for this argument:

Value Description
pin name Sorts based on the pin name
net name Sorts based on the net name
domain Sorts based on the clock domain
frequency Sorts based on the clock frequency
source Sorts based on the clock frequency source

-enablerates summary {value}

Specifies whether to include the probabilities summary in the report. The following table shows the

acceptable values for this argument:

Value Description
true Includes the activity summary in the report
false Does not include the activity summary in the report

-with_annotation_coverage {value}

Specifies whether to include the annotation coverage summary in the report. The following table shows
the acceptable values for this argument:

Value

Description

true

Includes the annotation coverage summary in the report

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

Value Description

false Does not include the annotation coverage summary in the
report

{filename}

Specifies the name of the report.

Notes
e The following arguments have been removed. Running the script will trigger a warning message: Warning:
Invalid argument: -argname "argvalue" Ignored. Ignore the warning.
-annotated pins {value}
-stat_pow {value}
-dyn _pow {value}
o Flash*Freeze, Sleep, and Shutdown are available only for certain families and devices.
o Worst and Best are available only for certain families and devices.
Examples
This example generates a Power report named report.rpt.
smartpower report power -powerunit "uW" -frequnit "MHz" -opcond "Typical" -opmode
"Active" -toggle "TRUE" -rail breakdown "TRUE" -battery life "TRUE" -style "Text" -
power summary "TRUE" -activity sortby "Source" text report.txt

smartpower_set_mode_for_pdpr

This SmartPower Tcl command sets the operating mode used by the Power Driven Place and Route (PDPR) tool
during power optimization.

smartpower set mode for pdpr -opmode {value}

Parameters

-opmode {value}

Value must be a valid operating mode.

This parameter is mandatory.

Sets the operating mode for your power driven place and route.
Exceptions

None

Return Value
This command does not return a value.

Examples

This example sets the Active mode as the operating mode for Power Driven Place and Route.
set _mode_for pdpr -opmode "Active"

This example creates a custom mode and set it to be used by Power Driven Place and Route (PDPR).
smartpower add new custom mode -name “MyCustomMode” \
-description “for PDPR” -base mode "“Active”

smartpower set mode for pdpr -opmode “MyCustomMode

158

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

See Also

Tcl Command Documentation Conventions

smartpower_set _operating_condition
Tcl command; sets the operating conditions used in SmartPower to one of the pre-defined types.

smartpower set operating condition -opcond {value}

Arguments
-opcond {value}
Specifies the value of the operating condition. The following table shows the acceptable values for this
argument:
Value Description
best Sets the operating conditions to best
typical Sets the operating conditions to typical
worst Sets the operating conditions to worst
Examples

This example sets the operating conditions to best:

smartpower set operating condition -opcond {best}

See Also
Tcl documentation conventions

smartpower_set _operating_conditions
Tcl command; sets the operating conditions used in SmartPower.

smartpower set operating conditions "still air | 1.0 mps | 2.5 mps | custom" -heatsink

"None | custom | 10mm Low Profile | 15mm Medium Profile | 20mm High Profile" -boardmodel
"None Conservative | JEDEC 2s2p" [-teta ja "decimal value"] [-teta sa "decimal value"]
Arguments

-still_air {value}
Specifies the value for the still air operating condition. The following table shows the acceptable values for
this argument:

Value Description
1.0_mps Sets the operating conditions to best
2.5 mps Sets the operating conditions to typical
custom Sets the operating conditions to worst

159

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

-heatsink {value}

Specifies the value of the operating condition. The following table shows the acceptable values for this

argument:
Value Description
none No heat sink
custom Sets a custom heat sink size

10mm_Low_Profile 10 mm heat sink

15mm_Low_Profile 15 mm heat sink

20mm_High_Profile | 20 mm heat sink

-boardmodel {value}

Specifies your board model. The following table shows the acceptable values for this argument:

Value Description

None_Conservative | No board model, conservative routing

JEDEC_2s2p JEDEC 2s2p board model

-teta ja {decimal value}
Optional; sets your teta ja value; must be a positive decimal
-teta_sa {decimal value}

Optional; sets your teta sa value; must be a positive decimal.

Examples

This example sets the operating conditions to best:

set operating conditions -airflow "still air" -heatsink "None" -boardmodel
"None_ Conservative "

See Also
Tcl documentation conventions

smartpower_set process
Tcl command; sets the process used in SmartPower to one of the pre-defined types.

smartpower set process -process {value}

Arguments

-process {value}

Specifies the value of the operating condition. The following table shows the acceptable values for this
argument:

Value Description

Typical Sets the process for SmartPower to typical

160

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

Value Description

Maximum Sets the process for SmartPower to maximum

Examples
This example sets the operating conditions to typical:

smartpower_ set process -process {Typical}

See Also
Tcl documentation conventions

smartpower_set _temperature_opcond

Tcl command; sets the temperature in the operating conditions to one of the pre-defined types.

smartpower set temperature opcond -use{value}

Arguments
-use{value}
Specifies the temperature in the operating conditions. The following table shows the acceptable values for
this argument:
Value Description
oprange Sets the temperature in the operating conditions as
specified in your Project Settings.
design Sets the temperature in the operating conditions as
specified in the SmartPower design-wide operating range.
Applies to SmartPower only.
mode Sets the temperature in the operating conditions as
specified in the SmartPower mode-specific operating
range. Applies to SmartPower only.
Examples

This example sets the temperature in the operating conditions as specified in the custom mode-settings:

smartpower_ set temperature_ opcond -use{mode}

See Also
Tcl documentation conventions

smartpower_set voltage opcond

Tcl command; sets the voltage in the operating conditions.

smartpower set voltage opcond -voltage{value} -use{value}

Arguments

-voltage{value}

161

https://coredocs.s3.amazonaws.com/Libero/12_2_0/Tool/libero_ecf_ug.pdf

PolarFire FPGA Tcl Commands Reference Guide

& Microsemi

a A3\ MicrRocHIP company

Specifies the voltage supply in the operating conditions. The following table shows the acceptable values

for this argument:

Value Description
VDD Sets the voltage operating conditions for VDD
VDD18 Sets the voltage operating conditions for VDD18
VDDAUX Sets the voltage operating conditions for VDDAUX
VDDI 1.1 Sets the voltage operating conditions for VDD 1.1
VDDI 1.2 Sets the voltage operating conditions for VDDI 1.2
VDDI 1.35 Sets the voltage operating conditions for VDDI 1.35
VDDI 1.5 Sets the voltage operating conditions for VDDI 1.5
VDDI 1.8 Sets the voltage operating conditions for VDDI 1.8
VDDI 2.5 Sets the voltage operating conditions for VDDI 2.5
VDDI 3.3 Sets the voltage operating conditions for VDDI 3.3
VDD25 Sets the voltage operating conditions for VDD25
VDDA Sets the voltage operating conditions for VDDA
VDDA25 Sets the voltage operating conditions for VDDA25

-use{value}

Specifies the voltage in the operating conditions for each voltage supply. The following table shows the
acceptable values for this argument:

Value Description
oprange Sets the voltage in the operating conditions as specified in
your Project Settings.
design Sets the voltage in the operating conditions as specified in

the SmartPower design-wide operating range. Applies to

SmartPower only.

mode

Sets the voltage in the operating conditions as specified in
the SmartPower mode-specific operating range. Applies to

SmartPower only.

This example sets the VCCA as specified in the SmartPower mode-specific settings:

smartpower set voltage opcond -voltage{vcca}l -use{mode}

See Also

Tcl documentation conventions

162

https://coredocs.s3.amazonaws.com/Libero/12_2_0/Tool/libero_ecf_ug.pdf

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

smartpower_temperature_opcond_set design_wide
Tcl command; sets the temperature for SmartPower design-wide operating conditions.

smartpower temperature opcond set design wide -best{value} -typical{value} -worst{value} -
thermal mode{value}

Arguments
-best{value}
Specifies the best temperature (in degrees Celsius) used for design-wide operating conditions.
-typical{value}
Specifies the typical temperature (in degrees Celsius) used for design-wide operating conditions.
-worst{value}
Specifies the worst temperature (in degrees Celsius) used for design-wide operating conditions.
-thermal mode{value}

Specifies the mode in which the junction temperature is computed. The following table shows the
acceptable values for this argument:

Value Description

ambient The junction temperature will be iteratively computed with
total static power

opcond The junction temperature will be given as one of the
operating condition range values specified in the device
selection

Examples

This example sets the temperature for design-wide operating conditions to Best 20, Typical 30, and Worst
60:

smartpower temperature opcond set design wide -best{20} -typical{30} -worst{60}

See Also
Tcl documentation conventions

smartpower_temperature_opcond_set _mode_specific
Tcl command; sets the temperature for SmartPower mode-specific operating conditions.

smartpower temperature opcond set mode specific -opmode{value} -thermal mode{value} -
best{value} -typical{value} -worst{value} —-thermal mode{value}

Arguments

—-opmode {value}

Specifies the operating mode. The following table shows the acceptable values for this argument:

Value Description
Active The operating mode is set to Active
Static The operating mode is set to Static

163

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

Value Description

Flash*Freeze The operating mode is set to Flash*Freeze

-thermal mode{value}

Specifies the mode in which the junction temperature is computed. The following table shows the
acceptable values for this argument:

Value Description

ambient The junction temperature will be iteratively computed with
total static power

opcond The junction temperature will be given as one of the
operating condition range values specified in the device
selection

-best{value}

Specifies the best temperature (in degrees Celsius) for the selected mode.
-typical{value}

Specifies the typical temperature (in degrees Celsius) for the selected mode.
-worst{value}

Specifies the worst temperature (in degrees Celsius) for the selected mode.

Examples

This example sets the temperature for mode-specific operating conditions for mode1:

smartpower temperature opcond_set mode specific -mode{model} -best{20} -typical{30} -
worst{60}

See Also
Tcl documentation conventions

smartpower_voltage opcond _set design wide
Tcl command; sets the voltage settings for SmartPower design-wide operating conditions.

smartpower voltage opcond set design wide -voltage{value} -best{value} -typical{value} -
worst{value}

Arguments
-voltage{value}

Specifies the voltage supply in the operating conditions. The following table shows the acceptable values
for this argument:

Value Description
VDD Sets the voltage operating conditions for VDD
VDDI 2.5 Sets the voltage operating conditions for VDDI 2.5
VPP Sets the voltage operating conditions for VPP

164

PolarFire FPGA Tcl Commands Reference Guide

Examples

smartpower_voltage opcond_set _mode_specific

& Microsemi

a A3\ MicrRocHIP company

Value Description

VCCA Sets the voltage operating conditions for VCCA
VCCI 3.3 Sets the voltage operating conditions for VCCI 3.3
VCCI 2.5 Sets the voltage operating conditions for VCCI 2.5
VCCI 1.8 Sets the voltage operating conditions for VCCI 1.8
VCCI1.5 Sets the voltage operating conditions for VCCI 1.5
VCC33A Sets the voltage operating conditions for VCC33A
VCCDA Sets the voltage operating conditions for VCCDA

-best{value}

Specifies the best voltage used for design-wide operating conditions.

-typical{value}

Specifies the typical voltage used for design-wide operating conditions.

-worst{value}

Specifies the worst voltage used for design-wide operating conditions.

This example sets VCCA for design-wide to best 20, typical 30 and worst 40:

smartpower voltage opcond_set design wide -voltage{VCCA} -best{20} -typical{30} -

worst{40}

See Also

Tcl documentation conventions

Tcl command; sets the voltage settings for SmartPower mode-specific use operating conditions.

smartpower voltage opcond set mode specific -opmode{value} -voltage{value} -best{value} -

typical{value} -worst{value}

Arguments

—-opmode {value}

Use this option to specify the mode from which the operating conditions are extracted to generate the

report.
Value Description
Active The operating mode is set to Active
Static The operating mode is set to Static

Flash*Freeze

The operating mode is set to Flash*Freeze

-voltage{value}

165

PolarFire FPGA Tcl Commands Reference Guide

Examples

& Microsemi

a A3\ MicrRocHIP company

Specifies the voltage in the operating conditions. The following table shows the acceptable values for this

argument:
Value Description

VDD Sets the voltage operating conditions for VDD
VDD18 Sets the voltage operating conditions for VDD18
VDDAUX Sets the voltage operating conditions for VDDAUX
VDDI 1.1 Sets the voltage operating conditions for VDD 1.1
VDDI 1.2 Sets the voltage operating conditions for VDDI 1.2
VDDI 1.35 Sets the voltage operating conditions for VDDI 1.35
VDDI 1.5 Sets the voltage operating conditions for VDDI 1.5
VDDI 1.8 Sets the voltage operating conditions for VDDI 1.8
VDDI 2.5 Sets the voltage operating conditions for VDDI 2.5
VDDI 3.3 Sets the voltage operating conditions for VDDI 3.3
VDD25 Sets the voltage operating conditions for VDD25
VDDA Sets the voltage operating conditions for VDDA
VDDA25 Sets the voltage operating conditions for VDDA25

-best{value}

Specifies the best voltage used for mode-specific operating conditions.

-typical{value}
Specifies the typical voltage used for mode-specific operating conditions.
-worst{value}

Specifies the worst voltage used for mode-specific operating conditions.

This example sets the voltage for the static mode and sets best to 20, typical to 30 and worst to 40:

smartpower voltage opcond set mode specific -opmode{active} -voltage{VCCA} -best{20} -

typical {30}

See Also

-worst {40}

Tcl documentation conventions

166

PolarFire FPGA Tcl Commands Reference Guide

& Microsemi

a A3\ MicrRocHIP company

Programming and Configuration Tcl
Commands

configure_design_initialization_data

This Tcl command sets the parameter values needed for generating initialization data.

configure design initialization data
-second stage start address {<sNVM address for the second initialization client>} \
-third stage uprom start address {<uPROM address for the third initialization stage client>} \
-third stage spi start address {<SPI address for the third initialization stage client>} \
-third stage snvm start address {<sNVM address for the third initialization stage client>} \
-third stage spi type {<SPIFLASH NO BINDING PLAINTEXT | SPIFLASH BINDING DEFAULT |
SPIFLASH BINDING UEK1 | SPIFLASH BINDING UEK2>}\
-third stage spi clock divider {< 1 | 2 | 4 | 6>} \
-init timeout ({<int between 1 and 128 seconds>} \
—auto_calib timeout ({<Auto Calibration timeout value in milliseconds>} \
-broadcast RAMs {< 0 | 1 >} \
—custom cfg file {<Initialization file for custom configuration>}

Arguments

-second_stage_start_ address
String parameter for the start address of the second stage initialization client.
Specified as a 32-bit hexadecimal string.

The first stage client is always placed in sNVM, so it must be a valid sNVM address aligned on a page
boundary.

There are 221 sNVM pages and each page is 256 bytes long, so the address will be between 0 and
DCOo0.

Notes:
Although the actual size of each page is 256 bytes, only 252 bytes are available to the user.

The first stage initialization client is always added to SNVM at 0xDCO0O0 (page 220). So the valid addresses
for the second stage initialization client are 0x0 (page 0) to 0xXDBOO (page 219).

-third stage uprom start address

String parameter for the uPROM start address of the third stage initialization client. It is optional.
Specified as a 32-bit hexadecimal string and must be valid uPROM address aligned on a block boundary.
-third stage snvm start address

String parameter for the sSNVM start address of the third stage initialization client. It is optional.

Specified as a 32-bit hexadecimal string and must be valid sNVM address.

-third stage SPI_start address

String parameter for the SPIFLASH start address of the third stage initialization client. It is optional.
Specified as a 32-bit hexadecimal string and must be valid SPIFLASH address.

-third stage_spi_type

The value must be one of SPIFLASH_NO_BINDING_PLAINTEXT or SPIFLASH_BINDING_DEFAULT or
SPIFLASH_BINDING_UEK1 or SPIFLASH_BINDING_UEK2.

This parameter determines the valid value for parameter ‘third_stage_start_address’.

-third stage spi clock divider

167

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

Specifies the clock frequency appropriate for the SPIFLASH memory on board. The value can be 1, 2, 4,
or 6. The default value is 1 which is 80 MHz. The other values are 2-40 MHz, 4-20 MHz and 6-13.33 Mhz.

-init_timeout

Timeout value in seconds. Initialization is aborted if it does not complete before timeout expires.

The value can be between 1 and 128. The default value is 128.

-broadcast_RAMs

Specifies broadcast instructions to initialize RAM's to zero's. Value can be either 0 or 1. It is optional.
-custom cfg file

Specifies the initialization file for custom configuration. It is optional

Example
Example to initialize data with sNVM client

configure_design_initialization_data
-second_stage_ start address {0x0000aa00}
-third stage uprom start address {0x00000000}
-third stage snvm start address {0x0000aa00}
-third stage spi_start address {0x00000400}
-third stage spi_ type {SPIFLASH NO_BINDING PLAINTEXT}
-third stage spi clock divider {4}
-init_timeout 85
—auto_calib timeout {1400}
-broadcast RAMs {0}

Example to initialize data with uPROM client

configure_design_initialization_data
-second_stage_ start address {0x00000000}
-third stage uprom start address {0xfffffee2}
-third stage snvm start address {0x00000000}
-third stage spi_start address {0x00000400}
-third stage spi type {SPIFLASH NO BINDING PLAINTEXT}
-third stage spi clock divider {4}
-init_timeout 45
—auto_calib timeout {2000}
-broadcast RAMs {0}

Example to initialize data with SPI-FLASH client

configure_design_initialization_data
-second_stage_ start address {0x00000000}
-third stage uprom start address {0x00000000}
-third stage snvm start address {0x00000000}
-third stage spi_start address {0x000AC120}
-third stage spi type {SPIFLASH BINDING UEK2}
-third stage spi clock divider ({2}
-init_timeout 20
—auto_calib timeout {500}

-broadcast RAMs {1}

See Also
generate design_initialization data

168

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

configure_ram

Tcl command; configures the Fabric RAM clients in the Fabric RAMs tab of the Design and Memory Initialization
tool. The target storage type for the third stage initialization can be specified for each Fabric RAM client in the cfg
file specified here.

Note: You must run Generate Design Initialization Data (generate_design_initialization_data) after configuring the
Fabric RAMs (configure_ram) and/or Design Initialization (configure_design_initialization_data).

configure ram \
-cfg file <path to configuration file.cfg>

Arguments
-cfg file path to configuration file.cfg
Specifies the path to the configuration file of the Fabric RAM client. It is mandatory.

Example

configure_ram \
-cfg_file
{../../Downloads/mpf dg0852 liberosocvl2p0 df/Libero Project/TVS Demo/designer/TVS Demo/
RAM. cfg}

See Also
generate design initialization data

configure_snvm

Tcl command; configures the sSNVM clients in the sNVM tab of the Design and Memory Initialization tool. Can
specify user sSNVM clients using this command.

Note: You must run Generate Design Initialization Data (generate_design_initialization_data) after configuring
sNVM (configure_snvm) and/or Design Initialization (configure_design_initialization_data).

configure snvm \
-cfg file <path to configuration file.cfg>

Arguments
-cfg_file path to configuration file.cfg
Specifies the path to the configuration file of the sSNVM client. It is mandatory.

Examples
configure snvm \
-cfg file

{../../Downloads/mpf dg0852 liberosocvl2p0 df/Libero Project/TVS Demo/designer/TVS Demo/
SNVM.cfg

See Also
generate design_initialization data

configure_spiflash

Tcl command; configures the SPI Flash clients in the SPI Flash tab of the Design and Memory Initialization tool.
Can specify user SPI FLASH clients using this command.

Note: You must run Generate Design Initialization Data (generate_design_initialization_data) after configuring
SPI Flash(configure_spiflash) and/or Design Initialization (configure_design_initialization_data).

169

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

configure spiflash \
-cfg file <path to configuration file.cfg>

Arguments
-cfg _file path to configuration file.cfg
Specifies the path to the configuration file of the SPI FLASH client. It is mandatory.

Examples

configure spiflash \
-cfg file
{../../Downloads/mpf_dg0852 liberosocvl2p0_df/Libero_Project/TVS_Demo/designer/TVS_Demo/
spiflash.cfg}

See Also
generate design_initialization data

SPM_OTP

Configures the parameters for SPM_OTP.

configure tool \

[-name SPM OTP] \

[-params permanently disable debugging 0 | 1] \
[-params permanently disable dpk 0 | 1] \

[-params permanently disable factory access 0 | 1] \
[-params permanently disable prog interfaces 0 | 1] \
[-params permanently disable upkl 0 | 1] \

[-params permanently disable upk2 0 | 1] \

[-params permanently write protect fabric 0 | 1]

The following tables list the parameter names and values.

configure_tool —name {SPM_OTP} parameter:value pair

Name Type Value Description
permanently_disable_deb | bool false | true |0 | 1 Specifies that the SmartDebug
ugging access control and reading

temperature and voltage sensor
settings is either permanently enabled
or disabled. A value of true/1 will
permanently disable debugging. The
default value is false.

permanently_disable_dpk | bool false | true |0 | 1 Specifies that the Debug Pass Key is
either permanently enabled or
disabled. A value of true/1 will
permanently disable FlashLock DPK
unlocking. The default value is false.

permanently_disable_fact | bool false | true |0 | 1 Specifies that the access policy for
ory_access Microsemi factory test mode is either
permanently enabled or disabled. A
value of true/1 will permanently
disable Microsemi factory test mode.
The default value is false.

170

PolarFire FPGA Tcl Commands Reference Guide

& Microsemi

a A3\ MicrRocHIP company

Name

Type Value Description

g_interfaces

permanently_disable_pro | bool false | true | 0 | 1 Specifies that the Programming

interfaces such as Auto
Programming, JTAG, SPI Slave are
either permanently enabled or
disabled. A value of true/1 will
permanently disable all of the
programming interfaces. The default
value is false.

1

permanently_disable_upk [bool false | true | 0 | 1 Specifies that the User Key UPK1 is

either permanently enabled or
disabled. A value of true/1 will
permanently disable FlashLock UPK1
unlocking. The default value is false.

2

permanently_disable_upk [bool false | true | 0| 1 Specifies that the User Key UPK2 is

either permanently enabled or
disabled. A value of true/1 will
permanently disable FlashLock UPK2
unlocking. The default value is false.

t_fabric

permanently_write_protec | bool false | true | 0| 1 Specifies that the write protection for

fabric is either permanently enabled
or disabled. A value of the true/1 will
make the fabric one-time
programmable. The default value is
false.

Examples

The following example specifies that SPM_OTP tool is configured to permanently disable user keys UPK1 and

UPK2.

configure tool \
-name {SPM OTP} \

-params
-params
-params
-params
-params
-params

-params

{permanently disable debugging:false} \
{permanently disable dpk:false} \
{permanently disable factory access:false} \
{permanently disable prog interfaces:false} \
{permanently disable upkl:true} \
{permanently disable upk2:true} \

{permanently write protect fabric:false}

The following example specifies that SPM_OTP tool is configured to permanently disable programming interfaces.

configure_ tool \

-name {SPM OTP} \

-params
-params
-params
-params
-params
-params

-params

{permanently disable debugging:false} \
{permanently disable dpk:false} \
{permanently disable factory access:false} \
{permanently disable prog interfaces:true} \
{permanently disable upkl:false} \
{permanently disable upk2:false} \

{permanently write protect fabric:false}

171

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

See Also
remove permanent locks

configure_uprom
Tcl command; configures the uPROM clients in the uPROM tab of the Design and Memory Initialization tool. Can
specify user uPROM clients using this command.
Note: You must run Generate Design Initialization Data (generate_design_initialization_data) after configuring
uPROM (configure_uprom) and/or Design Initialization (configure_design_initialization_data).

configure uprom \
-cfg file <path to configuration file.cfg>

Arguments
-cfg _file path to configuration file.cfg
Specifies the path to the configuration file of the uPROM client. It is mandatory.

Examples

configure uprom \

-cfg file
{../../Downloads/mpf dg0852 liberosocvl2p0 df/Libero Project/TVS Demo/designer/TVS Demo/
UPROM. cfg}

See Also
generate design_initialization data

export_spiflash_image
This Tcl command exports a SPI Flash image file to a specified directory.

export spiflash image -file name {name of file} -export dir {absolute path to folder location}

Arguments
-file name name of file
The name of the image file.
-export_dir absolute path to folder location

Folder/directory location.
See Also
Export Flash Image

See the online help for more information.

generate_design_initialization_data

This Tcl command creates the memory files on disk, adds the initialization clients to the target memories, and
writes the configuration files to disk.

This command also runs validation on the saved configuration files and writes out errors (if any) in the log. This
command causes the Ul of the Configure Design Initialization Data and Memories tool to refresh and show the
latest configuration and validation errors (if any) in the tables.

172

PolarFire FPGA Tcl Commands Reference Guide

& Microsemi

a A3\ MicrRocHIP company

This command takes no parameters.

generate design initialization data

See Also

confiqure design initialization data

generate _initialization_mem_files

This Tcl command sets the parameter values needed for generating memory files to be used with design
initialization clients.

Arguments

Example

generate initialization mem files
-second_stage start address {<valid snvm address>} \
-third stage start address {<valid address for third stage memory type>} \
-third stage memory type {<UPROM | SNVM | SPIFLASH NONAUTH >}\
-third stage spi clock divider{ I | 2 | 4 | 6} \
-init timeout { <int between 1 and 128 seconds>}\
-custom_cfg file {<valid user specified configuration file>}

-second_stage_start_ address
String parameter for the start address of the second stage sNVM initialization client.
Specified as a 32-bit hexadecimal string.

The second stage client is always placed in sNVM, so it must be a valid sNVM address aligned on a page
boundary.

This address will be between 0 and DBO0O. There are 221 sNVM pages and each page is 256 bytes long.
The last two pages are reserved for the first stage initialization client so they are not available for the
second stage initialization client.

-third stage_memory_ type

The memory where the third stage initialization client will be placed.

The value can be UPROM, SNVM, or SPIFLASH_NONAUTH. The default is sSNVM.
This parameter determines the valid value for parameter ‘third_stage_start_address’.
-third stage start address

String parameter for the start address of the third stage initialization client.

Specified as a 32-bit hexadecimal string, and must be one of the following:

e valid sNVM address aligned on a page boundary
e valid UPROM address aligned on a block boundary
¢ valid SPIFLASH address
-third stage spi_clock divider
The value can be 1, 2, 4, or 6. The default value is 1.
-init_timeout
Timeout value in seconds. Initialization is aborted if it does not complete before timeout expires.
The value can be between 1 and 128. The default value is 128.
-custom_cfg file

Specifies the user_specified configuration file to be loaded in.

generate initialization mem files \
-second_stage start address 200 \
-third stage memory type UPROM \
-third stage start address 400 \

173

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

-third stage spi clock divider 6 \
-init timeout 120 \
—custom_cfg file {D:\test\my.txt}

See Also

Design and Memory Initialization

remove_permanent_locks

Removes all the locks configured in SPM_OTP. This command can only be used when at least one lock is
disabled using SPM_OTP.

remove permanent locks

Example

remove_permanent locks

See Also
SPM OTP

select_programmer

This Tcl command enables the specified programmer and disables all other connected programmers. This
command is useful when multiple programmers are connected.

select programmer -programmer id {programmer id} —host name {host name} —host port
{host_port}

Arguments
-programmer_id <programmer id>
The programmer to be enabled. See the Select Programmer topic in online help for more information.
-host _name <host name>

The host name or IP address. This argument is required for a remote programmer and optional for a local
programmer. For local programmer, if specified it must be “localhost”.

-host _port <host port>

This argument is required for a remote programmer and optional for a local programmer. If omitted, the
default port is used (currently, the default is 80).

For a local host, both “localhost” and its port should be specified or omitted.

Note: The def variable “LOCAL_PROGRAM_DEBUG_SERVER_PORT” is used to set a different default local
host port.

Examples

select programmer -programmer_ id {00557}
select programmer -programmer id {00557} \
-host name {localhost} \

-host_port {80}

174

PolarFire FPGA Tcl Commands Reference Guide

& Microsemi

a A3\ MicrRocHIP company

See Also
Select Programmer

See the online help for more information.

set_auto update _mode

This command enables or disables auto update.

set auto update mode {01}

If set_auto update mode is 0, auto update is disabled. If set_auto _update mode is 1, auto update is enabled.

set_cipher_text _auth_client

This Tcl command is added to the sSNVM .cfg file that is given as the parameter to the configure_snvm command.

Cipher-text Authenticated clients have 236 bytes available for user data in each page of sNVM.

set cipher text auth client
—-client name {<name>}
-number of bytes <number>
-content type {MEMORY FILE | STATIC FILL}
-content file format {Microsemi-Binary 8/16/32 bit}
—content file {<path>}
-start page <number>
-use for simulation O
-reprogram 0 | I
-use as rom 0 | 1

Arguments

-client_name

The name of the client. Needs to start with an alphabetic letter. Underscores and numerals are allowed at
all positions other than the first.

-number of bytes
The size of the client specified in bytes.
-content type

Source of data for the client. This can either be a memory file, or all zeros. Allowed values are
MEMORY_FILE or STATIC_FILL

-content file format

Only ‘Microsemi-Binary 8/16/32 bit’ is supported at this time.

-content file

Path of the memory file. This can be absolute, or relative to the project.
-start_page

The page number in sSNVM where data for this client will be placed.
-use_for simulation

Only value 0 is allowed.

—-reprogram

Boolean field; specifies whether the client will be programmed into the final design or not. Possible values
areOor1.

-use_as_rom 0

175

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

Boolean field; specifies whether the client will allow only reads, or both read and writes. Possible values
are O or 1.

Example

set cipher text auth client \
-client name {c} \
-number of bytes 12 \
-content type {MEMORY FILE} \
-content file format {Microsemi-Binary 8/16/32 bit} \
-content file {D:/local z folder/work/memory files/binary8x12.mem} \
-start page 3 \
-use for simulation 0 \
-reprogram 1 \

See Also
set plain _text client

set plain _text auth client

set usk client

set_client

This Tcl command specifies the client that will be added to SPI Flash Memory. This command is added to the SPI
Flash Memory configuration file that is given as the parameter to the configure_spiflash command.

set client \
-client name {} \
-client type {FILE SPI | FILE SPI GOLDEN | FILE SPI UPDATE |FILE DATA STORAGE INTELHEX

-content type {MEMORY FILE | STATIC FILL} \
—content file {} \

-start_address {} \

-client size {} \

-program {0]1}

Arguments
-client name
The name of the client. Maximum of 32 characters, letters or numbers or “-“ or “_".
-client type
The -client type can be FILE SPI, FILE SPI GOLDEN, FILE SPI UPDATE Orf
FILE_DZ—\TA_SE‘ORAGE_INTELHEX.i - -
FILE SPI — SPI Bitstream
FILE SPI_GOLDEN — Recovery/Golden SPI Bitstream

FILE SPI_UPDATE — Auto Update SPI Bitstream; available only if Auto Update is enabled. See
set _auto update _mode.

FILE DATA STORAGE INTELHEX - Data Storage client

-content_ type

The -content_type can be MEMORY_FILE or STATIC_FILL.

MEMORY FILE — content_file parameter must be specified. See below.
STATIC FILL — client memory will be filled with 1s; no content memory file
-content_file

Absolute or relative path to the content memory file.

-start_address

176

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

The client start address. Note that some space is reserved for the SPI Flash Memory directory. Note: This
is a decimal value of bytes.

-client_size
Client’s size in bytes. If a content file is specified, the size must be equal to or larger than the file size.
Note: this is a decimal value.

-program {1}
Note: Only program | 1 is supported in this release.

Examples
The following examples show the set client Tcl command for SPI Flash.
Absolute path

set client \
-client name {golden} \
-client type {FILE SPI GOLDEN} \
-content type {MEMORY FILE} \
-content file {E:\top design ver 1.spi} \
-start _address {1024} \
-client size {9508587} \
-program {1}

set client \
-client name {ds} \
-client type {FILE DATA STORAGE INTELHEX} \
-content type {MEMORY FILE} \
-content file {E:\intel hex.hex} \
-start address {9509611} \
-client size {128} \
-program {1}

Relative path

set client \
-client name {golden} \
-client type {FILE SPI GOLDEN} \
-content type {MEMORY FILE} \
-content_file {.\..\..\top design _ver_ 1l.spi} \
-start address {1024} \
-client size {9508587} \
-program {1}

set client \
-client name {ds} \
-client type {FILE DATA STORAGE INTELHEX} \
-content type {MEMORY FILE} \
-content file {.\..\..\intel hex.hex} \
-start address {9509611} \
-client size {128} \
-program {1}

set _data_storage client

This Tcl command is added to the .cfg file, which will then be given as the parameter to the configure_uprom
command.

set data storage client \
-client name {<name> } \
-number of words <number> \
-content type {MEMORY FILE | STATIC FILL} \
-memory file format {Microsemi-Binary} \
-memory file {<path>} \
-base address ({<hexadecimal string>} \
-use for simulation {0} \

177

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

Arguments

-client name
The name of the client. Must start with an alphabetic letter. Underscores and numerals are allowed at all
positions other than the first.

-number of bytes
The size of the client specified in number of words.

-content_type
Source of data for the client. This can either be a memory file, or all zeros. Allowed values are
MEMORY FILE OF STATIC FILL.
MEMORY_ FILE — content memory file must be specified
staTICc_FILL — client memory will be filled with 1s, no content memory file

-memory file format
Only ‘Microsemi-Binary’ is supported at this time.

-content file
Path of the memory file. This can be absolute, or relative to the project.

-base_address
Hexadecimal address where the first byte of user data will be placed.

-use for simulation
Only value 0 is allowed.

Example

set_data_storage client \
-client name {clientl from elsewhere new MMMMMMM} \
-number of words 57 \
-use for simulation {0} \
-content type {MEMORY FILE} \
-memory file format {Microsemi-Binary} \
-memory_ file {D:/local_z folder/work/memory files/sar 86586 uprom.mem} \
-base_address 0

set_manufacturer

This command specifies the manufacturer for the SPI Flash device.
set manufacturer {MICRON |SPANSION | Macronix |Winbond }

The value for the set _manufacturer command must be one of the following:

¢ MICRON
e SPANSION
e Macronix
e Winbond
See the following table for details about the supported SPI Flash devices.

Mfg Part Number Memory Capacity | Manufacturer Sector Size
MT25QL01GBBB8ESF- 1GB MICRON 4 KB
0SIT
S25FL512SAGMFI011 512 MB SPANSION 256 KB
MX66L51235FMI-10G 512 MB Macronix 4 KB
W25Q256FVFIG 256 MB Winbond 4 KB

178

PolarFire FPGA Tcl Commands Reference Guide

& Microsemi

a A3\ MicrRocHIP company

Mfg Part Number Memory Capacity | Manufacturer Sector Size

Note: Microsemi currently supports only the devices listed above.

Note: This version of the programmer does not support SPI Flash security. Device security options such as

"Hardware Write Protect" should be disabled for the External SPI Flash device.

See Also

Microsemi Factory Access Policy

set plain_text_auth_client

This Tcl command is added to the sSNVM .cfg file that is given as the parameter to the configure_snvm command.

Plain-text Authenticated clients have 236 bytes available for user data in each page of sSNVM.

set plain text auth client
-client name {<name>}
-number of bytes <number>
-content type {MEMORY FILE | STATIC FILL}
-content file format {Microsemi-Binary 8/16/32 bit}
—-content file {<path>}
-start page <number>
-use for simulation O
-reprogram 0 | I
-use_as rom 0 | I

Arguments

-client name

The name of the client. Needs to start with an alphabetic letter. Underscores and numerals are allowed at
all positions other than the first.

-number_ of bytes
The size of the client specified in bytes.
-content type

Source of data for the client. This can either be a memory file, or all zeros. Allowed values are
MEMORY_FILE or STATIC_FILL

-content file format

Only ‘Microsemi-Binary 8/16/32 bit’ is supported at this time.
-content_file

Path of the memory file. This can be absolute, or relative to the project.
-start_page

The page number in sSNVM where data for this client will be placed.
-use_for simulation

Only value 0 is allowed.

—-reprogram

Boolean field; specifies whether the client will be programmed into the final design or not. Possible values
are Oor 1.

-use_as_rom 0

Boolean field; specifies whether the client will allow only reads, or both read and writes. Possible values
areOor1.

179

PolarFire FPGA Tcl Commands Reference Guide

Example

& Microsemi

a A3\ MicrRocHIP company

set plain text auth client \

-client name {b} \

-number of bytes 12 \

-content type {MEMORY FILE} \

-content file format {Microsemi-Binary 8/16/32 bit} \

-content_file {D:/local z_ folder/work/memory files/binary8x12.mem} \
-start page 2 \

-use for simulation 0 \

-reprogram 1 \

-use_as_rom 0

See Also

set plain_text client

set cipher text auth client

set _usk client

set_plain_text_client

This Tcl command is added to the sSNVM .cfg file that is given as the parameter to the configure_snvm command.

Plain-text Non-Authenticated clients have 252 bytes available for user data in each page of sNVM.

set plain text client
-client name {<name>}
-number of bytes <number>
-content type {MEMORY FILE | STATIC FILL}
-content file format {Microsemi-Binary 8/16/32 bit}
—content file {<path>}
-start page <number>
-use for simulation O
-reprogram 0 | I
-use_as rom 0 | I

Arguments

-client name

The name of the client. Needs to start with an alphabetic letter. Underscores and numerals are allowed at
all positions other than the first.

-number_of bytes
The size of the client specified in bytes.
-content type

Source of data for the client. This can either be a memory file, or all zeros. Allowed values are
MEMORY_FILE or STATIC_FILL

-content file format

Only ‘Microsemi-Binary 8/16/32 bit’ is supported at this time.
-content_file

Path of the memory file. This can be absolute, or relative to the project.
-start _page

The page number in sSNVM where data for this client will be placed.
-use_for simulation

Only value 0 is allowed.

—-reprogram

Boolean field; specifies whether the client will be programmed into the final design or not. Possible values
are O or 1.

-use_as_rom 0

180

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

Boolean field; specifies whether the client will allow only reads, or both read and writes. Possible values
are O or 1.

Example

set plain text client \
-client name {a} \
-number of bytes 12 \
-content type {MEMORY FILE} \
-content file format {Microsemi-Binary 8/16/32 bit} \
-content file {D:/local z folder/work/memory files/binary8x12.mem} \
-start page 1 \
-use for simulation 0 \
-reprogram 1 \
-use_as_rom 0

See Also
set plain _text auth client

set cipher text auth client

set _usk client

set_programming_interface
This Tcl command sets the programming interface.

set programming interface -interface {JTAG | SPI SLAVE}

Arguments
set programming interface -interface {JTAG | SPI_SLAVE}
Specify the programming interface as JTAG or SPI_SLAVE. The default is JTAG.
See Also

Programming Connectivity and Interface
See the online help for more information.

set_usk_client

This Tcl command is added to the sSNVM .cfg file that is given as the parameter to the configure_snvm command.
The USK client is required if sSNVM has one or more clients of type ‘Authenticated’.
set cipher text auth client
-start page <number>
-key <Hexadecimal string of size 24>

-use for simulation 0 | 1
-reprogram 0 | I

Arguments
-start_page
The page number in sSNVM where data for this client will be placed.
-key
A string of 24 hexadecimal characters.
-use_for simulation
Boolean field specifies whether the client will be used for simulation or not. Possible values are 0 or 1.

-reprogram

181

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

Boolean field; specifies whether the client will be programmed into the final design or not. Possible values
areOor1.

Example

set _usk client \
-start page 4 \
-key {D8C8831F3A2F72EDC569503F} \
-use for simulation 0 \
-reprogram 1

See Also
set plain_text client

set plain text auth client

set _cipher text auth client

182

PolarFire FPGA Tcl Commands Reference Guide

& Microsemi

a A3\ MicrRocHIP company

FlashPro Express Tcl Commands

close project

Closes the FlashPro or FlashPro Express project.

close project

Arguments

Exceptions

Example

None

None

close project

configure_flashpro3 prg

Changes FlashPro3 programmer settings.

configure flashpro3 prg [-vpump {ON|OFF}] [-clk mode {discrete clk|free running clk}] [-
force freq {ON|OFF}] [-freq {freq}]

Arguments

Exceptions

Example

-vpump {ON |OFF}

Enables FlashPro programmer to drive VPUMP. Set to ON to drive VPUMP.
—-clk_mode {discrete clk|free running clk}

Specifies free running or discrete TCK.

-force_freq {ON|OFF}

Forces the FlashPro software to use the TCK frequency specified by the software rather than the TCK
frequency specified in the programmer file.

-freq { freq}
Specifies the TCK frequency in MHz.

None

The following example sets the VPUMP option to ON, TCK to free running, and uses the TCK frequency specified
in the programmer file (force_freq is set to OFF):

configure flashpro3 prg -vpump {ON} -clk mode {free running clk} -force freq {OFF} -freq
{4}

The following example sets VPUMP to ON, TCK to discrete, forces the FlashPro software to use the TCK
frequency specified in the software (-force_freq is set to ON) at a frequency of 2 MHz.

configure flashpro3 prg -vpump {ON} -clk mode {discrete_clk} -force_ freq {ON} -freq {2}

183

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

configure_flashpro4 prg
Changes FlashPro4 programmer settings.

configure flashpro4 prg [-vpump {ON|OFF}] [-clk mode {discrete clk|free running clk}] [-
force freq {ON|OFF}] [-freq {freq}]

Arguments
-vpump {ON|OFF}
Enables FlashPro4 programmer to drive VPUMP. Set to ON to drive VPUMP.
-clk_mode {discrete clk|free running clk}
Specifies free running or discrete TCK.
-force_freq {ON|OFF}

Forces the FlashPro software to use the TCK frequency specified by the software rather than the TCK
frequency specified in the programmer file.

-freq { freq}
Specifies the TCK frequency in MHz.

Exceptions
None

Example

The following example sets the VPUMP option to ON and uses a free running TCK at a frequency of 4 MHz
(force_freq is set to OFF).

configure flashpro4 prg -vpump {ON} -clk mode {free running clk} -force freg {OFF} -freq
{4}

The following example sets the VPUMP option to ON, uses a discrete TCK and sets force_freq to ON at 2 MHz.
configure flashpro4 prg -vpump {ON} -clk mode {discrete_clk} -force_ freq {ON} -freq {2}

configure_flashpro5 prg
Tcl command; changes FlashPro5 programmer settings.

configure flashpro5 prg [-vpump {ON|OFF}] [-clk mode {free running clk}]
[-programming_method {jtag | spi slave}] [-force freq {oN|OFF}] [-freq {fregq}]

Arguments
-vpump {ON|OFF}
Enables FlashPro5 programmer to drive VPUMP. Set to ON to drive VPUMP. Default is ON.
-clk mode {free running clk}
Specifies free running TCK. Default is free_running_clk.
-programming method {jtag | spi_slave}
Specifies the programming method to use. Default is jtag.
Note: spi_slave works only with SmartFusion2 and IGLOO2.
-force freq {ON|OFF}

Forces the FlashPro software to use the TCK frequency specified by the software rather than the TCK
frequency specified in the programmer file. Default is OFF.

-freq {freq}
Specifies the TCK frequency in MHz. Default is 4.

184

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

Exceptions
None

Example

The following example sets the VPUMP option to ON and uses a free running TCK at a frequency of 4 MHz
(force_freq is set to OFF).
configure_flashpro5_prg -vpump {ON} -clk_mode {free_running_clk} -force_freq {OFF} -freq {4}

The following example sets the VPUMP option to ON, uses a free running TCK and sets force_freq to ON at 2
MHz.

configure_flashpro5_prg -vpump {ON} -clk_mode {free_running_clk} -force_freq {ON} -freq {2}

configure_flashpro6 prg
Tcl command; changes FlashPro6 programmer settings.

configure flashpro6 prg
[-force freq {on|OFF}] [-freq {freq}]

Arguments
-force freq {ON|OFF}
Forces the FlashPro software to use the TCK frequency specified by the software rather than the TCK
frequency specified in the programmer file. Default is OFF.
-freq {freq}
Specifies the TCK frequency in MHz. Default is 4.
Exceptions
None
Example

The following example sets TCK at a frequency of 4 MHz and sets force_freq to OFF.
configure_flashpro6_prg -force_freq {OFF} -freq {4}

The following example sets TCK at a frequency of 2 MHz and sets force_freq to ON.
configure_flashpro6_prg -force_freq {ON} -freq {2}

create_job_project

Tcl command; creates a Flashpro Express job using the programming job exported from Libero.

create job project -job project location location —job file path -overwrite 0|1

Arguments
-job_project location location
Specifies the location for your FlashPro Express job project.
-job_file path
Path to the Libero job file that is used as input to create the Flashpro Express job project.
-overwrite 011

Set value to 1 to overwrite your existing job project. .

185

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

Exceptions
None

Example

The following example creates a job project named test.job in the \fpexpress directory. It does not
overwrite the existing job project.

create job project \

-job_project location {D:\fpexpress} \

-job_file {D:\test\designer\test\export\test.job} -overwrite 0\

dump_tcl _support

Unloads the list of supported FlashPro or FlashPro Express Tcl commands.

dump tcl support -file {file}

Arguments

-file {file}
Exceptions

None
Example

The following example dumps your Tcl commands into the file 'tcldump.tcl’
dump tcl support -file {tcldump.tcl}

open_project
Opens a FlashPro or FlashPro Express project.

open project -project {project}

Arguments

-project {project}

Specifies the location and name of the project you wish to open.
Exceptions

None
Example

Opens the 'FPPrj1.pro' project from the FPProject1 directory
open_project -project {./FPProjectl/FPPrjl.pro}

ping_prg

Pings one or more programmers.

ping prg (-name {name})*

186

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

Arguments

—-name {name}

Specifies the programmer to be pinged. Repeat this argument for multiple programmers.
Exceptions

None
Example

The following example pings the programmers 'FP300085' and 'FP30086".
ping_prg -name {FP300085} -name {FP300086}

refresh_prg_list

Refreshes the programmer list. This is most often used to have FlashPro or FlashPro Express detect a
programmer that you have just connected.

refresh prg list

Arguments

None
Exceptions

None
Example

refresh prg list
remove_prg

Removes the programmer from the programmer list.

remove prg (-name {name})*

Arguments

-name {name}*

Specifies the programmer to be removed. You can repeat this argument for multiple programmers.
Exceptions

None
Example

The following example removes the programmer '03178' from the programmer list:

remove prg (name {03178})*

run_selected actions

Runs the selected action on the specified programmer and returns the exit code from the action. If no
programmer name is specified, the action is run on all connected programmers. Only one exit code is

187

PolarFire FPGA Tcl Commands Reference Guide

& Microsemi

a A3\ MicrRocHIP company

returned, so return code cannot be used when action is run on more than one programmer. A
programming file must be loaded.

run selected actions [(-name {name})*]

Arguments

Exceptions

Example

save_log

-name {name}

Optional argument that specifies the programmer name. You can repeat this argument for multiple
programmers.

None

The following example runs the selected actionS on the programmers 'FP30085' and 'FP30086'.
run_selected_actions -name {FP300085} -name {FP300086}
Example using return code:

if {[catch {run selected actions} return vall]} {puts "Error running Action"} else {puts
"exit code $return val"}

Example returning exit code to the command line (returns exit 99 on script failure, otherwise returns exit
code from selected action):

if {[catch {run selected actions} return val]}{exit 99} else {exit Sreturn val}

Saves the log file.

save log -file {file}

Arguments

Exceptions

Example

-file {file}
Specifies the log filename.

None

The following example saves the log file with the name 'my_lodfile1.log":
save_log -file {my logfilel.log}

save_project

Saves the FlashPro or FlashPro Express project.

save project

Arguments

None

188

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

Exceptions
None

Example

save project

scan_chain_prg

In single mode, this command runs scan chain on a programmer.

In chain mode, this command runs scan and check chain on a programmer if devices have been added in
the grid.

scan chain prg [(-name {name})+]

Arguments

-name {name}

Specifies the programmer name.
Exceptions

None
Example

The following example runs scan chain on a single programmer (single mode) named '21428":

scan_chain prg -name {21428}

self test prg

Runs Self-Test on a programmer.

self test prg (-name {name})*

Arguments

—-name {name}

Specifies the programmer name. You can repeat this argument for multiple programmers.
Exceptions

None
Example

The following examples runs the self test on the programmer '30175":
self test prg (-name {30175})*

set_prg_name
Changes the user name of a programmer.

set prg name -name {name} -new name {new name}

189

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

Arguments
—-name {name}
Identifies the old programmer name.
-new_name {new_name}
Specifies the new programmer name.
Exceptions
None
Example

The following example changes the name of the programmer 'FP300086' to 'FP3Prg2":
set prg name -name {FP300086} -new name {FP3Prg2}

set_programming_action

Selects the action for a device. The device name parameter must be specified only in chain programming
mode. A programming file must be loaded. The device must be a Microsemidevice.

set programming action [-name {name}] -action {action}

Arguments
-name {name}
Specifies the device name.
—action {action}

Specifies the action.

Exceptions
Must be a Microsemi device

Example
The following example sets the programming action in single programming mode:
set programming action -action {PROGRAM}

And in chain programming mode:

set _programming action -name {MyDevicel} -action {ERASE}

set_programming_file

Sets the programming file for a device. Either the rile orthe no rile flag must be specified. A
programming file must be loaded. The device must be a Microsemi device .

set programming file [-name {name}] [-file {file}] [-no file { }]

Arguments
-name {name}
Specifies the device name. This argument must be specified only in chain programming mode.
-file {file}
Specifies the programming file.
-no_file

Specifies to unload the current programming file.

190

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

Exceptions
Must be a Microsemi device.

Examples
In single programming mode:
set programming file -file {e:/design/pdb/TopA3P250.pdb}
In chain programming mode:
set programming file -name {MyDevice2} -file {e:/design/pdb/TopA3P250.pdb}

set programming file -name {MyDevicel} —no file

191

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

SmartDebug Tcl Commands

SmartDebug Tcl Support

The following table lists the Tcl commands related to SmartDebug for PolarFire. Click the command to view more

information.
Table 1 - SmartDebug Tcl Commands
Command Action
Probe

add probe _insertion point Adds probe points to be connected to user-specified 1/Os for probe
insertion flow.

add to probe group Adds the specified probe points to the specified probe group

create probe group Creates a new probe group.

delete active probe Deletes either all or the selected active probes.

load active probe list Loads the list of probes from the file.

move to probe group Moves the specified probe points to the specified probe group.

program_probe _insertion Runs the probe insertion flow on the selected nets.

remove probe insertion point Deletes an added probe from the probe insertion Ul.

set _live probe Set Live probe channels A and/or B to the specified probe point (or
points).

select active probe Manages the current selection of active probe points to be used by
active probe READ operations.

read active probe Reads active probe values from the device.

remove from probe group Move out the specified probe points from the group.

save active probe list Saves the list of active probes to a file.

select active probe Manages the current selection of active probe points to be used by
active probe READ operations.

ungroup Disassociates the probes as group.

unset live probe Discontinues the debug function and clears live probe channels.

write active probe Sets the target probe point on the device to the specified value.

LSRAM
read Isram Reads a specified block of large SRAM from the device.

192

PolarFire FPGA Tcl Commands Reference Guide

& Microsemi

a A3\ MicrRocHIP company

Command Action
Probe
write Isram Writes a seven bit word into the specified large SRAM location.
uSRAM
read usram Reads a uSRAM block from the device.
write usram Writes a seven bit word into the specified uSRAM location.

Transceiver

loopback mode

Applies loopback to a specified lane.

smartbert test

Starts and stops a Smart BERT test and resets error counter.

static_pattern transmit

Starts and stops a Static Pattern Transmit.

plot eve

Plots eye and exports eye plots.

xcvr _read register

Reads SCB registers and their field values.

Xxcvr_write register

Writes SCB registers and their field values.

Additional Commands

event counter

Runs on signals that are assigned to channel A on the live probe,
and displays the total events.

export smart debug data

Exports debug data for the SmartDebug application.

fhb control

Provides FPGA Hardware Breakpoint (FHB) feature capability for
SmartDebug.

frequency monitor

Calculates the frequency of a signal that is assigned to live probe A.

get_programmer_info

Lists the IDs of all FlashPRO programmers connected to the
machine.

uprom read memory

Reads uPROM memory block from the device.

Standalone SmartDebug Commands

construct chain automatically

Automatically starts chain construction for the specified programmer.

scan_chain _prg

In single mode, this Tcl command runs scan chain on a
programmer. In chain mode, this Tcl command runs scan and check
chain on a programmer if devices have been added in the grid.

enable device

Enables or disables a device in the chain.

set _debug programmer

Sets the debug programmer.

set device name

Sets the device name.

193

https://coredocs.s3.amazonaws.com/Libero/12_2_0/Tool/libero_soc_tcl_cmd_ref_ug.pdf

PolarFire FPGA Tcl Commands Reference Guide

& Microsemi

a A3\ MicrRocHIP company

Command

Action

Probe

set programming file

Sets the programming file for a device.

set _programming action

Selects tehe action for a device.

run_selected actions

Runs the selected action for a device.

add_probe _insertion_point

This Tcl command adds probe points to be connected to user-specified I/Os for probe insertion flow.

add probe insertion point —net net name -driver driver -pin package pin name —-port port name

Arguments

-net net name

Name of the net used for probe insertion.

-driver driver

Driver of the net.

-pin package pin name

Package pin name (i.e. I/O to which the net will be routed during probe insertion).

-port port name

User-specified name for the probe insertion point.

Example

add_probe insertion_point -net {count out c[0]} -driver {Counter_ 8bit 0 count out[0]:Q} -
pin {H5} -port {Probe InsertO}

add_to probe group

Tcl command; adds the specified probe points to the specified probe group.

add to probe group -name probe name —group group name

Arguments

-name probe name

Specifies one or more probes to add.

-group group name

Specifies name of the probe group.

Example

add to_probe group -name out[5]:out[5]:Q \

-name grpl.out[3]:out[3]:Q \
-name out.out[l].out[1]:Q \

-group my new_grp

194

PolarFire FPGA Tcl Commands Reference Guide

construct_chain_automatically

& Microsemi

a A3\ MicrRocHIP company

This Tcl command automatically starts chain construction for the specified programmer.

construct chain automatically -name {programmer name}

Arguments

—name

Specify the device (programmer) name. This argument is mandatory.

Example
For a single programmer:

construct chain automatically -name {21428}

See Also

scan_chain_prg
enable device

set _debug programmer

set device name
set _programming file

set _programming action

run_selected actions

create_probe_group

Tcl command; creates a new probe group.

create probe group -name group name

Arguments
—hame group name

Specifies the name of the new probe group.

Example

create probe group -name my new_grp

delete_active probe

Tcl command; deletes either all or the selected active probes.

Note: You cannot delete an individual probe from the Probe Bus.

delete active probe -all | -name probe name

Arguments
-all
Deletes all active probe names.
-name probe name

Deletes the selected probe names.

195

https://coredocs.s3.amazonaws.com/Libero/12_2_0/Tool/libero_soc_tcl_cmd_ref_ug.pdf

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

Example
delete -all <- deletes all active probe names
delete -name out[5]:out[5]:0 \
-name my grpl.out[l]:out[1]:Q #deletes the selected probe names

delete -name my grpl \

-name my_ bus #deletes the group, bus and their members.

enable device

This Tcl command enables or disables a device in the chain. When the device is disabled, itis bypassed. The
device must be a Microsemi device.

enable device -name {device name} -enable {1 | 0}

Arguments
—name
Specify the device name. This argument is mandatory.
—-enable

Specify the enable device. This argument is mandatory.
Example
enable_device -name {MPF300 (T _ES|TS_ES)} -enable 1
See Also

construct chain _automatically
scan_chain_prg

set debug programmer

set device name
set programming file

set_programming action

run_selected actions

event_counter

The event_counter Tcl command runs on signals that are assigned to channel A on the live probe, and displays
the total events. It can be run before or after setting the live probe signal to channel A. The user specifies the
duration to run the event_counter command.

event counter -run -stop —after duration in seconds

Arguments

—run

Run event_counter.

-stop

Stop event_counter.

-after duration in seconds

Duration to stop event_counter. Specified by the user. This argument is required when -stop is specified.
Example

set_live probe -probeA {count out c[0]:Counter 8bit O count out[0]:Q} -probeB {}

196

https://coredocs.s3.amazonaws.com/Libero/12_2_0/Tool/libero_soc_tcl_cmd_ref_ug.pdf

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

event counter -run
event counter -stop -after 10
Output
Device ID Code = 2F8071CF
The ‘read_id_code' command succeeded.
Live probes have been assigned.
Channel A: count_out_c[0]:Counter_8bit_0_count_out[0]:Q
Channel B: Not spedified

The "set_live_probe’ command succeeded.

Event Counter = Activated
The ‘svent_counter’ command succeeded.

Event Counter = Stopped

Total Events = 1603561

The 'event_counter’ command succeeded.
The Execute Scaript command succeeded.

export_smart_debug_data
Tcl command; exports debug data for the SmartDebug application.

export smart debug data [device components] [bitstream components] [-file name {file} [-
export dir {dir}] [-force pf otp 0 | 1]

The command corresponds to the Export SmartDebug Data tool in Libero. The command creates a file with the
extension “ddc” that contains data based on selected options. This file is used by SmartDebug (standalone
application) to create a new SmartDebug project, or it can be imported into a device in SmartDebug (standalone
application).
o If you do not specify any design components, all components available in the design will be included by
default except the bitstream components.
o The generate_bitstream parameter is required if you want to generate bitstream file and include it in the
exported file.

0 You must specify the bitstream components you want to include in the generated bitstream file or
all available components will be included.

o If you choose to include bitstream, and the design has custom security, the custom security
bitstream component must be included.

Arguments

devi ceﬁcomponents
The following device components can be selected. Specify "1" to include the component, and "0" if you do
not want to include the component.
-probes <1]0>
-package pins <1[0>
-memory blocks <1]0>
-envm_data <1|0>
-security data <1]0>
-chain <1]|0>
-programmer settings <1]0>
-ios_states <1]0>

bitstream components

The following bitstream components can be selected. Specify "1" to include the component, and "0" if you
do not want to include the component.

197

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

-generate bitstream <1]0>
-bitstream security <1]0>
-bitstream_ fabric <1]0>
-bitstream_snvm <1]|0>
-file name file
Name of exported file with extension “ddc”.
-export_dir dir

Location where DDC file will be exported. If omitted, design export folder will be used.

Example
export smart debug data \
-file name "top" \
-export dir "./" \
-probes 1 \
-package pins 0 \
-memory blocks 1 \
-security data 1 \
-chain 1 \
-programmer settings 1 \
-ios states 1 \
-generate bitstream 1 \
-bitstream security 0 \
-bitstream fabric 1 \
-bitstream snvm 1

The following example shows the command with no parameters:

export smart debug data

fhb_control
This Tcl command provides FPGA Hardware Breakpoint (FHB) feature capability for SmartDebug.

fhb control

-halt -clock domain clkDomName (s)/all

-run -clock domain clkDomName (s)

-step number of steps -clock domain clkDomName (s)

—-reset -clock domain clkDomName (s)

-arm_trigger —-trigger signal IiveProbePoint —trigger edge select rising -delay value -
clock domain clkDomName (s)

-disarm trigger -clock domain clkDomName (s)/all

—capture waveform number of steps -vcd file target file name

—clock domain status -clock domain clkDomName (s)/all

Arguments

-halt
Specifies to halt the clock.
-clock _domain clkDomName (s)/all
Specifies clock domain names to halt. Can be single or multiple clock domains, halted in order specified
by user.

—run
Specifies to run the clock.
-clock_domain clkDomName (s)
Specifies clock domain names to run. Can be single or multiple clock domains, releasing the user clock
based on order specified.

-step number of steps
Specifies to step the clock “number_of_steps” times. Minimum value is 1.

198

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

-clock domain clkDomName (s)
Specifies clock domain names to step. Can be single or multiple clock domains.
-reset
Specifies to reset FHB configuration for the specified clock domain.
-clock_domain clkDomName (s)
Specifies clock domain names to reset. Can be single or multiple clock domains.
-arm_trigger
Specifies to arm FHB configuration for the specified clock domain.
-trigger_signal IliveProbePoint
Set the trigger signal to arm the FHBs.
-trigger edge select rising
Specifies the trigger signal edge to arm the FHBs. FHBs will be atmed on rising edge of trigger signal.
-delay value
-clock_domain clkDomName (s)
Specifies clock domain names to be amed by the trigger signal. Can be single or multiple clock domains.
-disarm_trigger
Specifies to disarm FHB configuration for the specified clock domain.
-clock_domain clkDomName (s)
Specifies clock domain names to be reset by the trigger signal. Can be single or multiple clock domains.
-capture waveform number of steps
Specifies to capture waveform of all the added signals to active probes in the specified clock domain for
number_of_steps.
- vcd file target file name
Target file to save the data and see the waveform.
-clock _domain_status clkDomName (s)/all

Specifies to read and display status of specified clock domain(s). Can be single or multiple clock domains.

Examples
fhb_control -halt -clock_domain {“FCCC_0/GLO_INST “ “FCCC_0/GL1_INST” }
fhb_control -run -clock domain {“FCCC_0/GLO_INST “ “FCCC_0/GL1_INST” }
fhb control -step -clock domain {“FCCC_0/GLO_INST “ “FCCC 0/GL1_ INST” }
fhb_control -reset -clock_domain {“FCCC_0/GLO_INST “ “FCCC_0/GL1_INST” }

fhb_control -arm_trigger -trigger signal {g 0 _c[14]:count_1 g[14]:0Q}
-trigger edge select {rising} - delay 0 - clock domain {"FCCC_0/GLO_INST"}

fhb control -disarm_trigger -trigger_signal {g_0_c[l4]:count_1 g[14]:Q}
-trigger edge select {rising} - delay 0 - clock domain {"FCCC_0/GLO_INST"}

fhb_control -capture waveform {10} -vcd file {D:/wvf_ location/waveform.vcd}

fhb_control - clock _domain_status - clock_domain { "FCCC_O0/GLO_INST" "FCCC_O0/GL1_INST"
"FCCC_0/GL2 INST" }

frequency_monitor

The frequency_monitor Tcl command calculates the frequency of a signal that is assigned to live probe A.

run frequency monitor -signal signal name —-time duration

Arguments
-signal signal name
Specifies the signal name.

—time duration

199

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

Specifies the duration to run the command. The value can be 0.1, 1, 5, 8, or 10.

Example
run_frequency monitor -signal {count out c[7]:Counter 8bit O count out[7]:Q} -time {5}
Output

Device ID Code = ZFEB07F1ICF
The read_id_code' command succeeded.

Frequency = 0.192716 MHz
The 'run_frequency_monitor' command succeeded,
The Execute Script command succeeded.

get_programmer_info
This Tcl command lists the IDs of all FlashPRO programmers connected to the machine.

get programmer info

This command takes no arguments.

Example

set a [get_programmer_ info]

load_active probe_list

Tcl command; loads the list of probes from the file.

load active probe list -file file path

Arguments
-file file path
The input file location.

Example

load active probe list -file “./my probes.txt”

loopback _mode

This Tcl command applies loopback to a specified lane.

loopback mode -lane {Physical Location} -apply -type {loopback type}

Arguments
-lane {Physical Location}
Specify the physical location of the lane.
—apply
Apply specified loopback to specified lane.
-type {loopback type}
Specify the loopback type to apply.

200

PolarFire FPGA Tcl Commands Reference Guide

Examples
loopback mode
loopback mode
loopback mode
loopback mode
loopback mode
loopback mode
loopback mode

loopback mode

-lane
-lane
-lane
-lane
-lane
-lane
-lane

-lane

{Q3 LANE2} -apply
{Q3 LANEO} -apply
{Q0_LANEO} -apply
{Q0 LANE1l} -apply
{Q1 _LANE2} -apply
{Q1_LANEO} -apply
{Q2 LANE2} -apply
{Q2_LANE3} -apply

move_to probe group

Tcl command; moves the specified probe points to the specified probe group.

-type
-type
-type
-type
-type
-type
-type
-type

& Microsemi

a A3\ MicrRocHIP company

{EQ-NearEnd}
{EQ-FarEnd}
{CDRFarEnd}
{NoLpbk}
{EQ-FarEnd}
{NoLpbk}
{EQ-NearEnd}
{CDRFarEnd}

Note: Probe points related to a bus cannot be moved to another group.

move to probe group -name probe name —group group name

Arguments

-name probe name

Specifies one or more probes to move.

-group group name

Specifies name of the probe group.

Example

move_to_probe group -name out[5]:out[5]:Q \

optimize_dfe

-name grpl.out[3]:out[3]:Q \
-group my_ grp2

This Tcl command supports the Optimize DFE feature in SmartDebug.

optimize dfe -dfe algorithm <type of dfe algorithm> -lane <lane(s) configured in the design>

This command executes Dfe Algorithm with type of dfe algorithm and lanes as input. Algorithm selection

software based — executes DfeSs.tcl script

xcvr based —executes internal Dfe Auto Calibration.

This argument is mandatory.

List of lane(s) configured in the design.

This argument is mandatory.

Arguments
-dfe_algorithm
has two options:
-lane
Examples

optimize dfe -lane {"Q2 LANEO"} -dfe algorithm {software_based}

optimize dfe -lane {"Q2 LANEO"} -dfe algorithm {xcvr based}
optimize dfe -lane {"Q2 LANEO" “QO0_ LANEQ”} -dfe algorithm {xcvr_ based}

201

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

pcie_config_space

This Tcl command displays the value of the entered parameter in the SmartDebug log window and return thes
register:field value to the Tcl.

pcie config space -pcie block name {pcie block name} -param name {param name}

Arguments
-pcie_block _name {pcie block_ name}
Complete logical hierarchy of the PCIE block whose status is to be read from the device. This parameter
is mandatory.
-param_name {param name}
Parameter name to read from the device. This parameter is mandatory.
Example

pcie config space -pcie block name {sb 0/CM1 Subsystem/my pcie 0} -param name
{neg max payload}

Output Display in SmartDebug window: 512 bytes
Return value to the tcl script: 0x2

pcie_ltssm_status

This Tcl command displays the current LTSSM state from the PLDA core in the SmartDebug log window and
returns the register: field value to the Tcl.

pcie ltssm status -pcie block name {pcie block name}

Arguments
-pcie _block name {pcie block name}
Complete logical hierarchy of the PCIE block whose status is to be read from the device. This parameter
is mandatory.

Example

pcie_ltssm_status -pcie_block name {sb_0/CM1_Subsystem/my pcie 0}
Output Display in SmartDebug window: Configuration.Linkwidth.start
Return value to the tcl script: 0x2

plot_eye
This Tcl command is used to plot eye and export eye plots.

plot eye -lane {lane instance name} -export dir {location path}

Arguments

-lane

Specify the lane instance name.

-export dir

Specify the path to the location where the file is to be exported.
Example

plot eye -lane {Q2 LANE(O} - export dir {E:\designs\G5\SERDES\ export.txt}

202

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

program_probe_insertion

This Tcl command runs the probe insertion flow on the selected nets.

program probe insertion

This command takes no arguments.

read_active probe

Tcl command; reads active probe values from the device. The target probe points are selected by the
select active probe command.

read active probe [-deviceName device name] [-name probe name] [-group_name bus name|group name] [-
value_type blh][-file file path]

Arguments
-deviceName device name
Parameter is optional if only one device is available in the current configuration.
-name probe name

Instead of all probes, read only the probes specified. The probe name should be prefixed with bus or
group name if the probe is in the bus or group.

-group_name bus name | group name

Instead of all probes, reads only the specified buses or groups specified here.

-value_type b | h

Optional parameter, used when the read value is stored into a variable as a string.

b = binary

h = hex

-file file path

Optional. If specified, redirects output with probe point values read from the device to the specified file.

Note: When the user tries to read at least one signal from the bus/group, the complete bus or group is read. The
user is presented with the latest value for all the signals in the bus/group.

Example
read_active probe -group name {busl}
read active probe -group name {groupl}
To save into variable:
set a [read active probe -group name {bus name} -value type h] #save read data in hex string

If read values are stored into a variable without specifying value_type parameter, it saves values as a binary
string by default.

Example

set a [read active probe] #sets variable a as binary string of read values after read_active_probe
command.

read_Isram

Tcl command; reads a specified block of large SRAM from the device.

203

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

Physical block

read lsram -name block name —-fileName file name

Arguments
-name block name

Specifies the name for the target block.
-fileName file name

Optional; specifies the output file name for the data read from the device.

Exceptions

e Array must be programmed and active
e Security locks may disable this function

Example

Reads the LSRAM Block Fabric_Logic_0/U2/F_0_FO0_U1/ramtmp_ramtmp_0_0/INST_RAM1K20_IP from the
PolarFire device and writes it to the file output.txt.

read lsram -name {Fabric Logic 0/U2/F 0 FO Ul/ramtmp ramtmp 0 O0/INST RAM1K20 IP} -
fileName {output.txt}

Logical block

read lsram -logicalBlockName block name —-port port name

Arguments
-logicalBlockName block name

Specifies the name for the user defined memory block.

-port port name

Specifies the port for the memory block selected. Can be either Port A or Port B.

Example

read_lsram -logicalBlockName {Fabric Logic 0/U2/F_0_F0_Ul} -port {Port A}

read _usram

Tcl command; reads a uSRAM block from the device.

Physical block

read usram [-name block name] -fileName file name

Arguments
-name block name
Specifies the name for the target block.

-fileName file name

Optional; specifies the output file name for the data read from the device.

Exceptions
e Array must be programmed and active
e Security locks may disable this function

204

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

Example

Reads the uSRAM Block Fabric_Logic_0/U3/F_0_FO0_U1/ramtmp_ramtmp_0_0/INST_RAM64x12_IP from the
PolarFire device and writes it to the file sram_block_output.txt.

read_usram -name {Fabric_Logic_0/U3/F_0_FO_Ul/ramtmp_ramtmp O _O/INST_RAM64x12 IP} -
fileName {output.txt}

Logical block

read usram -logicalBlockName block name —-port port name

Arguments
-logicalBlockName block name

Specifies the name of the user defined memory block.
-port port name

Specifies the port of the memory block selected. Can be either Port A or Port B.

Example
read_usram -logicalBlockName {Fabric Logic 0/U3/F_0_F0_Ul} -port {Port A}

remove_from_probe group

Tcl command; removes the specified probe points from the group. That is, the removed probe points won’t be
associated with any probe group.

Note: Probes cannot be removed from the bus.

remove from probe group -name probe name

Arguments

-name probe name

Specifies one or more probe points to remove from the probe group.

Example
The following command removes two probes from my_grp2.
Move out of probe group -name my grp2.out[3]:out[3]:0 \
-name my grp2.out[3]:out[3]:Q

remove_probe insertion_point
This Tcl command deletes an added probe from the probe insertion Ul.

remove probe insertion point —-net net name -driver driver

Arguments
-net net name
Name of the existing net which is added using the add probe insertion point command.
-driver driver
Driver of the net.
Example

remove probe insertion point -net {count out c[0]} -driver
{Counter 8bit 0 count out[0]:Q}

205

& Microsemi

PolarFire FPGA Tcl Commands Reference Guide

run_selected actions

This Tcl command is used to run the selected action for a device.

run_selected actions

This command takes no arguments.

Example
set programming action -name {MPF300(T_ES|TS ES)} -action {DEVICE INFO}
set programming action -name {M2S/M2GL090 (T|TS|TV)} -action {ERASE}
See Also

construct chain_automatically

scan_chain_prg
enable device

set _debug programmer

set device name
set _programming file

set _programming action

save_active probe list

Tcl command; saves the list of active probes to a file.

save active probe list -file file path

Arguments
-file file path
The output file location.
Example
save_active probe list -file “./my probes.txt”

scan_chain_prg

a A3\ MicrRocHIP company

In single mode, this Tcl command runs scan chain on a programmer. In chain mode, this Tcl command runs scan

and check chain on a programmer if devices have been added in the grid.

scan chain prg -name {programmer name}

Arguments
—name

Specify the device (programmer) name. This argument is mandatory.
Example
scan_chain _prg -name {21428}
See Also

construct chain_automatically

enable device

206

https://coredocs.s3.amazonaws.com/Libero/12_2_0/Tool/libero_soc_tcl_cmd_ref_ug.pdf

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

set _debug programmer

set _device name.htm

set _programming file

set _programming action

run_selected actions

select_active probe

Tcl command; manages the current selection of active probe points to be used by active probe READ operations.
This command extends or replaces your current selection with the probe points found using the search pattern.

select active probe [-deviceName device name] [-name probe name pattern] [-reset true|rfalse]

Arguments
-deviceName device name
Parameter is optional if only one device is available in the current configuration..
-name probe name pattern

Specifies the name of the probe. Optionally, search pattern string can specify one or multiple probe
points. The pattern search characters “*” and “?” also can be specified to filter out the probe names.

-reset true | false

Optional parameter; resets all previously selected probe points. If name is not specified, empties out
current selection.

Example
The following command selects three probes. In the below example, “grp1” is a group and “out” is a bus..
Select active probe -name out[5]:out[5]:Q
Select active probe -name out.out[l]:out[1]:Q \
-name out.out[3]:out[3]:Q \

-name out.out[5]:out[5]:Q

set_live probe

Tcl command; set_live_probe channels A and/or B to the specified probe point(s). At least one probe point must
be specified. Only exact probe name is allowed (i.e. no search pattern that may return multiple points).

set live probe [-deviceName device name] [-probeA probe name] [-probeB probe name]

Arguments

-deviceName device name

Parameter is optional if only one device is available in the current configuration or set for debug (see
SmartDebug user guide for details).

-probeA probe name
Specifies target probe point for the probe channel A.
-probeB probe name
Specifies target probe point for the probe channel B.

Exceptions

e The array must be programmed and active

e Active probe read or write operation will affect current settings of Live probe since they use same probe
circuitry inside the device

207

https://coredocs.s3.amazonaws.com/Libero/12_2_0/Tool/libero_soc_tcl_cmd_ref_ug.pdf

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

e Setting only one Live probe channel affects the other one, so if both channels need to be set, they must be
set from the same call to set_live_probe

e Security locks may disable this function

e In order to be available for Live probe, ProbeA and ProbeB I/O's must be reserved for Live probe
respectively

Example

Sets the Live probe channel A to the probe point A12 on device MPF300TS_ES.
set live probe [-deviceName MPF300TS_ES] [-probeA Al2]

set_debug_programmer

This Tcl command is used to set the debug programmer.

set debug programmer -name {programmer name}

Arguments

—name

Specify the programmer. This argument is mandatory.
Example
set debug programmer -name {S201YQST1V}
See Also

construct chain_automatically
scan_chain_prg

enable device

set device name
set programming file

set_programming action

run_selected actions

set_programming_action

This Tcl command is used to select the action for a device.

set programming action [-name {device name}] -action {procedure action}

Arguments
—name
Specify the device name. This argument is mandatory.
—action

Specify the programming action. This argument is mandatory.

Example
set programming action -name {MPF300(T_ES|TS ES)} -action {DEVICE INFO}
set programming action -name {M2S/M2GL090 (T|TS|TV)} -action {ERASE}

208

https://coredocs.s3.amazonaws.com/Libero/12_2_0/Tool/libero_soc_tcl_cmd_ref_ug.pdf

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

See Also

construct chain _automatically
scan_chain_prg

enable device

set _debug programmer

set device name
set _programming file

run_selected actions

set_programming_file

This Tcl command is used to set the programming file for a device. Either the file or the no_file flag must
specified. A programming file must be loaded. The device must be a Microsemi device.

set programming file -name {device name} —-file {stapl file name with path}

Arguments
—name
Specify the device name. This argument is mandatory.
-file
Specify the file path. This argument is mandatory.
Example

set programming file -name {MPF300 (T _ES|TS ES)} -file
{D:/export/CM1_PCIE TOP default uic 12 200 0 12.stp}

See Also

construct chain_automatically
scan_chain_prg

enable device

set debug programmer

set device name
set _programming action

run_selected actions

smartbert_test

This Tcl command is used for the following:

e Start a Smart BERT test
e Stop a Smart BERT test
e Reset error count

smartbert_test -start
This Tcl command starts a Smart BERT test with a specified pattern on a specified lane.

smartbert test -start -pattern {pattern type} -lane {Physical Location}

Arguments

-start

209

https://coredocs.s3.amazonaws.com/Libero/12_2_0/Tool/libero_soc_tcl_cmd_ref_ug.pdf
https://coredocs.s3.amazonaws.com/Libero/12_2_0/Tool/libero_soc_tcl_cmd_ref_ug.pdf

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

Start the Smart BERT test.

pattern {pattern type}

Specify the pattern type of the Smart BERT test.
-lane{Physical Location}

Specify the physical location of the lane.
-EQ-NearEndLoopback

Enable EQ-Near End Loopback on specified lane.

Examples

smartbert test -start -pattern {prbs9} -lane {Q0 LANE3}

smartbert test -start -pattern {prbs23} -lane {Q3_LANEZ2}

smartbert test -start -pattern {prbs7} -lane {Q3 LANEl}

smartbert test -start -pattern {prbs31} -lane {Ql LANE2} -EQ-NearEndLoopback
smartbert test -start -pattern {prbs9} -lane {Q2 LANE2} -EQ-NearEndLoopback
smartbert test -start -pattern {prbsl5} -lane {Q2 LANE3} -EQ-NearEndLoopback

smartbert_test -stop
This Tcl command stops a Smart BERT test on a specified lane.

smartbert test -stop -lane {Physical Location}

Arguments
-stop
Stop the smart BERT test.
-lane {Physical Location}

Specify the physical location of the lane.

Examples

smartbert test -stop -lane {Q0 LANEO}
smartbert test -stop -lane {QO0_ LANE3}
smartbert test -stop -lane {Q3 LANEZ2}
smartbert test -stop -lane {Q3_ LANEl}
smartbert test -stop -lane {Ql LANE2}
smartbert test -stop -lane {Q2_ LANEZ2}
smartbert test -stop -lane {Q2 LANE3}

smartbert_test -reset_counter
This Tcl command resets a lane error counter.

smartbert test -reset counter -lane {Physical Location}

Arguments
-reset_counter
Reset lane error counter on hardware and cumulative error count on the Ul.
-lane {Physical Location}

Specify the physical location of the lane.

Examples

smartbert test -reset counter -lane {QO0_LANEOQ}
smartbert test -reset counter -lane {Q3 LANE2}
smartbert test -reset counter -lane {Q2 LANE3}

smartbert test -reset counter -lane {Q2 LANEZ2}

210

PolarFire FPGA Tcl Commands Reference Guide

smartbert test -reset counter -lane

smartbert test -reset counter -lane

static_pattern_transmit

{Q1 LANE2}
{Q3 LANEL}

This Tcl command starts and stops a Static Pattern Transmit.

static_pattern_transmit -start

& Microsemi

a A3\ MicrRocHIP company

static pattern transmit -start -lane {Physical Location} -pattern {pattern type} -value

{user pattern value}

Parameters
-start
Start the Static Pattern Transmit.
-lane {Physical Location}
Specify physical location of lane.
-pattern {pattern type}

Specify pattern_type of Static Pattern Transmit.

-value {user pattern value

Specify user_pattern_value in hex if pattern_type selected is custom.

Examples

static_pattern transmit -start -lane
static pattern transmit -start -lane
static pattern transmit -start -lane
static_pattern transmit -start -lane
static pattern transmit -start -lane
static pattern transmit -start -lane
static pattern transmit -start -lane

static pattern transmit -start -lane

static_pattern_transmit -stop

{Q0_LANEO} -pattern
{Q0 LANE2} -pattern
{Q3 LANE2} -pattern
{Q3_LANEO} -pattern
{Q1 LANEl} -pattern
{Q1_LANE2} -pattern
{Q2_LANE2} -pattern
{Q2 LANEl} -pattern

static pattern transmit -stop -lane {Physical Location}

Parameters
-stop
Stop the Static Pattern Transmit.
-lane {Physical Location}

Specify physical location of lane.

Examples

static_pattern transmit -stop -lane
static pattern transmit -stop -lane
static pattern transmit -stop -lane
static pattern transmit -stop -lane
static pattern transmit -stop -lane
static pattern transmit -stop -lane
static pattern transmit -stop -lane
static pattern transmit -stop -lane

{Q0 LANEO}
{Q0 LANE2}
{Q3 LANE2}
{Q3 LANEO}
{Ql LANE1}
{Q1 LANE2}
{Q2 LANE2}
{Q2 LANE1}

{fixed}

{maxrunlength} -value {}
{custom} -value {df}
{fixed} -value {}
{custom} -value {4578}
{fixed} -value {}

{maxrunlength}

-value {abcdef56}

-value {}

{custom}

211

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

ungroup
Tcl command; disassociates the probes as a group.

nngroup -name group name

Arguments
—hame group name

Name of the group.

Example

ungroup -name my grp4

unset_live_probe

Tcl command; discontinues the debug function and clears live probe A, live probe B, or both probes (Channel
A/Channel B). An all zeros value is shown in the oscilloscope.

unset live probe -probeA 1 -probeB 1 [-deviceName device namel

Arguments
-probeA
Live probe Channel A.
-probeB
Live probe Channel B.
-deviceName device name

Parameter is optional if only one device is available in the current configuration or set for debug (see the
SmartDebug User Guide for Libero or the SmartDebug User Guide for PolarFire for details).

Exceptions

e The array must be programmed and active.

e Active probe read or write operation affects current of Live Probe settings, because they use the same probe
circuitry inside the device.

e Security locks may disable this function.

Example
The following example unsets live probe Channel A from the device MPF300TS_ES.
unset live probe -probeA 1[-deviceName MPF300TS ES]

uprom_read _memory
This Tcl command reads a uPROM memory block from the device.

read uprom memory —-startAddress {hex value} -words {integer value}

Arguments
-startAddress hex value
Specifies the start address of the uPROM memory block.
-words integer value

Specifies the number of 9-bit words.

212

https://coredocs.s3.amazonaws.com/Libero/12_1_0/Tool/smartdebug_ug.pdf
https://coredocs.s3.amazonaws.com/Libero/12_1_0/Tool/pf_smartdebug_ug.pdf

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

Example

read_uprom _memory -startAddress {0xA} -words {100}

write _active probe

Tcl command; sets the target probe point on the device to the specified value. The target probe point name must

be specified.
write active probe [-deviceName device name] —-name probe name -value true|false
-group name group bus name —-group value “hex-value” | “binary-value”
Arguments

-deviceName device name

Parameter is optional if only one device is available in the current configuration.
-name probe name

Specifies the name for the target probe point. Cannot be a search pattern.
-value true | false hex-value | binary-value

Specifies values to be written.

True = High

False = Low

-group_name group bus name

Specify the group or bus name to write to complete group or bus.
-group_value "hex-value” | “binary-value”

Specify the value for the complete group or bus.

Hex-value format : “ <size>"h<value>”

Binary-value format: “ <size>’b<value>”

Example
write active probe -name out[5]:out[5]:0 -value true <-- Write to a single probe
write active probe -name grpl.out[3]:out[3]:Q -value low <-- write to a probe in the group
write active probe -group name grpl —group value “8’hF0” <-- write the value to complete group

write active probe -group name out -group value “8/b11110000” \

-name out[2]:out[2]:Q -value true <-- Write multiple probes at the same time.

write_Isram

Tcl command; writes a word into the specified large SRAM location.

Physical block

write lsram —-name block name] —-offset offset value —value integer value

Arguments
-name block name
Specifies the name for the target block.
-offset offset value
Offset (address) of the target word within the memory block.

-value integer value

213

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

Word to be written to the target location. Depending on the configuration of memory blocks, the width can
be 1, 2, 5, 10, or 20 bits.

Exceptions
e Array must be programmed and active
e The maximum value that can be written depends on the configuration of memory blocks
e Security locks may disable this function

Example

write lsram -name {Fabric Logic 0/U2/F 0 FO Ul/ramtmp ramtmp 0 0/INST RAM1K20 IP} -offset
0 -value 291

Logical block

write lsram -logicalBlockName block name —-port port name -offset 1 offset value -logicalValue

hexadecimal value

Arguments
-logicalBlockName block name
Specifies the name of the user defined memory block.
-port port name
Specifies the port of the memory block selected. Can be either Port A or Port B.
-offset offset value
Offset (address) of the target word within the memory block.
-logicalValue hexadecimal value

Specifies the hexadecimal value to be written to the memory block. Size of the value is equal to the width
of the output port selected.

Example

write lsram -logicalBlockName {Fabric_Logic_0/U2/F 0_FO_Ul} -port {Port A} -offset 1 -
logicalvalue {00FFF}

write_usram

Tcl command; writes a 12-bit word into the specified uSRAM location.

Physical block

write usram —name block name] —-offset offset value —-value integer value

Arguments
-name block name
Specifies the name for the target block.
-offset offset value
Offset (address) of the target word within the memory block.
-value integer value

12-bit value to be written.

Exceptions

e Array must be programmed and active
e The maximum value that can be written is Ox1FF
e Security locks may disable this function

214

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

Example

Writes a value of 0x291 to the device PolarFire in the
Fabric_Logic_0/U3/F_0_FO0_U1/ramtmp_ramtmp_0_0/INST_RAM®64x12_IP with an offset of 0.

write lsram -name {Fabric_Logic_0/U3/F _0_FO_Ul/ramtmp ramtmp O O/INST RAM64x12 IP} -
offset 0 -value 291

Logical block

write usram -logicalBlockName block name —-port port name -offset offset value -logicalValue
hexadecimal value

Arguments
-logicalBlockName block name
Specifies the name of the user defined memory block.
-port port name
Specifies the port of the memory block selected. Can be either Port A or Port B.
-offset offset value
Offset (address) of the target word within the memory block.
-logicalValue hexadecimal value

Specifies the hexadecimal value to be written to the memory block. Size of the value is equal to the width
of the output port selected.

Example

write usram -logicalBlockName {Fabric Logic 0/U3/F 0 FO Ul} -port {Port A} -offset 1 -
logicalvalue {00FFF}

Xcvr_read_register

This Tcl command reads SCB registers and their field values. Read value is in hex format. This command is used
in SmartDebug Signal Integrity.

xcvr read register —-inst name <inst name> —reg name [<reg name> | <reg name:field name>]

Arguments

-inst name <inst name>

Specify the lane instance name used in the design.

-reg _name <reg name> °* <reg name:field name>

Specify the <reg name> for register name or <reg name>:<fieid name> for the register’s field.
Examples

Reading pcslane’s 32-bit register LNTV_RO:

xcvr_read register -inst name {CM1_PCIe SS 0/PF_PCIE_O0/LANEl} -reg name {LNTV_RO}
Output:
Register Name: LNTV_RO value: 0x12

The 'xcvr write register' command succeeded.

Reading Register LNTV_RO field LNTV_RX GEAR (i.e. O0th bit of 32-bit register):

xcvr_read register -inst name {CM1 PCIe SS 0/PF PCIE 0/LANEl} -reg name
{LNTV_RO:LNTV_RX_ GEAR}

215

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

Output:
Register Name: LNTV_RO:LNTV_RX GEAR, Value: 0x0

The 'xcvr_read register' command succeeded.

Exception:

SOFT_RESET Register
The SOFT_RESET register is an SCB read/write register containing information such as block ID and Map IDs. It
is also used to provide a pulsed reset to the SCB registers. It is a group-specific register.
The SOFT_RESET register is available with the four groups (pma_lane, pma_cmn, pcslane, and pcscmn). To read
or write this register or its field value, “group name” must be added before “SOFT_RESET".
-reg name <group name> <SOFT RESET> for register name
or
[<group name> <SOFT RESET>:field name] for register field name
where <group name> can be PCS, PCSCMN, PMA, or PMA_CMN.

Examples
Reading all four groups' SOFT_RESET register and its field BLOCKID

Reading the PCS SOFT_RESET register and its field BLOCKID (i.e. 16th to 31st bit):

xcvr_read register -inst name SmartBERT L4 0/PF XCVR 0/LANEO -reg name {PCS SOFT_ RESET}
Output:

Register Name: PCS SOFT RESET, Value: 0x300100

The 'xcvr_ read register' command succeeded.

Reading field BLOCKID:

xcvr read register -inst name SmartBERT L4 0/PF XCVR 0/LANEO -reg name
{PCS_SOFT_ RESET:BLOCKID}

Output:
Register Name: PCS_SOFT_RESET:BLOCKID, Value: 0x30

The 'xcvr_ read register' command succeeded.

Reading PCSCMN’s SOFT_RESET register and its field BLOCKID (i.e. 16th to 31st bit):

xcvr read register -inst name SmartBERT L4 0/PF XCVR 0/LANEO -reg name
{PCSCMN_SOFT_ RESET}

Register Name: PCSCMN_SOFT RESET, Value: 0x340100

The 'xcvr_read register' command succeeded.

Reading field BLOCKID:

xcvr read register -inst name SmartBERT L4 0/PF XCVR 0/LANEO -reg name
{PCSCMN_SOFT_RESET:BLOCKID}

Output:
Register Name: PCSCMN SOFT RESET:BLOCKID, Value: 0x34

The 'xcvr_ read register' command succeeded.

Reading PMA’s SOFT_RESET register and its field BLOCKID (i.e. 16th to 31st bit):

xcvr_read register -inst name SmartBERT L4 0/PF XCVR 0/LANEO -reg name {PMA SOFT_ RESET}
Output:

Register Name: PMA SOFT RESET, Value: 0x1300100

The 'xcvr_ read register' command succeeded.

216

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

Reading field BLOCKID:

xcvr read register -inst name SmartBERT L4 0/PF XCVR 0/LANEO -reg name
{PMA_ SOFT RESET:BLOCKID}

Output:
Register Name: PMA SOFT RESET:BLOCKID, Value: 0x130

The 'xcvr_read register' command succeeded.

Reading PMA_CMN’s SOFT_RESET register and it’s field BLOCKID (i.e. 16th to 31st bit):

xcvr read register -inst name SmartBERT L4 0/PF XCVR 0/LANEO -reg name
{PMA CMN SOFT RESET}

Output:
Register Name: PMA CMN_SOFT_RESET, Value: 0x1340100

The 'xcvr_read register' command succeeded.

Reading field BLOCKID:

xcvr read register -inst name SmartBERT L4 0/PF XCVR 0/LANEO -reg name
{PMA CMN_ SOFT RESET:BLOCKID}

Output:
Register Name: PMA CMN_SOFT_RESET:BLOCKID, Value: 0x134

The 'xcvr_read register' command succeeded.

See Also

XCcvr write register

XCVr_write register

This Tcl command writes SCB registers and their field values. Write value is in hex format. This command is used
in SmartDebug Signal Integrity.

xcvr write register -inst name <inst name> -reg name [<reg name> | <reg name:field name>] -
value {write value}

Arguments
-inst _name <inst name>
Specify the lane instance name used in the design.
-reg _name <reg name> °* <reg name:field name>

Specify the <reg name> for register name or <reg name>:<field name> for the register’s field.

-value <write value>

Specify the value in hex format.
Examples

Writing pecsemn’s 32-bit register GSSCLK _CTRL

xcvr_write register -inst_name {CM1_PCIe_SS_0/PF_PCIE 0/LANEl} -reg name {GSSCLK_CTRL} -
value Oxffffffff

Output:
Register Name: GSSCLK_CTRL value: Oxffffffff

The 'xcvr_write_ register' command succeeded.

217

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

Writing Register GSSCLK_CTRL field MCLK_GSSCLK 2 SEL i.e. 16th to 20th bits (5 bits) of
32-bit register

xcvr_write_register -inst_name {CM1_PCIe_SS_0/PF_PCIE 0/LANEl} \
-reg_name {GSSCLK CTRL:MCLK GSSCLK 2 SEL} -value 0x6
Output:
Register Name: GSSCLK CTRL:MCLK GSSCLK 2 SEL value: 0x6

The 'xcvr _write register' command succeeded.

Exception:

SOFT_RESET Register

The SOFT_RESET register is an SCB read/write register containing information such as block ID and Map IDs. It
is also used to provide a pulsed reset to the SCB registers. It is a group-specific register.

The SOFT_RESET register is available with the four groups (pma_1lane, pma_cmn, pcslane, and pcscmn). To read
or write this register or its field value, “group name” must be added before “SOFT_RESET".
-reg name <group name> <SOFT RESET> for register name
or
[<group name> <SOFT RESET>:field name] for register field name
where <group name> can be PCS, PCSCMN, PMA, or PMA_CMN

Examples

Writing all four groups' SOFT_RESET register and its field PERIPH

Writing to the PCS SOFT_RESET register (32-bits) and its field PERIPH (i.e. 8th bit):

xcvr_write register -inst_name SmartBERT_L4 0/PF_XCVR 0/LANEO -reg name {PCS_SOFT RESET}
-value Oxffffffff

Output:
Register Name: PCS_SOFT_RESET value: Oxffffffff

The 'xcvr_write_ register' command succeeded.

Writing to field PERIPH:

xcvr _write register -inst name SmartBERT L4 0/PF XCVR 0/LANEO -reg name
{PCS_SOFT RESET:PERIPH} -value O0x1

Output:
Register Name: PCS_SOFT_RESET:PERIPH value: 0x1

The 'xcvr_write_ register' command succeeded.

Writing to PCSCMN’s SOFT_RESET register (32-bits) its field PERIPH (i.e. 8th bit):

xcvr_write register -inst_name SmartBERT_L4 0/PF_XCVR 0/LANEO -reg name
{PCSCMN_SOFT RESET} -value Oxffffffff

Output:
Register Name: PCSCMN_SOFT_RESET value: Oxffffffff

The 'xcvr write register' command succeeded.

Writing to field PERIPH:

xcvr_write register -inst_name SmartBERT_L4 0/PF_XCVR 0/LANEO -reg name
{PCSCMN_SOFT_RESET:PERIPH} -value Ox1

Output:
Register Name: PCSCMN_SOFT_RESET:PERIPH value: 0x1

The 'xcvr write register' command succeeded.

218

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

Writing to PMA’s SOFT_RESET register its field PERIPH (i.e. 8th bit):

xcvr_write register -inst_name SmartBERT_L4 0/PF_XCVR 0/LANEO -reg name {PMA_SOFT RESET}
-value Oxffffffff

Output:
Register Name: PMA SOFT_RESET value: Oxffffffff

The 'xcvr_write_ register' command succeeded.

Writing to field PERIPH:

xcvr _write register -inst name SmartBERT L4 0/PF XCVR 0/LANEO -reg name
{PMA SOFT RESET:PERIPH} -value 0xl1

Output:
Register Name: PMA SOFT_RESET:PERIPH value: 0Ox1

The 'xcvr_write register' command succeeded.

Writing to PMA_CMN’s SOFT_RESET register its field PERIPH (i.e. 8th bit):

xcvr _write register -inst name SmartBERT L4 0/PF XCVR 0/LANEO -reg name
{PMA CMN SOFT RESET} -value Oxffffffff

Output:

Register Name: PMA CMN_SOFT_RESET value: Oxffffffff

The 'xcvr write register' command succeeded.

Writing to field PERIPH:

xcvr _write register -inst name SmartBERT L4 0/PF XCVR 0/LANEO -reg name
{PMA CMN_SOFT RESET:PERIPH} -value 0xl

Output:
Register Name: PMA CMN_SOFT_RESET:PERIPH value: 0x1

The 'xcvr_write register' command succeeded.

See Also

xcvr read register

219

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

Configure JTAG Chain Tcl Commands

These commands take a script that contains JTAG chain configuration-specific Tcl commands and passes them
to FlashPro Express for execution.

Note that these commands cannot be executed directly from Libero.

add_actel device
Adds an Actel device to the chain. Either the rile or device parameter must be specified. Chain

programming mode must have been set.

add actel device [-file { filename}] [-device {device}] -name {name}

Arguments
Where:
-file{filename}
Specifies a programming filename.
-device{device}
Specifies the device family (such as MPF300).
-name { name}
Specifies the device user name.

Exceptions
None

Example
add actel device -file {e:/design/stp/TOP.stp} -name {MyDevicel}
add_actel device -device {MPF300} -name {MyDevicel2}

add_non_actel device
Adds a non-Actel device in the chain. Either the file, or (-tck And -ir) parameters must be specified. The Chain

programming mode must have been set.

add non actel device [-file {file}] [-ir {ir}] [-tck {tck}] [-name {name}]

Arguments
-file {filename}
Specifies a BSDL file.
-ir {ir}
Specifies the IR length.
-tck {tck}
Specifies the maximum TCK frequency (in MHz).

220

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

-name {name}

Specifies the device user name.

Exceptions

None

Examples
add non_actel device -file {e:/design/bsdl/DeviceX.bsdl } -name {MyDevice3}

add non_actel device -ir 8 - tck 5 -name {MyDevice4}

add_non_actel device to database

Imports settings via a BSDL file that adds non-Actel or non-Microsemi devices to the device database so that they are
recognized during scan chain and auto-construction operations.

add non actel device to database [-file {bsdl filename}]

Arguments
-file {bsdl_filename}

Specifies the path to the BSDL file and the BSDL filename add to the database.

Supported Families
All non-Microsemi and non-Actel families

Exceptions
N/A

Examples
The following example uses a BSDL file to add a non-Microsemi (1502AS J44) device to the device database:
add non_actel device to database -file {c:/bsdl/atmel/1502AS J44.bsd}
The following example uses a BSDL file to add a non-Microsemi (80200) device to the device database:
add non_actel device to database -file {c:/bsdl/intel/80200 v1.0.bsd}

construct_chain_automatically
Automatically starts chain construction for the specified programmer.

construct chain automatically[(-name {name})+]

Arguments
-name {name}

Specifies the programmer(s) name(s).

Exceptions
N/A

221

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

Example
Example for one programmer:
construct_ chain automatically -name {21428}
Example for two programmers:
construct chain automatically -name {21428} -name {00579}
copy_device

Copies a device in the chain to the clipboard. Chain programming mode must be set. See the paste device
command for more information.

copy device (-name {name})*

Arguments
-name {nhame}

Specifies the device name. Repeat this argument to copy multiple devices.

Exceptions
None

Example
The example copies the device 'mydevice1' to the same location with a new name 'mydevice2'.

copy device -name {MyDevicel} -name {MyDevice2}

cut_device

Removes one or more devices from the chain. It places the removed device in the clipboard. Chain programming
mode must be set to use this command. See the paste device command for more information.

cut device (-name ({name})*

Arguments

-name {name}

Specifies the device name. You can repeat this argument for multiple devices.
Exceptions

None
Example

The following example removes the devices 'mydevice1' and 'mydevice2' from the chain.

cut _device -name {MyDevicel} -name {MyDevice2}

enable device

Enables or disables a device in the chain (if the device is disabled, it is bypassed). Chain programming
mode must be set. The device must be a Microsemi device.

enable device -name {name} -enable {TRUE|FALSE}

222

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

Arguments
-name {name}
Specifies your device name
-enable {TRUE |FALSE}
Specifies whether the device is to be enabled or disabled. If you specify multiple devices, this argument
applies to all specified devices. (TRUE = enable. FALSE = disable)
Exceptions
None
Example

The following example disables the device 'mydevice1' in the chain.

enable device -name {MyDevicel} -enable {FALSE}

paste device

Pastes the devices that are on the clipboard in the chain, immediately above the position name device, if
this parameter is specified. Otherwise it places the devices at the end of the chain. The chain
programming mode must be enabled.

paste device [-position name {position name}]

Arguments

-position name {position name}

Optional argument that specifies the name of a device in the chain.
Exceptions

None
Examples

The following example pastes the devices on the clipboard immediately above the device 'mydevice3' in
the chain.

paste device -position name {MyDevice3}

remove_device

Removes the device from the chain. Chain programming mode must be set.

remove device (-name {name})*

Arguments
-name {name}

Specifies the device name. You can repeat this argument for multiple devices.

Supported Families
Al

Exceptions
None

223

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

Example
Remove a device 'M2S050T from the chain:

remove device (-name {M2S050T})*

remove_non_actel device from_database

Removes settings for non-Microsemi or non-Actel device from the device database.

remove non actel device from database [-name {device name}]

Arguments
-name {device name}

Specifies the non-Actel or non-Microsemi device name to be removed from the database. You can
repeat this argument for multiple devices.

Supported Families
Non-Microsemi and non-Actel devices

Exceptions
None

Example
The following example removes the F1502AS_J44 device from the database:

remove non actel device from database —name {F1502AS J44}

The following example removes the SA2_PROCESSOR device from the database:

remove non_actel device from database —name {SA2 PROCESSOR}

select_libero_design_device

This command selects the Libero design device for the Programming Connectivity and Interface tool within Libero.
This command is needed when the tool cannot automatically resolve the Libero design device when there are two or
more identical devices that match the Libero design device in the configured JTAG chain.

Syntax

select libero design device -name {device name}

Arguments

-name {device name}

Specifies a user-assigned unique device name in the JTAG chain.

Exceptions
None

Example
select libero_design_device -name {M2S050TS (2)}

select libero design device —name {my design device}

224

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

Note

This Tcl command is typically used in a Tcl command script file that is passed to the Libero run_tool
command.

run_tool -name {CONFIGURE CHAIN} -script {<flashPro_cmd>.tcl}

set _bsdl file

Sets a BSDL file to a non-Microsemi device in the chain. Chain programming mode must have been set.
The device must be a non-Microsemi device.

set bsdl file -name {name} -file {file}

Arguments

name {name}

Specifies the device name.
-file {file}

Specifies the BSDL file.

Supported Families
Any non-Microsemi device supported by FlashPro Express.

Exceptions
None

Example

The following example sets the BSDL file /design/bsdl/NewBSDL2.bsdl to the device 'MyDevice3":
set bsdl file -name {MyDevice3} -file {e:/design/bsdl/NewBSDL2.bsdl}

set_device_ir

Sets the IR length of a non-Microsemi device in the chain. Chain programming mode must be set. The
device must be a non-Microsemi device.

set device ir -name {name} -ir {ir}

Arguments
-name {name}
Specifies the device name.
-ir {ir}

Specifies the IR length.

Supported Families
Any non-Microsemi device supported by FlashPro Express.

Exceptions
None

Example
The following example sets the IR length to '2' for the non-Microsemi device 'MyDevice4':

225

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

set device ir -name {MyDeviced4} -ir {2}

set _device_name
Changes the user name of a device in the chain. Chain programming mode must be set .

set device name -name {name} -new name {new name}

Arguments
-name {name}
Identifies the old device name.
-new_name {new name}
Specifies the new device name.
Exceptions
None
Example

The following example changes the user name of the device from 'MyDevice4' to 'MyDevice5":

set _device name -name {MyDeviced4} -new_name {MyDevice5}

set_device order

Sets the order of the devices in the chain to the order specified. Chain programming mode must have
been set. Unspecified devices will be at the end of the chain.

set device order (-name {name})*

Arguments
—-name {name}
Specifies the device name. To specify a new order you must repeat this argument and specify each
device name in the order desired.
Exceptions
None
Example

The following example sets the device order for 'MyDevice1', 'MyDevice2', 'MyDevice3', and 'MyDevice4'.
'MyDevice2' is unspecified so it moves to the end of the chain.

set device order -name {MyDevice3} -name {MyDevicel} -name {MyDevice4}
the new order is:
MyDevice3 MyDevicel MyDevice4 MyDevice2

set_device_tck

Sets the maximum TCK frequency of a non-Microsemi device in the chain. Chain programming mode
must be set. The device must be a non-Microsemi device.

set device tck -name {name} -tck {tck}

226

& Microsemi

a A3\ MicrRocHIP company

PolarFire FPGA Tcl Commands Reference Guide

Arguments
—-name {name}
Specifies the device name.
-tck {tck}
Specifies the maximum TCK frequency (in MHz).

Supported Families
Any non-Microsemi device supported by FlashPro Express.

Exceptions
None

Example

The following example sets the maximum TCK frequency of the non-Microsemi device 'MyDevice4'":
set_device tck -name {MyDeviced} -tck {2.25}

set_device_type
Changes the family of a Microsemi device in the chain. The device must be a Microsemi device. The
device parameter below is now optional.

set device type -name {name} -type {type}

Arguments
-name {name}
Identifies the name of the device you want to change.
-type {type}
Specifies the device family.

Supported Families
Any Microsemi device supported by FlashPro Express.

Exceptions
None

Example

The following example sets the device 'MyDevice2' to the type MPF300.
set _device type -name {MyDevice2} -type {MPF300}

set_programming_action
This Tcl command is used to select the action for a device.

set programming action [-name {device name}] -action {procedure action}

Arguments
—name
Specify the device name. This argument is mandatory.

—action

227

PolarFire FPGA Tcl Commands Reference Guide

Example

Specify the programming action. This argument is mandatory.

& Microsemi

a A3\ MicrRocHIP company

set_programming action -name {MPF300(T_ES|TS_ES)} -action {DEVICE INFO}
set _programming action -name {M2S/M2GL090 (T|TS|TV)} -action {ERASE}
See Also

construct chain _automatically
scan_chain_prg

enable device

set debug programmer

set device name
set programming file

run_selected actions

set_programming_file

This Tcl command is used to set the programming file for a device. Either the file or the no_file flag must
specified. A programming file must be loaded. The device must be a Microsemi device.

set programming file -name {device name} —-file {stapl file name with path}

Arguments

Example

—name

Specify the device name. This argument is mandatory.

-file

Specify the file path. This argument is mandatory.

set_programming file -name {MPF300(T_ES|TS_ES)} -file
{D:/export/CM1_PCIE TOP default uic 12 200 0 12.stp}

See Also

construct chain_automatically
scan_chain_prg

enable device

set _debug programmer

set device name
set_programming action

run_selected actions

228

https://coredocs.s3.amazonaws.com/Libero/12_2_0/Tool/libero_soc_tcl_cmd_ref_ug.pdf
https://coredocs.s3.amazonaws.com/Libero/12_2_0/Tool/libero_soc_tcl_cmd_ref_ug.pdf

& Microsemi

a RS\ MicrocHIP company

PolarFire FPGA Tcl Commands Reference Guide

229

	Table of Contents
	Tcl Commands and Supported Families 10
	Tcl Command Documentation Conventions 10
	Basic Syntax 12
	Types of Tcl commands 13
	Variables 14
	Command substitution 14
	Quotes and braces 15
	Lists and arrays 16
	Control structures 17
	Print statement and Return values 17
	Running Tcl Scripts from the Command Line 18
	Exporting Tcl Scripts 19
	extended_run_lib 19
	Sample Tcl Script - Project Manager 22
	How to Derive Required Part Information from A "Part Number" 23
	add_file_to_library 24
	add_library 24
	add_modelsim_path 24
	add_profile 25
	associate_stimulus 26
	change_link_source 26
	change_vault_location 27
	check_fdc_constraints 27
	check_hdl 27
	check_ndc_constraints 28
	check_pdc_constraints 28
	check_sdc_constraints 28
	close_design 29
	close_project 29
	configure_core 29
	configure_tool 30
	create_and_configure_core 31
	create_set 32
	create_links 33
	create_smartdesign 34
	delete_component 34
	download_core 34
	download_latest_cores 35
	edit_profile 35
	export_as_link 36
	export_ba_files 36
	export_bitstream_file 37
	export_bsdl_file 39
	export_component_to_tcl 40
	export_design_summary 40
	export_fp_pdc 41
	export_ibis_file 41
	export_io_pdc 41
	export_netlist_file 42
	export_pin_reports 42
	export_profiles 43
	export_prog_job 44
	export_script 45
	generate_component 45
	generate_sdc_constraint_coverage 46
	import_files (Libero SoC) 46
	new_project 48
	open_project 51
	open_smartdesign 52
	organize_constraints 52
	organize_sources 53
	organize_tool_files 54
	project_settings 55
	refresh 56
	remove_core 57
	remove_library 57
	remove_profile 57
	rename_file 58
	rename_library 58
	run_tool 58
	save_project_as 60
	save_log 61
	save_project 62
	save_smartdesign 62
	select_profile 62
	set_actel_lib_options 63
	set_as_target 63
	set_device (Project Manager) 64
	set_modelsim_options 65
	Example 66
	set_option 67
	set_root 67
	set_user_lib_options 67
	unlink 68
	unset_as_target 68
	use_source_file 69
	sd_add_pins_to_group 70
	sd_clear_pin_attributes 70
	sd_configure_core_instance 71
	sd_connect_instance_pins_to_ports 71
	sd_connect_net_to_pins 72
	sd_connect_pins_to_constant 73
	sd_connect_pin_to_port 73
	sd_connect_pins 74
	sd_create_bif_net 75
	sd_create_bif_port 75
	sd_create_bus_net 77
	sd_create_bus_port 77
	sd_create_pin_group 78
	sd_create_pin_slices 79
	sd_create_scalar_net 79
	sd_create_scalar_port 80
	sd_delete_instances 80
	sd_delete_nets 81
	sd_delete_pin_group 81
	sd_delete_pin_slices 82
	sd_delete_ports 82
	sd_disconnect_instance 83
	sd_disconnect_pins 83
	sd_duplicate_instance 84
	sd_hide_bif_pins 85
	sd_instantiate_component 85
	sd_instantiate_core 86
	sd_instantiate_hdl_core 86
	sd_instantiate_hdl_module 87
	sd_instantiate_macro 87
	sd_invert_pins 88
	sd_mark_pins_unused 88
	sd_remove_pins_from_group 89
	sd_rename_instance 90
	sd_rename_net 90
	sd_rename_pin_group 91
	sd_rename_port 91
	sd_save_core_instance_config 92
	sd_show_bif_pins 92
	sd_update_instance 93
	create_hdl_core 94
	hdl_core_add_bif 94
	hdl_core_assign_bif_signal 95
	hdl_core_delete_parameters 95
	hdl_core_extract_ports_and_parameters 96
	hdl_core_remove_bif 96
	hdl_core_rename_bif 97
	hdl_core_unassign_bif_signal 97
	remove_hdl_core 98
	CONFIGURE_CHAIN 99
	CONFIGURE_PROG_OPTIONS 100
	GENERATEPROGRAMMINGFILE 100
	IO_PROGRAMMING_STATE 101
	PLACEROUTE 101
	PROGRAMDEVICE 104
	PROGRAM_SPI_FLASH_IMAGE 105
	PROGRAMMER_INFO 106
	SPM 107
	SYNTHESIZE 110
	VERIFYPOWER 112
	VERIFYTIMING 113
	SIMULATE 114
	create_clock 115
	create_generated_clock 116
	create_set 118
	expand_path 119
	list_paths 121
	read_sdc 122
	remove_set 123
	report 123
	save 127
	set_clock_latency 127
	set_false_path 128
	set_input_delay 129
	set_max_delay 131
	set_min_delay 132
	set_multicycle_path 133
	set_options 134
	smartpower_add_new_scenario 137
	smartpower_add_pin_in_domain 137
	smartpower_battery_settings 138
	smartpower_change_clock_statistics 139
	smartpower_change_setofpin_statistics 140
	smartpower_commit 140
	smartpower_compute_vectorless 141
	smartpower_create_domain 141
	smartpower_edit_scenario 141
	smartpower_import_vcd 142
	smartpower_init_do 144
	smartpower_init_set_clocks_options 146
	smartpower_init_set_combinational_options 147
	smartpower_init_set_enables_options 147
	smartpower_init_set_primaryinputs_options 148
	smartpower_init_set_registers_options 148
	smartpower_init_setofpins_values 149
	smartpower_remove_all_annotations 149
	smartpower_remove_file 150
	smartpower_remove_scenario 151
	smartpower_report_power 151
	smartpower_set_mode_for_pdpr 158
	smartpower_set_operating_condition 159
	smartpower_set_operating_conditions 159
	smartpower_set_process 160
	smartpower_set_temperature_opcond 161
	smartpower_set_voltage_opcond 161
	smartpower_temperature_opcond_set_design_wide 163
	smartpower_temperature_opcond_set_mode_specific 163
	smartpower_voltage_opcond_set_design_wide 164
	smartpower_voltage_opcond_set_mode_specific 165
	configure_design_initialization_data 167
	configure_ram 169
	configure_snvm 169
	configure_spiflash 169
	SPM_OTP 170
	configure_uprom 172
	export_spiflash_image 172
	generate_design_initialization_data 172
	generate_initialization_mem_files 173
	remove_permanent_locks 174
	select_programmer 174
	set_auto_update_mode 175
	set_cipher_text_auth_client 175
	set_client 176
	set_data_storage_client 177
	set_manufacturer 178
	set_plain_text_auth_client 179
	set_plain_text_client 180
	set_programming_interface 181
	set_usk_client 181
	close_project 183
	configure_flashpro3_prg 183
	configure_flashpro4_prg 184
	configure_flashpro5_prg 184
	configure_flashpro6_prg 185
	create_job_project 185
	dump_tcl_support 186
	open_project 186
	ping_prg 186
	refresh_prg_list 187
	remove_prg 187
	run_selected_actions 187
	save_log 188
	save_project 188
	scan_chain_prg 189
	self_test_prg 189
	set_prg_name 189
	set_programming_action 190
	set_programming_file 190
	SmartDebug Tcl Support 192
	add_probe_insertion_point 194
	add_to_probe_group 194
	construct_chain_automatically 195
	create_probe_group 195
	delete_active_probe 195
	enable_device 196
	event_counter 196
	export_smart_debug_data 197
	fhb_control 198
	frequency_monitor 199
	get_programmer_info 200
	load_active_probe_list 200
	loopback_mode 200
	move_to_probe_group 201
	optimize_dfe 201
	pcie_config_space 202
	pcie_ltssm_status 202
	plot_eye 202
	program_probe_insertion 203
	read_active_probe 203
	read_lsram 203
	read_usram 204
	remove_from_probe_group 205
	remove_probe_insertion_point 205
	run_selected_actions 206
	save_active_probe_list 206
	scan_chain_prg 206
	select_active_probe 207
	set_live_probe 207
	set_debug_programmer 208
	set_programming_action 208
	set_programming_file 209
	smartbert_test 209
	static_pattern_transmit 211
	ungroup 212
	unset_live_probe 212
	uprom_read_memory 212
	write_active_probe 213
	write_lsram 213
	write_usram 214
	xcvr_read_register 215
	xcvr_write_register 217
	add_actel_device 220
	add_non_actel_device 220
	add_non_actel_device_to_database 221
	construct_chain_automatically 221
	copy_device 222
	cut_device 222
	enable_device 222
	paste_device 223
	remove_device 223
	remove_non_actel_device_from_database 224
	select_libero_design_device 224
	set_bsdl_file 225
	set_device_ir 225
	set_device_name 226
	set_device_order 226
	set_device_tck 226
	set_device_type 227
	set_programming_action 227
	set_programming_file 228

	Introduction to Tcl Scripting
	Tcl Commands and Supported Families
	Tcl Command Documentation Conventions
	Examples
	Wildcard Characters
	Special Characters [], { }, and \
	Entering Arguments on Separate Lines
	See Also

	Basic Syntax
	Special Characters
	Sample Tcl Script

	Types of Tcl commands
	Built-in commands
	Procedures created with the proc command

	Variables
	Global Variables

	Command substitution
	Quotes and braces
	Filenames

	Lists and arrays
	Arrays
	Special arguments (command-line parameters)

	Control structures
	if/else statements
	for loop statement
	while loop statement
	catch statement

	Print statement and Return values
	Print Statement
	Return Values

	Running Tcl Scripts from the Command Line
	Exporting Tcl Scripts
	extended_run_lib
	Arguments
	Return
	Exceptions
	See Also

	Sample Tcl Script - Project Manager
	How to Derive Required Part Information from A "Part Number"

	Project Manager Tcl Commands
	add_file_to_library
	Arguments
	Example
	See Also

	add_library
	Arguments
	Example
	See Also

	add_modelsim_path
	Arguments
	Example

	add_profile
	Arguments
	Example

	associate_stimulus
	Arguments
	Example

	change_link_source
	Arguments
	Example

	change_vault_location
	Arguments
	Examples
	See Also

	check_fdc_constraints
	Arguments
	Example
	Return Value

	check_hdl
	Arguments
	Example

	check_ndc_constraints
	Arguments
	Example

	check_pdc_constraints
	Arguments
	Example
	Return Value

	check_sdc_constraints
	Arguments
	Example
	Return Value

	close_design
	Arguments
	Example
	See Also

	close_project
	Arguments
	Example
	See Also

	configure_core
	Arguments
	Examples
	See Also

	configure_tool
	Supported tool_names

	create_and_configure_core
	Arguments
	Examples
	Notes
	See Also

	create_set
	Arguments
	Examples

	create_links
	Arguments
	Example

	create_smartdesign
	Arguments
	Examples
	See Also

	delete_component
	Arguments
	Examples
	See Also

	download_core
	Arguments
	Example

	download_latest_cores
	edit_profile
	Arguments
	Example

	export_as_link
	Arguments
	Example

	export_ba_files
	Arguments
	Returns
	Example

	export_bitstream_file
	Arguments
	Example

	export_bsdl_file
	Arguments
	Returns
	Example

	export_component_to_tcl
	Arguments

	export_design_summary
	Returns

	export_fp_pdc
	Arguments
	Returns
	Example

	export_ibis_file
	Arguments
	Returns
	Example

	export_io_pdc
	Arguments
	Returns
	Example

	export_netlist_file
	Arguments
	Returns
	Example

	export_pin_reports
	Arguments
	Returns
	Example

	export_profiles
	Arguments
	Example

	export_prog_job
	Arguments
	Example

	export_script
	Arguments
	Example

	generate_component
	Arguments
	Examples
	See Also

	generate_sdc_constraint_coverage
	Arguments
	Returns
	Example
	See Also

	import_files (Libero SoC)
	Arguments
	Example

	new_project
	Arguments
	Example

	open_project
	Arguments
	Example
	See Also

	open_smartdesign
	Arguments
	Examples
	Notes
	See Also

	organize_constraints
	Arguments
	Example

	organize_sources
	Arguments
	Arguments
	Example

	organize_tool_files
	Arguments

	project_settings
	Arguments
	Example

	refresh
	Example

	remove_core
	Arguments
	Example

	remove_library
	Arguments
	Example

	remove_profile
	Arguments
	Example

	rename_file
	Arguments
	Example
	Return Value

	rename_library
	Arguments
	Example

	run_tool
	Return
	Supported tool_names
	Example
	Note

	save_project_as
	Arguments
	Example

	save_log
	Arguments
	Example

	save_project
	Arguments
	Example

	save_smartdesign
	Arguments
	Examples
	See Also

	select_profile
	Arguments
	Example

	set_actel_lib_options
	Arguments
	Example

	set_as_target
	Arguments
	Example
	Return Value

	set_device (Project Manager)
	Arguments

	set_modelsim_options
	Arguments

	Example
	set_option
	Arguments
	Example

	set_root
	set_user_lib_options
	Arguments
	Example

	unlink
	Arguments
	Example

	unset_as_target
	Arguments
	Example
	Return Value

	use_source_file
	Arguments
	Example

	SmartDesign Tcl Commands
	sd_add_pins_to_group
	Arguments
	Examples
	See Also

	sd_clear_pin_attributes
	Arguments
	Examples
	Notes
	See Also

	sd_configure_core_instance
	Arguments
	Examples
	See Also

	sd_connect_instance_pins_to_ports
	Arguments
	Examples
	Notes
	See Also

	sd_connect_net_to_pins
	Arguments
	Examples
	Notes
	See Also

	sd_connect_pins_to_constant
	Arguments
	Examples
	Notes
	See Also

	sd_connect_pin_to_port
	Arguments
	Examples
	Notes
	See Also

	sd_connect_pins
	Arguments
	Examples
	See Also

	sd_create_bif_net
	Arguments
	Examples
	Notes
	See Also

	sd_create_bif_port
	Arguments
	Examples
	See Also

	sd_create_bus_net
	Arguments
	Examples
	Notes
	See Also

	sd_create_bus_port
	Arguments
	Examples
	See Also

	sd_create_pin_group
	Arguments
	Examples
	See Also

	sd_create_pin_slices
	Arguments
	Examples
	See Also

	sd_create_scalar_net
	Arguments
	Examples
	Notes
	See Also

	sd_create_scalar_port
	Arguments
	Examples
	See Also

	sd_delete_instances
	Arguments
	Examples
	Notes
	See Also

	sd_delete_nets
	Arguments
	Examples
	Notes
	See Also

	sd_delete_pin_group
	Arguments
	Examples
	See Also

	sd_delete_pin_slices
	Arguments
	Examples
	Notes
	See Also

	sd_delete_ports
	Arguments
	Examples
	Notes
	See Also

	sd_disconnect_instance
	Arguments
	Examples
	Notes
	See Also

	sd_disconnect_pins
	Arguments
	Examples
	Notes
	See Also

	sd_duplicate_instance
	Arguments
	Examples
	Notes
	See Also

	sd_hide_bif_pins
	Arguments
	Examples
	Notes
	See Also

	sd_instantiate_component
	Arguments
	Examples
	See Also

	sd_instantiate_core
	Arguments
	Examples
	See Also

	sd_instantiate_hdl_core
	Arguments
	Examples
	See Also

	sd_instantiate_hdl_module
	Arguments
	Examples
	See Also

	sd_instantiate_macro
	Arguments
	Examples
	See Also

	sd_invert_pins
	Arguments
	Examples
	See Also

	sd_mark_pins_unused
	Arguments
	Examples
	Notes
	See Also

	sd_remove_pins_from_group
	Arguments
	Examples
	See Also

	sd_rename_instance
	Arguments
	Examples
	Notes
	See Also

	sd_rename_net
	Arguments
	Examples
	Notes
	See Also

	sd_rename_pin_group
	Arguments
	Examples
	See Also

	sd_rename_port
	Arguments
	Examples
	Notes
	See Also

	sd_save_core_instance_config
	Arguments
	Examples
	See Also

	sd_show_bif_pins
	Arguments
	Examples
	Notes
	See Also

	sd_update_instance
	Arguments
	Examples
	Notes
	See Also

	HDL Core Tcl Commands
	create_hdl_core
	Arguments
	Example
	See Also

	hdl_core_add_bif
	Arguments
	Example
	See Also

	hdl_core_assign_bif_signal
	Arguments
	Example
	See Also

	hdl_core_delete_parameters
	Arguments
	Example
	See Also

	hdl_core_extract_ports_and_parameters
	Arguments
	Example
	See Also

	hdl_core_remove_bif
	Arguments
	Example
	See Also

	hdl_core_rename_bif
	Arguments
	Example
	See Also

	hdl_core_unassign_bif_signal
	Arguments
	Example
	See Also

	remove_hdl_core
	Arguments
	Example
	See Also

	Command Tools
	CONFIGURE_CHAIN
	Example
	Return

	CONFIGURE_PROG_OPTIONS
	configure_tool –name {CONFIGURE_PROG_OPTIONS} parameter:value pair
	Example
	Return

	GENERATEPROGRAMMINGFILE
	configure_tool –name {GENERATEPROGRAMMINGFILE} parameter:value pair
	run_tool –name {GENERATEPROGRAMMINGFILE}

	IO_PROGRAMMING_STATE
	Example
	Return

	PLACEROUTE
	configure_tool
	Parameters
	Return Value
	run_tool
	Parameters
	Return Value

	PROGRAMDEVICE
	configure_tool –name {PROGRAMDEVICE} parameter:value pair
	run_tool –name {PROGRAMDEVICE} Parameter:value pair
	Example
	Return

	PROGRAM_SPI_FLASH_IMAGE
	PROGRAMMER_INFO
	configure_tool –name {PROGRAMMER_INFO} Parameter:value (FlashPro6)
	configure_tool –name {PROGRAMMER_INFO} Parameter:value (FlashPro5)
	configure_tool –name {PROGRAMMER_INFO} Parameter:value (FlashPro4)
	configure_tool –name {PROGRAMMER_INFO} parameter:value (FlashPro3)
	Return

	SPM
	configure_tool –name {SPM} parameter:value pair
	Return

	SYNTHESIZE
	configure_tool –name {SYNTHESIZE} parameter:value pair
	run_tool –name {SYNTHESIZE}
	Example
	Return

	VERIFYPOWER
	Return
	Example
	Sample power_analysis Tcl Script <power_analysis.tcl>

	VERIFYTIMING
	Example
	Return
	Sample SmartTime Tcl Script <timing.tcl>

	SIMULATE
	Return Value

	SmartTime Tcl Commands
	create_clock
	Arguments
	Description
	Examples
	See Also

	create_generated_clock
	Arguments
	Description
	Examples
	See Also

	create_set
	Arguments
	Examples

	expand_path
	Arguments
	Examples
	See Also

	list_paths
	Arguments
	Example

	read_sdc
	Arguments
	Example

	remove_set
	Parameters
	Example

	report
	Arguments
	Timing Options and Values
	Bottleneck Options and Values
	Example

	save
	Arguments
	Example
	See Also

	set_clock_latency
	Arguments
	Description
	Examples
	See Also

	set_false_path
	Arguments
	Description
	Examples
	See Also

	set_input_delay
	Arguments
	Description
	Examples
	See Also

	set_max_delay
	Arguments
	Description
	Examples
	See Also

	set_min_delay
	Arguments
	Description
	Examples
	See Also

	set_multicycle_path
	Arguments
	Description
	Exceptions
	Examples
	See Also

	set_options
	Arguments
	xamples

	SmartPower Tcl Commands
	smartpower_add_new_scenario
	Arguments
	Examples
	See Also

	smartpower_add_pin_in_domain
	Arguments
	Notes
	Examples
	See Also

	smartpower_battery_settings
	Parameters
	Exceptions
	Returns
	Usage
	Example

	smartpower_change_clock_statistics
	Arguments
	Examples
	See Also

	smartpower_change_setofpin_statistics
	Arguments
	Notes
	Examples
	See Also

	smartpower_commit
	Arguments
	Examples
	See Also

	smartpower_compute_vectorless
	Arguments
	Example

	smartpower_create_domain
	Arguments
	Notes
	Examples
	See Also

	smartpower_edit_scenario
	Arguments
	Examples
	See Also

	smartpower_import_vcd
	Parameters
	Exceptions
	Returns
	Examples

	smartpower_init_do
	Arguments
	Examples
	See Also

	smartpower_init_set_clocks_options
	Arguments
	Notes
	Examples
	See Also

	smartpower_init_set_combinational_options
	Arguments
	Notes
	Examples
	See Also

	smartpower_init_set_enables_options
	Arguments
	Notes
	Examples
	See Also

	smartpower_init_set_primaryinputs_options
	Arguments
	Notes
	Examples
	See Also

	smartpower_init_set_registers_options
	Arguments
	Notes
	Exceptions
	Examples
	See Also

	smartpower_init_setofpins_values
	Arguments
	Notes
	Examples
	See Also

	smartpower_remove_all_annotations
	Arguments
	Notes
	Examples
	See Also

	smartpower_remove_file
	Arguments
	Examples
	See Also

	smartpower_remove_scenario
	Arguments
	Examples
	See Also

	smartpower_report_power
	Arguments
	Notes
	Examples

	smartpower_set_mode_for_pdpr
	Parameters
	Exceptions
	Return Value
	Examples

	smartpower_set_operating_condition
	Arguments
	Examples
	See Also

	smartpower_set_operating_conditions
	Arguments
	Examples
	See Also

	smartpower_set_process
	Arguments
	Examples
	See Also

	smartpower_set_temperature_opcond
	Arguments
	Examples
	See Also

	smartpower_set_voltage_opcond
	Arguments
	See Also

	smartpower_temperature_opcond_set_design_wide
	Arguments
	Examples
	See Also

	smartpower_temperature_opcond_set_mode_specific
	Arguments
	Examples
	See Also

	smartpower_voltage_opcond_set_design_wide
	Arguments
	Examples
	See Also

	smartpower_voltage_opcond_set_mode_specific
	Arguments
	Examples
	See Also

	Programming and Configuration Tcl Commands
	configure_design_initialization_data
	Arguments
	Example
	See Also

	configure_ram
	Arguments
	See Also

	configure_snvm
	Arguments
	See Also

	configure_spiflash
	Arguments
	See Also

	SPM_OTP
	configure_tool –name {SPM_OTP} parameter:value pair
	Examples
	See Also

	configure_uprom
	Arguments
	See Also

	export_spiflash_image
	Arguments
	See Also
	Export Flash Image
	See the online help for more information.

	generate_design_initialization_data
	See Also
	configure_design_initialization_data

	generate_initialization_mem_files
	Arguments
	Example
	See Also
	Design and Memory Initialization

	remove_permanent_locks
	Example
	See Also

	select_programmer
	Arguments
	Examples
	See Also
	Select Programmer
	See the online help for more information.

	set_auto_update_mode
	set_cipher_text_auth_client
	Arguments
	Example
	See Also

	set_client
	Arguments
	Examples

	set_data_storage_client
	Arguments
	Example

	set_manufacturer
	See Also

	set_plain_text_auth_client
	Arguments
	Example
	See Also

	set_plain_text_client
	Arguments
	Example
	See Also

	set_programming_interface
	Arguments
	See Also

	set_usk_client
	Arguments
	Example
	See Also

	FlashPro Express Tcl Commands
	close_project
	Arguments
	Exceptions
	Example

	configure_flashpro3_prg
	Arguments
	Exceptions
	Example

	configure_flashpro4_prg
	Arguments
	Exceptions
	Example

	configure_flashpro5_prg
	Arguments
	Exceptions
	Example

	configure_flashpro6_prg
	Arguments
	Exceptions
	Example

	create_job_project
	Arguments
	Exceptions
	Example

	dump_tcl_support
	Arguments
	Exceptions
	Example

	open_project
	Arguments
	Exceptions
	Example

	ping_prg
	Arguments
	Exceptions
	Example

	refresh_prg_list
	Arguments
	Exceptions
	Example

	remove_prg
	Arguments
	Exceptions
	Example

	run_selected_actions
	Arguments
	Exceptions
	Example

	save_log
	Arguments
	Exceptions
	Example

	save_project
	Arguments
	Exceptions
	Example

	scan_chain_prg
	Arguments
	Exceptions
	Example

	self_test_prg
	Arguments
	Exceptions
	Example

	set_prg_name
	Arguments
	Exceptions
	Example

	set_programming_action
	Arguments
	Exceptions
	Example

	set_programming_file
	Arguments
	Exceptions
	Examples

	SmartDebug Tcl Commands
	SmartDebug Tcl Support
	add_probe_insertion_point
	Arguments
	Example

	add_to_probe_group
	Arguments
	Example

	construct_chain_automatically
	Arguments
	Example
	See Also

	create_probe_group
	Arguments
	Example

	delete_active_probe
	Arguments
	Example

	enable_device
	Arguments
	Example
	See Also
	construct_chain_automatically scan_chain_prg

	event_counter
	Arguments
	Example

	export_smart_debug_data
	Arguments
	Example

	fhb_control
	Arguments
	Examples

	frequency_monitor
	Arguments
	Example

	get_programmer_info
	Example

	load_active_probe_list
	Arguments
	Example

	loopback_mode
	Arguments
	Examples

	move_to_probe_group
	Arguments
	Example

	optimize_dfe
	Arguments
	Examples

	pcie_config_space
	Arguments
	Example

	pcie_ltssm_status
	Arguments
	Example

	plot_eye
	Arguments
	Example

	program_probe_insertion
	read_active_probe
	Arguments
	Example

	read_lsram
	Physical block
	Arguments
	Exceptions
	Example
	Logical block
	Arguments
	Example

	read_usram
	Physical block
	Arguments
	Exceptions
	Example
	Logical block
	Arguments
	Example

	remove_from_probe_group
	Arguments
	Example

	remove_probe_insertion_point
	Arguments
	Example

	run_selected_actions
	Example
	See Also
	construct_chain_automatically

	save_active_probe_list
	Arguments
	Example

	scan_chain_prg
	Arguments
	Example
	See Also
	construct_chain_automatically

	select_active_probe
	Arguments
	Example

	set_live_probe
	Arguments
	Exceptions
	Example

	set_debug_programmer
	Arguments
	Example
	See Also
	construct_chain_automatically scan_chain_prg

	set_programming_action
	Arguments
	Example
	See Also
	construct_chain_automatically scan_chain_prg

	set_programming_file
	Arguments
	Example
	See Also
	construct_chain_automatically scan_chain_prg

	smartbert_test
	smartbert_test -start
	Arguments
	Examples
	smartbert_test -stop
	Arguments
	Examples
	smartbert_test -reset_counter
	Arguments
	Examples

	static_pattern_transmit
	static_pattern_transmit -start
	Parameters
	Examples
	static_pattern_transmit -stop
	Parameters
	Examples

	ungroup
	Arguments
	Example

	unset_live_probe
	Arguments
	Exceptions
	Example

	uprom_read_memory
	Arguments
	Example

	write_active_probe
	Arguments
	Example

	write_lsram
	Physical block
	Arguments
	Exceptions
	Example
	Logical block
	Arguments
	Example

	write_usram
	Physical block
	Arguments
	Exceptions
	Example
	Logical block
	Arguments
	Example

	xcvr_read_register
	Arguments
	Examples
	Reading pcslane’s 32-bit register LNTV_R0:
	Reading Register LNTV_R0 field LNTV_RX_GEAR (i.e. 0th bit of 32-bit register):

	Exception:
	SOFT_RESET Register
	Examples
	Reading all four groups' SOFT_RESET register and its field BLOCKID
	Reading the PCS SOFT_RESET register and its field BLOCKID (i.e. 16th to 31st bit):
	Reading field BLOCKID:
	Reading PCSCMN’s SOFT_RESET register and its field BLOCKID (i.e. 16th to 31st bit):
	Reading field BLOCKID:
	Reading PMA’s SOFT_RESET register and its field BLOCKID (i.e. 16th to 31st bit):
	Reading field BLOCKID:
	Reading PMA_CMN’s SOFT_RESET register and it’s field BLOCKID (i.e. 16th to 31st bit):
	Reading field BLOCKID:

	See Also

	xcvr_write_register
	Arguments
	Examples
	Writing pcscmn’s 32-bit register GSSCLK_CTRL
	Writing Register GSSCLK_CTRL field MCLK_GSSCLK_2_SEL i.e. 16th to 20th bits (5 bits) of 32-bit register

	Exception:
	SOFT_RESET Register
	Examples
	Writing all four groups' SOFT_RESET register and its field PERIPH
	Writing to the PCS SOFT_RESET register (32-bits) and its field PERIPH (i.e. 8th bit):
	Writing to field PERIPH:
	Writing to PCSCMN’s SOFT_RESET register (32-bits) its field PERIPH (i.e. 8th bit):
	Writing to field PERIPH:
	Writing to PMA’s SOFT_RESET register its field PERIPH (i.e. 8th bit):
	Writing to field PERIPH:
	Writing to PMA_CMN’s SOFT_RESET register its field PERIPH (i.e. 8th bit):
	Writing to field PERIPH:

	See Also

	Configure JTAG Chain Tcl Commands
	add_actel_device
	Arguments
	Exceptions
	Example

	add_non_actel_device
	Arguments
	Exceptions
	Examples

	add_non_actel_device_to_database
	Arguments
	Supported Families
	Exceptions
	Examples

	construct_chain_automatically
	Arguments
	Exceptions
	Example

	copy_device
	Arguments
	Exceptions
	Example

	cut_device
	Arguments
	Exceptions
	Example

	enable_device
	Arguments
	Exceptions
	Example

	paste_device
	Arguments
	Exceptions
	Examples

	remove_device
	Arguments
	Supported Families
	Exceptions
	Example

	remove_non_actel_device_from_database
	Arguments
	Supported Families
	Exceptions
	Example

	select_libero_design_device
	Syntax
	Arguments
	Exceptions
	Example
	Note

	set_bsdl_file
	Arguments
	Supported Families
	Exceptions
	Example

	set_device_ir
	Arguments
	Supported Families
	Exceptions
	Example

	set_device_name
	Arguments
	Exceptions
	Example

	set_device_order
	Arguments
	Exceptions
	Example

	set_device_tck
	Arguments
	Supported Families
	Exceptions
	Example

	set_device_type
	Arguments
	Supported Families
	Exceptions
	Example

	set_programming_action
	Arguments
	Example
	See Also
	construct_chain_automatically scan_chain_prg

	set_programming_file
	Arguments
	Example
	See Also
	construct_chain_automatically scan_chain_prg

