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Revision History 

The revision history describes the changes that were implemented in the document. The changes 
are listed by revision, starting with the most current publication. 

Revision 1.0 

Revision 1.0 is the first publication of this document. 
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Introduction 

Libero SoC v12.0 only supports the Enhanced Constraint Flow for SmartFusion2, IGLOO2 and RTG4 device 
families. To open a design created with the Classic Constraint Flow in a Libero SoC v11.9 or earlier release, 
you must manually port your design to the Enhanced Constraint Flow. 

This document describes the step by step procedure to migrate a SmartFusion2, IGLOO2 and RTG4 project 
created with the Classic Constraint Flow to the Enhanced Constraint Flow. 

To migrate a design created in the Classic Constraint Flow in a Libero SoC v11.9 or an earlier release to the 
Enhanced Constraint Flow in Libero SoC v11.9 or v12.0 release, you must follow the below steps: 

1. Create a new project and import/upgrade/re-generate the design source files. 

2. Import and organize the constraint files (see UG0691: Libero SoC Design Flow User Guide). 

3. Configure and run the Synthesis tool. 

4. Configure and run the Place and Route tool. 

5. Configure and run the Verify Timing tool. 

There is no change in the way the remaining tools work; however, you will need to regenerate any reports, 
bitstreams, etc., as the project is new. 

https://coredocs.s3.amazonaws.com/Libero/12_0_0/Tool/libero_ecf_ug.pdf
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1 Create a New Project and Import/Upgrade/Regenerate the Design 
Source Files 

Using Libero SoC v11.9 or v12.0, create a new project with the same Family, Die, Package, Speed, Die Voltage 
and Part Range as the Classic Constraint Flow project to be migrated. You must ensure that all the fields in 
the project settings dialog box are same. If you are using Libero SoC v11.9, ensure that the “Use enhanced 
constraint flow when creating a new project” option is enabled in the Project  Preferences  Design Flow 
dialog box before creating the project to create the new project in the Enhanced Constraint Flow. 
 
For the remainder of this document, the original (CCF) project will be referred to as “the CCF project”, and 
the new project will be referred to as “the ECF project”.  

1.1 Import Design Source Files 

You must import all the design source files to re-create the project. 

Note: You cannot import blocks created using a CCF project to the ECF project. If you have a block 
published in the Classic Constraint Flow, you must recreate the block in an Enhanced Constraint Flow 
project and republish the block. 

1.1.1 Import HDL Source files (.v, .vhd, .vhdl, .sv, .vm, .vh, .svh, .h) 

Import/link all the HDL source files/folders in your design. To import the HDL source files/folders to the 
ECF project, click File  Import  HDL Sources Files/Folders and browse to the <ccf_project>/hdl folder, 
select all the hdl files/folders and click Open. Similarly, you can use the File  Link Files option to link the 
HDL source files/folders used. When importing VHDL files, you must make sure to create and organize the 
VHDL libraries.  

1.2 Import Stimulus Files (.v, .vhd, .vhdl, .sv, .svh, .vh, .h) 

Import all Stimulus files in your design. To import the HDL Stimulus files to the ECF project, click File  
Import  HDL Stimulus Files and browse to the <ccf_project>/stimulus folder, select all the stimulus files 
and click Open.  

1.2.1 Import Components (.cxf files) 
Note: You must import all Component files from the CCF project to the ECF project. 

To import a Component to the ECF project, you must import its corresponding .cxf file from the CCF 
project. Components include SmartDesign, SystemBuilder, MSS and Configured cores. To import a .cxf file, 
click File  Import  Components and browse to the <ccf_project>/Component/work folder, select the 
.cxf file and click Open. Repeat this step for each Component in the CCF project. 

If your design uses an on-FPGA nonvolatile memory (eNVM or uPROM), you may need to adjust the path 
to the memory files associated with various clients. To adjust the path to the memory files, open the 
eNVM/uPROM configurator, select the Data Storage Client and choose Modify Client from the right-click 
menu to open the Modify Data Storage Client dialog box. Adjust the path of the memory file by selecting 
the Browse button next to the Content from file option, as shown in the following figure. 
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                            Figure 1. Modify Data Storage Client Dialog Box 

Note: If the CCF project uses HDL+ cores (cores created from HDL, shown as   in the Design 
Hierarchy) instantiated in SmartDesign Components, you must import the HDL+ cores to successfully re-
create the SmartDesign Components in the ECF project. To import the HDL+ cores to the ECF project, 
close the project and copy the User folder from <ccf_project>/Component/ to 
<ecf_project>/Component/. Reopen the ECF project to see the HDL+ cores. 

1.2.2 Upgrade Cores to the Latest Versions 

After importing cores, you can upgrade them to the latest versions as available. To upgrade cores to the 
latest versions, follow these steps: 

1. Download the latest version of the core into your vault. 
2. Upgrade each configured core in your design to the latest version by right-clicking the core 

Component in the design hierarchy and choosing ‘Replace Component Version…’. 
3. Regenerate the design. 
4. Rerun the Derive Constraints step. 
5. Rerun the tool flow. 

Note: To upgrade the cores that are directly instantiated in SmartDesign components, right-click the core 
instance in the SmartDesign component and choose ‘Replace Version’. 

1.2.3 Regenerate all Components 

You must regenerate all Components after importing the Component files and upgrading the cores. 

If you have System Builder Components in your design, you must open the System Builder Component’s 
GUI (by double-clicking on the Component in the Design Hierarchy), go through all the pages, review the 
page configurations, including the file paths to eNVM/uPROM clients in the Memories page, and click 
Finish to regenerate the System Builder Component. 
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During regeneration, the Components containing CCC, SERDES, FDDR, OSC and MSS cores will generate 
Component level SDC files which will be used later to generate the derived constraints in the Enhanced 
Constraint Flow.  

Note: If you are migrating to Libero SoC v12.0, you must build the design hierarchy after importing all HDL 

sources and importing and generating all Components. To do so, click  in the Design 
Hierarchy tab and set the top module as the root. 
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2 Import and Organize Constraint files 

The Constraint Manager in Enhanced Constraint Flow is used to create, import, link, check, delete, edit design 
constraints and associate the constraint files to design implementation tools. The Constraint Manager allows 
you to organize constraints for SynplifyPro Synthesis, Libero SoC Place-and-Route and SmartTime Timing 
Analysis. For timing constraints, this strategy replaces the timing analysis ‘scenario’ feature available in 
SmartTime in the Classic Constraint Flow. For all constraints, the Constraints Manager replaces the “Associate 
for Compile/Place and Route” options in the Classic Constraint Flow. 

2.1 I/O and Floorplanning Constraints 

2.1.1 Importing PDC Files 

Import/link the existing I/O and Floorplan PDC files containing I/O and Floorplan assignments and 
attributes using the corresponding tabs in the Constraint Manager window. You must associate the PDC 
files with the Place and Route tool by enabling the corresponding checkbox available for each PDC file 
imported/linked. 

You may need to modify PDC files as follows: 

• If you had constraints for I/O register combining options in the original CCF project’s PDC files, 

you must remove them, create a Compile Netlist constraint file (NDC) and specify the I/O register 

combining constraints using the new set_ioff command in the NDC file.  

• set_preserve and set_mitigation PDC commands are now NDC commands in the Enhanced 

Constraint Flow and must be removed from the I/O PDC file before importing the I/O PDC file. 

Create an Compile Netlist Constraint (NDC) file and add the set_preserve and set_mitigation 

commands there. 

• If you had reserved pins for device migration using the Interactive I/O Editor in the CCF project, 
you must re-specify these constraints under the I/O Settings group available in the Constraint 
Manager I/O Attributes tab. 

• If you had reserved pins for probes or programming set in Project  Project Settings  Device 
Settings configuration page in the CCF project, you must re-specify these constraints under the 
I/O Settings group available in the Constraint Manager I/O Attributes tab. 

The following table shows how the constraints set in I/O PDC files in the CCF project must be modified in 
the ECF project. 

Constraints in I/O PDC File in Classic 
Constraint Flow 

Constraints in Enhanced Constraint Flow 

I/O PDC file NDC file 

set_io CLK0_PAD          \ 
    -pinname 137         \ 
    -fixed yes           \ 
    -LPE Wake_On_Change  \ 
    -DIRECTION INPUT 

set_io CLK0_PAD          \ 
    -pinname 137         \ 
    -fixed yes           \ 
    -LPE Wake_On_Change  \ 
    -DIRECTION INPUT 

 

set_io D \ 
-REGISTER yes \ 
-IN_DELAY 0 

set_io D \ 
-IN_DELAY 0 

set_ioff {D}  \ 
-in_reg yes  \ 
-out_reg no \ 
 -en_reg no 
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set_io CLK0_PAD_0            \ 
    -pinname 23              \ 
    -fixed yes               \ 
    -FF_IO_STATE LAST_VALUE  \ 
    -IN_DELAY 0              \ 
    -LPE Wake_On_Change      \ 
    -RES_PULL Up             \ 
   -SCHMITT_TRIGGER On      \ 
    -DIRECTION INPUT    

set_io CLK0_PAD_0            \ 
    -pinname 23              \ 
    -fixed yes               \ 
   -FF_IO_STATE LAST_VALUE  \ 
    -IN_DELAY 0              \ 
    -LPE Wake_On_Change      \ 
    -RES_PULL Up             \ 
   -SCHMITT_TRIGGER On      \ 
    -DIRECTION INPUT    

 

set_preserve RCLKINT_0  set_preserve RCLKINT_0 

set_mitigation \ 
  -inst_name CLKINT_0 \ 
  -mitigated yes 

 set_mitigation \ 
 -inst_name CLKINT_0 \ 
  -mitigated yes 

 

2.2 Timing Constraints 

2.2.1 Derived Constraints 

Similar to constraints that were automatically generated for Components such as CCC, MSS, Chip 
Oscillators, and IP Cores such as CoreResetP in the Classic Constraint Flow, Libero has generalized the 
concept of Component/core generated constraints with the new ‘Derived Constraints’ feature available 
from the Constraint Manager’s Timing tab in the Enhanced Constraint Flow. 

After executing Section 2, execute the ‘Derive Constraints’ action. This instantiates Component-level 
timing constraints (for Components that represent silicon features) into the design. It generates a <root 
module name>_derived_constraints.sdc file that can be managed with the rest of the user SDC files to 
provide a complete set of SDC constraints for the design. 

2.2.2 User Constraints 

In the ECF project, import all SDC files from the <ccf_project>/constraint folder by clicking the Import 
button in the Constraint Manager Timing tab. 

If you had timing constraints set in interactive mode in the SmartTime Constraints Editor in the CCF 
project, they are not captured in the user SDC files. Export the SDC file (File  Export  Timing 
Constraints (SDC)) to capture such constraints from the previous Libero SoC release supporting Classic 
Constraint Flow and import that SDC file into the ECF project. 

Each user defined SDC constraint must be modified as follows: 

• If a constraint in a user SDC file is included in the Derived Constraints file, it must be removed 

from the user SDC file. 

• A significant change from the Classic Constraint Flow to the Enhanced Constraint Flow is that 
user SDC constraints must be defined at the RTL level. This means that any reference to a design 
object (net, pin, instance, or port) must use pre-synthesis names and hierarchies. This is a change 
compared to the Classic Constraint Flow, where SDC constraints used post-layout names and 
hierarchies. As a result, all constraints referring to post-layout object names must be changed as 
follows: 
o The pin separator is now ‘/’ (it was ‘:’ in the Classic Constraint Flow). 
o Instance names at hierarchy levels below the RTL instance names must be removed. 
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The following table shows examples of constraints set in the Classic Constraint Flow and their equivalents 
in the Enhanced Constraint Flow (modified). 

Timing Constraint in Classic Constraint Flow   Timing Constraint in Enhanced Constraint Flow 

create_clock -name { PCIe_HPDMA_SMCFIC_0.CCC_0.GL0_net } -period 
13.330 -waveform { 0.000 6.660 } [get_pins 
{PCIe_HPDMA_SMCFIC_0/CCC_0/CCC_INST/INST_CCC_IP:GL0 }] 

 

create_clock -name { 
PCIe_HPDMA_SMCFIC_0.CCC_0.GL0_net } -period 13.330 -
waveform { 0.000 6.660 } [get_pins {  
PCIe_HPDMA_SMCFIC_0/CCC_0/CCC_INST/GL0 }] 

 

create_clock -name 
{PCIe_HPDMA_SMCFIC_CCC_0_FCCC|GL3_net_inferred_clock } -period 
10.000 -waveform { 0.000 5.000 } [get_pins {  
PCIe_HPDMA_SMCFIC_0/CCC_0/CCC_INST/INST_CCC_IP:GL3 }] 

 

create_clock -name { 
PCIe_HPDMA_SMCFIC_CCC_0_FCCC|GL3_net_inferred_cloc
k } -period 10.000 -waveform { 0.000 5.000 } [get_pins {  
PCIe_HPDMA_SMCFIC_0/CCC_0/CCC_INST/GL3 }] 

 

create_clock -name { FIC_2_APB_M_PCLK } -period 53.333 -waveform { 
0.000 26.666 } [get_pins {  
PCIe_HPDMA_SMCFIC_0/PCIe_HPDMA_SMCFIC_MSS_0/MSS_ADLIB_INST
/INST_MSS_120_IP:CLK_CONFIG_APB}] 

 

create_clock -name { FIC_2_APB_M_PCLK } -period 53.333 -
waveform { 0.000 26.666 } [get_pins {  
PCIe_HPDMA_SMCFIC_0/PCIe_HPDMA_SMCFIC_MSS_0/MS
S_ADLIB_INST/CLK_CONFIG_APB }] 

 

 

2.2.3 Organizing Constraints 

As you migrate your design to the Enhanced Constraint Flow, make sure to properly organize your SDC 
constraints to match your needs. Use the Constraints Manager UI to decide which constraints files to apply 
to Synthesis, Place and Route, and Timing Verification, respectively. 

2.3 Netlist Attributes Constraints 

2.3.1 Synthesis Netlist Attributes 

Synthesis netlist attributes are typically used to set Synthesis optimization directives for design objects 
(instances, nets, pins, and ports) at the RTL level. The Enhanced Constraint Flow allows users to manage 
Synopsys FDC constraints within the Libero environment. If there were any FDC constraints for the original 
design, you may now create/import/link FDC files in the Constraint Manager’s Netlist Attributes tab. Note 
that FDC files should not contain timing constraints; see section 2.2 Timing Constraints to manage timing 
constraints for Synthesis. 
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3 Configure and Run the Synthesis Tool 

In the Enhanced Constraint Flow, the synthesis and post synthesis compile netlist steps have been combined 
to simplify the flow. You must configure the Synthesis step in the Enhanced Constraint Flow by combining 
both the Synthesis and Compile configuration options used in the Classic Constraint Flow. 

Note: Some Compile options (such as Enable Design Separation Methodology, Abort Compile if errors are 
found in the physical design constraints, Limit the number of displayed high fanout nets in compile report to 
option) set in the Compile Options dialog box (Design flow  Compile  Configure Options) in the Classic 
Constraint Flow have been moved to the Project  Project Settings  Design Flow configuration page in the 
Enhanced Constraint Flow. 

 

Classic Constraint Flow Enhanced Constraint Flow 
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Figure 2: Comparison of Synthesis and Compile Options in both the Classic Constraint Flow  
and the Enhanced Constraint Flow 

Running Synthesis in the Enhanced Constraint Flow invokes Synopsys’ Synplify Pro to generate the synthesized 
netlist, and then runs the post synthesis Compile Netlist step. This post synthesis compile netlist step does the 
following: 

• Validates the post synthesis netlist. 

• Generates various reports including an accurate resource report. Note that a hierarchical resource 
report is available in the Enhanced Constraint Flow, to assess resource count at any level in the design 
hierarchy. 

Note: After Synthesis, verify the compile report to ensure that the resource utilization is preserved in the 
Enhanced Constraint Flow. A significantly different resource utilization may indicate missing or incorrect 
migration steps. 
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4 Configure and Run the Place and Route Tool 

You can configure the Place and Route tool in the Enhanced Constraint Flow using the same configuration 
options as in the Classic Constraint Flow. The Place and Route tool use the constraints files associated with 
the Place and Route tool set in the different tabs in the Constraint Manager window. 
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5 Configure and Run the Verify Timing Tool 

You can configure the Verify Timing tool in the Enhanced Constraint Flow using the same configuration 
options as in the Classic Constraint Flow. The Verify Timing tool and the SmartTime GUI use the timing 
constraints files associated with the Timing Verification tool in the Constraint Manager window. 
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6 Appendix: Migrating an Example Project from Libero SoC v11.9  
to Libero SoC v12.0 

The following steps for migration also apply for CCF projects created with Libero SoC v11.8 as well as with 
Libero SoC v11.9 and their service pack (SP) releases. 

6.1 Prerequisites 

Before migration, do the following: 

1. Download the original project from 

https://coredocs.s3.amazonaws.com/Libero/12_0_0/support_files/IGLOO2_Oversampling_119_

ccf.7z and save as (for example) “IGLOO2_Oversampling_119_ccf”. 

2. Install Libero SoC v11.9 SP2 software. 

3. Install Libero SoC v12.0 software. 

6.2 Example Project Migration 

To migrate the IGLOO2 High Speed SERDES design created using the Classic Constraint Flow in Libero SoC 
v11.9 to the Enhanced Constraint Flow in Libero SoC v12.0, do the following: 

Step 1: Create a new project and import/upgrade/re-generate the design source files 

1. Create a new project with the following device settings: 

a. Project Name: IGLOO2_Oversampling_120_ecf 

b. Family: IGLOO2 

c. Die: M2GL010T 

d. Package: 484 FBGA 

e. Speed: -1 

f. Part Range: COM 

g. Voltage: 2.5 

2. Import the HDL source files/folders to the ECF project: 

a. Click File  Import  HDL Sources Files/Folders and browse to the 

IGLOO2_Oversampling_119_ccf/hdl folder of the CCF project 

b. Select all the hdl files and click Open.  

3. Import the Component files: 

a. Click File  Import  Components and browse to the 

IGLOO2_Oversampling_119_ccf/Component/work folder 

b. Select the .cxf file located in each Component folder and click Open. 

4. For this example, ensure that you import the following .cxf files: 

a. IGLOO2_Oversampling.cxf 

b. IGLOO2_Oversampling_top.cxf 

c. Receiver.cxf 

d. Transmitter.cxf 

e. UART_INTERFACE.cxf 

Note: When you import a System Builder component, the underlying MSS/HPMS component need 
not be imported. In this example IGLOO2_Oversampling_HPMS.cxf need not be imported. 

https://coredocs.s3.amazonaws.com/Libero/12_0_0/support_files/IGLOO2_Oversampling_119_ccf.7z
https://coredocs.s3.amazonaws.com/Libero/12_0_0/support_files/IGLOO2_Oversampling_119_ccf.7z
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5. Open the System Builder Component (IGLOO2_Oversampling in the Design Hierarchy), click through 

all the pages and click Finish at the end to regenerate the System Builder Component. 

6. Open and regenerate the Transmitter SmartDesign Component. 

7. Open and regenerate the Receiver SmartDesign Component. 

8. Open and regenerate the UART_INTERFACE SmartDesign Component. 

9. Open and regenerate the IGLOO2_Oversampling_top SmartDesign Component. 

10. Build the Design Hierarchy and set the SmartDesign Component IGLOO2_Oversampling_top as the 

root module: In the Design Hierarchy tab, right-click “IGLOO2_Oversampling_top” and click“Set as 

root”.  

Step 2: Import and organize the constraint files 

1. Import the I/O constraint file (io.pdc) by navigating to IGLOO2_Oversampling_119_ccf/constraint/io 

folder of the CCF project by selecting File  Import I/O Constraint (PDC) Files. 

2. The timing constraints set in the SmartTime tool will not appear in the user sdc file in the Classic 

Constraint Flow. To capture these timing constraints, open the CCF project using Libero SoC v11.9 and 

export the sdc file as export_sdc.sdc by selecting FileExportSDC. Then import the export_sdc.sdc 

file to the ECF project by selecting FileImportTiming Constraint (SDC) Files. 

3. Open the Constraint Manager’s Timing tab and click Derive Constraints to generate the timing 

derived constraints. 

4. Open the two sdc files present in the Constraint Manager’s Timing tab and remove the constraints 

which are already present in IGLOO2_Oversampling_top_derived_constraints.sdc from the 

export_sdc.sdc file.  

5. Change the remaining constraints in export_sdc.sdc as follows: 

From To 

set_clock_groups -name internal_groupname_1 -asynchronous -
group 
{IGLOO2_Oversampling_top_FCCC_0_FCCC|GL0_net_inferred_clock} 

set_clock_groups -name internal_groupname_1 -
asynchronous -group {FCCC_0/GL0} 

set_clock_groups -name internal_groupname_2 -asynchronous -
group 
{IGLOO2_Oversampling_top_FCCC_0_FCCC|GL1_net_inferred_clock} 

set_clock_groups -name internal_groupname_2 -
asynchronous -group {FCCC_0/GL1} 

set_clock_groups -name internal_groupname_3 -asynchronous -
group 
{IGLOO2_Oversampling_CCC_0_FCCC|GL0_net_inferred_clock} 

set_clock_groups -name internal_groupname_3 -
asynchronous -group {IGLOO2_Oversampling_0/CCC_0/GL0} 

set_clock_groups -name internal_groupname_4 -asynchronous -
group 
{IGLOO2_Oversampling_HPMS|FIC_2_APB_M_PCLK_inferred_clock} 

set_clock_groups -name internal_groupname_4 -
asynchronous -group 
{IGLOO2_Oversampling_0/IGLOO2_Oversampling_HPMS_0/C
LK_CONFIG_APB} 

set_clock_groups -name internal_groupname_5 -asynchronous -
group 
{IGLOO2_Oversampling_top_SERDES_IF_0_SERDES_IF|EPCS_1_TX_C
LK_inferred_clock} 

set_clock_groups -name internal_groupname_5 -
asynchronous -group 
{SERDES_IF_0/SERDESIF_INST/EPCS_TXCLK_1 } 

 

set_clock_groups -name internal_groupname_6 -asynchronous -
group 
{IGLOO2_Oversampling_top_SERDES_IF_0_SERDES_IF|EPCS_1_RX_C
LK_inferred_clock} 

set_clock_groups -name internal_groupname_6 -
asynchronous -group 
{SERDES_IF_0/SERDESIF_INST/EPCS_RXCLK_1 } 
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6. To associate the timing constraints files with Synthesis, Place and Route and Timing Verification tools, 

check all the boxes for the two sdc files in the Timing tab of the Constraint Manager. 

7. To associate the IO constraint file with the Place and Route tool, check the box next to the pdc file in 

the IO Attributes tab of the Constraint Manager. 

Step 3: Configure and run the Synthesis tool 

Configure the Synthesis tool with the same options set in the Synthesis and Compile tool in the Classic 
Constraint Flow (as shown below) and run Synthesis. 

 

Figure 3: Synthesize Options Dialog Box 
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Figure 4: Project Settings-Design Flow Dialog Box 

 

Step 4: Configure and run the Place and route tool 

Configure the Place and Route tool as shown below and run the tool. 

 

Figure 5: Layout Options Dialog Box 
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Step 5: Configure and run the Verify Timing tool 

Configure the Verify Timing tool as shown below and run the tool. 

 

Figure 6: Verify Timing Configuration Options Dialog Box 

For reference, the post-migration design can be accessed here:  

https://coredocs.s3.amazonaws.com/Libero/12_0_0/support_files/IGLOO2_Oversampling_120_ecf.7z 
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