Contents

1 Revision History .. 1
 1.1 Revision 1.0 .. 1

2 Transceiver Tuning .. 2
 2.1 Transmitter .. 4
 2.1.1 IBIS-AMI .. 5
 2.1.2 Libero Flow ... 6
 2.1.3 SmartDebug Flow ... 7
 2.1.4 Illustration .. 9
 2.2 Receiver .. 11
 2.2.1 IBIS-AMI .. 15
 2.2.2 Libero Flow ... 16
 2.2.3 SmartDebug Flow ... 17
 2.2.4 Illustration .. 18

3 Glossary ... 22
Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1</td>
<td>Transceiver Signal Integrity Tuning Flow</td>
<td>3</td>
</tr>
<tr>
<td>Figure 2</td>
<td>Navigating to I/O Attributes in the Libero</td>
<td>6</td>
</tr>
<tr>
<td>Figure 3</td>
<td>Transceiver Signal Integrity Parameter Settings View in the Libero</td>
<td>6</td>
</tr>
<tr>
<td>Figure 4</td>
<td>SmartDebug FPGA Array Data</td>
<td>7</td>
</tr>
<tr>
<td>Figure 5</td>
<td>SmartDebug Design</td>
<td>7</td>
</tr>
<tr>
<td>Figure 6</td>
<td>Smart Bert</td>
<td>8</td>
</tr>
<tr>
<td>Figure 7</td>
<td>Tx Emphasis Amplitude</td>
<td>9</td>
</tr>
<tr>
<td>Figure 8</td>
<td>Hardware Setup for Tx</td>
<td>10</td>
</tr>
<tr>
<td>Figure 9</td>
<td>Design for IBIS-AMI Tx Model</td>
<td>10</td>
</tr>
<tr>
<td>Figure 10</td>
<td>Tx EYE - Measured Vs Simulated</td>
<td>11</td>
</tr>
<tr>
<td>Figure 11</td>
<td>Transceiver Interface</td>
<td>16</td>
</tr>
<tr>
<td>Figure 12</td>
<td>Transceiver Interface with On-demand Calibration</td>
<td>17</td>
</tr>
<tr>
<td>Figure 13</td>
<td>Rx CTLE Settings</td>
<td>17</td>
</tr>
<tr>
<td>Figure 14</td>
<td>Hardware Setup for Tx</td>
<td>18</td>
</tr>
<tr>
<td>Figure 15</td>
<td>Equivalent IBIS-AMI Simulation Setup For Hardware Setup</td>
<td>18</td>
</tr>
<tr>
<td>Figure 16</td>
<td>Eye Plot and Monitor—Default Setting with Short Reach</td>
<td>19</td>
</tr>
<tr>
<td>Figure 17</td>
<td>Eye Plot and Monitor—Optimal Setting with Short Reach</td>
<td>19</td>
</tr>
<tr>
<td>Figure 18</td>
<td>Eye Plot and Monitor —Libero Default CTLE Setting—with long reach</td>
<td>20</td>
</tr>
<tr>
<td>Figure 19</td>
<td>Eye Plot and Monitor —Optimal CTLE Setting with long reach</td>
<td>20</td>
</tr>
<tr>
<td>Figure 20</td>
<td>Eye from SmartDebug at 12.5Gbps, Long Backplane Channel</td>
<td>21</td>
</tr>
</tbody>
</table>
Tables

Table 1 Recommended Driver Amplitude, De-emphasis, Impedance Settings .. 4
Table 2 Tx Model Pin Description .. 5
Table 3 IBIS-AMI Model File Description .. 5
Table 4 Default Rx CTLE Settings ... 12
Table 5 Rx CTLE Settings .. 13
Table 6 Default Rx DFE Coefficients ... 14
Table 7 Rx Model Parameter Descriptions ... 15
Table 8 DFE Coefficient Mapping between IBIS-AMI and Libero ... 15
The revision history describes the changes that were implemented in the document. The changes are listed by revision, starting with the current publication.

1.1 Revision 1.0
The first publication of this document.
This document describes the several PolarFire Transceiver signal integrity settings as well as IBIS-AMI and SmartDebug features.

The document covers the design flow required to perform successful signal integrity tuning at both Transmitter (Tx) and Receiver (Rx) end. For commonly used terminologies, see Glossary, page 22.

Transceiver tuning for PolarFire devices is done three different ways:

- **Traditional Method (Non-simulation flow):** Traditional method is based on learnings developed from experience. If customers know the channel loss, then based on the recommendations provided in this document or on the basis of users experiences, Transceiver attributes are loaded to the device. This method does not guarantee the ideal Transceiver performance.

- **IBIS-AMI Simulations:** Transceiver tuning based on IBIS-AMI Simulations is the best method available. Simulations helps to build confidence on the performance of the hardware. In simulations, both the transmitter and receiver variables can be changed and output is observed. This method provides a clear image on how the different Transceiver attributes impacts the performance of the system. The appropriate Transceiver attributes obtained from the simulation can be applied to the device by two ways:
 - Through Libero: Change the attributes in the design while generating the bit file.
 - Through SmartDebug: The SmartDebug tool provides the facility to vary between the multiple attributes using the same bit file.

 Detailed explanation of tuning using IBIS-AMI Simulations is provided in this document.

- **SmartDebug:** SmartDebug is used for debugging the Transceiver using electrical parameters such as Tx amplitude, De-emphasis, driver impedance, Rx impedance, CTLE and DFE calibration. It gives freedom to the users to play with the signal integrity settings based on the simulations or intuitions. Details of SmartDebug are discussed in the later section of this document. For more information, see UG0743 User Guide PolarFire FPGA Debugging.

Note: Receiver optimization is disabled in Libero SoC v12.0 SmartDebug. It will be fixed in a future version.

PolarFire transceivers have a memory mapped Dynamic Reconfiguration Interface (DRI) which allows SmartDebug to communicate with the transceiver blocks in real-time. This feature provides debugging capabilities and altering of the transceivers for optimized performance in the system. After the final SmartDebug signal integrity optimization, the user can export the tuned information back into the Libero SoC software for future design regeneration.
Figure 1 • Transceiver Signal Integrity Tuning Flow

1. PolarFire Libero Design
2. Transceiver Configurator
3. IBIS-AMI Transceiver Setting or Libero Default
4. IO Editor
5. Generate Bitstream
6. Programmed PolarFire Device
7. Bit Error
 - No
 - Yes
8. SmartDebug Signal Integrity Utility
9. Final XCVR Setting
10. End
2.1 Transmitter

High speed transmitter has following capabilities that user can adjust to make the system work. Note that only transmitter tuning alone does not help for high loss channel, receiver tuning is also required to make system work without errors.

- **Amplitude**: Transmitter supports 10 amplitude settings from 100mV to 1000mV in steps of 100mV.
- **De-emphasis**: Transmitter supports six de-emphasis settings. Those are 0dB, -1dB, -2.5dB, -3.5dB, -4.4dB and -6dBmV.
- **Termination impedance**: Transmitter supports four driver terminations. Those are 85 Ω, 100 Ω, 150 Ω and 180 Ω.

The following table describes the recommended Tx settings for different channel lengths.

Table 1 • Recommended Driver Amplitude, De-emphasis, Impedance Settings

<table>
<thead>
<tr>
<th>Amplitude and De-emphasis Setting (mV with dB)</th>
<th>Tx Termination (Ω)</th>
<th>Recommended channel</th>
</tr>
</thead>
<tbody>
<tr>
<td>100mV with 0dB</td>
<td>100</td>
<td>Very Short</td>
</tr>
<tr>
<td>200mV with 0dB</td>
<td>100</td>
<td>Very Short</td>
</tr>
<tr>
<td>200mV with -1dB</td>
<td>100</td>
<td>Very Short</td>
</tr>
<tr>
<td>200mV with -2.5dB</td>
<td>100</td>
<td>Very Short</td>
</tr>
<tr>
<td>200mV with -3.5dB</td>
<td>100</td>
<td>Very Short</td>
</tr>
<tr>
<td>200mV with -4.4dB</td>
<td>100</td>
<td>Very Short</td>
</tr>
<tr>
<td>200mV with -6dB</td>
<td>100</td>
<td>Very Short</td>
</tr>
<tr>
<td>300mV with 0dB</td>
<td>100</td>
<td>Short</td>
</tr>
<tr>
<td>400mV with 0dB</td>
<td>100</td>
<td>Short</td>
</tr>
<tr>
<td>400mV with -1dB</td>
<td>100</td>
<td>Short</td>
</tr>
<tr>
<td>400mV with -2.5dB</td>
<td>100</td>
<td>Short</td>
</tr>
<tr>
<td>400mV with -3.5dB</td>
<td>100</td>
<td>Short</td>
</tr>
<tr>
<td>400mV with -4.4dB</td>
<td>100</td>
<td>Short</td>
</tr>
<tr>
<td>400mV with -6dB</td>
<td>100</td>
<td>Short</td>
</tr>
<tr>
<td>500mV with 0dB</td>
<td>100</td>
<td>Short</td>
</tr>
<tr>
<td>600mV with -3.5dB</td>
<td>150</td>
<td>Short/Medium</td>
</tr>
<tr>
<td>600mV with -6dB</td>
<td>150</td>
<td>Short/Medium</td>
</tr>
<tr>
<td>800mV with 0dB</td>
<td>150</td>
<td>Short/Medium/Long</td>
</tr>
<tr>
<td>800mV with -1dB</td>
<td>150</td>
<td>Short/Medium/Long</td>
</tr>
<tr>
<td>800mV with -2.5dB</td>
<td>150</td>
<td>Short/Medium/Long</td>
</tr>
<tr>
<td>800mV with -3.5dB</td>
<td>150</td>
<td>Short/Medium/Long</td>
</tr>
<tr>
<td>800mV with -4.4dB</td>
<td>150</td>
<td>Short/Medium/Long</td>
</tr>
<tr>
<td>800mV with -6dB</td>
<td>150</td>
<td>Short/Medium/Long</td>
</tr>
<tr>
<td>1000mV with 0dB</td>
<td>180</td>
<td>Short/Medium/Long</td>
</tr>
<tr>
<td>1000mV with -1dB</td>
<td>180</td>
<td>Short/Medium/Long</td>
</tr>
<tr>
<td>1000mV with -2.5dB</td>
<td>180</td>
<td>Short/Medium/Long</td>
</tr>
<tr>
<td>1000mV with -3.5dB</td>
<td>180</td>
<td>Short/Medium/Long</td>
</tr>
<tr>
<td>1000mV with -4.4dB</td>
<td>180</td>
<td>Short/Medium/Long</td>
</tr>
<tr>
<td>1000mV with -6dB</td>
<td>180</td>
<td>Short/Medium/Long</td>
</tr>
</tbody>
</table>
Note: Apart from these recommended settings, each driver termination (85, 100, 150 and 180 Ω) has 29 amplitude and emphasis settings ranging from 100mV with 0dB to 1000mV with -6dB. User can apply any of the recommended or other settings to the silicon according to their applications.

2.1.1 IBIS-AMI

The Tx parameters are accessed in the IBIS-AMI simulation in the following ways:

- Amplitude and De-emphasis is through the variable `TX_AmpEmph`.
- Driver Termination is the through selecting the appropriate pin in the IBIS as listed in the following table.

Table 2 • Tx Model Pin Description

<table>
<thead>
<tr>
<th>Pin</th>
<th>Variable Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5, 6</td>
<td><code>microsemi_pf_100_tx</code></td>
<td>100 to 1000mV with 100 Ω termination</td>
</tr>
<tr>
<td>11, 12</td>
<td><code>microsemi_pf_150_400tx</code></td>
<td>100 to 400mV with 150 Ω termination</td>
</tr>
<tr>
<td>13, 14</td>
<td><code>microsemi_pf_150_800tx</code></td>
<td>600 to 800mV with 150 Ω termination</td>
</tr>
<tr>
<td>7, 8</td>
<td><code>microsemi_pf_150_tx</code></td>
<td>1000mV with 150 Ω termination</td>
</tr>
<tr>
<td>15, 16</td>
<td><code>microsemi_pf_180_400tx</code></td>
<td>100 to 400mV with 180 Ω termination</td>
</tr>
<tr>
<td>17, 18</td>
<td><code>microsemi_pf_180_800tx</code></td>
<td>600 to 800mV with 180 Ω termination</td>
</tr>
<tr>
<td>9, 10</td>
<td><code>microsemi_pf_180_tx</code></td>
<td>1000mV with 180 Ω termination</td>
</tr>
<tr>
<td>3, 4</td>
<td><code>microsemi_pf_85_tx</code></td>
<td>100 to 1000mV with 85 Ω termination</td>
</tr>
</tbody>
</table>

The PolarFire IBIS-AMI models can be downloaded from link https://www.microsemi.com/products/fpga-soc/design-resources/ibis-models/ibis-models-polarfire. The following table shows the IBIS-AMI model files contained in the model package files and its descriptions.

Table 3 • IBIS-AMI Model File Description

<table>
<thead>
<tr>
<th>File Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>microsemi_pf_spisim.ibs</td>
<td>Top-level IBIS models and wrappers for Tx and Rx AMI model.</td>
</tr>
<tr>
<td>MPF300T-TX-R085.ami</td>
<td>All Amplitude and de-emphasis settings with 85 Ω termination, full set of settings are present in this transmitter AMI model.</td>
</tr>
<tr>
<td>MPF300T-TX-R100.ami</td>
<td>All Amplitude and de-emphasis settings with 100 Ω termination, full set of settings are present in this transmitter AMI model.</td>
</tr>
<tr>
<td>MPF300T-TX-R150.ami</td>
<td>1000mv amplitude settings with 150 Ω termination</td>
</tr>
<tr>
<td>MPF300T-TX-R150_800.ami</td>
<td>800mv and 600mv amplitude settings with 150 Ω termination</td>
</tr>
<tr>
<td>MPF300T-TX-R150_400.ami</td>
<td>100mv to 500mv amplitude settings with 150 Ω termination</td>
</tr>
<tr>
<td>MPF300T-TX-R180.ami</td>
<td>1000mv amplitude settings with 180 Ω termination</td>
</tr>
<tr>
<td>MPF300T-TX-R180_800.ami</td>
<td>800mv and 600mv amplitude settings with 180 Ω termination</td>
</tr>
<tr>
<td>MPF300T-TX-R180_400.ami</td>
<td>100mv to 500mv amplitude settings with 180 Ω termination</td>
</tr>
</tbody>
</table>
2.1.2 Libero Flow

The Tx and Rx settings obtained from IBIS-AMI simulation can be directly applied to the device through Libero. In this section, settings related to Tx are discussed. Following are the steps to apply Tx signal integrity settings.

To create the transceiver based design:

1. Run the **Synthesize**, this enables the **Manage Constraints**
2. Go to **Manage Constraints**
3. Go to **I/O Attributes**
4. Select the **Target**
5. Click **Edit > Edit with I/O Editor** as show in the following figure

Figure 2 • Navigating to I/O Attributes in the Libero

After the I/O Editor is opened, perform the following steps:

1. Select **XCVR View** tab.
2. Select the appropriate lane.
3. Go to **Signal Integrity View** present in the right bottom as shown in the following figure.
4. Set the Tx settings such as, Amplitude with de-emphasis, Tx Impedance as shown in the following figure.

Figure 3 • Transceiver Signal Integrity Parameter Settings View in the Libero
XCVR view tab provides options to apply different Tx settings and Termination impedance. Select the appropriate settings and apply. After this step, both Tx and Rx settings are applied to Transceiver. This fixes the Tx and Rx settings into staple (bit file) file. In-order to debug the design with respect to signal integrity, change the Tx and Rx settings through SmartDebug on the fly.

2.1.3 SmartDebug Flow

When the design is not working as expected, SmartDebug is used to debug the design with respect to signal integrity related issues. For more information on SmartDebug, see UG0743 User Guide PolarFire FPGA Debugging.

For Tx, SmartDebug is used to change the settings such as amplitude, de-emphasis and driver termination settings live on the hardware. There are two ways the hardware can be debugged.

1. Use existing design which sends data.
2. Use in-built PRBS generator from SmartDebug.

Note: Only Tx settings are discussed in this section, however, for successful debug, both Tx and Rx need to be tuned. For Rx setting, see Receiver, page 11

Following steps describe the debugging of the design with respect to Tx.

1. Program the bit file (.stp) on to the device.
2. Open the corresponding Libero Project.
3. Double click the Generate SmartDebug FPGA Array Data on Libero Software. Once the array data is generated, a green tick mark appears as shown in the following figure.

Figure 4 • SmartDebug FPGA Array Data

4. After generating the data successfully open the SmartDebug Design from the Libero Design Flow. Note that the Hardware has to be connected with FlashPro programmer and power on. If the SmartDebug is opened without powering up the hardware, it opens up in Demo Mode. Connect the hardware using FlashPro programmer and open the SmartDebug Design from the Libero Design Flow. It opens SmartDebug window as shown in the following figure. Click Debug Transceiver.

Figure 5 • SmartDebug Design
5. Go to Smart BERT tab and select the required lane to assign the pattern and Transmitter attributes as shown in the following figure. Select any data pattern or the existing design sends the data pattern.

Figure 6 • Smart BERT

6. From the drop down menu select the Tx Emphasis amplitude. Selected option sets the device registers to provide the desired de-emphasis for the particular signal amplitude. Tx impedance is also decided based on the signal amplitude.

7. After all the step are completed, click Apply for new settings on the device.
8. The inbuilt PRBS generator can be used to send out the data pattern. To enable PRBS generator select appropriate PRBS pattern and click Start on the Smart Bert window as shown in the following figure.

Figure 7 • Tx Emphasis Amplitude

2.1.4 Illustration

This section describes an example for testing the performance of IBIS-AMI model using PolarFire Evaluation Kit.

Device and Setup Details

- Device Used: MPF300T-1FCG1152.
- Transceiver block: Two Lane 0 is used for measurement.
- Dedicated internal reference clock is used for the SERDES block (156.25MHz).
- LVDS25 IO standard is used to reference clock input.
- 23GHz Tektronix (DPO72304) scope and 100G samples/sec setting is used for measuring jitter and plotting eye.
- Two feet long cable (part# Sucoflex 100 126E) is used for connecting the Tx ports to the scope.
- 2.3 inch long trace is connecting the device and the Tx SMA ports.
- Clock Recovery Configuration:- Method: PLL-Custom BW, PLL Model: Type II, Damping:700m
In the measurement the appropriate Tx settings is loaded to the silicon through SmartDebug as explained in SmartDebug Flow, page 7. Use the inbuilt PRBS31 generator to send the data out. Following figure shows the hardware setup used for the measurement.

Figure 8 • Hardware Setup for Tx

Design used to test the transmitter performance of the IBIS-AMI model is shown in the following figure. With the help of sweep option different de-emphasis settings is tested and the one which provides the best result is then loaded to SmartDebug. Measurement result is obtained with the best suited settings which is correlated with the simulation to fine tune the model.

Figure 9 • Design for IBIS-AMI Tx Model

The IBIS-AMI Tx model is connected to pass through Rx model which is a simple 100 Ω termination through die parasitic, package, board and 24 inch cable s-parameter model. The measurement environment is created virtually through the design in ADS.

Parameter sweep option is used to test the 29 different de-emphasis setting marked as 1 to 29 with each corresponding to a specific value of signal amplitude and de-emphasis.
Figure 10, page 11 shows the correlation between measurement and IBIS-AMI simulation for following settings:

- Tx Amplitude: 800 mV
- De-emphasis: 0 dB
- Tx Termination: 150 Ω
- Data Rate: 10.3125 Gbps

Simulated Tx Eye correlates well with measurement as shown in following figure.

Figure 10 • Tx EYE - Measured Vs Simulated

![Graph showing correlation between measured and simulated Tx EYE](image)

Note: Blue represents Simulation and Red represents Measurement.

2.2 Receiver

High speed data coming from transmitter passing through a channel can result in degradation of the signals and making it difficult for the receiver to detect it correctly. As the data rate increases, equalization at the receiver becomes a necessity. Equalizers are used to compensate the high frequency losses included by the channel. Analog equalization is done by Continuous Time Linear Equalizers (CTLE) whereas discrete time equalization can be achieved by Decision Feedback Equalization (DFE). For lower data rates CTLE is sufficient, however, for higher data rate DFE is also used along with CTLE.

PolarFire Rx supports 85 Ω, 100 Ω and 150 Ω terminations. The Receiver provides three types of equalizations as explained:

- **CDR Mode:** This option provides users to apply any CTLE setting including the recommended (Default values in the Libero) ones or settings obtained from the IBIS-AMI simulations.
- **CDR Mode with Calibration:** The device internal algorithm optimizes the receiver and applies the best CTLE settings in the device for the given channel and Tx attributes.
- **DFE Mode:** PolarFire transceiver is built with a five tap DFE engine. DFE is used when the data rate is high or loss of the channel is too high. DFE is always used along with CTLE. User does not have access to set the DFE co-efficients instead device will auto calibrate the DFE. In CDR Mode with calibration, the device optimizes the receiver and provides best CTLE and associated DFE coefficients. DFE in IBIS-AMI simulations is only used to sign-off the hardware.
For receiver tuning 54 CTLE settings are provided. Libero default CTLE settings are assigned for a particular data rate range and channel however other settings can also be used for the same range as shown in the following table.

<table>
<thead>
<tr>
<th>Insertion Loss</th>
<th>Data Rate (Mbps)</th>
<th>Mode</th>
<th>RX_CTLE Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short (6.5dB)</td>
<td>250-5000</td>
<td>CDR</td>
<td>No Peak +2.8 dB</td>
</tr>
<tr>
<td></td>
<td>5000-6875</td>
<td>CDR</td>
<td>3 GHz +1.4 dB</td>
</tr>
<tr>
<td></td>
<td>6875-8437.5</td>
<td>CDR</td>
<td>5 GHz +1.8 dB</td>
</tr>
<tr>
<td></td>
<td>8437.5-10312.5</td>
<td>CDR</td>
<td>5 GHz +7.3 dB</td>
</tr>
<tr>
<td></td>
<td>10312.5-12700</td>
<td>DFE</td>
<td>5 GHz +10.6dB</td>
</tr>
<tr>
<td>Medium (17.0dB)</td>
<td>250-5000</td>
<td>CDR</td>
<td>3 GHz +5.5 dB</td>
</tr>
<tr>
<td></td>
<td>5000-6875</td>
<td>CDR</td>
<td>3 GHz +1.4 dB</td>
</tr>
<tr>
<td></td>
<td>6875-8437.5</td>
<td>DFE</td>
<td>5 GHz +7.3 dB</td>
</tr>
<tr>
<td></td>
<td>8437.5-10312.5</td>
<td>DFE</td>
<td>5 GHz +7.3 dB</td>
</tr>
<tr>
<td></td>
<td>10312.5-12700</td>
<td>DFE</td>
<td>6 GHz +11.1dB</td>
</tr>
<tr>
<td>Long (25.0dB)</td>
<td>250-5000</td>
<td>CDR</td>
<td>3 GHz +11.4 dB</td>
</tr>
<tr>
<td></td>
<td>5000-6875</td>
<td>CDR</td>
<td>3 GHz +6.8 dB</td>
</tr>
<tr>
<td></td>
<td>6875-8437.5</td>
<td>DFE</td>
<td>5 GHz +7.3 dB</td>
</tr>
<tr>
<td></td>
<td>8437.5-10312.5</td>
<td>DFE</td>
<td>5 GHz +7.3 dB</td>
</tr>
<tr>
<td></td>
<td>10312.5-12700</td>
<td>DFE</td>
<td>6 GHz +11.1dB</td>
</tr>
</tbody>
</table>
The following table contains the information about all 54 CTLE settings and the recommended data rate range in which they are used. Note that user can set any settings for any data rate.

Table 5 • Rx CTLE Settings

<table>
<thead>
<tr>
<th>S.No.</th>
<th>RX_CTLE Settings</th>
<th>DC Gain (dB)</th>
<th>Peak AC Gain (dB)</th>
<th>Data Rate (Mbps)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>No_Peak_+7.3dB</td>
<td>7.27</td>
<td>7.28</td>
<td>250 - 1600</td>
</tr>
<tr>
<td>2</td>
<td>No_Peak_+9.3dB</td>
<td>9.28</td>
<td>9.29</td>
<td>250 - 1600</td>
</tr>
<tr>
<td>3</td>
<td>No_Peak_+2.8dB</td>
<td>2.85</td>
<td>3.07</td>
<td>250 - 1600</td>
</tr>
<tr>
<td>4</td>
<td>3_GHz_+5.5dB</td>
<td>-2.28</td>
<td>3.17</td>
<td>250 - 1600</td>
</tr>
<tr>
<td>5</td>
<td>3_GHz_+11.4dB</td>
<td>-7.98</td>
<td>3.46</td>
<td>250 - 1600</td>
</tr>
<tr>
<td>6</td>
<td>No_Peak_+2.82dB</td>
<td>2.82</td>
<td>2.84</td>
<td>250 - 1600</td>
</tr>
<tr>
<td>7</td>
<td>No_Peak_+0.1dB</td>
<td>0.12</td>
<td>0.13</td>
<td>250 - 1600</td>
</tr>
<tr>
<td>8</td>
<td>No_Peak_-2.5dB</td>
<td>-2.57</td>
<td>-2.48</td>
<td>250 - 1600</td>
</tr>
<tr>
<td>9</td>
<td>No_Peak_-7.1dB</td>
<td>-7.15</td>
<td>-6.86</td>
<td>250 - 1600</td>
</tr>
<tr>
<td>10</td>
<td>3_GHz_+4.62dB</td>
<td>-13.00</td>
<td>-8.38</td>
<td>250 - 1600</td>
</tr>
<tr>
<td>11</td>
<td>No_Peak_+4.6dB</td>
<td>4.61</td>
<td>4.62</td>
<td>250 - 1600</td>
</tr>
<tr>
<td>12</td>
<td>No_Peak_+1.8dB</td>
<td>1.86</td>
<td>1.88</td>
<td>250 - 1600</td>
</tr>
<tr>
<td>13</td>
<td>No_Peak_-0.9dB</td>
<td>-0.94</td>
<td>-0.87</td>
<td>250 - 1600</td>
</tr>
<tr>
<td>14</td>
<td>No_Peak_-5.6dB</td>
<td>-5.61</td>
<td>-5.42</td>
<td>250 - 1600</td>
</tr>
<tr>
<td>15</td>
<td>3_GHz_+4.6 dB</td>
<td>-11.60</td>
<td>-6.99</td>
<td>250 - 1600</td>
</tr>
<tr>
<td>16</td>
<td>3_GHz_+11.0dB</td>
<td>-9.34</td>
<td>1.71</td>
<td>>1600 - 5000</td>
</tr>
<tr>
<td>17</td>
<td>3_GHz_+5.6dB</td>
<td>-6.43</td>
<td>-0.77</td>
<td>>1600 - 5000</td>
</tr>
<tr>
<td>18</td>
<td>No_Peak_-1.1dB</td>
<td>-1.17</td>
<td>-0.62</td>
<td>>1600 - 5000</td>
</tr>
<tr>
<td>19</td>
<td>3_GHz_+12.3dB</td>
<td>-12.77</td>
<td>-0.44</td>
<td>>1600 - 5000</td>
</tr>
<tr>
<td>20</td>
<td>3_GHz_+2.3 dB</td>
<td>-6.48</td>
<td>-4.18</td>
<td>>1600 - 5000</td>
</tr>
<tr>
<td>21</td>
<td>3_GHz_+9.0dB</td>
<td>-12.96</td>
<td>-3.90</td>
<td>>1600 - 5000</td>
</tr>
<tr>
<td>22</td>
<td>3_GHz_+5.9dB</td>
<td>-5.02</td>
<td>0.90</td>
<td>>1600 - 5000</td>
</tr>
<tr>
<td>23</td>
<td>No_Peak_+0.3dB</td>
<td>0.37</td>
<td>1.01</td>
<td>>1600 - 5000</td>
</tr>
<tr>
<td>24</td>
<td>3_GHz_+12.6dB</td>
<td>-11.37</td>
<td>1.24</td>
<td>>1600 - 5000</td>
</tr>
<tr>
<td>25</td>
<td>3_GHz_+2.4dB</td>
<td>-5.07</td>
<td>-2.66</td>
<td>>1600 - 5000</td>
</tr>
<tr>
<td>26</td>
<td>3_GHz_+9.1dB</td>
<td>-11.54</td>
<td>-2.37</td>
<td>>1600 - 5000</td>
</tr>
<tr>
<td>27</td>
<td>3_GHz_+1.4dB</td>
<td>4.55</td>
<td>5.96</td>
<td>>5000 - 6875</td>
</tr>
<tr>
<td>28</td>
<td>3_GHz_+6.8dB</td>
<td>-2.32</td>
<td>4.53</td>
<td>>5000 - 6875</td>
</tr>
<tr>
<td>29</td>
<td>3_GHz_+12.9dB</td>
<td>-8.07</td>
<td>4.88</td>
<td>>5000 - 6875</td>
</tr>
<tr>
<td>30</td>
<td>3_GHz_+7.8dB</td>
<td>-5.11</td>
<td>2.70</td>
<td>>5000 - 6875</td>
</tr>
<tr>
<td>31</td>
<td>3_GHz_+2.2dB</td>
<td>0.29</td>
<td>2.57</td>
<td>>5000 - 6875</td>
</tr>
<tr>
<td>32</td>
<td>3_GHz_+14.5dB</td>
<td>-11.50</td>
<td>3.05</td>
<td>>5000 - 6875</td>
</tr>
<tr>
<td>33</td>
<td>3_GHz_+4.8dB</td>
<td>-5.16</td>
<td>-0.29</td>
<td>>5000 - 6875</td>
</tr>
<tr>
<td>34</td>
<td>3_GHz_+11.8dB</td>
<td>-11.67</td>
<td>0.17</td>
<td>>5000 - 6875</td>
</tr>
<tr>
<td>35</td>
<td>5_GHz_+1.8dB</td>
<td>4.56</td>
<td>6.36</td>
<td>>6875 - 84375</td>
</tr>
<tr>
<td>36</td>
<td>5_GHz_+7.3dB</td>
<td>-2.30</td>
<td>5.03</td>
<td>>6875 - 84375</td>
</tr>
</tbody>
</table>
For higher data rates, 5 tap DFE is used along with CTLE. Libero sets the default DFE and CTLE settings for given channel and data rate as shown in following table.

Note: These settings are used when auto calibration of DFE is not selected.

Table 6 • Default Rx DFE Coefficients

<table>
<thead>
<tr>
<th>Channel</th>
<th>Data Rate</th>
<th>Ctle Setting</th>
<th>DFE Coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHORT</td>
<td>103125-12700</td>
<td>5_GHz_+10.6dB</td>
<td>6,-3,-2,-1,-1</td>
</tr>
<tr>
<td>MEDIUM</td>
<td>6875 - 84375</td>
<td>5_GHz_+7.3dB</td>
<td>7,1,2,2,0</td>
</tr>
<tr>
<td>MEDIUM</td>
<td>84375 - 103125</td>
<td>5_GHz_+7.3dB</td>
<td>8,-3,-2,-1,0</td>
</tr>
<tr>
<td>MEDIUM</td>
<td>103125-12700</td>
<td>6_GHz_+11.1dB</td>
<td>10,0,-2,-1,0</td>
</tr>
<tr>
<td>LONG</td>
<td>6875 - 84375</td>
<td>5_GHz_+7.3dB</td>
<td>7,-1,0,0,0</td>
</tr>
<tr>
<td>LONG</td>
<td>84375 - 103125</td>
<td>5_GHz_+7.3dB</td>
<td>8,-5,-1,-1,0</td>
</tr>
<tr>
<td>LONG</td>
<td>103125-12700</td>
<td>6_GHz_+11.1dB</td>
<td>10,1,0,0,0</td>
</tr>
</tbody>
</table>
2.2.1 IBIS-AMI

This section describes the IBIS-AMI Rx model parameters that needs to be varied in order to obtain proper tuning of the receiver. In Rx model, AMI tab contains four important parameters used for receiver optimization. The following table lists the information about the four key parameters.

Table 7 • Rx Model Parameter Descriptions

<table>
<thead>
<tr>
<th>Rx Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RXTERM</td>
<td>Rx Termination. It supports 85 Ω, 100 Ω, and 150 Ω</td>
</tr>
<tr>
<td>CTLE_ID</td>
<td>This parameter changes the CTLE Settings. Total 54 settings are provided. Detailed description of the complete 54 settings are provided in Table 5, page 13.</td>
</tr>
<tr>
<td>DFE_MODE</td>
<td>Determine the DFE calibration mode. 1=off, 2=fixed, 3=adapt. Adapt mode does auto calibration of the device to obtain the best DFE coefficients where as in fixed mode coefficients are added manually.</td>
</tr>
<tr>
<td>DFE_TAP</td>
<td>5 Tap DFE is used. Each tap can be manually edited by the customers in DFE_MODE=2 or DFE_MODE=3. In DFE_MODE=3 the tool takes the value provided in DFE_TAP as initial values to obtain the optimized DFE coefficients.</td>
</tr>
</tbody>
</table>

DFE, when used in adapt mode, calibrates the receiver and gives the best DFE coefficients. These coefficients are then used in the fixed mode in simulation to view the proper eye. Each DFE coefficient in Libero corresponds to 6m in IBIS-AMI DFE tap (tap1 to tap5). Mapping of the coefficients is described in the following table.

Table 8 • DFE Coefficient Mapping between IBIS-AMI and Libero

<table>
<thead>
<tr>
<th>IBIS AMI Value</th>
<th>Libero Value (Hex)</th>
<th>IBIS AMI Value</th>
<th>Libero Value (Hex)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.006</td>
<td>-1</td>
<td>-0.006</td>
<td>1</td>
</tr>
<tr>
<td>0.012</td>
<td>-2</td>
<td>-0.012</td>
<td>2</td>
</tr>
<tr>
<td>0.018</td>
<td>-3</td>
<td>-0.018</td>
<td>3</td>
</tr>
<tr>
<td>0.024</td>
<td>-4</td>
<td>-0.024</td>
<td>4</td>
</tr>
<tr>
<td>0.03</td>
<td>-5</td>
<td>-0.03</td>
<td>5</td>
</tr>
<tr>
<td>0.036</td>
<td>-6</td>
<td>-0.036</td>
<td>6</td>
</tr>
<tr>
<td>0.042</td>
<td>-7</td>
<td>-0.042</td>
<td>7</td>
</tr>
<tr>
<td>0.048</td>
<td>-8</td>
<td>-0.048</td>
<td>8</td>
</tr>
<tr>
<td>0.054</td>
<td>-9</td>
<td>-0.054</td>
<td>9</td>
</tr>
<tr>
<td>0.06</td>
<td>-a</td>
<td>-0.06</td>
<td>a</td>
</tr>
<tr>
<td>0.066</td>
<td>-b</td>
<td>-0.066</td>
<td>b</td>
</tr>
<tr>
<td>0.72</td>
<td>-c</td>
<td>-0.72</td>
<td>c</td>
</tr>
<tr>
<td>0.78</td>
<td>-d</td>
<td>-0.78</td>
<td>d</td>
</tr>
<tr>
<td>0.084</td>
<td>-e</td>
<td>-0.084</td>
<td>e</td>
</tr>
<tr>
<td>0.09</td>
<td>-f</td>
<td>-0.09</td>
<td>f</td>
</tr>
</tbody>
</table>

Note: DFE in IBIS-AMI is only used to sign off the hardware. User cannot update the DFE settings in Libero or SmartDebug takes the default DFE settings from the Table 6, page 14.
2.2.2 Libero Flow

Transceiver settings applied using Libero while generating the bit file is explained in IBIS-AMI, page 5. Apart from the earlier explained settings, the Rx model has an additional option for receiver calibration. This feature is available only in Libero SoC 12.0 and above and not supported by Libero version 2.3 or below.

Select the **Transceiver Interface** in the SmartDesign window to open the configurator dialog box as shown in following figure. Receiver calibration option is present in the General setting. The appropriate receiver calibration method is selected out of the three options provided in the drop down menu as shown in the following figure.

Figure 11 • Transceiver Interface

Three options for Receiver calibration are:

- **None**: No DFE or CTLE calibration will be done. The receiver equalization is done based on the recommended (default in Libero) values based on data rate and channel loss or user defined values from IBIS-AMI simulations for CTLE only.
- **DFE**: DFE settings taken from default values from table 6
- **CTLE**: CTLE settings are taken from default values from Table 4, page 12 or from user defined values from IBIS-AMI simulations. User defined values are set using I/O editor.
- **On-Demand**: This option provides an additional input pin named LANE_CALIB_REQ as highlighted in figure 12. When this pin is toggled from fabric, CDR mode with calibration of the receiver is done to obtain the best CTLE and DFE settings depending on the data rate and channel. The following figure shows the transceiver interface with on-demand calibration.

Figure 12 • Transceiver Interface with On-demand Calibration

- **On-Demand and First Lock**: This method is an extension of On-Demand calibration option. This option allows the customers to perform the CDR mode with calibration either by toggling the pin or after the CDR locks for the first time (at power up or after a CTRL_RST).

Follow the section IBIS-AMI, page 5 further to set the CTLE, Termination settings. In the Signal Integrity View window of I/O Editor, Rx settings are selected as follows:

1. **Calibration**: Auto-CDR or None options are provided. Auto-CDR will automatically tune the CTLE. In None mode, CTLE values from RX_CTLE will be applied.
2. **RX_CTLE**: 54 CTLE settings are provided which are same as provided in the IBIS-AMI file. User can select any value from IBIS-AMI simulations or recommended values from table 4 or any user specific.
3. **DFE** mode is enabled automatically based on data rate and insertion loss. User does not have option to set DFE settings. DFE value is either auto tuned in on-demand mode or uses recommended value from Table 4, page 12 in None mode.

2.2.3 SmartDebug Flow

Follow the section SmartDebug Flow, page 7 for invoking the SmartDebug GUI from the Libero. Select the appropriate receiver settings from the menu as shown in following figure. Click **Apply** to apply the settings to PolarFire transceiver.

Figure 13 • Rx CTLE Settings
CTLE mode: user can select any of 54 CTLE settings from Rx CTLE tab. After selecting the Transmitter and Receiver attributes.

DFE mode: in case the design working in DFE mode, use Optimize Receiver button to auto tune the CTLE and DFE settings. New settings will be displays on the GUI.

In case, user using far end loop back mode, user can generate the PRBS pattern to transfer the data stream. Click Start to start the data out as shown in the Figure 13, page 17.

2.2.4 Illustration

For receiver performance of the IBIS-AMI model, the following design is used as shown in Figure 14, page 18. The Tx is connected to the Rx through, board, 24 inch cables, package and backplane. The output of the backplane is looped back the PolarFire Evaluation kit Rx SMAs. Following figure shows the hardware setup.

Figure 14 • Hardware Setup for Tx

The equivalent IBIS-AMI simulation setup is shown in the following figure.

Figure 15 • Equivalent IBIS-AMI Simulation Setup For Hardware Setup
The different modes are described as follows.

2.2.4.1 CTLE (CDR mode)

CTLE can be used up to 10.3125 Gbps for short channel as shown in the Table 4, page 12. The following example show the data capture with default Libero settings as well as optimal CTLE values from IBIS-AMI simulations at 10.3125Gbps.

The system used for the short reach is 5 inch backplane channel along with cables and PolarFire board traces with following transceiver settings.

- **Tx**: 400mV, 0dB, 100 Ω
- **Rx**: 100 Ω
 - Libero default CTLE: 5GHz+7.3db and CTLE from Simulation: 5GHz+1.8db
- **Data Pattern**: PRBS31

The following figure shows the eye Plot from Simulation with Libero default CTLE setting and corresponding eye from ye monitor on SmartDebug.

Figure 16 • Eye Plot and Monitor—Default Setting with Short Reach

The following figure shows eye plot captured with optimal CTLE setting from Simulation and corresponding eye from eye monitor on SmartDebug.

Figure 17 • Eye Plot and Monitor—Optimal Setting with Short Reach

Note that, eye with simulated CTLE values look better than the Libero default CTLE setting since the Libero default CTLE setting is calibrated to have loss of 6.5dB which is higher than the loss used in this example. Default Libero settings works with zero bit error however, best value can be found from the IBIS-AMI simulation. In case of CDR Mode with calibration, Transceiver tunes the best CTLE setting.
CTLE can be used up to 6.8Gbps for long channel as shown in the table 4. Below example show the data capture with default Libero settings as well as optimal CTLE values from IBIS-AMI simulations at 6.25Gbps. The system used for the long reach is 34 inch backplane channel along with cables and PolarFire board traces.

- Tx: 1000mV, -6dB, 180 Ω
- Rx: 100 Ω
 - Libero default CTLE: 3GHz+6.8db
 - CTLE from Simulation: 5GHz+7.3db
- Data Pattern: PRBS31

The following figure shows the eye from simulation with Libero default CTLE setting and Corresponding Eye from Eye Monitor on SmartDebug

Figure 18 • Eye Plot and Monitor —Libero Default CTLE Setting with long reach

![Eye Plot and Monitor —Libero Default CTLE Setting with long reach](image)

The following figure shows eye captured with optimal CTLE setting from simulation and corresponding eye from eye monitor on SmartDebug.

Figure 19 • Eye Plot and Monitor —Optimal CTLE Setting with long reach

![Eye Plot and Monitor —Optimal CTLE Setting with long reach](image)

Both the eyes with Libero default CTLE and CTLE from simulation shows similar results.
2.2.4.2 DFE Mode:
DFE is used above 6.8Gbps for long and medium reach channel, and above 10.3125Gbps for short reach channel. Below example is based on long channel at 12.5Gbps. The transceiver tunes the best value with following system attributes.

- Channel: 34 inch backplane channel and 4 inch PolarFire Evaluation Kit PCB trace
- Tx Amplitude: 800 mV
- De-emphasis: 0 dB
- Tx Termination: 150 Ω
- Data Rate: 12.5 Gbps
- Data pattern: PRBS31

Following figure shows the eye obtained in SmartDebug. The system works with zero bit errors.

Figure 20 • **Eye from SmartDebug at 12.5Gbps, Long Backplane Channel**

The blue portion shows the zero bit error rate region.
Following are the commonly used terminology in this document.

- **TX**: Transmitter
- **RX**: Receiver
- **Channel**: The connecting medium between Transceiver TX to Transceiver RX is called channel. A channel may contains PCB traces, connectors, cables and backplanes.
- **Insertion Loss**: The Insertion loss is the loss of signal power resulting from the insertion due to a transmission line (Channel) and is usually expressed in decibels. The insertion loss is always expressed with respect to frequency. In this document, the loss is expressed at 5Ghz frequency.
- **Reach**: Reach is a way express the insertion loss of the channel in simple terms. The following terms are used in the document
 - Very Short Channel or Very Short Reach: channel loss is less than 2dB
 - Short length Channel or Short Reach: channel loss is less than 6.5dB
 - Medium length Channel or Medium Reach: channel loss is less than 17dB
 - Long length Channel or Long Reach: channel loss is less than 25dB
- **Libero**: Libero is a software to design and generate the PolarFire FPGA programming bit file.
- **SmartDebug**: A tool in the Libero used for debugging the transceiver online.
- **IBIS-AMI**: IBIS-AMI is a set of files used to simulate the PolarFire transceiver with channel, using simulators such as ADS, Hyperlynx, SystemSI, QCD and so on. IBIS-AMI simulations helps in finalizing the transceiver settings and sign-off its hardware.