
UG0691
User Guide

Libero SoC Design Flow
Libero SoC v12.0 - SmartFusion2, IGLOO2, RTG4

NOTE: PDF files are intended to be viewed on the printed page; links and cross-references in this PDF file
may point to external files and generate an error when clicked. View the online help included with
software to enable all linked content.

Libero SoC Design Flow User Guide

 1

Microsemi makes no warranty, representation, or guarantee regarding the information contained
herein or the suitability of its products and services for any particular purpose, nor does
Microsemi assume any liability whatsoever arising out of the application or use of any product or
circuit. The products sold hereunder and any other products sold by Microsemi have been
subject to limited testing and should not be used in conjunction with mission-critical equipment
or applications. Any performance specifications are believed to be reliable but are not verified,
and Buyer must conduct and complete all performance and other testing of the products, alone
and together with, or installed in, any end-products. Buyer shall not rely on any data and
performance specifications or parameters provided by Microsemi. It is the Buyer’s responsibility
to independently determine suitability of any products and to test and verify the same. The
information provided by Microsemi hereunder is provided “as is, where is” and with all faults,
and the entire risk associated with such information is entirely with the Buyer. Microsemi does
not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP rights,
whether with regard to such information itself or anything described by such information.
Information provided in this document is proprietary to Microsemi, and Microsemi reserves the
right to make any changes to the information in this document or to any products and services
at any time without notice.

About Microsemi
Microsemi Corporation (NASDAQ: MSCC) offers a comprehensive portfolio of semiconductor
and system solutions for aerospace & defense, communications, data center and industrial
markets. Products include high-performance and radiation-hardened analog mixed-signal
integrated circuits, FPGAs, SoCs and ASICs; power management products; timing and
synchronization devices and precise time solutions, setting the world's standard for time; voice
processing devices; RF solutions; discrete components; enterprise storage and communication
solutions; security technologies and scalable anti-tamper products; Ethernet solutions; Power-
over-Ethernet ICs and midspans; as well as custom design capabilities and services. Microsemi
is headquartered in Aliso Viejo, California, and has approximately 4,800 employees globally.
Learn more at www.microsemi.com.

5-02-00691-4/12.18

Microsemi Corporate
Headquarters
One Enterprise, Aliso Viejo,
CA 92656 USA
Within the USA: +1 (800) 713-4113
Outside the USA: +1 (949) 380-6100
Fax: +1 (949) 215-4996
Email:
sales.support@microsemi.com
www.microsemi.com

©2018 Microsemi Corporation. All
rights reserved. Microsemi and the
Microsemi logo are registered
trademarks of Microsemi
Corporation. All other trademarks and
service marks are the property of
their respective owners.

http://www.microsemi.com/
mailto:sales.support@microsemi.com
http://www.microsemi.com/

 Libero SoC Design Flow User Guide

 2

Table of Contents

Table of Contents .. 2

Libero SoC Introduction .. 4
Welcome to Microsemi's Libero® SoC v12.0 ... 4
Licensing and Additional Resources .. 4
Libero SoC Design Flow - SmartFusion2, IGLOO2, RTG4 ... 8
Design Flow and Design Sources .. 10
Supported Families .. 12
File Types in Libero SoC .. 13
Software Tools - Libero SoC .. 14
Software IDE Integration .. 15

Libero Design Flow for SmartFusion2, IGLOO2, and RTG4 16
Starting the Libero GUI .. 16
Design Report .. 17
Using the Libero SoC New Project Wizard .. 18

Create and Verify Design .. 26
System Builder ... 26
MSS - SmartFusion2 only .. 26
Create with SmartDesign ... 29
Changing memory content ... 72
Create Core from HDL ... 81
Designing with HDL .. 82
Designing with Block Flow ... 86
Verify Pre-Synthesized Design - RTL Simulation .. 86

Libero SoC Constraint Management .. 91
Invocation of Constraint Manager From the Design Flow Window .. 91
Libero SoC Design Flow .. 91
Introduction to Constraint Manager .. 92
Import a Constraint File .. 96
Constraint Types .. 101
Constraint Manager – I/O Attributes Tab ... 102
IO Advisor (SmartFusion2, IGLOO2, and RTG4) .. 103
Constraint Manager – Timing Tab ... 110
Derived Constraints.. 113
Constraint Manager – Floor Planner Tab .. 114
Constraint Manager – Netlist Attributes Tab .. 115

Implement Design .. 117

 Libero SoC Design Flow User Guide

 3

Synthesize .. 117
Verify Post-Synthesized Design ... 122
Configure Flash*Freeze ... 123
Configure Register Lock Bits ... 123
Design Flow in Implementation .. 125
Place and Route - SmartFusion2, IGLOO2, RTG4 .. 130
Multiple Pass Layout Configuration (SmartFusion2, IGLOO2, RTG4) 134
Resource Usage (SmartFusion2, IGLOO2, RTG4) ... 136
Global Net Report .. 137
Verify Post Layout Implementation .. 143

Configure Hardware ... 164
Programming Connectivity and Interface ... 164
Programmer Settings ... 166
Select Programmer .. 168

Program Design ... 169
Generate FPGA Array Data ... 169
Configure I/O States During JTAG Programming .. 174
Configure Programming Options (SmartFusion2 and IGLOO2) .. 175
Configure Programming Options (RTG4 Only) .. 178
Configure Security .. 182
Configure Bitstream ... 190
Generate Bitstream .. 191
Run Programming Device Actions - SmartFusion2, IGLOO2, RTG4 192

Debug Design ... 205
Generate SmartDebug FPGA Array Data .. 205
SmartDebug ... 205
Identify Debug Design .. 206

Handoff Design for Production ... 208
Export Bitstream ... 208
Export Bitstream - RTG4 .. 213
Export FlashPro Express Job - SmartFusion2, IGLOO2, RTG4 ... 214
Export Job Manager Data - SmartFusion2, IGLOO2 ... 219
Export Pin Report ... 220
Export BSDL File .. 220
Export IBIS Model .. 220

Handoff Design for Firmware Development .. 222
Software IDE Integration .. 222
Export Firmware – SmartFusion2 .. 222

Export SmartDebug Data (Libero SoC) .. 225

References ... 229

 Libero SoC Design Flow User Guide

 4

Libero SoC Introduction

Welcome to Microsemi's Libero® SoC v12.0
Microsemi Libero® System-on-Chip (SoC) design suite offers high productivity with its comprehensive, easy to
learn, easy to adopt development tools for designing with Microsemi’s power efficient flash FPGAs, SoC FPGAs,
and Rad-Tolerant FPGAs. The suite integrates industry standard Synopsys Synplify Pro® synthesis and Mentor
Graphics ModelSim® simulation with best-in-class constraints management, debug capabilities, and secure
production programming support.
The Libero SoC v12.0 release supports SmartFusion2, IGLOO2, RTG4, and PolarFire devices.

More Information
To access datasheets and silicon user guides, visit www.microsemi.com, select the relevant product family and
click the Documentation tab. Tutorials, Application Notes, Development Kits & Boards are listed in the Design
Resources tab.
Click the following links for additional information:
• Libero SoC– Learn more about Libero SoC including Release Notes, a complete list of devices/packages,

and timing and power versions supported in this release.
• Libero SoC PolarFire – Learn more about Libero SoC PolarFire including Release Notes, a complete list of

devices/packages, and timing and power versions supported in this release.
• Programming – Learn more about Programming Solutions
• Power Calculators – Find XLS-based estimators for device families
• Licensing – Learn more about Libero licensing

Licensing and Additional Resources

Microsemi License Utility
The Microsemi License Utility enables you to check and update your license settings for the Libero SoC software.
It displays your current license settings, the license host-id for the current host, and allows you to add a new
license file to your settings.
To start the Microsemi License Utility, run it from Start > All Programs > Microsemi Libero SoC vx.xx>
Microsemi License Utility.
To request a license, click Request License to go to the Microsemi license website. You can select and copy
(right-click, Copy) the disk volume value displayed in the window and paste the value into the Microsemi license
web form.
The following licenses are available:
• 1-year Platinum - Purchased license that supports all devices
• 1-year Gold - Purchased licenses that supports a smaller set of devices than Platinum
• 1-year Silver - Free license that supports a smaller set of devices than Gold

https://www.microsemi.com/products/fpga-soc/fpgas
https://www.microsemi.com/products/fpga-soc/soc-fpgas
https://www.microsemi.com/products/fpga-soc/rad-tolerant-fpgas
https://www.microsemi.com/products/fpga-soc/design-resources/design-software/synplify-pro-me
https://www.microsemi.com/products/fpga-soc/design-resources/design-software/modelsim
https://www.microsemi.com/products/fpga-soc/fpga-and-soc
https://www.microsemi.com/products/fpga-soc/design-resources/dev-kits-boards
https://www.microsemi.com/products/fpga-soc/design-resources/design-software/libero-soc
https://www.microsemi.com/product-directory/design-resources/3863-libero-soc-polarfire
https://www.microsemi.com/products/fpga-soc/design-resources/programming-debug
https://www.microsemi.com/products/fpga-soc/design-resources/power-calculator
https://www.microsemi.com/products/fpga-soc/design-resources/licensing

 Libero SoC Design Flow User Guide

 5

• 30-day Evaluation - Free license that supports all devices but programming is disabled
When you have received your license file, follow the instructions and save the license to your local disk. In the
Microsemi License Utility window, click Add License File and browse/select the license file from your disk. If you
are using a floating license, click Add License Server and enter the Port Number and Name of the license server
host.
The list of features for which you are licensed will show all versions, but your license must have a version equal to
or greater than your design tools release version in order for the libero.exe and designer.exe tools to run.
The list at the lower right shows the order in which the license files are read, with the first file read at the top of the
list.
Click Write Report File to view and/or print the Microsemi Tools Licenses Report, or to save it as a TXT file.

Figure 1 · Microsemi License Utility

The Microsemi Libero SoC License Information Web Page provides additional licensing-related information
including links to troubleshooting and FAQ documents.

FPGA and SoC Product Documentation Available on the Microsemi Web Site
General Information about Microsemi's FPGA & SoC products is available here.

Information About Supported Families:

Table 1 · Product Families and Derivatives

Device Family Family
Derivatives

Description

SmartFusion2 N/A Address fundamental requirements for advanced security, high
reliability and low power in critical industrial, military, aviation,
communications and medical applications.

IGLOO2 N/A Low-power mixed-signal programmable solution

https://www.microsemi.com/products/fpga-soc/design-resources/licensing#documents
https://www.microsemi.com/products/fpga-soc/fpga-and-soc
http://www.microsemi.com/products/fpga-soc/soc-fpga/smartfusion2#overview
http://www.microsemi.com/products/fpga-soc/fpga/igloo2-fpga#overview

 Libero SoC Design Flow User Guide

 6

Device Family Family
Derivatives

Description

RTG4 N/A Microsemi's new RTG4 family of radiation-tolerant FPGAs

Information About Libero SoC Software

More information about Libero SoC Software is available here.

Application Notes and Tutorials

Application Notes and Tutorials are generally found on the Documentation tab of the supported technology page.
For example, SmartFusion2 Application Notes and Tutorials can be found here.

Online Help - Libero SoC
This online help system is designed to open in the HTML Help Viewer – Microsoft's Help window for viewing
compiled HTML Help. If you do not have the HTML Help Viewer components installed on your system, you can
view it with Microsoft's Internet Explorer browser (use version 4.x or later for complete functionality).

Viewing HTML Files on Linux

You may need to set your LINUX_HTMLREADER variable such that it enables a HTML viewer. For example:
setenv LINUX_HTMLREADER /usr/bin/firefox

If you do not set this variable then some HTML files, such as the help, will not be available from within software.

See Also
Navigation tabs
User's Guides

Using Navigation tabs

Libero SoC online Help, which is generated using Microsoft HTML Help, includes the following navigation tabs:

Contents

The Contents tab displays books and pages that represent the categories of information in the online Help
system. When you click a closed book, it opens to display its content (sub-books and pages). When you click an
open book, it closes. When you click pages, you select topics to view in the right-hand pane of the HTML Help
viewer.

Search

The Search tab enables you to search for words in the Help system and locate topics containing those words.
Full-text searching looks through every word in the online Help to find matches. When the search is completed, a
list of topics is displayed so you can select a specific topic to view.

http://www.microsemi.com/products/fpga-soc/radtolerant-fpgas/rtg4#overview
https://www.microsemi.com/products/fpga-soc/design-resources/design-software/libero-soc
https://www.microsemi.com/products/fpga-soc/soc-fpga/smartfusion2#documentation

 Libero SoC Design Flow User Guide

 7

Reading User Guides

Libero SoC includes online manuals. The online manuals are in PDF format and available from Libero SoC Start
Menu. Note that PDF files are for printing and viewing offline; use the online help to view user support on your
workstation.
From the Start menu, choose All Programs > Microsemi > Libero SoC > Libero SoC Reference Manuals
You must have Adobe Acrobat Reader or similar PDF viewer to open and view the PDF user guides.

Viewing PDF Files on Linux
You may need to set your LINUX_PDFREADER variable such that it enables a PDF viewer. For example:

setenv LINUX_PDFREADER /usr/bin/kpdf

If you do not set this variable then some PDF files, such as the SmartTime User's Guide, will not be available from
within software.

Microsemi SoC Products Group Headquarters
Microsemi Corporation is a supplier of innovative programmable logic solutions, including field-programmable
gate arrays (FPGAs) based on antifuse and flash technologies, high-performance intellectual property (IP) cores,
software development tools, and design services targeted for the high-speed communications, application-specific
integrated circuit (ASIC) replacement, and radiation-tolerant markets.

Address: Microsemi SoC Products Group
3870 North First Street
San Jose, CA 95134

Phone: 408-643-6000

Contact Information
For the most up-to-date contact information, check the Microsemi Home Page.
Contact information for FPGAs & SoCs can be found at the FPGAs and SoCs Support Page
If you do not have internet access, the following information was accurate at the time of publication:
• Technical Support

• Web: https://soc.microsemi.com/mycases
• Phone (NA): 800.262.1060
• Phone (Int'l): +1 650.313.4460
• Email: soc_tech@microsemi.com

• Customer (non-technical) Support
• Phone: +1 650.318.2470
• Email: customer.service@microsemi.com

• Sales Support
• For pricing, order status and lead time information for all Microsemi SoC products, contact your

Microsemi Sales Representative
• Technical Support for RH and RT FPGAs that are regulated by International Traffic in Arms Regulations

(ITAR)
• Phone (NA): 888.988.ITAR
• Phone (Int'l): +1 650.318.4900
• Email: soc_tech_itar@microsemi.com

https://www.microsemi.com/
https://www.microsemi.com/product-directory/product-support/4217-fpgas-socs-support
https://soc.microsemi.com/mycases
https://www.microsemi.com/salescontacts

 Libero SoC Design Flow User Guide

 8

Libero SoC Design Flow - SmartFusion2, IGLOO2, RTG4

Figure 2 · Libero SoC Design Flow for SmartFusion2, IGLOO2, RTG4 Devices

Create Design
Create your design with any or all of the following design capture tools:
• System Builder
• Create SmartDesign
• Create HDL
• Create SmartDesign Testbench (optional, for simulation only)
• Create HDL Testbench (optional, for simulation only)

Once the design is created, you can invoke simulation for pre-synthesis verification.

 Libero SoC Design Flow User Guide

 9

It is also possible to click the button, to execute the Libero SoC software through Place and Route with
default settings. However this bypasses constraint management.

Constraints
• Manage Constraints

In the FPGA design world, constraint files are as important as design source files. Constraint files are
used throughout the FPGA design process to guide FPGA tools to achieve the timing and power
requirements of the design. For the synthesis step, SDC timing constraints set the performance goals
whereas non-timing FDC constraints guide the synthesis tool for optimization. For the Place-and-
Route step, SDC timing constraints guide the tool to achieve the timing requirements whereas
Physical Design Constraints (PDC) guide the tool for optimized placement and routing (Floorplanning).
For Static Timing Analysis, SDC timing constraints set the timing requirements and design-specific
timing exceptions for static timing analysis.
Libero SoC provides the Constraint Manager as the cockpit to manage your design constraint needs.
This is a single centralized graphical interface for you to create, import, link, check, delete, edit design
constraints and associate the constraint files to design tools in the Libero SoC environment. The
Constraint Manager allows you to manage constraints for SynplifyPro synthesis, Libero SoC Place-
and- Route and the SmartTime Timing Analysis throughout the design process.
Invocation of Constraint Manager From the Design Flow Window
After project creation, double-click Manage Constraints in the Design Flow window to open the
Constraint Manager.

Figure 3 · Constraint Manager

• See Also
• Constraint Manager
• New Project Wizard to import/link design constraints when creating new projects

Implement
• Netlist Viewer (User Guide)
• Synthesize - Double-click Synthesize to run synthesis on your design with the default settings. The

constraints associated with Synthesis in the Constraint Manager are passed to Synplify.
• Verify Post-Synthesis Implementation (Simulate)
• Configure Flash*Freeze
• Configure Register Lock Bits

https://coredocs.s3.amazonaws.com/Libero/12_0_0/Tool/stdalone_nlv_ug.pdf

 Libero SoC Design Flow User Guide

 10

• Place and Route - Place and Route takes the design constraints from the Constraint Manager and

runs with default settings. This is the last step in the push-button design flow execution.
• Verify Post Layout Implementation

• Generate Back Annotated Files
• Simulate
• Verify Timing - Right click and select Configure Options to specify a timing report with your desired

conditions.
• Open SmartTime
• Verify Power
• SSN Analyzer

Program and Debug Design
• Generate FPGA Array Data
• Update eNVM Memory Content
• Configure Hardware

• Programming Connectivity and Interface- Organizes your programmer(s) and devices.
• Configure Programmer - Opens your programmer settings; use if you wish to program using

settings other than default.
• Device I/O States During Programming - JTAG Mode Only - Sets your device I/O states during

programming; use if your design requires that you change the default I/O states.
• Configure Programming Options
• Configure Security Policy Manager
• Program Design

• Generate Bitstream
• Run PROGRAM Action

• Debug Design
• Identify Debug Design
• SmartDebug (User Guide)

• Configure Permanent Locks for Production (Configure OTP Security)

Handoff Design for Production
• Export Bitstream
• Export FlashPro Express Job
• Export Job Manager Data
• Export Pin Report
• Export BSDL
• Export IBIS Model

Handoff Design for Firmware Development

Handoff Design for Debugging (Export SmartDebug Data)

Design Flow and Design Sources
The Libero SoC Design Flow supports HDL and Netlist design sources. The Libero SoC Design Flow window and
the Constraint Manager are context-sensitive to the type of design sources: HDL or Netlist.

https://coredocs.s3.amazonaws.com/Libero/12_0_0/Tool/smartdebug_ug.pdf

 Libero SoC Design Flow User Guide

 11

Design Flow for HDL designs
When the design source is HDL, the Design Flow window displays Synthesis as a design step. The Constraint
Manager also makes available Synthesis as a target to receive timing constraints and netlist attribute constraints.
The options to promote or demote global resources of the chip are set in the Synthesis options.

Design Flow for EDIF designs
When the design source is a Netlist, the Design Flow window displays Compile Netlist as a design step. Timing
constraints can be passed to Place and Route and Timing Verification only.
The options to promote or demote global resources of the chip are set in the Compile Netlist options.
The HDL flow versus the Netlist Flow is compared and contrasted below.

HDL Flow Netlist Flow

 Design Flow Window

 Design Flow Window

 Constraint Manager

 Constraint Manager

 Libero SoC Design Flow User Guide

 12

HDL Flow Netlist Flow

 Constraint Manager - Check *.fdc and *.ndc

 Constraint Manager - Check *.ndc only

Global Promotion/Demotion Options set in
Synthesis Options Dialog Box

Global Promotion/Demotion Options set in
Compile Netlist Options Dialog Box

Figure 4 · HDL vs. Netlist Flow

Supported Families
Microsemi's Libero SoC software supports the following families of devices:
• SmartFusion2
• IGLOO2
• RTG4

When we specify a family name, we refer to the device family and all its derivatives, unless otherwise specified.
See the table below for a list of supported device families and their derivatives:

 Libero SoC Design Flow User Guide

 13

Table 2 · Product Families and Derivatives

Device Family Family
Derivatives

Description

SmartFusion2 N/A Address fundamental requirements for advanced security, high
reliability and low power in critical industrial, military, aviation,
communications and medical applications.

IGLOO2 N/A Low-power mixed-signal programmable solution

RTG4 N/A Microsemi's new family of radiation-tolerant FPGAs

File Types in Libero SoC
When you create a new project in Libero SoC it automatically creates new directories and project files. Your
project directory contains all of your local project files. When you import files from outside your current project, the
files are copied into your local project folder.
The Project Manager enables you to manage your files as you import them. If you want to store and maintain your
design source files and design constraint files in a central location outside the Project location, Libero gives you
the option to link them to your Libero project folders when you first create your project. These linked files are not
copied but rather linked to your project folder.
Depending on your project preferences and the version of Libero SoC you installed, the software creates
directories for your project.
The top level directory (<project_name>) contains your *.prjx file; only one *.prjx file is enabled for each Libero
SoC project. If you associate Libero SoC as the default program with the *.prjx file (Project > Preferences >
Startup > Check the default file association (.prjx) at startup), you can double-click the *.prjx file to open the
project with Libero SoC.
component directory - Stores your SmartDesign components (SDB and CXF files) and the *_manifest.txt file for
each design components in your Libero SoC project. Refer to the *_manifest.txt file if you want to run synthesis,
simulation, and firmware development with your own point tools outside the Libero SoC environment. For each
design component, Libero SoC generates a <component_name>_manifest.txt file which stores the file name and
location of:
• HDL source files to be used for synthesis and simulations
• Stimulus files and configuration files for simulation
• Firmware files for software IDE tools
• Configuration files for programming
• Configuration files for power analysis.

Refer to the SmartFusion2/IGLOO2 Custom Flow User Guide for details about how to run synthesis, simulation,
firmware development, programming, and power analysis outside the Libero SoC environment.
constraint directory - All your constraint files (SDC timing constraint files, floorplanning PDC files, I/O PDC files,
Netlist Attributes NDC files)
designer directory - *_ba.sdf, *_ba.v(hd), STP, PRB (for Silicon Explorer), TCL (used to run designer),
impl.prj_des (local project file relative to revision), designer.log (logfile)
hdl directory - all hdl sources. *.vhd if VHDL, *.v and *.h if Verilog
simulation directory - meminit.dat, modelsim.ini files, *.bfm files and *.vec file, run.do file for simulation.

http://www.microsemi.com/products/fpga-soc/soc-fpga/smartfusion2#overview
http://www.microsemi.com/products/fpga-soc/fpga/igloo2-fpga#overview
http://www.microsemi.com/products/fpga-soc/radtolerant-fpgas/rtg4#overview

 Libero SoC Design Flow User Guide

 14

smartgen directory - GEN files and LOG files from generated cores
stimulus directory - BTIM, Verilog, and VHDL stimulus files
synthesis directory - *.edn, *_syn.prj (Synplify log file), *.psp (Precision project file), *.srr (Synplify logfile),
precision.log (Precision logfile), *.tcl (used to run synthesis) and many other files generated by the tools (not
managed by Libero SoC)
viewdraw directory - viewdraw.ini files

Internal Files
Libero SoC generates the following internal files. They may or may not be encrypted. They are for Libero SoC
housekeeping and are not for users.

File File Extension Remarks

Routing Segmentation File *.seg

Combiner Info *.cob

Hierarchical Netlist *.adl

Flattened Netlist *.afl

Location file *.loc

map file *.map Fabric Programming File

tieoffs.txt *.txt RTG4 devices only

Software Tools - Libero SoC
The Libero SoC integrates design tools, streamlines your design flow, manages design and log files, and passes
design data between tools.
For more information on Libero SoC tools, visit:
https://www.microsemi.com/products/fpga-soc/design-resources/design-software/libero-soc#overview

Function Tool Company

Project Manager, HDL Editor, Core Generation Libero SoC Microsemi
SoC

Synthesis Synplify® Pro
ME

Synopsys

Simulation ModelSim®
ME

Mentor
Graphics

Timing/Constraints, Power Analysis, Netlist Viewer, Floorplanning,
Package Editing, Place-and-Route, Debugging

Libero SoC Microsemi
SoC

Programming Software FlashPro
Express

Microsemi
SoC

Project Manager, HDL Editor targets the creation of HDL code. HDL Editor supports VHDL and Verilog with
color, highlighting keywords for both HDL languages.

https://www.microsemi.com/products/fpga-soc/design-resources/design-software/libero-soc#overview

 Libero SoC Design Flow User Guide

 15

Synplify Pro ME from Synopsys is integrated as part of the design package, enabling designers to target HDL
code to specific devices.
Microsemi SoC software package includes:
• ChipPlanner displays I/O and logic macros in your design for floorplanning
• Netlist Viewer design schematic viewer
• SmartPower power analysis tool
• SmartTime static timing analysis and constraints editor

ModelSim ME from Mentor Graphics enables source level verification so designers can verify HDL code line by
line. Designers can perform simulation at all levels: behavioral (or pre-synthesis), structural (or post-synthesis),
and back-annotated (post-layout), dynamic simulation. (ModelSim is supported in Libero Gold and Platinum only.)

Software IDE Integration
Libero SoC simplifies the task of transitioning between designing your FPGA to developing your embedded
firmware.
Libero SoC manages the firmware for your FPGA hardware design, including:
• Firmware hardware abstraction layers required for your processor
• Firmware drivers for the processor peripherals that you use in your FPGA design.
• Sample application projects are available for drivers that illustrate the proper usage of the APIs

You can see which firmware drivers Libero SoC has found to be compatible with your design by opening the
Firmware View. From this view, you can change the configuration of your firmware, change to a different version,
read driver documentation, and generate any sample projects for each driver.
Libero SoC manages the integration of your firmware with your preferred Software Development Environment,
including SoftConsole, Keil, and IAR Embedded Workbench. The projects and workspaces for your selected
development environment are automatically generated with the proper settings and flags so that you can
immediately begin writing your application.

See Also
Exporting Firmware and the Software IDE Workspace
Running Libero SoC from your Software Tool Chain
View/Configure Firmware Cores

 Libero SoC Design Flow User Guide

 16

Libero Design Flow for SmartFusion2,
IGLOO2, and RTG4

When creating a new project, follow the directions in the New Project Wizard to create a project.

Starting the Libero GUI
When starting Libero SoC GUI, the user will be presented with the option of either creating a new project, or
opening an old one.

Figure 5 · Libero SoC Start-up GUI

• Clicking on Open ... opens a pre-existing Libero SoC project.
• Clicking on New... starts the New Project Wizard. Upon completion of the wizard, a new Libero SoC project

is created and opened.
Having opened a project, the Libero SoC GUI presents a Design Flow window on the left hand side, a log and
message window at the bottom, and project information windows on the right. Below we see the GUI of a newly
created project with only the top level Design Flow Window steps visible.

 Libero SoC Design Flow User Guide

 17

Figure 6 · Design Flow Window

The Design Flow Window
The Design Flow Window for each technology family may be slightly different. The Constraint Flow choice made
during new project creation may also affect the exact elements of design flow. However, all flows include some
version of the following design steps:
• Create
• Constrain
• Implement
• Program Design
• Debug Design
• Handoff

Design Report
The Design Report Tab lists all the reports available for your design, and displays the selected report.
Reports are added automatically as you move through design development. For example, Timing reports are
added when you run timing analysis on your design. The reports are updated each time you run timing analysis.
If the Report Tab is not visible, you can expose it at any time by clicking on the main menu item Design >
Reports
If a report is not yet listed, you may have to create it manually. For example, you must invoke Verify Power
manually before its report will be available.
Reports for the following steps are available for viewing here:
• Project Summary

 Libero SoC Design Flow User Guide

 18

• Synthesize
• Place and Route
• Verify Timing
• Verify Power
• Programming

• Generate FPGA Array Data
• Generate Bitstream

• Export
• Export Bitstream
• Export Pin Report
• Export BSDL File
• Export IBIS Model

Using the Libero SoC New Project Wizard
Start a new Libero SoC project by pulling down the Main Libero Menu item Project and selecting New Project
This will bring up the Libero SoC New Project Wizard which will walk you through the steps to create a new Libero
Project:
• Project Details such as Name and file location
• Device Selection - Once the device selection has been made, and in any dialog box hereafter, you may click

the "Finish" button.
• Device Settings
• Design Template - this dialog box may be not be available if there are no design templates for the chosen

technology.
• Add HDL Sources
• Add Constraints

New Project Creation Wizard – Project Details
You can create a Libero SoC project using the New Project Creation Wizard. You can use the pages in the wizard
to:
• Specify the project name and location
• Select the device family and parts
• Set the I/O standards
• Use System Builder or MSS in your design project (SmartFusion2 and IGLOO2 only)
• Import HDL source files and/or design constraint files into your project

 Libero SoC Design Flow User Guide

 19

Figure 7 · Libero SoC New Project Creation Wizard

Project

Project Name - Identifies your project name; do not use spaces or reserved Verilog or VHDL keywords.
Project Location – Identifies your project location on disk.
Description – General information about your design and project. The information entered appears in your
Datasheet Report View.
Preferred HDL type - Sets your HDL type: Verilog or VHDL. Libero-generated files (SmartDesigns, SmartGen
cores, etc.) are created in your specified HDL type. Libero SoC supports mixed-HDL designs.
Enable Block Creation - Enables you to build blocks for your design. These blocks can be assembled in other
designs, and may have already completed Layout and been optimized for timing and power performance for a
specific Microsemi device. Once optimized, the same block or blocks can be used in multiple designs.
When you are finished, click Next to proceed to the Device Selection page.

See Also
New Project Creation Wizard - Device Selection
New Project Creation Wizard – Device Settings
New Project Creation Wizard – Design Template (SmartFusion2 and IGLOO2 only)
New Project Creation Wizard – Add HDL Source Files
New Project Creation Wizard - Add Constraints

New Project Creation Wizard – Device Selection
The Device Selection page is where you specify the Microsemi device for your project. Use the filters and drop-
down lists to refine your search for the right part to use for your design.
This page contains a table of all parts with associated FPGA resource details generated as a result of a value
entered in a filter.
When a value is selected for a filter:
• The parts table is updated to reflect the result of the new filtered value.
• All other filters are updated, and only relevant items are available in the filter drop-down lists.

 Libero SoC Design Flow User Guide

 20

For example, when SmartFusion2 is selected in the Family filter:
• The parts table includes only SmartFusion2 parts.
• The Die filter includes only SmartFusion2 dies in the drop-down list for Die.

Figure 8 · New Project Creation Wizard - Device Selection Page

Family – Specify the Microsemi device family. Only devices belonging to the family are listed in the parts table.
Die / Package / Speed - Set your device die, package, and speed grade, respectively. Only parts matching the
filtering option are listed in the parts table.
Core Voltage - Set the core voltage for your device. Two numbers separated by a "~" are shown if a wide range
voltage is supported. For example, 1.2~1.5 means that the device core voltage can vary between 1.2 and 1.5
volts.
Range - From the provided pick list, select the temperature range a device may encounter in your application.
Junction temperature is a function of ambient temperature, air flow, and power consumption. Tools such as
SmartTime, SmartPower, timing-driven layout, power-driven layout, the timing report, and back-annotated
simulation are affected by operating conditions.
Supported ranges include:
• ALL - All ranges
• EXT (Extended)
• COM (Commercial) - Not available for RTG4 devices
• IND (Industrial)
• TGrade1 (Automotive) - Not available for RTG4 devices
• TGrade2 (Automotive) - Not available for RTG4 devices
• MIL (Military)

Note: Supported operating condition ranges vary according to your device and package. Refer to the device
datasheet to find your recommended temperature range. The temperature range corresponding to the value
selected from the pick list can also be found by checking Project Settings > Analysis operating conditions.
Reset Filters – Reset all filters to the default ALL option except Family.
Search Part – Enter a character-by-character search for parts. Search results appear in the parts table.
When Device Selection is completed, click on:
• Next to proceed to the Device Settings page

OR
• Finish to complete New Project Creation.

 Libero SoC Design Flow User Guide

 21

Note: Once the project has been created, many device settings can be modified in the Project Settings dialog box
tabs for "Device selection", "Device Settings", and "Analysis operating conditions".

New Project Creation Wizard – Device Settings
For SmartFusion2 and IGLOO2 devices, the Device Settings page is where you set the Device I/O Technology,
PLL Supply Voltage, Reserve pins for Probes and activate the System Controller Suspended Mode.

Figure 9 · New Project Creation Wizard – Device Settings Page (SmartFusion2 and IGLOO2)

For RTG4 devices, the Device Settings page is where you set the Device I/O Technology, Reserve pins for
Probes, and activate Enable Single Event Transient mitigation.

Figure 10 · New Project Creation Wizard – Device Settings Page (RTG4)

 Libero SoC Design Flow User Guide

 22

Default I/O Technology - Set all your I/Os to a default value. You can change the values for individual I/Os in the
I/O Attribute Editor. The I/O Technology available is family-dependent.
Reserve Pins for Probes - Reserve your pins for probing if you intend to debug using SmartDebug.
Enable Single Event Transient mitigation (RTG4 only) - Controls the mitigation of Single Event Transient (SET)
in the FPGA fabric. When this box is checked, SET filters are turned on globally to help mitigate radiation-induced
transients. By default, this box is unchecked.
PLL Supply Voltage (V) (SmartFusion2, IGLOO2 only) - Set the voltage for the power supply that you plan to
connect to all the PLLs in your design, such as MDDR, FDDR, SERDES, and FCCC.
Maximum Core Voltage Rail Ramp Up Time (SmartFusion2, IGLOO2 only) - Power-up management circuitry is
designed into every SmartFusion2 and IGLOO2 SoC FPGA. These circuits ensure easy transition from the
powered-off state to the powered-up state of the device. The SmartFusion2, IGLOO2, and RTG4 system
controller is responsible for systematic power-on reset whenever the device is powered on or reset. All I/Os are
held in a high-impedance state by the system controller until all power supplies are at their required levels and the
system controller has completed the reset sequence.
The power-on reset circuitry in SmartFusion2 and IGLOO2 devices requires the VDD and VPP supplies to ramp
monotonically from 0 V to the minimum recommended operating voltage within a predefined time. There is no
sequencing requirement on VDD and VPP. Four ramp rate options are available during design generation: 50 μs,
1 ms, 10 ms, and 100 ms. Each selection represents the maximum ramp rate to apply to VDD and VPP.
Device information (such as Die, Package and Speed) can be modified later in the Project Settings dialog box.
System Controller Suspended Mode (SmartFusion2, IGLOO2 only) - Enables designers to suspend operation
of the System Controller. Enabling this bit instructs the System Controller to place itself in a reset state when the
device is powered up. This effectively suspends all system services from being performed. For a list of system
services for SmartFusion2 and IGLOO2, refer to the System Controller User's Guide for your device on the
Microsemi website.
When Device Settings is completed, click on:
• Next

OR
• Finish to complete New Project Creation.

Note: Once the project has been created, many device settings can be modified in the Project Settings dialog box
tabs for "Device selection", "Device Settings", and "Analysis operating conditions".

New Project Creation Wizard – Design Template (SmartFusion2 and IGLOO2 only)
The Design Template page is where you can use Libero SoC’s built-in template to automate your design process.
The template uses the System Builder tool for system-level design or the Microcontroller Subsystem (MSS) in
your design. Both will speed up your design process.

http://www.microsemi.com/

 Libero SoC Design Flow User Guide

 23

Figure 11 · New Project Creation Wizard – Design Template Page

None - Select if you do not want to use a design template.
Create a System Builder based design – Use System Builder to generate your top-level design.
Create a Microcontroller (MSS) based design – Instantiate a Microcontroller (MSS) in your design. The version
of the MSS cores available in your vault is displayed. Select the version you desire.
Use Standalone Initialization for MDDR/FDDR/SERDES Peripherals – Check this box if you want to create
your own peripheral initialization logic in SmartDesign for each of your design peripherals
(MDDR/FDDR/SERDES). When checked, System Builder does not build the peripherals initialization logic for you.
Standalone initialization is useful if you want to make the initialization logic of each peripheral separate from and
independent of each other.
Instantiate System Builder/MSS component in a SmartDesign on creation - Uncheck this box if you are using
this project to create System Builder or MSS components and do not plan on using them in a SmartDesign based
design. This is especially useful for design flows where the System Builder or MSS components are stitched in a
design using HDL.
When Design Template is completed, click on:
• Next to proceed to the Add HDL Sources page

OR
• Finish to complete New Project Creation.

New Project Creation Wizard – Add HDL Source Files
The Add HDL Source Files page is where you add HDL design source files to your Libero SoC project. The HDL
source files can be imported or linked to the Libero SoC Project.

 Libero SoC Design Flow User Guide

 24

Figure 12 · New Project Creation Wizard - Add HDL Source Files Page

Import File – Navigate to the disk location of the HDL source. Select the HDL file and click Open. The HDL file is
copied to the Libero Project in the <prj_folder>/hdl folder.
Link File – Navigate to the disk location of the HDL source. Select the HDL file and click Open. The HDL file is
linked to the Libero Project. Use this option if the HDL source file is located and maintained outside of the Libero
project.
Delete - Delete the selected HDL source file from your project. If the HDL source file is linked to the Libero
project, the link will be removed.
When Add HDL Sources is completed, click on:
• Next to proceed to the Add Constraints page

OR
• Finish to complete New Project Creation.

New Project Creation Wizard - Add Constraints
The Add Constraints page is where you add Timing constraints and Physical Constraints files to your Libero SoC
project. The constraints file can be imported or linked to the Libero SoC Project.

 Libero SoC Design Flow User Guide

 25

Figure 13 · New Project Creation Wizard – Add Constraints Page

Import File – Navigate to the disk location of the constraints file. Select the constraints file and click Open. The
constraints file is copied to the Libero Project in the <prj_folder>/constraint folder.
Link File – Navigate to the disk location of the constraints file. Select the constraints file and click Open. The
constraints file is linked to the Libero Project. Use this option if the constraint file is located and maintained
outside of the Libero project.
Delete - Remove the selected constraints file from your project. If the constraints file is linked to the Libero
project, the link will be removed.
When Add Constraints is completed, click on:
• Finish to complete New Project Creation.

The Reports tab displays the result of the New Project creation.

Figure 14 · Reports Tab (SmartFusion2)

 Libero SoC Design Flow User Guide

 26

Create and Verify Design

Create your design with any or all of the following design capture tools:
• System Builder
• Create SmartDesign
• Create HDL
• Create SmartDesign Testbench (optional, for simulation only)
• Create HDL Testbench (optional, for simulation only)

System Builder
System Builder is a graphical design wizard that enables you to enter high-level design specifications for
SmartFusion2 or IGLOO2.
System Builder takes you through the following steps:
• Asks basic questions about your system architecture and peripherals
• Builds a correct-by-design complete system

System Builder automatically configures the silicon features you select. To complete the design, add your custom
logic or IP and connect them to your System Builder-generated design.
See the SmartFusion2 System Builder documentation or the IGLOO2 System Builder documentation for a
complete family-specific explanation of the tool.

MSS - SmartFusion2 only

Instantiate a SmartFusion2 MSS in your Design
You can configure peripherals within the SmartFusion2 MSS, such as the ARM® Cortex™-M3, embedded
nonvolatile memory (eNVM), Ethernet MAC, timer, UART, and SPI to suit your needs. The MSS operates
standalone without any dependencies on other logic within the device; however, designs that require functionality
beyond a standalone MSS are handled by using SmartDesign to add user logic in the SmartFusion2 FPGA fabric.
You can instantiate a Microcontroller Subsystem into your design from the New Project Creation Wizard when you
start a new SmartFusion2 project, or from the Design Flow window after you have created a new project.
To instantiate a SmartFusion2 MSS from the New Project Creation Wizard you must enable Use Design Tool
(under Design Templates and Creators) and click to select SmartFusion2 Microcontroller Subsystem (MSS)
from the list.
If you opted not to use a Design Tool when you created your project, in the Design Flow window expand Create
Design and double-click Configure MSS. This opens the Add Microcontroller Subsystem dialog box. Enter
your Design Name and click OK to continue. A SmartDesign Canvas appears with the MSS added to your
project; double-click the MSS to view and configure MSS components.

Configure the SmartFusion2 MSS
Documents for specific SmartFusion2 MSS peripherals are available on the Peripheral Documents web page.
The SmartFusion2 Microcontroller Subsystem (MSS) Configurator (as shown in the figure below) contains the
elements listed below. Double-click any element in the MSS to configure it; click the checkbox (if available) to
enable or disable it in your design.

https://coredocs.s3.amazonaws.com/Libero/Tool/SysBuilder/sf2_system_builder_ug_2.pdf
https://coredocs.s3.amazonaws.com/Libero/Tool/SysBuilder/igl2_system_builder_ug_2.pdf
https://coredocs.s3.amazonaws.com/Libero/IndexPage/mss_doc_index.html

 Libero SoC Design Flow User Guide

 27

MSS ARM® Cortex™-M3
Peripherals

• MSS CAN
• MSS Peripheral DMA (PDMA)
• MSS GPIO
• MSS I2C
• MSS Ethernet MAC
• MSS DDR Controller (MDDR)
• MSS MMUART
• MSS Real Time Counter (RTC)
• MSS Embedded Nonvolatile Memory (eNVM)
• MSS SPI
• MSS USB
• MSS Watchdog Timer

 Fabric Interfaces
• MSS Fabric Interface Controllers (FICs)

Additional Information
• MSS Cache Controller
• MSS DDR Bridge Controller
• MSS AHB Bus Matrix
• MSS Clocks Configurator (MSS CCC)
• MSS Interrupts Controller
• MSS Reset Controller
• MSS SECDED Configurator
• MSS Security Configurator

The MSS generates a component that is instantiated into your top-level design.

 Libero SoC Design Flow User Guide

 28

Figure 15 · Microcontroller Subsystem Configurator

Generate SmartFusion2 MSS Files
See the MSS Configurator help for more information on generating SmartFusion2 MSS files.

Click the Generate Component button to create your SmartFusion2 MSS files.
The MSS Configurator generates the following files:
• HDL files for the MSS components, including timing shells for synthesis - HDL files are automatically

managed by the Libero SoC and passed to the Synthesis and Simulation tools.
• EFC File: Contains your eNVM client data - The EFC content is included in your final programming file.
• Firmware drivers and memory maps are exported into the <project>\firmware\ directory - Libero SoC

automatically generates a Software IDE project that includes your Firmware drivers. If you are not using a
software project automatically created by Libero, you can import this directory into your Software IDE
project.

• Testbench HDL and BFM script for the MSS design: These files are managed by Libero SoC and
automatically passed to the Simulation tool.

• PDC files for the MSS and the top-level design: These files are managed by Libero SoC and automatically
integrated during Compile and Layout.

 Libero SoC Design Flow User Guide

 29

Create with SmartDesign

Introduction to SmartDesign

About SmartDesign

SmartDesign is a visual block-based design creation tool for instantiation, configuration and connection of
Microsemi IP, user-generated IP, custom/glue-logic HDL modules. The final result is a design-rule-checked and
automatically abstracted synthesis-ready HDL file. A generated SmartDesign can be the entire FPGA design or a
component subsystem of a larger design.
Instantiate IP cores, macros and HDL modules by dragging them from the Catalog onto the Canvas, where they
are viewed as blocks in a functional block diagram. From the Canvas you can:
• Configure your blocks
• Make connections between your blocks
• Run Design-Rule-Checks (DRCs) before component generation
• Generate your SmartDesign Component

• This step generates the HDL and testbench files required to proceed with Synthesis and
Simulation.

• View a Memory Map - The memory map shows the different subsystems of your design, where a
subsystem is any independent bus structure with a Master and Slave peripheral attached.

SmartDesign supports all Microsemi SoC product families.

SmartDesign Design Flow

SmartDesign enables you to stitch together design blocks of different types (HDL, IP, etc.) and generate a top-
level design. The Files tab lists your SmartDesign files in alphabetical order.
You can build your design using SmartDesign with the following steps:
Step One – Instantiating components: In this step you add one or more building blocks, HDL modules,
components, and schematic modules from the project manager to your design. The components can be blocks,
cores generated from the core Catalog, and IP cores.
Step Two – Connecting bus interfaces: In this step, you can add connectivity via standard bus interfaces to
your design. This step is optional and can be skipped if you prefer manual connections. Components generated
from the Catalog may include pre-defined interfaces that allow for automatic connectivity and design rule checking
when used in a design.
Step Three – Connecting instances: The Canvas enables you to create manual connections between ports of
the instances in your design. Unused ports can be tied off to GND or VCC (disabled); input buses can be tied to a
constant, and you can leave an output open by marking it as unused.
Step Four – Generating the SmartDesign component: In this step, you generate a top-level (Top) component
and its corresponding HDL file. This component can be used by downstream processes, such as synthesis and
simulation, or you can add your SmartDesign HDL into another SmartDesign.
When you generate your SmartDesign the Design Rules Check verifies the connectivity of your design; this
feature adds information to your report; design errors and warnings are organized by type and message and
displayed in your Datasheet / Report.
You can save your SmartDesign at any time.

Using Existing Projects with SmartDesign

You can use existing Libero SoC projects with available building blocks in the project to assemble a new
SmartDesign design component. You do not have to migrate existing top-level designs to SmartDesign and there
is no automatic conversion of the existing design blocks to the SmartDesign format.

 Libero SoC Design Flow User Guide

 30

SmartDesign Frequently Asked Questions

General Questions
• What is SmartDesign?

SmartDesign is a design entry tool. It’s the first tool in the industry that can be used for designing
System on a Chip designs, custom FPGA designs or a mixture of both types in the same design. A
SmartDesign can be the entire FPGA design, part of a larger SmartDesign, or a user created IP that
can be stored and reused multiple times. It’s a simple, intuitive tool with powerful features that enables
you to work at the abstraction level at which you are most comfortable.
It can connect blocks together from a variety of sources, verify your design for errors, manage your
memory map, and generate all the necessary files to allow you to simulate, synthesize, and compile
your design.

• How do I create my first SmartDesign?
In the Libero SoC Project Manager Design Flow window, under Create Design, double-click Create
SmartDesign.

Instantiating Into Your SmartDesign
• Where is the list of Cores that I can instantiate into my SmartDesign?

The list of available cores is displayed in the Catalog. This catalog contains all DirectCore IP, Design
Block cores, and macros.

• How do I instantiate cores into my SmartDesign?
Drag and drop the core from the Catalog onto your SmartDesign Canvas. An instance of your Core
appears on the Canvas; double-click to configure it.

• I have a block that I wrote in VHDL (or Verilog), can I use that in my SmartDesign?
Yes! Import your HDL file into the Project Manager (File > Import Files). After you do this, your HDL
module will appear in the Project Manager Hierarchy. Then, drag-and-drop it from the Hierarchy onto
your SmartDesign Canvas.

• My HDL module has Verilog parameters or VHDL generics declared, how can I configure those in
SmartDesign?

If your HDL module contains configurable parameters, you must create a ‘core’ from your HDL before
using it in SmartDesign. Once your HDL module is in the Project Manager Design Hierarchy, right-click
it and choose Create Core from HDL. You will then be allowed to add bus interfaces to your module if
necessary. Once this is complete, you can drag your new HDL+ into the SmartDesign Canvas and
configure your parameters by double-clicking it.

Working in SmartDesign
• How do I make connections?

Let SmartDesign do it for you. Right-click the Canvas and choose Auto Connect.
• Auto Connect didn’t connect everything for me, how do I make manual connections?

Enter Connection Mode and click and drag from one pin to another. Click the Connection Mode
button in the Canvas to enter Connection Mode.
Alternatively:

1. Select the pins you want connected by using the mouse and the CTRL key.
2. Right-click one of the selected pins and choose Connect.

• How do I connect a pin to the top level?
Right-click the pin and choose Promote to Top Level. You can even do this for multiple pins at a time,
just select all the pins you want to promote, right-click one of the pins and choose Promote to Top
Level. All your selected pins will be promoted to the top level.

• Oops, I just made a connection mistake. How do I disconnect two pins?
Use CTRL+Z to undo your last action. If you want to undo your ‘undo’, hit redo (CTRL+Y).

 Libero SoC Design Flow User Guide

 31

To disconnect pins you can:
• Right-click the pin you want to disconnect and choose Disconnect
• Select the net and hit the delete key

• I need to apply some simple ‘glue’ logic between my cores. How do I do that?
For basic inversion of pins, you can right-click a pin and choose Invert. An inverter will be placed at
this pin when the design is generated. You can also right-click a pin and choose Tie Low or Tie High if
you want to connect the pin to either GND or VCC.
To tie an input bus to a constant, right-click the bus and choose Tie to Constant. To mark an output
pin as unused, right-click the pin and choose Mark as Unused.
To clear these, just right-click on the pin again and choose Clear Attribute.

• My logic is a bit more complex than inversion and tie offs - what else can I do?
You have full access to the library macros, including AND, OR, and XOR logic functions. These are
located in the Catalog, listed under Macro Library. Drag the logic function you want onto your
SmartDesign Canvas.

• How do I create a new top level port for my design?
Click the Add Port button in the Canvas toolbar

• How do I rename one of my instances?
Double-click the instance name on the Canvas and it will become editable. The instance name is
located directly above the instance on the Canvas.

• How do I rename my top level port?
Right-click the port you want to rename and choose Modify Port.

• How do I rename my group pins?
Right-click the group pin you want to rename and choose Rename Group.

• I need to reconfigure one of my Cores, can I just double-click the instance?
Yes.

• I want more Canvas space to work with!
Maximize your workspace (CTRL-W), and your Canvas will maximize within the Project Manager.
Press CTRL-W again if you need to see your Hierarchy or Catalog.

Working with Processor-Based Designs in SmartDesign
• How do I connect my peripherals to the bus?

Click Auto Connect and it will help you build your bus structure based on the processor and
peripherals that you have instantiated.

• But I need my peripheral at a specific address or slot.
Right-click the Canvas and choose Modify Memory Map to invoke the Modify Memory Map dialog
that enables you to set a peripheral to a specific address on the bus.
The bus core will show the slot numbers on the bus interface pins. These slot numbers correspond to
a memory address on the bus.
Verify that your peripheral is mapped to the right bus address by viewing your design’s Memory Map.

• How do I view the Memory Map of my design?
Generate your project and open datasheet in the Report View.
The memory map section will also show the memory details of each peripheral, including any memory
mapped registers.

• How do I simulate my processor design?
SmartDesign automatically generates the necessary Bus Functional Model (BFM) scripts required to
simulate your processor based design. A top level testbench for your SmartDesign is generated
automatically as well.
Create your processor design, generate it, and you will be able to simulate it in ModelSim.

• I have my own HDL block that I want to connect as a peripheral on the AMBA bus. How can I do
that?

 Libero SoC Design Flow User Guide

 32

SmartDesign supports automatic creation of data driven configurators based on HDL
generics/parameters.
If your block has all the necessary signals to interface with the AMBA bus protocol (ex: address, data,
control signals):

1. Right-click your custom HDL block and choose Create Core from HDL. The Libero SoC creates
your core and asks if you want to add bus interfaces.

2. Click Yes to open the Edit Core Definition dialog box and add bus interfaces. Add the bus
interfaces as necessary.

3. Click OK to continue.
Now your instance has a proper AMBA bus interface on it. You can manually connect it to the bus or
let Auto Connect find a compatible connection.

• How do I generate the firmware drivers for my design?
SmartDesign automatically finds all the compatible firmware drivers based on your peripherals and
processor. You can view the list of firmware drivers that the design found by going to the design flow
and choosing View/Configure Firmware Cores.

• How do I start writing my application code for my design?
Libero SoC simplifies the embedded development process by automatically creating the workspace
and project files for the Software IDE that you specify in the Tools profile.
Once you have generated your design, the firmware and workspace files will automatically be created.
Click Write Application Code in the Design Flow tab and the Software IDE tool will open your
design’s workspace files.

VHDL Construct Support in SmartDesign
• What VHDL constructs do you support?

VHDL types Record, Array, Array of Arrays, Integer and Unsigned are supported on entity ports of
imported VHDL files - these are treated as special types in Libero.

• How can I import files with VHDL Special Types into SmartDesign?
To work with a VHDL file with Special Types you must:

1. Drag and drop the entity into SmartDesign and connect it just as you would with any other
SmartDesign instance.

2. Generate the Mapping File (meta.out):
Navigate to the Design Hierarchy view, under the current SmartDesign.
Right-click every VHDL file or every top hierarchical file and choose Create Mapping File (VHDL).

3. Generate the SmartDesign
4. Continue with the Libero SoC Design Flow steps (Synthesis, Simulation, etc.)

If you do not generate the Mapping File, and try to Generate your SmartDesign, you will see the
following error in the log window:

Error: Select the HDL file in the Design Hierarchy and right-click the HDL file and
choose Create Mapping File(VHDL) because at least one entity port is of type Array or
Record.

The above is reported only if the entity port is of type Record, Array, Array of Array, or Unsigned.
• What is the purpose of the mapping file?

The mapping file contains the mapping information between the SmartDesign ports and original user-
specified data types of ports in design files, and is used for type casting of signals during design
generation.

• Where will the mapping file meta.out be generated?
The file is generated in your $project_dir/hdl folder. This file will be used to during SmartDesign
generation.

• What are the VHDL special types that are not generated automatically?
The following types are not automatically generated from the right-click menu option Create Mapping
File(VHDL):
• Array of array is not supported

 Libero SoC Design Flow User Guide

 33

• Array of record is not supported
• Enum in range of array is not supported.
• Constants are not supported.
• Buffer output ports are not supported

• What do I do if I am using VHDL types that are not generated automatically?
You must manually write the mapping information in the meta.out file for unsupported types (types
which are not generated automatically) in the prescribed format. Click the link to see an example.
• Integer
• Unsigned
• Array and Array of Arrays
• Record

• What is the meta.out file format?
See the meta.out file format topic for more information.

Making your Design Look Nice
• Can the tool automatically place my instances on the Canvas to make it look nice?

Yes. Right-click the Canvas white space and choose Auto Arrange Instances.
• My design has a lot of connections, and the nets are making my design hard to read. What do I do?

You can disable the display of the nets in the menu bar (RMC > Hide Nets). This automatically hides
all the nets in your design.
You can still see how pins are connected by selecting a connected pin, the net will automatically be
visible again.
You can also selectively show certain nets, so that they are always displayed, just right click on a
connected pin and choose Show Net.

• My instance has too many pins on it; how can I minimize that?
Try grouping functional or unused pins together. For example, on the CoreInterrupt there are 8
FIQSource* and 32 IRQSource* pins, group these together since they are similar in functionality.
To group pins: Select all the pins you want to group, then right-click one of the pins and choose Add
pins to group.
If a pin is in a group, you are still able to use it and form connections with it. Expand the group to gain
access to the pin.

• Oops, I missed one pin that needs to be part of that group? How do I add a pin after I already have
the group?

Select the pin you want to add and the group pin, right-click and choose Add pins to <name> group.
• I have a pin that I don’t want inside the group, how do I remove it?

Right-click the pin and choose Ungroup selected pins.
• How can I better see my design on the Canvas?

 There are zoom icons in the Canvas toolbar. Use them to Zoom in, Zoom out, Zoom to fit, and Zoom
selection. You can also maximize your workspace with CTRL-W.

Generating your Design
• Ok, I’m done connecting my design, how do I ‘finish’ it so that I can proceed to synthesis?

In the Canvas toolbar, click the Generate Project icon .
• I get a message saying it’s unable to generate my SmartDesign due to errors, what do I do? What is

the Design Rules Check?
The Design Rules Check is included in your Report View. It lists all the errors and warnings in your
design, including unconnected input pins, required pin connections, configuration incompatibilities
between cores, etc.
Errors are shown with a small red stop sign and must be corrected before you can generate; warnings
may be ignored.

 Libero SoC Design Flow User Guide

 34

• What does this error mean? How do I fix it?
Review the Design Rules Check topic for an explanation of errors in the Design Rules Check and
steps to resolve them.

• How do I generate my firmware?
In the Design Flow window, expand Handoff Design for Firmware Development and double-click
Configure Firmware Cores and Export Firmware.

Getting Started With SmartDesign

Creating a New SmartDesign Component

1. From the File menu, choose New > SmartDesign or in the Design Flow window double-click Create
SmartDesign. The Create New SmartDesign dialog box opens (see figure below).

Figure 16 · Create New SmartDesign Dialog Box

2. Enter a component name and click OK. The component appears in the Hierarchy tab of the Design Explorer.
Also, the main window displays the design Canvas.

Note: The component name must be unique in your project.

Opening an Existing SmartDesign Component

To open an existing component do one of the following:
Click the Design Hierarchy tab and double-click the component you want to open.
The main window displays the SmartDesign Canvas for the SmartDesign component.

Saving/Closing a SmartDesign Component

To save the current SmartDesign design component, from the File menu, choose Save <component_name>.
Saving a SmartDesign component only saves the current state of the design; to generate the HDL for the design
refer to Generating a SmartDesign component.
To close the current SmartDesign component without saving, from the File menu, choose Close. Select NO when
prompted to save.
To save the active SmartDesign component with a different name use Save As. From the File menu choose Save
SD_<filename> As. Enter a new name for your component and click OK.

Generating a SmartDesign Component

Before your SmartDesign component can be used by downstream processes, such as synthesis and simulation,
you must generate it.

Click the Generate button to generate a SmartDesign component.
This will generate a HDL file in the directory <libero_project>/components/<library>/<yourdesign>.

 Libero SoC Design Flow User Guide

 35

Note: The generated HDL file will be deleted when your SmartDesign design is modified and saved to
ensure synchronization between your SmartDesign component and its generated HDL file.

Generating a SmartDesign component may fail if there are any DRC errors. DRC errors must be corrected before
you generate your SmartDesign design.
If the ports of a sub-design have changed, then the parent SmartDesign component will be annotated with the
icon in the Design Hierarchy tab of the Design Explorer.

Importing a SmartDesign Component

From the File menu, choose Import and select the CXF file type.
Importing an existing SmartDesign component into a SmartDesign project will not automatically import the sub-
components of that imported SmartDesign component.
You must import each sub-component separately.
After importing the sub-components, you must open the SmartDesign component and replace each sub-
component so that it references the correct component in your project. .

Deleting a SmartDesign Component from the Libero SoC Project

To delete a SmartDesign component from the project:
1. In the Design Hierarchy tab, select the SmartDesign component that you want to delete.
2. Right-click the component name and select Delete from Project or Delete from Disk and Project, or click

the Delete key to delete from project.

Generating a Memory Map

Generate Memory Map generates a Memory Address Map for subsystems which can be accessed by the Cortex-
M3 Processor or Fabric Masters in your design. It also contains Register Address Mapping of the SYSTEM
REGISTER (SYSREG). The Memory Map Information is in XML format and put in the
<design_name>_DataSheet.xml file in the Reports panel under the Generate Memory Map node.

 Libero SoC Design Flow User Guide

 36

The design’s memory map is determined by the connections made to the bus component. A bus component is
divided into multiple slots for slave peripherals or instances to plug into. Each slot represents a different address
location and range to the Master of the bus component.
Refer to this memory map for address locations if you want to access the subsystems/components from the MSS
or from Fabric Masters.

 If your design contains standard Bus Instances such as the DirectCore AMBA bus cores, CoreAPB or CoreAHB,
you can view the Memory Map Configuration of your design in the Report View. To do so, generate your top level
design and click the Reports button in the toolbar.
The design’s memory map is determined by the connections made to the bus component. A bus component is
divided into multiple slots for slave peripherals or instances to plug into. Each slot represents a different address
location and range to the Master of the bus component.
The datasheet reports the memory map of the different subsystems of your design, where a subsystem is any
independent bus structure with a Master and Slave peripheral attached.
Connecting peripherals to busses can be accomplished using the normal SmartDesign connectivity options:
• Auto-Connect - the system creates a bus structure based on the peripherals that you have instantiated and

finds compatible bus interfaces and connects them together
• The Modify Memory Map dialog box
• Canvas - Make connections between your blocks.

Your application and design requirements dictate which address location (or slots) is most suitable for your bus
peripherals. For example, the memory controller should be connected to Slot0 of the CoreAHB bus because on
Reset, the processor will begin code execution from the bottom of the memory map.
An example of the datasheet is shown in the figure below.

 Libero SoC Design Flow User Guide

 37

Figure 17 · Example Memory Map

Modify Memory Map Dialog Box

The Modify Memory Map dialog box (shown in the figure below) enables you to connect peripherals to buses via a
drop-down menu. To open the dialog box, right-click the bus instance and choose Modify Memory Map.
This dialog box simplifies connecting peripherals to specific base addresses on the bus. The dialog box shows all
the busses in the design; select a bus in the left pane to assign or view the peripherals on a bus. Busses that are
bridged to other busses are shown beneath the bus in the hierarchy.

Figure 18 · Modify Memory Map Dialog Box

Click the Peripheral drop-down menu to select the peripheral you wish to assign to each address. To remove
(unassign) a peripheral from an address, click the drop-down and select the empty element.

 Libero SoC Design Flow User Guide

 38

Click OK to create the connections between the busses and peripherals in the design.

Canvas View

Canvas Overview

The SmartDesign Canvas is like a whiteboard where functional blocks from various sources can be assembled
and connected; interconnections between the blocks represent nets and busses in your design.
You can use the Canvas to manage connections, set attributes, add or remove components, etc. The Canvas
displays all the pins for each instance (as shown in the figure below).
The Canvas enables you to drag a component from the Design Hierarchy or a core from the Catalog and add an
instance of that component or core in the design. Some blocks (such as Basic Blocks) must be configured and
generated before they are added to your Canvas. When you add/generate a new component it is automatically
added to your Design Hierarchy.
To connect two pins on the Canvas, click the Connection Mode button to enable it and click and drag between
the two pins you want to connect. The Connection Mode button is disabled if you attempt to illegally connect two
pins.
Click the Maximize Work Area button to hide the other windows and show more of the Canvas. Click the button
again to return the work area to the original size.
The Canvas displays bus pins with a + sign (click to expand the list) or - (click to hide list). If you add a slice on a
bus the Canvas adds a + to the bus pin.
Components can be reconfigured any time by double-clicking the instance on the Canvas. You can also add bus
interfaces to instances using this view. In the Canvas view, you can add graphic objects and text to your design.
Inputs and bi-directional pins are shown on the left of components, and output pins are shown on the right.

 Libero SoC Design Flow User Guide

 39

Figure 19 · SmartDesign Canvas

See Also
Canvas Icons

Displaying Connections on the Canvas

The Canvas shows the instances and pins in your design (as shown in the figure below). Right-click the Canvas
and choose Show Net Names to display nets.

 Libero SoC Design Flow User Guide

 40

Figure 20 · Components in SmartDesign

 The net names are shown in the Canvas.

Pin and Attribute Icons

Unconnected pins that do not require a connection are gray.
Unconnected pins that require a connection are red.
Unconnected pins that have a default tie-off are pale green.

Connected pins are green.
Right-click a pin to assign an attribute.
Pins assigned attributes are shown with an icon, as shown in the table below.

Attribute Icon

Tie Low

 Libero SoC Design Flow User Guide

 41

Attribute Icon

Tie High

Invert

Mark as Unused

Tie to Constant

See the Canvas Icons reference page for definitions for each element on the Canvas.
Each connection made using a bus interface is shown in a separate connection known as a bus-interface net.
Move the mouse over a bus interface to display its details (as shown below).

Hover over a bus interface net to see details (as shown below).

Making Connections Using the Canvas

Use the Canvas or Connectivity dialog box to make connections between instances.
You can use Connection Mode on the Canvas to quickly connect pins. Click the Connection Mode button to
start, then click and drag between any two pins to connect them. Illegal connections are disabled. Click the
Connection Mode button again to exit Connection Mode.
To connect two pins on the Canvas, select any two (Ctrl + click to select a pin), right-click one of the pins you
selected and choose Connect. Illegal connections are disabled; the Connect menu option is unavailable.

 Libero SoC Design Flow User Guide

 42

Promoting Ports to Top Level
To automatically promote a port to top level, select the port, right-click, and choose Promote To Top Level. This
automatically creates top-level ports of that name and connects the selected ports to them. If a port name already
exists, a choice is given to either connect to the existing ports or to create a new port with a name <port
name>_<i> where i = 1…n.
Double-click a top-level port to rename it.
Bus slices cannot be automatically promoted to top level. You must create a top level port of the bus slice width
and then manually connect the bus slice to the newly created top level port.

Tying Off Input Pins
To tie off ports, select the port, right-click and choose Tie High or Tie Low.

Tying to Constant
To tie off bus ports to a constant value, select the port, right-click and choose Tie to a Constant. A dialog
appears (as shown in the figure below) and enables you to specify a hex value for the bus.
To remove the constant, right-click the pin and choose Clear Attribute or Disconnect.

Figure 21 · Tie to Constant Dialog Box

Making Driver and Bus Interface Pins Unused
Driver or bus interface pins can be marked unused (floating/dangling) if you do not intend to use them as a driver
in the design. If you mark a pin as unused the Design Rules Check does not return Floating Driver or
Unconnected Bus Interface messages on the pin.
Once a pin is explicitly marked as unused it cannot be used to drive any inputs. The unused attribute must be
explicitly removed from the pin in order to connect it later. To mark a driver or bus interface pin as unused, right-
click the driver or bus interface pin and choose Mark as Unused.

See Also
Show/Hide Bus Interface Pins

Simplifying the Display of Pins on an Instance using Pin Groups

The Canvas enables you to group and ungroup pins on a single instance to simplify the display. This feature is
useful when you have many pins in an instance, or if you want to group pins at the top level. Pin groups are
cosmetic and affect only the Canvas view; other SmartDesign views and the underlying design are not affected by
the pin groups.
Grouping pins enables you to:
• Hide pins that you have already connected
• Hide pins that you intend to work on later
• Group pins with similar functionality
• Group unused pins
• Promote several pins to Top Level at once

 Libero SoC Design Flow User Guide

 43

To group pins:
1. Ctrl + click to select the pins you wish to group. If you try to click-and-drag inside the instance you will move

the instance on the Canvas instead of selecting pins.
2. Right-click and choose Add pins to group to create a group. Click + to expand a group. The icon

associated with the group indicates if the pins are connected, partially connected, or unconnected (as shown
in the figure below).

Figure 22 · Groups in an Instance on the Canvas

To add a pin to a group, Ctrl + click to select both the pin and the group, right-click and choose Add pin to group.

To name a group:
To name a group, right-click the port name and choose Rename Group.

To ungroup pins:
1. Click + to expand the group.
2. Right-click the pin you wish to remove from the group and choose Ungroup selected pins. Ctrl + click to

select and remove more than one pin in a group.
A group remains in your instance after you remove all the pins. It has no effect on the instance; you can leave it if
you wish to add pins to the group later, or you can right-click the group and choose Delete Group to remove it
from your instance.
If you delete a group from your instance any pins still in the group are unaffected.

To promote a group to Top level:
1. Create a group of pins.
2. Right-click the group and choose Promote to Top Level.

Bus Instances

Bus Components in the Core Catalog, such as CoreAHB or CoreAPB, implement an on-chip bus fabric. When
these components are instantiated into your canvas they are displayed as horizontal or vertical lines. Double-click
the bus interfaces of your component to edit the connections.

Figure 23 · Bus Instance in SmartDesign

 Libero SoC Design Flow User Guide

 44

Adding Graphic Objects

You can document your design by adding comments and notations directly on the Canvas.
The Canvas toolbar enables you to add and modify decorative graphic objects, such as shapes, labels and lines
on the Canvas.

Adding and Deleting Lines and Shapes

To add a line or a shape:
1. Select the line or shape button.
2. Click, drag and release on the Canvas. The table below provides a description of each button.

Button Description

Line

Rectangle

Note: Hold the Shift key to constrain line and arrow to 45 degree increments or constrain the proportions of

the rectangle (square).

To change the line and fill properties:
1. Select the element(s), right-click it, and choose Properties.

• Select Line to modify the color, style and width of the line.
• Select Fill to modify the crosshatch and the foreground and background colors.

2. Click OK.
To delete a line or shape, select the object and press Delete.

Adding Text
To add text, select the text tool and click the Canvas to create a text box. To modify the text, double-click the text
box and then type.

To modify the text box properties:
1. Select the text box, right-click it, and choose Properties.

• Select Text to modify the text alignment.
• Select Line to modify the color, style and width of the line.
• Select Fill to modify the crosshatch and the foreground and background colors.
• Select Font to modify the font properties.

2. Click OK.

Editing Properties for Graphic Objects on the Canvas
Right-click any graphic object to update properties, such as Fill, and Line properties for shapes and lines, or Font
options for text properties.

Auto-Arranging Instances

Right-click the Canvas and choose Auto Arrange Instances from the right-click menu to auto-arrange the
instances on the Canvas.

 Libero SoC Design Flow User Guide

 45

Locking Instance and Top Level Port Positions
You can lock the placement of instances on the Canvas. Right-click the instance or Top-level port and choose
Lock to lock the placement. When you lock placement you can click and drag to move the instance manually but
the Auto Arrange Instances menu option has no effect on the instance.
To unlock an instance, right-click the instance and choose Unlock.
Right-click a top level port and choose Unlock Position to return it to its default position.

See Also
Bus Instances
Simplifying the Display of Pins on an Instance using Pin Groups

Replace Component for Instance

You can use the Replace Component for Instance dialog box (shown in the figure below) to restore or update
version instances on your Canvas without creating a new instance and losing your connections.

Figure 24 · Replace Component for Instance Dialog Box

To change the version of an instance:
1. From the right-click menu choose Replace Component for Instance. The Replace Component for Instance

dialog box appears.
2. Select a component and choose a new version from the list. Click OK.

Replace Instance Version

The Replace Instance Version dialog box enables you to replace an IP instance with another version. You can
restore or replace your IP instance without creating a new instance or losing your connections.

Figure 25 · Replace Instance Version Dialog Box

To replace an instance version:
1. Right click any IP instance and choose Replace Instance Version. The dialog box appears.

 Libero SoC Design Flow User Guide

 46

2. Choose the version you wish to use from the Change to Version dropdown menu (as shown in the figure
above) and click OK to continue.

Slicing

Bus ports can be sliced or split using Slicing. Once a slice is created, other bus ports or slices of compatible size
can be connected to it.
The Edit Slices dialog box enables you to automatically create bus slices of a specified width.

To create a slice:
1. Select a bus port, right-click, and choose Edit Slice. This brings up the Edit Slices dialog box (see figure

below).

Figure 26 · Edit Slices Dialog Box

2. Enter the parameters for the slice and click Add Slices. You can also create individual slices and specify
their bus dimensions manually.

3. Click OK to continue.
Note: Overlapping slices cannot be created for IN and INOUT ports on instances or top-level OUT ports.

To remove a slice, select the slice, right-click, and choose Delete Slice.

Rename Net

To rename a net:
1. Right-click the net on the Canvas and choose Rename Net. This opens the Rename Net dialog box.
2. Type in a new name for the net.

Note: The system automatically assigns net names to nets if they are not explicitly specified. Once you
have specified a name for a net, that name will not be over-written by the system.

Automatic Names of Nets
Nets are automatically assigned names by the tool according to the following rules:
In order of priority
1. If user named then name = user name

 Libero SoC Design Flow User Guide

 47

2. If net is connected to top-level port then name = port name; if connected to multiple ports then pick first port
3. If the net has no driver, then name = net_[i]
4. If the net has a driver, name = instanceName_driverpinName

Slices
For slices, name = instanceName_driverpinName_sliceRange; for example
u0_out1_4to6.
GND and VCC Nets
The default name for GND/VCC nets is net_GND and net_VCC.
Expanded Nets for Bus Interface Connections
Expanded nets for bus interface connections are named busInterfaceNetName_<i>_driverPinName.

Organizing Your Design on the Canvas

You may find it easier to create and navigate your SmartDesign if you organize and label the instances and
busses on the Canvas.
You can show and hide nets, lock instances, rotate busses, group and ungroup pins, rename instances / groups /
pins, and auto-arrange instances.

To organize your design:
1. Right-click the Canvas and choose Auto Arrange Instances from to automatically arrange instances.

SmartDesign's auto-arrange feature optimizes instance location according to connections and instance size.
2. Right-click any instance and choose Lock Location to fix the placement. Auto-Arrange will not move any

instances that are locked.
3. Click Auto-Arrange again to further organize any unlocked instances. Continue arranging and locking your

instances until you are satisfied with the layout on the Canvas.
If your design becomes cluttered, group your pins. It may help to group pins that are functionally similar, or to
group pins that are already connected or will be unused in your design.

To further customize your design's appearance:
Double-click the names of instances to add custom names. For example, it may be useful to rename an instance
based on a value you have set in the instance: the purpose of an instance named 'array_adder_bus_width_5' is
easier to remember than 'array_adder_0'.

SmartDesign Reference

SmartDesign Menu

Command Icon Function

Generate Component

Generates the SmartDesign component

Auto Connect

Auto-connects instances

Connection Mode

Toggles connection mode on or off

Add Port

Opens the Add Port dialog box, adds a port to the top
SmartDesign component

QuickConnect

Opens the QuickConnect dialog box, enables you to view,
find and connect pins

 Libero SoC Design Flow User Guide

 48

Command Icon Function

Auto-Arrange Instances

Adds a port to the top of the SmartDesign component

Route All Nets

Re-routes your nets; useful if you are unsatisfied with the
default display

Show/Hide Nets

Enables you to show or hide nets on the Canvas

Show/Hide Net Names

Enables you to show or hide net names on the Canvas

Zoom In

Zooms in on the Canvas

Zoom Out

Zooms out on the Canvas

Zoom to Fit

Zooms in or out to include all the elements on the Canvas in
the view

Zoom Box

Zooms in on the selected area

Enable/Disable Back
Background Grid

Toggle switch to enable or disable the background grid
display in the Canvas

Add Note

Adds text to your Canvas

Add Line

Enables you to add a line to the Canvas

Add Rectangle

Enables you to add a rectangle to the Canvas

SmartDesign Glossary

Term Description

BIF Abbreviation for bus interface.

bus An array of scalar ports or pins, where all scalars have a common base name and have
unique indexes in the bus.

Bus Definition Defines the signals that comprise a bus interface. Includes which signals are present
on a master, slave, or system interface, signal direction, width, default value, etc. A bus
definition is not specific to a logic or design component but is a type or protocol.

Bus Interface Logical grouping of ports or pins that represent a single functional purpose. May
contain both input and output, scalars or busses. A bus interface is a specific mapping
of a bus definition onto a component instance.

 Libero SoC Design Flow User Guide

 49

Term Description

Bus Interface
Net

A connection between 2 or more compatible bus interfaces.

Canvas Block diagram, connections represent data flow; enables you to connect instances of
components in your design.

Component Design element with a specific functionality that is used as a building block to create a
SmartDesign core.

A component can be an HDL module, non-IP core generated from the Catalog,
SmartDesign core, Designer Block, or IP core. When you add a component to your
design, SmartDesign creates a specific instance of that component.

Component
Declaration

VHDL construct that refers to a specific component.

Component
Port

An individual port on a component definition.

Driver A driver is the origin of a signal on a net. The input and slave BIF ports of the top-level
or the output and Master BIF ports from instances are drivers.

Instance A specific reference to a component/module that you have added to your design.

You may have multiple instances of a single component in your design. For each
specific instance, you usually will have custom connections that differ from other
instances of the same component.

Master Bus
Interface

The bus interface that initiates a transaction (such as a read or write) on a bus.

Net Connection between individual pins. Each net contains a single output pin and one or
more input pins, or one or more bi-directional pins. Pins on the net must have the same
width.

PAD The property of a port that must be connected to a design’s top level port. PAD ports
will eventually be assigned to a package pin. In SmartDesign, these ports are
automatically promoted to the top-level and cannot be modified.

Pin An individual port on a specific instance of a component.

Port An individual connection point on a component or instance that allows for an electrical
signal to be received or sent. A port has a direction (input, output, bi-directional) and
may be referred to as a ‘scalar port’ to indicate that only a single unit-level signal is
involved. In contrast, a bus interface on an instance may be considered as a non-
scalar, composite port.

A component port is defined on a component and an instance port (also known as a
‘pin’) is part of a component instance.

Signal A net or the electrical message carried on a net.

Slave Bus
Interface

Bus interface that terminates a transaction initiated by a master interface.

 Libero SoC Design Flow User Guide

 50

Term Description

System Bus
Interface

Interface that is neither master nor slave; enables specialized connections to a bus.

Top Level Port An external interface connection to a component/module. Scalar if a 1-bit port, bus if a
multiple-bit port.

Canvas Icons

Hover your pointer over any icon in the SmartDesign Canvas view to display details.

Icon Description

Representation of an
instance in your design.
An instance is a
component that has
been added to your
SmartDesign
component. The name of
the instance appears at
the top and the name of
the generic component
at the bottom.

The instance type is
indicated by an icon
inside the instance.
There are specific icons
for instances from
SmartDesign, and HDL.
The instance icon at left
indicates a Microsemi
SoC core.

Bus instance; you can
click and drag the end of
a bus instance to resize
it; also, the bus instance
will resize based on the
number of instances that
you connect to it.

 Optional unconnected
pin. Required pins are
red.

 Connected pin

 Pin with default Tie Off

 Libero SoC Design Flow User Guide

 51

Icon Description

Pin tied low

Pin tied high

Pin inverted

Pin marked as unused

Pin tied to constant

Instance details. If there
are less than twenty
ports, they are listed in
the details.

 Libero SoC Design Flow User Guide

 52

Icon Description

Bus Net details.

Master bus interface
icon. A master is a bus
interface that initiates a
transaction on a bus
interface net.

An unconnected master
BIF with REQUIRED
connection is red (shown
at left).

A master BIF with
unconnected OPTIONAL
connection is gray.

Master BIF details,
showing name, role, and
state.

The Pin Map shows the
Formal name of the pin
assigned by the
component (in this
example, RCCLKOUT)
and the Actual, or
representative name
assigned by the user
(CLKOUT).

Slave BIF (shown at
left).

Unconnected slave icons
with REQUIRED
connections are red.

Unconnected slave icons
with OPTIONAL
connections are gray.

 Libero SoC Design Flow User Guide

 53

Icon Description

Slave BIF details,
showing name, role, and
state.

The Pin Map shows the
Formal name of the pin
assigned by the
component (in this
example, ASSC_MODE)
and the Actual, or
representative name
assigned by the user
(ASSC_XMODE).

Master-slave bus
interface connection

Master-slave bus
interface connection
details.

Groups of pins in an
instance.

Fully connected groups
are solid green.

Partially connected
groups are gray with a
green outline.

Unconnected groups (no
connections) are gray
with a black outline.

 Libero SoC Design Flow User Guide

 54

Icon Description

A system BIF is the bus
interface that does not
have a simple
input/output relationship
on both master/slave.

This could include
signals that only drive
the master interface, or
only drive the slave
interface, or drive both
the master and slave
interfaces.

System BIF details,
showing name, role, and
state.

The Pin Map shows the
Formal name of the pin
assigned by the
component (in this
example,
CLIENTAVAILx0), and
the Actual name
assigned by the user (in
this example: ramrd).

Pad port icon; indicates
a hardwired chip-level
pin

VHDL Special Types - Examples and meta.out File Format

The VHDL Special Types are:
• Integer
• Unsigned
• Array and Array of Arrays
• Record

The meta.out file format follows the examples.

Integer
-- Package Declaration

library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_arith.all;

package universal_pkg is

subtype integer1 is integer range 0 to 127;

subtype integer2 is integer range 0 to 127;

end package universal_pkg;

 Libero SoC Design Flow User Guide

 55

--Entity Declaration
entity adder is

port (

D1 , D2 : in integer1;

D3 , D4 : in integer2;

int_out1 : out integer range 0 to 255;

int_out2 : out integer range 0 to 255

);

end entity adder;

Meta.out file:
package universal_pkg

integer integer1 [0 : 127]

integer integer2 [0 : 127]

end

entity adder

D1 integer1

D2 integer1

D3 integer2

D4 integer2

int_out1 integer [0 : 255]

int_out2 integer [0 : 255]

end

Unsigned
Entity declaration:

entity unsigned_2multiply_acc is

port(A : in unsigned(16 downto 0);

B : in unsigned(34 downto 0);

C : in unsigned(13 downto 0);

D : in unsigned(37 downto 0);

E : in unsigned(51 downto 0);

P : out unsigned(51 downto 0);

clk : in std_logic

);

end unsigned_2multiply_acc;

Meta.out file:
entity unsigned_2multiply_acc

A unsigned [16 : 0]

B unsigned [34 : 0]

C unsigned [13 : 0]

D unsigned [37 : 0]

E unsigned [51 : 0]

P unsigned [51 : 0]

End

Array and Array of Arrays
--Package Declaration

library IEEE;

use IEEE.std_logic_1164.all;

package array_package is

 Libero SoC Design Flow User Guide

 56

subtype ram_input is std_logic_vector(31 downto 0);

 type ram_in is array(1 downto 0) of ram_input;

 type ram_out is array(1 downto 0) of ram_input;

end package array_package;

-- Entity Declaration
entity ram_inference is

 port (

 ram_init : in ram_in;

 write_enable : in std_logic;

 read_enable : in std_logic;

 CLK : in std_logic;

 write_address : in integer range 63 downto 0;

 read_address : in integer range 63 downto 0;

 read_data : out ram_out

);

end entity ram_inference;

Meta.out file:
package array_package

array_of_array ram_in [1 : 0]

end

array_of_array ram_out [1 : 0]

end

end

entity ram_inference

ram_init[1] ram_in

ram_init[0] ram_in

write_address integer [63 : 0]

read_address integer [63 : 0]

read_data[1] ram_out

read_data[0] ram_out

end

Record
- Package Declaration

library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_arith.all;

package record_pkg is

type array1 is array(3 downto 0) of std_logic;

type array2 is array(3 downto 0) of std_logic_vector(3 downto 0);

type test is record

test_std_logic : std_logic;

test_std_logic_vector : std_logic_vector(1 downto 0);

test_integer : integer range 0 to 127;

test_array : array1;

test_array_of_array : array2;

test_unsigned : unsigned(2 downto 0);

end record;

end package record_pkg;

 Libero SoC Design Flow User Guide

 57

-- Entity Declaration
entity MUX is

generic (N : integer := 1);

port (

mux_in1, mux_in2 : in test;

sel_lines : in std_logic_vector(N-1 downto 0);

mux_out : out test;

mux_array : out array1

);

end entity MUX;

Meta.out file:
package record_pkg

array array1

end

array_of_array array2 [3 : 0]

end

record test

test_integer integer [0 : 127]

test_array array1

test_array_of_array array2

test_unsigned unsigned [2 : 0]

end

end

entity MUX

mux_in1.test_std_logic test

mux_in1.test_std_logic_vector test

mux_in1.test_integer test

mux_in1.test_array test

mux_in1.test_array_of_array[0] test

mux_in1.test_array_of_array[1] test

mux_in1.test_array_of_array[2] test

mux_in1.test_array_of_array[3] test

mux_in1.test_unsigned test

mux_in2.test_std_logic test

mux_in2.test_std_logic_vector test

mux_in2.test_integer test

mux_in2.test_array test

mux_in2.test_array_of_array[0] test

mux_in2.test_array_of_array[1] test

mux_in2.test_array_of_array[2] test

mux_in2.test_array_of_array[3] test

mux_in2.test_unsigned test

mux_out.test_std_logic test

mux_out.test_std_logic_vector test

mux_out.test_integer test

mux_out.test_array test

mux_out.test_array_of_array[0] test

mux_out.test_array_of_array[1] test

mux_out.test_array_of_array[2] test

mux_out.test_array_of_array[3] test

mux_out.test_unsigned test

 Libero SoC Design Flow User Guide

 58

mux_array array1

end

meta.out File Format
MetaFile : MetaLibraryItem | MetaPackageList | MetaEntityList
MetaLibraryItem : library <lib_name>
MetaPackageList : MetaPackageItem MetaPackageList
MetaPackageItem : package <package_name> MetaItemDeclarationList end
MetaItemDeclarationList: MetaItem MetaItemDeclarationList
MetaItem : (MetaRecordItem | MetaArrayOfArrayItem | MetaIntegerType | MetaArrayItem)
MetaIntegerItem : (MetaIntegerType | MetaIntegerWithoutType)
MetaIntegerType : integer <integer_name> NumericRange
MetaIntegerWithoutType : integer NumericRange
MetaUnsignedItem : unsigned <name> NumericRange
MetaArrayOfArrayItem : array_of_array < MetaArrayOfArrayName> Range [MetaArrayItem] end
MetaRecordItem : record <record_name> RecordItemList end
RecordItemList : RecordItem RecordItemList
RecordItem : <Inst_name> (MetaArrayOfArrayName | MetaIntegerItem | MetaUnsignedItem | MetaSimpleArray)
MetaEnumuratedItem : enum <enum_name> (Item_name{,Item_name})
Range : [NumericRange | MetaEnumuratedItem]
NumericRange : lsd : msd
MetaArrayItem :array <array_name> [<record_name>] end
MetaEntityList : entity <entity_name> MetaEntityItemList end
MetaEntityItemList : MetaEntityItem MetaEntityItemList
MetaEntityItem : (RecordEntityItemList | IntegerEntityItemList | ArrayEntityItemList | ArrayOfArrayEntityItemList |
UnsignedEntityItemList | BufferPortItemList)
RecordEntityItemList : RecordEntityItem RecordEntityItemList
RecordEntityItem : (RecordNormalItem | RecordArrayOfArrayItemList)
RecordNormalItem : <user_port_name>. RecordItem <record_name>
RecordArrayOfArrayItemList : <record_port_name>[index]. RecordItem <record_name>
BufferPortItemList : BufferPortItem BufferPortItemList
BufferPortItem : buffer <buffer_name>
IntegerEntityItemList : IntegerEntityItem IntegerEntityItemList
IntegerEntityItem : <user_port_name> (MetaIntegerType | MetaIntegerWithoutType)
ArrayEntityItemList : ArrayEntityItem ArrayEntityItemList
ArrayEntityItem : <user_port_name> MetaArrayItem
ArrayOfArrayEntityItemList : ArrayOfArrayEntityItem ArrayOfArrayEntityItemList
ArrayOfArrayEntityItem : <port_name> < MetaArrayOfArrayName>
UnsignedEntityItemList : UnsignedEntityItem UnsignedEntityItemList
UnsignedEntityItem : <user_port_name> MetaUnsignedItem

Creating a SmartDesign

Renaming a Component
To rename a component, right-click the component inside the Design Hierarchy and select Rename Component.
Enter a new name for the Component Name.

 Libero SoC Design Flow User Guide

 59

Adding Components and Modules (Instantiating)
SmartDesign components, Design Block cores, IP cores, and HDL modules are displayed in the Design Hierarchy
and Files tabs.

To add a component, do either of the following:
• Select the component in the Design Hierarchy tab or Catalog and drag it to the Canvas.
• Right-click a component in the Design Hierarchy tab or Catalog and choose Instantiate in <SmartDesign

name>.
The component is instantiated in the design.
SmartDesign creates a default instance name. To rename the instance, double-click the instance name in the
Canvas.

Adding a SmartDesign Component

SmartDesign components can be instantiated into another SmartDesign component.
Once a SmartDesign is generated, the exported netlist can be instantiated into HDL like any other HDL module.

Note: HDL modules with syntax errors cannot be instantiated in SmartDesign. However, since SmartDesign
requires only the port definitions, the logic causing syntax errors can be temporarily commented out
to allow instantiation of the component.

Adding or Modifying Top Level Ports
You can add ports to, and/or rename ports in your SmartDesign.

Add Prefixes to Bus Interface / Group Names on Top-level Ports:

Bus Interfaces and Groups are composed of other ports. On the top level, you can add prefixes to the group or
bus interface port name to the sub-port names. To do so, right-click the group or bus interface port and choose
Prefix <name> to Port Names.

Adding/Renaming Ports

To add ports:
1. From the SmartDesign menu, choose Add port. The Add Port dialog box appears (as shown below).

Figure 27 · Add New Port Dialog Box

2. Specify the name of the port you wish to add. You can specify a bus port by indicating the bus width directly
into the name using brackets [], such as mybus[3:0].

3. Select the direction of the port.
To remove a port from the top level, right-click the port and choose Delete Top Level Port.

 Libero SoC Design Flow User Guide

 60

Modify Port

To rename a top-level port, right-click the top-level port and choose Modify Top Level Port. You can rename the
port, change the bus width (if the port is a bus), and change the port direction.
Right-click a top-level port and choose Modify Port to change the name and/or direction (if available).

See Also
Top Level Connections

Connecting Instances

Automatic Connections

Using automatic connections (as shown in the figure below) enables the software to connect your design
efficiently, reducing time required for manual connections and the possibility of introducing errors.
Auto Connect also constructs your bus structure if you have a processor with peripherals instantiated. Based on
the type of processor and peripherals, the proper busses and bridges are added to your design.
To auto connect the bus interfaces in your design, right-click the design Canvas and select Auto Connect, or
from the SmartDesign menu, choose Auto Connect.
SmartDesign searches your design and connects all compatible bus interfaces.
SmartDesign will also form known connections for any SoC systems such as the processor CLK and RESET
signals.
If there are multiple potential interfaces for a particular bus interface, Auto Connect will not attempt to make a
connection; you must connect manually. You can use the Canvas to make the manual connections.

 Libero SoC Design Flow User Guide

 61

Figure 28 · Auto-Connected Cores

QuickConnect

The QuickConnect dialog box enables you to make connections in your design without using the Canvas. It is
useful if you have a large design and know the names of the pins you wish to connect. Connections are reflected
in the Canvas as you make them in the dialog box; error messages appear in the Log window immediately. It may
be useful to resize the QuickConnect dialog box so that you can view the Log window or Canvas while you make
connections.

 Libero SoC Design Flow User Guide

 62

To connect pins using QuickConnect:
1. Find the Instance Pin you want to connect and click to select it.
2. In Pins to Connect, find the pin you wish to connect, right-click and choose Connect. If necessary, use the

Search field to narrow down the list of pins displayed in Pins to Connect.

Note that if the connection is invalid then Connect is grayed out.

If you wish to invert or tie a pin high, low or Mark Unused:
1. Find the Instance Pin you want to invert or tie high/low
2. Right-click Connection and choose Invert, Tie High, Tie Low or Mark Unused.

If you wish to promote a pin to the top level of your design:
1. Find the Instance Pin you want to promote.
2. Right-click the pin and choose Promote to Top.

You can perform all connectivity actions that are available in the Canvas, including: slicing bus pins, tying bus
pins to a constant value, exposing pins from a bus interface pins and disconnecting pins. All actions are
accessible from the right-click context menu on the pin.
Instance Pins lists all the available instance pins in your design and their connection (if any). Use the drop-down
list to view only unconnected pins, or to view the pins and connections for specific elements in your design.
Pins to Connect lists the instances and pins in your design. Use the Search field to find a specific instance or
pin. The default wildcard search is '*.*'. Wildcard searches for CLK pins (*.*C*L*K) and RESET pins (*.*R*S*T) are
also included.
Here are some of the sample searches that you may find useful:
• *UART*.*: show all pins of any instances that contain UART in the name
• MyUART_0.*: only show the pins of the “MyUART_0” instance
• *.p: show all pins in the design that contain the letter ‘p’

Double-click an instance in Pins to Connect to expand or collapse it.
The pin letters and icons in the QuickConnect dialog box are the same as the Canvas icons and communicate
information about the pin. Inputs, Outputs and I/Os are indicted by I, O, and I/O, respectively.
Additional information is communicated by the color:
• Red - Mandatory connection, unconnected
• Green - Connected
• Grey - Optional, unconnected pin
• Brown - Pad
• Light Green - Connected to a default connection on generation
• Blue - Driver pin

 Libero SoC Design Flow User Guide

 63

Figure 29 · QuickConnect Dialog Box

Manual Connections

You can use Connection Mode to click and drag and connect pins. Click the Connection Mode button to toggle it,
and click and drag between any two pins to connect them. Illegal connections will not be allowed.
To make manual connections between to pins on the Canvas, select both pins (use CTRL + click), right-click
either pin and choose Connect. If the pins cannot be legally connected the connection will fail.

Deleting Connections

To delete a net connection on the Canvas, click to select the net and press the Delete key, or right-click and
choose Delete.
To remove all connections from one or more instances on the Canvas, select the instances on the Canvas, right-
click and choose Clear all Connections. This disconnects all connections that can be disconnected legally.
Certain connections to ports with PAD properties cannot be disconnected. PAD ports must be connected to a
design’s top level port. PAD ports will eventually be assigned to a package pin. In SmartDesign, these ports are
automatically promoted to the top level and cannot be modified or disconnected.

 Libero SoC Design Flow User Guide

 64

Top-Level Connections

Connections between instances of your design normally require an OUTPUT (Driver Pin) on one instance to one
or more INPUT(s) on other instances. This is the basic connection rule that is applied when connecting.
However, directions of ports at the top level are specified from an external viewpoint of that module. For example,
an INPUT on the top level is actually sending (‘driving’) signals to instances of components in your design. An
OUTPUT on the top level is receiving (‘sinking’) data from a Driver Pin on an internal component instance in your
SmartDesign design.
The implied direction is essentially reversed at the top-level. Making connections from an OUTPUT of a
component instance to an OUTPUT of top-level is legal.
This same concept applies for bus interfaces; with normal instance to instance connections, a MASTER drives a
SLAVE interface. However, they go through a similar reversal on the top-level.

Bus Interfaces

About Bus Interfaces

A bus interface is a standard mechanism for specifying the interconnect rules between components or instances
in a design. A bus definition consists of the roles, signals, and rules that define that bus type. A bus interface is
the instantiation of that bus definition onto a component or instance.
The available roles of a bus definition are master, slave, and system.
A master is the bus interface that initiates a transaction (such as read or write) on a bus.
A slave is the bus interface that terminates/consumes a transaction initiated by a master interface.
A system is the bus interface that does not have a simple input/output relationship on both master/slave. This
could include signals that only drive the master interface, or only drive the slave interface, or drive both the master
and slave interfaces. A bus definition can have zero or more system roles. Each system role is further defined by
a group name. For example, you may have a system role for your arbitration logic, and another for your clock and
reset signals.
Mirror roles are for bus interfaces that are on a bus core, such as CoreAHB or CoreAPB. They are equivalent in
signal definition to their respective non-mirror version except that the signal directions are reversed.
The diagram below is a conceptual view of a bus definition.

 Libero SoC Design Flow User Guide

 65

Figure 30 · Bus Definition

See Also:
Using bus interfaces in SmartDesign

Using Bus Interfaces in SmartDesign

Adding bus interfaces to your design enables SmartDesign to do the following:
• Auto connect compatible interfaces
• Enforce DRC rules between instances in your design
• Search for compatible components in the project

The Catalog in the Project Manager contains a list of Microsemi SoC-specific and industry standard bus
definitions, such as AMBA.
You can add bus interfaces to your design by dragging the bus definitions from the Bus Interfaces tab in the
Catalog onto your instances inside SmartDesign.
SmartDesign supports automatic creation of data driven configurators based on HDL generics/parameters.
If your block has all the necessary signals to interface with the AMBA bus protocol (ex: address, data, control
signals):

 Libero SoC Design Flow User Guide

 66

1. Right-click your custom HDL block and choose Create Core from HDL. The Libero SoC creates your core
and asks if you want to add bus interfaces.

2. Click Yes to open the Edit Core Definition dialog box and add bus interfaces. Add the bus interfaces as
necessary.

3. Click OK to continue.
Now your instance has a proper AMBA bus interface on it. You can manually connect it to the bus or let Auto
Connect find a compatible connection.
Some cores have bus interfaces that are instantiated during generation.
Certain bus definitions cannot be instantiated by a user. Typically these are the bus definitions that define a
hardwired connection and are specifically tied to a core/macro. They are still available in the catalog for you to
view their properties, but you will not be able to add them onto your own instances or components. These bus
definitions are grayed out in the Catalog.
A hardwired connection is a required silicon interconnect that must be present and specifically tied to a
core/macro. For example, when using the Real Time Counter in a Fusion design you must also connect it to a
Crystal Oscillator core.
Maximum masters allowed - Indicates how many masters are allowed on the bus.
Maximum slaves allowed - Indicates how many slaves are allowed on the bus.
Default value - indicates the value that the input signal will be tied to if unused. See Default tie-offs with bus
interfaces.
Required connection - Indicates if this bus interface must be connected for a legal design.

Adding or Modifying Bus Interfaces in SmartDesign

SmartDesign supports automatic creation of data driven configurators based on HDL generics/parameters. You
can add a bus interface from your HDL module or you can add it from the Catalog.

To add a bus interface using your custom HDL block:
If your block has all the necessary signals to interface with the AMBA bus protocol (such as address, data, and
control signals):
1. Right-click your custom HDL block and choose Create Core from HDL. The Libero SoC creates your core

and asks if you want to add bus interfaces.
2. Click Yes to open the Edit Core Definition dialog box and add bus interfaces. Add the bus interfaces as

necessary.
3. Click OK to continue.

Now your instance has a proper AMBA bus interface on it. You can manually connect it to the bus or let Auto
Connect find a compatible connection.

To add (or modify) a bus interface to your Component:
1. Right-click your Component and choose Edit Core Definition. The Edit Core Definition dialog box opens, as

shown in the figure below.

 Libero SoC Design Flow User Guide

 67

Figure 31 · Edit Core Definition Dialog Box

2. Click Add Bus Interface. Select the bus interface you wish to add and click OK.
3. If necessary, edit the bus interface details.
4. Click Map by Name to map the signals automatically. Map By Name attempts to map any similar signal

names between the bus definition and pin names on the instance. During mapping, bus definition signal
names are prefixed with text entered in the Map by Name Prefix field.

5. Click OK to continue.

Bus Interface Details
Bus Interface: Name of bus interface. Edit as necessary.
Bus Definition: Specifies the name of the bus interface.
Role: Identifies the bus role (master or slave).
Vendor: Identifies the vendor for the bus interface.
Version: Identifies the version for the bus interface.
Configuration Parameters

Certain bus definitions contain user configurable parameters.
Parameter: Specifies the parameter name.
Value: Specifies the value you define for the parameter.
Consistent: Specifies whether a compatible bus interface must have the same value for this bus parameter. If the
bus interface has a different value for any parameters that are marked with consistent set to yes, this bus
interface will not be connectable.

 Libero SoC Design Flow User Guide

 68

Signal Map Definition
The signal map of the bus interface specifies the pins on the instance that correspond to the bus definition
signals. The bus definition signals are shown on the left, under the Bus Interface Definition. This information
includes the name, direction and required properties of the signal.
The pins for your instance are shown in the columns under the Component Instance. The signal element is a
drop-down list of the pins that can be mapped for that definition signal. .
If the Req field of the signal definition is Yes, you must map it to a pin on your instance for this bus interface to be
considered legal. If it is No, you can leave it unmapped.

Bus Interfaces

When you add a bus interface the Edit Core Definition dialog box provides the following Microsemi SoC-specific
bus interfaces:

DirectCore Bus Interfaces

When you add a bus interface the Edit Core Definition dialog box provides the following DirectCore bus
interfaces.

AHB
The AMBA AHB defines the set of signals for a component to connect to an AMBA AHB or AHBLite bus. The bus
interface that is defined in the system is a superset of the signals in the AHB and AHBLite protocol. You can use
the AHB bus interface in the bus definition catalog to connect your module to an AHB or AHBLite bus.

APB
The AMBA APB defines the set of signals for a component to connect to an AMBA APB or APB3 bus. The bus
interface that is defined in the system is a superset of the signals in the APB and APB3 protocol. You can use the
APB bus interface in the bus definition catalog to connect your module to an APB or APB3 bus.

SysInterface
The SysInterface is the interface used between the CoreMP7 and CoreMP7Bridge cores.

DBGInterface
This is the set of debug ports on the CoreMP7 core.

CPInterface
This is the co-processor interface on the CoreMP7 core.

Show/Hide Bus Interface Pins

Pins that are contained as part of a bus interface will automatically be filtered out of the display. These ports are
considered to be connected and used as part of a bus interface.
However, there are situations where you may wish to use the ports that are part of the bus interface as an
individual port, in this situation you can choose to expose the pin from the bus interface.

To Show/Hide pins in a Bus Interface:
1. Select a bus interface port, right-click, and choose Show/Hide BIF Pins. The Show/Hide Pins to Expose

dialog box appears (as shown below).

 Libero SoC Design Flow User Guide

 69

Figure 32 · Expose Driver Pin Dialog Box

2. Click the checkbox associated with the driver pin you want to show. Once the port is shown it appears on
the Canvas and is available for individual connection.

Note: Note: If you have already connected the bus interface pin, then you will not be able to expose the
non-driver pins. They will be shown grayed out in the dialog. This is to prevent the pin from being
driven by two different sources.

To un-expose a driver pin, right-click the exposed port and choose Show/Hide BIF Pins and de-select the pin.

Default Tie-offs with Bus Interfaces

Bus definitions can contain default values for each of the defined signals. These default values specify what the
signal should be tied to if it is mapped to an unconnected input pin on the instance.
Bus definitions are specified as required connection vs. optional connection that defines the behavior of tie-offs
during SmartDesign generation.
Required bus interfaces - The signals that are not required to be mapped will be tied off if they are mapped to
an unconnected input pin.
Optional bus interfaces - All signals will be tied off if they are mapped to an unconnected input pin.

Tying Off (Disabling) Unused Bus Interfaces

Tying off (disabling) a bus interface sets all the input signals of the bus interface to the default value.
To tie off a bus interface, right-click the bus interface and select Tie Off.
This is useful if your core includes a bus interface you plan to use at a later time. You can tie off the bus interface
and it will be disabled in your design until you manually set one of the inputs.
Some bus interfaces are required; you cannot tie off a bus interface that is required. For example, the Crystal
Oscillator to RTC (RTCXTL) bus interface is a silicon interface and must be connected.
To enable your pin, right-click the pin and choose Clear Attribute.

Required vs. Optional Bus Interfaces

A required bus interface means that it must be connected for the design to be considered legal. These are
typically used to designate the silicon interconnects that must be present between certain cores.
An optional bus interface means that your design is still considered legal if it is left unconnected. However, it may
not functionally behave correctly.

 Libero SoC Design Flow User Guide

 70

Figure 33 · Required Unconnected, Optional Unconnected, and Connected Bus Interfaces

See Also
Canvas icons

Promoting Bus Interfaces to Top-level

To automatically connect a bus interface to a top-level port, select the bus interface, right-click, and choose
Promote To Top Level.
This automatically creates a top-level bus interface port of that name and connects the selected port to it. If a bus
interface port name already exists, a choice is given to either connect to the existing bus interface port or to
create a new bus interface port with a name <port name>_<i> where i = 1...n.
The signals that comprise the bus interface are also promoted.
Promoting a bus interface is a shortcut for creating a top-level port and connecting it to an instance pin.

Incremental Design

Reconfiguring a Component

To reconfigure a component used in a SmartDesign:
• In the Canvas, select the instance and double-click the instance to bring up the appropriate configurator, or

the HDL editor; or select the instance, right-click it, and choose Configure Component.
• Select the component in the Design Hierarchy tab and from the right-click menu select Open Component.

When the configurator is launched from the canvas, you cannot change the name of the component.

See Also
Design state management
Replacing components

Fixing an Out-of-Date Instance

Any changes made to the component will be reflected in the instance with an exclamation mark when you update
the definition for the instance. An instance may be out-of-date with respect to its component for the following
reasons:
• If the component interface (ports) is different – after reconfiguration - from that of the instance
• If the component has been removed from the project
• If the component has been moved to a different VHDL library
• If the SmartDesign has just been imported

You can fix an out-of-date instance by:
• Replacing the component with a new component (as shown in the figure below)
• Updating with the latest component

 Libero SoC Design Flow User Guide

 71

Figure 34 · Right-Click Menu - Replace Component for this Instance

See Also
Design state management
Reconfiguring components
Replacing components

Replacing Component Version

Components of an instance on the Canvas can be replaced with another component and maintain connections to
all ports with the same name.

To replace a component in your design:
1. Select the component in the Design Hierarchy, right-click, and choose Replace Component Version. The

Replace Component for Instance dialog box appears (see figure below).

Figure 35 · Replace Component Version Dialog Box

2. Select the version you want to replace it with and click OK.

Design State Management

When any component with instances in a SmartDesign design is changed, all instances of that component detect
the change.
If the change only affects the memory content, then your changes do not affect the component's behavior or port
interface and your SmartDesign design does not need to be updated.
If the change affects the behavior of the instantiated component, but the change does not affect the component's
port interface, then your design must be resynthesized, but the SmartDesign design does not need to be updated.
If the port interface of the instantiated component is changed, then you must reconcile the new definition for all
instances of the component and resolve any mismatches. If a port is deleted, SmartDesign will remove that port
and clear all the connections to that port when you reconcile all instances. If a new port is added to the
component, instances of that component will contain the new port when you reconcile all instances.

 Libero SoC Design Flow User Guide

 72

The affected instances are identified in your SmartDesign design in the Grid and the Canvas with an exclamation
point. Right-click the instance and choose Update With Latest Component.

Note: For HDL modules that are instantiated into a SmartDesign design, if the modification causes syntax
errors, SmartDesign does not detect the port changes. The changes will be recognized when the
syntax errors are resolved.

Changing memory content
For certain cores such as Flash Memory, or FlexRAM it is possible to change the configuration such that only the
memory content used for programming is altered. In this case Project Manager (SoC) will only invalidate your
programming file, but your synthesis, compile, and place-and-route results will remain valid.
When you modify the memory content of a core such as RAM with Initialization that is used by a Flash Memory
core, the Flash Memory core indicates that one of its dependent components has changed and that it needs to be

regenerated. This indication will be shown in the Hierarchy or Files Tab .
RAM with Initialization core - You can modify the memory content without invalidating synthesis.
Flash Memory System Builder core - You can modify the following without invalidating synthesis:
• Modifying memory file or memory content for clients
• JTAG protection for Init Clients

Design Rules Check
The Design Rules Check runs automatically when you generate your SmartDesign; the results appear in the

Reports tab. You can also initiate a Design Rules Check by clicking on the button
of the SmartDesign Canvas tab menu.
To view the results, from the Design menu, choose Reports.
• Status displays an icon to indicate if the message is an error or a warning (as shown in the figure below).

Error messages are shown with a small red sign and warning messages with a yellow exclamation point.
• Message identifies the specific error/warning (see list below); click any message to see where it appears on

the Canvas
• Details provides information related to the Message

 Libero SoC Design Flow User Guide

 73

Figure 36 · Design Rules Check Results

Message Types:

Unused Instance - You must remove this instance or connect at least one output pin to the rest of the design.
Out-of-date Instance - You must update the instance to reflect a change in the component referenced by this
instance.
Undriven Pin - To correct the error you must connect the pin to a driver or change the state, i.e. tie low (GND) or
tie high (VCC).
Floating Driver - You can mark the pin unused if it is not going to be used in the current design. Pins marked
unused are ignored by the Design Rules Check.
Unconnected Bus Interface - You must connect this bus interface to a compatible port because it is required
connection.
Required Bus Interface Connection – You must connect this bus interface before you can generate the design.
These are typically silicon connection rules.
Exceeded Allowable Instances for Core – Some IP cores can only be instantiated a certain number of times for
legal design. For example, there can only be one CortexM1 or CoreMP7 in a design because of silicon limitations.
You must remove the extra instances.
Incompatible Family Configuration – The instance is not configured to work with this project’s Family setting.
Either it is not supported by this family or you need to re-instantiate the core.
Incompatible Die Configuration – The instance is not configured to work with this project’s Die setting. Either it
is not supported or you need to reconfigure the Die configuration.
Incompatible ‘Debug’ Configuration – You must ensure your CoreMP7 and CoreMP7Bridge have the same
‘Debug’ configuration. Reconfigure your instances so they are the same.
No RTL License, No Obfuscated License, No Evaluation License – You do not have the proper license to
generate this core. Contact Microsemi SoC to obtain the necessary license.
No Top level Ports - There are no ports on the top level. To auto-connect top-level ports, right-click the Canvas
and choose Auto-connect
Self-Instantiation - A component cannot instantiate itself-This is reported only in the Log/Message Window.

https://www.microsemi.com/products/fpga-soc/design-resources/ip-cores

 Libero SoC Design Flow User Guide

 74

Generating a SmartDesign Component
Before your SmartDesign component can be used by downstream processes, such as synthesis and simulation,
you must generate it.

Click the Generate button to generate a SmartDesign component.
This will generate a HDL file in the directory <libero_project>/components/<library>/<yourdesign>.

Note: The generated HDL file will be deleted when your SmartDesign design is modified and saved to
ensure synchronization between your SmartDesign component and its generated HDL file.

Generating a SmartDesign component may fail if there are any DRC errors. DRC errors must be corrected before
you generate your SmartDesign design.
If the ports of a sub-design have changed, then the parent SmartDesign component will be annotated with the
icon in the Design Hierarchy tab of the Design Explorer.

Export Component Description(Tcl)
 Components such as SmartDesign components, Configured cores (DirectCores, SgCores and System Builder
cores) and HDL+ cores can be separately exported as Tcl with the Export Component Description option. To
export a SmartDesign component, configured core or HDL+ core as Tcl, right click the component and choose
"Export Component Description(Tcl)" option.

Note: The Export Component Description(Tcl) option is not supported for System Builder cores for G4.

 Libero SoC Design Flow User Guide

 75

Figure 37 · Export As TCL option for SmartDesign Component

 Libero SoC Design Flow User Guide

 76

Figure 38 · Export Script Dialog Box

Click the Browse button to specify the location where you wish to export the TCL file and then click OK.

Examples

Sample exported Tcl script for a SmartDesign Component(PCIe_TL_CLK)
Creating SmartDesign PCIe_TL_CLK

set sd_name {PCIe_TL_CLK}

create_smartdesign -sd_name ${sd_name}

Disable auto promotion of pins of type 'pad'

auto_promote_pad_pins -promote_all 0

Create top level Ports

sd_create_scalar_port -sd_name ${sd_name} -port_name {CLK_125MHz} -
port_direction {IN}

sd_create_scalar_port -sd_name ${sd_name} -port_name {TL_CLK} -
port_direction {OUT}

sd_create_scalar_port -sd_name ${sd_name} -port_name {DEVICE_INIT_DONE} -
port_direction {OUT}

Add CLK_DIV2_0 instance

sd_instantiate_component -sd_name ${sd_name} -component_name {CLK_DIV2} -
instance_name {CLK_DIV2_0}

Add NGMUX_0 instance

sd_instantiate_component -sd_name ${sd_name} -component_name {NGMUX} -
instance_name {NGMUX_0}

Add OSC_160MHz_0 instance

sd_instantiate_component -sd_name ${sd_name} -component_name {OSC_160MHz}
-instance_name {OSC_160MHz_0}

Add PCIe_INIT_MONITOR_0 instance

sd_instantiate_component -sd_name ${sd_name} -component_name
{PCIe_INIT_MONITOR} -instance_name {PCIe_INIT_MONITOR_0}

sd_mark_pins_unused -sd_name ${sd_name} -pin_names
{PCIe_INIT_MONITOR_0:FABRIC_POR_N}

sd_mark_pins_unused -sd_name ${sd_name} -pin_names
{PCIe_INIT_MONITOR_0:USRAM_INIT_DONE}

sd_mark_pins_unused -sd_name ${sd_name} -pin_names
{PCIe_INIT_MONITOR_0:SRAM_INIT_DONE}

sd_mark_pins_unused -sd_name ${sd_name} -pin_names
{PCIe_INIT_MONITOR_0:XCVR_INIT_DONE}

sd_mark_pins_unused -sd_name ${sd_name} -pin_names
{PCIe_INIT_MONITOR_0:USRAM_INIT_FROM_SNVM_DONE}

sd_mark_pins_unused -sd_name ${sd_name} -pin_names
{PCIe_INIT_MONITOR_0:USRAM_INIT_FROM_UPROM_DONE}

 Libero SoC Design Flow User Guide

 77

sd_mark_pins_unused -sd_name ${sd_name} -pin_names
{PCIe_INIT_MONITOR_0:USRAM_INIT_FROM_SPI_DONE}

sd_mark_pins_unused -sd_name ${sd_name} -pin_names
{PCIe_INIT_MONITOR_0:SRAM_INIT_FROM_SNVM_DONE}

sd_mark_pins_unused -sd_name ${sd_name} -pin_names
{PCIe_INIT_MONITOR_0:SRAM_INIT_FROM_UPROM_DONE}

sd_mark_pins_unused -sd_name ${sd_name} -pin_names
{PCIe_INIT_MONITOR_0:SRAM_INIT_FROM_SPI_DONE}

sd_mark_pins_unused -sd_name ${sd_name} -pin_names
{PCIe_INIT_MONITOR_0:AUTOCALIB_DONE}

Add scalar net connections

sd_connect_pins -sd_name ${sd_name} -pin_names {"NGMUX_0:CLK1"
"CLK_125MHz" }

sd_connect_pins -sd_name ${sd_name} -pin_names {"CLK_DIV2_0:CLK_OUT"
"NGMUX_0:CLK0" }

sd_connect_pins -sd_name ${sd_name} -pin_names
{"PCIe_INIT_MONITOR_0:DEVICE_INIT_DONE" "DEVICE_INIT_DONE" }

sd_connect_pins -sd_name ${sd_name} -pin_names {"CLK_DIV2_0:CLK_IN"
"OSC_160MHz_0:RCOSC_160MHZ_CLK_DIV" }

sd_connect_pins -sd_name ${sd_name} -pin_names {"NGMUX_0:SEL"
"PCIe_INIT_MONITOR_0:PCIE_INIT_DONE" }

sd_connect_pins -sd_name ${sd_name} -pin_names {"NGMUX_0:CLK_OUT"
"TL_CLK" }

Re-enable auto promotion of pins of type 'pad'

auto_promote_pad_pins -promote_all 1

Save the smartDesign

save_smartdesign -sd_name ${sd_name}

Generate SmartDesign PCIe_TL_CLK

generate_component -component_name ${sd_name}

Sample exported Tcl script for a System Builder Core(PF_DDR3_SS).
Exporting core PF_DDR3_SS to TCL

Create design TCL command for core PF_DDR3_SS

create_and_configure_core -core_vlnv
{Actel:SystemBuilder:PF_DDR3:2.3.120} -component_name {PF_DDR3_SS} -
params {\

"ADDRESS_MIRROR:false" \

"ADDRESS_ORDERING:CHIP_ROW_BANK_COL" \

"AUTO_SELF_REFRESH:1" \

"AXI_ID_WIDTH:6" \

"AXI_WIDTH:64" \

"BANKSTATMODULES:4" \

"BANK_ADDR_WIDTH:3" \

"BURST_LENGTH:0" \

"CAS_ADDITIVE_LATENCY:0" \

"CAS_LATENCY:9" \

"CAS_WRITE_LATENCY:7" \

"CCC_PLL_CLOCK_MULTIPLIER:6" \

"CLOCK_DDR:666.666" \

"CLOCK_PLL_REFERENCE:111.111" \

 Libero SoC Design Flow User Guide

 78

"CLOCK_RATE:4" \

"CLOCK_USER:166.6665" \

"COL_ADDR_WIDTH:11" \

"DLL_ENABLE:1" \

"DM_MODE:DM" \

"DQ_DQS_GROUP_SIZE:8" \

"ENABLE_ECC:0" \

"ENABLE_INIT_INTERFACE:false" \

"ENABLE_LOOKAHEAD_PRECHARGE_ACTIVATE:false" \

"ENABLE_PAR_ALERT:false" \

"ENABLE_REINIT:false" \

"ENABLE_TAG_IF:false" \

"ENABLE_USER_ZQCALIB:false" \

"EXPOSE_TRAINING_DEBUG_IF:false" \

"FABRIC_INTERFACE:AXI4" \

"FAMILY:26" \

"MEMCTRLR_INST_NO:1" \

"MEMORY_FORMAT:COMPONENT" \

"MINIMUM_READ_IDLE:1" \

"ODT_ENABLE_RD_RNK0_ODT0:false" \

"ODT_ENABLE_RD_RNK0_ODT1:false" \

"ODT_ENABLE_RD_RNK1_ODT0:false" \

"ODT_ENABLE_RD_RNK1_ODT1:false" \

"ODT_ENABLE_WR_RNK0_ODT0:true" \

"ODT_ENABLE_WR_RNK0_ODT1:false" \

"ODT_ENABLE_WR_RNK1_ODT0:false" \

"ODT_ENABLE_WR_RNK1_ODT1:true" \

"ODT_RD_OFF_SHIFT:0" \

"ODT_RD_ON_SHIFT:0" \

"ODT_WR_OFF_SHIFT:0" \

"ODT_WR_ON_SHIFT:0" \

"OUTPUT_DRIVE_STRENGTH:RZQ6" \

"PARAM_IS_FALSE:false" \

"PARTIAL_ARRAY_SELF_REFRESH:FULL" \

"PHYONLY:false" \

"PIPELINE:false" \

"QOFF:0" \

"QUEUE_DEPTH:3" \

"RDIMM_LAT:0" \

"READ_BURST_TYPE:SEQUENTIAL" \

"ROW_ADDR_WIDTH:16" \

"RTT_NOM:DISABLED" \

"RTT_WR:OFF" \

"SDRAM_NB_RANKS:1" \

"SDRAM_NUM_CLK_OUTS:1" \

"SDRAM_TYPE:DDR3" \

 Libero SoC Design Flow User Guide

 79

"SELF_REFRESH_TEMPERATURE:NORMAL" \

"SHIELD_ENABLED:true" \

"SIMULATION_MODE:FAST" \

"TDQS_ENABLE:DISABLE" \

"TGIGEN_ADD_PRESET_WIDGET:true" \

"TIMING_DH:150" \

"TIMING_DQSCK:400" \

"TIMING_DQSQ:200" \

"TIMING_DQSS:0.25" \

"TIMING_DS:75" \

"TIMING_DSH:0.2" \

"TIMING_DSS:0.2" \

"TIMING_FAW:30" \

"TIMING_IH:275" \

"TIMING_INIT:200" \

"TIMING_IS:200" \

"TIMING_MODE:0" \

"TIMING_MRD:4" \

"TIMING_QH:0.38" \

"TIMING_QSH:0.38" \

"TIMING_RAS:36" \

"TIMING_RC:49.5" \

"TIMING_RCD:13.5" \

"TIMING_REFI:7.8" \

"TIMING_RFC:350" \

"TIMING_RP:13.5" \

"TIMING_RRD:7.5" \

"TIMING_RTP:7.5" \

"TIMING_WR:15" \

"TIMING_WTR:5" \

"TURNAROUND_RTR_DIFFRANK:1" \

"TURNAROUND_RTW_DIFFRANK:1" \

"TURNAROUND_WTR_DIFFRANK:1" \

"TURNAROUND_WTW_DIFFRANK:0" \

"USER_POWER_DOWN:false" \

"USER_SELF_REFRESH:false" \

"WIDTH:16" \

"WRITE_LEVELING:ENABLE" \

"WRITE_RECOVERY:5" \

"ZQ_CALIB_PERIOD:200" \

"ZQ_CALIB_TYPE:0" \

"ZQ_CALIB_TYPE_TEMP:0" \

"ZQ_CAL_INIT_TIME:512" \

"ZQ_CAL_L_TIME:256" \

"ZQ_CAL_S_TIME:64" } -inhibit_configurator 0

Exporting core PF_DDR3_SS to TCL done

 Libero SoC Design Flow User Guide

 80

Sample exported Tcl script for a HDL+ core
Exporting core pattern_gen_checker to TCL

Exporting Create HDL core command for module pattern_gen_checker

create_hdl_core -file
{X:/10_docs_review/12.0_Release/pcie_demo_tcl_example/DG0756_PF_PCIe_EP/n
ew/project/hdl/PATTERN_GEN_CHECKER.v} -module {pattern_gen_checker} -
library {work} -package {}

Exporting BIF information of HDL core command for module
pattern_gen_checker

Sample exported Tcl script for a SgCore(PF_TX_PLL)
Exporting core PCIe_TX_PLL to TCL

Exporting Create design command for core PCIe_TX_PLL

create_and_configure_core -core_vlnv {Actel:SgCore:PF_TX_PLL:1.0.115} -
component_name {PCIe_TX_PLL} -params {\

"CORE:PF_TX_PLL" \

"FAMILY:26" \

"INIT:0x0" \

"PARAM_IS_FALSE:false" \

"SD_EXPORT_HIDDEN_PORTS:false" \

"TxPLL_AUX_LOW_SEL:true" \

"TxPLL_AUX_OUT:125" \

"TxPLL_CLK_125_EN:true" \

"TxPLL_DYNAMIC_RECONFIG_INTERFACE_EN:false" \

"TxPLL_EXT_WAVE_SEL:0" \

"TxPLL_FAB_LOCK_EN:false" \

"TxPLL_FAB_REF:200" \

"TxPLL_JITTER_MODE_SEL:10G SyncE 32Bit" \

"TxPLL_MODE:NORMAL" \

"TxPLL_OUT:2500.000" \

"TxPLL_REF:100" \

"TxPLL_SOURCE:DEDICATED" \

"TxPLL_SSM_DEPTH:0" \

"TxPLL_SSM_DIVVAL:1" \

"TxPLL_SSM_DOWN_SPREAD:false" \

"TxPLL_SSM_FREQ:64" \

"TxPLL_SSM_RAND_PATTERN:0" \

"VCOFREQUENCY:1600" } -inhibit_configurator 1

Exporting core PCIe_TX_PLL to TCL done

SmartDesign Testbench
SmartDesign Testbench is a GUI-based tool that enables you to design your testbench hierarchy. Use
SmartDesign Testbench to instantiate and connect stimulus cores or modules to drive your design.
You can create a SmartDesign Testbench by right-clicking a SmartDesign component in the Design Hierarchy
and choosing Create Testbench > SmartDesign.
SmartDesign Testbench automatically instantiates the selected SmartDesign component into the Canvas.
You can also double-click Create SmartDesign Testbench in the Design Flow window to add a new
SmartDesign testbench to your project.
New testbench files appear in the Stimulus Hierarchy.

 Libero SoC Design Flow User Guide

 81

SmartDesign Testbench automatically instantiates your SmartDesign component into the Canvas.
You can instantiate your own stimulus HDL or simulation models into the SmartDesign Testbench Canvas and
connect them to your DUT (design under test). You can also instantiate Simulation Cores from the Catalog.
Simulation cores are simulation models (such as DDR memory simulation models) or basic cores that are useful
for stimulus generation (such as Clock Generator, Pulse Generator, or Reset Generator).
Click the Simulation Mode checkbox in the Catalog to view available simulation cores.

Create Core from HDL
You can instantiate any HDL module and connect it to other blocks inside SmartDesign. However, there are
situations where you may want to extend your HDL module with more information before using it inside
SmartDesign.
• If you have an HDL module that contains configurable parameters or generics.
• If your HDL module is intended to connect to a processor subsystem and has implemented the appropriate

bus protocol, then you can add a bus interface to your HDL module so that it can easily connect to the bus
inside of SmartDesign.

To create a core from your HDL:
1. Import or create a new HDL source file; the HDL file appears in the Design Hierarchy.
2. Select the HDL file in the Design Hierarchy and click the HDL+ icon or right-click the HDL file and choose

Create Core from HDL.
The Edit Core Definition – Ports and Parameters dialog appears. It shows you which ports and
parameters were extracted from your HDL module.

3. Remove parameters that are not intended to be configurable by selecting them from the list and clicking the
X icon. Remove parameters that are used for internal variables, such as state machine enumerations.
If you removed a parameter by accident, click Re-extract ports and parameters from HDL file to reset the
list so it matches your HDL module.

Figure 39 · Edit Core Definition - Ports and Parameters Dialog Box

4. (Optional) Click Add/Edit Bus Interfaces to add bus interfaces to your core.
After you have specified the information, your HDL turns into an HDL+ icon in the Design Hierarchy. Click and
drag your HDL+ module from the Design Hierarchy to the Canvas.
If you added bus interfaces to your HDL+ core, then it will show up in your SmartDesign with a bus interface pin
that can be used to easily connect to the appropriate bus IP core.

 Libero SoC Design Flow User Guide

 82

If your HDL+ has configurable parameters then double-clicking the object on the Canvas (or right-click and select
Configure) invokes a configuration dialog that enables you to set these values. On generation, the specific
configuration values per instance are written out to the SmartDesign netlist.

Figure 40 · HDL+ Instance and Configuration Dialog Box

You can right-click the instance and choose Modify HDL to open the HDL file inside the text editor.

Edit Core Definition
You can edit your core definition after you created it by selecting your HDL+ module in the design hierarchy and
clicking the HDL+ icon.

Remove Core Definition
You may decide that you do not want or need the extended information on your HDL module. You can convert it
back to a regular HDL module. To do so, right-click the HDL+ in the Design Hierarchy and choose Remove Core
Definition. After removing your definition, your instances in your SmartDesign that were referencing this core
must be updated. Right-click the instance and choose Replace Component for Instance.

Designing with HDL

Create HDL
Create HDL opens the HDL editor with a new VHDL or Verilog file. Your new HDL file is saved to your /hdl
directory; all modules created in the file appear in the Design Hierarchy.
You can use VHDL and Verilog to implement your design.

To create an HDL file:
1. In the Design Flow window, double-click Create HDL. The Create new HDL file dialog box opens.
2. Select your HDL Type. Choose whether or not to Initialize file with standard template to populate your file

with default headers and footers. The HDL Editor workspace opens.
3. Enter a Name. Do not enter a file extension; Libero SoC adds one for you. The filename must follow Verilog

or VHDL file naming conventions.
4. Click OK.

After creating your HDL file, click the Save button to save your file to the project.

Using the HDL Editor
The HDL Editor is a text editor designed for editing HDL source files. In addition to regular editing features, the
editor provides keyword highlighting, line numbering and a syntax checker.
You can have multiple files open at one time in the HDL Editor workspace. Click the tabs to move between files.
Editing

 Libero SoC Design Flow User Guide

 83

Right-click inside the HDL Editor to open the Edit menu items. Available editing functions include cut, copy, paste,
Go to line, Comment/Uncomment Selection and Check HDL File. These features are also available in the toolbar.
Saving
You must save your file to add it to your Libero SoC project. Select Save in the File menu, or click the Save icon
in the toolbar.
Printing
Print is available from the File menu and the toolbar.

Note: To avoid conflicts between changes made in your HDL files, Microsemi recommends that you use
one editor for all of your HDL edits.

HDL Syntax Checker

To run the syntax checker:
In the Files list, double-click the HDL file to open it. Right-click in the body of the HDL editor and choose Check
HDL File.
The syntax checker parses the selected HDL file and looks for typographical mistakes and syntactical errors.
Warning and error messages for the HDL file appear in the Libero SoC Log Window.

Commenting Text

You can comment text as you type in the HDL Editor, or you can comment out blocks of text by selecting a group
of text and applying the Comment command.

To comment or uncomment out text:
1. Type your text.
2. Select the text.
3. Right-click inside the editor and choose Comment Selection or Uncomment Selection.

Find

In the File menu, choose Find and the Find dialog box appears below the Log/Message window. You can search
for a whole word or part of a word, with or without matching the case.
You can search for:
• Match Case
• Match whole word
• Regular Expression

The Find to Replace function is also supported.

Column Editing

Column Editing is supported. Press ALT+click to select a column of text to edit.

Importing HDL Source Files
To import an HDL source file:

1. In the Design Flow window, right-click Create HDL and choose Import Files. The Import Files window
appears.

2. Navigate to the drive/folder that contains the HDL file.
3. Select the file to import and click Open.

Note: SystemVerilog (*.sv), Verilog (*.v) and VHDL (*.vhd/*.vhdl) files can be imported.

 Libero SoC Design Flow User Guide

 84

Mixed-HDL Support in Libero SoC
You must have ModelSim PE or SE to use mixed HDL in the Libero SoC. You must also have Synplify Pro to
synthesize a mixed-HDL design.
When you create a project, you must select a preferred language. The HDL files generated in the flow (such as
the post-layout netlist for simulation) are created in the preferred language.
The language used for simulation is the same language as the last compiled testbench. (For example, if tb_top is
in Verilog, <fam>.v is compiled.)
If your preferred language is Verilog, the post-synthesis and post-layout netlists are in Verilog 2001.

HDL Testbench
You can create a HDL Testbench by right-clicking a SmartDesign in the Design Hierarchy and choosing Create
Testbench > HDL.
HDL Testbench automatically instantiates the selected SmartDesign into the Component.
You can also double-click Create HDL Testbench to open the Create New HDL Testbench dialog box. The
dialog box enables you to create a new testbench file and gives you the option to include standard testbench
content and your design data.

HDL Type

Set your HDL Type: Verilog or VHDL for the testbench.

Name

Specify a testbench file name. A *.v or a *.vhd file is created and opened in the HDL Editor.

Clock Period (ns)

Enter a clock period in nanoseconds (ns) for the clock to drive the simulation. The default value is 100 ns (10
MHz). Libero creates in the testbench a SYSCLK signal with the specified frequency to drive the simulation.
Set as Active Stimulus sets the HDL Testbench as the stimulus file to use for simulations. The active stimulus
file/testbench is included in the run.do file that Libero generates to drive the simulation. Setting one testbench as
the Active Stimulus is necessary when there are multiple testbenches in the stimulus hierarchy.
Initialize with Standard Template adds boilerplate for a minimal standard test module. This test module does
not include an instantiation of the root module under test.
Instantiate Root Design Creates a test module that includes an instance of the root module under test, and
clocking logic in the test module which drives the base clock of the root module under test.

 Libero SoC Design Flow User Guide

 85

Figure 41 · Create New HDL Testbench File Dialog Box

 Libero SoC Design Flow User Guide

 86

Figure 42 · HDL Testbench Example - VHDL, Standard Template and Root Design Enabled

Designing with Block Flow
For information about designing with Block Flow, see Designing with Blocks for Libero SoC Enhanced Constraint
Flow.

Verify Pre-Synthesized Design - RTL Simulation
To perform pre-synthesis simulation, double-click Simulate under Verify Pre-Synthesized Design in the Design
Flow window. Alternatively, in the Stimulus Hierarchy right-click the testbench and choose Simulate Pre-Synth
Design > Run.

https://coredocs.s3.amazonaws.com/Libero/11_8_4/Tool/sf2_block_flow_ecf_ug.pdf
https://coredocs.s3.amazonaws.com/Libero/11_8_4/Tool/sf2_block_flow_ecf_ug.pdf

 Libero SoC Design Flow User Guide

 87

If you want to perform pre-layout simulation with the post-synthesized netlist, in the Design Flow window, under
Verify Post-Synthesized Implementation, double-click Generate Simulation File and then double-click Simulate.
The default tool for RTL simulation in Libero SoC is ModelSim™ ME Pro or ModelSim ME. ModelSim ME works
with all levels of Libero SoC license (Eval, Silver, Gold and Platinum) whereas ModelSim Pro ME works with all
levels of Libero SoC license except Silver.
ModelSim ME and ModelSim ME Pro are custom editions of ModelSim PE that are integrated into Libero SoC's
design environment. ModelSim for Microsemi is an OEM edition of Mentor Graphics ModelSim tools. ModelSim
ME Pro supports mixed VHDL, Verilog, and SystemVerilog simulation but ModelSim ME does not. Both ModelSim
editions only work with Microsemi simulation libraries and they are supported by Microsemi.
Other editions of ModelSim are supported by Libero SoC. To use other editions of ModelSim, do not install
ModelSim ME from the Libero SoC media.

Note: ModelSim for Microsemi includes online help and documentation. After starting ModelSim, click the
Help menu.

See the following topics for more information on simulation in Libero SoC:
• Simulation Options
• Selecting a Stimulus File for Simulation
• Selecting additional modules for simulation
• Performing Functional Simulation

Project Settings: Simulation - Options and Libraries
Using this dialog box, you can set change how Libero SoC handles Do files in simulation, import your own Do
files, set simulation run time, and change the DUT name used in your simulation. You can also change your
library mapping.
To access this dialog box, from the Project menu choose Project Settings and click to expand Simulation
options or Simulation libraries.
For Simulation options click the option you wish to edit: DO file, Waveforms, Vsim commands, Timescale.
For Simulation libraries click on the library you wish to change the path for.

Figure 43 · Project Settings: DO File

DO file

• Use automatic DO file - Select if you want the Project Manager to automatically create a DO file that will
enable you to simulate your design.

• Simulation Run Time - Specify how long the simulation should run. If the value is 0, or if the field is empty,
there will not be a run command included in the run.do file.

 Libero SoC Design Flow User Guide

 88

• Testbench module name - Specify the name of your testbench entity name. Default is “testbench,” the
value used by WaveFormer Pro.

• Top Level instance name - Default is <top_0>, the value used by WaveFormer Pro. The Project Manager
replaces <top> with the actual top level macro when you run simulation (presynth/postsynth/postlayout).

• Generate VCD file - Click the checkbox to generate a VCD file.
• VCD file name - Specifies the name of your generated VCD file. The default is power.vcd; click power.vcd

and type to change the name.
• User defined DO file - Enter the DO file name or click the browse button to navigate to it.
• DO command parameters - Text in this field is added to the DO command.

Waveforms

• Include DO file - Including a DO file enables you to customize the set of signal waveforms that will be
displayed in ModelSim.

• Display waveforms for - You can display signal waveforms for either the top-level testbench or for the
design under test. If you select top-level testbench then Project Manager outputs the line 'add wave
/testbench/*' in the DO file run.do. If you select DUT then Project Manager outputs the line 'add wave
/testbench/DUT/*' in the run.do file.

• Log all signals in the design - Saves and logs all signals during simulation.

Vsim Commands

• Post-layout simulation only:
o SDF timing delays - Select Minimum (Min), Typical (Typ), or Maximum (Max) timing delays in the

back-annotated SDF file.
o Disable Pulse Filtering during SDF-based Simulations - When the check box is enabled the

+pulse_int_e/1 +pulse_int_r/1 +transport_int_delays switch is included with the vsim command
for post-layout simulations; the checkbox is disabled by default.

• Resolution - The default is family specific (review the dialog box for your default setting), but you can
customize it to fit your needs.Some custom simulation resolutions may not work with your simulation library.
Consult your simulation help for more information on how to work with your simulation library and detect
infinite zero-delay loops caused by high resolution values.

Family Default Resolution

SmartFusion2 1 fs

IGLOO2 1 ps

RTG4 1 ps

• Additional options - Text entered in this field is added to the vsim command.

• SRAM ECC Simulation (RTG4) -
Two options can be added to specify the simulated error and correction probabilities of all ECC
SRAMs in the design.

• -gERROR_PROBABILITY=<value>, where 0 <= value <= 1
• -gCORRECTION_PROBABILITY=<value>, where 0 <= value <= 1

• During Simulation, the SB_CORRECT and DB_DETECT flags on each SRAM block will be
raised based on generated random numbers being below the specified <value>s.

 Libero SoC Design Flow User Guide

 89

Timescale

• TimeUnit - Enter a value and select s, ms, us, ns, ps, or fs from the pull-down list, which is the time base for
each unit. The default setting is ns.

• Precision - Enter a value and select s, ms, us, ns, ps, or fs from the pull-down list. The default setting is ps.

Simulation Libraries

• Restore Defaults- Sets the library path to default from your Libero SoC installation.
• Library path - Enables you to change the mapping for your simulation library (both Verilog and VHDL).

Type the pathname or click the Browse button to navigate to your library directory.

Selecting a Stimulus File for Simulation
Before running simulation, you must associate a testbench. If you attempt to run simulation without an associated
testbench, the Libero SoC Project Manager asks you to associate a testbench or open ModelSim without a
testbench.

To associate a stimulus:
1. Run simulation or in the Design Flow window under Verify Pre-Synthesized Design right-click Simulate and

choose Organize Input Files > Organize Stimulus Files. The Organize Stimulus Files dialog box appears.
2. Associate your testbench(es):

In the Organize Stimulus Files dialog box, all the stimulus files in the current project appear in the Source
Files in the Project list box. Files already associated with the block appear in the Associated Source Files list
box.
In most cases you will only have one testbench associated with your block. However, if you want
simultaneous association of multiple testbench files for one simulation session, as in the case of PCI cores,
add multiple files to the Associated Source Files list.

• To add a testbench: Select the testbench you want to associate with the block in the Source Files
in the Project list box and click Add to add it to the Associated Source Files list.

• To remove a testbench: To remove or change the file(s) in the Associated Source Files list box,
select the file(s) and click Remove.

• To order testbenches: Use the up and down arrows to define the order you want the testbenches
compiled. The top level-entity should be at the bottom of the list.

3. When you are satisfied with the Associated Source Files list, click OK.

Selecting Additional Modules for Simulation
Libero SoC passes all the source files related to the top-level module to simulation.
If you need additional modules in simulation, in the Design Flow window right-click Simulate and choose
Organize Input Files > Organize Source Files. The Organize Files for Simulation dialog box appears.
Select the HDL modules you wish to add from the Simulation Files in the Project list and click Add to add them to
the Associated Stimulus Files list

Performing Functional Simulation
To perform functional simulation:

1. Create your testbench.
2. Right-click Simulate (in the Design Flow window, Implement Design > Verify Post-Synthesis Implementation

> Simulate) and choose Organize Input Files > Organize Simulation Files from the right-click menu.
In the Organize Files for Source dialog box, all the stimulus files in the current project appear in the Source
Files in the Project list box. Files already associated with the block appear in the Associated Source Files list
box.
In most cases you will only have one testbench associated with your block. However, if you want
simultaneous association of multiple testbench files for one simulation session, as in the case of PCI cores,
add multiple files to the Associated Source Files list.

 Libero SoC Design Flow User Guide

 90

• To add a testbench: Select the testbench you want to associate with the block in the Source Files
in the Project list box and click Add to add it to the Associated Source Files list.

• To remove a testbench: To remove or change the file(s) in the Associated Source Files list box,
select the file(s) and click Remove.

3. When you are satisfied with the Associated Simulation Files list, click OK.
4. To start ModelSim ME, right-click Simulate in the Design Hierarchy window and choose Open

Interactively.
ModelSim starts and compiles the appropriate source files. When the compilation completes, the simulator
runs for 1 s and the Wave window opens to display the simulation results.

5. Scroll in the Wave window to verify that the logic of your design functions as intended. Use the zoom buttons
to zoom in and out as necessary.

6. From the File menu, select Quit.

Performing DirectCore Functional Simulation
Libero SoC overwrites all the existing files of the Core when you import a DirectCore project (including
testbenches). Save copies of your project stimulus files with new names if you wish to keep them.
You must import a DirectCore BFM file into the Libero SoC in order to complete functional simulation (the BFM is
a stimulus file that you can edit to extend the testbench). VEC files are generated automatically from the BFM
when you run ModelSim.
The SoC Project Manager overwrites your BFM file if you re-import your project. Edit and save your BFM outside
the Libero SoC project to prevent losing your changes. After you re-import your DirectCore project, you can import
your modified BFM again.

To perform functional simulation of a DirectCore project:
1. Right-click a stitched module of the DirectCore project and select Set as root.
2. To start ModelSim ME, right-click Simulate in the Design Hierarchy window and choose Open

Interactively.
ModelSim starts and compiles the appropriate source files. When the compilation completes, the
simulator runs for 1 s and the Wave window opens to display the simulation results.

3. Scroll in the Wave window to verify that the logic of your design functions as intended. Use the zoom buttons
to zoom in and out as necessary.

4. From the File menu, select Quit.

 Libero SoC Design Flow User Guide

 91

Libero SoC Constraint Management

In the FPGA design world, constraint files are as important as design source files. Constraint files are used
throughout the FPGA design process to guide FPGA tools to achieve the timing and power requirements of the
design. For the synthesis step, SDC timing constraints set the performance goals whereas non-timing FDC
constraints guide the synthesis tool for optimization. For the Place-and-Route step, SDC timing constraints guide
the tool to achieve the timing requirements whereas Physical Design Constraints (PDC) guide the tool for
optimized placement and routing (Floorplanning). For Static Timing Analysis, SDC timing constraints set the
timing requirements and design-specific timing exceptions for static timing analysis.
Libero SoC provides the Constraint Manager as the cockpit to manage your design constraint needs. This is a
single centralized graphical interface for you to create, import, link, check, delete, edit design constraints and
associate the constraint files to design tools in the Libero SoC environment. The Constraint Manager allows you
to manage constraints for SynplifyPro synthesis, Libero SoC Place-and- Route and the SmartTime Timing
Analysis throughout the design process.

Invocation of Constraint Manager From the Design Flow Window
After project creation, double-click Manage Constraints in the Design Flow window to open the Constraint
Manager.

Figure 44 · Constraint Manager

Libero SoC Design Flow
The Constraint Manager is Libero SoC’s single centralized Graphical User Interface for managing constraints files
in the design flow.

 Libero SoC Design Flow User Guide

 92

Figure 45 · Constraint Manager in Libero SoC Design Flow

Introduction to Constraint Manager

Synthesis Constraints
The Constraint Manager manages these synthesis constraints and passes them to SynplifyPro:
• Synplify Netlist Constraint File (*.fdc)
• Compile Netlist Constraint File (*.ndc)
• SDC Timing Constraints (*.sdc)
• Derived Timing Constraints (*.sdc)

 Libero SoC Design Flow User Guide

 93

Synplify Netlist Constraints (*.fdc)

These are non-timing constraints that help SynplifyPro optimize the netlist. From the Constraint Manager Netlist
Attribute tab import (Netlist Attributes > Import) an existing FDC file or create a new FDC file in the Text Editor
(Netlist Attributes > New > Create New Synplify Netlist Constraint). After the FDC file is created or imported,
click the checkbox under synthesis to associate the FDC file with Synthesis.

Compile Netlist Constraints (*.ndc)

These are non-timing constraints that help Libero SoC optimize the netlist by combining I/Os with registers. I/Os
are combined with a register to achieve better clock-to-out or input-to-clock timing. From the Constraint Manager
Netlist Attribute tab import (Netlist Attributes > Import) an existing NDC file or create a new NDC file in the Text
Editor (Netlist Attributes > New > Create New Compile Netlist Constraint). After the NDC file is created or
imported, click the checkbox under synthesis to associate the NDC file with Synthesis.

SDC Timing Constraints (*.sdc)

These are timing constraints to guide SynplifyPro to optimize the netlist to meet the timing requirements of the
design. From the Constraint Manager Timing tab, import (Timing > Import) or create in the Text Editor (Timing >
New) a new SDC file. After the SDC file is created or imported, click the checkbox under synthesis to associate
the SDC file with Synthesis.
After the synthesis step, you may click Edit with Constraint Editor > Edit Synthesis Constraints to edit existing
constraints or add new SDC constraints.

Derived Timing Constraints (*.sdc)

These are timing constraints LiberoSoC generates for IP cores used in your design. These IP cores, available in
the Catalog, are family/device-dependent. Once they are configured, generated and instantiated in the design, the
Constraint Manager can generate SDC timing constraints based on the configuration of the IP core and the
component SDC. From the Constraint Manager Timing tab, click Derive Constraints to generate the Derived
Timing Constraints (*.sdc). Click the *derived_constraints.sdc file to associate it with synthesis.

Place and Route Constraints
The Constraint Manager manages these constraints for the Place-and-Route step:
• I/O PDC Constraints (*io.pdc)
• Floorplanning PDC Constraints (*fp.pdc)
• Timing SDC constraint file (*.sdc)

I/O PDC Constraints

These are I/O Physical Design Constraints in an *io.pdc file. From the Constraint Manager I/O Attribute tab, you
may import (I/O Attributes > Import) or create in the Text Editor (I/O Attributes > New) an *io.pdc file.
Click the checkbox under Place and Route to associate the file with Place and Route.

Floorplanning PDC Constraints

These are floorplanning Physical Design Constraints in a *fp.pdc file. From the Constraint Manager Floor Planner
tab, you may import (Floor Planner > Import) or create in the Text Editor (Floor Planner > New) a *fp.pdc file.
Click the checkbox under Place and Route to associate the file with Place and Route.

 Libero SoC Design Flow User Guide

 94

Timing SDC Constraint file (*.sdc)

These are timing constraint SDC files for Timing-driven Place and Route. From the Constraint Manager Timing
tab, you may import (Timing > Import) or create in the Text Editor (Timing > New) a timing SDC file. Click the
checkbox under Place and Route to associate the SDC file with Place and Route. This file is passed to Timing-
driven Place and Route (Place and Route > Configure Options > Timing Driven).

Timing Verifications Constraints
The Constraint Manager manages the SDC timing constraints for Libero SoC’s SmartTime, which is a Timing
Verifications/Static Timing analysis tool. SDC timing constraints provide the timing requirements (e.g.
create_clock and create_generated_clock) and design-specific timing exceptions (e.g. set_false_path and
set_multicycle_path) for Timing Analysis.
From the Constraint Manager Timing tab, you may import (Timing > Import) or create in the Text Editor (Timing
> New) a SDC timing file. Click the checkbox under Timing Verifications to associate the SDC timing constraints
file with Timing Verifications.
Note: You may have the same set of SDC Timing Constraints for Synthesis, Place and Route and Timing
Verifications to start with in the first iteration of the design process. However, very often and particularly when the
design is not meeting timing requirements you may find it useful in subsequent iterations to have different sets of
Timing SDC files associated with different tools. Take for example; you may want to change/modify the set of
SDC timing constrains for Synthesis or Place and Route to guide the tool to focus on a few critical paths. The set
of SDC timing constraints associated with Timing Verifications can remain unchanged.
The Constraint Manager lets you associate/dis-associate the constraint files with the different tools with a mouse
click.

Constraint Manager Components
The Constraint Manager has four tabs, each corresponding to a constraint type that Libero SoC supports:
• I/O Attributes
• Timing
• Floor Planner
• Netlist Attribute

Clicking the tabs displays the constraint file of that type managed in the Libero SoC project.

Constraint File and Tool Association
Each constraint file can be associated/dis-associated with a design tool by checking and unchecking the
checkbox corresponding to the tool and the constraint file. When associated with a tool, the constraint file is
passed to the tool for processing.

Figure 46 · Constraint File and Tool Association

Note: Libero SoC’s Design Flow window displays the state the tool is in. A green check mark indicates

successful completion. A warning icon indicates invalidation of the state because the input files for the tool
have changed since the last successful run. Association of a new constraint file with a tool or dis-association of an
existing constraint file with a tool invalidates the state of the tool with which the constraint file is associated.
All Constraint files except Netlist Attributes can be opened, read and edited by Interactive Tools invoked from the
Constraint Manager directly. The Interactive Tools are:
• I/O Editor
• Chip Planner

 Libero SoC Design Flow User Guide

 95

• Constraint Editor

Constraint
Type

Constraint File
Extension

Location inside Project Associated with
Design Tool

Interactive
Tool (For
Editing)

I/O Attributes PDC (*.pdc) <proj>\constraints\io*.pdc Place and Route I/O Editor

Floorplanning PDC (*.pdc) <proj>\constraints\fp*.pdc Place and Route Chip Planner

Timing SDC (*.sdc) <proj>\constraints*.sdc Synthesis, Place and
Route, Timing
Verification

Constraint
Editor

Netlist Attributes FDC (*.fdc) <proj>\constraints*.fdc Synthesis n/a

NDC (*.ndc) <proj>\constraints*.ndc Synthesis n/a

Derive Constraints in Timing Tab
The Constraint Manager can generate timing constraints for IP cores used in your design. These IP cores,
available in the Catalog, are family/device-dependent. Once they are configured, generated and instantiated in
your design, the Constraint Manager can generate SDC timing constraints based on the configuration of the IP
core and the component SDC. A typical example of an IP core for which the Constraint Manager can generate
SDC timing constraints is the IP core for Clock Conditioning Circuitry (CCC).

Create New Constraints
From the Constraint Manager, create new constraints in one of two ways:
• Use the Text Editor
• Use Libero SoC’s Interactive Tools

To create new constraints from the Constraint Manager using the Text Editor:
1. Select the Tab that corresponds to the type of constraint you want to create.
2. Click New.
3. When prompted, enter a file name to store the new constraint.
4. Enter the constraint in the Text Editor.
5. Click OK.

The Constraint file is saved and visible in the Constraint Manager in the tab you select:
• I/O Attributes constraint file (<proj>\io*.pdc) in the I/O Attributes tab
• Floorplanning constraints (<proj>\fp*.pdc) in the Floor Planner tab
• Timing constraints (<proj>\constraints*.sdc) in the Timing tab

6. (Optional) Double-click the constraint file in the Constraint Manager to open and add more constraints to the
file.

To create new constraints from the Constraint Manager using Interactive Tools:
Note: Netlist Attribute constraints cannot be created by an Interactive Tool. Netlist Attribute files can only be
created with a Text Editor.
Note: Except for timing constraints for Synthesis, the design needs to be in the post-synthesis state to enable
editing/creation of new constraints by the Interactive Tool.
Note: The *.pdc or *.sdc file the Constraint Manager creates is marked [Target]. This denotes that it is the target
file. A target file receives and stores new constraints from the Interactive Tool. When you have multiple constraint
files of the same type, you may select any one of them as target. When there are multiple constraint files but none
of them is set as target, or there are zero constraint files, Libero SoC creates a new file and set it as target to
receive and store the new constraints created by the Interactive Tools.

 Libero SoC Design Flow User Guide

 96

1. Select the Tab that corresponds to the type of constraint you want to create.
2. Click Edit to open the Interactive Tools. The Interactive Tool that Libero SoC opens varies with the constraint

type:
• I/O Editor to edit/create I/O Attribute Constraints. See I/O Editor User Guide for details.
• Chip Planner to edit/create Floorplanning constraints. See Chip Planner User Guide for details.
• Constraint Editor to edit/create Timing Constraints. See Timing Constraints Editor User Guide for

details.
3. Create the Constraints in the Interactive Tool. Click Commit and Save.
4. Check that Libero SoC creates these files to store the new constraints:

• Constraints\io\user.pdc file when I/O constraints are added and saved in I/O Editor.
• Constraints\fp\user.pdc file when floorplanning constraints are added and saved in Chip Planner.
• Constraints\user.sdc file when Timing Constraints are added and saved in Constraint Editor

Constraint File Order
When there are multiple constraint files of the same type associated with the same tool, use the Up and Down
arrow to arrange the order the constraint files are passed to the associated tool. Constraint file order is important
when there is a dependency between constraints files. When a floorplanning PDC file assigns a macro to a
region, the region must first be created and defined. If the PDC command for region creation and macro
assignment are in different PDC files, the order of the two PDC files is critical.
1. To move a constraint file up, select the file and click the Up arrow.
2. To move a constraint file down, select the file and click the Down arrow.

Figure 47 · Move constraint file Up or Down

Note: Changing the order of the constraint files associated with the same tool invalidates the state of that tool.

Import a Constraint File
Use the Constraint Manager to import a constraint file into the Libero SoC project. When a constraint file is
imported, a local copy of the constraint file is created in the Libero Project.

To import a constraint file:
1. Click the Tab corresponding to the type of constraint file you want to import.
2. Click Import.
3. Navigate to the location of the constraint file.
4. Select the constraint file and click Open. A copy of the file is created and appears in Constraint Manager in

the tab you have selected.

Link a Constraint File
Use the Constraint Manager to link a constraint file into the Libero SoC project. When a constraint file is linked, a
file link rather than a copy is created from the Libero project to a constraint file physically located and maintained
outside the Libero SoC project.

To link a constraint file:
1. Click the Tab corresponding to the type of constraint file you want to link.
2. Click Link.
3. Navigate to the location of the constraint file you want to link to.

https://coredocs.s3.amazonaws.com/Libero/12_0_0/Tool/io_editor_ug.pdf
https://coredocs.s3.amazonaws.com/Libero/12_0_0/Tool/chipplanner_ug.pdf
https://coredocs.s3.amazonaws.com/Libero/12_0_0/Tool/smarttime_ce_ug.pdf

 Libero SoC Design Flow User Guide

 97

4. Select the constraint file and click Open. A link of the file is created and appears in Constraint Manager
under the tab you have selected. The full path location of the file (outside the Libero SoC project) is
displayed.

Check a Constraint File
Use the Constraint Manager to check a constraint file.

To check a constraint file:
1. Select the tab for the constraint type to check.
2. Click Check.

Note: I/O constraints, Floorplanning constraints, Timing constraints, and Netlist Attributes can be checked only
when the design is in the proper state. A pop-up message appears when the check is made and the design state
is not proper for checking.

All constraint files associated with the tool are checked. Files not associated with a tool are not checked.
For Timing Constraints, select from the Check drop-down menu one of the following:
• Check Synthesis Constraints
• Check Place and Route Constraints
• Check Timing Verification Constraints

Figure 48 · Check Constraints

Check Synthesis Constraints checks only the constraint files associated with the Synthesis.
Check Place and Route Constraints checks only the constraint files associated with Place and Route
Check Timing Verification Constraints checks only the Constraint Files associated with Timing Verification.
For the constraint files and tool association shown in the SDC file and Tool Association Figure below:
• Check Synthesis Constraints checks the following files:

• M3_MDDR_top_derived_constraints.sdc
• user.sdc
• mytiming2.sdc

• Check Place and Route Constraints checks the following files:
• M3_MDDR_top_derived_constraints.sdc
• mytiming.sdc
• mytiming2.sdc

• Check Timing Verification Constraints checks the following files:
• M3_MDDR_top_derived_constraints.sdc

 Libero SoC Design Flow User Guide

 98

• user.sdc
• mytiming.sdc
• mytiming2.sdc

Note: sdfsadf.sdc Constraint File is not checked because it is not associated with any tool.

Figure 49 · Timing Constraints SDC file and Tool Association

When a constraint file is checked, the Constraint Manager:
• Checks the SDC or PDC syntax.
• Compares the design objects (pins, cells, nets, ports) in the constraint file versus the design objects in the

netlist (RTL or post-layout ADL netlist). Any discrepancy (e.g. constraints on a design object which does not
exist in the netlist) are flagged as errors and reported in the *.log file or message window.

Check Result

If the check is successful, this message pops up.

Figure 50 · Check Successful Message

If the check fails, this error message pops up.

Figure 51 · Check Fails Message

Constraint Type Check for Tools Required Design
State

Before Checks

Netlist Used
for

Checks

Check Result
Details

I/O Constraints Place and Route Post-Synthesis ADL Netlist Libero Message
Window

Floorplanning
Constraints

Place and Route Post-Synthesis ADL Netlist Libero Message
Window

 Libero SoC Design Flow User Guide

 99

Constraint Type Check for Tools Required Design
State

Before Checks

Netlist Used
for

Checks

Check Result
Details

Timing Constraints Synthesis Pre-Synthesis RTL Netlist synthesis_sdc_check.
log

Place and Route Post-Synthesis ADL Netlist placer_sdc_check.log

Timing
Verifications

Post-Synthesis ADL Netlist timing_sdc_check.log

Netlist Attributes
(*.fdc)

Synthesis Pre-Synthesis RTL Netlist *cck.srr file

Netlist Attributes
(*.ndc)

Synthesis Pre-Synthesis RTL Netlist Libero Log Window

Edit a Constraint File
The Edit button in the Constraint Manager allows you to:
• Create new constraint files. See To create new constraints from the Constraint Manager using the Text

Editor for details.
• Edit existing constraint files.

To edit a constraint file
Note: Netlist Attributes cannot be edited by an Interactive Tool. Use the Text Editor to edit the Netlist Attribute
constraint (*.fdc and *.ndc) files.
1. Select the tab for the constraint type to edit. An Interactive Tool is opened to make the edits.
2. Click Edit.

• All constraint files associated with the tool are edited. Files not associated with the tool are not
edited.

• When a constraint file is edited, the constraints in the file are read into the Interactive Tool.
• Different Interactive Tools are used to edit different constraints/different files:

• I/O Editor to edit I/O Attributes (<proj>\io*.pdc). For details, refer to the I/O Editor User
Guide.

• Chip Planner to edit Floorplanning Constraints (<proj>\fp*.pdc). For details, refer to the
Chip Planner User's Guide (Chip Planner > Help > Reference Manuals)

• Constraint Editor to edit Timing Constraints (constraints*.sdc). For details, refer to the
Timing Constraints Editor User’s Guide (Help > Constraints Editor User’s Guide)

Note: I/O constraints, Floorplanning constraints, Timing constraints can be edited only when the design is in the
proper state. A message pops up if the file is edited when the design state is not proper for edits. If, for example,
you open the Constraints Editor (Constraint Manager > Edit) to edit timing constraints when the design state is not
post-synthesis, a pop-up message appears.

Figure 52 · Pop-up Message

https://coredocs.s3.amazonaws.com/Libero/12_0_0/Tool/sf2_smarttime_io_ug.pdf#named_dest=io_editor
https://coredocs.s3.amazonaws.com/Libero/12_0_0/Tool/sf2_smarttime_io_ug.pdf#named_dest=io_editor
https://coredocs.s3.amazonaws.com/Libero/12_0_0/Tool/chipplanner_ug.pdf
https://coredocs.s3.amazonaws.com/Libero/12_0_0/Tool/smarttime_ce_ug.pdf

 Libero SoC Design Flow User Guide

 100

3. For Timing Constraints, click one of the following to edit from the Edit with Constraint Editor drop-down
menu.

• Edit Synthesis Constraints
• Edit Place and Route Constraints
• Edit Timing Verification Constraints

Figure 53 · Edit Drop-down Menu

For the constraint files and tool association shown in the Timing Constraint File and Tool Association below:
• Edit Synthesis Constraints reads the following files into the Constraint Editor:

• user.sdc
• myuser1.sdc

• Edit Place and Route Constraints reads the following files into the Constraint Editor:
• user.sdc
• mytiming2.sdc
• myuser1.sdc

• Edit Timing Verification Constraints reads the following files into the Constraint Editor:
• user.sdc
• mytiming2.sdc

Figure 54 · Timing Constraint File and Tool Association

4. Edit the constraint in the Interactive Tool, save and exit.
5. The edited constraint is written back to the original constraint file when the tool exits.

Refer to the Timing Constraints Editor User’s Guide (Help > Constraints Editor User’s Guide) for details on how to
enter/modify timing constraints.
Note: When a constraint file is edited inside an Interactive Tool, the Constraint Manager is disabled until the
Interactive Tool is closed.
Note: Making changes to a constraint file invalidates the state of the tool with which the constraint file is
associated. For instance, if Place and Route has successfully completed with user.sdc as the associated
constraint file, then making changes to user.sdc invalidates Place and Route. The green checkmark (denoting
successful completion) next to Place and Route turns into a warning icon when the tool is invalidated.

Figure 55 · Place and Route Invalidation

https://coredocs.s3.amazonaws.com/Libero/12_0_0/Tool/smarttime_ce_ug.pdf

 Libero SoC Design Flow User Guide

 101

Constraint Types
Libero SoC manages four different types of constraints:
• I/O Attributes Constraints – Used to constrain placed I/Os in the design. Examples include setting I/O

standards, I/O banks, and assignment to Package Pins, output drive, and so on. These constraints are used
by Place and Route.

• Timing Constraints – Specific to the design set to meet the timing requirements of the design, such as
clock constraints, timing exception constraints, and disabling certain timing arcs. These constraints are
passed to Synthesis, Place and Route, and Timing Verification.

• Floor Planner Constraints – Non-timing floorplanning constraints created by the user or Chip Planner and
passed to Place and Route to improve Quality of Routing.

• Netlist Attributes - Microsemi-specific attributes that direct the Synthesis tool to synthesize/optimize the,
leveraging the architectural features of the Microsemi devices. Examples include setting the fanout limits,
specifying the implementation of a RAM, and so on. These constraints are passed to the Synthesis tool only.

The following table below summarizes the features and specifics of each constraint type.

Constraint
Type

File Location File
Ext.

User
Actions

Constraints
Edited By

Constraints
Used By

Changes
Invalidate

Design
State?

I/O
Attributes

<proj>/constraints/io
folder

*.pdc Create
New,
Import,
Link, Edit,
Check

I/O Editor

Or user editing
the *.pdc file in
Text Editor

Place and
Route

YES

Timing
Constraints

<proj>/constraints
folder

*.sdc Create
New,
Import,
Link, Edit,
Check

Constraint
Editor

Or user editing
the *.sdc file in
Text Editor

Synplify

Place and
Route

Verify Timing
(SmartTime)

YES

Floor
Planner
Constraints

<proj>/constraints/fp
folder

*.pdc Create
New,
Import,
Link, Edit,
Check

Chip Planner

Or user Editing
the *.pdc file in
Text Editor

Place and
Route

YES

Netlist
Attributes

<proj>/constraints
folder

*.fdc Create
New,
Import,
Link,
Check

User to Open in
Text Editor to
Edit

Synplify YES

Netlist
Attributes

<proj>/constraints
folder

*.ndc Import,
Link,
Check

User to Open in
Text Editor to
Edit

Synplify YES

 Libero SoC Design Flow User Guide

 102

Constraint Manager – I/O Attributes Tab
The I/O Attributes tab allows you to manage I/O attributes/constraints for your design’s Inputs, Outputs, and
Inouts. All I/O constraint files (PDC) have the *.pdc file extension and are placed in the
<Project_location>/constraint/io folder.
Available actions are:
• New – Creates a new I/O PDC file and saves it into the <Project_location>\constraint\io folder. There are

two options:
• Create New I/O Constraint
• Create New I/O Constraint From Root Module -- This will pre-populate the PDC file with information

from the Root Module
• Having selected the create method:

• When prompted, enter the name of the constraint file.
• The file is initially opened in the text editor for user entry.

• Import – Imports an existing I/O PDC file into the Libero SoC project. The I/O PDC file is copied into the
<Project_location>\constraint\io folder.

• Link – Creates a link in the project’s constraint folder to an existing I/O PDC file (located and maintained
outside of the Libero SoC project).

• Edit with I/O Editor – Opens the I/O Editor tool to modify the I/O PDC file(s) associated with the Place and
Route tool.

• Edit with I/O Advisor – Opens the I/O Advisor tool to modify the I/O attributes in the I/O PDC file(s). This
tool helps in reducing power consumption while meeting timing constraints.

• Check – Checks the legality of the PDC file(s) associated with the Place and Route tool against the gate
level netlist.

When the I/O Editor tool is invoked or the constraint check is performed, all files associated with the Place and
Route tool are being passed for processing.
When you save your edits in the I/O Editor tool, the I/O PDC files affected by the change will be updated to reflect
the change you have made in the I/O Editor tool. New I/O constraints you add in the I/O Editor tool are written to
the Target file (if a target file has been set) or written to a new PDC file (if no file is set as target) and stored in the
<project>\constraint\io folder.

Figure 56 · Constraint Manager – I/O Attributes Tab

Right-click the I/O PDC files to access the available actions:
• Set/UnSet as Target – Sets or clears the selected file as the target to store new constraints created in the

I/O Editor tool. Newly created constraints only go into the target constraint file. Only one file can be set as
target. This option is not available for linked files.

• Open in Text Editor – Opens the selected constraint file in the Libero Text Editor.

 Libero SoC Design Flow User Guide

 103

• Clone – Copies the file to a file with a different name. The original file name and its content remain intact.
This option is not available for linked files.

• Rename – Renames the file to a different name. This option is not available for linked files.
• Copy File Path - Copies the file path to the clipboard.
• Delete – Deletes the file from the project and from the disk. This option is not available for linked files.
• Unlink - Removes the linked file from the project. The original file is untouched. This option is only available

for linked files.
• Unlink: Copy file locally – Removes the link and copies the file into the <Project_location>\constraint\io

folder. This option is only available for linked files.

File and Tool Association
Each I/O constraint file can be associated or disassociated with the Place and Route tool.
Click the checkbox under Place and Route to associate/disassociate the file from the tool.

I/O Settings
Reserve Pins for Device Migration – This option allows you to reserve pins in the currently selected device that
are not bonded in a device or list of devices you may later decide to migrate your design to. Select the target
device(s) you may migrate to later to ensure that there will be no device/package incompatibility if you migrate
your design to that device.
Reserve Pins for Probes – Check this box if you plan to use live probes when debugging your design with
SmartDebug.

IO Advisor (SmartFusion2, IGLOO2, and RTG4)
The IO Advisor enables you to balance the timing and power consumption of the IOs in your design. For output
IOs, it offers suggestions on Output Drive and Slew values that meet (or get as close as possible to) the timing
requirements and generates the lowest power consumption. For Input IOs, it offers suggestions on On-Die
Termination (ODT) Impedance values (when the ODT Static is ON) that meet (or get as close as possible to) the
timing requirements and generates the lowest power consumption.
Timing data information is obtained from the Primary analysis scenario in SmartTime. Power data is obtained
from the Active Mode in SmartPower.
To open the IO Advisor from the Design Flow window, right-click Manage Constraints, select Open Manage
Constraints View, select the I/O Attributes tab, select Edit with I/O Advisor (Design Flow window > Manage
Constraints > Open Manage Constraints View > I/O Attributes > Edit > Edit with I/O Advisor).

 Libero SoC Design Flow User Guide

 104

Figure 57 · I/O Advisor

Introduction
The Introduction screen provides general information about the IO Advisor.
The introduction screen provides the navigational panel for you to navigate to the following panels:
• Output Load panel – Displays the IO load Power and Delay values for Outputs and Inouts.
• Output Drive and Slew panel – Displays the Output Drive and Slew for Outputs and Inouts.
• ODT & Schmitt Trigger – Displays the ODT Static (On/Off), the ODT Impedance value (Ohms) for Inputs and

Inouts and the Schmitt Trigger (On/Off)
All steps in the IO Advisor are optional.

 Libero SoC Design Flow User Guide

 105

Figure 58 · IO Advisor - Introduction

Output Load
The Output Load panel displays the load of all output/inout ports in your design.
The display is sorted by Initial or Current value and is selectable in the Sort By drop-down menu.
Tooltips are available for each cell of the Table. For output and inout ports, the tooltip displays the Port Name,
Macro Name, Instance Name and Package Pin. Inout ports are identified by a blue bubble icon.

Figure 59 · IO Advisor - Output Load Panel

Search and Regular Expressions
To search for a specific Port, enter the Port Name in the Port Name Search field and click Search. Regular
expressions are accepted for the search. All Port Names matching the regular expression are displayed. The

 Libero SoC Design Flow User Guide

 106

regular expression “FDDR*”, for example, results in all the output ports beginning with FDDR in the Port Name
appearing in the display.

Figure 60 · Search Field and Regular Expressions

Status Column
The icon in the Status Column displays the status of the Output Port.

Icon Status and Explanation

OK - The IO attributes match the suggestion in Output Drive and Slew Table.

Error – The Timing constraints for this IO are not met in Output Drive and Slew Table.

Information – you can improve the power and/or timing of the IO by applying the suggestion
in Output Drive and Slew Table.

Column Display and Sorting
To hide or unhide a column, click on the drop-down menu of a column header and select Hide Column or Unhide
All Columns.
To sort the contents of a column, select the column header, and from the right-click menu, select Sort /A to Z/Z to
A/Sort Min to Max/Sort Max to Min as appropriate.

Set Output Load
To set the output load of a port, click the Port and click Set Output Load or edit the value in the Current Output
Load cell. Initial value remains unchanged.

Restore Initial Value
To restore a Port’s output load to the initial value, select the output port and click Restore Initial Value. The
current value changes to become the same value as the initial value.

 Libero SoC Design Flow User Guide

 107

Output Drive and Slew
The Output Drive and Slew page displays the Output Drive and Slew of all output/inout ports of your design.
The display can be sorted according to the initial, current or suggested values. To change the sorting, click the
Sort By drop-down menu to make your selection.
Three values are displayed for Output Drive and Slew of each IO output/inout port:
• Initial – This is the initial value when the IO Advisor is launched.
• Current –This is the current value which reflects any changes you have made, including suggestions you

have accepted from the IO Advisor.
• Suggested – This is the suggested value from the IO Advisor for optimum power and timing performance.

Figure 61 · IO Advisor – Output Drive and Slew

How the Suggested Values Are Computed
The IO Advisor provides suggestions for output drive and slew values according to the following criteria:
• When the user has set no output delay constraint for the port, the IO Advisor suggests IO attribute values

that generate the lowest power consumption.
• When the user has set an output delay constraint on the port, the IO Advisor suggests IO attribute values

that generates the lowest power consumption and positive timing slacks. If the slacks of all attribute
combinations are negative, the IO Advisor suggests an attribute combination (Drive strength and slew) that
generates the least negative slack.

In this screen, you can change the drive strength and slew of the design output I/Os. Select the out drive and/or
the slew current value cell. Click the cell to open the combo box. Choose the value you want from the set of valid
values. You can restore the initial values by clicking Restore Initial Value.
To make changes to multiple I/Os, select multiple I/Os (Control+click), click Set Slew or Set Outdrive, select the
value, and click OK.

Apply Suggestion
To apply the suggested value to a single output port, select the output port and click Apply Suggestion.
To apply the suggested values to mulitple ports, select the multiple ports (Control+click) and click Apply
Suggestion.

Adjust ODT and Schmitt Trigger
This page allows you to set the Schmitt Trigger setting (On/Off), On-Die Termination (ODT) Static setting
(On/Off), and the ODT Impedance (in Ohms) to valid values for all Input/Inout IOs of your design. The IO Advisor
page instantly gives you the Power (in uW) and Delay (in ns) values when you make changes. If the suggested
values meet your design’s power and/or timing requirements, you can accept the suggestions and continue with
your design process.

 Libero SoC Design Flow User Guide

 108

Figure 62 · IO Advisor – Adjust ODT and Schmitt Trigger

Note: ODT is not allowed for 2.5V or higher single-ended signals. It is allowed for differential signals.

Search and Regular Expressions
To search for a specific Port, enter the Port Name in the Port Name Search field and click Search. Regular
expressions are accepted for the search. All Port Names matching the regular expression are displayed. The
regular expression “RESET*”, for example, results in the input/inout ports with the port name beginning with
“RESET” appearing in the display.

Figure 63 · Search Field and Regular Expressions

Status Column
The icon in the Status Column displays the status of the input/inout ports.

Icon Status and Explanation

OK - The IO attributes match the suggestion in the Adjust ODT and Schmitt Trigger Table.

Error – The Timing constraints for this IO are not met in the Adjust ODT and Schmitt Trigger
Table.

Information – you can improve the power and/or timing of the IO by applying the suggestion
in the Adjust ODT and Schmitt Trigger Table.

 Libero SoC Design Flow User Guide

 109

Column Display and Sorting
To hide or unhide a column, click on the drop-down menu of a column header and select Hide Column or Unhide
All Columns.
To sort the contents of a column, select the column header, and from the right-click menu, select Sort /A to Z/Z to
A/Sort Min to Max/Sort Max to Min as appropriate.

Set Schmitt Trigger
For IO Standards that support the Schmitt Trigger, you can turn the Schmitt Trigger On or Off. Select the IO and
click Set Schmitt Trigger to toggle on or off. Your setting is displayed in the Schmitt Trigger column for the IO.

Set ODT Static
For IO standards that support ODT static settings, you can turn the ODT Static On or Off according to your board
layout or design needs:
• On – The Termination resistor for impedance matching is located inside the chip.
• Off – The Terminator resistor for impedance matching is located on the printed circuit board.

To turn the ODT Static on or off, click to select the input/inout port and from the pull-down menu, toggle on or off.
You can also turn ODT Static on or off by clicking Set ODT Static and toggling on or off.

Set ODT Impedance (Ohm)
For each input/inout in your design, valid ODT Impedance values (in Ohms) are displayed for you to choose from.
Click to select the input/inout port and select one of the valid ODT impedance values from the pull-down list in the
ODT Impedance column. You can also click Set ODT Impedance to choose one of the valid ODT impedance
values. The Power and Delay values may vary when you change the ODT Impedance (Ohm).
Note: When ODT_static is set to OFF, changing the ODT_Impedance value has no effect on the Power and
Delay values. The Power and Delay values change with ODT_Impedance value changes only when ODT_static is
set to ON.

Apply Suggestion
To apply the suggested value to a single input/inout port, select the port and click Apply Suggestion. To apply
the suggested values to mulitple ports, select the multiple ports (Control-click) and click Apply Suggestion.

Restore Initial Value
To restore an input/inout port’s attribute values to the initial values, select the port and click Restore Initial Value.
The current value changes to the same value as the initial value.

Summary of Changes
This screen provides a summary of the timing and power changes you have made in the IO Advisor.

 Libero SoC Design Flow User Guide

 110

Figure 64 · IO Advisor – Summary

You can save the summary by clicking Save Summary, selecting the save format (text or CSV), and clicking OK.
To commit IO Attribute changes you have made to the database (the *io_pdc file), choose Save from the File
Menu (File > Save). Click OK in the dialog that appears.
Note: After saving the changes into the pdc file and database, the summary refreshes automatically and shows
the latest data as per the latest database.

Constraint Manager – Timing Tab
The Timing tab allows you to manage timing constraints throughout the design process. Timing constraints files
(SDC) have the *.sdc file extension and are placed in the <Project_location>\constraint folder.
Available actions are:
• New – Creates a new timing SDC file and saves it into the <Project_location>\constraint folder.

• When prompted, enter the name of the constraint file.
• The file is initially opened in the text editor for user entry.

• Import – Imports an existing timing SDC file into the Libero SoC project. The timing SDC file is copied into
the <Project_location>\constraint folder.

• Link – Creates a link in the project’s constraint folder to an existing timing SDC file (located and maintained
outside of the Libero SoC project).

• Edit with Constraint Editor – Opens the Timing Constraints Editor (see Timing Constraints Editor User
Guide for details) to modify the SDC file(s) associated with one of the three tools:

o Synthesis – When selected, the timing SDC file(s) associated with the Synthesis tool is loaded in
the constraints editor for editing.

o Place and Route - When selected, the timing SDC file(s) associated with the Place and Route tool
is loaded in the constraints editor for editing.

o Timing Verification - When selected, the timing SDC file(s) associated with the Timing Verification
tool is loaded in the constraints editor for editing.

• Check – Check the legality of the SDC file(s) associated with one of the three tools described below:
o Synthesis – The check is performed against the pre-synthesis HDL design.
o Place and Route – The check is performed against the post-synthesis gate level netlist.
o Timing Verification – The check is performed against the post-synthesis gate level netlist.

• Derive Constraints – When clicked, Libero generates a timing SDC file based on user configuration of IP
core, components and component SDC. For Smartfusion2, Design components for which Libero SoC
generates timing constraints include MSS, OSC, SERDES and CCC. It generates the create_clock and

https://coredocs.s3.amazonaws.com/Libero/11_8_4/Tool/smarttime_ce_ug.pdf
https://coredocs.s3.amazonaws.com/Libero/11_8_4/Tool/smarttime_ce_ug.pdf

 Libero SoC Design Flow User Guide

 111

create_generated_clock SDC timing constraints. This file is named <top_level_> derived_constraints.sdc.
The component SDC and the generated <root>_derived_constraint.sdc files are dependent on the IP cores
and vary with the device family.

Note: Clicking this button also generates a PDC file for certain Microsemi IPs, such as the the
CoreConfigP. This PDC file constrains the placement of the IPs in a fixed region automatically created by
Libero SoC to ensure that these IPs do not cause timing violations. The PDC file is named
<top_level_>derived_constraints.pdc, and is displayed in the Floor Planner tab. Associate this PDC file to
Place-and-Route.

• Constraint Coverage - When clicked, a pull-down list displays. Select the Constraint Coverage Reports you
want:

o Generate Place and Route Constraint Coverage Report
o Generate Timing Verification Constraint Coverage Report
Note: Constraint Coverage Reports can be generated only after synthesis. A warning message
appears if the design is not in the post-synthesis state when this button is clicked.
The generated report will be visible in the respective nodes of the report view (Design > Reports).

When the Constraint Editor tool is invoked or the constraint check is performed all the files associated with the
targeted tool – Synthesis, Place and Route, Timing Verification – are being passed for processing.
When you save your edits in the Constraint Editor tool, the timing SDC files affected by the change are updated to
reflect the changes you have made in the Constraints Editor tool. New timing constraints you add in the
SmartTime Constraint Editor tool are written to the Target file (if a target file has been set) or written to a new
SDC file (if no file is set as target) and stored in the <project>\constraint folder.

Figure 65 · Constraint Manager – Timing Tab

Right-click the timing SDC files to access the available actions for each constraint file:
• Set/Unset as Target – Sets or clears the selected file as the target to store new constraints created in the

Constraint Editor tool. Newly created constraints only go into the target constraint file. Only one file can be
set as target, and it must be a PDC or SDC file. This option is not available for the derived constraint SDC
file. This option is not available for linked files.

• Open in Text Editor – Opens the selected constraint file in the Libero Text Editor.
• Clone - Copies the file to a file with a different name. The original file name and its content remain intact.

This option is not available for linked files.
• Rename - Renames the file to a different name. This option is not available for linked files.
• Copy File Path - Copies the file path to the clipboard.
• Delete - Deletes the selected file from the project and from the disk. This option is not available for linked

files.

 Libero SoC Design Flow User Guide

 112

• Unlink - Removes the linked file from the project. The original file is untouched. This option is only available
for linked files.

• Unlink: Copy file locally – Removes the link and copies the file into the <Project_location>\constraint
folder. This option is only available for linked files.

File and Tool Association
Each timing constraint file can be associated or disassociated with any one, two, or all three of the following tools:
• Synthesis
• Place and route
• Timing Verification

Click the checkbox under Synthesis, Place and Route, or Timing Verification to associate/disassociate the file
from the tool.
When a file is associated, Libero passes the file to the tool for processing.

Example 1

In the context of the graphic above, when Edit Synthesis Constraint is selected, the user.sdc file and the
M3_MDDR_top_derived_constraints.sdc file are read (because these two files are associated with Synthesis) and
mytiming.sdc and mytiming2.sdc are not read (because they are not associated with Synthesis). When the
SmartTime Constraint Editor opens for edit, the constraints from these two files are read and loaded into the
Constraint Editor. Any changes you made and saved in the Constraint Editor are written back to the files.
In the context of the graphic above, when Edit Synthesis Constraint is selected, user.sdc,
top_derived_constraints.sdc, and mytiming2.sdc are read (because these three files are associated with
Synthesis); mytiming.sdc and sdfsadf.sdc are not read (because they are not associated with Synthesis). When
the SmartTime Constraint Editor opens for edit, the constraints from all the files except for sdfsadf.sdc are read
and loaded into the Constraint Editor. Any changes you made and saved in the Constraint Editor are written back
to the files.

 Libero SoC Design Flow User Guide

 113

Example 2

In the context of the graphic above, when Check Synthesis Constraint is selected, the user.sdc file and the
M3_MDDR_top_derived_constraints.sdc file are checked (because these two files are associated with Synthesis)
and mytiming.sdc is not checked (because it is not associated with Synthesis).
When Check for Timing Verification is selected, M3_MDDR_top_derived_constraints.sdc and user.sdc files are
checked because they are associated with Timing Verification. mytiming.sdc is not checked because it is not
associated with Timing Verification.
When Check for Place and Route is selected, M3_MDDR_top_derived_constraints.sdc, and mytiming.sdc are
checked because they are associated with Place and Route.

Derived Constraints
Libero SoC is capable of generating SDC timing constraints for design components when the root of the design
has been defined. Click Derive Constraints in the Constraint Manager’s Timing tab to generate SDC timing
constraints for your design’s components.
The generated constraint file is named <root>_derived.sdc and is created by instantiating component SDC files
created by IP configurators (e.g., CCC) and oscillators used in the design.
The <root>_derived.sdc file is associated by default to the Synthesis, Place and Route and Timing Verification
tool. You can change the file association in the Constraint Manager by checking or unchecking the checkbox
under the tool.

To generate SDC timing constraints for IP cores:
1. Configure and generate the IP Core.
2. From the Constraint Manager’s Timing tab, click Derive Constraints (Constraint Manager > Timing >

Derive Constraints).
The Constraint Manager generates the <root>_derived_constraints.sdc file and places it in the Timing Tab
along with other user SDC constraint file.

3. When prompted for a Yes or No on whether or not you want the Constraint Manager to
automatically associate the derived SDC file to Synthesis, Place and Route, and Timing Verification, click
Yes to accept automatic association or No and then check or uncheck the appropriate checkbox for tool
association.
Note: Microsemi recommends the <root>_derived_constraints.sdc be always associated with all three tools:
Synthesis, Place and Route, and Verify Timing. Before running SynplifyPro Synthesis, associate the
<root>_derived_constraints.sdc file with Synthesis and Place and Route. This will ensure that the design
objects (such as nets and cells) in the <root>_derived_constraints.sdc file are preserved during the

 Libero SoC Design Flow User Guide

 114

synthesis step and the subsequent Place and Route step will not error out because of design object
mismatches between the post-synthesis netlist and the <root>_derived_constraints.sdc file.

Note: Full hierarchical path names are used to identify design objects in the generated SDC file.
Note: The Derive Constraints button is available for HDL-based, SmartDesign-based, and System Builder-based
design flows. It is not available for Netlist Designs (Project > Project Settings > Design Flow > Enable Synthesis
[not checked]).

Constraint Manager – Floor Planner Tab
The Floor Planner tab allows you to manage floorplanning constraints. Floorplanning constraints files (PDC) have
the *.pdc file extension and are placed in the <Project_location>\constraint\fp folder.
Available actions are:
• New – Creates a new floorplanning PDC file and saves it into the <Project_location>\constraint\fp folder.
• Import – Imports an existing floorplanning PDC file into the Libero SoC project. The floorplanning PDC file is

copied into the <Project_location>\constraint\fp folder.
• Link – Creates a link in the project’s constraint folder to an existing floorplanning PDC file (located and

maintained outside of the Libero SoC project).
• Edit with Chip Planner – Opens the Chip Planner tool to modify the floorplanning PDC file(s) associated

with the Place and Route tool.
• Check – Checks the legality of the PDC file(s) associated with the Place and Route tool against the gate

level netlist.
When the Chip Planner tool is invoked or the constraint check is performed, all files associated with the Place and
Route tool are passed for processing.
When you save your edits in the Chip Planner tool, the floorplanning PDC files affected by the change are
updated to reflect the change you made in the Chip Planner tool. New floorplanning constraints that you add in
the Chip Planner tool are written to the Target file (if a target file has been set) or written to a new PDC file (if no
file is set as target) and stored in the <project>\constraint\fp folder.

Figure 66 · Constraint Manager – Floor Planner Tab

Right-click the floorplanning PDC files to access the available actions:
• Set/Unset as Target – Sets or clears the selected file as the target to store new constraints created in the

Chip Planner tool. Newly created constraints only go into the target constraint file. Only one file can be set
as target. This option is not available for linked files.

• Open in Text Editor – Opens the selected constraint file in the Libero Text Editor.
• Clone - Copies the file to a file with a different name. The original file name and its content remain intact.

This option is not available for linked files.
• Rename - Renames the file to a different name. This option is not available for linked files.

https://coredocs.s3.amazonaws.com/Libero/12_0_0/Tool/chipplanner_ug.pdf

 Libero SoC Design Flow User Guide

 115

• Copy File Path - Copies the file path to the clipboard.
• Delete - Deletes the selected file from the project and from the disk. This option is not available for linked

files.
• Unlink - Removes the linked file from the project. The original file is untouched. This option is only available

for linked files.
• Unlink: Copy file locally – Removes the link and copies the file into the <Project_location>\constraint\fp

folder. This option is only available for linked files.

File and Tool Association
Each floorplanning constraint file can be associated or disassociated to the Place and Route tool.
Click the checkbox under Place and Route to associate/disassociate the file from the tool.
When a file is associated, Libero passes the file to the tool for processing.

See Also
Chip Planner User Guide

Constraint Manager – Netlist Attributes Tab
The Netlist Attributes tab allows you to manage netlist attribute constraints to optimize your design during the
synthesis and/or compile process. Timing constraints should be entered using SDC files managed in the Timing
tab. Netlist Attribute constraints files are placed in the <Project_location>\constraint folder. Libero SoC manages
two types of netlist attributes:
• FDC constraints are used to optimize the HDL design using Synopsys SynplifyPro synthesis engine and

have the *.fdc extension.
• NDC constraints are used to optimize the post-synthesis netlist with the Libero SoC compile engine and

have the *.ndc file extension
Available operations are:
• New – Creates a new FDC or NDC netlist attribute constraints file in the <Project_location>\constraint folder.
• Import – Imports an existing FDC or NDC netlist attribute constraints file into the Libero SoC project. The

FDC or NDC netlist attribute constraints file is copied into the <Project_location>\constraint folder.
• Link – Creates a link in the project’s constraint folder to an existing existing FDC or NDC netlist attribute

constraints file (located and maintained outside of the Libero SoC project).
• Check – Checks the legality of the FDC and NDC file(s) associated with the Synthesis or Compile tools.

When the constraint check is performed, all files associated with the Synthesis or Compile tools are passed for
processing.

Figure 67 · Constraint Manager – Netlist Attributes Tab

Right-click the FDC or NDC files to access the available actions:
• Open in Text Editor – Opens the selected constraint file in the Libero SoC Text Editor.
• Clone - Copies the file to a file with a different name. The original file name and its content remain intact.

This option is not available for linked files.
• Rename - Renames the file to a different name. This option is not available for linked files.
• Copy File Path - Copies the file path to the clipboard.
• Delete – Deletes the file from the project and from the disk. This option is not available for linked files.

https://coredocs.s3.amazonaws.com/Libero/12_0_0/Tool/chipplanner_ug.pdf

 Libero SoC Design Flow User Guide

 116

• Unlink - Removes the linked file from the project. The original file is untouched. This option is only available
for linked files.

• Unlink: Copy file locally – Removes the link and copies the file into the <Project_location>\constraint
folder. This option is only available for linked files.

File and Tool Association
Each netlist attributes constraint file can be associated with or disassociated from the Synthesis tool.
Click the checkbox under Synthesis (Compile) to associate/disassociate the file from Synthesis (Compile).
When a file is associated, Libero passes the file to Synthesis (Compile) for processing when Synthesis is run.
When Synthesis is ON (Project > Project Settings > Design Flow > Enable synthesis [checked]) for a project, the
Design Flow Synthesis action runs both the synthesis engine and the post-synthesis compile engine.
When Synthesis is OFF (Project > Project Settings > Design Flow > Enable synthesis [not checked]) for a project,
the Design Flow Synthesis action is replaced by the Compile action and runs the compile engine on the gate-level
netlist (EDIF or Verilog) available in the project.

 Libero SoC Design Flow User Guide

 117

Implement Design

Synthesize
Double-click Synthesize to run synthesis on your design with the default settings specified in the synthesis tool.
If you want to run the synthesis tool interactively, right-click Synthesize and choose Open Interactively. If you
open your tool interactively, you must complete synthesis from within the synthesis tool.
The default synthesis tool included with Libero SoC is Synplify Pro ME. If you want to use a different synthesis
tool, you can change the settings in your Tool Profiles.
You can organize input synthesis source files via the Organize Source Files dialog box.

Synthesize Options
Some families enable you to set or change synthesis configuration options for your synthesis tool. To do so, in the
Design Flow window, expand Implement Design, right-click Synthesize and choose Configure Options. This
opens the Synthesize Options dialog box.

 Libero SoC Design Flow User Guide

 118

Figure 68 · Synthesize Options Dialog Box

HDL Synthesis Language Settings

HDL Synthesis language options are no longer specified in this dialog box. Please refer to Project Settings:
Design Flow Options.

 Libero SoC Design Flow User Guide

 119

Global Nets (Promotions and Demotions)

Use the following options to specify to the Synthesis tool the threshold value beyond which the Synthesis tool
promotes the pins to globals:
• Minimum number of clock pins – Specifies the threshold value for Clock pin promotion. The default value

is 2.
• Minimum number of asynchronous pins – Specifies the threshold value for Asynchronous pin promotion.

The default is 12 for all dies of SmartFusion2 and IGLOO2 families and RT4G150 die of the RTG4 family.
This option is not available for RT4G150_ES die.

• Minimum fanout of non-clock nets to be kept on globals – Specifies the threshold value for data pin
promotion to global resources. It is the minimum fanout of non-clock (data) nets to be kept on globals (no
demotion). The default is 5000 (must be between 1000 and 200000).

• Number of global resources – This can be used to control number of Global resources you want to use in
your design. By default this displays the number of available global resources for the die you have selected
for the project and varies with different die sizes.

• Maximum number of global nets that could be demoted to row-globals – Specifies the maximum
number of global nets that could be demoted to row-globals. The default is 16 (must be between 0 to 50).

• Minimum fanout of global nets that could be demoted to row-globals – Specifies the minimum fanout of
global nets that could be demoted to row-global. It is undesirable to have high fanout nets demoted using
row globals because it may result in high skew. The default is 300. (Must be between 25 to 5000). If you run
out of global routing resources for your design, reduce this number (to allow more globals to be demoted to
Row Globals) or select a bigger die for your design.

Note: Hardwired connections to global resources, such as CCC hardwired connections to GB , IO Hardwired
connections to GB, and so on, cannot be controlled by these options.

Optimizations

Enable retiming – Check this box to enable Retiming during synthesis. Retiming is the process of automatically
moving registers (register balancing) across combinational gates to improve timing, while ensuring identical logic
behavior. The default is no retiming during synthesis.
RAM optimized for:
Use this option to guide the Synthesis tool to optimize RAMs to achieve your design goal.
• High speed – RAM Optimization is geared towards Speed. The resulting synthesized design achieves

better performance (higher speed) at the expense of more FPGA resources.
• Low power – RAM Optimization is geared towards Low Power. RAMs are inferred and configured to ensure

the lowest power consumption.

Additional options for Synplify Pro synthesis

Script File

Click the Browse button to navigate to a Synplify Tcl file that contains the Synplify Pro-specific options.
Libero passes the options in the Tcl file to Synplify Pro for processing.
Additional Options
Use this field to enter additional Synplify options. Put each additional option on a separate line.
Note: Libero passes these additional options “as-is” to Synplify Pro for processing; no syntax checks are
performed. All of these options are set on the Active Implementation only.
The list of recommended Synthesis Tcl options below can be added or modified in the Tcl Script File or Additional
Options Editor.
Note: The options from the Additional Options Editor will always have priority over the Tcl Script file options if they
are same.

set_option -use_fsm_explorer 0/1

set_option -frequency 200.000000

 Libero SoC Design Flow User Guide

 120

set_option -write_verilog 0/1

set_option -write_vhdl 0/1

set_option -resolve_multiple_driver 1/0

set_option -rw_check_on_ram 0/1

set_option -auto_constrain_io 0/1

set_option -run_prop_extract 1/0

set_option -default_enum_encoding default/onehot/sequential/gray

set_option -maxfan 30000

set_option -report_path 5000

set_option -update_models_cp 0/1

set_option -preserve_registers 1/0

set_option -continue_on_error 1/0

set_option -symbolic_fsm_compiler 1/0

set_option -compiler_compatible 0/1

set_option -resource_sharing 1/0

set_option -write_apr_constraint 1/0

set_option -dup 1/0

set_option -enable64bit 1/0

set_option -fanout_limit 50

set_option -frequency auto

set_option -hdl_define SLE_INIT=2

set_option -hdl_param -set "width=8"

set_option -looplimit 3000

set_option -fanout_guide 50

set_option -maxfan_hard 1/0

set_option -num_critical_paths 10

set_option -safe_case 0/1

Any additional options can be entered through the Script File or Additional Options Editor. All of these options can
be added and modified outside of Libero through interactive SynplifyPro.
Refer to the Synplify Pro Reference Manual for detailed information about the options and supported families.
The following options are already set by Libero. Do not include them in the additional options field or Script File:

add_file <*>

impl <*>

project_folder <*>

add_folder <*>

constraint_file <*>

project <*>

project_file <*>

open_file <*>

set_option –part

set_option -package

set_option -speed_grade

set_option -top_module

set_option -technology

set_option -opcond

set_option -vlog_std

set_option -vhdl2008

set_option -disable_io_insertion

set_option -async_globalthreshold

set_option -clock_globalthreshold

set_option -globalthreshold

 Libero SoC Design Flow User Guide

 121

set_option -low_power_ram_decomp

set_option -retiming

Synplify Pro ME
Synplify Pro ME is the default synthesis tool for Libero SoC.
To run synthesis using Synplify Pro ME and default settings, right-click Synthesize and choose Run.
If you wish to use custom settings you must run synthesis interactively.

To run synthesis using Synplify Pro ME with custom settings:
1. If you have set Synplify as your default synthesis tool, right-click Synthesize in the Libero SoC Design Flow

window and choose Open Interactively. Synplify starts and loads the appropriate design files, with a few
pre-set default values.

2. From Synplify’s Project menu, choose Implementation Options.
3. Set your specifications and click OK.
4. Deactivate synthesis of the defparam statement. The defparam statement is only for simulation tools and is

not intended for synthesis. Embed the defparam statement in between translate_on and translate_off
synthesis directives as follows :
/* synthesis translate_off */
defparam M0.MEMORYFILE = "meminit.dat"

/*synthesis translate_on */
// rest of the code for synthesis

5. Click the RUN button. Synplify compiles and synthesizes the design into an HDL netlist. The resulting *.vm
files are visible in the Files list, under Synthesis Files.

Should any errors appear after you click the Run button, you can edit the file using the Synplify editor.
Double-click the file name in the Synplify window showing the loaded design files. Any changes you
make are saved to your original design file in your project.

6. From the File menu, choose Exit to close Synplify. A dialog box asks you if you would like to save any
settings that you have made while in Synplify. Click Yes.
Note: See the Microsemi Attribute and Directive Summary in the Synplify online help for a list of attributes

related to Microsemi devices.
Note: To add a clock constraint in Synplify you must add "n:<net_name>" in your SDC file. If you put the

net_name only, it does not work.

Identify Debug Design
Libero SoC integrates the Identify RTL debugger tool. It enables you to probe and debug your FPGA design
directly in the source RTL. Use Identify software when the design behavior after programming is not in
accordance with the simulation results.
To open the Identify RTL debugger, in the Design Flow window under Debug Design double-click Instrument
Design.
Identify features:
• Instrument and debug your FPGA directly from RTL source code.
• Internal design visibility at full speed.
• Incremental iteration - Design changes are made to the device from the Identify environment using

incremental compile. You iterate in a fraction of the time it takes route the entire device.
• Debug and display results - You gather only the data you need using unique and complex triggering

mechanisms.
You must have both the Identify RTL Debugger and the Identify Instrumentor to run the debugging flow outlined
below.

To use the Identify Instrumentor and Debugger:
1. Create your source file (as usual) and run pre-synthesis simulation.
2. (Optional) Run through an entire flow (Synthesis - Compile - Place and Route - Generate a Programming

File) without starting Identify.

 Libero SoC Design Flow User Guide

 122

3. Right-click Synthesize and choose Open Interactively in Libero SoC to launch Synplify.
4. In Synplify, click Options > Configure Identify Launch to setup Identify.
5. In Synplify, create an Identify implementation; to do so, click Project > New Identify Implementation.
6. In the Implementations Options dialog, make sure the Implementation Results > Results Directory points to

a location under <libero project>\synthesis\, otherwise Libero SoC is unable to detect your resulting EDN
Netlist file.

7. From the Instumentor UI specify the sample clock, the breakpoints, and other signals to probe. Synplify
creates a new synthesis implementation. Synthesize the design.

8. In Libero SoC, run Synthesis, Place and Route and Generate a Programming File.
Note: Libero SoC works from the edif netlist of the current active implementation, which is the
implementation you created in Synplify for Identify debug.

11. Double-click Identify Debug Design in the Design Flow window to launch the Identify Debugger.
The Identify RTL Debugger, Synplify, and FlashPro must be synchronized in order to work properly. See the
Release Notes for more information on which versions of the tools work together.

Verify Post-Synthesized Design

Generate Simulation File
This step generates the post-synthesis *.v Verilog or *.vhd VHDL netlist for post-synthesis simulation. Post-
synthesis simulation verifies the post-synthesis implementation of the design.
The netlist file is located in the synthesis folder of the project. Libero SoC passes this file to the simulator for the
post-synthesis simulation run. This step must be preceded by a successful synthesis. If synthesis is not yet run,
generating Simulation Files automatically initiates a synthesis run as a requirement to this step

Verify Post-Synthesis Implementation - Simulate
The steps for performing functional (post-synthesis) and timing (post-layout) simulation are nearly identical.
Functional simulation is performed before place-and-route and simulates only the functionality of the logic in the
design. Timing simulation is performed after the design has gone through place-and-route and uses timing
information based on the delays in the placed and routed designs.

To perform functional simulation:
1. If you have not done so, back-annotate your design and create your testbench.
2. Right-click Simulate (in the Design Flow window, Implement Design > Verify Post-Synthesis Implementation

> Simulate) and choose Organize Input Files > Organize Simulation Files from the right-click menu.
In the Organize Files for Source dialog box, all stimulus files in the current project appear in the
Source Files in the Project list box. Files already associated with the block appear in the Associated
Source Files list box.
In most cases you will only have one testbench associated with your block. However, if you want
simultaneous association of multiple testbench files for one simulation session, as in the case of PCI
cores, add multiple files to the Associated Source Files list.
To add a testbench: Select the testbench you want to associate with the block in the Source Files in
the Project list box and click Add to add it to the Associated Source Files list.
To remove a testbench: To remove or change the file(s) in the Associated Source Files list box,
select the file(s) and click Remove.
To order testbenches: Use the up and down arrows to define the order you want the testbenches
compiled. The top level-entity should be at the bottom of the list.

3. When you are satisfied with the Associated Simulation Files list, click OK.
4. To start ModelSim ME, right-click Simulate in the Design Hierarchy window and choose Open

Interactively. ModelSim starts and compiles the appropriate source files. When the compilation completes,
the simulator runs for 1 s and the Wave window opens to display the simulation results.

5. Scroll in the Wave window to verify the logic works as intended. Use the cursor and zoom buttons to zoom in
and out and measure timing delays.

https://www.microsemi.com/products/fpga-soc/design-resources/design-software/libero-soc#downloads

 Libero SoC Design Flow User Guide

 123

6. When you are done, from the File menu, choose Quit.

Configure Flash*Freeze
Opens the Flash*Freeze Hardware Settings dialog box. For more information on the Flash*Freeze mode see the
SmartFusion2 and IGLOO2 Low Power Design User's Guide.
The fabric SRAMs can be put into a Suspend Mode or a Sleep Mode. This applies to both the Large SRAM
(LSRAM) instances of RAM1xK18 and the Micro SRAM (uSRAM) instances of RAM64x18. These SRAMs are
grouped in rows in Libero® System-on-Chip (SoC) devices

uRAM/LSRAM State
Sleep - Sets to Sleep; LSRAM and uSRAM contents are not retained.
Suspend - Sets to Suspend; LSRAM and uSRAM contents are retained.

MSS Clock Source
The lower the frequency the lower the power will be. But for some peripherals that can remain active (such as SPI
or MMUART), you may need a higher MSS clock frequency (such as to meet the baud rate for MMUART).
Options are:
• On-Chip 1 MHz RC Oscillator
• On-Chip 50 MHz RC Oscillator

Configure Register Lock Bits
For SmartFusion2 and IGLOO2 devices, use the Register Lock Bits Configuration tool to lock MSS, SERDES,
and FDDR configuration registers and prevent them from being overwritten by Masters that have access to these
registers. The register lock bits are set in a text file (*.txt) and imported into a SmartFusion2/IGLOO2 project.
From the Design Flow window, click Configure Register Lock Bits (Design Flow window > Configure
Register Lock Bits) to open the Register Lock Bits Setting dialog box. Click the Browse button to navigate to a
text file (*.txt) that contains the Register Lock Bit settings.

Figure 69 · Register Lock Bits Settings Dialog Box

Register Lock Bit Text File Template
An initial Configuration Lock Bit file can be generated from the Design Flow window (Design Flow window >
Generate FPGA Array Data).
The file is named <proj_location>/designer/<root>/<root>_init_config_lock_bits.txt. This is the initial and the
default Lock Bit Configuration File. Use this file as a template to make changes. Modify it to ensure that the lock
bits are set to “0” for all register bits you want to lock. Save the file as a *.txt file with a different name and import
the file into the project using the Register Lock Bit Settings dialog box (Design Flow window > Configure
Register Lock Bits).

Register Lock Bit File Syntax
A valid entry in the Lock Bit Configuration file is defined as <lock_parameters> < lock bit value> pair.

https://www.microsemi.com/document-portal/doc_download/132010-ug0444-smartfusion2-and-igloo2-low-power-design-user-guide

 Libero SoC Design Flow User Guide

 124

• If the lock bit is for a register the parameter name is defined as:
• <Physical block name>_<register name>_LOCK

• If the lock bit is for a field the parameter name is defined as:
• <Physical block name>_<register name>_<field name>_LOCK

• The physical block name (which may vary with device family and die) is defined as:
• MSS
• FDDR
• SERDES_IF_x (where x is 0,1,2,3 to indicate the physical SERDES location) for SmartFusion2,

and IGLOO2 (010/025/050/150) devices
• SERDES_IF2 (060/090) devices (only one SERDES block per device for SmartFusion2 and

IGLOO2 devices)
Set the lock bit value to ‘1’ to indicate that the register can be written, “0” to indicate that the register cannot be
written (locked).
Lines starting with “#” or “;” are comments and empty lines are allowed in the Lock Bit Configuration file.

Figure 70 · Lock Bit Configuration File

Validation of Register Lock Bits Configuration File
During Map File generation (Design Flow window > Generate FPGA Array Data), Libero SoC validates the
Register Lock Bit Configuration file and displays error message when invalid parameter or parameter values are
found:
• "Error: Invalid parameter name ‘<param>’ while reading register lock bits configuration file <file name>
• "Error: Invalid value ‘<value>’ for parameter ‘<param>’ while reading register lock bits configuration file <file

name>

 Libero SoC Design Flow User Guide

 125

• "Error: Parameter ‘<param>’ cannot be set to '1', while reading register lock bits configuration file <file
name>. This error is displayed when the value of SERDES register fields *K_BRIDGE_SPEED is set by the
SERDES Configurator to “0” and cannot be changed. It is illegal to change the value to “1”.

Design Flow in Implementation

Design State Invalidation
The Libero SoC Design Flow window displays status icons to indicate the status of the design state. For any
status other than a successful run, the status icon is identified with a tooltip to give you additional information.

Status
Icon

Tooltip Description Possible Causes/Remedy

N/A Tool has not
run yet.

NEW state Tool has not run or it has been cleaned.

Tool runs
successfully.

Tool runs with no
errors. PASS state.

N/A

Varies with the
tool.

Tool runs but with
Warnings.

Varies with the tool (e.g., for the Compile Netlist
step, not all I/Os have been assigned and locked).

Tool Fails. Tool fails to run. Invalid command options or switches, invalid

design objects, invalid design constraints.

Design State is
Out of Date.

Tool state changes
from PASS to OUT OF
DATE.

Since the last successful run, design source
design files, constraint files or constraint file/tool
association, constraint files order, tool options,
and/or project settings have changed.

Timing
Constraints
have not been
met.

Timing Verification runs
successfully but the
design fails to meet
timing requirements.

Design fails Timing Analysis. Design has either
set-up or hold time violations or both.

Constraints and Design Invalidation

A tool in the Design Flow changes from a PASS state (green check mark) to an OUT OF DATE state when a
source file or setting affecting the outcome of that tool has changed.

The out-of-date design state is identified by the icon in the Design Flow window.
Sources and/or settings are defined as:
• HDL sources (for Synthesis), gate level netlist (for Compile), and Smart Design and System Builder

components
• Design Blocks (*.cxz files) – low-level design units which may have completed Place and Route and re-used

as components in a higher-level design
• Constraint files associated with a tool
• Upstream tools in the Design Flow:

o If the tool state of a Design Flow tool changes from PASS to OUT OF DATE, the tool states of all
the tools below it in the Design Flow, if already run and are in PASS state, also change to OUT OF
DATE with appropriate tooltips. For example, if the Synthesis tool state changes from PASS to

 Libero SoC Design Flow User Guide

 126

OUT OF DATE, the tool states of Place and Route tool as well as all the tools below it in the Design
Flow change to OUT OF DATE.

o If a Design Flow tool is CLEANED, the tool states of all the tools below it in the Design Flow, if
already run, change from PASS to OUT OF DATE.

o If a Design Flow tool is rerun, the tool states of all the tools below it in the Design Flow, if already
run, are CLEANED.

• Tool Options
o If the configuration options of a Design Flow tool (right-click the tool and choose Configure

Options) are modified, the tool states of that tool and all the other tools below it in the Design Flow,
if already run, are changed to OUT OF DATE with appropriate tooltips.

• Project Settings:
o Device selection
o Device settings
o Design Flow
o Analysis operating conditions

Setting Changed Applicable Families Note Design Flow
Tools Affected

New State of the
Affected Design Flow

Tools

Family SmartFusion2,
IGLOO2, RTG4

Part# is
changed

N/A since family
cannot be
changed once a
root is created

N/A

Die SmartFusion2,
IGLOO2, RTG4

Part# is
changed

All CLEANED/NEW

Package SmartFusion2,
IGLOO2, RTG4

Part# is
changed

All CLEANED/NEW

Speed SmartFusion2,
IGLOO2, RTG4

Part# is
changed

All CLEANED/NEW

Core Voltage SmartFusion2,
IGLOO2, RTG4

Part# is
changed

All CLEANED/NEW

Range SmartFusion2,
IGLOO2, RTG4

Part# is
changed

All CLEANED/NEW

Default I/O
Technology

SmartFusion2,
IGLOO2, RTG4

 Synthesize, and
all tools below it

OUT OF DATE

Reserve Pins for
Probes

SmartFusion2,
IGLOO2, RTG4

 Place and Route,
and all tools
below it

OUT OF DATE

Reserve Pins for
Device Migration*

SmartFusion2,
IGLOO2, RTG4

 Place and Route
and all tools
below it

OUT OF DATE

PLL Supply Voltage
(V)

SmartFusion2,
IGLOO2

 Verify Power,
Generate FPGA
Array Data and all
other “Program
and Debug

OUT OF DATE

 Libero SoC Design Flow User Guide

 127

Setting Changed Applicable Families Note Design Flow
Tools Affected

New State of the
Affected Design Flow

Tools

Design” tools
below it

Power On Reset
Delay

SmartFusion2
IGLOO2

 Generate FPGA
Array Data and all
other “Program
and Debug
Design” tools
below it

OUT OF DATE

System controller
suspended mode

SmartFusion2,
IGLOO2

 Generate FPGA
Array Data and all
other “Program
and Debug
Design” tools
below it

OUT OF DATE

Preferred Language SmartFusion2,
IGLOO2, RTG4

 None N/A

Enable synthesis SmartFusion2,
IGLOO2, RTG4

 All OUT OF DATE

Synthesis gate level
netlist format

SmartFusion2,
IGLOO2, RTG4

 Synthesize CLEANED/NEW

Design
methodology(standal
one initialization)

SmartFusion2 and
IGLOO2

 None N/A

Reports(Maximum
number of high
fanout nets to be
displayed)

SmartFusion2,
IGLOO2, RTG4

 None N/A

Abort flow if errors
are found in PDC

SmartFusion2,
IGLOO2, RTG4

 None N/A

Abort flow if errors
are found in SDC

SmartFusion2,
IGLOO2, RTG4

 None N/A

Temperature
range(C)

SmartFusion2,
IGLOO2, RTG4

 Verify Timing,
Post Layout
Simulate, and
Verify Power

OUT OF DATE

Core voltage
range(V)

SmartFusion2,
IGLOO2, RTG4

 Verify Timing,
Post Layout
Simulate, and
Verify Power

OUT OF DATE

Default I/O voltage
range

SmartFusion2,
IGLOO2, RTG4

 Verify Timing,
Post Layout

OUT OF DATE

 Libero SoC Design Flow User Guide

 128

Setting Changed Applicable Families Note Design Flow
Tools Affected

New State of the
Affected Design Flow

Tools

Simulate, and
Verify Power

Radiation (krad) RTG4 Verify Timing,
Post Layout
Simulate, and
Verify Power

OUT OF DATE

Enable Single Event
Transient mitigation

RTG4 Synthesize and all
tools below it

OUT OF DATE

*These settings are set in the I/O Attributes tab of the Constraint Manager, not in the Project Settings.

• Note: Cleaning a tool means the output files from that tool are deleted including log and report files, and
the tool’s state is changed to NEW.

Check Constraints
When a constraint file is checked, the Constraint Checker does the following:
• Checks the syntax
• Compares the design objects (pins, cells, nets, ports) in the constraint file versus the design objects in the

netlist (RTL or post-layout ADL netlist). Any discrepancy (e.g., constraints on a design object which does not
exist in the netlist) are flagged as errors and reported in the *_sdc.log file

Design State and Constraints Check

Constraints can be checked only when the design is in the right state.

Constraint Type Check for
Tools

Required Design
State Before
Checking

Netlist Used for
Design Objects
Checks

Check Result

I/O Constraints Place and
Route

Post-Synthesis ADL Netlist Reported in
Libero Log
Window

Floorplanning
Constraints

Place and
Route

Post-Synthesis ADL Netlist par_sdc.log

Timing
Constraints

Synthesis Pre-Synthesis RTL Netlist synthesis_sdc.log

Place and
Route

Post-Synthesis ADL Netlist par_sdc.log

Timing
Verification

Post-Synthesis ADL Netlist vt_sdc.log

Netlist Attributes FDC Check Pre-Synthesis RTL Netlist Libero Message
Window

Netlist Attributes NDC Check Pre-Synthesis RTL Netlist Reported in
Libero Log
Window

 Libero SoC Design Flow User Guide

 129

A pop-up message appears when the check is made and the design flow has not reached the right state.

Figure 71 · Pop-Up message: Design State insufficient for Constraints Check operation

Edit Constraints
Click the Edit with I/O Editor/Chip Planner/Constraint Editor button to edit existing and add new constraints.
Except for the Netlist Attribute constraints (*.fdc and *.ndc) file, which cannot be edited by an interactive tool, all
other constraint types can be edited with an Interactive Tool. The *.fdc and *.ndc files can be edited using the
Libero SoC Text Editor.
The I/O Editor is the interactive tool to edit I/O Attributes, Chip Planner is the interactive tool to edit Floorplanning
Constraints, and the Constraint Editor is the interactive tool to edit Timing Constraints.
For Timing Constraints that can be associated to Synthesis, Place and Route, and Timing Verification, you need
to specify which group of constraint files you want the Constraint Editor to read and edit:
• Edit Synthesis Constraints - reads associated Synthesis constraints to edit.
• Edit Place and Route Constraints - reads only the Place and Route associated constraints.
• Edit Timing Verification Constraints - reads only the Timing Verification associated constraints.

For the three SDC constraints files (a.sdc, b.sdc, and c.sdc, each with Tool Association as shown in the table
below) when the Constraint Editor opens, it reads the SDC file based on your selection and the constraint file/tool
association.

 Synthesis Place and Route Timing Verification

a.sdc X X

b.sdc X X

c.sdc [target] X X X

• Edit Synthesis Constraints reads only the b.sdc and c.sdc when Constraint Editor opens.
• Edit Place and Route Constraints reads a.sdc, b.sdc and c.sdc when Constraint Editor opens.
• Edit Timing Verification Constraints reads a.sdc and c.sdc when Constraint Editor opens.

Constraints in the SDC constraint file that are read by the Constraint Editor and subsequently modified by you will
be written back to the SDC file when you save the edits and close the Constraint Editor.
When you add a new SDC constraint in the Constraint Editor, the new constraint is added to the c.sdc file,
because it is set as target. If no file is set as target, Libero SoC creates a new SDC file to store the new
constraint.

 Libero SoC Design Flow User Guide

 130

Constraint Type and Interactive Tool

Constraint Type Interactive Tool For
Editing

Design Tool the
Constraints File is
Associated

Required Design
State Before
Interactive Tool
Opens for Edit

I/O Constraints I/O Editor Place and Route Tool Post-Synthesis

Floorplanning
Constraints

Chip Planner Place and Route Tool Post-Synthesis

Timing Constraints SmartTime Constraints
Editor

Synthesis Tool
Place and Route
Timing Verification

Pre-Synthesis
Post-Synthesis
Post-Synthesis

Netlist Attributes
Synplify Netlist
Constraint (*.fdc)

Interactive Tool Not
Available Open the Text
Editor to edit.

Synthesis Pre-Synthesis

Netlist Attributes
Compile Netlist
Constraint (*.ndc)

Interactive Tool Not
Available Open the Text
Editor to edit.

Synthesis Pre-Synthesis

Note: If the design is not in the proper state when Edit with <Interactive tool> is invoked, a pop-up message
appears.

Note: When an interactive tool is opened for editing, the Constraint Manager is disabled. Close the Interactive
Tool to return to the Constraint Manager.

Place and Route - SmartFusion2, IGLOO2, RTG4
Double-click Place and Route to run Place and Route on your design with the default settings.

Place and Route Options
To change your Place and Route settings from the Design Flow window, expand Implement Design, right-click
Place and Route and choose Configure Options. This opens the Layout Options dialog box.

 Libero SoC Design Flow User Guide

 131

Figure 72 · Layout Options Dialog Box

 Libero SoC Design Flow User Guide

 132

Figure 73 · Layout Options Dialog Box - with Block Flow enabled

Timing-Driven

Timing-Driven Place and Route is selected by default. The primary goal of timing-driven Place and Route is to
meet timing constraints, specified by you or generated automatically. Timing-driven Place and Route typically
delivers better performance than Standard Place and Route.
If you do not select Timing-driven Place and Route, timing constraints are not considered by the software,
although a delay report based on delay constraints entered in SmartTime can still be generated for the design.

Power-Driven

Enable this option to run Power-Driven layout. The primary goal of power-driven layout is to reduce dynamic
power while still maintaining timing constraints.

I/O Register Combining

Enable this option to combine any register directly connected to an I/O when it has a timing Constraint. Refer to
the Rules for SmartFusion2 and IGLOO2 Devices in the topic I/O Register Combining.

 Libero SoC Design Flow User Guide

 133

Driver Replication

Enable this option to enable an algorithm to replicate critical net drivers to reduce timing violations. The algorithm
prints the list of registers along with the duplicate names. Each set of names should be used in place of the
original register in any specified timing constraint.

High Effort Layout

Enable this option to improve the likelihood of achieving layout success. The layout runtime will increase if you
select this option. Timing performance may suffer as well. Users are urged to consider other methods for
achieving layout success before utilizing this option.

Repair Minimum Delay Violations

This option is enabled by default for SmartFusion2, IGLOO2, RTG4 devices.
Enable this option to instruct the Router engine to repair Minimum Delay violations for Timing-Driven Place and
Route mode (Timing-Driven Place and Route option enabled). The Repair Minimum Delay Violations option, when
enabled, performs an additional route that attempts to repair paths that have minimum delay and hold time
violations. This is done by increasing the length of routing paths and inserting routing buffers to add delay to the
top 100 violating paths.
When this option is enabled, Libero adjusts the programmable delays through I/Os to meet hold time
requirements from input to registers. For register-to-register paths, Libero adds buffers.
Libero iteratively analyzes paths with negative minimum delay slacks (hold time violations) and chooses suitable
connections and locations to insert buffers. Not all paths can be repaired using this technique, but many common
cases will benefit.
Even when this option is enabled, Libero will not repair a connection or path which:
• Is a hardwired, preserved, or global net
• Has a sink pin which is a clock pin
• Is violating a maximum delay constraint (that is, the maximum delay slack for the pin is negative)
• May cause the maximum delay requirement for the sink pin to be violated (setup violations)
• Terminates at a register that is clocked by a Global Buffer driven by an MSIO or MSIOD (RTG4 only). RTG4

I/O delay taps cannot be used to fix hold violations for Global Buffers driven by an MSIO or MSIOD.
Typically, this option is enabled in conjunction with the Incremental Layout option when a design’s maximum
delay requirements have been satisfied.
Every effort is made to avoid creating max-delay timing violations on worst case paths.
Min Delay Repair produces a report in the implementation directory which lists all of the paths that were
considered.
If your design continues to have internal hold time violations, you may wish to rerun repair Minimum Delay
Violations (in conjunction with Incremental Layout). This will analyze additional paths if you originally had more
than 100 violating paths.

Incremental Layout

Choose Incremental Layout to use previous placement data as the initial placement for the next run. If a high
number of nets fail, relax constraints, remove tight placement constraints, deactivate timing-driven mode, or select
a bigger device and rerun Place and Route.
You can preserve portions of your design by employing Compile Points, which are RTL partitions of the design
that you define before synthesis. The synthesis tool treats each Compile Point as a block which enables you to
preserve its structure and timing characteristics. By executing Layout in Incremental Mode, locations of
previously-placed cells and the routing of previously-routed nets is preserved. Compile Points make it easy for
you to mark portions of a design as black boxes, and let you divide the design effort between designers or teams.
See the Synopsys FPGA Synthesis Pro ME User Guide for more information.

http://www.microsemi.com/products/fpga-soc/design-resources/design-software/synplify-pro-me#documents

 Libero SoC Design Flow User Guide

 134

Use Multiple Pass

Check Multiple Pass to run multiple pass of Place and Route to get the best Layout result. Click Configure to
specify the criteria you want to use to determine the best layout result. For details see Multiple Pass Layout
Configuration (SmartFusion2, IGLOO2, RTG4).

Block Creation – Number of row-global resources

This option is available only when the Block Creation option is turned on (Project > Project Settings > Design
Flow > Enable Block Creation). The value entered here restricts the number of row-global resources available in
every half-row of the device. During Place and Route of the block, the tool will not exceed this capacity on any
half-row. The default value is the maximum number of row-globals. If you enter a value lower than the maximum
capacity (the default), the layout of the block will be able to integrate with the rest of the design if they consume
the remaining row-global capacity.

See Also
Multiple Pass Layout Configuration (SmartFusion2, IGLOO2, RTG4).
extended_run_lib

Multiple Pass Layout Configuration (SmartFusion2, IGLOO2,
RTG4)

Multiple Pass Layout attempts to improve layout quality by selecting from a greater number of Layout results. This
is done by running individual place and route multiple times with varying placement seeds and measuring the best
results with specified criteria.
• Before running Multiple Pass Layout, save your design.
• Multiple Pass Layout is supported by all families.
• Multiple Pass Layout saves your design file with the pass that has the best layout results. If you want to

preserve your existing design state, you should save your design file with a different name before
proceeding. To do this, from the File menu, choose Save As.

• Four types of reports (timing, maximum delay timing violations, minimum delay timing violations, and power)
for each pass are written to the working directory to assist you in later analysis:

• <root_module_name>_timing_r<runNum>_s<seedIndex>.rpt
• <root_module_name>_timing_violations_r<runNum>_s<seedIndex>.rpt
• <root_module_name>_timing_violations_min_r<runNum>_s<seedIndex>.rpt
• <root_module_name>_power_r<runNum>_s<seedIndex>.rpt
• <root_module_name>_iteration_summary.rpt provides additional details about the saved files.

To configure your multiple pass options:
1. When running Layout, select Use Multiple Passes in the Layout Options dialog box.
2. Click Configure. The Multi-Pass Configuration dialog box appears.

 Libero SoC Design Flow User Guide

 135

Figure 74 · Multi-Pass Configuration Dialog Box

3. Set the options and click OK.
Number of passes: Set the number of passes (iterations) using the slider. 1 is the minimum and 25 is the
maximum. The default is 5.
Start at seed index: Set the specific index into the array of random seeds which is to be the starting point for the
passes. If not specified, the default behavior is to continue from the last seed index that was used.
Measurement: Select the measurement criteria you want to compare layout results against.
• Slowest clock: Select to use the slowest clock frequency in the design in a given pass as the performance

reference for the layout pass.
• Specific clock: Select to use a specific clock frequency as the performance reference for all layout passes.

Timing violations: This is the default. Select Timing Violations to use the pass that best meets the slack or
timing-violations constraints.
Note: You must enter your own timing constraints through SmartTime or SDC.
• Maximum delay: Select to examine timing violations (slacks) obtained from maximum delay analysis. This

is the default.
• Minimum delay: Select to examine timing violations (slacks) obtained from minimum delay analysis.
• Select by: Worst Slack or Total Negative Slack to specify the slack criteria.

• When Worst Slack (default) is selected, the largest amount of negative slack (or least amount of
positive slack if all constraints are met) for each pass is identified, and the largest value of all
passes determines the best pass.

• When Total Negative Slack is selected, the sum of negative slacks from the first 100 paths in the
Timing Violations report for each pass is identified, and the largest value of all the passes

 Libero SoC Design Flow User Guide

 136

determines the best pass. If no negative slacks exist for a pass, the worst slack is used to evaluate
that pass.

• Stop on first pass without violations: Select to stop performing remaining passes if all timing
constraints have been met (when there are no negative slacks reported in the timing violations
report).

• Total power: Select to determine the best pass to be the one that has the lowest total power (static +
dynamic) of all layout passes.

Iteration Summary Report
The file <root_module>_iteration_summary.rpt records a summary of how the multiple pass run was invoked
either through the GUI or extended_run_lib Tcl script, with arguments for repeating each run. Each new run
appears with its own header in the Iteration Summary Report with fields RUN_NUMBER and INVOKED AS,
followed by a table containing Seed Index, corresponding Seed value, Comparison data, Report Analyzed, and
Saved Design information.

Figure 75 · Iteration Summary Report

See Also
Place and Route - SmartFusion2, IGLOO2, RTG4
extended_run_lib

Resource Usage (SmartFusion2, IGLOO2, RTG4)
After layout, you can check the resource usage of your design.
From the Design menu, choose Reports (Design > Reports). Click <design_name>_layout_log.log to open the
log file.
The log file contains a Resource Usage report, which lists the type and percentage of resource used for each
resource type relative to the total resources available for the chip.

Type Used Total Percentage

4LUT 400 86184 0.46

DFF 300 86184 0.34

I/O Register 0 795 0.00

Logic Element 473 86184 0.55

4LUTs are 4-input Look-up Tables that can implement any combinational logic functions with up to four inputs.

 Libero SoC Design Flow User Guide

 137

The Logic Element is a logic unit in the fabric. It may contain a 4LUT, a DFF, or both. The number of Logic
Elements in the report includes all Logic Elements, regardless of whether they contain 4LUT only, DFF only, or
both.

Overlapping of Resource Reporting
The number of 4LUTs in the report are the total number used for your design, regardless of whether or not they
are combined with the DFFs. Similarly, the number of DFFs in the report are the total number used for your
design, regardless of whether or not they are combined with 4LUT’s.
In the report above, there is a total of 473 Logic Elements (LEs) used for the design.
300 of the 473 LEs have DFFs inside, which means 173 (473-300) of them have no DFFs in them. These 173
LEs are using only the 4LUTs portion of the LE.
400 of the 473 LEs have 4LUTs inside, which means 73 (473-400) of them have no 4LUTS in them. These 73
LEs are using only the DFF portion of the LE.

LEs using DFF Only = 473-400 = 73

LEs using 4LUTS only = 473-300= 173

 = 246 (Total of LEs using 4LUTS ONLY or DFF ONLY)

Report’s Overlapped resource = 227 (LEs using both 4LUTS and DFF)

Total number of LEs used = 473

The area where the two circles overlap represents the overlapped resources in the Resource Usage report.

Global Net Report
The Global Net Report displays all the nets that use the global routing resources of the device. This report is
generated after the Place and Route step and available in XML format in the Reports tab (Libero SoC > Design
> Reports > <design_name>_glb_net_report.xml).
The global routing resources in Microsemi FPGA devices offer a low-skew network for effective distribution of high
fanout nets including clock signals. Global routing resources include the following:
• Fabric CCC

 Libero SoC Design Flow User Guide

 138

• Global Buffers (GB)
• Row Global Buffers (RGB)
• Global Asynchronous Reset Buffer (GRESET) - RTG4 only
• Row Global Asynchronous Reset Buffers (RGRESET) - RTG4 only

Figure 76 · Global Net Report

The Global Net Report has following sections:

Global Nets Information
The GB Location refers to the location of the Global routing resource/instance name of the macro on the chip. The
location is indicated by X-Y co-ordinates of the global resource macro.

Figure 77 · Global Net Information

 Libero SoC Design Flow User Guide

 139

I/O to GB Connections
This section lists all the I/Os connected to the Global Resource/instance name of the macro.

Figure 78 · I/O to GB Connections

Net type is either routed or hardwired. Hardwired net types are dedicated wiring resources and have lower
insertion delays. Routed net types are implemented using fabric routing resources and the insertion delay
(generally higher than hardwired nets), varies from iteration to iteration.
The I/O function name column describes all the connection details about the I/O such as the bank name,
hardwired GB or hardwired CCC connections, if any, and/or dedicated SERDES/DDR connections, if any. For
hardwired connections, the function name (DDRIO120PB2/MDDR_DQ_ECC1/GB12/CCC_NE1_CLKI2) contains
the GB index (GB12 in this case) that matches the GB index in the To column (GBL[12] in this case) whereas for
routed connections the Function name does not contain the proper GB index.
For details about RTG4 devices I/O Function names, see Col B of CG1657 Package Pin Assignment Table,
CQ352 Package Pin Assignment Table.

Fabric to GB Connections
This section lists all the nets originating from the fabric to the Global Resources/Instance name of the macro. The
From Location refers to the X-Y co-ordinates of the driver pin of the net. Generally speaking, the nets are routed
nets (not hardwired).

Figure 79 · Fabric to GB connections

CCC to GB Connections
This section lists the nets originating from the Clock Conditioning Circuitry (CCC) outputs (GLx) to the Global
Resources/instance name of the macro. CCC clock outputs are usually hardwired (dedicated connection) to
Global resources (GB) to minimize clock skew.

Figure 80 · CCC to GB Connections

https://www.microsemi.com/document-portal/doc_download/134616-rtg4-cg1657-package-pin-assignment-table
https://www.microsemi.com/document-portal/doc_download/136537-cq352-package-pin-assignment-table

 Libero SoC Design Flow User Guide

 140

CCC Input Connections
This section lists the nets from the I/O Pins to the CCC inputs.

Figure 81 · CCC Input Connections

Net type can be routed or hardwired. Hardwired net types are dedicated wiring resources and have lower
insertion delays. Routed net types are implemented using fabric routing resources and the insertion delay
(generally higher than that of hardwired nets), varies from iteration to iteration.
The I/O function column describes all the connection details about the I/O such as the bank name, hardwired GB
or hardwired CCC connections, if any, and/or dedicated SERDES/DDR connections, if any. For hardwired
connections, the I/O function name contains the CCC location (CCC_NE0 in this case) and the To (Pin
Swapped for Back Annotation Only) column contains the actual input pin of the CCC in the backannotated
netlist.
For details about RTG4 devices I/O Function names, see Col B of CG1657 Package Pin Assignment Table,
CQ352 Package Pin Assignment Table.

Local Clock Nets to RGB Connections
This section lists the clock nets from the local clock nets to RGB (Row globals). RGBs are situated on the vertical
stripes of the global network architecture inside the FPGA fabric. The global signals from the GBs are routed to
the RGBs. Each RGB is independent and can be driven by fabric routing in addition to being driven by GBs. This
facilitates the use of RGBs to drive regional clocks spanning a small fabric area, such as the the clock network for
SERDES.

Figure 82 · Local Clock Nets to RGB Connections

The location refers to the X-Y co-ordinates on the chip. The fanout column gives the total fanout of the net and the
local fanout column gives the fanout at the local RGB only. The driver in the From column is routed to different
RGBs each with different local fanout.
The From column refers to the X-Y co-ordinates of the driver of the net. The driver in the From column is routed
to different RGBs each with different local fanout. The Fanout column gives the total fanout of the net and the
Local Fanout column gives the fanout at the local RGB only.

Local Reset Nets to RGRESET Connections (RTG4 only)
This section is available on RTG4 devices only. It lists the nets from local reset signals of components such as
FIFO to RGRESET (Row Global Reset).

https://www.microsemi.com/document-portal/doc_download/134616-rtg4-cg1657-package-pin-assignment-table
https://www.microsemi.com/document-portal/doc_download/136537-cq352-package-pin-assignment-table

 Libero SoC Design Flow User Guide

 141

The location refers to the X-Y co-ordinates of the driver of the net. The Fanout column gives the total fanout of
the net and the Local Fanout column gives the fanout local to RGRESET. The driver in the From column is
routed to different RGRESETs each with different local fanout.

Figure 83 · Local Reset Nets to RGRESET Connections

Global Reset Nets to RGRESET Connections (RTG4 only)
This section is available on RTG4 devices only. It lists the nets from Global Resets to RGRESET (Row Global
Resets).

Figure 84 · Global Reset Nets to RGRESET Connections

The From Location refers to the X-Y co-ordinates of the driver of the net. The RGRESET Location refers to the
X-Y co-ordinates of the RGRESET instance. The Fanout column gives the total fanout of the net and the Local
Fanout column gives the fanout local to RGRESET. The driver in the From column is hardwired to different
RGRESETs each with different local fanout.

Global Clock Nets to RGB Connections
This section lists all nets from Globals (GBs) to Row Globals (RGBs).
The From location refers to the X-Y co-ordinates on the chip. The Fanout column gives the total fanout of the net
and the Local Fanout column gives the fanout local to RGB. The driver in the From column is hardwired to
different RGBs each with different local fanout.

 Libero SoC Design Flow User Guide

 142

Figure 85 · Global Clock Nets to RGB Connections

Warnings (RTG4 only)
This section is available in RTG4 devices only. It gives warnings about clock or reset nets which are not radiation
protected and recommends ways to protect the nets from radiation. Some warning examples are:
• Clocks or resets nets that are routed are not radiation protected.
• Hardwired connections from DDRIO bank are not radiation protected.
• For radiation protection, Microsemi recommends the use of dedicated global clocks that comes with built-in

radiation protection.

Figure 86 · Warning Example 1

 Libero SoC Design Flow User Guide

 143

• Local resets that are not driven by three separate logic cones are not radiation protected.
• For radiation protection, Microsemi recommends that each of the three inputs of every RGRESET be driven

by three separate logic cones replicating the paths from the source registers. See the descriptions of
RGRESET macro in the RTG4 Macro Library Guide.

Figure 87 · Warning Example 2

See Also
SmartFusion2 and IGLOO2 Clocking Resources User Guide
RTG4 FPGA Clocking Resources User Guide
CG1657 Package Pin Assignment Table
CQ352 Package Pin Assignment Table

Verify Post Layout Implementation

Generate Back Annotated Files - SmartFusion2, IGLOO2, and RTG4
Generates Back Annotated files for your design.
Back Annotated files include:
• *ba.sdf - Standard Delay Format for back-annotation to the simulator.
• *ba.v/.vhd - Post-layout flattened netlist used exclusively for back-annotated timing simulation. May contain

low level macros not immediately recognizable to you; these were added by the software to improve your
design performance.

To generate these files, in the Design Flow window click Implement Design and double-click Generate Back
Annotated Files.
Right-click Generate Back Annotated Files and choose Configure Options to open the Generate Back
Annotated Files Options dialog box.
Simulator Language Type - Set your simulator language type according to your design.
Timing: Export enhanced min delays for best case - Exports your enhanced min delays to include your best-
case timing results in your Back Annotated file.

https://coredocs.s3.amazonaws.com/Libero/12_0_0/Tool/rtg4_mlg.pdf
https://www.microsemi.com/document-portal/doc_view/132012-ug0449-smartfusion2-and-igloo2-clocking-resources-user-guide
https://www.microsemi.com/document-portal/doc_download/134406-ug0586-rtg4-fpga-clocking-resources-user-guide
https://www.microsemi.com/document-portal/doc_download/134616-rtg4-cg1657-package-pin-assignment-table
https://www.microsemi.com/document-portal/doc_download/136537-cq352-package-pin-assignment-table

 Libero SoC Design Flow User Guide

 144

Figure 88 · Configuring Generate Back Annotated Files Dialog Box

Simulate - Opens ModelSim ME
The back-annotation functions are used to extract timing delays from your post layout data. These extracted
delays are put into a file to be used by your CAE package’s timing simulator. The default simulator for Libero SoC
is ModelSim ME. You can change your default simulator in your Tool Profile.
If you wish to perform pre-layout simulation: In the Design Flow Window, under Verify Pre-Synthesized design,
double-click Simulate.

To perform timing simulation:
1. If you have not done so, back-annotate your design and create your testbench.
2. Right-click Simulate (in Design Flow window, Implement Design > Verify Post-Synthesis Implementation >

Simulate) and choose Organize Input Files > Organize Simulation Files from the right-click menu.
In the Organize Files for Source dialog box, all the stimulus files in the current project appear in the
Source Files in the Project list box. Files already associated with the block appear in the Associated
Source Files list box.
In most cases you will only have one testbench associated with your block. However, if you want
simultaneous association of multiple testbench files for one simulation session, as in the case of PCI
cores, add multiple files to the Associated Source Files list.
To add a testbench: Select the testbench you want to associate with the block in the Source Files in
the Project list box and click Add to add it to the Associated Source Files list.
To remove a testbench: To remove or change the file(s) in the Associated Source Files list box,
select the file(s) and click Remove.
To order testbenches: Use the up and down arrows to define the order you want the testbenches
compiled. The top level-entity should be at the bottom of the list.

3. When you are satisfied with the Associated Simulation Files list, click OK.
4. To start ModelSim ME, right-click Simulate in the Design Hierarchy window and choose Open

Interactively. ModelSim starts and compiles the appropriate source files. When the compilation completes,
the simulator runs for 1 s and the Wave window opens to display the simulation results.

5. Scroll in the Wave window to verify the logic works as intended. Use the cursor and zoom buttons to zoom in
and out and measure timing delays. If you did not create a testbench with WaveFormer Pro, you may get
error messages with the vsim command if the instance names of your testbench do not follow the same
conventions as WaveFormer Pro. Ignore the error message and type the correct vsim command.

6. When you are done, from the File menu, choose Quit.

 Libero SoC Design Flow User Guide

 145

Verify Timing

Verify Timing Configuration

Use this dialog box to configure the ‘Verify Timing’ tool to generate a timing constraint coverage report and
detailed static timing analysis and violation reports based on different combinations of process speed, operating
voltage, and temperature.
For the timing and timing violation reports you can select:
• Max Delay Static Timing Analysis report based on Slow process, Low Voltage, and High Temperature

operating conditions.
• Min Delay Static Timing Analysis report based on Fast process, High Voltage, and Low Temperature

operating conditions.
• Max Delay Static Timing Analysis report based on Fast process, High Voltage, and Low Temperature

operating conditions.
• Min Delay Static Timing Analysis report based on Slow process, Low Voltage, and High Temperature

operating conditions.
The actual values for High/Low Voltage and High/Low Temperature shown in this configuration dialog box are
based on the operating conditions: COM, IND, MIL, TGrade1/2, and/or custom settings as set in the Project’s
settings (Project > Project Settings > Analysis Operating Conditions). Refer to Project Settings > Analysis
Operating Conditions for the actual High/Low Voltage and High/Low Temperature values.
The following figures show examples of the Verify Timing Configuration dialog box for various operating
conditions and report selections.

Figure 89 · Temperature/Voltage Value for Operating Conditions: COM (Commercial)

 Libero SoC Design Flow User Guide

 146

Figure 90 · Temperature/Voltage Value for Operating Conditions: IND (Industrial)

Figure 91 · Temperature/Voltage value for CUSTOM Temperature (0°C to 125°C) and IND Voltage

 Libero SoC Design Flow User Guide

 147

Types of Timing Reports

From the Design Flow window > Verify Timing, you can generate the following types of reports:
Timing reports – These reports display timing information organized by clock domain. Four types of timing
reports are available. You can configure which reports to generate using the ‘Verify Timing’ configuration dialog
box (Design Flow > Verify Timing > Configure Options). The following reports can be generated:
• Max Delay Static Timing Analysis report based on Slow process, Low Voltage and High Temperature

operating conditions.
<root>_max_timing_slow_<lv>_<ht>.xml (generated by default)

• Min Delay Static Timing Analysis report based on Fast process, High Voltage and Low Temperature
operating conditions.

<root>_max_timing_fast_<hv>_<lt>.xml

• Max Delay Static Timing Analysis report based on Fast process, High Voltage and Low Temperature
operating conditions.

<root>_min_timing_fast_<hv>_<lt>.xml (generated by default)

• Min Delay Static Timing Analysis report based on Slow process, Low Voltage and High Temperature
operating conditions.

<root>_min_timing_slow_<lv>_<ht>.xml

Timing violations reports – These reports display timing information organized by clock domain. Four types of
timing violations reports are available. You can configure which reports to generate using the ‘Verify Timing’
configuration dialog (Design Flow > Verify Timing > Configure Options). The following reports can be
generated:
• Max Delay Static Timing Analysis report based on Slow process, Low Voltage and High Temperature

operating conditions.
<root>_max_timing_slow_ violations_<lv>_<ht>.xml (generated by default)

• Min Delay Static Timing Analysis report based on Fast process, High Voltage and Low Temperature
operating conditions.

<root>_max_timing_violations_fast_<hv>_<lt>.xml

• Max Delay Static Timing Analysis report based on Fast process, High Voltage and Low Temperature
operating conditions.

<root>_min_timing_fast_ violations_<hv>_<lt>.xml (generated by default)

• Min Delay Static Timing Analysis report based on Slow process, Low Voltage and High Temperature
operating conditions.

<root>_min_timing_slow_ violations_<lv>_<ht>.xml

Constraints coverage report – This report displays the overall coverage of the timing constraints set on the
current design.

<root>_timing_constraints_coverage.xml (generated by default)

Combinational loop report – This report displays combinational loops found during initialization.
<root>_timing_combinational_loops.xml (always generated)

Note: The actual values for High/Low Voltage and High/Low Temperature shown in this configuration dialog
boxare based on the operating conditions: COM, IND, MIL, TGrade1/2, and/or custom settings as set in the
Project’s settings (Project > Project Settings > Analysis Operating Conditions). Refer to Project Settings >
Analysis Operating Conditions for the actual High/Low Voltage and High/Low Temperature values.

 Libero SoC Design Flow User Guide

 148

Report Listing Icon Legend

Icon Definition

 Timing requirement met for this report

 Timing requirement not met (violations) for this
report

 Timing report available for generation but has not
been selected/configured for generation

Figure 92 · Reports Example

SmartTime
SmartTime is the Libero SoC gate-level static timing analysis tool. With SmartTime, you can perform complete
timing analysis of your design to ensure that you meet all timing constraints and that your design operates at the
desired speed with the right amount of margin across all operating conditions.

Note: See the Timing Constraints Editor for help with creating and editing timing constraints.
Static Timing Analysis (STA)

Static timing analysis (STA) offers an efficient technique for identifying timing violations in your design and
ensuring that it meets all your timing requirements. You can communicate timing requirements and timing
exceptions to the system by setting timing constraints. A static timing analysis tool will then check and report
setup and hold violations as well as violations on specific path requirements.
STA is particularly well suited for traditional synchronous designs. The main advantage of STA is that unlike
dynamic simulation, it does not require input vectors. It covers all possible paths in the design and does all the
above with relatively low run-time requirements.
The major disadvantage of STA is that the STA tools do not automatically detect false paths in their algorithms as
it reports all possible paths, including false paths, in the design. False paths are timing paths in the design that do
not propagate a signal. To get a true and useful timing analysis, you need to identify those false paths, if any, as
false path constraints to the STA tool and exclude them from timing considerations.

Timing Constraints
SmartTime supports a range of timing constraints to provide useful analysis and efficient timing-driven layout.

Timing Analysis
SmartTime provides a selection of analysis types that enable you to:
• Find the minimum clock period/highest frequency that does not result in timing violations
• Identify paths with timing violations
• Analyze delays of paths that have no timing constraints
• Perform inter-clock domain timing verification

https://coredocs.s3.amazonaws.com/Libero/12_0_0/Tool/smarttime_ce_ug.pdf

 Libero SoC Design Flow User Guide

 149

• Perform maximum and minimum delay analysis for setup and hold checks
To improve the accuracy of the results, SmartTime evaluates clock skew during timing analysis by individually
computing clock insertion delays for each register.
SmartTime checks the timing requirements for violations while evaluating timing exceptions (such as multicycle or
false paths).
SmartTime and Place and Route

Timing constraints impact analysis and place and route the same way. As a result, adding and editing your timing
constraints in SmartTime is the best way to achieve optimum performance.
SmartTime and Timing Reports

From SmartTime > Tools > Reports, the following report files can be generated:
• Timing Report (for both Max and Min Delay Analysis)
• Timing Violations Report (for both Max and Min Delay Analysis)
• Bottleneck Report
• Constraints Coverage Report
• Combinational Loop Report

SmartTime and Cross-Probing into Chip Planner
From SmartTime, you can select a design object and cross-probe the same design object in Chip Planner. Design
objects that can be cross-probed from SmartTime to Chip Planner include:
• Ports
• Macros
• Timing Paths

Refer to the SmartTime User’s Guide for details (Libero SoC > Help > Reference Manual > SmartTime User’s
Guide).
SmartTime and Cross-Probing into Constraint Editor

From SmartTime, you can cross-probe into the Constraint Editor. Select a Timing Path in SmartTime’s Analysis
View and add a Timing Exception Constraint (False Path, Multicycle Path, Max Delay, Min Delay) . The Constraint
Editor reflects the newly added timing exception constraint.
Refer to the SmartTime Static Timing Analyzer User’s Guide for details.

Verify Power
Right-click on the Verify Power command in the Design Flow window to see the following menu of options:

https://coredocs.s3.amazonaws.com/Libero/12_0_0/Tool/smarttime_sta_ug.pdf

 Libero SoC Design Flow User Guide

 150

Figure 93 · Verify Power right-click menu

Verify Power sub-commands

Run - Runs the default power analysis and produces a power report. This is also the behavior of a double-click to
Verify Power.
Clean and Run All - Identical to the sequence of commands "Clean" (see below) and "Run"
Open interactively - Brings up the SmartPower for Libero SoC tool (see below)
Clean - Clears the history of any previous default power analysis, including deletion of any reports. The flow task

completion icon will also be cleared.
Configure Options - Selects 2.5V or 3.3V as the nominal voltage of VPP on the board, for generation of the
power report.
Configure Options ... - This sub-command is only available if there are options to configure, in which case a
dialog box will pop-up presenting the user with technology-specific choices.
View Report - This sub-command is only available and visible if a report is available. When View Report is
invoked, the Report tab will be added to the Libero SoC GUI window, and the Power Report will be selected and
made visible.

SmartPower

SmartPower is the Microsemi SoC state-of-the-art power analysis tool. SmartPower enables you to globally and
in-depth visualize power consumption and potential power consumption problems within your design, so you can
make adjustments – when possible – to reduce power.

 Libero SoC Design Flow User Guide

 151

SmartPower provides a detailed and accurate way to analyze designs for Microsemi SoC FPGAs: from top-level
summaries to deep down specific functions within the design, such as gates, nets, IOs, memories, clock domains,
blocks, and power supply rails.
You can analyze the hierarchy of block instances and specific instances within a hierarchy, and each can be
broken down in different ways to show the respective power consumption of the component pieces.
SmartPower also analyses power by functional modes, such as Active, Flash*Freeze, Shutdown, Sleep, or Static,
depending on the specific FPGA family used. You can also create custom modes that may have been created in
the design. Custom modes can also be used for testing "what if" potential operating modes.
SmartPower has a very unique feature that enables you to create test scenario profiles. A profile enables you to
create sets of operational modes, so you can understand the average power consumed by this combination of
functional modes. An example may be a combination of Active, Sleep, and Flash*Freeze modes – as would be
used over time in an actual application.
SmartPower generates detailed hierarchical reports of the power consumption of a design for easy evaluation.
This enables you to locate the power consumption source and take appropriate action to reduce the power if
possible.
SmartPower supports use of files in the Value-Change Dump (VCD) format, as specified in the IEEE 1364
standard, generated by the simulation runs. Support for this format lets you generate switching activity information
from ModelSim or other simulators, and then utilize the switching activity-over-time results to evaluate average
and peak power consumption for your design.
See SmartPower User Guide

IO Advisor (SmartFusion2, IGLOO2, and RTG4)
The IO Advisor enables you to balance the timing and power consumption of the IOs in your design. For output
IOs, it offers suggestions on Output Drive and Slew values that meet (or get as close as possible to) the timing
requirements and generates the lowest power consumption. For Input IOs, it offers suggestions on On-Die
Termination (ODT) Impedance values (when the ODT Static is ON) that meet (or get as close as possible to) the
timing requirements and generates the lowest power consumption.
Timing data information is obtained from the Primary analysis scenario in SmartTime. Power data is obtained
from the Active Mode in SmartPower.
To open the IO Advisor from the Design Flow window, right-click Manage Constraints, select Open Manage
Constraints View, select the I/O Attributes tab, select Edit with I/O Advisor (Design Flow window > Manage
Constraints > Open Manage Constraints View > I/O Attributes > Edit > Edit with I/O Advisor).

Figure 94 · I/O Advisor

https://coredocs.s3.amazonaws.com/Libero/12_0_0/Tool/smartpower_ug.pdf

 Libero SoC Design Flow User Guide

 152

Introduction

The Introduction screen provides general information about the IO Advisor.
The introduction screen provides the navigational panel for you to navigate to the following panels:
• Output Load panel – Displays the IO load Power and Delay values for Outputs and Inouts.
• Output Drive and Slew panel – Displays the Output Drive and Slew for Outputs and Inouts.
• ODT & Schmitt Trigger – Displays the ODT Static (On/Off), the ODT Impedance value (Ohms) for Inputs and

Inouts and the Schmitt Trigger (On/Off)
All steps in the IO Advisor are optional.

Figure 95 · IO Advisor - Introduction

Output Load

The Output Load panel displays the load of all output/inout ports in your design.
The display is sorted by Initial or Current value and is selectable in the Sort By drop-down menu.
Tooltips are available for each cell of the Table. For output and inout ports, the tooltip displays the Port Name,
Macro Name, Instance Name and Package Pin. Inout ports are identified by a blue bubble icon.

 Libero SoC Design Flow User Guide

 153

Figure 96 · IO Advisor - Output Load Panel

Search and Regular Expressions

To search for a specific Port, enter the Port Name in the Port Name Search field and click Search. Regular
expressions are accepted for the search. All Port Names matching the regular expression are displayed. The
regular expression “FDDR*”, for example, results in all the output ports beginning with FDDR in the Port Name
appearing in the display.

Figure 97 · Search Field and Regular Expressions

Status Column

The icon in the Status Column displays the status of the Output Port.

Icon Status and Explanation

OK - The IO attributes match the suggestion in Output Drive and Slew Table.

 Libero SoC Design Flow User Guide

 154

Icon Status and Explanation

Error – The Timing constraints for this IO are not met in Output Drive and Slew Table.

Information – you can improve the power and/or timing of the IO by applying the suggestion
in Output Drive and Slew Table.

Column Display and Sorting

To hide or unhide a column, click on the drop-down menu of a column header and select Hide Column or Unhide
All Columns.
To sort the contents of a column, select the column header, and from the right-click menu, select Sort /A to Z/Z to
A/Sort Min to Max/Sort Max to Min as appropriate.

Set Output Load

To set the output load of a port, click the Port and click Set Output Load or edit the value in the Current Output
Load cell. Initial value remains unchanged.

Restore Initial Value

To restore a Port’s output load to the initial value, select the output port and click Restore Initial Value. The
current value changes to become the same value as the initial value.

Output Drive and Slew

The Output Drive and Slew page displays the Output Drive and Slew of all output/inout ports of your design.
The display can be sorted according to the initial, current or suggested values. To change the sorting, click the
Sort By drop-down menu to make your selection.
Three values are displayed for Output Drive and Slew of each IO output/inout port:
• Initial – This is the initial value when the IO Advisor is launched.
• Current –This is the current value which reflects any changes you have made, including suggestions you

have accepted from the IO Advisor.
• Suggested – This is the suggested value from the IO Advisor for optimum power and timing performance.

 Libero SoC Design Flow User Guide

 155

Figure 98 · IO Advisor – Output Drive and Slew

How the Suggested Values Are Computed

The IO Advisor provides suggestions for output drive and slew values according to the following criteria:
• When the user has set no output delay constraint for the port, the IO Advisor suggests IO attribute values

that generate the lowest power consumption.
• When the user has set an output delay constraint on the port, the IO Advisor suggests IO attribute values

that generates the lowest power consumption and positive timing slacks. If the slacks of all attribute
combinations are negative, the IO Advisor suggests an attribute combination (Drive strength and slew) that
generates the least negative slack.

In this screen, you can change the drive strength and slew of the design output I/Os. Select the out drive and/or
the slew current value cell. Click the cell to open the combo box. Choose the value you want from the set of valid
values. You can restore the initial values by clicking Restore Initial Value.
To make changes to multiple I/Os, select multiple I/Os (Control+click), click Set Slew or Set Outdrive, select the
value, and click OK.

Apply Suggestion

To apply the suggested value to a single output port, select the output port and click Apply Suggestion.
To apply the suggested values to mulitple ports, select the multiple ports (Control+click) and click Apply
Suggestion.

Adjust ODT and Schmitt Trigger

This page allows you to set the Schmitt Trigger setting (On/Off), On-Die Termination (ODT) Static setting
(On/Off), and the ODT Impedance (in Ohms) to valid values for all Input/Inout IOs of your design. The IO Advisor
page instantly gives you the Power (in uW) and Delay (in ns) values when you make changes. If the suggested
values meet your design’s power and/or timing requirements, you can accept the suggestions and continue with
your design process.

 Libero SoC Design Flow User Guide

 156

Figure 99 · IO Advisor – Adjust ODT and Schmitt Trigger

Note: ODT is not allowed for 2.5V or higher single-ended signals. It is allowed for differential signals.

Search and Regular Expressions

To search for a specific Port, enter the Port Name in the Port Name Search field and click Search. Regular
expressions are accepted for the search. All Port Names matching the regular expression are displayed. The
regular expression “RESET*”, for example, results in the input/inout ports with the port name beginning with
“RESET” appearing in the display.

Figure 100 · Search Field and Regular Expressions

Status Column

The icon in the Status Column displays the status of the input/inout ports.

Icon Status and Explanation

OK - The IO attributes match the suggestion in the Adjust ODT and Schmitt Trigger Table.

Error – The Timing constraints for this IO are not met in the Adjust ODT and Schmitt Trigger
Table.

 Libero SoC Design Flow User Guide

 157

Icon Status and Explanation

Information – you can improve the power and/or timing of the IO by applying the suggestion
in the Adjust ODT and Schmitt Trigger Table.

Column Display and Sorting

To hide or unhide a column, click on the drop-down menu of a column header and select Hide Column or Unhide
All Columns.
To sort the contents of a column, select the column header, and from the right-click menu, select Sort /A to Z/Z to
A/Sort Min to Max/Sort Max to Min as appropriate.

Set Schmitt Trigger

For IO Standards that support the Schmitt Trigger, you can turn the Schmitt Trigger On or Off. Select the IO and
click Set Schmitt Trigger to toggle on or off. Your setting is displayed in the Schmitt Trigger column for the IO.

Set ODT Static

For IO standards that support ODT static settings, you can turn the ODT Static On or Off according to your board
layout or design needs:
• On – The Termination resistor for impedance matching is located inside the chip.
• Off – The Terminator resistor for impedance matching is located on the printed circuit board.

To turn the ODT Static on or off, click to select the input/inout port and from the pull-down menu, toggle on or off.
You can also turn ODT Static on or off by clicking Set ODT Static and toggling on or off.

Set ODT Impedance (Ohm)

For each input/inout in your design, valid ODT Impedance values (in Ohms) are displayed for you to choose from.
Click to select the input/inout port and select one of the valid ODT impedance values from the pull-down list in the
ODT Impedance column. You can also click Set ODT Impedance to choose one of the valid ODT impedance
values. The Power and Delay values may vary when you change the ODT Impedance (Ohm).
Note: When ODT_static is set to OFF, changing the ODT_Impedance value has no effect on the Power and
Delay values. The Power and Delay values change with ODT_Impedance value changes only when ODT_static is
set to ON.

Apply Suggestion

To apply the suggested value to a single input/inout port, select the port and click Apply Suggestion. To apply
the suggested values to mulitple ports, select the multiple ports (Control-click) and click Apply Suggestion.

Restore Initial Value

To restore an input/inout port’s attribute values to the initial values, select the port and click Restore Initial
Value.The current value changes to the same value as the initial value.

Summary of Changes

This screen provides a summary of the timing and power changes you have made in the IO Advisor.

 Libero SoC Design Flow User Guide

 158

Figure 101 · IO Advisor – Summary

You can save the summary by clicking Save Summary, selecting the save format (text or CSV), and clicking OK.
To commit IO Attribute changes you have made to the database (the *io_pdc file), choose Save from the File
Menu (File > Save). Click OK in the dialog that appears.
Note: After saving the changes into the pdc file and database, the summary refreshes automatically and shows
the latest data as per the latest database.

Simultaneous Switching Noise

Introduction

Simultaneous Switching Noise (SSN) is the Libero SoC voltage noise analysis tool. It provides a detailed analysis
of the noise margin on each I/O pin in the design based on the pin information as well as all the other active pins
placed in the same I/O bank of the design. The tool computes the noise margin based on I/O Standards, Drive
Strength, and placement of the pin. The SSN Analyzer helps you achieve the desired voltage noise margin,
resulting in improved signal integrity.
Right-click SSN Analyzer in the Design Flow window and select Open Interactively to open the SSN Analyzer.

Supported Families

The SSN Analyzer supports the SmartFusion2, IGLOO2, and RTG4 families.

Supported Die/Package

Family Die Package

IGLOO2 M2GL150 FC1152

 M2GL090 FG676

 M2GL060 FG676

 M2GL050 FG896

 Libero SoC Design Flow User Guide

 159

Family Die Package

 M2GL025 FG484/VFG4
00

 M2GL010 FG484

SmartFusion2 M2S150 FC1152

 M2S090 FG676

 M2S060 FG676

 M2S050 FG896

 M2S025 FG484

 M2S010 FG484

RTG4 RT4G150 CG1657

Dies and packages for which characterization data is unavailable are not supported.

Supported I/O Standard

The SSN Analyzer supports the following I/O Standards:
• LVCMOS 3.3V
• LVCMOS 2.5V
• LVCMOS 1.8V
• LVCMOS 1.5V
• LVCMOS 1.2V
• LVTTL

Supported I/O Types

Only single-end I/Os are supported. Differential I/Os are not supported.

SSN Analyzer

Three tabs are available in the SSN Analyzer:
• Noise Report
• Excluded IOs
• Summary

Noise Report

The Noise Report tab displays by default when the SSN Analyzer opens, and lists all of the design’s Output and
Inout ports. Input I/Os are not supported. The displayed columns are:
• Bank Name/Pin Number – Shows the Bank Number and the Package Pin Number of the Port
• Port Name – Shows the Port Name

 Libero SoC Design Flow User Guide

 160

• Instance Name – Shows the Instance Name of the Port
• I/O Standard – Shows the I/O Standards supported by SSN Analyzer. Supported standards are: LVCMOS

3.3V, LVCMOS 2.5V, LVCMOS 1.8V, LVCMOS 1.5V and LVCMOS 1.2V and LVTTL.
• Drive Strength (mA) – Drive Strength selections are available from 2 to 12.
• Static – When this checkbox is checked, the I/O is considered neither as an Aggressor nor as a Victim. It is

excluded from SSN Analysis.
• Don’t Care – When this checkbox is checked, the I/O is excluded from consideration as a Victim for Noise

Margin computation. However, it is considered as an Aggressor for Noise Margin computation of other I/Os.
Note: Static and Don’t Care are mutually exclusive.

• Noise Margin (%) – This is the Noise Margin number computed by the SSN Analyzer. A negative number
(shown in red) indicates that it is outside the guideline of SSN analysis.

• Within Guideline– Either Yes (Positive Noise Margin) or No (Negative Noise Margin). The Yes (within
guideline) or No (outside guideline) guideline is different for different I/O standards:

• LVTTL/LVCMOS (3.3V) – A Yes (within guideline) is defined as follows:
• A ground bounce voltage less than or equal to 1.25V and a pulse width of less than or

equal to 1 ns
• A VDD dip voltage greater than or equal to VIHmin and a pulse width of less than or equal

to 1 ns
• All other LVCMOS Standards (2.5V, 1.8V, 1.5V, 1.2V) - A Yes (within guideline) is defined as

follows:
• A ground bounce voltage less than or equal to VILmax for ground bounce and a pulse width

of less than or equal to 1 ns
• A VDD dip voltage greater than or equal to VIHmin and a pulse width of less than or equal

to 1 ns
• Noise margin violating the criteria for “Yes” is considered to fall outside the specified guidelines,

and is reported as a “No”

Figure 102 · SSN Analyzer – Noise Report Tab

Right-click Menu Items
The following menu items are available when you right-click an I/O. You can select multiple I/Os and then right-
click to apply the menu items to all selected I/Os. Available menu items are:

 Libero SoC Design Flow User Guide

 161

• Configure I/O in I/O Editor – Allows you to reconfigure I/Os, such as changing the I/O Standard or the Pin
Assignment or both to improve the noise margin.
Note: This menu item is only active when the I/O Editor is open.

• Show in Chip Planner – Allows you to cross-probe the selected I/Os in Chip Planner.
Note: This menu item is only active when the Chip Planner is open.

• Mark Selected Static – Marks the selected I/Os as static (excluded from Noise Analysis).
• Unmark Selected Static – Unmarks the selected I/Os as static (included for Noise Analysis).
• Mark Selected Don’t Care – Marks the selected I/O as Don’t Care (Not to be considered as Victim).
• Unmark Selected Don’t Care – Unmarks the selected I/0s as Don’t Care (to be considered as Victim).
• Copy Selection – Copies the selected I/Os to the Clipboard for pasting into other applications.
• Print Selection - Copies the selected I/Os and sends to the printer.
• Sort by Package Die Pad Number – Sorts the Pin Number by the order of the I/O Pad number. Use this

option to find a pin and its neighboring pins. All used pins are arranged in order of proximity (geographical
proximity).

Search and Filter
Filtering is available for Port Names. For example, if you enter the search pattern “DATA*” in the Port Name field
and click Search , the list is populated with all I/O names beginning with DATA. Names not beginning with DATA
are excluded from the list. Filtering allows you to focus on I/Os you are interested in for SSN Analysis.

Pulse Width
The Pulse Width is the settling time of the signal bounce. It is a threshold value which the signal bounce must
exceed before the signal bounce is recognized for SSN calculation. Select 1ns or 0ns. Selecting 0ns means that
any signal bounce with a pulse width above 0ns is recognized for SSN calculation. A selection of 1ns means only
signal bounces with a pulse width at or above 1ns are recognized for SSN calculation.
Changing the Pulse Width selection discards all the changes made for the current Pulse Width selection and
triggers a re-analysis based on the new Pulse Width.

Run Analysis
This button is not active when SSN first opens. It is activated only when you have made changes in the Noise
Report. These changes may include one or more of the following:
• Checking/unchecking the Don’t’ Care checkbox for one or more I/Os.
• Checking/unchecking the Static checkbox for one or more I/Os.

When you have made your changes, click Run Analysis and SSN will recompute the Noise Margin number.

Save Report
Click Save Report to save the Noise Report in one of three formats:
• Text – Text file with *.txt file extension
• CSV – Spreadsheet file with *.csv file extension
• XML – XML file with *.xml file extension

Excluded I/Os

This tab displays all I/Os excluded from Noise Analysis. Excluded I/Os include:
• I/Os on unsupported I/O standards
• I/Os marked as Static in the Noise Analysis tab
• JTAG I/Os for which Noise Analysis is irrelevant

 Libero SoC Design Flow User Guide

 162

Figure 103 · SSN Analyzer – Excluded I/Os Tab

The Noise Report includes these columns:
• Bank Name/Pin Number
• Port Name
• Instance Name
• I/O Standard
• Comment – Specifies the reason for exclusion, e.g., unsupported I/O Standards or Marked as Static I/Os

You can right-click an I/O previously marked as static in the Excluded I/Os list and select Unmarked Selected
Static to include it in Noise Report Analysis.

Summary

The Summary tab displays a summary of the SSN Analyzer. Click Save Summary to save the summary in Text,
CSV, or XML format.

Figure 104 · SSN Analyzer - Summary

 Libero SoC Design Flow User Guide

 163

User Action When SSN Noise Analyzer Reports Failure

When the SSN Noise Analyzer reports poor Noise Margin or Failure, take the following steps to improve the noise
margin:
1. Change the I/O Standard to one that has a lower noise impact for the failing I/O Bank.
2. Select the lower Drive-Strength to reduce the noise. Open the I/O Advisor to see the power/timing impact of

the specific I/O cell.
3. After making these changes, rerun the SSN Analyzer to see if the noise margin of the I/O Cell improves. In

this scenario, Place and Route information remains intact.
4. If the improvement is not significant, open the Pin Attributes Editor and change the placement of the pin

within the I/O bank to a location farther away from the noisy pins.
5. Spread the failing pins across multiple I/O banks. This will reduce the number of aggressive outputs on the

power system of the I/O bank.
6. Rerun Place and Route and rerun SSN Analyzer to check the Noise Report.

Figure 105 · SSN Analyzer in the Design Flow

See Also
Simultaneous Switching Noise and Signal Integrity Application Notes

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130042

 Libero SoC Design Flow User Guide

 164

Configure Hardware

Programming Connectivity and Interface
In the Libero SoC Design Flow window, expand Configure Hardware and double-click Programming
Connectivity and Interface to open the Programming Connectivity and Interface window. The Programming
Connectivity and Interface window displays the physical chain from TDI to TDO or SPI Slave configuration.
The Programming Connectivity and Interface view enables the following actions:
• Select Programming Mode – Select JTAG or SPI Slave mode. SPI Slave mode is only supported by

FlashPro5. JTAG is the default interface. This option is available for SmartFusion2 and IGLOO2 only.
• Construct Chain Automatically - Automatically construct the physical chain
• Add Microsemi Device – Add a Microsemi device to the chain
• Add Non-Microsemi Device – Add a non-Microsemi device to the chain
• Add Microsemi Devices From Files – Add a Microsemi device from a programming file
• Delete Selected Device – Delete selected devices in the grid
• Scan and Check Chain – Scan the physical chain connected to the programmer and check if it matches the

chain constructed in the grid
• Zoom In – Zoom into the grid
• Zoom Out – Zoom out of the grid

Hover Information
The device tooltip displays the following information if you hover your pointer over a device in the grid:
• Name - Editable field for a user-specified device name. If you have two or more identical devices in your

chain you can use this field to give them unique names.
• Device - Device name.
• File - Path to programming file.
• Programming action – When a programming file is loaded, the user can select a programming action for

any device which is not the Libero design device.
• IR Length - Device instruction length.
• TCK - Maximum clock frequency in Hz to program a specific device; Libero uses this information to ensure

that the programmer operates at a frequency lower than the slowest device in the chain.

 Libero SoC Design Flow User Guide

 165

Figure 106 · Device Information

Device Chain Details
The device within the chain has the following details:
• Libero design device – Has a red circle within Microsemi logo. Libero design device cannot be disabled.
• Left/right arrow – Move device to left or right according to the physical chain.
• Enable Device - Select to enable the device for programming; enabled devices are green, disabled devices

are gray.
• Name - Displays your specified device name.
• File - Path to programming file.

Right-Click Properties
• Set as Libero Design Device - The user needs to set Libero design device when there are multiple

identical Libero design devices in the chain.
• Enable Device for Programming - Select to enable the device for programming; enabled devices are

green, disabled devices are gray.
• Configure Device – Ability to reconfigure the device (for a Libero SoC target device the dialog appears but

only the device name is editable).
• Load Programming File – Load programming file for selected device. (Not supported for Libero SoC target

design device.)
• Set Serial Data - Opens the Serial Settings dialog box; enables you to set your serialization data.
• Select Program Procedure/Actions (Not supported for Libero SoC target design device):

• Actions - List of programming actions for your device.
• Procedures - Advanced option; enables you to customize the list of recommended and optional

procedures for the selected Action.
• Move Device Left/Right – Move device in the chain to left or right.

 Libero SoC Design Flow User Guide

 166

Figure 107 · Right-click Properties

See Also
set_programming_interface

Programmer Settings
In the Libero SoC Design Flow window, expand Configure Hardware, double-click Configure Programmer, or
right-click Configure Programmer and choose Programmer Settings to view the Programmer Settings dialog.
You can set specific voltage and force TCK frequency values for your programmer in this dialog.

Figure 108 ·

 Libero SoC Design Flow User Guide

 167

Figure 109 · Programmer Settings
The Programmer Settings dialog includes setting options for FlashPro5/4/3/3X, FlashPro.
Limitation of the TCK frequency for the selected programmer:
• FlashPro5: 1, 2, 3, 4, 5, 6, 10, 15, 30 MHz
• FlashPro4: 1, 2, 3, 4, 5, 6 MHz
• FlashPro3/3X: 1, 2, 3, 4, 6 MHz
• FlashPro supports 1-4 MHz

TCK frequency limits by target device:
• Refer to target device data sheet

During execution, the frequency set by the FREQUENCY statement in the PDB/STAPL file overrides the TCK
frequency setting selected by you in the Programmer Settings dialog box unless you also select the Force TCK
Frequency checkbox.

FlashPro5/4/3/3X Programmer Settings
For FlashPro5/4/3/3X, you can choose the Set Vpump setting or the Force TCK Frequency. If you choose the
Force TCK Frequency, select the appropriate MHz frequency. For FlashPro4/3X settings, you can switch the TCK
mode between Free running clock and Discrete clocking. Discrete clocking should be used when there is a JTAG
non-compliant device in a chain with Microsemi devices. After you have made your selections(s), click OK.

Default Settings
• The Vpump option is checked to instruct the FlashPro5/4/3/3X programmer(s) to supply Vpump to the

device.
NOTE: VPUMP voltage will not be checked for the SmartFusion2/IGLOO2 and newer families of devices.
VPUMP does not need to be connected to the programmer for these devices.

• The Force TCK Frequency option is unchecked to instruct the FlashPro5/4/3/3X to use the TCK frequency
specified by the Frequency statement in the PDB/STAPL file(s).

• FlashPro5/4/3/3X default TCK mode setting is Free running clock.

TCK Setting (ForceTCK Frequency)
If Force TCK Frequency is checked (in the Programmer Setting), the selected TCK value is set for the
programmer and the Frequency statement in the PDB/STAPL file is ignored.

Default TCK frequency
When the IPD/STAPL file or Chain does not exist, the default TCK frequency is set to 4MHz. When more than
one Microsemi flash device is targeted in the chain, the FlashPro Express software passes through all of the files
and searches for the "freq" keyword and the "MAX_FREQ" Note field. The FlashPro Express software uses the
lesser value of all the TCK frequency settings and the "MAX_FREQ" Note field values.

FlashPro Programmer Settings
Choose your programmer settings for FlashPro (see the above figure). If you choose to add the Force TCK
Frequency, select the appropriate MHz frequency. After you have made your selection(s), click OK.

Default Settings
• The Vpp, Vpn, Vdd(l), and Vddp options are checked (Vddp is set to 2.5V) to instruct the FlashPro

programmer(s) to supply Vpp, Vpn, Vdd(l) and Vddp.
• The Driver TRST option is unchecked to instruct the FlashPro programmer(s) NOT to drive the

TRST pin.
• The Force TCK Frequency option is unchecked to instruct FlashPro to use the TCK frequency

specified by the Frequency statement in the STAPL file(s).

 Libero SoC Design Flow User Guide

 168

Select Programmer
In the Libero SoC Design Flow window, expand Configure Hardware and double-click Select Programmer to
open the Select Programmer dialog. You can also right-click Select Programmer to open it. The dialog displays
the name, type, and port of your programmer if it is connected.
A drop-down list shows all connected programmers, allowing you to select the programmer you want. If no
programmers are connected, you can connect a programmer without closing the dialog and then click
Refresh/Rescan Programmers. The connected programmer will appear in the drop-down list.

Figure 110 · Select Programmer Dialog

See Also

Programmer Settings
Tcl command select_programmer

 Libero SoC Design Flow User Guide

 169

Program Design

Generate FPGA Array Data
The Generate FPGA Array Data tool generates database files used in downstream tools:
• *.map and *.dca files used for Programming

Double-click Generate FPGA Array Data or right-click Generate FPGA Array Data in the Design Flow window
and click Run to generate FPGA Array Data. Before running this tool, the design should have completed the
Place and Route step. If not, Libero SoC runs implicitly the upstream tools (Synthesis, Compile Netlist, and Place
and Route) before it generates the FPGA Array Data.

Figure 111 · Generate FPGA Array Data

Update uPROM Memory Content - RTG4 Only
Use the Update uPROM Memory Content tool if you have reserved space in the uPROM Configurator and, after
Place and Route, you want to make changes to the uPROM clients. After you have updated the uPROM Memory
Content, there is no need to rerun Place and Route.
To update the uPROM Memory Content from the Design Flow Window:
1. Right-click Update uPROM Memory Content in the Design Flow window and choose Configure Options.

 Libero SoC Design Flow User Guide

 170

Figure 112 · Update uPROM Memory Content

2. When the uPROM Update Tool appears, right-click the Memory Client you want to update and choose Edit.

Figure 113 · uPROM Update Tool

The Edit Data Storage Client dialog box appears.

 Libero SoC Design Flow User Guide

 171

Figure 114 · Edit Data Storage Client Dialog Box

You can make the following changes to the uPROM client:
• Rename a Client
• Change the memory content, memory size and start address of the client
• Reverse your decision on whether or not to use Content for Simulation

Note: You cannot use the Update uPROM tool to add or delete a client. To add or delete a client, you must use
the uPROM Configurator to reconfigure your Clients and regenerate your uPROM component and your design.

Update eNVM Memory Content (SmartFusion2 and IGLOO2)
Right-click Update eNVM Memory Content and choose Configure Options or double-click Update eNVM
Memory Content to open the dialog box and modify your eNVM client configurations.

 Libero SoC Design Flow User Guide

 172

Figure 115 · eVNM Update Dialog Box

The eNVM Update dialog box enables you to update your eNVM content without having to rerun Compile and
Place and Route. It is useful if you have reserved space in the eNVM configurator within the MSS for firmware
development, for example. Use the eNVM Update dialog box when you have completed your firmware
development and wish to incorporate your updated firmware image file into the project.
Note: To disable a client for programming, you must modify the client and select “No Content (Client is a
placeholder and will not be programmed)”. The content from the memory file, serialization data file, or auto-
incremented serialization content will be preserved if you later decide to enable this client for programming.
Clients disabled for programming will not be included in the generated bitstream and will not be programmed.
Note: To delete, create, or rename a eNVM client, you must return to the MSS/System Builder eNVM
Configurator. See MSS Configuration - eNVM (User Guide)

Modify Data Storage Client

Double-click the Storage Client to open the Modify Data Storage Client dialog box.
Note: You cannot add, delete or rename a data storage client at this point using the Modify Data Storage Client
dialog box. To make such changes, return to the MSS or System Builder eNVM configuration step.

https://coredocs.s3.amazonaws.com/Libero/SmartFusion2MSS/MSS_ENVM/sf2_mss_envm_config_ug_1.pdf

 Libero SoC Design Flow User Guide

 173

Figure 116 · Modify Data Storage Client Dialog Box

You have three options to specify the eNVM content:
• Import a Memory File
• Fill eNVM content with Zero’s
• Assign No Content (eNVM as a Placeholder). The client will not be included in the programming bitstream

and will not be programmed
If you have completed Place and Route and you import a memory file for the eNVM content, you do not have to
rerun Compile or Place and Route. You can program or export your programming file directly. Programming will
generate a new programming file that includes your updated eNVM content.
You can also specify the start address where the data for that client starts, the word size and the number of words
to reserve for the data storage client.

Modify Serialization Client

Double-click the Serialization Client to open the Modify Serialization Client dialog box.
Note: You cannot add, delete or rename a Serialization Client in the Modify Serialization Client dialog box. Go to
the eNVM configurator inside the MSS/HPMS Configurator or the System Builder Memory page (eNVM tab) to
make these changes.

 Libero SoC Design Flow User Guide

 174

Figure 117 · Modify Serialization Client Dialog Box

You have three options to specify the eNVM content:
• Import a Memory File
• Fill eNVM content with Zero’s
• Assign No Content (eNVM as a Placeholder). The client will not be included in the programming bitstream

and will not be programmed
If you have completed Place and Route and you import a memory file for the eNVM content, you do not have to
rerun Compile or Place and Route. You can program or export your programming file directly. Programming will
generate a new programming file that includes your updated eNVM content.
You can also specify the start address where the data for the Serialization Client starts, the number of pages and
the maximum number of devices you want to program serialization data into.
Setting a maximum number of devices to program for Serialization clients will generate a programming bitstream
file that has serialization content for the number of devices specified. The maximum number of devices to
program must match for all serialization clients. If the user would like to program a subset of the devices during
production programming, this can be done within the FlashPro Express tool, which allows you to select a range of
indices desired for programming for that serialization programming job session. Refer to the FlashPro Express
User's Guide for more information.

Configure I/O States During JTAG Programming
In the Libero SoC Design Flow window expand Edit Design Hardware Configuration and double-click
Configure I/O States During JTAG Programming to specify the I/O states prior to programming. This feature is
only available once Layout is completed.
The default state for all I/Os is Tri-state.

To specify I/O states during programming:
1. Sort the pins as desired by clicking any of the column headers to sort the entries by that header. Select the

I/Os you wish to modify (as shown in the figure below).

 Libero SoC Design Flow User Guide

 175

2. Set the I/O Output state. You can set Basic I/O settings if you want to use the default I/O settings for your
pins, or use Custom I/O settings to customize the settings for each pin. See the Specifying I/O States During
Programming - I/O States and BSR Details help topic for more information on setting your I/O state and the
corresponding pin values. Basic I/O state settings are:

• 1 – I/O is set to drive out logic High
• 0 – I/O is set to drive out logic Low
• Last Known State: I/O is set to the last value that was driven out prior to entering the programming

mode, and then held at that value during programming
• Z - Tri-State: I/O is tristated with weak pull up (10k ohm)

I/O States During Programming Window

3. Click OK to save your settings.
Note: I/O States During programming will be used during programming or when exporting the bitstream.

Configure Programming Options (SmartFusion2 and IGLOO2)
 From the Design Flow window, double-click Configure Programming options or right-click and choose
Configure Options.

 Libero SoC Design Flow User Guide

 176

Figure 118 · Configure Programming Bitstream Settings - Configure Options

The Configure Programming Options dialog box appears for you to configure the programming options.

 Libero SoC Design Flow User Guide

 177

Figure 119 · Configure Programming Options Dialog Box

Options
Design Version - Enter a number between 0 and 65535 for the design version. This is the Design Version used
for Auto Update Programming or for Backlevel protection.
Silicon signature (Hex) - Enter up to eight hexadecimal characters

Programming recovery settings:
The Programming Recovery settings enables you to set your Auto Update and Programming Recovery options for
programming.
Auto Update takes place during power-up and compares your Update SPI image Design Version against the
Design Version programmed in the device. It performs Auto Update programming on your SPI update Image if:
• The device has been programmed AND
• The Update SPI image Design Version is greater than the Design Version on the device

Auto Recovery enables the device to automatically reprogram itself if there is a power failure during programming.
Enable Auto Update - Click the checkbox to auto update the SPI update image at power up. Auto-update occurs
only when the SPI update image Design Version is greater than the Design Version already on the device. When
enabling Auto Update, Programming Recovery must also be enabled and this checkbox will be disabled.
Enable Programming Recovery - Click the checkbox to enable programming recovery in the event of a power
failure during programming.
SPI clock frequency - Sets your SPI clock frequency. SPI is a full duplex, four-wire synchronous transfer
protocol that supports programmable clock polarity (SPO) and clock phase (SPH).The state of SPO and SPH
control bits decides the data transfer modes. See the SmartFusion2 Microcontroller Subsystem User's Guide or
the IGLOO2 High Performance Memory Subsystem User's Guide for more information.
Select one of the following for the SPI Clock Frequency Values (MHz):
• 1.00
• 2.08
• 3.13
• 4.16

http://www.microsemi.com/document-portal/doc_download/130918-smartfusion2-microcontroller-subsystem-user
http://www.microsemi.com/document-portal/doc_download/132009-igloo2-fpga-high-performance-memory-subsystem-user-s-guide

 Libero SoC Design Flow User Guide

 178

• 5.00
• 6.25
• 8.30
• 12.50

SPI data transfer mode - Sets your SPI data transfer mode for SPO and SPH. The SPO control bit determines
the polarity of the clock and SPS defines the slave select behavior. SPS is hardcoded to b’1 and cannot be
changed. The SPH control bit determines the clock edge that captures the data. See the SmartFusion2
Microcontroller Subsystem User's Guide or the IGLOO2 High Performance Memory Subsystem User's Guide for
more information.

Notes:
Programming Recovery cannot be updated with _UEK1 or _UEK2 programming files. Only the master
programming file can be used.
SPI file programming for Auto Programming, Auto Update (IAP), Programming Recovery, and IAP/ISP
Services currently can only program security once with the master file. Update files cannot update the
security settings. In addition, Programming Recovery, Silicon Signature, Firewall, and Tamper Macro can
only be programmed with the master file and cannot be updated.

Configure Programming Options (RTG4 Only)
 From the Design Flow window, double-click Configure Programming options or right-click and choose
Configure Options.

http://www.microsemi.com/document-portal/doc_download/130918-smartfusion2-microcontroller-subsystem-user
http://www.microsemi.com/document-portal/doc_download/130918-smartfusion2-microcontroller-subsystem-user
http://www.microsemi.com/document-portal/doc_download/132009-igloo2-fpga-high-performance-memory-subsystem-user-s-guide

 Libero SoC Design Flow User Guide

 179

Figure 120 · Configure Programming Bitstream Settings - Configure Options

The Configure Programming Options dialog box appears for you to configure the programming options.

 Libero SoC Design Flow User Guide

 180

Figure 121 · Programming Bitstream Settings Dialog Box (with Custom selected)

 Libero SoC Design Flow User Guide

 181

Figure 122 · Programming Bitstream Settings Dialog Box (with One-time programmable (OTP) selected)

Options
Design Version - Enter a number between 0 and 65535 for the design version.
Silicon signature (Hex) - Enter up to eight hexadecimal characters

Bitstream Settings
Custom
One-time programmable (OTP) - Select this option to make the device one-time programmable. After
programming the device, you will not be able to erase or reprogram the device. You will be able to run

 Libero SoC Design Flow User Guide

 182

programming actions VERIFY and VERIFY_DIGEST, as well as use SmartDebug to debug with probes and read
the digest of the Fabric.

Note: Refer to Table 4 in the RTG4 FPGA Datasheet for the maximum number of Verify Cycles per
Program/Erase cycle after making the device one-time programmable.

Enable System Controller Suspend Mode – Check this box to enable System Controller Suspend Mode when
TRSTB is low during device power up. You can exit System Controller Suspend Mode by driving TRSTB high
during device power up. By default, this selection is not checked.

Note: By default, when this options is selected, the JTAG interface will be disabled to ensure proper
hardening during System Controller Suspend Mode.

Disable JTAG Interface – Check this box to disable the JTAG interface when TRSTB is low during device power
up. You can enable the JTAG interface by driving TRSTB high during device power up. By default, this selection
is not checked.
Disable SPI Interface – This box is grayed out; the SPI interface is not supported for RGT4.

Note: If JTAG interface is disabled, the following settings will all be disabled for selection.
Disable Fabric Erase/Write/Verify - Check this box to disable Fabric Erase/Write/Verify when TRSTB is low
during device power up. You can enable Fabric Erase/Write/Verify by driving TRSTB high during device power
up. By default, this selection is not checked.
Disable Probe Read/Write – Check this box to disable Probe Read/Write when TRSTB is low during device
power up. You can enable Probe Read/Write by driving TRSTB high during device power up. By default, this
selection is not checked.

Note: For this option to be available, you must reserve pins for Probe in the project settings of the Libero
project(Project > Project Settings > Device Settings).

Disable Digest Check – Check this box to disable all Fabric reads, such as verify digest, read digest, or reading
design or programming information in DEVICE_INFO when TRSTB is low during device power up. You can
enable Digest Check by driving TRSTB high during device power up.
Reset to default – Click to reset the Settings to the default values.
Selected device options: This section provides a summary of the settings configured and informs the user about
the expected behavior of the device with these options.

Configure Security

Configure Security Policy Manager
In the Design Flow window, double-click Configure Security to open the Security Policy Manager dialog box and
customize the security settings in your design.
Use this dialog box to set your User Keys, Security Policies, and Microsemi factory test mode access level.

Note: Microsemi enabled default bitstream encryption key modes are disabled after user security is programmed.

 Libero SoC Design Flow User Guide

 183

Figure 123 · Security Policy Manager Dialog Box

Figure 124 · Security Policy Manager Dialog Box (for devices supporting UEK3)

 Libero SoC Design Flow User Guide

 184

Security Key Mode
Bitstream encryption with default key - Encrypt bitstream files with Microsemi default key (pre-placed key in
silicon). When this option is selected, user keys, security and Microsemi factory test mode access level
configurations are disabled.
Enable custom security options - Enables you to set User Keys, Security Policies and Microsemi factory test
mode access level (see below for a description).

User keys and Security policies protection
Write-protect using FlashLock/UPK1 - Protect UEK1 (User Encryption Key 1), UEK2 (User Encryption Key 2),
DPK (Debug Pass Key) and Security Policies using FlashLock/ UPK1. Protect modification to UEK3 via bitstream
using FlashLock/UPK1. Note that even after programming Security settings, SRAM-PUF System services can still
modify UEK3.
Note: UEK2 (User Encryption Key2) is protected by UPK2 (User Pass Key 2).
Note: UEK3 is only available for M2S060, M2GL060, M2S090, M2GL090, M2S150 and M2GL150 devices. See
the SmartFusion2 SoC FPGA and IGLOO2 FPGA Security Best Practices User Guide for more details.
Permanently write-protect - Permanently protect UEK1 (User Encryption Key 1), UPK2 (User Pass Key 2),
UEK2 (User Encryption Key 2), DPK (Debug Pass Key), Security Policies, and Microsemi factory test mode
access level. Permanently protect modification to UEK3 via bitstream. Note that even after programming Security
settings, SRAM-PUF System services can still modify UEK3 This setting, once programmed will not be modified
in the device. Microsemi enabled default bitstream encryption key modes are permanently disabled as well.
Note: When this option is selected, you cannot specify the FlashLock/UPK 1 and UPK2 (User Pass Key 2) value,
since the value cannot be used to unlock the corresponding protected features.
Note: UEK3 is only available for M2S060, M2GL060, M2S090, M2GL090, M2S150 and M2GL150 devices. See
the SmartFusion2 SoC FPGA and IGLOO2 FPGA Security Best Practices User Guide for more details.

Microsemi Factory Test Mode Access Level
Protect factory test mode access using FlashLock/UPK1 - Protects access to Microsemi factory test mode
using Flashlock/ UPK1.
Permanently protect factory test mode access - Permanently locks access to Microsemi factory test mode.
Note: When this option is selected, User Key Set 2 is permanently write-protected. Once programmed, User Key
Set 2 cannot be changed in the device. You can specify UEK2 (User Encryption Key 2). However, you cannot
specify UPK2 (User Pass Key 2), since the value cannot be used to unlock User Key Set 2.
Allow factory test mode access - Allows access to Microsemi factory test mode.

Security Policies
Update Policy - Sets your Fabric, eNVM and Back Level protections. See the Update Policy topic for more
information.
Note: If Update Policy is enabled and Fabric/eNVM update are protected by UPK1:
Fabric update is disabled for Auto Programming, IAP/ISP services, Programming Recovery and Auto update.
FlashLock/UPK1 unloading is only available for JTAG and SPI slave programming.
eNVM update is disabled for Auto Programming, IAP/ISP Services, Programming Recovery and Auto Update.
FlashLock/UPK1 unlocking is only available for JTAG and SPI Slave programming.
See the following example.

http://www.microsemi.com/document-portal/doc_download/132037-ug0443-smartfusion2-and-igloo2-fpga-security-best-practices-user-guide
http://www.microsemi.com/document-portal/doc_download/132037-ug0443-smartfusion2-and-igloo2-fpga-security-best-practices-user-guide

 Libero SoC Design Flow User Guide

 185

Debug Policy - Enables and sets your Debug Pass Key and debug options. See the Debug Policy topic for more
information.
Key Mode Policy - Configures the key mode to enable or disable. See the Key Mode Policy topic for more
information.

Configuring User Keys
User Key Set 1 is required. User Key Set 1 includes FlashLock/UPK1 (User Pass Key 1) and UEK1 (User
Encryption Key 1).
User Key Set 2 is optional. User Key Set 2 includes UPK2 (User Pass Key 2) and UEK2 (User Encryption Key 2).
Note that User Pass Key 2 (UPK2) protects only User Encryption Key 2 (UEK2).
User PUF Encryption Key is optional. User PUF Encryption Key includes UEK3 (User Encryption Key 3).
Note: UEK3 is only available for M2S060, M2GL060, M2S090, M2GL090, M2S150 and M2GL150 devices. See
the SmartFusion2 SoC FPGA and IGLOO2 FPGA Security Best Practices User Guide for more details.

Update Policy
This dialog box enables you to specify components that can be updated in the field, and their field-update
protection parameters.
 Choose your protection options from the drop-down menus; click the appropriate checkbox to set your
programming protection preferences.

Fabric update protection
• Use FlashLock/UPK1 to unlock Erase/Write/Verify operations- Select this option to require UPK1 to

erase, write, or verify the Fabric.
Note: Fabric update is disabled for Auto Programming, IAP/ISP services, Programming Recovery and Auto
update. FlashLock/UPK1 unlocking is only available for JTAG and SPI slave.
• Updates allowed using UEK1 or UEK2 or UEK3; FlashLock/UPK1 is not required for updates -

Encrypted update is allowed with either UEK1 or UEK2 (if enabled).
Note: UEK3 is only available for M2S060, M2GL060, M2S090, M2GL090, M2S150 and M2GL150 devices. See
the SmartFusion2 SoC FPGA and IGLOO2 FPGA Security Best Practices User Guide for more details.

http://www.microsemi.com/document-portal/doc_download/132037-ug0443-smartfusion2-and-igloo2-fpga-security-best-practices-user-guide
http://www.microsemi.com/document-portal/doc_download/132037-ug0443-smartfusion2-and-igloo2-fpga-security-best-practices-user-guide

 Libero SoC Design Flow User Guide

 186

eNVM update protection
• Use FlashLock/UPK1 to unlock Write/Verify/Read operations- Select this option to require UPK1 to

write, verify or read to the eNVM.
Note: eNVM update is disabled for Auto Programming, IAP/ISP Services, Programming Recovery and Auto
Update. FlashLock/UPK1 unlocking is only available for JTAG and SPI Slave programming.
• Updates allowed using UEK1 or UEK2 or UEK3; Flashlock/UPK1 is not required for updates -

Encrypted update is allowed with either UEK1 or UEK2 (if enabled) or UEK3 (if enabled).
Note: UEK3 is only available for M2S060, M2GL060, M2S090, M2GL090, M2S150 and M2GL150 devices.
Back Level protection - When enabled, a design being loaded must be of a version higher than the Back Level
version value in the programmed device.
• Back Level Protection- Limits the design versions that the device can update. Only programming

bitstreams with Designer Version greater than the Back Level version are allowed for programming.
• Design version - Displays the current Design version (set in the Configure Programming Options). Back

level uses the Design version value to determine which bitstreams are allowed for programming.
• Back Level Bypass - If selected, design is programmed irrespective of Back Level version.

Note: Back Level Bypass should be set if you allow programming recover with recovery image lower than the
Back Level version selected. Alternatively, you should update the design version of the recovery image so that it
is always greater than the Back Level version. (Refer to the Configure Programming Recovery section for details.)

Disable access to the following programming interfaces:
These settings protect the following programming interfaces:
• Auto Programming
• IAP/ISP services
• JTAG (use FlashLock to/UPK1 to unlock)
• SPI Slave (use FlashLock/UPK1 to unlock)

For more technical information on the Protect Programming Interface with Pass Key option see the SmartFusion2
Programming User's Guide.
Note that when the Permanently write-protect option is selected for User keys and Security policies protection in
SPM, the dialog box informs you of features that are no longer reprogrammable. In this case, if Use
FlashLock/UPK1 to unlock option is selected for Fabric/eNVM update protection then Fabric/eNVM will be One
Time Programmable.

http://www.microsemi.com/soc/documents/SmartFusion2_Programming_UG.pdf
http://www.microsemi.com/soc/documents/SmartFusion2_Programming_UG.pdf

 Libero SoC Design Flow User Guide

 187

Figure 125 · Update Policy Dialog Box

Debug Security Policy
Debug access to the embedded systems can be controlled via the customer Debug Policy.

Protect Embedded Debug with DPK (Debug Pass Key)
Restrict UJTAG access - Restricts access to UJTAG; DPK is required for access.
Restrict Cortex M3 debug (SmartFusion2 Only) - Restricts Cortex M3 debug/SoftConsole use; DPK is required
for debug.

SmartDebug access control
Access control available during debug mode.
Full Access (No restrictions to SmartDebug architecture; DPK is not required)- Enables full debug access to
eNVM, uSRAM, LSRAM, eSRAM0/1, DDRAM and Fabric probing.
No debug (Restrict read/write access to SmartDebug architecture; DPK is required for read/write access) -
Blocks all debug access to eNVM, uSRAM, LSRAM, eSRAM0/1, DDRAM and Fabric probing.

DPK (Debug Pass Key) (length is 64 HEX characters)
Specify a Debug Pass Key to unlock features protected by DPK.
Restrict external Fabric/eNVM design digest check request via JTAG and SPI. Use FlashLock/UPK1 to
allow digest check. - Protects design digest check request with FlashLock/UPK1.

 Libero SoC Design Flow User Guide

 188

Disable debug access through JTAG (1149.1). Use FlashLock/UPK1 to allow access. - Disables JTAG
(1149.1) test instructions. The following JTAG test instructions will be disabled: HIGHZ, EXTEST, INTEST,
CLAMP, SAMPLE, and PRELOAD. I/Os will be tri-stated when in JTAG programming mode and BSR control
during programming is disabled. BYPASS, IDCODE, and USERCODE instructions will remain functional.

Figure 126 · Debug Security Policy Dialog Box

Key Mode Policy
Protect user encryption key modes with FlashLock/UPK1. If a key mode is disabled, then FlashLock/UPK1 is
required to program with that key mode.
The following key modes can be disabled:
• UEK1 (User Encryption Key 1)
• UEK2 (User Encryption Key 2)
• UEK3 (User Encryption Key 3)

Note: UEK3 is only available for M2S060, M2GL060, M2S090, M2GL090, M2S150 and M2GL150 devices. See
the SmartFusion2 SoC FPGA and IGLOO2 FPGA Security Best Practices User Guide for more details.
If all key modes are disabled then device update is impossible. A warning message is displayed in this case.
Note: If a key mode is disabled, the corresponding bitstream file will be disabled.

http://www.microsemi.com/document-portal/doc_download/132037-ug0443-smartfusion2-and-igloo2-fpga-security-best-practices-user-guide

 Libero SoC Design Flow User Guide

 189

Figure 127 · Programming Key Mode Policy Dialog Box

Figure 128 · Programming Key Mode Policy Dialog Box (for devices supporting UEK3)

Security Features Frequently Asked Questions
The following Frequently Asked Questions address the most common queries related to managing and
programming SmartFusion2 and IGLOO2 Security Features.
I have configured the "Configure Security Policy Manager" on page 182 and enabled security in my design
but I do not want to program my design with the Security Policy Manager features enabled. What do I do?
Go to Configure Bitstream and uncheck Security.
What is programmed when I click Program Device?
All features configured in your design and enabled in the Configure Bitstream tool. Any features you have
configured (such as eNVM or Security) are enabled for programming by default.
When I click Program Device is the programming file encrypted?

 Libero SoC Design Flow User Guide

 190

All programming files are encrypted. To generate programming files encrypted with UEK1 or UEK2 you must
generate them from Export Bitstream for field updates.

Note: Once security is programmed, you must erase the security before attempting to reprogram the
security.

How do I generate encrypted programming files with User Encryption Key 1/2/3?
• Configure the "Configure Security Policy Manager" on page 182 and specify User Key Set 1, User Key Set

2, and User PUF Encryption Key. Ensure the Security programming feature is enabled in Configure
Bitstream; it is enabled by default once you configure the Security Policy Manager.

• Export Bitstream from Handoff Design for Production - <filename>_uek1.(stp/svf/spi/dat),
<filename>_uek2.(stp/svf/spi/dat), and <filename>_uek3.(stp/svf/spi/dat) files are encrypted with UEK1,
UEK2, and UEK3, respectively. See Security Programming File Descriptions below for more information on
programming files.

Note: UEK3 is only available for M2S060S, M2GL060S, M2S090S, M2GL090S, M2S150S, and M2GL150S
devices. See the SmartFusion2 SoC FPGA and IGLOO2 FPGA Security Best Practices User Guide for more
details.
What are Security Programming Files?
See the Security Programming Files topic for more information.

Security Programming Files
Export Bitstream (expand Handoff Design for Production in the Design Flow window) creates the following files:
<filename>_master.(stp/svf/spi/dat) - Created when Enable custom security options is specified in the
"Configure Security Policy Manager" on page 182 . This is the master programming file; it includes all
programming features enabled, User Key Set 1, User Key Set 2 (optionally if specified), and your security policy
settings.
<filename>_security_only_master.(stp /svf/spi/dat) – Created when Enable custom security options is
specified in the "Configure Security Policy Manager" on page 182. Master security programming file; includes
User Key Set 1, User Key Set 2 (optionally if specified), and your security policy settings.
<filename>_uek1.(stp/svf/spi/dat) – Programming file encrypted with User Encryption Key 1 used for field
updates; includes all your features for programming except security .
<filename>_uek2.(stp/svf/spi/dat) – Programming file encrypted with User Encryption Key 2 used for field
updates; includes all your features for programming except security.
<filename>_uek3.(stp/svf/spi/dat) – Programming file encrypted with User Encryption Key 3 used for field
updates; includes all your features for programming except security.
Note: UEK3 is only available for M2S060S, M2GL060S, M2S090S, M2GL090S, M2S150S, and M2GL150S
devices. See the SmartFusion2 SoC FPGA and IGLOO2 FPGA Security Best Practices User Guide for more
details.

Configure Bitstream
Right-click Generate Bitstream in the Design Flow window and choose Configure Options to open the
Configure Bitstream dialog box.
The Configure Bitstream dialog box enables you to select which components you wish to program. Only features
that have been added to your design are available for programming. For example, you cannot select eNVM for
programming if you do not have eNVM in your design.

http://www.microsemi.com/document-portal/doc_download/132037-ug0443-smartfusion2-and-igloo2-fpga-security-best-practices-user-guide
http://www.microsemi.com/document-portal/doc_download/132037-ug0443-smartfusion2-and-igloo2-fpga-security-best-practices-user-guide

 Libero SoC Design Flow User Guide

 191

Figure 129 · Configure Bitstream Dialog Box - SmartFusion2 and IGLOO2

Selected components - Updates the components you select, regardless of whether or not they have changed
since your last programming.

Note: The Custom security and eNVM components are not available for RTG4 devices.

Generate Bitstream
Generates the bitstream for use with the Run PROGRAM Action tool.
The tool incorporates the Fabric design, eNVM configuration (if configured) and custom security settings (if
configured) to generate the bitstream file. You need to configure the bitstream before you generate the bitstream.
Otherwise, default settings with all available features included will be used. Right-click Generate Bitstream and
choose Configure Options to open the Configure Bitstream dialog box to select which components you wish to
program. Only features that have been added to your design are available for programming. For example, you
cannot select eNVM for programming if you do not have an eNVM in your design.
Modifications to the Fabric design, eNVM configuration, or security settings will invalidate this tool and require
regeneration of the bitstream file.
The Fabric programming data will only be regenerated if you make changes to the Fabric design, such as in the
Create Design, Create Constraints and Implement Design sections of the Design Flow window.
When the process is complete a green check appears next to the operation in the Design Flow window (as shown
in the figure below) and information messages appear in the Log window.

 Libero SoC Design Flow User Guide

 192

Figure 130 · Generate Bitstream (Complete)

See also
Configure Bitstream Dialog Box

Run Programming Device Actions - SmartFusion2, IGLOO2, RTG4
If you have a device programmer connected, you can double-click Run PROGRAM Action to execute your
programming in batch mode with default settings.
If your programmer is not connected, or if your default settings are invalid, the Reports view lists the error(s).
Right-click Run PROGRAM Action and choose Configure Action/Procedures to open the Select Action and
Procedures dialog box.

Note: For RTG4, if you have selected the One-time programmable (OTP) option in Configure Programming
Options and the PROGRAM action is selected, you will see the following message:

Click Yes to continue or No to cancel.

Programming File Actions
Libero SoC enables you to program security settings, FPGA Array, and eNVM features.
You can program these features separately using different programming files or you can combine them into one
programming file.
In the Design Flow window, expand Program Design, click Run PROGRAM Action, and right-click Configure
Actions/Procedures.

 Libero SoC Design Flow User Guide

 193

Figure 131 · Select Actions and Procedures

The table below lists programming file actions and descriptions.
Table 3 · Programming File Actions

Action Description

PROGRAM Programs all selected family features: FPGA Array, targeted eNVM clients, and
security settings.

ERASE Erases the selected family features: FPGA Array and Security settings.

VERIFY_DIGEST Calculates the digests for the components (Custom Security, Fabric, or eNVM)
included in the bitstream and compares them against the programmed values.

VERIFY Verifies all selected family features: FPGA Array, targeted eNVM clients, and
security settings.

ENC_DATA_AUTHEN
TICATION

Encrypted bitstream authentication data.

READ_IDCODE Reads the device ID code from the device.

DEVICE_INFO Displays the IDCODE, the design name, the checksum, and device security
settings and programming environment information programmed into the
device.

 Libero SoC Design Flow User Guide

 194

Options Available in Programming Actions

The table below shows the options available for specific programming actions.
Table 4 · Programming File Actions - Options

Action Option and Description

PROGRAM DO_VERIFY - Enables or disables programming
verification

Exit Codes (SmartFusion2 and IGLOO2)
Error
Code

Exit
Code

Exit Message Possible Cause Possible Solution

 0 Passed (no error) - -

0x8002 5 Failure to configure
device programming at
1.2/1.0 VCC voltage

Unstable voltage level

Signal integrity issues on
JTAG pins

Monitor related power supplies that cause
the issue during programming; check for
transients outside of Microsemi
specifications. See your device datasheet
for more information on transient
specifications.

Monitor JTAG supply pins during
programming; measure JTAG signals for
noise or reflection.

0x8032 5 Device is busy Unstable VDDIx voltage level Monitor related power supplies that cause
the issue during programming; check for
transients outside of Microsemi
specifications. See your device datasheet
for more information on transient
specifications.

0x8003 5 Failed to enter
programming mode

Unstable voltage level

Signal integrity issues on
JTAG pins

DEVRST_N is tied to LOW

Monitor related power supplies that cause
the issue during programming; check for
transients outside of Microsemi
specifications. See your device datasheet
for more information on transient
specifications.

Monitor JTAG supply pins during
programming; measure JTAG signals for
noise or reflection.

Tie DEVRST_N to HIGH prior to
programming the device.

0x8004 6 Failed to verify IDCODE Incorrect programming file

Incorrect device in chain

Signal integrity issues on
JTAG pins

Choose the correct programming file and
select the correct device in the chain.

Measure JTAG pins and noise for
reflection. If TRST is left floating then add
pull-up to pin.

 Libero SoC Design Flow User Guide

 195

Error
Code

Exit
Code

Exit Message Possible Cause Possible Solution

Reduce the length of Ground connection.

 0x8005
0x8006
8x804A

10 Failed to program eNVM Unstable voltage level.

Signal integrity issues on
JTAG pins.

Monitor related power supplies that cause
the issue during programming; check for
transients outside of Microsemi
specifications. See your device datasheet
for more information on transient
specifications.

Monitor JTAG supply pins during
programming; measure JTAG signals for
noise or reflection.

0x8027
0x8028

10 Authentication Error

Bitstream and device
mismatch

Libero device selection does
not match the target device.

Generate a programming file with the
correct device selection for the target
device.

0x8007
0x804C

11 Failed to verify FPGA
Array

Failed to verify Fabric
Configuration

Failed to verify Security

Device is programmed with a
different design or the
component is blank.

Unstable voltage level.

Signal integrity issues on
JTAG pins.

Verify the device is programmed with the
correct data/design.

Monitor related power supplies that cause
the issue during programming; check for
transients outside of Microsemi
specifications. See your device datasheet
for more information on transient
specifications.

Monitor JTAG supply pins during
programming; measure JTAG signals for
noise or reflection.

0x8008
0x8009
0x8049

11 Failed to verify eNVM Device is programmed with a
different design.

Unstable voltage level.

Signal integrity issues on
JTAG pins.

Verify the device is programmed with the
correct data/design.

Monitor related power supplies that cause
the issue during programming; check for
transients outside of Microsemi
specifications. See your device datasheet
for more information on transient
specifications.

Monitor JTAG supply pins during
programming; measure JTAG signals for
noise or reflection.

0x8013 -18 Digest request from
SPI/JTAG is protected by
User Pass Key 1

Digest request from SPI/JTAG
is protected by user pass key
1. Lock bit has been
configured in the Debug Policy
within SPM (Security Policy
Manager)

Provide a programming file with a pass
key that matches pass key programmed
into the device.

 Libero SoC Design Flow User Guide

 196

Error
Code

Exit
Code

Exit Message Possible Cause Possible Solution

0x8014 -19 Failed to verify digest >Unstable voltage level

Signal integrity issues on
JTAG pins

Monitor related power supplies that cause
the issue during programming; check for
transients outside of Microsemi
specifications. See your device datasheet
for more information on transient
specifications.

Monitor JTAG supply pins during
programming; measure JTAG signals for
noise or reflection.

0x8015 -20 FPGA Fabric digest
verification: FAIL

Programming bitstream
components do not match
components programmed

FPGA Fabric is either erased
or the data has been
corrupted or tampered with

Use the same programming file that was
used to program the device.

0x8016 -20 eNVM_0 digest
verification: FAIL

Programming bitstream
components do not match
components programmed

eNVM_0 data has been
corrupted or tampered with

Use the same programming file that was
used to program the device.

0x8017 -20 eNVM_1 digest
verification: FAIL

Programming bitstream
components do not match
components programmed

eNVM_1 data has been
corrupted or tampered with

Use the same programming file that was
used to program the device.

0x8018 -20 User security policies
segment digest
verification: FAIL

Programming bitstream
components do not match
components programmed

User security policy segment
data has been corrupted or
tampered with

Use the same programming file that was
used to program the device.

0x8019 -20 User key set 1 segment
digest verification: FAIL

Programming bitstream
components do not match
components programmed

User key set 1 segment data
has been corrupted or
tampered with

Use the same programming file that was
used to program the device.

0x801A -20 User key set 2 segment
digest verification: FAIL

Programming bitstream
components do not match
components programmed

User key set 2 segment data

Use the same programming file that was
used to program the device.

 Libero SoC Design Flow User Guide

 197

Error
Code

Exit
Code

Exit Message Possible Cause Possible Solution

has been corrupted or
tampered with

0x801B -20 Factory row and factory
key segment digest
verification: FAIL

Programming bitstream
components do not match
components programmed

Factory row and factory key
segment data has been
corrupted or tampered with

Use the same programming file that was
used to program the device.

0x801C -20 Fabric configuration
segment digest
verification: FAIL

Programming bitstream
components do not match
components programmed.

Fabric configuration segment
data has been corrupted or
tampered with

Use the same programming file that was
used to program the device.

 0x801D
0x801E
0x804B

-21 Device security
prevented operation

The device is protected with
user pass key 1 and the
bitstream file does not contain
user pass key 1.

User pass key 1 in the
bitstream file does not match
the device.

Run DEVICE_INFO to view security
features that are protected.

Provide a bitstream file with a user pass
key 1 that matches the user pass key 1
programmed into the device.

0x801F
0x8020
0x8040

-22 Authentication Error

Bitstream or data is
corrupted or noisy

eNVM has been locked by a
master in your design

Running VERIFY action on a
blank device.

Bitstream file has been
corrupted

Bitstream was incorrectly
generated

Release the lock on the eNVM after your
master has completed its access
operations. Write 0x00 to "REQACCESS"
register in eNVM Control Registers
(address 0x600801FC) to release the
access.

Program the device prior to running
VERIFY action

Regenerate bitstream file.

0x8021
0x8022

-23 Authentication Error

Invalid/Corrupted
encryption key

File contains an encrypted key
that does not match the
device

Attempting to erase a device
with no security using master
security file

File contains user encryption
key, but device has not been
programmed with the user
encryption key

Device has user encryption
key 1/2 enforced and you are

Provide a programming file with an
encryption key that matches that on the
device.

Run DEVICE_INFO action to verify that
the device has no security. If the device
does not have secuirty, you cannot erase
it.

First program security with master
programming file, then program with user
encryption 1/2 field update programming
files.

You must first ERASE security with the

 Libero SoC Design Flow User Guide

 198

Error
Code

Exit
Code

Exit Message Possible Cause Possible Solution

attempting to reprogram
security settings

master security file, then you can
reprogram new security settings.

0x8041 -23 Authentication Error

Invalid/Corrupted
encryption key

File contains an encrypted key
that does not match the
device

File contains user encryption
key, but device has not been
programmed with the user
encryption key

Attempting to erase a device
with no security using master
security file

Device has user encryption
key 1/2 enforced and you are
attempting to reprogram
security settings

Provide a programming file with an
encryption key that matches that on the
device.

Run DEVICE_INFO action to verify that
the device has no security. If the device
does not have secuirty, you cannot erase
it.

First program security with master
programming file, then program with user
encryption 1/2 field update programming
files.

You must first ERASE security with the
master security file, then you can
reprogram new security settings.

0x8023
0x8024
0x8042

-24 Authentication Error

Back level not satisfied

Design version is not higher
than the back-level
programmed device

Generate a programming file with a design
version higher than the back level version.

0x8001 -24 Failure to read DSN Device is in System Controller
Suspend Mode

Check board connections

TRSTB should be driven High or disable
"System Controller Suspend Mode".

0x8025
0x8026
0x8043

-25 Authentication Error

DSN binding mismatch

DSN specified in programming
file does not match the device
being programmed

Use the correct programming file with a
DSN that matches the DSN of the target
device being programmed.

0x8044

-26 Authentication Error

Insufficient device
capabilities

Device does not support the
capabilities specified in
programming file

Generate a programming file with the
correct capabilities for the target device.

0x8027
0x8028

-26 Authentication Error

Bitstream and device
mismatch

Libero device selection does
not match the target device

Generate a programming file with the
correct device selection for the target
device.

0x8029
0x802A
0x8045

-27 Authentication Error

Incorrect DEVICEID

Incorrect programming file

Incorrect device in chain

Signal integrity issues on
JTAG pins

Choose the correct programming file and
select the correct device in chain.

Measure JTAG pins and noise or
reflection. If TRST is left floating, then add
pull-up to pin.

Reduce the length of ground connection.

0x802B
0x802C

-28 Authentication Error

Programming file version is
out of date

Generate programming file with latest
version of Libero SoC.

 Libero SoC Design Flow User Guide

 199

Error
Code

Exit
Code

Exit Message Possible Cause Possible Solution

Programming file is out
of date, please
regenerate

0x8046 -28 >Authentication Error

Unsupported bitstream
protocol version

Old programming file Generate programming file with latest
version of Libero SoC.

0x802F -30 JTAG interface is
protected by UPK1

Invalid or no UPK1 is provided User needs to provide correct UPK1 to
unlock device.

0x8030
0x8031
0x8048

-31 Authentication Error

Invalid or inaccessible
Device Certificate

M2S090 Rev. A or M2S150
Rev. A:

Either certificate is corrupted
or the user hasn't provided the
application code in the eNVM
or provided invalid application
code

FAB_RESET_N is tied to
ground

User can program a valid application
code. This can be done with SoftConsole.

FAB_RESET_N should be tied to HIGH.

0x8032
0x8033
0x8034
0x8035
0x8036
0x8037
0x8038
0x8039

-32 Instruction timed out Unstable voltage level

Signal integrity issues on
JTAG pins

 Monitor related power supplies that cause
the issue during programming; check for
transients outside of Microsemi
specifications. See your device datasheet
for more information on transient
specifications.

Monitor JTAG supply pins during
programming; measure JTAG signals for
noise or reflection.

0x8010 -35 Failed to unlock User
Pass Key 1

Pass key in file does not
match device.

Plaintext pass key match is
disabled. This occurs if HSM
was used to program the
device.

Provide a programming file with a pass
key that matches pass key programmed
into the device.

Match pass key using HSM.

0x8011 -35 Failed to unlock User
Pass Key 2

Pass key in file does not
match device.

Plaintext pass key match is
disabled. This occurs if HSM
was used to program the
device.

Provide a programming file with a pass
key that matches pass key programmed
into the device.

Match pass key using HSM.

0x8012 -35 Failed to unlock debug
pass key

Pass key in file does not
match device.

Plaintext pass key match is

Provide a programming file with a pass
key that matches pass key programmed
into the device.

 Libero SoC Design Flow User Guide

 200

Error
Code

Exit
Code

Exit Message Possible Cause Possible Solution

disabled. This occurs if HSM
was used to program the
device.

Match pass key using HSM.

0x804D -36 <HSM related error
message based on
scenario>

HSM communication error.
HSM call returns error.

Check if HSM the communication path to
HSM is up. Make sure project is loaded
properly and that HSM tickets have not
been cleaned.

0x804E -37 Device already has
Security programmed.
Please erase the device
using master file before
reprogramming Security
Settings.

HSM flow does not support
reprogramming device directly
if Security has already been
programmed.

Erase security and try programming the
device.

Exit Codes (RTG4)
Error Code Exit Message Possible Cause Possible Solution

 Passed (no
error)

- -

0x8001 Failure to read
DSN

 Device is in System Controller
Suspend Mode

Check board connections

 TRSTB should be driven High on
device power up.

Disable System Controller
Suspend Mode in "Programming
Bitstream Settings' tool within
Libero and reprogram the device.

0x8002 Device is busy Unstable VDDIx voltage level Monitor related power supplies
that cause the issue during
programming; check for transients
outside of Microsemi
specifications. See your device
datasheet for more information on
transient specifications.

0x8003 Failed to enter
programming
mode

Unstable voltage level

Signal integrity issues on
JTAG pins

DEVRST_N is tied to LOW

Monitor related power supplies
that cause the issue during
programming; check for transients
outside of Microsemi
specifications. See your device
datasheet for more information on
transient specifications.
Monitor JTAG supply pins during
programming; measure JTAG
signals for noise or reflection.
Tie DEVRST_N to HIGH prior to
programming the device

 Libero SoC Design Flow User Guide

 201

Error Code Exit Message Possible Cause Possible Solution

0x8004 Failed to verify
IDCODE

Incorrect programming file

Incorrect device in chain

Signal integrity issues on
JTAG pins

Choose the correct programming
file and select the correct device in
the chain.

Measure JTAG pins and noise for
reflection. If TRST is left floating
then add pull-up to pin.

Reduce the length of Ground
connection.

0x8005 Failed to verify
IDCODE
RT4G150_ES
STAPL file is
not compatible
with RT4G150
production
devices. You
must use a
STAPL file for
RT4G150
device.

Programming file is for
RT4G150_ES and device is
RT4G150
Incorrect programming file
Incorrect device in chain
Signal integrity issues on
JTAG pins

Generate a programming file for
RT4G150 device
Choose the correct programming
file and select the correct device in
the chain.
Measure JTAG pins and noise for
reflection. If TRST is left floating
then add pull-up to pin.
Reduce the length of Ground
connection.

0x8006 Failed to verify
IDCODE
RT4G150
STAPL file is
not compatible
with
RT4G150_ES
devices. You
must use a
STAPL file for
RT4G150_ES
device.

Programming file is for
RT4G150 and device is
RT4G150_ES
Incorrect programming file
Incorrect device in chain
Signal integrity issues on
JTAG pins

Generate a programming file for
RT4G150_ES device
Choose the correct programming
file and select the correct device in
the chain.
Measure JTAG pins and noise for
reflection. If TRST is left floating
then add pull-up to pin.
Reduce the length of Ground
connection.

0x8007 Failed to verify
FPGA Array

Device is programmed with a
different design or the
component is blank.
Unstable voltage level.
Signal integrity issues on
JTAG pins.

Verify the device is programmed
with the correct data/design.
Monitor related power supplies
that cause the issue during
programming; check for transients
outside of Microsemi
specifications. See your device
datasheet for more information on
transient specifications.
Monitor JTAG supply pins during
programming; measure JTAG
signals for noise or reflection.

0x8008 Device is blank Attempting to verify digest of a
blank device

Program the device prior to
running action "VERIFY_DIGEST"

 Libero SoC Design Flow User Guide

 202

Error Code Exit Message Possible Cause Possible Solution

0x8009 FPGA array
digest check is
disabled

Digest check has been
disabled by "Programming
Bitstream Settings" tool within
Libero

Drive TRSTB high during device
power up.
Enable digest check in
"Programming Bitstream Settings"
tool within Libero and reprogram
the device.

0x800A Failed to verify
digest:
Instruction
timed out

Unstable voltage level
Signal integrity issues on
JTAG pins

Try running VERIFY_DIGEST
action again.
Monitor related power supplies
that cause the issue during
programming; check for transients
outside of Microsemi
specifications. See your device
datasheet for more information on
transient specifications.
Monitor JTAG supply pins during
programming; measure JTAG
signals for noise or reflection.

0x800B FPGA Fabric
digest
verification:
FAIL

Programming bitstream
components do not match
components programmed
FPGA Fabric is either erased
or the data has been corrupted
or tampered with

Use the same programming file
that was used to program the
device.

0x800C Factory row
segment digest
verification:
FAIL

Programming bitstream
components do not match
components programmed
Factory row segment data has
been corrupted or tampered
with

Use the same programming file
that was used to program the
device.

0x800D Bitstream Error.
Bitstream or
data is
corrupted or
noisy.

Bitstream file has been
corrupted
Bitstream was incorrectly
generated
Unstable voltage level
Signal integrity issues on
JTAG pins

Regenerate bitstream file
Monitor related power supplies
that cause the issue during
programming; check for transients
outside of Microsemi
specifications. See your device
datasheet for more information on
transient specifications.
Monitor JTAG supply pins during
programming; measure JTAG
signals for noise or reflection.

0x800E Failed to query
programming
bitstream
settings:
Instruction
timed out

Unstable voltage level
Signal integrity issues on
JTAG pins

Try running DEVICE_INFO action
again.
Monitor related power supplies
that cause the issue during
programming; check for transients
outside of Microsemi

 Libero SoC Design Flow User Guide

 203

Error Code Exit Message Possible Cause Possible Solution

specifications. See your device
datasheet for more information on
transient specifications.
Monitor JTAG supply pins during
programming; measure JTAG
signals for noise or reflection.

0x800F Bitstream Error.
Incorrect
DEVICEID

Incorrect programming file
Incorrect device in chain
Signal integrity issues on
JTAG pins

Choose the correct programming
file and select the correct device in
the chain.
Measure JTAG pins and noise for
reflection. If TRST is left floating
then add pull-up to pin.
Reduce the length of Ground
connection.

0x8010 Operation has
been disabled
by
programming
bitstream
settings

Operation has been disabled
by "Programming Bitstream
Settings" tool within Libero
User disabled Fabric
Erase/Write/Verify and
attempted to
Erase/Program/Verify the
device

Drive TRSTB high during device
power up
Enable the disabled operation in
the "Programming Bitstream
Settings" tool with Libero and
reprogram the device

0x8011 Failed to check
bitstream:
Instruction
timed out

Unstable voltage level
Signal integrity issues on
JTAG pins

Monitor related power supplies
that cause the issue during
programming; check for transients
outside of Microsemi
specifications. See your device
datasheet for more information on
transient specifications.
Monitor JTAG supply pins during
programming; measure JTAG
signals for noise or reflection.

0x8012, 0x8013 Failed to erase
device:
Instruction
timed out

Unstable voltage level Signal
integrity issues on JTAG pins

Monitor related power supplies
that cause the issue during
programming; check for transients
outside of Microsemi
specifications. See your device
datasheet for more information on
transient specifications.
Monitor JTAG supply pins during
programming; measure JTAG
signals for noise or reflection.

0x8014 Failed to
program
device:
Instruction
timed out

Unstable voltage level
Signal integrity ssues on JTAG
pins

Monitor related power supplies
that cause the issue during
programming; check for transients
outside of Microsemi
specifications. See your device

 Libero SoC Design Flow User Guide

 204

Error Code Exit Message Possible Cause Possible Solution

datasheet for more information on
transient specifications.
Monitor JTAG supply pins during
programming; measure JTAG
signals for noise or reflection.

0x8015 Error, device is
not ready.

DEVRST_N may have been
driven LOW during
programming

Need to ensure that DEVRST_N is
driven HIGH during programming.
The reliability of the device in
space cannot be guaranteed if this
has occurred. It is the user's
responsibility to ensure that
DEVRST_N is driven HIGH during
programming.

 Libero SoC Design Flow User Guide

 205

Debug Design

Generate SmartDebug FPGA Array Data
The Generate SmartDebug FPGA Array Data tool generates database files used in downstream tools:
• *.db used for debugging FPGA Fabric in SmartDebug

Double-click Generate SmartDebug FPGA Array Data or right-click Generate SmartDebug FPGA Array Data
in the Design Flow window and click Run to generate SmartDebug FPGA Array Data. Before running this tool, the
design should have completed the Place and Route step. If not, Libero SoC runs implicitly the upstream tools
(Synthesis, Compile Netlist, and Place and Route) before it generates the FPGA SmartDebug Array Data.

Figure 132 · Generate SmartDebug FPGA Array Data

SmartDebug
Design debug is a critical phase of FPGA design flow. Microsemi’s SmartDebug tool complements design
simulation by allowing verification and troubleshooting at the hardware level. SmartDebug can provide access to
Microsemi FPGA device's built-in probe logic, which enables designers to check the state of inputs and outputs in
real-time without re-layout of the design.
SmartDebug can be run in two modes:
• Integrated mode from the Libero Design Flow
• Standalone mode
• Demo mode

Integrated Mode

When run in integrated mode from Libero, SmartDebug can access all design and programming hardware
information. No extra setup step is required. In addition, the Probe Insertion feature is available in Debug FPGA
Array.

 Libero SoC Design Flow User Guide

 206

To open SmartDebug in the Libero Design Flow window, expand Debug Design and double-click SmartDebug
Design.

Standalone Mode

SmartDebug can be installed separately in the setup containing FlashPro Express and Job Manager. This
provides a lean installation that includes all the programming and debug tools to be installed in a lab environment
for debug. In this mode, SmartDebug is launched outside of the Libero Design Flow. Prior to launch of
SmartDebug standalone mode, you must to go through SmartDebug project creation and import a Design Debug
Data Container (DDC) file, exported from Libero, to access all debug features in the supported devices.
Note: In standalone mode, the Probe Insertion feature is not available in FPGA Array Debug, as it requires
incremental routing to connect the user net to the specified I/O.

Demo Mode
Demo mode allows you to experience SmartDebug features (Active Probe, Live Probe, Memory Blocks,
SERDES) without connecting a board to the system running SmartDebug.
Note: SmartDebug demo mode is for demonstration purposes only, and does not provide the functionality of
integrated mode or standalone mode.
Note: You cannot switch between demo mode and normal mode while SmartDebug is running.

See Also
SmartDebug User Guide

Identify Debug Design
Libero SoC integrates the Identify RTL debugger tool. It enables you to probe and debug your FPGA design
directly in the source RTL. Use Identify software when the design behavior after programming is not in
accordance with the simulation results.
To open the Identify RTL debugger, in the Design Flow window under Debug Design double-click Instrument
Design.
Identify features:
• Instrument and debug your FPGA directly from RTL source code.
• Internal design visibility at full speed.
• Incremental iteration - Design changes are made to the device from the Identify environment using

incremental compile. You iterate in a fraction of the time it takes route the entire device.
• Debug and display results - You gather only the data you need using unique and complex triggering

mechanisms.
You must have both the Identify RTL Debugger and the Identify Instrumentor to run the debugging flow outlined
below.

To use the Identify Instrumentor and Debugger:
1. Create your source file (as usual) and run pre-synthesis simulation.
2. (Optional) Run through an entire flow (Synthesis - Compile - Place and Route - Generate a Programming

File) without starting Identify.
3. Right-click Synthesize and choose Open Interactively in Libero SoC to launch Synplify.
4. In Synplify, click Options > Configure Identify Launch to setup Identify.
5. In Synplify, create an Identify implementation; to do so, click Project > New Identify Implementation.
6. In the Implementations Options dialog, make sure the Implementation Results > Results Directory points to

a location under <libero project>\synthesis\, otherwise Libero SoC is unable to detect your resulting EDN
Netlist file.

7. From the Instumentor UI specify the sample clock, the breakpoints, and other signals to probe. Synplify
creates a new synthesis implementation. Synthesize the design.

https://coredocs.s3.amazonaws.com/Libero/12_0_0/Tool/smartdebug_ug.pdf

 Libero SoC Design Flow User Guide

 207

8. In Libero SoC, run Synthesis, Place and Route and Generate a Programming File.
Note: Libero SoC works from the edif netlist of the current active implementation, which is the
implementation you created in Synplify for Identify debug.

11. Double-click Identify Debug Design in the Design Flow window to launch the Identify Debugger.
The Identify RTL Debugger, Synplify, and FlashPro must be synchronized in order to work properly. See the
Release Notes for more information on which versions of the tools work together.

https://www.microsemi.com/products/fpga-soc/design-resources/design-software/libero-soc#downloads

 Libero SoC Design Flow User Guide

 208

Handoff Design for Production

Export Bitstream
Export Bitstream Files enables you to export STAPL, DAT, and SPI programming files.

Note: Security Programming is not supported in RTG4.

To export a bitstream file for SmartFusion2 and IGLOO2:
1. Under Handoff Design for Production, double-click Export Bitstream. The Export Bitstream dialog box

opens. The dialog box options depend on your Custom Security settings:
• Bitstream Encryption with the Default Key in the Security Policy Manager
• Enable Custom Security Options in the Security Policy Manager

2. Choose your options, such as DAT file if you wish to include support for Embedded ISP, or SPI file if you
need support for IAP or SPI Directory if you need support for Programming Recovery.

3. Set your eNVM Serialization options, if any. eNVM Serialization must be enabled via the eNVM
Configurator in your MSS.

4. Select to inlcude the bitstream componentsand Export Pass Keys in Plaintext.
5. Enter your Bitstream file name and click OK to export the selected bitstream files.

To export a bitstream file for RTG4, see the following topic:
• Export Bitstream - RTG4

See Also
Digest File

Export Bitstream tool when the device is configured with Bitstream Encryption with
Default Key in the Security Policy Manager

See the Export Bitstream topic for more information on exporting your bitstream.

 Libero SoC Design Flow User Guide

 209

Figure 133 · Export Bitstream Dialog Box with Default Key

Bitstream file name - Sets the name of your bitstream file. The prefix varies depending on the name of your top-
level design.
Existing bitstream files - Lists bitstream files you created already.
Formats - Select the Bitstream File format you want to export:
• STAPL file
• Chain STAPL file (Enabled only when there are two or more devices in the chain)
• DAT file
• SPI file

STAPL and DAT file formats are the default file formats.
Security options set with Configure Security tool- Provides a brief description of current security options.
Program design bitstream files– Lists all the bitstream files that will be exported.
File to program at trusted facility – Click to include Fabric and/or eNVM into the bitstream files to be
programmed at a trusted facility.

Note: Only features that have been added to your design are available for programming. For example, you
cannot select eNVM for programming if you do not have an eNVM in your design.

Export SPI Directory for programming recovery – Allows you to export SPI directory containing Golden and
Update SPI image addresses and design versions, used in Auto-update and Programming Recovery flow. Check
this option and click Specify SPI Directory to set the required information (see figure below).

 Libero SoC Design Flow User Guide

 210

Figure 134 · SPI Directory Dialog Box

Export Bitstream tool when the device is configured with Custom Security option in the
Security Policy Manager - SmartFusion2 and IGLOO2

See the Export Bitstream topic for information on exporting your bitstream.

Figure 135 · Export Bitstream Dialog Box with Enable Custom Security Options in the Security Policy Manager

 Libero SoC Design Flow User Guide

 211

Figure 136 · Export Bitstream Dialog Box with Enable Custom Security Options in the Security Policy Manager (for devices

with UEK3)
Bitstream file - Sets the name of your bitstream file. The prefix varies depending on the name of your top-level
design.
Existing bitstream files: - Lists bitstream files you created already.
Formats:
Select the Bitstream file format you want to export:
• STAPL file
• Chain STAPL file (Enabled only when there are two or more devices in the chain)
• DAT file
• SPI file

STAPL and DAT file formats are the default file formats to be exported. These are the required formats for IHP (In
House Programming).
Security options set with Configure Security tool- Provides a brief description of the current Security settings.
Program design bitstream files – Lists all the bitstream files that will be exported.
Note: Refer to Export Pass Keys for Plaintext to check the availability of Export Pass keys for Plaintext option for
the following Bitstream files.

 Libero SoC Design Flow User Guide

 212

Note: If a component (for example, eNVM) is not present in the design, it will be disabled in the bitstream
component selection.
Master file to program at trusted facility – Click to include Fabric and /or eNVM and/or Export Pass Keys in
Plaintext into the bitstream files to be programmed at a trusted environment.

Note: Notes
1. Custom Security is always programmed in the Master file.

File encrypted with UEK1 to program at untrusted facility or for Broadcast field update – Click to include
Fabric and /or eNVM and/or Export Pass Keys in Plaintext into the bitstream files to be programmed. If the
selected features are not protected by UPK1, the bitstream can be programmed at an untrusted location, since it
is encrypted with UEK1 that is preprogrammed into the device.
File encrypted with UEK2 to program at untrusted facility or for Broadcast field update - Click to include
Fabric and /or eNVM and/or Export Pass Keys in Plaintext into the bitstream files to be programmed. If the
selected features are not protected by UPK1, the bitstream can be programmed at an untrusted location, since it
is encrypted with UEK2 that is preprogrammed into the device.
File encrypted with UEK3 to program at untrusted facility or for Broadcast field update - Click to include
Fabric and/or eNVM into the bitsream files to be programmed. If the selected features are not protected by UPK1,
the bitstream can be programmed at an untrusted location, since it is encrypted with UEK3 that is preprogrammed
into the device.
Note: If eNVM/Fabric is One Time Programmable, it is precluded from bitstream encrypted with UEK1/2/3.
Note: UEK3 is only available for M2S060S, M2GL060S, M2S090S, M2GL090S, M2S150S, and M2GL150S
devices. See the SmartFusion2 SoC FPGA and IGLOO2 FPGA Security Best Practices User Guide for more
details.
Export SPI Directory for programming recovery – Allows you to export the SPI directory containing Golden
and Update SPI image addresses and design versions, used in Auto-update and Programming Recovery flow.
Check this option and click Specify SPI Directory to set the required information (see figure below).

Figure 137 · SPI Directory Dialog Box

Security Programming Files
Export Bitstream (expand Handoff Design for Production in the Design Flow window) creates the following files:
<filename>_master.(stp/svf/spi/dat) - Created when Enable custom security options is specified in the
"Configure Security Policy Manager" on page 182 . This is the master programming file; it includes all
programming features enabled, User Key Set 1, User Key Set 2 (optionally if specified), and your security policy
settings.
<filename>_security_only_master.(stp /svf/spi/dat) – Created when Enable custom security options is
specified in the "Configure Security Policy Manager" on page 182. Master security programming file; includes
User Key Set 1, User Key Set 2 (optionally if specified), and your security policy settings.
<filename>_uek1.(stp/svf/spi/dat) – Programming file encrypted with User Encryption Key 1 used for field
updates; includes all your features for programming except security .

http://www.microsemi.com/document-portal/doc_download/132037-ug0443-smartfusion2-and-igloo2-fpga-security-best-practices-user-guide

 Libero SoC Design Flow User Guide

 213

<filename>_uek2.(stp/svf/spi/dat) – Programming file encrypted with User Encryption Key 2 used for field
updates; includes all your features for programming except security.
<filename>_uek3.(stp/svf/spi/dat) – Programming file encrypted with User Encryption Key 3 used for field
updates; includes all your features for programming except security.
Note: UEK3 is only available for M2S060S, M2GL060S, M2S090S, M2GL090S, M2S150S, and M2GL150S
devices. See the SmartFusion2 SoC FPGA and IGLOO2 FPGA Security Best Practices User Guide for more
details.

Export Bitstream - RTG4
Bitstream File Name – Sets the name of your bitstream file. The prefix varies depending on the name of your top-
level design.
Choose the Bitstream file format:
• STAPL file
• Chain STAPL file (Enabled only when there are two or more devices in the chain)
• DAT file
• SPI File option is always grayed out; the SPI interface is not supported for RTG4

STAPL and DAT file formats are the default file formats to be exported. These are the required formats for IHP (In
House Programming).

Note: Security Programming is not supported for RTG4.

Figure 138 · Export Bitstream Dialog Box

Note: If you have selected the One-time programmable (OTP) option in Configure Programming Options,
you will see the following dialog:

http://www.microsemi.com/document-portal/doc_download/132037-ug0443-smartfusion2-and-igloo2-fpga-security-best-practices-user-guide

 Libero SoC Design Flow User Guide

 214

Click Yes to continue or No to cancel.

Export FlashPro Express Job - SmartFusion2, IGLOO2, RTG4
To program the design using standalone FlashPro Express tool on Linux or Windows, the user must export a
FlashPro Express Job. The job file will include chain configuration, Programmer Settings, Programming
Mode(JTAG/SPI-Slave) and programming files loaded from Programming Connectivity and Interface.

Note: SPI-Slave programming is only supported for SmartFusion/IGLOO2.
For SmartFusion2 and IGLOO2, Security Programming is supported. Use the Security Policy Manager to
configure Security before you export the programming job. The Export FlashPro Express Job dialog box for
SmartFusion2 and IGLOO2 displays the Security Options you have configured in the Security Policy Manager.
For RTG4, Security Programming is not supported. No security programming options is available in the Export
FlashPro Express Job dialog box.

SmartFusion2 and IGLOO2
The Export FlashPro Express Job dialog box options vary depending on the Security Key Mode you select.

 Libero SoC Design Flow User Guide

 215

Export FlashPro Express Job when the design is configured with Bitstream Encryption
with Default Key in the Security Policy Manager

Figure 139 · Export FlashPro Express Job Dialog Box -- SmartFusion2 and IGLOO2

FlashPro Express Job file
Name - Sets the name of the programming job file. All names use a prefix as shown in the software.
Location - Location of the file to be exported.
Existing programming job files - Lists any existing programming job files at the selected location.
Selected Security option set with Configure Security tool(Modify via Security Policy Manager) - Provides a
brief description of current security options.
 Program design bitstream file- Lists all the available bitstream files, one of which will be included in the
programming job for the current target device.
File to program at trusted facility -Click to enable programming for Fabric and/or eNVM bitstream components
at a trusted facility.

 Libero SoC Design Flow User Guide

 216

Figure 140 · Export FlashPro Express Job Dialog Box with Custom Security Options

Figure 141 · Export FlashPro Express Job Dialog Box - Enable Custom Security Options (for devices supporting UEK3)

 Libero SoC Design Flow User Guide

 217

FlashPro Express Job file
Name - Sets the name of your proogramming job file. All names use a prefix as shown in the software.
Location - Location of the file to be exported.
Existing programming files - Lists any existing programming job files at the selected location.
Selected Security Level options set with Configure Security tool(Modify via Security Policy Manager) -
Provides a brief description of current security options.
Bitstream FilesProgram design bitstream file- Lists all the available bitstream files, one of which will be
included in the programming job for the current target device.
Note: Refer to Export Pass Keys for Plaintext to check the availability of Export Pass keys for Plaintext option for
the following Bitstream files.
Master file to program at trusted facility – Click to include:
• Fabric and /or eNVM.
• Export Pass Keys in Plaintext into the bitstream files to be programmed at a trusted facility.

Note: Notes
1. Custom Security is always programmed in the Master file.

File encrypted with UEK1 to program at untrusted facility or for Broadcast field update – Click to include:
• Fabric and /or eNVM.
• Export Pass Keys in Plaintext into the bitstream files to be programmed.

File encrypted with UEK2 to program at untrusted facility or for Broadcast field update - Click to include:
• Fabric and /or eNVM.
• Export Pass Keys in Plaintext into the bitstream files to be programmed.

File encrypted with UEK3 to program at untrusted facility or for Broadcast field update - Click to include:
• Fabric and/or eNVM into the bitsream files to be programmed.
• Export Pass Keys in Plaintext into the bitstream files to be programmed.

Note: If eNVM/Fabric is One Time Programmable, it is precluded from a bitstream encrypted with UEK1/2/3.
Note: UEK3 is only available for M2S060, M2GL060, M2S090, M2GL090, M2S150 and M2GL150 devices. See
the SmartFusion2 SoC FPGA and IGLOO2 FPGA Security Best Practices User Guide for more details.

RTG4
Programming job file
Name - Sets the name of your proogramming job file. All names use a prefix as shown in the software.
Location - Location of the file to be exported.
Existing programming job files - Lists existing programming job files at the selected location.
The configured device chain with bitstream files and programmer settings will be included in the programming job.

Note: Security Programming is not supported for RTG4.

http://www.microsemi.com/document-portal/doc_download/132037-ug0443-smartfusion2-and-igloo2-fpga-security-best-practices-user-guide

 Libero SoC Design Flow User Guide

 218

Figure 142 · Export FlashPro Express Job Dialog Box - RTG4

Note: If you have selected the One-time programmable (OTP) option in Configure Programming Options,
you will see the following dialog:

Click Yes to continue or No to cancel.

 Libero SoC Design Flow User Guide

 219

Prepare Design for Production Programming in FlashPro Express
After you have exported a programming job you can handoff this programming job to the FlashPro Express tool
for production programming. To do so:
In FlashPro Express, from the File menu choose Create Job Project From a Programming Job. You will be
prompted to specify the Programming Job location that you just exported from Libero and the location of where to
store the Job Project. The Job Project name automatically uses the programming job name and cannot be
changed. Click OK and a new Job Project will be created and opened for production programming.

Export Job Manager Data - SmartFusion2, IGLOO2
Job Manager is Microsemi’s HSM-based security software for job management.
As a part of the SPPS flow, the Export Job Manager Data dialog box allows a design engineer (user) to export
Libero design data to Job Manager. Exported data is used by an operation engineer (OE) using Job Manager to
prepare the manufacturing process for HSM or non-HSM flow.
Job Manager Data export is only provided for SmartFusion2, IGLOO2 devices.

Figure 143 · Export Job Manager Data Dialog Box

Programming data file – export Job Data Container (JDC) file.
Name - All names use a prefix as shown in your software.
Location - Location of the file to be exported.
Existing programming job files - Lists any existing programming job files already in your project.
Include bitstream components - Lists the components of the design that can be saved to the file.

 Libero SoC Design Flow User Guide

 220

Export Pin Report
In the Design Flow window, expand Handoff Design for Production. Right-click Export Pin Report to export a
pin report.
The Export Pin Reports dialog box opens. Click Browse to navigate to a disk location where you want the pin
report to be saved to.
Check the checkbox to make your selections:
• Pin Report sorted by Port Name
• Pin Report sorted by Package Pin Name
• I/O Bank Report
• I/O Register Combining Report

The pin report lists the pins in your device sorted according to your preference: sort by Port Name or Sorted by
Package Pin Name. The pin report generates two files:
• <design>_pinrpt_name.rpt - Pin report sorted by name.
• <design>_pinrpt_number.rpt - Pin report sorted by pin number.

You must select at least one report.
Export Pin Report generates a Bank Report by default; the filename is <design>-bankrpt.rpt. Export Pin Report
also generates an I/O Register Combining Report listing the I/Os which have been combined into a Register for
betting timing performance.

Figure 144 · Export Pin Report Dialog Box

Export BSDL File
Double-click Export BSDL File (in the Libero SoC Design Flow window, Handoff Design for Production >
Export BSDL File) to generate the BSDL File report to your Design Report.
The BSDL file provides a standard file format for electronics testing using JTAG. It describes the boundary scan
device package, pin description and boundary scan cell of the input and output pins. BSDL models are available
as downloads for many Microsemi SoC devices.
See the Microsemi website for more information on BSDL Models.

Export IBIS Model
Double-click Export IBIS Model (in the Libero SoC Design Flow window, Handoff Design for Production >
Export IBIS Model) to generate the IBIS Model report.

https://www.microsemi.com/products/fpga-soc/design-resources/bsdl-models

 Libero SoC Design Flow User Guide

 221

The IBIS model report provides an industry-standard file format for recording parameters like driver output
impedance, rise/fall time, and input loading, which may then be used by software applications such as Signal
Integrity tools or IBIS simulators.
The exported IBIS file has the file extension *.ibs (named <root>.ibs) and is displayed in the Files tab.
For SmartFusion2, IGOO2 and RTG4 devices, the IBIS report *.ibs file exported from Libero SoC supports the
Model Selector keyword as specified in the IBIS 5.0 Specifications.
In the [Pin] section of the IBIS *.ibs file, listed under the model_name are the Model Selector tag. The IBIS *.ibs
file has a [Model Selector] section that describes the model selector and its list of models. The Model Selector tag
in the [Pin] section establishes the relationship between the pin and the [Model Selector].

Figure 145 · Model Selector *.ibs File

The advantage of Model Selector feature is that you can load the *.ibs file from Libero SoC into Signal Integrity
applications or IBIS simulators and switch the I/O to different models for individual I/Os on-the-fly in the tools.
There is no need to go back to the Libero SoC I/O Attribute Editor to change the I/O settings and run Compile to
switch to different I/O settings.
See the Microsemi Website for more information on IBIS Models.

https://ibis.org/ver5.0
https://www.microsemi.com/products/fpga-soc/design-resources/ibis-models

 Libero SoC Design Flow User Guide

 222

Handoff Design for Firmware Development

Software IDE Integration
Libero SoC simplifies the task of transitioning between designing your FPGA to developing your embedded
firmware.
Libero SoC manages the firmware for your FPGA hardware design, including:
• Firmware hardware abstraction layers required for your processor
• Firmware drivers for the processor peripherals that you use in your FPGA design.
• Sample application projects are available for drivers that illustrate the proper usage of the APIs

You can see which firmware drivers Libero SoC has found to be compatible with your design by opening the
Firmware View. From this view, you can change the configuration of your firmware, change to a different version,
read driver documentation, and generate any sample projects for each driver.
Libero SoC manages the integration of your firmware with your preferred Software Development Environment,
including SoftConsole, Keil, and IAR Embedded Workbench. The projects and workspaces for your selected
development environment are automatically generated with the proper settings and flags so that you can
immediately begin writing your application.

See Also
Exporting Firmware and the Software IDE Workspace
Running Libero SoC from your Software Tool Chain
View/Configure Firmware Cores

Export Firmware – SmartFusion2
When your design has been completed, you can export the design firmware configuration using the Export
Firmware tool. The firmware configuration contains:
• Register configuration files for MSS, FDDR, and SERDES blocks instantiated in your design. This

information must be compiled with your application along with the SmartFusion2 CMSIS firmware core to
have proper Peripheral Initialization when the Cortex-M3 boots.

• Firmware drivers compatible with the hard and soft peripherals instantiated in your design.
To export your design firmware configuration, double-click Export Firmware in the Libero SoC Design Flow
window under Handoff Design for Firmware Development. The Export Firmware dialog box opens.

 Libero SoC Design Flow User Guide

 223

Figure 146 · Export Firmware Dialog Box

Location: Provide the location where you want the firmware configuration files to be exported. When you export
the firmware, Libero SoC creates a Firmware folder to store all the drivers and register configuration files.

Software IDE: <selected Software Tool Chain>
Libero SoC creates the firmware project for the IDE tool of your choice and creates the SoftConsole/IAR/Keil (per
your choice) folder to store the projects.
Export hardware configuration and firmware drivers: This option is checked by default. Beginning in Libero
SoC v11.7, the Export hardware configuration option exports register configuration files for MSS, FDDR and
SERDES blocks instantiated in your design. CMSIS and other firmware drivers must be generated using the
standalone Firmware Catalog executable. These options are available to support SoftConsole 4.0 flow.
Create software project including hardware configuration and firmware drivers
To enable you to manage your firmware project separately from Libero’s automatically generated firmware data,
the created software workspace contains two software projects:
hardware_platform - This project contains all the firmware and hardware abstraction layers that correspond to
your hardware design. This project is configured as a library and is referenced by your application project. The
content of this folder is overwritten every time you export your firmware project.
application - This project produces a program and results in the binary file. It links with the hardware_platform
project. This folder does not get overwritten when you re-export your firmware. This is where you can write your
own main.c and other application code, as well as add other user drivers and files. You can reference header (*.h)
files of any hardware peripherals in the hardware_platform project – include paths are automatically set up for
you.
To build your workspace, make sure you have both the hardware_platform and _application projects set to the
same compile target (Release or Debug) and build both projects.
To open your exported firmware projects you must invoke your third-party development tool (SoftConsole, Keil or
IAR) outside Libero SoC and point it to the exported firmware workspace.
Note: You must re-export firmware if you make any changes to your design

 TCL Command
export_firmware \

-export_dir {D:\Designs\software_drivers} \

-create_project 1 \

-software_ide {Keil}

 Libero SoC Design Flow User Guide

 224

Version Supported
Libero SoC v11.7 and later supports the following versions of third-party development tools:
• SoftConsole v4.0
• SoftConsole v3.4
• IAR EWARM
• Keil

 Libero SoC Design Flow User Guide

 225

Export SmartDebug Data (Libero SoC)

Export SmartDebug Data allows the export of SmartDebug Data from Libero to be handed off to the standalone
SmartDebug environment.
In the Libero SoC Design Flow window, expand Handoff Design for Debugging, right-click Export SmartDebug
Data and click Export to open the Export SmartDebug Data dialog box. Specify the design debug data file
(*.ddc)) to be exported. This file is also used as one of the ways to create a standalone SmartDebug project.
See the following figure for an example.

 Libero SoC Design Flow User Guide

 226

Figure 147 · Export SmartDebug Data Dialog Box

Note: SmartDebug data can be exported without connecting the hardware.
Design debug data file (*.ddc)
Name
The name of the design.
Location
The location of the exported debug file. By default, the *.ddc file is exported to the
<project_location>/designer/<design>/export folder and has the *.ddc file extension.
Existing Design Debug Data Files
The existing *.ddc file, if any, in the export folder.

 Libero SoC Design Flow User Guide

 227

SmartDebug data can be exported after you run Generate FPGA Array Data for the design in the Libero Design
Flow. You can also directly export SmartDebug data after running Synthesize on the design. Other tools, such as
Place and Route, Generate FPGA Array Data, and so forth) are implicitly run before the Export SmartDebug Data
dialog box is displayed.
Include design components
A DDC file can contain the following components:
• FPGA Array Probe Points – When checked, Libero SoC exports Live and Active probes information

(<design>_probe.db file) into the *.ddb container file.
• FPGA Array Memory Blocks – When checked, Libero SoC exports information about FPGA memories

(<design>_sii_block.db) into the *.ddb container file:
o names and addresses of the memory blocks instantiated by the design
o data formats selected by the user in the design

• sNVM – When checked, Libero SoC exports sNVM components.
• Security – This contains the security locks, keys, and security policy information needed for debug. This

may be default or custom security (<design>.spm file). It is hidden if security is not supported for the device;
for example, RTG4 devices.

• JTAG Chain (device chain information configured using Programming Connectivity and Interface in Libero)
– When checked, Libero SoC exports chain data including devices, their programming files if loaded, device
properties, and so on (<design>.pro file). If JTAG chain is uchecked, the default JTAG chain with Libero
design device only is added to the *.ddc file.

• Programmer Settings (<design>.pro file) – If Programmer Settings is unchecked, the default programmer
settings are added to the *.ddc file.

• Device I/O States During Programming (<design>.ios file) – This setting is used by some SmartDebug
features, for example, for programming eNVM. It is NOT used during device programming in SmartDebug;
programming files used to program devices already have I/O states data.

In addition, you can include bitstream file information, which can be used for programming the device in
standalone SmartDebug.
Include Bitstream file to program at trusted facility
• Bitstream components: Fabric (SmartFusion2, IGLOO2, and RTG4 devices)
• Bitstream components: eNVM (SmartFusion2 and IGLOO2 devices only)

The default location of the DDC file is: <Libero_Project_directory>/designer/<design_name>/export.
The DDC file can be exported to any user-specified location if the location has read and write permission.

Note: If you have selected the One-time programmable (OTP) option in Configure Programming Options,
you will see the following dialog:

 Libero SoC Design Flow User Guide

 228

Click Yes to continue or No to cancel.

 Libero SoC Design Flow User Guide

 229

References

Catalog

In the Libero SoC, from the View menu choose Windows > Catalog.
The Catalog displays a list of available cores, busses and macros (see image below).

Figure 148 · Libero SoC Catalog

From the Catalog, you can create a component from the list of available cores, add a processor or peripheral, add
a bus interface to your SmartDesign component, instantiate simulation cores or add a macro (Arithmetic, Basic
Block, etc.) to your SmartDesign component.
 Double-click a core to configure it and add it to your design. Configured cores are added to your list of
Components/Modules in the Design Explorer.
Click the Simulation Mode checkbox to instantiate simulation cores in your SmartDesign Testbench. Simulation
cores are basic cores that are useful for stimulus, such as driving clocks, resets, and pulses.

Viewing Cores in the Catalog
The font indicates the status of the core:
• Plain text - In vault and available for use
• Asterisk after name (*) - Newer version of the core (VLN) available for download
• Italics - Core is available for download but not in your vault
• Strikethrough - core is not valid for this version of Libero SoC

The colored icons indicate the license status. Blank means that the core is not license protected in any way.
Colored icons mean that the core is license protected, with the following meanings:

Green Key - Fully licensed; supports the entire design flow.

 Libero SoC Design Flow User Guide

 230

Yellow Key - Has a limited or evaluation license only. Precompiled simulation libraries are provided,
enabling the core to be instantiated and simulated within Libero SoC. Using the Evaluation version of the
core it is possible to create and simulate the complete design in which the core is being included. The
design is not synthesizable (RTL code is not provided). No license feature in the license.dat file is needed
to run the core in evaluation mode.You can purchase a license to generate an obfuscated or RTL netlist.
Yellow Key with Red Circle - License is protected; you are not licensed to use this core.

Right-click any item in the Catalog and choose Show Details for a short summary of the core specifications.
Choose Open Documentation for more information on the Core. Right-click and choose Configure Core to open
the core generator.
Click the Name column heading to sort the cores alphabetically.
You can filter the cores according to the data in the Name and Description fields. Type the data into the filter field
to view the cores that match the filter. You may find it helpful to set the Display setting in the Catalog Options to
List cores alphabetically when using the filters to search for cores. By default the filter contains a beginning and
ending ‘*’, so if you type ‘controller’ you get all cores with controller in the core name (case insensitive search) or
in the core description. For example, to list all the Accumulator cores, in the filter field type:

accu

Catalog Options

Click the Options button (or the drop-down arrow next to it) to import a core, reload the Catalog, or modify the
Catalog Options.
You may want to import a core from a file when:
• You do not have access to the internet and cannot download the core, or
• A core is not complete and has not been posted to the web (you have an evaluation core)

Manually Downloading MegaVaults and Individual CPZ files
When Libero is used in an environment without automatic access to Microsemi's online IP repositories via the
Internet; see this article explaining how to download MegaVaults and individual CPZ files.

Catalog Options Dialog Box

The Catalog Options dialog box (as shown below) enables you to customize your Catalog. You can add a
repository, set the location of your vault, and change the View Settings for the Catalog. To display this dialog box,
click the Catalog Options button .

Figure 149 · Catalog Display Options Dialog Box

Vault/Repositories Settings

Repositories

A repository is a location on the web that contains cores that can be included in your design.

https://soc.microsemi.com/kb/article.aspx?id=SL5608

 Libero SoC Design Flow User Guide

 231

The Catalog Options dialog box enables you to specify which repositories you want to display in your Vault. The
Vault displays a list of cores from all your repositories, and the Catalog displays all the cores in your Vault.
The default repository cannot be permanently deleted; it is restored each time you open the Manage Repositories
dialog box.
Any cores stored in the repository are listed by name in your Vault and Catalog; repository cores displayed in your
Catalog can be filtered like any other core.
Type in the address and click the Add button to add new repositories. Click the Remove button to remove a
repository (and its contents) from your Vault and Catalog. Removing a repository from the list removes the
repository contents from your Vault.

Vault location

Use this option to choose a new vault location on your local network. Enter the full domain pathname in the Select
new vault location field. Use the format:

\\server\share

and the cores in your Vault will be listed in the Catalog.
Set ENV variable to set vault location - In addition to setting the vault location using the Catalog dialog box, you
can set the vault location using the environment variable MSCC_IDE_VAULT_LOCATION. Setting the vault
through the environment variable takes precedence over all other options to set vault location.
To set the vault location on Linux, type the following command:

setenv MSCC_IDE_VAULT_LOCATION /home/temp_dir

To set the vault location on Windows:
Add a new environment variable MSCC_IDE_VAULT_LOCATION in System Properties and specify your vault
location.

Read only vault

In read only Mega Vault mode, you cannot download, add, or remove cores. However, you can configure and
generate cores by creating a temporary extract location to extract the core. This temporary extract location can be
set by setting the environment variable MSCC_IDE_VAULT_EXTRACT_LOCATION. By setting this environment
variable, your configured cores are retained across sessions.
To set the extract location on Linux, type the following command:

setenv MSCC_IDE_VAULT_EXTRACT_LOCATION /home/vault_extract

To set the extract vault location on Windows:
Add a new environment variable MSCC_IDE_VAULT_EXTRACT_LOCATION in System Properties and specify
your extract location.
If you do not specify the extract location, a temporary location will be created by Libero and it will be accessed
only while the current session is active. If the session is no longer active, the temporary extract location will be
cleaned up by Libero. If you specify the extract location, it will be available for any instance of libero on that
machine, and it is your responsibility to clean up the extract location.

View Settings

Display

Group cores by function - Displays a list of cores, sorted by function. Click any function to expand the list and
view specific cores.
List cores alphabetically - Displays an expanded list of all cores, sorted alphabetically. Double click a core to
configure it. This view is often the best option if you are using the filters to customize your display.
Show core version - Shows/hides the core version.

 Libero SoC Design Flow User Guide

 232

Filters

Filter field - Type text in the Filter Field to display only cores that match the text in your filter. For example, to
view cores that include 'sub' in the name, set the Filter Field to Name and type sub.
Display only latest version of a core - Shows/hides older versions of cores; this feature is useful if you are
designing with an older family and wish to use an older core.
Show all local and remote cores - Displays all cores in your Catalog.
Show local cores only - Displays only the cores in your local vault in your Catalog; omits any remote cores.
Show remote cores that are not in my vault - Displays remote cores that have not been added to your vault in
your Catalog.

Changing Output Port Capacitance

Output propagation delay is affected by both the capacitive loading on the board and the I/O standard. The I/O
Attribute Editor in ChipPlanner provides a mechanism for setting the expected capacitance to improve the
propagation delay model. SmartTime automatically uses the modified delay model for delay calculations.
To change the output port capacitance and view the effect of this change in SmartTime Timing Analyzer, refer to
the following example. The figure below shows the delay from DFN1 to output port Q. It shows a delay of 6.603 ns
based on the default loading of 5 pF.

Figure 150 · Maximum Delay Analysis View

If your board has output capacitance of 15 pf on Q, you must perform the following steps to update the timing
number:
1. Open the I/O Attribute Editor and change the output load to 15 pf.

Figure 151 · I/O Attribute Editor View

 Libero SoC Design Flow User Guide

 233

2. Select File > Save.
3. Select File > Close.
4. Open the SmartTime Timing Analyzer.

You can see that the Clock to Output delay changed to 5.952 ns.

Configure Bitstream

Right-click Generate Bitstream in the Design Flow window and choose Configure Options to open the
Configure Bitstream dialog box.
The Configure Bitstream dialog box enables you to select which components you wish to program. Only features
that have been added to your design are available for programming. For example, you cannot select eNVM for
programming if you do not have eNVM in your design.

Figure 152 · Configure Bitstream Dialog Box - SmartFusion2 and IGLOO2

Selected components - Updates the components you select, regardless of whether or not they have changed
since your last programming.

Note: The Custom security and eNVM components are not available for RTG4 devices.

Importing Source Files – Copying Files Locally

Designer in Libero SoC cannot import files from outside your project without copying them to your local project
folder. You may import source files from other locations, but they are always copied to your local folder. Designer
in Libero SoC always audits the local file after you import; it does not audit the original file.

 Libero SoC Design Flow User Guide

 234

When the Project Manager asks you if you want to copy files "locally", it means 'copy the files to your local project
folder'. If you do not wish to copy the files to your local project folder, you cannot import them. Your local project
folder contains files related to your Libero SoC project.
Files copied to your local folders are copied directly into their relevant directory: netlists are copied to the
synthesis folder; source files are copied to hdl folder and constraint files to constraint folder, etc. The files are also
added to the Libero SoC project; they appear in the Files tab.

Create Clock Constraint Dialog Box

Use this dialog box to enter a clock constraint setting.
It displays a typical clock waveform with its associated clock information. You can enter or modify this information,
and save the final settings as long as the constraint information is consistent and defines the clock waveform
completely. The tool displays errors and warnings if information is missing or incorrect.
To open the Create Clock Constraint dialog box (shown below) from the SmartTime Constraints Editor, choose
Constraints > Clock.

Figure 153 · Create Clock Constraint Dialog Box

Clock Source
Enables you to choose a pin from your design to use as the clock source.
The drop-down list is populated with all explicit clocks. You can also select the Browse button to access all
potential clocks. The Browse button displays the Select Source Pins for Clock Constraint Dialog Box.

Clock Name
Specifies the name of the clock constraint. This field is required for virtual clocks when no clock source is
provided.

Period
When you edit the period, the tool automatically updates the frequency value.
The period must be a positive real number. Accuracy is up to 3 decimal places.

Frequency
When you edit the frequency, the tool automatically updates the period value.
The frequency must be a positive real number. Accuracy is up to 3 decimal places.

 Libero SoC Design Flow User Guide

 235

Starting Clock Edge Selector
Click the Up or Down arrow to use the rising or falling edge as the starting edge for the created clock.

Offset
Indicates the shift (in nanoseconds) of the first clock edge with respect to instant zero common to all clocks in the
design.
The offset value must be a positive real number. Accuracy is up to 2 decimal places. Default value is 0.

Duty Cycle
This number specifies the percentage of the overall period that the clock pulse is high.
The duty cycle must be a positive real number. Accuracy is up to 4 decimal places. Default value is 50%.

Add this clock to existing one with same source
Check this box if you want to add a new clock constraint on the same source without overwriting the existing clock
constraint. The new clock constraint name must be different than the existing name. Otherwise, the new
constraint will overwrite the existing one even if you check this box.

Comment
Enables you to save a single line of text that describes the clock constraints purpose.

See Also
Specifying Clock Constraints

Create Generated Clock Constraint Dialog Box

Use this dialog box to specify generated clock constraint settings.
It displays a relationship between the clock source and its reference clock. You can enter or modify this
information, and save the final settings as long as the constraint information is consistent. The tool displays errors
and warnings if the information is missing or incorrect.
To open the Create Generated Clock Constraint dialog box (shown below) from the SmartTime Constraints
Editor, choose Constraints > Generated Clock.

 Libero SoC Design Flow User Guide

 236

Figure 154 · Create Generated Clock Constraint

Clock Pin
Enables you to choose a pin from your design to use as a generated clock source.
The drop-down list is populated with all unconstrained explicit clocks. You can also select the Browse button to
access all potential clocks and pins from the clock network. The Browse button displays the Select Generated
Clock Source dialog box.

Reference Pin
Enables you to choose a pin from your design to use as a generated reference pin. You can select the Browse
button to access all the available reference pins. The Browse button displays the Select Generated Clock
Reference dialog box.

Generated Clock Name
Specifies the name of the Generated clock constraint. This field is required for virtual clocks when no clock source
is provided.

 Libero SoC Design Flow User Guide

 237

Generated Frequency
Specify the values to calculate the generated frequency: a multiplication factor and/or division factor (must be
positive integers) is applied to the reference clock to compute the generated clock.

Generated Clock Edges
Frequency of the generated clock can also be specified by selecting the Generated Clock Edges option. Specify
the integer values that represent the edges from the source clock that form the edges of the generated clock.
Three values must be specified to generate the clock. If you specify less than three, a tool tip indicates an error.
The following example shows how to specify the clock edges.

If LSB is the generated clock from CLK clock source, the edge values must be [1 3 5].
If MSB is the generated clock from CLK clock source, the edge values must be [1 5 9].

Edge Shift
Specify a list of three floating point numbers that represents the amount of shift, in library time units, that the
specified edges are to undergo to yield the final generated clock waveform. These floating point values can be
positive or negative. Positive value indicates a shift later in time, while negative indicates a shift earlier in time.
For example: An edge shift of {1 1 1} on the LSB generated clock, would shift each derived edge by 1 time unit.
To create a 200MHz clock from a 100MHz clock, use edge { 1 2 3} and edge shift {0 -2.5 -5.0}

Generated Waveform
Specify whether the generated waveform is the same or inverted with respect to the reference waveform. Click
OK.

Phase
This field is primarily used to report the information captured from the CCC configuration process, and when
constraint is auto-generated. Meaningful phase values are: 0, 45, 90, 135, 180, 225, 270, and 315. This field is
used to report the information captured from the CCC configuration process, and when the constraint is auto-
generated.

PLL Output
This field refers to the CCC GL0/1/2/3 output that is fed back to the PLL (in the CCC). This field is primarily used
to report the information captured from the CCC configuration process, and when constraint is auto-generated.

 Libero SoC Design Flow User Guide

 238

PLL Feedback
This field refers to the manner in which the GL/0/1/2/3 output signal of the CCC is connected to the PLL's FBCLK
input. This field is primarily used to report the information captured from the CCC configuration process, and when
constraint is auto-generated.

Add Clock to Existing Clock
Specifies that the generated clock constraint is a new clock constraint in addition to the existing one at the same
source. The name of the clock constraint should be different from the existing clock constraint. When this option is
selected, master clock must be specified.

Master Clock
Specifies the master clock used for the generated clock when multiple clocks fan into the master pin. It can be
selected from the drop-down menu. This option is used in conjunction with the add option of the generated clock.

Comment
Enter a single line of text that describes the generated clock constraints purpose.

See Also
create_generated_clock (SDC)
Specifying Generated Clock Constraints
Select Generated Clock Source

Design Hierarchy in the Design Explorer

The Design Hierarchy tab displays a hierarchical representation of the design based on the source files in the
project. It also displays elaborated hierarchy constructed by propagating correct values for parameters and
generics. The software continuously analyzes the source files and updates the content. The Design Hierarchy tab
(see figure below) displays the structure of the modules and components as they relate to each other along with
parameter/generic names and its values on the tool tip for which the module is instantiated. It also displays
architecture name for a given entity and Configuration for VHDL modules.

 Libero SoC Design Flow User Guide

 239

Figure 155 · Design Hierarchy

A module can have multiple elaborations depending on the different parameters/generics used in the instantiation
of the module and all of these elaborated modules will be shown in the Design Hierarchy. The parameterized
instantiated module will be shown as
elab<num>:<modulename>
Modules are instantiated with their actual names in the SmartDesign. If a module with elaborated name in the
Design Hierarchy has to be instantiated in the SmartDesign, an instance of the original module is created in the
SmartDesign. The following figure shows the design hierarchy with elaborated modules.

 Libero SoC Design Flow User Guide

 240

Figure 156 · Design Hierarchy with Elaborated modules(Verilog)

 Libero SoC Design Flow User Guide

 241

Figure 157 · Design Hierarchy with Elaborated modules(VHDL)

Modules which are not part of the elaboration will be shown in the complete hierarchy but they remain grayed out.
When you create a core from a module, all the elaborated modules of that module will be shown as HDL+ core
modules. You can get the parameter value of an elaborated module by selecting Show Module parameters on
the right click menu of the elaborated module.
Note: A tool tip on each module shows all the parameters with their values for the instantiated module.
Note: Synthesis output will be the same for different elaborations of the same module i.e. elab0:module1 and
elab1:module1 will have the same synthesis output. When one of the elaborated module is set as root, all the
elaborations will be highlighted in the Design Hierarchy as shown in the below figure.

 Libero SoC Design Flow User Guide

 242

Figure 158 · Design Hierarchy when one of the elaborated module is set as root

You can change the display mode of the Design Hierarchy by selecting Components or Modules from the Show
drop-down list. The components view displays the entire design hierarchy; the modules view displays only
schematic and HDL modules.
You can build the Design Hierarchy and Simulation Hierarchy by clicking the Build Hierarchy button.

A yellow icon indicates that the Design Hierarchy is out of date (invalidated). Any change to
the design sources/stimuli invalidates the Design Hierarchy/Stimulus Hierarchy. Click the Build Hierarchy button
to rebuild the Design Hierarchy.
The file name (the file that defines the block) appears next to the block name in parentheses.
To view the location of a component, right-click and choose Properties. The Properties dialog box displays the
path name, created date, and last modified date.
All integrated source editors are linked with the SoC software. If a source is modified and the modification
changes the hierarchy of the design, the Build Hierarchy automatically updates to reflect the change.
If you want to update the Design Hierarchy, from the View menu, choose Refresh Design Hierarchy.

 Libero SoC Design Flow User Guide

 243

To open a component:
Double-click a component in the Design Hierarchy to open it. Depending on the block type and design state,
several possible options are available from the right-click menu. You can instantiate a component from the Design
Hierarchy to the SmartDesign Canvas. See the SmartDesign User Guide for more information.
Icons in the Hierarchy indicate the type of component and the state, as shown in the table below.

Table 5 · Design Hierarchy Icons

Icon Description

 SmartDesign component

 SmartDesign component with HDL netlist not generated

 IP core was instantiated into SmartDesign but the HDL netlist has not
been generated

Core

 Error during core validation

 Updated core available for download

 HDL netlist

Digest File

Users can verify which bitstream file was programmed onto their devices by running the VERIFY or
VERIFY_DIGEST actions on each device that was programmed. This is a costly and time-consuming process. To
speed up the verification process, digests are printed during bitstream generation and bitstream programming.
These digests can be compared to verify that all of the devices were programmed with the correct bitstream file.
The bitstream file is divided into three major component sections: FPGA fabric, eNVM, and Security. A valid
bitstream will contain a combination of any of the three primary bitstream components.

Use Case
When a customer creates a design in Libero and then exports the STAPL file (for FlashPro) or programming job
(for FlashPro Express), the digest of each of the primary components is printed in the Libero log window and
saved in a digest file under the export folder. The digest file is a text file containing the bitstream component name
with its corresponding digest. The name of the digest file will match the name of the STAPL/programming job
exported, and will be appended with a “.digest” extension.
The customer then sends the STAPL/programming job to a production programming house. Now, when the
devices are programmed, the digest of each of the primary components is printed in the log window. The
production programming house saves the log files and sends the devices along with log files back to the
customer. The customer can then verify that the correct design was programmed on the device by matching the
digests in the log file with that in the *.digest file under the Libero export folder.

Example Using STAPL File

If a STAPL file is exported, the digests will be printed in the log window, as shown in the example below.
Libero log:

Opened 'D:/flashpro_files/m2s005_digest1/designer/a1_MSS/a1_MSS_fp/a1_MSS.pro'

The 'open_project' command succeeded.

PDB file

https://coredocs.s3.amazonaws.com/Libero/pf_2_2_0/Tool/smartdesign_ug.pdf

 Libero SoC Design Flow User Guide

 244

'D:\flashpro_files\m2s005_digest1\designer\a1_MSS\4a8552f8-57ee-4baa-97ee-
2baa57ee2baa.pdb' has

been loaded successfully.

DESIGN : a1_MSS; CHECKSUM : DE15; PDB_VERSION : 1.9

The 'load_programming_data' command succeeded.

Sucessfully exported STAPL file:

'D:\flashpro_files\m2s005_digest1\designer\a1_MSS\export\a1_MSS.stp'; file programs
Fabric

and eNVM.

Fabric component digest:

276fbefb0a18cc0de1d45efc84589745ee02fc2adbcc1259fbeb674094754014

eNVM component digest:

6b2c2353e25c5982643c32640ac16c581874c8950300135622c126ee22d8b1de

Finished: Thu Jan 22 12:37:32 2015 (Elapsed time 00:00:06)

The 'export_single_stapl' command succeeded.

The 'set_programming_file' command succeeded.

Project saved.

The 'save_project' command succeeded.

Project closed.

The export folder will contain the exported STAPL file along with digest file. In this example, there will be two files,
“a1_MSS.stp” and “a1_MSS_stp.digest”. The content of the a1_MSS_stp.digest file is shown below:

Fabric component digest: 276fbefb0a18cc0de1d45efc84589745ee02fc2adbcc1259fbeb674094754014

eNVM component digest: 6b2c2353e25c5982643c32640ac16c581874c8950300135622c126ee22d8b1de

When the device is programmed in the production programming house by loading the STAPL file in FlashPro, the
log will be as follows:

programmer '73207' : Scan Chain...

Warning: programmer '73207' : Vpump has been selected on programmer AND an externally
provided Vpump has also been detected. Using externally provided Vpump voltage source.

programmer '73207' : Check Chain...

programmer '73207' : Scan and Check Chain PASSED.

programmer '73207' : device 'M2S/M2GL005(S)' : Executing action PROGRAM

programmer '73207' : device 'M2S/M2GL005(S)' : Family: SmartFusion2

programmer '73207' : device 'M2S/M2GL005(S)' : Product: M2S005

programmer '73207' : device 'M2S/M2GL005(S)' : EXPORT ISC_ENABLE_RESULT[32] = 007c6b44

programmer '73207' : device 'M2S/M2GL005(S)' : EXPORT CRCERR: [1] = 0

programmer '73207' : device 'M2S/M2GL005(S)' : EXPORT EDCERR: [1] = 0

programmer '73207' : device 'M2S/M2GL005(S)' : TEMPGRADE: ROOM

programmer '73207' : device 'M2S/M2GL005(S)' : EXPORT VPPRANGE: [3] = 2

programmer '73207' : device 'M2S/M2GL005(S)' : VPPRANGE: HIGH

programmer '73207' : device 'M2S/M2GL005(S)' : EXPORT TEMP: [8] = 6b

programmer '73207' : device 'M2S/M2GL005(S)' : EXPORT VPP: [8] = 7c

programmer '73207' : device 'M2S/M2GL005(S)' : Programming FPGA Array and eNVM...

programmer '73207' : device 'M2S/M2GL005(S)' : EXPORT Fabric component digest[256] =
276fbefb0a18cc0de1d45efc84589745ee02fc2adbcc1259fbeb674094754014

programmer '73207' : device 'M2S/M2GL005(S)' : EXPORT eNVM component digest[256] =
6b2c2353e25c5982643c32640ac16c581874c8950300135622c126ee22d8b1de

programmer '73207' : device 'M2S/M2GL005(S)' :
===

programmer '73207' : device 'M2S/M2GL005(S)' : EXPORT DSN[128] =
c6e99c2d1a992f13cf8231c4be847acb

programmer '73207' : device 'M2S/M2GL005(S)' :
===

programmer '73207' : device 'M2S/M2GL005(S)' : Finished: Thu Jan 22 17:57:37 2015
(Elapsed time 00:00:19)

 Libero SoC Design Flow User Guide

 245

programmer '73207' : device 'M2S/M2GL005(S)' : Executing action PROGRAM PASSED.

programmer '73207' : Chain programming PASSED.

Chain Programming Finished: Thu Jan 22 17:57:37 2015 (Elapsed time 00:00:19)

o - o - o - o - o - o

The log file is saved and sent back to the customer, who can verify that the device was programmed with the
correct design by comparing the digests in the log file to the contents of the a1_MSS_stp.digest file.

Example Using Programming Job

If a programming job is exported, the digests will be printed in the log window, as shown in the example below.
Libero log:

Software Version: 11.5.1.5

Opened 'D:/flashpro_files/m2s005_digest1/designer/a1_MSS/a1_MSS_fp/a1_MSS.pro'

The 'open_project' command succeeded.

PDB file

'D:\flashpro_files\m2s005_digest1\designer\a1_MSS\83ce6816-1e56-496b-9e56-
d96b1e56d96b.pdb' has

been loaded successfully.

DESIGN : a1_MSS; CHECKSUM : DE15; PDB_VERSION : 1.9

The 'load_programming_data' command succeeded.

Sucessfully exported STAPL file:

'D:\flashpro_files\m2s005_digest1\designer\a1_MSS\export\a1_MSS_M2S005.stp'; file
programs

Fabric and eNVM.

Fabric component digest:

276fbefb0a18cc0de1d45efc84589745ee02fc2adbcc1259fbeb674094754014

eNVM component digest:

6b2c2353e25c5982643c32640ac16c581874c8950300135622c126ee22d8b1de

Finished: Wed Jan 28 16:48:56 2015 (Elapsed time 00:00:06)

The 'export_single_stapl' command succeeded.

The 'set_programming_file' command succeeded.

Project saved.

The 'save_project' command succeeded.

Project closed.

The export folder will contain the exported programming job along with digest file. In this example, there will be
two files, “a1_MSS.job” and “a1_MSS_job.digest” . The content of the a1_MSS_job.digest file is shown below:

Fabric component digest: 276fbefb0a18cc0de1d45efc84589745ee02fc2adbcc1259fbeb674094754014

eNVM component digest: 6b2c2353e25c5982643c32640ac16c581874c8950300135622c126ee22d8b1de

When the device is programmed in the production programming house by loading the programming job in
FlashPro Express, the log will be as follows:

programmer '73207' : Scan Chain...

Warning: programmer '73207' : Vpump has been selected on programmer AND an externally
provided Vpump has also been detected. Using externally provided Vpump voltage source.

programmer '73207' : Check Chain...

programmer '73207' : Scan and Check Chain PASSED.

programmer '73207' : device 'M2S/M2GL005(S)' : Executing action PROGRAM

programmer '73207' : device 'M2S/M2GL005(S)' : Family: SmartFusion2

programmer '73207' : device 'M2S/M2GL005(S)' : Product: M2S005

programmer '73207' : device 'M2S/M2GL005(S)' : EXPORT ISC_ENABLE_RESULT[32] = 007c6b44

programmer '73207' : device 'M2S/M2GL005(S)' : EXPORT CRCERR: [1] = 0

programmer '73207' : device 'M2S/M2GL005(S)' : EXPORT EDCERR: [1] = 0

programmer '73207' : device 'M2S/M2GL005(S)' : TEMPGRADE: ROOM

 Libero SoC Design Flow User Guide

 246

programmer '73207' : device 'M2S/M2GL005(S)' : EXPORT VPPRANGE: [3] = 2

programmer '73207' : device 'M2S/M2GL005(S)' : VPPRANGE: HIGH

programmer '73207' : device 'M2S/M2GL005(S)' : EXPORT TEMP: [8] = 6b

programmer '73207' : device 'M2S/M2GL005(S)' : EXPORT VPP: [8] = 7c

programmer '73207' : device 'M2S/M2GL005(S)' : Programming FPGA Array and eNVM...

programmer '73207' : device 'M2S/M2GL005(S)' : EXPORT Fabric component digest[256] =
276fbefb0a18cc0de1d45efc84589745ee02fc2adbcc1259fbeb674094754014

programmer '73207' : device 'M2S/M2GL005(S)' : EXPORT eNVM component digest[256] =
6b2c2353e25c5982643c32640ac16c581874c8950300135622c126ee22d8b1de

programmer '73207' : device 'M2S/M2GL005(S)' :
===

programmer '73207' : device 'M2S/M2GL005(S)' : EXPORT DSN[128] =
c6e99c2d1a992f13cf8231c4be847acb

programmer '73207' : device 'M2S/M2GL005(S)' :
===

programmer '73207' : device 'M2S/M2GL005(S)' : Finished: Thu Jan 22 17:57:37 2015
(Elapsed time 00:00:19)

programmer '73207' : device 'M2S/M2GL005(S)' : Executing action PROGRAM PASSED.

programmer '73207' : Chain programming PASSED.

Chain Programming Finished: Thu Jan 22 17:57:37 2015 (Elapsed time 00:00:19)

o - o - o - o - o - o

The log file is saved and sent back to the customer, who can verify that the device was programmed with the
correct design by comparing the digests in the log file above to the contents of the a1_MSS_job.digest file.

See Also
Export Bitstream - SmartFusion2, IGLOO2, and RTG4 Only

Editable Constraints Grid

The Constraints Editor enables you to add, edit and delete.

Figure 159 · Constraints Editor

To add a new constraint:
1. Select a constraint type from the constraint browser.
2. Enter the constraint values in the first row and click the green check mark to apply your changes. To cancel

the changes press the red cancel mark.

 Libero SoC Design Flow User Guide

 247

3. The new constraint is added to the Constraint List. The green syntax flag indicates that the constraint was
successfully checked.

To edit a constraint:
1. Select a constraint type from the constraint browser.
2. Select the constraint, edit the values and click the green check mark to apply your changes. To cancel the

changes press the red cancel mark. The green syntax flag indicates that the constraint was successfully
checked.

To delete a constraint:
1. Select a constraint type from the constraint browser.
2. Right-click the constraint you want to delete and choose Delete Constraint.

extended_run_lib

Note: This is not a Tcl command; it is a shell script that can be run from the command line.
The extended_run_lib Tcl script enables you to run the multiple pass layout in batch mode from a
command line.

$ACTEL_SW_DIR/bin/libero script:$ACTEL_SW_DIR/scripts/extended_run_lib.tcl
logfile:extended_run.log “script_args:-root path/designer/module_name [-n numPasses] [-
starting_seed_index numIndex] [-compare_criteria value] [-c clockName] [-analysis value] [-
slack_criteria value] [-stop_on_success] [-timing_driven|-standard] [-power_driven value]
[-placer_high_effort value]”

Note:
• There is no option to save the design files from all the passes. Only the (Timing or Power) result reports

from all the passes are saved.

Arguments
-root path/designer/module_name

The path to the root module located under the designer directory of the Libero project.

[-n numPasses]

Sets the number of passes to run. The default number of passes is 5.

[-starting_seed_index numIndex]

Indicates the specific index into the array of random seeds which is to be the starting point for the passes.
Value may range from 1 to 100. If not specified, the default behavior is to continue from the last seed
index that was used.

[-compare_criteria value]

Sets the criteria for comparing results between passes. The default value is set to frequency when the –c
option is given or timing constraints are absent. Otherwise, the default value is set to violations.

Value Description

frequency Use clock frequency as criteria for comparing the results between passes. This
option can be used in conjunction with the -c option (described below).

violations Use timing violations as criteria for comparing the results between passes. This
option can be used in conjunction with the -analysis, -slack_criteria and -
stop_on_success options (described below).

power Use total power as criteria for comparing the results between passes, where lowest
total power is the goal.

 Libero SoC Design Flow User Guide

 248

 Libero SoC Design Flow User Guide

 249

[-c clockName]

Applies only when the clock frequency comparison criteria is used. Specifies the particular clock that is to
be examined. If no clock is specified, then the slowest clock frequency in the design in a given pass is used.
The clock name should match with one of the Clock Domains in the Summary section of the Timing
report.

[-analysis value]

Applies only when the timing violations comparison criteria is used. Specifies the type of timing violations
(the slack) to examine. The following table shows the acceptable values for this argument:

Value Description

max Examines timing violations (slack) obtained from maximum delay analysis. This is
the default.

min Examines timing violations (slack) obtained from minimum delay analysis.

[-slack_criteria value]

Applies only when the timing violations comparison criteria is used. Specifies how to evaluate the timing
violations (slack). The type of timing violations (slack) is determined by the -analysis option. The
following table shows the acceptable values for this argument:

Value Description

worst Sets the timing violations criteria to Worst slack. For each pass obtains the most
amount of negative slack (or least amount of positive slack if all constraints are met)
from the timing violations report. The largest value out of all passes will determine
the best pass. This is the default.

tns Sets the timing violations criteria to Total Negative Slack (tns). For each pass it
obtains the sum of negative slack values from the first 100 paths from the timing
violations report. The largest value out of all passes determines the best pass. If no
negative slacks exist for a pass, then the worst slack is used to evaluate that pass.

[-stop_on_success]

Applies only when the timing violations comparison criteria is used. The type of timing violations (slack)
is determined by the -analysis option. Stops running the remaining passes if all timing constraints have
been met (when there are no negative slacks reported in the timing violations report).

[-timing_driven|-standard]

Sets layout mode to timing driven or standard (non-timing driven). The default is -timing_driven or the
mode used in the previous layout command.

[-power_driven value]

Enables or disables power-driven layout. The default is off or the mode used in the previous layout
command. The following table shows the acceptable values for this argument:

Value Description

off Does not run power-driven layout.

 Libero SoC Design Flow User Guide

 250

Value Description

on Enables power-driven layout.

[-placer_high_effort value]

Sets placer effort level. The default is off or the mode used in the previous layout command. The following
table shows the acceptable values for this argument:

Value Description

off Runs layout in regular effort.

on Activates high effort layout mode.

Return
A non-zero value will be returned on error.

Supported Families
SmartFusion2, IGLOO2, RTG4, PolarFire

Exceptions
None

See Also
Place and Route - SmartFusion2, IGLOO2, RTG4
Multiple Pass Layout - SmartFusion2, IGLOO2, RTG4

Files Tab and File Types

The Files tab displays all the files associated with your project, listed in the directories in which they appear.
Right-clicking a file in the Files tab provides a menu of available options specific to the file type. You can delete
files from the project and the disk by selecting Delete from the right-click menu.
You can instantiate a component by dragging the component to a SmartDesign Canvas or by selecting
Instantiate in SmartDesign from the right-click menu.
You can configure a component by double-clicking the component or by selecting Open Component from the
right-click menu.

File Types
When you create a new project in the Libero SoC it automatically creates new directories and project files. Your
project directory contains all of your 'local' project files. If you import files from outside your current project, the
files must be copied into your local project folder. (The Project Manager enables you to manage your files as you
import them.)
Depending on your project preferences and the version of Libero SoC you installed, the software creates
directories for your project.
The top level directory (<project_name>) contains your PRJ file; only one PRJ file is enabled for each Libero SoC
project.
component directory - Stores your SmartDesign components (SDB and CXF files) for your Libero SoC project.
constraint directory - All your constraint files (SDC, PDC)
designer directory - *_ba.sdf, *_ba.v(hd), STP, PRB (for Silicon Explorer), TCL (used to run designer),
designer.log (logfile)

 Libero SoC Design Flow User Guide

 251

hdl directory - all hdl sources. *.vhd if VHDL, *.v and *.h if Verilog, *.sv if SystemVerilog
simulation directory - meminit.dat, modelsim.ini files
smartgen directory - GEN files and LOG files from generated cores
stimulus directory - BTIM and VHD stimulus files
synthesis directory - *.edn, *_syn.prj (Synplify log file), *.srr (Synplify logfile), *.tcl (used to run synthesis) and
many other files generated by the tools (not managed by Libero SoC)
tooldata directory - includes the log file for your project with device details.

Importing Files

Anything that describes your design, or is needed to program the device, is a project source. These may include
schematics, HDL files, simulation files, testbenches, etc. Import these source files.

To import a file:
1. From the File menu, choose Import Files.
2. In Files of type, choose the file type.
3. In Look in, navigate to the drive/folder where the file is located.
4. Select the file to import and click Open.

Note: You cannot import a Verilog File into a VHDL project and vice versa.

File Types for Import

File Type File Extension

Behavioral and Structural VHDL; VHDL Package *.vhd, *.vhdl

Design Block Core *.gen

Verilog Include *.h

Behavioral and Structural Verilog *.v, *.sv

Netlist Verilog *.vm

Stimulus *.vhd, * .vhdl,
*.v, *.sv

EDIF Netlist *.edn

Memory file *.mem

Components (Designer Blocks, Synplify DSP) *.cxf

Layout Error Message: layoutg4DesignHard

This design is very difficult to place, and high-effort techniques were required to make it fit. This may lead to
increased layout runtime and diminished timing performance.
This message typically appears in designs with high utilization -- a very full design, or a design with region
constraints which are, themselves, very full. It can also occur in designs with moderate utilization but with
numerous, long carry chains.
No immediate action is required on the user's part. However, if this notice is observed during Layout, the resultant
performance of the design and the runtime of the Layout tools may not be optimal, and there is a strong possibility

 Libero SoC Design Flow User Guide

 252

that reducing the size of the design, or relaxing region and floorplanning constraints, will help to improve timing
closure and runtime.

Layout Error Message: layoutg4NoValidPlacement

This is a generic error produced by the placer when it is unable to place a design. The most common cause for
this failure is that the placer was unable to find a solution which could fit the design into the chip, either because
the design is close to maximum utilization, or logic cannot be fit into user-defined region constraints.
If Libero is unable to find a legal placement, a list of unplaced cells will be provided in the log. The cells in this list
may not be the cause of the placement problem; it is quite possible that some other constrained block of logic
which was placed first and now prohibits further placement. However, starting with the unplaced cell list is the
easiest and most likely course:
• The simplest potential solution is to remove all placement constraints of the unplaced cells, and re-run Place

& Route.
However, the cells in this list may not be the cause of the placement problem; it is quite possible that some other
constrained block of logic which was placed first and now prohibits further placement. If removing the placement
constraints on the unplaced cells does not succeed:
• Remove all region constraints and re-run Place & Route. Some designers make it a practice to put all their

region constraints in a single, separate PDC file; in which case they need only disable that file.
• If this Place & Route re-run still fails, there may be wider issues with the design's size and

complexity that cannot be addressed by changes to P&R options.
• If the unconstrained Place & Route re-run succeeds, then the user should add back constraints a

few regions at a time in order of "simplicity". Usually, big regions with lots of free space are
"simpler" for the placer, whereas tall/narrow regions with high utilization are "harder". Re-run Place
& Route with each constraint restoration and repeat the process until the failing region(s) is
identified.

Depending on requirements, the failing region may be handled by removing or changing it's
constraints, or revising its design to use less resources.

The user may also re-run the Placer in high-effort mode. Applying high-effort mode to a design which is very full
can incur additional runtime and may produce a placement solution which may not meet tight timing constraints,
owing to the fact that the placer will aggressively attempt to fit the design. In practice, customers are encouraged
to apply the previous suggestions first; and utilize high-effort mode only when other approaches have been
exhausted.

list_clock_groups

This Tcl command lists all existing clock groups in the design.

list_clock_groups

Arguments
None

Supported Families
SmartFusion2
IGLOO2
RTG4

Example
list_clock_groups

See Also
set_clock_groups

 Libero SoC Design Flow User Guide

 253

remove_clock_groups

Project Manager - Cores Dialog Box (Advanced Download Mode)

This dialog box (shown below) enables you to download cores from a web repository into a Vault.
A Vault is a local directory (either local to your machine or on the local network) that contains cores downloaded
from one or more repositories. A repository is a location on the web that contains cores that can be included in
your design.
The Catalog displays all the cores in your Vault.

Figure 160 · Project Manager - Cores Dialog Box

Display only the latest version of a core is checked by default. This option, if checked, shows the latest
versions of cores that are not in the Vault , and also filters out any duplicate cores that have the same Vendor,
Library, and Name, with an earlier version number.
If the checkbox is de-selected the dialog box displays all cores, including those already loaded into the Vault. The
status column indicates if a core has already been loaded.
Use the Filter to find any string that exists either in the core name or the Core Description. By default the filter
contains a beginning and ending ‘*’, so if you type ‘controller’ you get all cores with controller in the core name
(case insensitive search) or in the core description.
The colored icons indicate the license status. Blank means that the core is not license protected in any way.
Colored icons means that the core is license protected, with the following meanings:
• Green Key - Fully licensed; supports the entire design flow.
• Yellow Key - Has a limited or evaluation license only. Precompiled simulation libraries are provided,

enabling the core to be instantiated and simulated within the Microsemi Libero SoC Using the Evaluation
version of the core it is possible to create and simulate the complete design in which the core is being
included. The design is not synthesizable (RTL code is not provided). No license feature in the license.dat
file is needed to run the core in evaluation mode. You can purchase a license to generate an obfuscated or
RTL netlist.

• Yellow Key with Red Circle - License is protected; you are not licensed to use this core.
Stop Downloads - Interrupts the download for any cores being added to your Vault.

 Libero SoC Design Flow User Guide

 254

 Project Settings Dialog Box

The Project Settings dialog box enables you to modify your Device, HDL, and Design Flow settings and your
Simulation Options. In Libero SoC, from the Project menu, click Project Settings.
The following figure shows an example of the Project Settings dialog box.

Figure 161 · Project Settings Dialog Box

Device Selection
Sets the device Family, Die, and Package for your project. See the New Project Creation Wizard - Device
Selection page for a detailed description of the options.

Device Settings
Reserve Pins for Probes (SmartFusion2, IGLOO2, and RTG4 only) - Reserve your pins for probing if you
intend to debug using SmartDebug.
Default I/O Technology - Sets all your I/Os to a default value. You can change the values for individual I/Os in
the I/O Attributes Editor.
Enable Single Event Transient mitigation (RTG4 only) - Controls the mitigation of Single Event Transient
(SET) in the FPGA fabric. When this box is checked, SET filters are turned on globally (including URAM, LSRAM,
MACC, I/O FF, Regular FF, DDR_IN, DDR_OUT) to help mitigate radiation-induced transients. By default, this
box is unchecked.
PLL Supply Voltage (V) (SmartFusion2, IGLOO2 only) - Sets the voltage for the power supply that you plan to
connect to all the PLLs in your design, such as MDDR, FDDR, SERDES, and FCCC. Select either 2.5V or 3.3V.

Note: This voltage setting must match the PLL analog supply voltage on the board to ensure that the
PLL works properly.

Power-on Reset Delay (SmartFusion2 and IGLOO2 only) - The power-on reset circuitry in the SmartFusion2
and IGLOO2 devices requires the VDD and VPP power supplies to ramp monotonically from 0 V to the minimum
recommended operating voltage within a predefined time. Select one of four values for the predefined time: 50 us,
1 ms, 10 ms, and 100 ms.
System controller suspended mode - When enabled (usually for safety-critical applications), the System
Controller is held in a reset state after the completion of device initialization. This state protects the device from
unintended device programming or zeroization of the device due to SEUs (Single Event Upsets). In this mode, the

 Libero SoC Design Flow User Guide

 255

System Controller cannot provide any system services such as Flash*Freeze service, cryptographic services or
programming services.

Design Flow
See the Project Settings: Design flow topic for more information.

Analysis Operating Conditions (For SmartFusion2, IGLOO2, RTG4)
Sets the Operating Temperature Range, the Core Voltage Range, and Default I/O Voltage Range from the
picklist's provided. Typical values are COM/IND/MIL; but others are sometimes defined.
Once the "Range" value is set, the Minimum/Typical/Maximum values for the selected range are displayed.
Radiation (krad) - For RTG4 only, enter the radiation value (in krads) for your device. Valid range is from 0 to
300.
These settings are propagated to Verify Timing, Verify Power, and Backannotated Netlist for you to perform
Timing/Power Analysis.

Simulation Options and Simulation Libraries
Sets your simulation options. See the Project Settings: Simulation Options topic for more information.

Project Settings: Design flow

To access the Design flow page, from the Project menu choose Project Settings and click the Design flow tab.

Figure 162 · Project Settings Dialog Box – Design Flow Tab

HDL source files language options

Libero SoC supports mixed-HDL language designs. You can import Verilog and VHDL in the same project.
Sets your HDL to VHDL or Verilog. For VHDL, you can choose VHDL-2008 or VHDL-93. For Verilog, you can
choose System Verilog (if your Verilog files contain System Verilog constructs) or Verilog 2001.
Note: Libero SoC supports the following Verilog and VHDL IEEE standards for Modelsim and SynplifyPro:

 Libero SoC Design Flow User Guide

 256

• Verilog 2005 (IEEE Standard 1364-2005)
• Verilog 2001 (IEEE Standard 1364-2001)
• Verilog 1995 (IEEE Standard 1364-1995)
• SystemVerilog 2012 (IEEE Standard 1800-2012)
• VHDL-2008 (IEEE Standard 1076-2008)
• VHDL-93 (IEEE Standard 1076-1993)

HDL generated files language options

HDL files generated by Libero SoC can be set to use VHDL or Verilog. If there are no other considerations, it is
generally recommended to use the same HDL language as you are using for HDL source files, as this may
reduce the cost of simulation licenses.

Block flow

Enable block creation - Enables you to create and publish design blocks (*.cxz files) in Libero SoC. Design
blocks are low-level components that may have completed the place-and-route step and met the timing and
power requirements. These low-level design blocks can then be imported into a Libero SoC project and re-used
as components in a higher level design. See Designing with Designer Block Components in Online Help for more
information.

Root <module_name>

Enable synthesis - Option to enable or disable synthesis for your root file; useful if you wish to skip synthesis on
your root file by default.
Enable FPGA Hardware Breakpoint Auto Instantiation - The FHB (FPGA Hardware Breakpoint) Auto
Instantiation feature automatically instantiates an FHB instance per clock domain that is using gated clocks
(GL0/GL1/GL2/GL3) from an FCCC instance. The FHB instances gate the clock domain they are instantiated on.
These instances can be used to force halt the design or halt the design through a live probe signal. Once a
selected clock domain or all clock domains are halted, you can play or step on the clock domains, either
selectively or all at once. FPGA Hardware Breakpoint controls in the Smart Debug UI provide control of the
debugging cycle.
Note: This option is enabled when you select Verilog netlist.

Synthesis gate level netlist format

Sets your gate level netlist format to Verilog or EDIF. For Secure IP design flow, you must set the format to
Verilog. See the Microsemi website for more information about the Secure IP flow.

Design methodology (Available only in SmartFusion2 and IGLOO2)

Use standalone initialization for MDDR/FDDR/SERDES peripherals – Enables you to create your own
peripheral initialization logic in SmartDesign for each of your design peripherals (MDDR/FDDR/SERDES). When
checked, System Builder does not build the peripherals initialization logic for you. Standalone initialization is
useful if you want to make the initialization logic of each peripheral separate from and independent of each other.
For more information, refer to the SmartFusion2 Standalone Peripheral Initialization User Guide or the IGLOO2
Standalone Peripheral Initialization User Guide.
Instantiate SystemBuilder/MSS component in a SmartDesign on creation - Un-check this box if you are
using this project to create System Builder or MSS components and do not plan on using them in a SmartDesign
based design. This is especially useful for design flows where the System Builder or MSS component is stitched
in a design using HDL.

https://coredocs.s3.amazonaws.com/Libero/11_8_4/Tool/sf2_block_flow_ecf_ug.pdf
http://www.microsemi.com/
https://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=134377
https://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=134378
https://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=134378

 Libero SoC Design Flow User Guide

 257

Design Separation(Available only in SmartFusion2 and IGLOO2)

Enable Design Separation Methodology - Enables you to create independent critical subsystems required to
implement security and safety critical applications on a single FPGA. When checked, the design is divided into
sub-systems published in terms of Block Elements.

Reports

Maximum number of high fanout nets to be displayed - Enter the number of high fanout nets to be displayed.
The default value is 10. This means the top 10 nets with the highest fanout will appear in the
<root>_compile_netlist_resource.xml> Report.

Abort Flow Conditions

Abort Flow if Errors are found in Physical Design Constraints (PDC) – Check this checkbox to abort Place
and Route if the I/O or Floorplanning PDC constraint file contains errors.
Abort Flow if Errors are found in Timing Constraints (SDC) – Check this checkbox to abort Place and Route if
the Timing Constraint SDC file contains errors.

Project Settings: Simulation - Options and Libraries

Using this dialog box, you can set change how Libero SoC handles Do files in simulation, import your own Do
files, set simulation run time, and change the DUT name used in your simulation. You can also change your
library mapping.
To access this dialog box, from the Project menu choose Project Settings and click to expand Simulation
options or Simulation libraries.
For Simulation options click the option you wish to edit: DO file, Waveforms, Vsim commands, Timescale.
For Simulation libraries click on the library you wish to change the path for.

Figure 163 · Project Settings: DO File

DO file
• Use automatic DO file - Select if you want the Project Manager to automatically create a DO file that will

enable you to simulate your design.
• Simulation Run Time - Specify how long the simulation should run. If the value is 0, or if the field is empty,

there will not be a run command included in the run.do file.
• Testbench module name - Specify the name of your testbench entity name. Default is “testbench,” the

value used by WaveFormer Pro.

 Libero SoC Design Flow User Guide

 258

• Top Level instance name - Default is <top_0>, the value used by WaveFormer Pro. The Project Manager
replaces <top> with the actual top level macro when you run simulation (presynth/postsynth/postlayout).

• Generate VCD file - Click the checkbox to generate a VCD file.
• VCD file name - Specifies the name of your generated VCD file. The default is power.vcd; click power.vcd

and type to change the name.
• User defined DO file - Enter the DO file name or click the browse button to navigate to it.
• DO command parameters - Text in this field is added to the DO command.

Waveforms
• Include DO file - Including a DO file enables you to customize the set of signal waveforms that will be

displayed in ModelSim.
• Display waveforms for - You can display signal waveforms for either the top-level testbench or for the

design under test. If you select top-level testbench then Project Manager outputs the line 'add wave
/testbench/*' in the DO file run.do. If you select DUT then Project Manager outputs the line 'add wave
/testbench/DUT/*' in the run.do file.

• Log all signals in the design - Saves and logs all signals during simulation.

Vsim Commands
• Post-layout simulation only:

o SDF timing delays - Select Minimum (Min), Typical (Typ), or Maximum (Max) timing delays in the
back-annotated SDF file.

o Disable Pulse Filtering during SDF-based Simulations - When the check box is enabled the
+pulse_int_e/1 +pulse_int_r/1 +transport_int_delays switch is included with the vsim command
for post-layout simulations; the checkbox is disabled by default.

• Resolution - The default is family specific (review the dialog box for your default setting), but you can
customize it to fit your needs.Some custom simulation resolutions may not work with your simulation library.
Consult your simulation help for more information on how to work with your simulation library and detect
infinite zero-delay loops caused by high resolution values.

Family Default Resolution

SmartFusion2 1 fs

IGLOO2 1 ps

RTG4 1 ps

• Additional options - Text entered in this field is added to the vsim command.

• SRAM ECC Simulation (RTG4) -
Two options can be added to specify the simulated error and correction probabilities of all ECC
SRAMs in the design.

• -gERROR_PROBABILITY=<value>, where 0 <= value <= 1
• -gCORRECTION_PROBABILITY=<value>, where 0 <= value <= 1

• During Simulation, the SB_CORRECT and DB_DETECT flags on each SRAM block will be
raised based on generated random numbers being below the specified <value>s.

Timescale
• TimeUnit - Enter a value and select s, ms, us, ns, ps, or fs from the pull-down list, which is the time base for

each unit. The default setting is ns.
• Precision - Enter a value and select s, ms, us, ns, ps, or fs from the pull-down list. The default setting is ps.

Simulation Libraries
• Restore Defaults- Sets the library path to default from your Libero SoC installation.

 Libero SoC Design Flow User Guide

 259

• Library path - Enables you to change the mapping for your simulation library (both Verilog and VHDL).
Type the pathname or click the Browse button to navigate to your library directory.

remove_clock_groups

This Tcl command removes a clock group by name or by ID.

remove_clock_groups [-id id# | –name groupname] \
[-physically_exclusive | -logically_exclusive | -asynchronous]

Note: The exclusive flag is not needed when removing a clock group by ID.

Arguments
-id id#

Specifies the clock group by the ID.

-name groupname

Specifies the clock group by name (to be always followed by the exclusive flag).

[-physically_exclusive | -logically_exclusive | - asynchronous]

Supported Families
SmartFusion2
IGLOO2
RTG4

Example
Removal by group name

remove_clock_groups –name mygroup3 –physically_exclusive

Removal by goup ID
remove_clock_groups –id 12

See Also
set_clock_groups
list_clock_groups

Running Libero SoC from your Software Tool Chain

When launched from your software toolchain, Libero SoC becomes solely an MSS configurator. This can be
useful if you are responsible for the embedded code development for the SmartFusion device and are more
comfortable in your existing software tool chain.
Any FPGA fabric development needs to be done using the regular Libero® SoC tool flow. Using the Libero SoC in
the software toolchain mode only enables you to configure the SmartFusion Microcontroller Subsystem (MSS)
and not the FPGA fabric.
The MSS Configurator can be integrated in any software development IDE that supports external tools. Configure
your IDE to start the Libero SoC executable and use the parameters below to customize your interface. For
SoftConsole, Keil and IAR the parameters are:

"PROJECT_LOCATION:<path>" //Project directory location, and the location
of your generated MSS files.

"DESIGN_NAME:<name>" //Name of your design.

"STARTED_BY:<tool>" //Identifies which tool invoked the MSS Configurator;
can be SoftConsole, Keil, or IAR EWARM

 Libero SoC Design Flow User Guide

 260

See Also

Exporting Firmware and the Software IDE Workspace
Software IDE Integration
View/Configure Firmware Cores

Search in Libero SoC

Search options vary depending on your search type.

To find a file:
1. Use CTRL + F to open the Search window.
2. Enter the name or part of name of the object you wish to find in the Find field. '*' indicates a wildcard, and [*-

*] indicates a range, such as if you search for a1, a2, ... a5 with the string a[1-5].
3. Set the Options for your search (see below for list); options vary depending on your search type.
4. Click Find All (or Next if searching Text).

 Searching an open text file, Log window or Reports highlights search results in the file itself.
All other results appear in the Search Results window (as shown in the figure below).

Match case: Select to search for case-sensitive occurrences of a word or phrase. This limits the search so it only
locates text that matches the upper- and lowercase characters you enter.
Match whole word: Select to match the whole word only.

Figure 164 · Search Results

Current Open SmartDesign
Searches your open SmartDesign, returns results in the Search window.
Type: Choose Instance, Net or Pin to narrow your search.
Query: Query options vary according to Type.

Type Query Option Function

Instance Get Pins Search restricted to all pins

Get Nets Search restricted to all nets

Get Unconnected Pins Search restricted to all unconnected pins

Net Get Instances Searches all instances

Get Pins Search restricted to all pins

Pin Get Connected Pins Search restricted to all connected pins

Get Associated Net Search restricted to associated nets

 Libero SoC Design Flow User Guide

 261

Type Query Option Function

Get All Unconnected Pins Search restricted to all unconnected pins

Current Open Text Editor
Searches the open text file. If you have more than one text file open you must place the cursor in it and click
CTRL + F to search it.
Find All: Highlights all finds in the text file.
Next: Proceed to next instance of found text.
Previous: Proceed to previous instance of found text.
Replace with: Replaces the text you searched with the contents of the field.
Replace: Replaces a single instance.
Replace All: Replaces all instances of the found text with the contents of the field.

Design Hierarchy
Searches your Design Hierarchy; results appear in the Search window.
Find All: Displays all finds in the Search window.

Stimulus Hierarchy
Searches your Stimulus Hierarchy; results appear in the Search window.
Find All: Displays all finds in the Search window.

Log Window
Searches your Log window; results are highlighted in the Log window - they do not appear in the Search Results
window.
Find All: Highlights all finds in the Log window.
Next: Proceed to next instance of found text.
Previous: Proceed to previous instance of found text.

Reports
Searches your Reports; returns results in the Reports window.
Find All: Highlights all finds in the Reports window.
Next: Proceed to next instance of found text.
Previous: Proceed to previous instance of found text.

Files
Searches your local project file names for the text in the Search field; returns results in the Search window.
Find All: Lists all search results in the Search window.

Files on disk
Searches the files' content in the specified directory and subdirectories for the text in the Search field; returns
results in the Search window.
Find All: Lists all finds in the Search window.
File type: Select a file type to limit your search to specific file extensions, or choose *.* to search all file types.

Select Generated Clock Reference Dialog Box

Use this dialog box to find and choose the generated clock reference pin from the list of available pins.

 Libero SoC Design Flow User Guide

 262

To open the Select Generated Clock Reference dialog box (shown below) from the SmartTime Constraints Editor,
open the Create Generated Clock Constraint Dialog Box dialog box and click the Browse button for the Clock
Reference.

Select Generated Clock Reference Dialog Box

Filter Available Pins
Pin type – Displays the Available Pin types. The Pin Type options for Generated Clock Reference are:
• Input Ports
• All Pins

Pattern – The default pattern is *, which is a wild-card match for all. You can specify any string value.
 Select Filter to filter the available pins based on the specified Pin Type and Pattern.
The list box displays the list of available pins based on the filter. Select the pins from the list and click OK to select
the Generated Clock Reference Pin.

See Also
Specifying generated clock constraints

Select Generated Clock Source Dialog Box

Use this dialog box to find and choose the generated clock source from the list of available pins.
To open the Select Generated Clock Source dialog box (shown below) from the , open the Create Generated
Clock Constraint dialog box and click the Browse button for the Clock Pin.

 Libero SoC Design Flow User Guide

 263

Figure 165 · Select Generated Clock Source Dialog Box

Filter Available Pins
Pin type – Displays the Available Pin types. The Pin Type options for Generated Clock Source are:
• Output Ports
• All Register Output Pins
• All Pins
• All Nets
• Input Ports

Pattern – The default pattern is *, which is a wild-card match for all. You can specify any string value.
 Select Filter to filter the available pins based on the specified Pin Type and Pattern.
The list box displays the list of available pins based on the filter. Select the pins from the list and click OK to select
the Generated Clock Source Pin.

Select Source or Destination Pins for Constraint Dialog Box

This dialog box opens when you select the browse button for Source/From, Intermediate/Through and
Destination/To pins for Timing Exception Constraints: False Path Constraints, Multicycle Path Constraints, and
Maximum/Minimum Delay Constraints.

 Libero SoC Design Flow User Guide

 264

To open the Select Source or Destination Pins for Constraint dialog box from the Constraints Editor, choose
Constraint > Timing Exception Constraint Name. Click the browse button to select the source. The following
figure shows an example dialog box for Select Source Pins for Multicycle Constraint.

Figure 166 · Select Source Pins for Multicycle Constraint

Filter Available Pins
Type – Displays the Type of the Available Pins in the design. The pin Type options available for the Source are:
• Clock Pins
• Input Ports
• All Register Output Pins

Pattern – The default is *, which is a wild-card match for all. You can specify any string value.
Click Search to filter the available pins based on the specified pin Type and Pattern.

Available Pins
The list box displays the available pins. If you change the pattern value, the list box shows the available pins
based on the filter.
Use Add, Add All to add the pins from the Available Pins list to Assigned Pins or Remove, Remove All to delete
the pins from the Assigned Pins list.

Assigned Pins
Displays pins selected from the Available Pins list. Select Pins from this list and click OK to add the Source Pins
for Multicycle constraint.

Select Source Pins for Clock Constraint Dialog Box

Use this dialog box to find and choose the clock source from the list of available pins.

 Libero SoC Design Flow User Guide

 265

To open the Select Source Pins for the Clock Constraint dialog box (shown below) from the SmartTime
Constraints Editor, click the Browse button to the right of the Clock source field in the Create Clock Constraint
dialog box.

Figure 167 · Select Source Pins for Clock Constraint Dialog Box

Filter Available Pins
Type – Displays the Type of the Available Pins in the design. The Pin Type options available for the Source are:
• All Pins
• Input Ports
• All Nets

Pattern – The default is *, which is a wild-card match for all. You can specify any string value.
Click Search to filter the available pins based on the specified pin Type and Pattern.

Available Pins
The list box displays the available pins. If you change the pattern value, the list box shows the available pins
based on the filter.
Use Add, Add All to add the pins from the Available Pins list to Assigned Pins or Remove, Remove All to delete
the pins from the Assigned Pins list.

Assigned Pins
Displays pins selected from the Available Pins list. Select Pins from this list and click OK to add the Source Pins
for Clock Constraint.

See Also
Specifying clock constraints

 Libero SoC Design Flow User Guide

 266

Set a Disable Timing Constraint

Use disable timing constraint to specify the timing arcs to be disabled for timing consideration.
Note: This constraint is for the Place and Route tool and the Verify Timing tool. It is ignored by the Synthesis tool.
To specify a Disable Timing constraint, open the Set Constraint to Disable Timing Arcs dialog box in one of the
following four ways:
• From the Constraints Browser, choose Advanced > Disable Timing.

• Double-click the Add Disable Timing Constraint icon .
• Choose Disable Timing from the Constraints drop-down menu (Constraints > Disable Timing).
• Right-click any row in the Disable Timing Constraints Table and choose Add Constraint to Disable Timing.

The Set Constraint to Disable Timing Arcs dialog box appears.

Figure 168 · Set constraint to disable timing arcs Dialog Box

Instance Name
Specifies the instance name for which the disable timing arc constraint will be created.
Click the browse button next to the Instance Name field to open the Select instance to constrain dialog box.

 Libero SoC Design Flow User Guide

 267

Figure 169 · Select instance to constrain Dialog Box

The Pin Type selection is limited to All Instances only.
Exclude All Timing Arcs in the Instance

This option enables you to exclude all timing arcs in the specified instance.
Specify Timing Arc to Exclude

This option enables you to specify the timing arc to exclude. In this case, you need to specify the from and to
ports:

From Port
Specifies the starting point for the timing arc.

To Port
Specifies the ending point for the timing arc.

Comment
Enter a one-line comment for the constraint.

Set Clock Source Latency Dialog Box

Use this dialog box to define the delay between an external clock source and the definition pin of a clock within
SmartTime.
To open the Set Clock Source Latency dialog box (shown below) from the Timing Analysis View, you must first
create a clock constraint. From the Constraints menu, choose Clock Source Latency.

 Libero SoC Design Flow User Guide

 268

Figure 170 · Set Clock Source Latency Dialog Box

Clock Name or Source

Displays a list of clock ports or pins that do not already have a clock source latency specified. Select the clock
name or source for which you are specifying the clock source latency.

Late Rise

Specifies the largest possible latency, in nanoseconds, of the rising clock edge at the clock port or pin selected,
with respect to its source. Negative values are acceptable, but may lead to overly optimistic analysis.

Early Rise

Specifies the smallest possible latency, in nanoseconds, of the rising clock edge at the clock port or pin selected,
with respect to its source. Negative values are acceptable, but may lead to overly optimistic analysis.

Late Fall

Specifies the largest possible latency, in nanoseconds, of the falling clock edge at the clock port or pin selected,
with respect to its source. Negative values are acceptable, but may lead to overly optimistic analysis.

 Libero SoC Design Flow User Guide

 269

Early Fall

Specifies the smallest possible latency, in nanoseconds, of the falling clock edge at the clock port or pin selected,
with respect to its source. Negative values are acceptable, but may lead to overly optimistic analysis.

Clock Edges

Select the latency for the rising and falling edges:
Falling same as rising: Specifies that Rising and Falling clock edges have the same latency.
Early same as late : Specifies that the clock source latency should be considered as a single value, not a
range from "early" to ‘"late".

Comment

Enables you to save a single line of text that describes the clock source latency.

See Also
Specifying Clock Constraints

Set Constraint to Disable Timing Arcs Dialog Box

Use this dialog box to specify the timing arcs being disabled to fix the combinational loops in the design.
To open the Set Constraint to Disable Timing Arcs dialog box (shown below) from the Timing Analysis View, from
the Constraints menu, choose Disable Timing.

Figure 171 · Set Constraint to Disable Timing Arcs Dialog Box

 Libero SoC Design Flow User Guide

 270

Instance Name

Specifies the instance name for which the disable timing arc constraint will be created.

Exclude All Timing Arcs in the Instance

This option enables you to exclude all timing arcs in the specified instance.

Specify Timing Arc to Exclude

This option enables you to specify the timing arc to exclude. In this case, you need to specify the from and to
ports:
From Port
Specifies the starting point for the timing arc.
To Port
Specifies the ending point for the timing arc.

Comment

Enables you to save a single line of text that describes the disable timing arc.

See Also
Specifying Disable Timing Constraint

Set False Path Constraint Dialog Box

Use this dialog box to define specific timing paths as being false.
This constraint removes timing requirements on these false paths so that they are not considered during the
timing analysis. The path starting points are the input ports or register clock pins and path ending points are the
register data pins or output ports. This constraint disables setup and hold checking for the specified paths.

Note: The false path information always takes precedence over multiple cycle path information and
overrides maximum delay constraints.

To open the Set False Path Constraint dialog box (shown below) from the SmartTime Constraints Editor, choose
Constraints > Exceptions False Path > Add False Path Constraint.

 Libero SoC Design Flow User Guide

 271

Figure 172 · Set False Path Constraint Dialog Box

From

Specifies the starting points for false path. A valid timing starting point is a clock, a primary input, an inout port, or
a clock pin of a sequential cell.

Through

Specifies a list of pins, ports, cells, or nets through which the disabled paths must pass.

To

Specifies the ending points for false path. A valid timing ending point is a clock, a primary output, an inout port, or
a data pin of a sequential cell.

Comment

Enables you to provide comments for this constraint.

 Libero SoC Design Flow User Guide

 272

Set Maximum Delay Constraint Dialog Box

Use this dialog box to specify the required maximum delay for timing paths in the current design.
SmartTime automatically derives the individual maximum delay targets from clock waveforms and port input or
output delays. So the maximum delay constraint is a timing exception. This constraint overrides the default single
cycle timing relationship for one or more timing paths. This constraint also overrides a multiple cycle path
constraint.
To open the Set Maximum Delay Constraint dialog box (shown below) from the Constraints Editor, click the
Constraints menu and choose Max Delay (Constraints > Max Delay).

Figure 173 · Set Maximum Delay Constraint Dialog Box

Maximum Delay

Specifies a floating point number in nanoseconds that represents the required maximum delay value for specified
paths.
If the path starting point is on a sequential device, SmartTime includes clock skew in the computed delay.
If the path starting point has an input delay specified, SmartTime adds that delay value to the path delay.
If the path ending point is on a sequential device, SmartTime includes clock skew and library setup time in the
computed delay.
If the ending point has an output delay specified, SmartTime adds that delay to the path delay.

 Libero SoC Design Flow User Guide

 273

From

Specifies the starting points for max delay constraint. A valid timing starting point is a clock, a primary input, an
inout port, or a clock pin of a sequential cell.

Through

Specifies the through points for the multiple cycle constraint.

To

Specifies the ending points for maximum delay constraint. A valid timing ending point is a clock, a primary output,
an inout port, or a data pin of a sequential cell.

Comment

Enables you to provide comments for this constraint.

See Also
Specifying a Maximum Delay Constraint

Set Minimum Delay Constraint Dialog Box

Use this dialog box to specify the required minimum delay for timing paths in the current design.
SmartTime automatically derives the individual minimum delay targets from clock waveforms and port input or
output delays. So the minimum delay constraint is a timing exception. This constraint overrides the default single
cycle timing relationship for one or more timing paths. This constraint also overrides a multiple cycle path
constraint.
To open the Set Minimum Delay Constraint dialog box (shown below) from the Constraints Editor, click the
Constraints menu and choose Min Delay (Constraints > Min Delay).

 Libero SoC Design Flow User Guide

 274

Figure 174 · Set Minimum Delay Constraint Dialog Box

Minimum Delay

Specifies a floating point number in nanoseconds that represents the required minimum delay value for specified
paths.
If the path starting point is on a sequential device, SmartTime includes clock skew in the computed delay.
If the path starting point has an input delay specified, SmartTime adds that delay value to the path delay.
If the path ending point is on a sequential device, SmartTime includes clock skew and library setup time in the
computed delay.
If the ending point has an output delay specified, SmartTime adds that delay to the path delay.

From

Specifies the starting points for minimum delay constraint. A valid timing starting point is a clock, a primary input,
an input port, or a clock pin of a sequential cell.

Through

Specifies the through points for the multiple cycle constraint.

 Libero SoC Design Flow User Guide

 275

To

Specifies the ending points for minimum delay constraint. A valid timing ending point is a clock, a primary output,
an input port, or a data pin of a sequential cell.

Comment

Enables you to provide comments for this constraint.

See Also
Specifying a Minimum Delay Constraint

Set Multicycle Constraint Dialog Box

Use this dialog box to specify the paths that take multiple clock cycles in the current design.
Setting the multiple-cycle paths constraint overrides the single-cycle timing relationships between sequential
elements by specifying the number of cycles that the data path must have for setup or hold checks.

Note: When multiple timing constraints are set on the same timing path, the false path constraint has the
highest priority and always takes precedence over multiple cycle path constraint. A specific maximum
delay constraint overrides a general multicycle path constraint.

To open the Set Multicycle Constraint dialog box (shown below) from the Constraints Editor, choose Constraints
> Multicycle.

 Libero SoC Design Flow User Guide

 276

Figure 175 · Set Multicycle Constraint Dialog Box

Setup Path Multiplier

Specifies an integer value that represents a number of cycles the data path must have for a setup check. No hold
check will be performed.

From

Specifies the starting points for the multiple cycle constraint. A valid timing starting point is a clock, a primary
input, an inout port, or the clock pin of a sequential cell.

Through

Specifies the through points for the multiple cycle constraint.

To

Specifies the ending points for the multiple cycle constraint. A valid timing ending point is a clock, a primary
output, an inout port, or a data pin of a sequential cell.

 Libero SoC Design Flow User Guide

 277

Comment

Enables you to provide comments for this constraint.
When you select the Setup and Hold Checks option, an additional field appears in this dialog box: Hold Path
Multiplier.

Figure 176 · Set Multicycle Constraint Dialog Box with Setup and Hold Checks Selected

Hold Path Multiplier

Specifies an integer value that represents a number of cycles the data path must have for a hold check, starting
from one cycle before the setup check edge.

See Also
Specifying a Multicycle Constraint

set_clock_groups

set_clock_groups is an SDC command which disables timing analysis between the specified clock groups. No
paths are reported between the clock groups in both directions. Paths between clocks in the same group continue
to be reported.

 Libero SoC Design Flow User Guide

 278

set_clock_groups [-name name]
 [-physically_exclusive | -logically_exclusive | -asynchronous]
 [-comment comment_string]
 -group clock_list

Note: If you use the same name and the same exclusive flag of a previously defined clock group to create a new
clock group, the previous clock group is removed and a new one is created in its place.

Arguments
-name name

Name given to the clock group. Optional.

-physically_exclusive

Specifies that the clock groups are physically exclusive with respect to each other. Examples are multiple
clocks feeding a register clock pin. The exclusive flags are all mutually exclusive. Only one can be specified.

-logically_exclusive

Specifies that the clocks groups are logically exclusive with respect to each other. Examples are clocks
passing through a mux.

-asynchronous

Specifies that the clock groups are asynchronous with respect to each other, as there is no phase
relationship between them. The exclusive flags are all mutually exclusive. Only one can be specified.

Note: The exclusive flags for the arguments above are all mutually exclusive. Only one can be specified.
-group clock_list

Specifies a list of clocks. There can any number of groups specified in the set_clock_groups command.

Supported Families
SmartFusion2
IGLOO2
RTG4

Example
set_clock_groups –name mygroup3 –physically_exclusive \

–group [get_clocks clk_1] –group [get_clocks clk_2]

See Also
list_clock_groups
remove_clock_groups

set_clock_to_output

SDC command; defines the timing budget available inside the FPGA for an output relative to a clock.

set_clock_to_output delay_value -clock clock_ref [–max] [–min] output_list

Arguments
 delay_value

Specifies the clock to output delay in nanoseconds. This time represents the amount of time available
inside the FPGA between the active clock edge and the data change at the output port.

-clock clock_ref

 Libero SoC Design Flow User Guide

 279

Specifies the reference clock to which the specified clock to output is related. This is a mandatory
argument.

-max

Specifies that delay_value refers to the maximum clock to output at the specified output. If you do not
specify –max or –min options, the tool assumes maximum and minimum clock to output delays to be
equal.

-min

Specifies that delay_value refers to the minimum clock to output at the specified output. If you do not
specify –max or –min options, the tool assumes maximum and minimum clock to output delays to be
equal.

 output_list

Provides a list of output ports in the current design to which delay_value is assigned. If you need to specify
more than one object, enclose the objects in braces ({}).

Supported Families
SmartFusion2
IGLOO2
RTG4

set_clock_uncertainty

Tcl command; specifies simple clock uncertainty for single clock and clock-to-clock uncertainty between
two clocks (from and to).

set_clock_uncertainty [-setup] [-hold] uncertainty [object_list -from from_clock | -
rise_from rise_from_clock | -fall_from fall_from_clock -to to_clock | -rise_to rise_to_clock |
-fall_to fall_to_clock]

Arguments
uncertainty

Specifies the time in nanoseconds that represents the amount of variation between two clock edges.

object_list

Specifies a list of clocks, ports, or pins for simple uncertainty; the uncertainty is applied either to
destination flops clocked by one of the clocks in the object list option , or destination flops whose clock
pins are in the fanout of a port or a pin specified in the object_list option.

-from

 Specifies that the clock-to-clock uncertainty applies to both rising and falling edges of the source clock
list. Only one of the -from, -rise_from, or -fall_from arguments can be specified for the constraint
to be valid.

-rise_from

Specifies that the clock-to-clock uncertainty applies only to rising edges of the source clock list. Only one
of the -from, -rise_from, or -fall_from arguments can be specified for the constraint to be valid.

-fall_from

 Libero SoC Design Flow User Guide

 280

Specifies that the clock-to-clock uncertainty applies only to falling edges of the source clock list. Only one
of the -from, -rise_from, or -fall_from arguments can be specified for the constraint to be valid.

from_clock/rise_from_clock/fall_from_clock

Specifies the list of clock names as the uncertainty source.

-to

Specifies that the clock-to-clock uncertainty applies to both rising and falling edges of the destination
clock list. Only one of the -to, -rise_to , or -fall_to arguments can be specified for the constraint to
be valid.

-rise_to

Specifies that the clock-to-clock uncertainty applies only to rising edges of the destination clock list. Only
one of the -to, -rise_to , or -fall_to arguments can be specified for the constraint to be valid.

-fall_to

Specifies that the clock-to-clock uncertainty applies only to falling edges of the destination clock list. Only
one of the -to, -rise_to , or -fall_to arguments can be specified for the constraint to be valid.

 to_clock/rise_to_clock/fall_to_clock

Specifies the list of clock names as the uncertainty destination.

-setup

Specifies that the uncertainty applies only to setup checks. If none or both -setup and -hold are present,
the uncertainty applies to both setup and hold checks.

-hold

Specifies that the uncertainty applies only to hold checks. If none or both -setup and -hold are present,
the uncertainty applies to both setup and hold checks.

Supported Families
SmartFusion2
IGLOO2
RTG4

Description
The set_clock_uncertainty command sets the timing uncertainty between two clock waveforms or
maximum clock skew. Timing between clocks have no uncertainty unless you specify it.

Examples
Simple Clock Uncertainty constraint examples:

set_clock_uncertainty 2 -setup [get_clocks clk]

set_clock_uncertainty 2 [get_clocks clk]

Clock to Clock Uncertainty constraint examples:
set_clock_uncertainty 10 -from Clk1 -to Clk2

set_clock_uncertainty 0 -from Clk1 -fall_to { Clk2 Clk3 } -setup

set_clock_uncertainty 4.3 -fall_from { Clk1 Clk2 } -rise_to *

set_clock_uncertainty 0.1 -rise_from [get_clocks { Clk1 Clk2 }] -
fall_to { Clk3 Clk4 } -setup

set_clock_uncertainty 5 -rise_from Clk1 -to [get_clocks {*}]

 Libero SoC Design Flow User Guide

 281

set_external_check

SDC command; defines the external setup and hold delays for an input relative to a clock.

set_external_check delay_value -clock clock_ref [–setup] [–hold] input_list

Arguments
delay_value

Specifies the external setup or external hold delay in nanoseconds. This time represents the amount of
time available inside the FPGA for the specified input after a clock edge.

-clock clock_ref

Specifies the reference clock to which the specified external check is related. This is a mandatory
argument.

-setup or -hold
Specifies that delay_value refers to the setup/hold check at the specified input. This is a mandatory
argument if –hold is not used. You must specify either -setup or -hold option.

input_list

Provides a list of input ports in the current design to which delay_value is assigned. If you need to specify
more than one object, enclose the objects in braces ({}).

Supported Families
SmartFusion2, IGLOO2, RTG4

Description
The set_external_check command specifies the external setup and hold times on input ports relative to a clock
edge. This usually represents a combinational path delay from the input port to the clock pin of a register internal
to the current design. For in/out (bidirectional) ports, you can specify the path delays for both input and output
modes. The tool uses external setup and external hold times for paths starting at primary inputs.
A clock is a singleton that represents the name of a defined clock constraint. This can be an object accessor that
will refer to one clock. For example:

[get_clocks {system_clk}]

[get_clocks {sys*_clk}]

Examples
The following example sets an external setup check of 12 ns and an external hold check of 6 ns for port data_in
relative to the rising edge of CLK1:

set_external_check 12 -clock [get_clocks CLK1] -setup [get_ports data_in]

set_external_check 6 -clock [get_clocks CLK1] -hold [get_ports data_in]

See Also
SDC Syntax Conventions

set_min_delay

SDC command; specifies the minimum delay for the timing paths.

set_min_delay delay_value [-from from_list] [-to to_list]

Arguments
delay_value

 Libero SoC Design Flow User Guide

 282

Specifies a floating point number in nanoseconds that represents the required minimum delay value for
specified paths.

• If the path starting point is on a sequential device, the tool includes clock skew in the computed
delay.

• If the path starting point has an input delay specified, the tool adds that delay value to the path delay.
• If the path ending point is on a sequential device, the tool includes clock skew and library setup time

in the computed delay.
• If the ending point has an output delay specified, the tool adds that delay to the path delay.

-from from_list

Specifies a list of timing path starting points. A valid timing starting point is a clock, a primary input, an
inout port, or a clock pin of a sequential cell.

-to to_list

Specifies a list of timing path ending points. A valid timing ending point is a clock, a primary output, an
inout port, or a data pin of a sequential cell.

Supported Families
SmartFusion2, IGLOO2, RTG4

Description
This command specifies the required minimum delay for timing paths in the current design. The path
length for any startpoint in from_list to any endpoint in to_list must be less than delay_value.
The tool automatically derives the individual minimum delay targets from clock waveforms and port input
or output delays. For more information, refer to the create_clock, set_input_delay, and set_output_delay
commands.
The minimum delay constraint is a timing exception. This constraint overrides the default single cycle
timing relationship for one or more timing paths. This constraint also overrides a multicycle path
constraint.

Examples
The following example sets a minimum delay by constraining all paths from ff1a:CLK or ff1b:CLK to ff2e:D
with a delay less than 5 ns:

set_min_delay 5 -from {ff1a:CLK ff1b:CLK} -to {ff2e:D}

The following example sets a minimum delay by constraining all paths to output ports whose names start
by “out” with a delay less than 3.8 ns:

set_min_delay 3.8 -to [get_ports out*]

Microsemi Implementation Specifics
The –through option in the set_min_delay SDC command is not supported.

See Also
SDC Syntax Conventions

Organize Source Files Dialog Box – Synthesis

The Organize Source Files dialog box enables you to set the source file order in the Libero SoC.
Click the Use list of files organized by User radio button to Add/Remove source files for the selected tool.

To specify the file order:
1. In the Design Flow window under Implement Design, right-click Synthesize and choose Organize Input

Files > Organize Source Files. The Organize Source Files dialog box appears.
2. Click the Use list of files organized by User radio button to Add/Remove source files for the selected tool.

 Libero SoC Design Flow User Guide

 283

3. Select a file and click the Add or Remove buttons as necessary. Use the Up and Down arrows to change the
order of the Associated Source files.

4. Click OK.

Figure 177 · Organize Source Files Dialog Box

Specify I/O States During Programming Dialog Box

The I/O States During Programming dialog box enables you to specify custom settings for I/Os in your
programming file. This is useful if you want to set an I/O to drive out specific logic, or if you want to use a custom
I/O state to manage settings for each Input, Output Enable, and Output associated with an I/O.

Load from file
Load from file enables you to load an I/O Settings (*.ios) file. You can use the IOS file to import saved custom
settings for all your I/Os. The exported IOS file have the following format:
• Used I/Os have an entry in the IOS file with the following format:

set_prog_io_state -portName {<design_port_name>} -input <value> -
outputEnable <value> -output <value>

• Unused I/Os have an entry in the IOS file with the following format:
set_prog_io_state -pinNumber {<device_pinNumber>} -input <value> -
outputEnable <value> -output <value>

Where <value> is:
• 1 – I/O is set to drive out logic High
• 0 – I/O is set to drive out logic Low
• Last_Known_State: I/O is set to the last value that was driven out prior to entering the programming mode,

and then held at that value during programming
• Z - Tri-State: I/O is tristated

Save to file
Saves your I/O Settings File (*.ios) for future use. This is useful if you set custom states for your I/Os and want to
use them again later in conjunction with a PDC file.

Port Name
Lists the names of all the ports in your design.

 Libero SoC Design Flow User Guide

 284

Macro Cell
Lists the I/O type, such as INBUF, OUTBUF, PLLs, etc.

Pin Number
The package pin associate with the I/O.

I/O State (Output Only)
Your custom I/O State set during programming. This heading changes to Boundary Scan Register if you select
the BSR Details checkbox; see the Specifying I/O States During Programming - I/O States and BSR Details help
topic for more information on the BSR Details option.

Figure 178 · I/O States During Programming Dialog Box

Specifying a False Path Constraint

You set options in the Set False Path Constraint dialog box to define specific timing paths as false.

To specify False Path constraints:
1. Add the constraint in the Editable Constraints Grid or open the Set False Path Constraint dialog box. You

can do this by using one of the following methods:
• From the Constraints drop-down menu, choose False Path.

• Click the icon.
• From the Constraints Browser, choose False Path.
• Right-click False Path in the Constraint Browser and choose Add False Path Constraint.

The Set False Path Constraint dialog box appears (as shown below).

 Libero SoC Design Flow User Guide

 285

Figure 179 · Set False Path Constraint Dialog Box

2. Specify the From pin(s). Click the Browse button next to From to open the Select Source Pins for False
Path Constraint dialog box (as shown below).

 Libero SoC Design Flow User Guide

 286

Figure 180 · Select Source Pins for False Path Constraint Dialog Box

3. Use Filter available pins to narrow the pin list based on the selected Type and Pattern. Select the pin(s)
from the Available Pins list. You can select multiple pins in this window.

4. Click Add or Add All to add the pins from the Available Pins list to the Assigned Pins list. Click Remove
or Remove All to remove the pins from the Assigned Pins list.

5. Select the pins from the Assigned Pins list and click OK. The Set False Path Constraint dialog box
displays the updated From pin(s) list.

6. Click the Browse button for Through and To and add the appropriate pin(s). The displayed list shows the
pins reachable from the previously selected pin(s) list.

7. Enter comments in the Comment section.
8. Click OK.

The False Path constraints to the Constraints List in the Timing Constraints Editor.

Specifying a Maximum Delay Constraint

You set options in the Set Maximum Delay Constraint dialog box to relax or to tighten the original clock constraint
requirement on specific paths.

To specify Max delay constraints:
1. Add the constraint in the Editable Constraints Grid or open the Set Maximum Delay Constraint dialog box

using one of the following methods:

• Click the icon in the Constraints Editor.
• From the Constraints Browser, choose Max Delay.
• Choose Max Delay from the Constraints drop-down menu (Constraints > Max Delay).

 Libero SoC Design Flow User Guide

 287

• From the Max Delay Constraints Table, right-click any row and choose Add Maximum
Delay Constraint.

The Set Maximum Delay Constraint dialog box appears (as shown below).

Figure 181 · Set Maximum Delay Constraint Dialog Box

2. Specify the delay in the Maximum delay field.
3. Specify the From pin(s). Click the Browse button next to From to open the Select Source Pins for Max

Delay Constraint dialog box (as shown below).

 Libero SoC Design Flow User Guide

 288

Figure 182 · Select Source Pins for Max Delay Constraint Dialog Box

4. Use Filter available pins to narrow the pin list based on the selected Type and Pattern. Select the pin(s)
from the Available Pins list. You can select multiple pins in this window.

5. Click Add or Add All to add the pins from the Available Pins list to the Assigned Pins list. Click Remove
or Remove All to remove the pins from the Assigned Pins list.

6. Select the pins from the Assigned Pins list and click OK.The Set Maximum Delay Constraint dialog box
displays the updated From pin(s) list.

7. Click the Browse button for Through and To and add the appropriate pin(s). The displayed list shows the
pins reachable from the previously selected pin(s) list.

8. Enter comments in the Comment section.
9. Click OK.

SmartTime adds the maximum delay constraints to the Constraints List in the SmartTime Constraints Editor.

See Also
Timing Exceptions Overview

Specifying a Minimum Delay Constraint

You set options in the Set Minimum Delay Constraint dialog box to relax or to tighten the original clock constraint
requirement on specific paths.

To specify Min delay constraints:
1. Open the Set Minimum Delay Constraint dialog box using one of the following methods:

• Click the icon in the Constraints Editor.
• From the Constraints Browser, choose Min Delay.

 Libero SoC Design Flow User Guide

 289

• Choose Min Delay from the Constraints drop-down menu (Constraints > Min Delay).
• Right click on any row in the Min Delay Constraints Table and select Add Minimum Delay

Constraint.
The Set Minimum Delay Constraint dialog box appears (as shown below).

Figure 183 · Set Minimum Delay Constraint Dialog Box

2. Specify the delay in the Minimum delay field.
3. Specify the From pin(s). Click the Browse button next to From to open the Select Source Pins for Min

Delay Constraint dialog box (as shown below).

 Libero SoC Design Flow User Guide

 290

Figure 184 · Select Source Pins for Min Delay Constraint Dialog Box

4. Use Filter available pins to narrow the pins list based on the selected Type and Pattern. Select the pin(s)
from the Available Pins list. You can select multiple pins in this window.

5. Click Add or Add All to add the pins from the Available Pins list to the Assigned Pins list. Click Remove
or Remove All to remove the pins from the Assigned Pins list.

6. Select the pins from the Assigned Pins list and click OK. The Set Minimum Delay Constraint dialog box
displays the updated From pin(s) list.

7. Click the Browse button for Through and To and add the appropriate pin(s). The displayed list shows the
pins reachable from the previously selected pin(s) list.

8. Enter comments in the Comment section.
9. Click OK.

The minimum delay constraints are added to the Constraints List.

See Also
Timing Exceptions Overview

Specifying a Multicycle Constraint

You set options in the Set Multicycle Constraint dialog box to specify paths that take multiple clock cycles in the
current design.

To specify multicycle constraints:
1. Add the constraint in the Editable Constraints Grid or open the Set Multicycle Constraint dialog box using

one of the following methods:
• From the Timing Constraints Editor, choose Constraint > MultiCycle.

 Libero SoC Design Flow User Guide

 291

• Click the icon.
• From the Constraints Browser, choose Multicycle.
• Right-click the Multicycle option in the Constraint Browser and select Add Multicycle

Path Constraint.
The Set Multicycle Constraint dialog box appears (as shown below).

Figure 185 · Set Multicycle Constraint Dialog Box

2. Specify the number of cycles in the Setup Path Multiplier.
3. Specify the From pin(s). Click the Browse button next to From to open the Select Source Pins for

Multicycle Constraint dialog box (as shown below).

 Libero SoC Design Flow User Guide

 292

Figure 186 · Select Source Pins for Multicycle Constraint Dialog Box

4. Use Filter available pins to narrow the pin list based on the selected Type and Pattern . Select the pin(s)
from the Available Pins list. You can select multiple pins in this window.

5. Click Add or Add All to add the pins from the Available Pins list to the Assigned Pins list. Click Remove
or Remove All to remove the pins from the Assigned Pins list.

6. Select the pins from the Assigned Pins list and click OK. The Set Multicycle Constraint dialog box
displays the updated From pin(s) list.

7. Click the browse button for Through and To and add the appropriate pins. The displayed list shows the pins
reachable from the previously selected pin(s) list

8. Enter comments in the Comment section.
9. Click OK. The Timing Constraints Editor adds the multicycle constraints to the Constraints List.

See Also
Set Multicycle Constraint Dialog Box

Specifying Disable Timing Constraint

Use disable timing constraint to specify the timing arcs being disabled.

To specify the disable timing constraint:
1. Add the constraint in the Editable Constraints Grid or open the Set Constraint to Disable Timing Arcs Dialog

Box using one of the following methods:
• From the Timing Constraints Editor, choose Constraints Menu > Disable Timing.

• Click the icon in the Constraints Editor.
• In the Constraints Editor, right-click Disable Timing and choose Add Disable Timing

Constraints.

 Libero SoC Design Flow User Guide

 293

2. Select an instance from your design.
3. Select whether you want to exclude all timing arcs in the instance or if you want to specify the timing arc to

exclude. If you selected specify timing arc to exclude, select a from and to port for the timing arc.
4. Enter any comments to be attached to the constraint.
5. Click OK. The new constraint appears in the constraints list.

Note: Note: When you choose Save from the File menu, the newly created constraint is saved in the
database.

See Also
Set Constraint to Disable Timing Arcs Dialog Box

Specifying Clock Constraints

Specifying clock constraints is the most effective way to constrain and verify the timing behavior of a sequential
design. Use clock constraints to meet your performance goals.

To specify a clock constraint:
1. Add the constraint in the editable constraints grid or open the Create Clock Constraint dialog box using one

of the following methods:

• Click the icon in the Constraints Editor.
• Right-click the Clock in the Constraint Browser and choose Add Clock Constraint.
• Double-click Clock in the Constraint Browser.
• Choose Clock from the Constraints drop-down menu (Constraints > Clock)
The Create Clock Constraint dialog box appears.

2. Select the pin to use as the clock source. You can click the Browse button to display the Select Source Pins
for Clock Constraint Dialog Box (as shown below).

Note: Do not select a source pin when you specify a virtual clock. Virtual clocks can be used to define a
clock outside the FPGA that is used to synchronize I/Os.

Use the Choose the Clock Source Pin dialog box to display a list of source pins from which you can
choose. By default, it displays the explicit clock sources of the design. To choose other pins in the
design as clock source pins, select Filter available objects - Pin Type as Explicit clocks, Potential
clocks, All Ports, All Pins, All Nets, Pins on clock network, or Nets in clock network. To display a
subset of the displayed clock source pins, you can create and apply a filter.
Multiple source pins can be specified for the same clock when a single clock is entering the FPGA
using multiple inputs with different delays.
Click OK to save these dialog box settings.

3. Specify the Period in nanoseconds (ns) or Frequency in megahertz (MHz).
4. Modify the Clock Name. The name of the first clock source is provided as default.
5. Modify the Duty cycle, if needed.
6. Modify the Offset of the clock, if needed.
7. Modify the first edge direction of the clock, if needed.
8. Select the check box for Add this clock to an existing one with the same source, if needed.
9. Click OK. The new constraint appears in the Constraints List.

Note: When you choose File > Save, saves the newly created constraint in the database.

 Libero SoC Design Flow User Guide

 294

Figure 187 · Timing Constraint View

Specifying Generated Clock Constraints

Specifying a generated clock constraint enables you to define an internally generated clock for your design and
verify its timing behavior. Use generated clock constraints and clock constraints to meet your performance goals.

To specify a generated clock constraint:
1. Open the Create Generated Clock Constraint dialog box using one of the following methods:

• Click the icon.
• Right-click the Generated Clock in the Constraint Browser and choose Add Generated

Clock.
• Double-click the Generated Clock Constraints grid. The Create Generated Clock

Constraint dialog box appears (as shown below).

 Libero SoC Design Flow User Guide

 295

Figure 188 · Create Generated Clock Constraint

2. Select a Clock Pin to use as the generated clock source. To display a list of available generated clock
source pins, click the Browse button. The Select Generated Clock Source dialog box appears (as shown
below).

 Libero SoC Design Flow User Guide

 296

Figure 189 · Select Generated Clock Source Dialog Box

3. Specify a Reference Pin. To display a list of available clock reference pins, click the Browse button. The
Select Generated Clock Reference dialog box appears.

4. Specify the Generated Clock Name(optional).
5. Specify the values to calculate the generated frequency: a multiplication factor and/or a division factor (both

positive integers).
6. Specify the orientation of the generated clock edges based on the reference edges by entering values for

the edges and the edge shifts. This is optional.
7. Specify the first edge of the generated waveform either same as or inverted with respect to the reference

waveform.
8. Specify the PLL output and PLL feedback pins, if an External feedback is used to generate the clock.
9. Specify the Phase shift applied by the PLL in degrees.

10. Specify the Master Clock, if you want to add this to an existing one with the same source.
11. Click OK. The new constraint appears in the Constraints List.

Tip: From the File menu, choose Save to save the newly created constraint in the database.

Specifying I/O States During Programming - I/O States and BSR Details

The I/O States During Programming dialog box enables you to set custom I/O states prior to programming.

 Libero SoC Design Flow User Guide

 297

I/O State (Output Only)
Sets your I/O states during programming to one of the values shown in the list below.
• 1 – I/Os are set to drive out logic High
• 0 – I/Os are set to drive out logic Low
• Last Known State: I/Os are set to the last value that was driven out prior to entering the programming mode,

and then held at that value during programming
• Z - Tri-State: I/Os are tristated

When you set your I/O state, the Boundary Scan Register cells are set according to the table below. Use the
Show BSR Details option to set custom states for each cell.

Table 6 · Default I/O Output Settings

Output State Settings

Input Control
(Output Enable)

Output

Z (Tri-State) 1 0 0

0 (Low) 1 1 0

1 (High) 0 1 1

Last_Known_State Last_Known_State Last_Known_State Last_Known_State

Table Key:
• 1 – High: I/Os are set to drive out logic High
• 0 – Low: I/Os are set to drive out logic Low
• Last_Known_State - I/Os are set to the last value that was driven out prior to entering the programming

mode, and then held at that value during programming

Boundary Scan Registers - Enabled with Show BSR Details
 Sets your I/O state to a specific output value during programming AND enables you to customize the values for
the Boundary Scan Register (Input, Output Enable, and Output). You can change any Don't Care value in
Boundary Scan Register States without changing the Output State of the pin (as shown in the table below).
For example, if you want to Tri-State a pin during programming, set Output Enable to 0; the Don't Care indicates
that the other two values are immaterial.
If you want a pin to drive a logic High and have a logic 1 stored in the Input Boundary scan cell during
programming, you may set all the values to 1.

Table 7 · BSR Details I/O Output Settings

Output State Settings

Input Output Enable Output

Z (Tri-State) Don't Care 0 Don't Care

0 (Low) Don't Care 1 0

1 (High) Don't Care 1 1

Last Known State Last State Last State Last State

 Libero SoC Design Flow User Guide

 298

Table Key:
• 1 – High: I/Os are set to drive out logic High
• 0 – Low: I/Os are set to drive out logic Low
• Don't Care – Don’t Care values have no impact on the other settings.
• Last_Known_State – Sampled value: I/Os are set to the last value that was driven out prior to entering the

programming mode, and then held at that value during programming
The figure below shows an example of Boundary Scan Register settings.

Figure 190 · Boundary Scan Registers

Stimulus Hierarchy

To view the Stimulus Hierarchy, from the View menu choose Windows > Stimulus Hierarchy.
The Stimulus Hierarchy tab displays a hierarchical representation of the stimulus and simulation files in the
project. The software continuously analyzes and updates files and content. The tab (see figure below) displays
the structure of the modules and component stimulus files as they relate to each other.

 Libero SoC Design Flow User Guide

 299

Figure 191 · Stimulus Hierarchy Dialog Box

Expand the hierarchy to view stimulus and simulation files. Right-click an individual component and choose Show
Module to view the module for only that component.
Select Components, instance or Modules from the Show drop-down list to change the display mode. The
Components view displays the stimulus hierarchy; the modules view displays HDL modules and stimulus files.
The file name (the file that defines the module or component) appears in parentheses.
Click Show Root Testbenches to view only the root-level testbenches in your design.
Right-click and choose Properties; the Properties dialog box displays the pathname, created date, and last
modified date.
All integrated source editors are linked with the SoC software; if you modify a stimulus file the Stimulus Hierarchy
automatically updates to reflect the change.

To open a stimulus file:
Double-click a stimulus file to open it in the HDL text editor.
Right-click and choose Delete from Project to delete the file from the project. Right-click and choose Delete
from Disk and Project to remove the file from your disk.
Icons in the Hierarchy indicate the type of component and the state, as shown in the table below.

Table 8 · Design Hierarchy Icons

Icon Description

 SmartDesign component

 SmartDesign component with HDL netlist not generated

 SmartDesign testbench

 SmartDesign testbench with HDL netlist not generated

 IP core was instantiated into SmartDesign but the HDL netlist has not been
generated

 HDL netlist

 Libero SoC Design Flow User Guide

 300

Timing Exceptions Overview

Use timing exceptions to overwrite the default behavior of the design path. Timing exceptions include:
• Setting multicycle constraint to specify paths that (by design) will take more than one cycle.
• Setting a false path constraint to identify paths that must not be included in the timing analysis or the

optimization flow.
• Setting a maximum/minimum delay constraint on specific paths to relax or to tighten the original clock

constraint requirement.

Tool Profiles Dialog Box

The Tool Profiles dialog box enables you to add, edit, or delete your project tool profiles.
Each Libero SoC project can have a different profile, enabling you to integrate different tools with different
projects.
The following table shows the supported tool versions in this release.

Tool Supported Version

Modelsim ME 10.5c

Modelsim ME Pro 10.5c

Synplify Pro ME N-2017.09M SP1-1

Identify ME N-2017.09M SP1

Table 9 · Table for supported tool versions

To set or change your tool profile:
1. From the Project menu, choose Tool Profiles. Select the type of tool you wish to add.

• To add a tool: Select the tool type and click the Add button . Fill out the tool profile and click OK.
• To change a tool profile: After selecting the tool, click the Edit button to select another tool,

change the tool name, or change the tool location.
• To remove a tool from the project:After selecting a tool, click the Remove button.

2. When you are done, click OK.

Figure 192 · Libero SoC Tool Profiles Dialog Box

The tool profile with the padlock icon indicates that it is a pre-defined tool profile (the default tool that comes with
the Libero SoC Installation.)

 Libero SoC Design Flow User Guide

 301

To export the tool profile and save it for future use, click the Export Tool Profiles dialog box and save the tool
profile file as a tool profile *.ini file. The tool profile *.ini file can be imported into a Libero SoC project (File >
Import > Others) and select Tool Profiles (*.ini) in the File Type pull-down list.

User Preferences Dialog Box – Design Flow Preferences

This dialog box allows you to set your personal preferences for how Libero SoC manages the design flow across
the projects you create.

Figure 193 · Preferences Dialog Box – Design Flow Preferences

Constraint Flow
• Warn me when derived timing constraints generation override existing constraints.

Libero SoC can generate/derive timing constraints for known hardware blocks and IPs such as
SERDES, CCC, MSS/HPMS. Check this box to have Libero SoC pop up a warning message when the
generated timing constraints for these blocks override the timing constraints you set for these blocks.
This box is checked by default.

Design Flow Rule Checks
• Warn me when Firmware applications must be recompiled because of hardware configuration

changes.
Check this box if you want Libero SoC to display a warning message. This box is checked by default.

• Warn me when I/Os are not all assigned and locked before programming data generation.
I/Os should always be assigned and locked before programming data generation. Check this box if
you want Libero SoC to display a warning message. This box is checked by default.

SmartDesign Generation Options
• Generate recursively

In this mode, all subdesigns must be successfully generated before a parent can be generated. An
attempt to generate a SmartDesign results in an automatic attempt to generate all subdesigns.

• Generate non-recursively

 Libero SoC Design Flow User Guide

 302

In this mode, the generation of only explicitly selected SmartDesigns is attempted. The generation of a
design can be marked as successful even if a subdesign is ungenerated (either never attempted or
unsuccessful).

Note: These preferences are stored on a per-user basis across multiple projects; they are not project-specific.

Synopsys Design Constraints (SDC)
Synopsys Design Constraints (SDC) is a Tcl-based format used by Synopsys tools to specify the design intent,
including the timing and area constraints for a design. Microsemi tools use a subset of the SDC format to capture
supported timing constraints. Any timing constraint that you can enter using Designer tools can also be specified
in an SDC file.
Use the SDC-based flow to share timing constraint information between Microsemi tools and third-party EDA
tools.

Command Action

create_clock Creates a clock and defines its characteristics

create_generated_clock Creates an internally generated clock and defines its
characteristics

remove_clock_uncertainty Removes a clock-to-clock uncertainty from the current
timing scenario.

set_clock_latency Defines the delay between an external clock source and the
definition pin of a clock within SmartTime

set_clock_uncertainty Defines the timing uncertainty between two clock
waveforms or maximum skew

set_false_path Identifies paths that are to be considered false and
excluded from the timing analysis

set_input_delay Defines the arrival time of an input relative to a clock

set_load Sets the load to a specified value on a specified port

set_max_delay Specifies the maximum delay for the timing paths

set_min_delay Specifies the minimum delay for the timing paths

set_multicycle_path Defines a path that takes multiple clock cycles

set_output_delay Defines the output delay of an output relative to a clock

See Also
SDC Syntax Conventions

Libero DesignFlow SDC Commands

SDC Syntax Conventions

The following table shows the typographical conventions that are used for the SDC command syntax.

 Libero SoC Design Flow User Guide

 303

Syntax Notation Description

command -argument Commands and arguments appear in Courier New typeface.

variable Variables appear in blue, italic Courier New typeface. You must
substitute an appropriate value for the variable.

[-argument value] Optional arguments begin and end with a square bracket.

Note: SDC commands and arguments are case sensitive.

Example
The following example shows syntax for the create_clock command and a sample command:

create_clock -period period_value [-waveform edge_list] source

create_clock –period 7 –waveform {2 4}{CLK1}

Wildcard Characters
You can use the following wildcard characters in names used in the SDC commands:

Wildcard What it does

\ Interprets the next character literally

* Matches any string

Note: The matching function requires that you add a backslash (\) before each slash in the pin names in

case the slash does not denote the hierarchy in your design.

Special Characters ([], { }, and \)
Square brackets ([]) are part of the command syntax to access ports, pins and clocks. In cases where these
netlist objects names themselves contain square brackets (for example, buses), you must either enclose the
names with curly brackets ({}) or precede the open and closed square brackets ([]) characters with a backslash
(\). If you do not do this, the tool displays an error message.
For example:

create_clock -period 3 clk\[0\]

set_max_delay 1.5 -from [get_pins ff1\[5\]:CLK] -to [get_clocks {clk[0]}]

Although not necessary, Microsemi recommends the use of curly brackets around the names, as shown in the
following example:

set_false_path –from {data1} –to [get_pins {reg1:D}]

In any case, the use of the curly bracket is mandatory when you have to provide more than one name.
For example:

set_false_path –from {data3 data4} –to [get_pins {reg2:D reg5:D}]

Entering Arguments on Separate Lines
If a command needs to be split on multiple lines, each line except the last must end with a backslash (\) character
as shown in the following example:

set_multicycle_path 2 –from \

[get_pins {reg1*}] \

-to {reg2:D}

 Libero SoC Design Flow User Guide

 304

See Also
About SDC Files

create_clock

SDC command; creates a clock and defines its characteristics.

create_clock -name clock_name -add -period period_value [-waveform edge_list] source

Arguments
-name clock_name

Specifies the name of the clock constraint. This parameter is required for virtual clocks when no clock
source is provided.

-add

Specifies that a new clock constraint is created at the same source as the existing clock without overriding
the existing constraint. The name of the new clock constraint with the -add option must be different than
the existing clock constraint. Otherwise, it will override the existing constraint, even with the -add option.
The -name option must be specified with the -add option.

-period period_value

Specifies the clock period in nanoseconds. The value you specify is the minimum time over which the
clock waveform repeats. The period_value must be greater than zero.

-waveform edge_list

Specifies the rise and fall times of the clock waveform in ns over a complete clock period. There must be
exactly two transitions in the list, a rising transition followed by a falling transition. You can define a clock
starting with a falling edge by providing an edge list where fall time is less than rise time. If you do not
specify -waveform option, the tool creates a default waveform, with a rising edge at instant 0.0 ns and a
falling edge at instant (period_value/2)ns.

source

Specifies the source of the clock constraint. The source can be ports or pins in the design. If you specify a
clock constraint on a pin that already has a clock, the new clock replaces the existing one. Only one source
is accepted. Wildcards are accepted as long as the resolution shows one port or pin.

Supported Families
SmartFusion2, IGLOO2, RTG4

Description
Creates a clock in the current design at the declared source and defines its period and waveform. The
static timing analysis tool uses this information to propagate the waveform across the clock network to the
clock pins of all sequential elements driven by this clock source.
The clock information is also used to compute the slacks in the specified clock domain that drive
optimization tools such as place-and-route.

Exceptions
None

 Libero SoC Design Flow User Guide

 305

Examples
The following example creates two clocks, one on port CK1 with a period of 6, and the other on port CK2 with a
period of 6, a rising edge at 0, and a falling edge at 3:

create_clock -name {my_user_clock} -period 6 CK1

create_clock -name {my_other_user_clock} –period 6 –waveform {0 3} {CK2}

The following example creates a clock on port CK3 with a period of 7, a rising edge at 2, and a falling edge at 4:
create_clock –period 7 –waveform {2 4} [get_ports {CK3}]

The following example creates a new clock constraint clk2, in addition to clk1, on the same source port clk1
without overriding it.

create_clock -name clk1 -period 10 -waveform {0 5} [get_ports clk1]

create_clock -name clk2 –add -period 20 -waveform {0 10} [get_ports clk1]

The following example does not add a new clock constraint, even with the -add option, but overrides the existing
clock constraint because of the same clock names. Note: To add a new clock constraint in addition to the existing
clock constraint on the same source port, the clock names must be different.

create_clock -name clk1 -period 10 -waveform {0 5} [get_ports clk1]

create_clock -name clk1 -add -period 50 -waveform {0 25} [get_ports clk1]

Microsemi Implementation Specifics
• The -waveform in SDC accepts waveforms with multiple edges within a period. In Microsemi design

implementation, only two waveforms are accepted.
• SDC accepts defining a clock on many sources using a single command. In Microsemi design

implementation, only one source is accepted.
• The source argument in SDC create_clock command is optional. This is in conjunction with the -name

argument in SDC to support the concept of virtual clocks. In Microsemi implementation, source is a
mandatory argument as -name and virtual clocks concept is not supported.

• The -domain argument in the SDC create_clock command is not supported.

See Also
SDC Syntax Conventions

create_generated_clock

SDC command; creates an internally generated clock and defines its characteristics.

create_generated_clock -name clock_name [-add] [-master_clock clock_name] -source
reference_pin [-divide_by divide_factor] [-multiply_by multiply_factor] [-invert] source -
pll_output pll_feedback_clock -pll_feedback pll_feedback_input

Arguments
-name clock_name

Specifies the name of the clock constraint. This parameter is required for virtual clocks when no clock
source is provided.

-add

Specifies that the generated clock constraint is a new clock constraint in addition to the existing one at the
same source. The name of the clock constraint should be different from the existing clock constraint. With
this option, -master_clock option and -name options must be specified.

-master_clock clock_name

Specifies the master clock used for the generated clock when multiple clocks fan into the master pin. This
option must be used in conjuction with -add option of the generated clock.

 Libero SoC Design Flow User Guide

 306

Notes:
1. The master_clock option is used only with the -add option for the generated clocks.
2. If there are multiple master clocks fanning into the same reference pin, the first generated clock specified will

always use the first master clock as its source clock.
3. The subsequent generated clocks specified with the -add option can choose any of the master clocks as

their source clock (including the first master clock specified).
-source reference_pin

Specifies the reference pin in the design from which the clock waveform is to be derived.

-divide_bydivide_factor

Specifies the frequency division factor. For instance if the divide_factor is equal to 2, the generated clock
period is twice the reference clock period.

-multiply_by multiply_factor

Specifies the frequency multiplication factor. For instance if the multiply_factor is equal to 2, the generated
clock period is half the reference clock period.

-invert

Specifies that the generated clock waveform is inverted with respect to the reference clock.

source

Specifies the source of the clock constraint on internal pins of the design. If you specify a clock constraint
on a pin that already has a clock, the new clock replaces the existing clock. Only one source is accepted.
Wildcards are accepted as long as the resolution shows one pin.

-pll_output pll_feedback_clock

Specifies the output pin of the PLL which is used as the external feedback clock. This pin must drive the
feedback input pin of the PLL specified using the –pll_feedback option. The PLL will align the rising
edge of the reference input clock to the feedback clock. This is a mandatory argument if the PLL is
operating in external feedback mode.

-pll_feedback pll_feedback_input

Specifies the feedback input pin of the PLL. This pin must be driven by the output pin of the PLL
specified using the –pll_output option. The PLL will align the rising edge of the reference input clock to
the external feedback clock. This is a mandatory argument if the PLL is operating in external feedback
mode.

Supported Families
SmartFusion2, IGLOO2, RTG4

Description
Creates a generated clock in the current design at a declared source by defining its frequency with
respect to the frequency at the reference pin. The static timing analysis tool uses this information to
compute and propagate its waveform across the clock network to the clock pins of all sequential elements
driven by this source.
The generated clock information is also used to compute the slacks in the specified clock domain that
drive optimization tools such as place-and-route.

Examples
The following example creates a generated clock on pin U1/reg1:Q with a period twice as long as the period at
the reference port CLK.

 Libero SoC Design Flow User Guide

 307

create_generated_clock -name {my_user_clock} –divide_by 2 –source
[get_ports {CLK}] U1/reg1:Q

The following example creates a generated clock at the primary output of myPLL with a period ¾ of the period at
the reference pin clk.

create_generated_clock –divide_by 3 –multiply_by 4 -source clk [get_pins
{myPLL:CLK1}]

The following example creates a new generated clock gen2 in addition to gen1 derived from same master clock
as the existing generated clock, and the new constraints is added to pin r1/CLK.

create_generated_clock -name gen1 -multiply_by 1 -source [get_ports clk1]
[get_pins r1/CLK]

create_generated_clock -name gen2 -add -master_clock clk1 -source
[get_ports clk1] -multiply_by 2 [get_pins r1/CLK]

The following example does not create a new generated clock constraint in addition to the existing clock, but will
override even with the -add option enabled, because the same names are used.

create_generated_clock -name gen2 -source [get_ports clk1] -multiply_by 3
[get_pins r1/CLK]

create_generated_clock -name gen2 -source [get_ports clk1] -multiply_by 4
-master_clock clk1 -add [get_pins r1/CLK]

The following example creates a generated clock on pin U1/reg1:Q with a period twice as long as the period at
the reference port CLK.

create_generated_clock -name {my_user_clock} –divide_by 2 –source
[get_ports {CLK}] U1/reg1/Q

The following example creates a generated clock at the primary output of myPLL with a period ¾ of the period at
the reference pin clk.

create_generated_clock –divide_by 3 –multiply_by 4 -source clk [get_pins
{myPLL/CLK1}]

The following example creates a generated clock named system_clk on the GL2 output pin of FCCC_0 with a
period equal to half the period of the source clock. The constraint also identifies GL2 output pin as the external
feedback clock source and CLK2 as the feedback input pin for FCCC_0.

create_generated_clock -name { system_clk } \

-multiply_by 2 \

-source { FCCC_0/CCC_INST/CLK3_PAD } \

-pll_output { FCCC_0/CCC_INST/GL2 } \

-pll_feedback { FCCC_0/CCC_INST/CLK2 } \

{ FCCC_0/CCC_INST/GL2 }

Microsemi Implementation Specifics
• SDC accepts either –multiply_by or –divide_by option. In Microsemi design implementation, both are

accepted to accurately model the PLL behavior.
• SDC accepts defining a generated clock on many sources using a single command. In Microsemi design

implementation, only one source is accepted.
• The -duty_cycle ,-edges and –edge_shift options in the SDC create_generated_clock command are not

supported in Microsemi design implementation.

See Also
SDC Syntax Conventions

remove_clock_uncertainty

 SDC command; Removes a clock-to-clock uncertainty from the current timing scenario.

 Libero SoC Design Flow User Guide

 308

remove_clock_uncertainty -from | -rise_from | -fall_from from_clock_list -to | -rise_to| -
fall_to to_clock_list -setup {value} -hold {value}

remove_clock_uncertainty -id constraint_ID

Arguments
-from

 Specifies that the clock-to-clock uncertainty applies to both rising and falling edges of the source clock
list. You can specify only one of the -from, -rise_from, or -fall_from arguments for the constraint to
be valid.

-rise_from

Specifies that the clock-to-clock uncertainty applies only to rising edges of the source clock list. You can
specify only one of the -from, -rise_from, or -fall_from arguments for the constraint to be valid.

-fall_from

Specifies that the clock-to-clock uncertainty applies only to falling edges of the source clock list. You can
specify only one of the -from, -rise_from, or -fall_from arguments for the constraint to be valid.

from_clock_list

Specifies the list of clock names as the uncertainty source.

-to

Specifies that the clock-to-clock uncertainty applies to both rising and falling edges of the destination
clock list. You can specify only one of the -to, -rise_to , or -fall_to arguments for the constraint to
be valid.

-rise_to

Specifies that the clock-to-clock uncertainty applies only to rising edges of the destination clock list. You
can specify only one of the -to, -rise_to , or -fall_to arguments for the constraint to be valid.

-fall_to

Specifies that the clock-to-clock uncertainty applies only to falling edges of the destination clock list. You
can specify only one of the -to, -rise_to , or -fall_to arguments for the constraint to be valid.

to_clock_list

Specifies the list of clock names as the uncertainty destination.

-setup

Specifies that the uncertainty applies only to setup checks. If none or both -setup and -hold are present,
the uncertainty applies to both setup and hold checks.

-hold

Specifies that the uncertainty applies only to hold checks. If none or both -setup and -hold are present,
the uncertainty applies to both setup and hold checks.

-id constraint_ID

Specifies the ID of the clock constraint to remove from the current scenario. You must specify either the
exact parameters to set the constraint or its constraint ID.

Supported Families
SmartFusion2, IGLOO2, RTG4

 Libero SoC Design Flow User Guide

 309

Description
Removes a clock-to-clock uncertainty from the specified clock in the current scenario. If the specified
arguments do not match clocks with an uncertainty constraint in the current scenario, or if the specified ID
does not refer to a clock-to-clock uncertainty constraint, this command fails.
Do not specify both the exact arguments and the ID.

Exceptions
None

Examples
remove_clock_uncertainty -from Clk1 -to Clk2

remove_clock_uncertainty -from Clk1 -fall_to { Clk2 Clk3 } -setup

remove_clock_uncertainty 4.3 -fall_from { Clk1 Clk2 } -rise_to *

remove_clock_uncertainty 0.1 -rise_from [get_clocks { Clk1 Clk2 }] -
fall_to { Clk3 Clk4 } -setup

remove_clock_uncertainty 5 -rise_from Clk1 -to [get_clocks {*}]

remove_clock_uncertainty -id $clockId

See Also
SDC Syntax Conventions
set_clock_uncertainty

set_clock_latency

SDC command; defines the delay between an external clock source and the definition pin of a clock
within SmartTime.

set_clock_latency -source [-rise][-fall][-early][-late] delay clock

Arguments
-source

Specifies a clock source latency on a clock pin.

-rise

Specifies the edge for which this constraint will apply. If neither or both rise are passed, the same latency is
applied to both edges.

-fall

Specifies the edge for which this constraint will apply. If neither or both rise are passed, the same latency is
applied to both edges.

-invert

Specifies that the generated clock waveform is inverted with respect to the reference clock.

-late

Optional. Specifies that the latency is late bound on the latency. The appropriate bound is used to provide
the most pessimistic timing scenario. However, if the value of "-late" is less than the value of "-early",
optimistic timing takes place which could result in incorrect analysis. If neither or both "-early" and "-late"
are provided, the same latency is used for both bounds, which results in the latency having no effect for
single clock domain setup and hold checks.

-early

 Libero SoC Design Flow User Guide

 310

Optional. Specifies that the latency is early bound on the latency. The appropriate bound is used to
provide the most pessimistic timing scenario. However, if the value of "-late" is less than the value of "-
early", optimistic timing takes place which could result in incorrect analysis. If neither or both "-early" and
"-late" are provided, the same latency is used for both bounds, which results in the latency having no effect
for single clock domain setup and hold checks.

delay

Specifies the latency value for the constraint.

clock

Specifies the clock to which the constraint is applied. This clock must be constrained.

Supported Families
SmartFusion2, IGLOO2, RTG4

Description
Clock source latency defines the delay between an external clock source and the definition pin of a clock
within SmartTime. It behaves much like an input delay constraint. You can specify both an "early" delay
and a"late" delay for this latency, providing an uncertainty which SmartTime propagates through its
calculations. Rising and falling edges of the same clock can have different latencies. If only one value is
provided for the clock source latency, it is taken as the exact latency value, for both rising and falling
edges.

Exceptions
None

Examples
The following example sets an early clock source latency of 0.4 on the rising edge of main_clock. It also
sets a clock source latency of 1.2, for both the early and late values of the falling edge of main_clock. The
late value for the clock source latency for the falling edge of main_clock remains undefined.

set_clock_latency –source –rise –early 0.4 { main_clock }

set_clock_latency –source –fall 1.2 { main_clock }

Microsemi Implementation Specifics
SDC accepts a list of clocks to -set_clock_latency. In Microsemi design implementation, only one clock pin can
have its source latency specified per command.

See Also
SDC Syntax Conventions

set_clock_to_output

SDC command; defines the timing budget available inside the FPGA for an output relative to a clock.

set_clock_to_output delay_value -clock clock_ref [–max] [–min] output_list

Arguments
 delay_value

Specifies the clock to output delay in nanoseconds. This time represents the amount of time available
inside the FPGA between the active clock edge and the data change at the output port.

-clock clock_ref

 Libero SoC Design Flow User Guide

 311

Specifies the reference clock to which the specified clock to output is related. This is a mandatory
argument.

-max

Specifies that delay_value refers to the maximum clock to output at the specified output. If you do not
specify –max or –min options, the tool assumes maximum and minimum clock to output delays to be
equal.

-min

Specifies that delay_value refers to the minimum clock to output at the specified output. If you do not
specify –max or –min options, the tool assumes maximum and minimum clock to output delays to be
equal.

 output_list

Provides a list of output ports in the current design to which delay_value is assigned. If you need to specify
more than one object, enclose the objects in braces ({}).

Supported Families
SmartFusion2, IGLOO2, RTG4

set_clock_uncertainty

SDC command; defines the timing uncertainty between two clock waveforms or maximum skew.

set_clock_uncertainty uncertainty (-from | -rise_from | -fall_from) from_clock_list (-to | -
rise_to | -fall_to) to_clock_list [-setup | -hold]

Arguments
uncertainty

Specifies the time in nanoseconds that represents the amount of variation between two clock edges. The
value must be a positive floating point number.

-from

 Specifies that the clock-to-clock uncertainty applies to both rising and falling edges of the source clock
list. You can specify only one of the -from, -rise_from, or -fall_from arguments for the constraint to
be valid. This option is the default.

-rise_from

Specifies that the clock-to-clock uncertainty applies only to rising edges of the source clock list. You can
specify only one of the -from, -rise_from, or -fall_from arguments for the constraint to be valid.

-fall_from

Specifies that the clock-to-clock uncertainty applies only to falling edges of the source clock list. You can
specify only one of the -from, -rise_from, or -fall_from arguments for the constraint to be valid.

from_clock_list

Specifies the list of clock names as the uncertainty source.

-to

Specifies that the clock-to-clock uncertainty applies to both rising and falling edges of the destination
clock list. You can specify only one of the -to, -rise_to , or -fall_to arguments for the constraint to
be valid.

 Libero SoC Design Flow User Guide

 312

-rise_to

Specifies that the clock-to-clock uncertainty applies only to rising edges of the destination clock list. You
can specify only one of the -to, -rise_to , or -fall_to arguments for the constraint to be valid.

-fall_to

Specifies that the clock-to-clock uncertainty applies only to falling edges of the destination clock list. You
can specify only one of the -to, -rise_to , or -fall_to arguments for the constraint to be valid.

 to_clock_list

Specifies the list of clock names as the uncertainty destination.

-setup

Specifies that the uncertainty applies only to setup checks. If you do not specify either option (-setup or -
hold) or if you specify both options, the uncertainty applies to both setup and hold checks.

-hold

Specifies that the uncertainty applies only to hold checks. If you do not specify either option (-setup or -
hold) or if you specify both options, the uncertainty applies to both setup and hold checks.

Supported Families
SmartFusion2, IGLOO2, RTG4

Description
Clock uncertainty defines the timing between an two clock waveforms or maximum clock skew.
Both setup and hold checks must account for clock skew. However, for setup check, SmartTime looks for
the smallest skew. This skew is computed by using the maximum insertion delay to the launching
sequential component and the shortest insertion delay to the receiving component.
For hold check, SmartTime looks for the largest skew. This skew is computed by using the shortest
insertion delay to the launching sequential component and the largest insertion delay to the receiving
component. SmartTime makes this distinction automatically.

Exceptions
None

Examples
The following example defines two clocks and sets the uncertainty constraints, which analyzes the inter-
clock domain between clk1 and clk2.

create_clock –period 10 clk1

create_generated_clock –name clk2 -source clk1 -multiply_by 2 sclk1

set_clock_uncertainty 0.4 -rise_from clk1 -rise_to clk2

Microsemi Implementation Specifics
• SDC accepts a list of clocks to -set_clock_uncertainty.

See Also
SDC Syntax Conventions
remove_clock_uncertainty

set_disable_timing

SDC command; disables timing arcs within the specified cell and returns the ID of the created constraint if
the command succeeded.

 Libero SoC Design Flow User Guide

 313

 set_disable_timing [-from from_port] [-to to_port] cell_name

Arguments
-from from_port

Specifies the starting port.

-to to_port

Specifies the ending port.

cell_name

Specifies the name of the cell in which timing arcs will be disabled.

Supported Families
SmartFusion2, IGLOO2, RTG4

Description
This command disables the timing arcs in the specified cell, and returns the ID of the created constraint if
the command succeeded. The –from and –to arguments must either both be present or both omitted for
the constraint to be valid.

Examples
The following example disables the arc between a2:A and a2:Y.

set_disable_timing -from port1 -to port2 cellname

This command ensures that the arc is disabled within a cell instead of between cells.

Microsemi Implementation Specifics
• None

See Also
SDC Syntax Conventions

set_external_check

SDC command; defines the external setup and hold delays for an input relative to a clock.

set_external_check delay_value -clock clock_ref [–setup] [–hold] input_list

Arguments
delay_value

Specifies the external setup or external hold delay in nanoseconds. This time represents the amount of
time available inside the FPGA for the specified input after a clock edge.

-clock clock_ref

Specifies the reference clock to which the specified external check is related. This is a mandatory
argument.

-setup or -hold
Specifies that delay_value refers to the setup/hold check at the specified input. This is a mandatory
argument if –hold is not used. You must specify either -setup or -hold option.

input_list

 Libero SoC Design Flow User Guide

 314

Provides a list of input ports in the current design to which delay_value is assigned. If you need to specify
more than one object, enclose the objects in braces ({}).

Supported Families
SmartFusion2, IGLOO2, RTG4

Description
The set_external_check command specifies the external setup and hold times on input ports relative to a clock
edge. This usually represents a combinational path delay from the input port to the clock pin of a register internal
to the current design. For in/out (bidirectional) ports, you can specify the path delays for both input and output
modes. The tool uses external setup and external hold times for paths starting at primary inputs.
A clock is a singleton that represents the name of a defined clock constraint. This can be an object accessor that
will refer to one clock. For example:

[get_clocks {system_clk}]

[get_clocks {sys*_clk}]

Examples
The following example sets an external setup check of 12 ns and an external hold check of 6 ns for port data_in
relative to the rising edge of CLK1:

set_external_check 12 -clock [get_clocks CLK1] -setup [get_ports data_in]

set_external_check 6 -clock [get_clocks CLK1] -hold [get_ports data_in]

See Also
SDC Syntax Conventions

set_false_path

SDC command; identifies paths that are considered false and excluded from the timing analysis.

set_false_path [-from from_list] [-through through_list] [-to to_list]

Arguments
-from from_list

Specifies a list of timing path starting points. A valid timing starting point is a clock, a primary input, an
inout port, or a clock pin of a sequential cell.

-through through_list

Specifies a list of pins, ports, cells, or nets through which the disabled paths must pass.

-to to_list

Specifies a list of timing path ending points. A valid timing ending point is a clock, a primary output, an
inout port, or a data pin of a sequential cell.

Supported Families
SmartFusion2, IGLOO2, RTG4

Description
The set_false_path command identifies specific timing paths as being false. The false timing paths are
paths that do not propagate logic level changes. This constraint removes timing requirements on these
false paths so that they are not considered during the timing analysis. The path starting points are the
input ports or register clock pins, and the path ending points are the register data pins or output ports.
This constraint disables setup and hold checking for the specified paths.

 Libero SoC Design Flow User Guide

 315

The false path information always takes precedence over multiple cycle path information and overrides
maximum delay constraints. If more than one object is specified within one -through option, the path can
pass through any objects.

Examples
The following example specifies all paths from clock pins of the registers in clock domain clk1 to data pins
of a specific register in clock domain clk2 as false paths:

set_false_path –from [get_clocks {clk1}] –to reg_2:D

The following example specifies all paths through the pin U0/U1:Y to be false:
set_false_path -through U0/U1:Y

Microsemi Implementation Specifics
SDC accepts multiple -through options in a single constraint to specify paths that traverse multiple points in the
design. In Microsemi design implementation, only one –through option is accepted.

See Also
SDC Syntax Conventions

set_input_delay

SDC command; defines the arrival time of an input relative to a clock.

set_input_delay delay_value -clock clock_ref [–max] [–min] [–clock_fall] [-rise] [-fall] [-
add_delay] input_list

Arguments
delay_value

Specifies the arrival time in nanoseconds that represents the amount of time for which the signal is
available at the specified input after a clock edge.

-clock clock_ref

Specifies the clock reference to which the specified input delay is related. This is a mandatory argument. If
you do not specify -max or -min options, the tool assumes the maximum and minimum input delays to be
equal.

-max

Specifies that delay_value refers to the longest path arriving at the specified input. If you do not specify -
max or -min options, the tool assumes maximum and minimum input delays to be equal.

-min

Specifies that delay_value refers to the shortest path arriving at the specified input. If you do not specify -
max or -min options, the tool assumes maximum and minimum input delays to be equal.

-clock_fall

Specifies that the delay is relative to the falling edge of the clock reference. The default is the rising edge.

-rise

Specifies that the delay is relative to a rising transition on the specified port(s). If -rise or -fall is not
specified, then rising and falling delays are assumed to be equal.

-fall

Specifies that the delay is relative to a falling transition on the specified port(s). If -rise or -fall is not
specified, then rising and falling delays are assumed to be equal.

 Libero SoC Design Flow User Guide

 316

-add_delay

Specifies that this input delay constraint should be added to an existing constraint on the same port(s).
The -add_delay option is used to capture information on multiple paths with different clocks or clock
edges leading to the same input port(s).

input_list

Provides a list of input ports in the current design to which delay_value is assigned. If you need to specify
more than one object, enclose the objects in braces ({}).

Notes:
• The behavior of the -add_delay option is identical to that of PrimeTime(TM)
• If, using the -add_delay mechanism, multiple constraints are otherwise identical, except they specify

different -max or -min values
• the surviving -max constraint will be the maximum of the -max values
• the surviving -min constraint will be the minimum of the -min values

Supported Families
SmartFusion2, IGLOO2, RTG4

Description
The set_input_delay command sets input path delays on input ports relative to a clock edge. This usually
represents a combinational path delay from the clock pin of a register external to the current design. For
in/out (bidirectional) ports, you can specify the path delays for both input and output modes. The tool adds
input delay to path delay for paths starting at primary inputs.
A clock is a singleton that represents the name of a defined clock constraint. This can be:

• a single port name used as source for a clock constraint
• a single pin name used as source for a clock constraint; for instance reg1:CLK. This name can be

hierarchical (for instance toplevel/block1/reg2:CLK)
• an object accessor that will refer to one clock: [get_clocks {clk}]

Examples
The following example sets an input delay of 1.2ns for port data1 relative to the rising edge of CLK1:

set_input_delay 1.2 -clock [get_clocks CLK1] [get_ports data1]

The following example sets a different maximum and minimum input delay for port IN1 relative to the
falling edge of CLK2:

set_input_delay 1.0 -clock_fall -clock CLK2 –min {IN1}

set_input_delay 1.4 -clock_fall -clock CLK2 –max {IN1}

The following example demonstrates an override condition of two constraints. The first constraint is
overridden because the second constraint specifies a different clock for the same output:

set_input_delay 1.0 -clock CLK1 –max {IN1}

set_input_delay 1.4 -clock CLK2 –max {IN1}

The next example is almost the same as the previous one, however, in this case, the user has specified -
add_delay, so both constraints will be honored:

set_input_delay 1.0 -clock CLK1 –max {IN1}

set_input_delay 1.4 -add_delay -clock CLK2 –max {IN1}

The following example is more complex:
• All constraints are for an input to port PAD1 relative to a rising edge clock CLK2. Each combination of {-rise,

-fall} x {-max, -min} generates an independent constraint. But the max rise delay of 5 and the max rise delay
of 7 interfere with each other.

• For a -max option, the maximum value overrides all lower values. Thus the first constraint will be overridden
and the max rise delay of 7 will survive.

 Libero SoC Design Flow User Guide

 317

set_input_delay 5 -max -rise -add_delay [get_clocks CLK2] [get_ports
PAD1] # will be overridden

set_input_delay 3 -min -fall -add_delay [get_clocks CLK2] [get_ports
PAD1]

set_input_delay 3 -max -fall -add_delay [get_clocks CLK2] [get_ports
PAD1]

set_input_delay 7 -max -rise -add_delay [get_clocks CLK2] [get_ports
PAD1]

Microsemi Implementation Specifics
In SDC, the -clock is an optional argument that allows you to set input delay for combinational designs.
Microsemi's implementation currently requires this argument.

See Also
SDC Syntax Conventions

set_load

SDC command; sets the load to a specified value on a specified port.

set_load capacitance port_list

Arguments
capacitance

Specifies the capacitance value that must be set on the specified ports.

port_list

Specifies a list of ports in the current design on which the capacitance is to be set.

Description
The load constraint enables the Designer software to account for external capacitance at a specified port.
You cannot set load constraint on the nets. When you specify this constraint on the output ports, it
impacts the delay calculation on the specified ports.

Examples
The following examples show how to set output capacitance on different output ports:

set_load 35 out_p

set_load 40 {O1 02}

set_load 25 [get_ports out]

Supported Families
SmartFusion2, IGLOO2, RTG4

Microsemi Implementation Specifics
• In SDC, you can use the set_load command to specify capacitance value on nets. Microsemi

Implementation only supports output ports.

See Also
SDC Syntax Conventions

set_max_delay (SDC)

SDC command; specifies the maximum delay for the timing paths.

 Libero SoC Design Flow User Guide

 318

set_max_delay delay_value [-from from_list] [-to to_list]

Arguments
delay_value

Specifies a floating point number in nanoseconds that represents the required maximum delay value for
specified paths.

• If the path starting point is on a sequential device, the tool includes clock skew in the
computed delay.

• If the path starting point has an input delay specified, the tool adds that delay value to the
path delay.

• If the path ending point is on a sequential device, the tool includes clock skew and library
setup time in the computed delay.

• If the ending point has an output delay specified, the tool adds that delay to the path
delay.

-from from_list

Specifies a list of timing path starting points. A valid timing starting point is a clock, a primary input, an
inout port, or a clock pin of a sequential cell.

-to to_list

Specifies a list of timing path ending points. A valid timing ending point is a clock, a primary output, an
inout port, or a data pin of a sequential cell.

Supported Families
SmartFusion2, IGLOO2, RTG4

Description
This command specifies the required maximum delay for timing paths in the current design. The path
length for any startpoint in from_list to any endpoint in to_list must be less than delay_value.
The tool automatically derives the individual maximum delay targets from clock waveforms and port input
or output delays. For more information, refer to the create_clock, set_input_delay, and set_output_delay
commands.
The maximum delay constraint is a timing exception. This constraint overrides the default single cycle
timing relationship for one or more timing paths. This constraint also overrides a multicycle path
constraint.

Examples
The following example sets a maximum delay by constraining all paths from ff1a:CLK or ff1b:CLK to
ff2e:D with a delay less than 5 ns:

set_max_delay 5 -from {ff1a:CLK ff1b:CLK} -to {ff2e:D}

The following example sets a maximum delay by constraining all paths to output ports whose names start
by “out” with a delay less than 3.8 ns:

set_max_delay 3.8 -to [get_ports out*]

Microsemi Implementation Specifics
The –through option in the set_max_delay SDC command is not supported.

See Also
SDC Syntax Conventions

 Libero SoC Design Flow User Guide

 319

set_min_delay

SDC command; specifies the minimum delay for the timing paths.

set_min_delay delay_value [-from from_list] [-to to_list]

Arguments
delay_value

Specifies a floating point number in nanoseconds that represents the required minimum delay value for
specified paths.

• If the path starting point is on a sequential device, the tool includes clock skew in the computed
delay.

• If the path starting point has an input delay specified, the tool adds that delay value to the path delay.
• If the path ending point is on a sequential device, the tool includes clock skew and library setup time

in the computed delay.
• If the ending point has an output delay specified, the tool adds that delay to the path delay.

-from from_list

Specifies a list of timing path starting points. A valid timing starting point is a clock, a primary input, an
inout port, or a clock pin of a sequential cell.

-to to_list

Specifies a list of timing path ending points. A valid timing ending point is a clock, a primary output, an
inout port, or a data pin of a sequential cell.

Supported Families
SmartFusion2, IGLOO2, RTG4

Description
This command specifies the required minimum delay for timing paths in the current design. The path
length for any startpoint in from_list to any endpoint in to_list must be less than delay_value.
The tool automatically derives the individual minimum delay targets from clock waveforms and port input
or output delays. For more information, refer to the create_clock, set_input_delay, and set_output_delay
commands.
The minimum delay constraint is a timing exception. This constraint overrides the default single cycle
timing relationship for one or more timing paths. This constraint also overrides a multicycle path
constraint.

Examples
The following example sets a minimum delay by constraining all paths from ff1a:CLK or ff1b:CLK to ff2e:D
with a delay less than 5 ns:

set_min_delay 5 -from {ff1a:CLK ff1b:CLK} -to {ff2e:D}

The following example sets a minimum delay by constraining all paths to output ports whose names start
by “out” with a delay less than 3.8 ns:

set_min_delay 3.8 -to [get_ports out*]

Microsemi Implementation Specifics
The –through option in the set_min_delay SDC command is not supported.

See Also
SDC Syntax Conventions

 Libero SoC Design Flow User Guide

 320

set_multicycle_path

SDC command; defines a path that takes multiple clock cycles.

set_multicycle_path ncycles [-setup] [-hold] [-from from_list] [–through through_list] [-to
to_list]

Arguments
ncycles

Specifies an integer value that represents a number of cycles the data path must have for setup or hold
check. The value is relative to the starting point or ending point clock, before data is required at the ending
point.

-setup

Optional. Applies the cycle value for the setup check only. This option does not affect the hold check. The
default hold check will be applied unless you have specified another set_multicycle_path command for the
hold value.

-hold

Optional. Applies the cycle value for the hold check only. This option does not affect the setup check.

Note: If you do not specify "-setup" or "-hold", the cycle value is applied to the setup check and the
default hold check is performed (ncycles -1).
-from from_list

Specifies a list of timing path starting points. A valid timing starting point is a clock, a primary input, an
inout port, or a clock pin of a sequential cell.

-through through_list

Specifies a list of pins or ports through which the multiple cycle paths must pass.

-to to_list

Specifies a list of timing path ending points. A valid timing ending point is a clock, a primary output, an
inout port, or a data pin of a sequential cell.

Supported Families
SmartFusion2, IGLOO2, RTG4

Description
Setting multiple cycle paths constraint overrides the single cycle timing relationships between sequential
elements by specifying the number of cycles that the data path must have for setup or hold checks. If you
change the multiplier, it affects both the setup and hold checks.
False path information always takes precedence over multiple cycle path information. A specific maximum
delay constraint overrides a general multiple cycle path constraint.
If you specify more than one object within one -through option, the path passes through any of the
objects.

Examples
The following example sets all paths between reg1 and reg2 to 3 cycles for setup check. Hold check is
measured at the previous edge of the clock at reg2.

set_multicycle_path 3 -from [get_pins {reg1}] –to [get_pins {reg2}]

The following example specifies that four cycles are needed for setup check on all paths starting at the
registers in the clock domain ck1. Hold check is further specified with two cycles instead of the three
cycles that would have been applied otherwise.

 Libero SoC Design Flow User Guide

 321

set_multicycle_path 4 -setup -from [get_clocks {ck1}]

set_multicycle_path 2 -hold -from [get_clocks {ck1}]

Microsemi Implementation Specifics
• SDC allows multiple priority management on the multiple cycle path constraint depending on the scope of

the object accessors. In Microsemi design implementation, such priority management is not supported. All
multiple cycle path constraints are handled with the same priority.

See Also
SDC Syntax Conventions

set_output_delay

SDC command; defines the output delay of an output relative to a clock.

set_output_delay delay_value -clock clock_ref [–max] [–min] [–clock_fall] [-rise] [-fall] [-
add_delay] output_list

Arguments
delay_value

Specifies the amount of time before a clock edge for which the signal is required. This represents a
combinational path delay to a register outside the current design plus the library setup time (for maximum
output delay) or hold time (for minimum output delay).

-clock clock_ref

Specifies the clock reference to which the specified output delay is related. This is a mandatory argument.
If you do not specify -max or -min options, the tool assumes the maximum and minimum input delays to
be equal.

-max

Specifies that delay_value refers to the longest path from the specified output. If you do not specify -max
or -min options, the tool assumes the maximum and minimum output delays to be equal.

-min

Specifies that delay_value refers to the shortest path from the specified output. If you do not specify -max
or -min options, the tool assumes the maximum and minimum output delays to be equal.

-clock_fall

Specifies that the delay is relative to the falling edge of the clock reference. The default is the rising edge.

-rise

Specifies that the delay is relative to a rising transition on the specified port(s). If -rise or -fall is not
specified, then rising and falling delays are assumed to be equal.

-fall

Specifies that the delay is relative to a falling transition on the specified port(s). If -rise or -fall is not
specified, then rising and falling delays are assumed to be equal.

-add_delay

Specifies that this output delay constraint should be added to an existing constraint on the same port(s).
The -add_delay option is used to capture information on multiple paths with different clocks or clock
edges leading from the same output port(s).

output_list

 Libero SoC Design Flow User Guide

 322

Provides a list of output ports in the current design to which delay_value is assigned. If you need to specify
more than one object, enclose the objects in braces ({}).

Notes:
• The behavior of the -add_delay option is identical to that of PrimeTime(TM)
• If, using the -add_delay mechanism, multiple constraints are otherwise identical, except they specify

different -max or -min values
• the surviving -max constraint will be the maximum of the -max values
• the surviving -min constraint will be the minimum of the -min values

Supported Families
SmartFusion2, IGLOO2, RTG4

Description
The set_output_delay command sets output path delays on output ports relative to a clock edge. Output
ports have no output delay unless you specify it. For in/out (bidirectional) ports, you can specify the path
delays for both input and output modes. The tool adds output delay to path delay for paths ending at
primary outputs.

Examples
The following example sets an output delay of 1.2ns for port OUT1 relative to the rising edge of CLK1:

set_output_delay 1.2 -clock [get_clocks CLK1] [get_ports OUT1]

The following example sets a different maximum and minimum output delay for port OUT1 relative to the
falling edge of CLK2:

set_output_delay 1.0 -clock_fall -clock CLK2 –min {OUT1}

set_output_delay 1.4 -clock_fall -clock CLK2 –max {OUT1}

The following example demonstrates an override condition of two constraints. The first constraint is
overridden because the second constraint specifies a different clock for the same output:

set_output_delay 1.0 {OUT1} -clock CLK1 –max

set_output_delay 1.4 {OUT1} -clock CLK2 –max

The next example is almost the same as the previous one, however, in this case, the user has specified -
add_delay, so both constraints will be honored:

set_output_delay 1.0 {OUT1} -clock CLK1 –max

set_output_delay 1.4 {OUT1} -add_delay -clock CLK2 -max

The following example is more complex:
• All constraints are for an output to port PAD1 relative to a rising edge clock CLK2. Each combination of {-

rise, -fall} x {-max, -min} generates an independent constraint. But the max rise delay of 5 and the max rise
delay of 7 interfere with each other.

• For a -max option, the maximum value overrides all lower values. Thus the first constraint will be overridden
and the max rise delay of 7 will survive.

set_output_delay 5 [get_clocks CLK2] [get_ports PAD1] -max -rise -
add_delay # will be overridden

set_output_delay 3 [get_clocks CLK2] [get_ports PAD1] -min -fall -
add_delay

set_output_delay 3 [get_clocks CLK2] [get_ports PAD1] -max -fall -
add_delay

set_output_delay 7 [get_clocks CLK2] [get_ports PAD1] -max -rise -
add_delay

 Libero SoC Design Flow User Guide

 323

Microsemi Implementation Specifics
• In SDC, the -clock is an optional argument that allows you to set the output delay for combinational designs.

Microsemi Implementation currently requires this option.

See Also
SDC Syntax Conventions

Design Object Access Commands

Design object access commands are SDC commands. Most SDC constraint commands require one of these
commands as command arguments.
Microsemi software supports the following SDC access commands:

Design Object Access Command

Cell get_cells

Clock get_clocks

Net get_nets

Port get_ports

Pin get_pins

Input ports all_inputs

Output ports all_outputs

Registers all_registers

See Also
About SDC Files

all_inputs
Design object access command; returns all the input or inout ports of the design.

all_inputs

Arguments

• None

Supported Families

SmartFusion2, IGLOO2, RTG4

Exceptions

• None

 Libero SoC Design Flow User Guide

 324

Example

set_max_delay -from [all_inputs] -to [get_clocks ck1]

Microsemi Implementation Specifics

• None

See Also
SDC Syntax Conventions

all_outputs
Design object access command; returns all the output or inout ports of the design.

all_outputs

Arguments

• None

Supported Families

SmartFusion2, IGLOO2, RTG4

Exceptions

• None

Example

set_max_delay -from [all_inputs] -to [all_outputs]

Microsemi Implementation Specifics

None

See Also
SDC Syntax Conventions

all_registers
Design object access command; returns either a collection of register cells or register pins, whichever you specify.

all_registers [-clock clock_name] [-cells] [-data_pins]
 [-clock_pins] [-async_pins] [-output_pins]

Arguments

-clock clock_name

Creates a collection of register cells or register pins in the specified clock domain.

-cells

 Libero SoC Design Flow User Guide

 325

Creates a collection of register cells. This is the default. This option cannot be used in combination with
any other option.

-data_pins

Creates a collection of register data pins.

-clock_pins

Creates a collection of register clock pins.

-async_pins

Creates a collection of register asynchronous pins.

-output_pins

Creates a collection of register output pins.

Supported Families

SmartFusion2, IGLOO2, RTG4

Description

This command creates either a collection of register cells (default) or register pins, whichever is specified.
If you do not specify an option, this command creates a collection of register cells.

Exceptions

• None

Examples

set_max_delay 2 -from [all_registers] -to [get_ports {out}]

set_max_delay 3 –to [all_registers –async_pins]

set_false_path –from [all_registers –clock clk150]

set_multicycle_path –to [all_registers –clock c* -data_pins

 –clock_pins]

Microsemi Implementation Specifics

• None

See Also
SDC Syntax Conventions

get_cells
Design object access command; returns the cells (instances) specified by the pattern argument.

get_cells pattern

Arguments

pattern

 Libero SoC Design Flow User Guide

 326

Specifies the pattern to match the instances to return. For example, "get_cells U18*" returns all instances
starting with the characters "U18", where “*” is a wildcard that represents any character string.

Supported Families

SmartFusion2, IGLOO2, RTG4

Description

This command returns a collection of instances matching the pattern you specify. You can only use this
command as part of a –from, -to, or –through argument for the following constraint exceptions: set_max
delay, set_multicycle_path, and set_false_path design constraints.

Exceptions

None

Examples

set_max_delay 2 -from [get_cells {reg*}] -to [get_ports {out}]

set_false_path –through [get_cells {Rblock/muxA}]

Microsemi Implementation Specifics

• None

See Also
SDC Syntax Conventions

get_clocks
Design object access command; returns the specified clock.

get_clocks pattern

Arguments

pattern

Specifies the pattern to match to the SmartTime on which a clock constraint has been set.

Supported Families

SmartFusion2, IGLOO2, RTG4

Description

• If this command is used as a –from argument in maximum delay (set_max_path_delay), false path
(set_false_path), and multicycle constraints (set_multicycle_path), the clock pins of all the registers related
to this clock are used as path start points.

• If this command is used as a –to argument in maximum delay (set_max_path_delay), false path
(set_false_path), and multicycle constraints (set_multicycle_path), the synchronous pins of all the
registers related to this clock are used as path endpoints.

 Libero SoC Design Flow User Guide

 327

Exceptions

• None

Example

set_max_delay -from [get_ports datal] -to \

[get_clocks ck1]

Microsemi Implementation Specifics

None

See Also
SDC Syntax Conventions

get_pins
Design object access command; returns the specified pins.

get_pins pattern

Arguments

pattern

Specifies the pattern to match the pins.

Supported Families

SmartFusion2, IGLOO2, RTG4

Exceptions

None

Example

create_clock -period 10 [get_pins clock_gen/reg2:Q]

Microsemi Implementation Specifics

• None

See Also
SDC Syntax Conventions

get_nets
Design object access command; returns the named nets specified by the pattern argument.

get_nets pattern

 Libero SoC Design Flow User Guide

 328

Arguments

pattern

Specifies the pattern to match the names of the nets to return. For example, "get_nets N_255*" returns all
nets starting with the characters "N_255", where “*” is a wildcard that represents any character string.

Supported Families

SmartFusion2, IGLOO2, RTG4

Description

This command returns a collection of nets matching the pattern you specify. You can only use this
command as source objects in create clock (create_clock) or create generated clock
(create_generated_clock) constraints and as -through arguments in set false path (set_false_path), set
minimum delay (set_min_delay), set maximum delay (set_max_delay), and set multicycle path
(set_multicycle_path) constraints.

Exceptions

None

Examples

set_max_delay 2 -from [get_ports RDATA1] -through [get_nets {net_chkp1
net_chkqi}]

set_false_path –through [get_nets {Tblk/rm/n*}]

create_clcok -name mainCLK -per 2.5 [get_nets {cknet}]

Microsemi Implementation Specifics

None

See Also
SDC Syntax Conventions

get_ports
Design object access command; returns the specified ports.

get_ports pattern

Argument

pattern

Specifies the pattern to match the ports. This is equivalent to the macros $in()[<pattern>] when used as –
from argument and $out()[<pattern>] when used as –to argument or $ports()[<pattern>] when used as a –
through argument.

 Libero SoC Design Flow User Guide

 329

Supported Families

SmartFusion2, IGLOO2, RTG4

Exceptions

None

Example

create_clock -period 10[get_ports CK1]

Microsemi Implementation Specifics

None

See Also
SDC Syntax Conventions

	Table of Contents
	Welcome to Microsemi's Libero® SoC v12.0 4
	Licensing and Additional Resources 4
	Libero SoC Design Flow - SmartFusion2, IGLOO2, RTG4 8
	Design Flow and Design Sources 10
	Supported Families 12
	File Types in Libero SoC 13
	Software Tools - Libero SoC 14
	Software IDE Integration 15
	Starting the Libero GUI 16
	Design Report 17
	Using the Libero SoC New Project Wizard 18
	System Builder 26
	MSS - SmartFusion2 only 26
	Create with SmartDesign 29
	Changing memory content 72
	Create Core from HDL 81
	Designing with HDL 82
	Designing with Block Flow 86
	Verify Pre-Synthesized Design - RTL Simulation 86
	Invocation of Constraint Manager From the Design Flow Window 91
	Libero SoC Design Flow 91
	Introduction to Constraint Manager 92
	Import a Constraint File 96
	Constraint Types 101
	Constraint Manager – I/O Attributes Tab 102
	IO Advisor (SmartFusion2, IGLOO2, and RTG4) 103
	Constraint Manager – Timing Tab 110
	Derived Constraints 113
	Constraint Manager – Floor Planner Tab 114
	Constraint Manager – Netlist Attributes Tab 115
	Synthesize 117
	Verify Post-Synthesized Design 122
	Configure Flash*Freeze 123
	Configure Register Lock Bits 123
	Design Flow in Implementation 125
	Place and Route - SmartFusion2, IGLOO2, RTG4 130
	Multiple Pass Layout Configuration (SmartFusion2, IGLOO2, RTG4) 134
	Resource Usage (SmartFusion2, IGLOO2, RTG4) 136
	Global Net Report 137
	Verify Post Layout Implementation 143
	Programming Connectivity and Interface 164
	Programmer Settings 166
	Select Programmer 168
	Generate FPGA Array Data 169
	Configure I/O States During JTAG Programming 174
	Configure Programming Options (SmartFusion2 and IGLOO2) 175
	Configure Programming Options (RTG4 Only) 178
	Configure Security 182
	Configure Bitstream 190
	Generate Bitstream 191
	Run Programming Device Actions - SmartFusion2, IGLOO2, RTG4 192
	Generate SmartDebug FPGA Array Data 205
	SmartDebug 205
	Identify Debug Design 206
	Export Bitstream 208
	Export Bitstream - RTG4 213
	Export FlashPro Express Job - SmartFusion2, IGLOO2, RTG4 214
	Export Job Manager Data - SmartFusion2, IGLOO2 219
	Export Pin Report 220
	Export BSDL File 220
	Export IBIS Model 220
	Software IDE Integration 222
	Export Firmware – SmartFusion2 222

	Libero SoC Introduction
	Welcome to Microsemi's Libero® SoC v12.0
	More Information

	Licensing and Additional Resources
	Microsemi License Utility
	FPGA and SoC Product Documentation Available on the Microsemi Web Site
	Information About Supported Families:
	Information About Libero SoC Software
	Application Notes and Tutorials

	Online Help - Libero SoC
	Viewing HTML Files on Linux

	See Also
	Using Navigation tabs
	Contents
	Search

	Reading User Guides
	Viewing PDF Files on Linux

	Microsemi SoC Products Group Headquarters
	Contact Information

	Libero SoC Design Flow - SmartFusion2, IGLOO2, RTG4
	Create Design
	Constraints
	Implement
	Program and Debug Design
	Handoff Design for Production
	Handoff Design for Firmware Development
	Handoff Design for Debugging (Export SmartDebug Data)

	Design Flow and Design Sources
	Design Flow for HDL designs
	Design Flow for EDIF designs

	Supported Families
	File Types in Libero SoC
	Internal Files

	Software Tools - Libero SoC
	Software IDE Integration
	See Also

	Libero Design Flow for SmartFusion2, IGLOO2, and RTG4
	Starting the Libero GUI
	The Design Flow Window

	Design Report
	Using the Libero SoC New Project Wizard
	New Project Creation Wizard – Project Details
	Project

	See Also
	New Project Creation Wizard – Device Selection
	New Project Creation Wizard – Device Settings
	New Project Creation Wizard – Design Template (SmartFusion2 and IGLOO2 only)
	New Project Creation Wizard – Add HDL Source Files
	New Project Creation Wizard - Add Constraints

	Create and Verify Design
	System Builder
	MSS - SmartFusion2 only
	Instantiate a SmartFusion2 MSS in your Design
	Configure the SmartFusion2 MSS
	Generate SmartFusion2 MSS Files

	Create with SmartDesign
	Introduction to SmartDesign
	About SmartDesign
	SmartDesign Design Flow
	Using Existing Projects with SmartDesign
	SmartDesign Frequently Asked Questions
	General Questions
	Instantiating Into Your SmartDesign
	Working in SmartDesign
	Working with Processor-Based Designs in SmartDesign
	VHDL Construct Support in SmartDesign
	Making your Design Look Nice
	Generating your Design

	Getting Started With SmartDesign
	Creating a New SmartDesign Component
	Opening an Existing SmartDesign Component
	Saving/Closing a SmartDesign Component
	Generating a SmartDesign Component
	Importing a SmartDesign Component
	Deleting a SmartDesign Component from the Libero SoC Project
	Generating a Memory Map
	Modify Memory Map Dialog Box

	Canvas View
	Canvas Overview

	See Also
	Displaying Connections on the Canvas
	Pin and Attribute Icons

	Making Connections Using the Canvas
	Promoting Ports to Top Level
	Tying Off Input Pins
	Tying to Constant
	Making Driver and Bus Interface Pins Unused

	See Also
	Simplifying the Display of Pins on an Instance using Pin Groups
	Bus Instances
	Adding Graphic Objects
	Adding and Deleting Lines and Shapes
	Adding Text
	Editing Properties for Graphic Objects on the Canvas

	Auto-Arranging Instances
	Locking Instance and Top Level Port Positions

	See Also
	Replace Component for Instance
	Replace Instance Version
	Slicing
	Rename Net
	Automatic Names of Nets

	Organizing Your Design on the Canvas

	SmartDesign Reference
	SmartDesign Menu
	SmartDesign Glossary
	Canvas Icons
	VHDL Special Types - Examples and meta.out File Format
	Integer
	Unsigned
	Array and Array of Arrays
	Record
	meta.out File Format

	Creating a SmartDesign
	Renaming a Component
	Adding Components and Modules (Instantiating)
	Adding a SmartDesign Component

	Adding or Modifying Top Level Ports
	Add Prefixes to Bus Interface / Group Names on Top-level Ports:
	Adding/Renaming Ports
	Modify Port

	See Also
	Connecting Instances
	Automatic Connections
	QuickConnect
	Manual Connections
	Deleting Connections
	Top-Level Connections

	Bus Interfaces
	About Bus Interfaces

	See Also:
	Using Bus Interfaces in SmartDesign
	Adding or Modifying Bus Interfaces in SmartDesign
	Bus Interfaces
	DirectCore Bus Interfaces
	Show/Hide Bus Interface Pins
	Default Tie-offs with Bus Interfaces
	Tying Off (Disabling) Unused Bus Interfaces
	Required vs. Optional Bus Interfaces

	See Also
	Promoting Bus Interfaces to Top-level
	Incremental Design
	Reconfiguring a Component

	See Also
	Fixing an Out-of-Date Instance

	See Also
	Replacing Component Version
	Design State Management

	Changing memory content
	Design Rules Check
	Message Types:

	Generating a SmartDesign Component
	Export Component Description(Tcl)
	Examples

	SmartDesign Testbench

	Create Core from HDL
	To create a core from your HDL:
	Edit Core Definition
	Remove Core Definition

	Designing with HDL
	Create HDL
	Using the HDL Editor
	HDL Syntax Checker
	Commenting Text
	Find
	Column Editing

	Importing HDL Source Files
	Mixed-HDL Support in Libero SoC
	HDL Testbench
	HDL Type
	Name
	Clock Period (ns)

	Designing with Block Flow
	Verify Pre-Synthesized Design - RTL Simulation
	Project Settings: Simulation - Options and Libraries
	DO file
	Waveforms
	Vsim Commands
	Timescale
	Simulation Libraries

	Selecting a Stimulus File for Simulation
	Selecting Additional Modules for Simulation
	Performing Functional Simulation
	Performing DirectCore Functional Simulation

	Libero SoC Constraint Management
	Invocation of Constraint Manager From the Design Flow Window
	Libero SoC Design Flow
	Introduction to Constraint Manager
	Synthesis Constraints
	Synplify Netlist Constraints (*.fdc)
	Compile Netlist Constraints (*.ndc)
	SDC Timing Constraints (*.sdc)
	Derived Timing Constraints (*.sdc)

	Place and Route Constraints
	I/O PDC Constraints
	Floorplanning PDC Constraints
	Timing SDC Constraint file (*.sdc)

	Timing Verifications Constraints
	Constraint Manager Components
	Constraint File and Tool Association
	Derive Constraints in Timing Tab
	Create New Constraints
	Constraint File Order

	Import a Constraint File
	Link a Constraint File
	Check a Constraint File
	Check Result

	Edit a Constraint File

	Constraint Types
	Constraint Manager – I/O Attributes Tab
	File and Tool Association
	I/O Settings

	IO Advisor (SmartFusion2, IGLOO2, and RTG4)
	Introduction
	Output Load
	Search and Regular Expressions
	Status Column
	Column Display and Sorting
	Set Output Load
	Restore Initial Value
	Output Drive and Slew
	How the Suggested Values Are Computed
	Apply Suggestion
	Adjust ODT and Schmitt Trigger
	Search and Regular Expressions
	Status Column
	Column Display and Sorting
	Set Schmitt Trigger
	Set ODT Static
	Set ODT Impedance (Ohm)
	Apply Suggestion
	Restore Initial Value
	Summary of Changes

	Constraint Manager – Timing Tab
	File and Tool Association
	Example 1
	Example 2

	Derived Constraints
	Constraint Manager – Floor Planner Tab
	File and Tool Association
	See Also

	Constraint Manager – Netlist Attributes Tab
	File and Tool Association

	Implement Design
	Synthesize
	Synthesize Options
	HDL Synthesis Language Settings
	Global Nets (Promotions and Demotions)
	Optimizations
	Additional options for Synplify Pro synthesis

	Synplify Pro ME
	Identify Debug Design

	Verify Post-Synthesized Design
	Generate Simulation File
	Verify Post-Synthesis Implementation - Simulate

	Configure Flash*Freeze
	uRAM/LSRAM State
	MSS Clock Source

	Configure Register Lock Bits
	Register Lock Bit Text File Template
	Register Lock Bit File Syntax
	Validation of Register Lock Bits Configuration File

	Design Flow in Implementation
	Design State Invalidation
	Constraints and Design Invalidation

	Check Constraints
	Design State and Constraints Check

	Edit Constraints
	Constraint Type and Interactive Tool

	Place and Route - SmartFusion2, IGLOO2, RTG4
	Place and Route Options
	Timing-Driven
	Power-Driven
	I/O Register Combining
	Driver Replication
	High Effort Layout
	Repair Minimum Delay Violations
	Incremental Layout
	Use Multiple Pass
	Block Creation – Number of row-global resources

	See Also

	Multiple Pass Layout Configuration (SmartFusion2, IGLOO2, RTG4)
	Iteration Summary Report
	See Also

	Resource Usage (SmartFusion2, IGLOO2, RTG4)
	Overlapping of Resource Reporting

	Global Net Report
	Global Nets Information
	I/O to GB Connections
	Fabric to GB Connections
	CCC to GB Connections
	CCC Input Connections
	Local Clock Nets to RGB Connections
	Local Reset Nets to RGRESET Connections (RTG4 only)
	Global Reset Nets to RGRESET Connections (RTG4 only)
	Global Clock Nets to RGB Connections
	Warnings (RTG4 only)
	See Also

	Verify Post Layout Implementation
	Generate Back Annotated Files - SmartFusion2, IGLOO2, and RTG4
	Simulate - Opens ModelSim ME
	Verify Timing
	Verify Timing Configuration
	Types of Timing Reports

	SmartTime
	Verify Power
	Verify Power sub-commands
	SmartPower

	IO Advisor (SmartFusion2, IGLOO2, and RTG4)
	Introduction
	Output Load
	Search and Regular Expressions
	Status Column
	Column Display and Sorting
	Set Output Load
	Restore Initial Value
	Output Drive and Slew
	How the Suggested Values Are Computed
	Apply Suggestion
	Adjust ODT and Schmitt Trigger
	Search and Regular Expressions
	Status Column
	Column Display and Sorting
	Set Schmitt Trigger
	Set ODT Static
	Set ODT Impedance (Ohm)
	Apply Suggestion
	Restore Initial Value
	Summary of Changes

	Simultaneous Switching Noise
	Introduction
	Supported Families
	Supported Die/Package
	Supported I/O Standard
	Supported I/O Types
	SSN Analyzer
	Noise Report
	Right-click Menu Items
	Search and Filter
	Pulse Width
	Run Analysis
	Save Report

	Excluded I/Os
	Summary
	User Action When SSN Noise Analyzer Reports Failure

	See Also

	Configure Hardware
	Programming Connectivity and Interface
	Hover Information
	Device Chain Details
	Right-Click Properties
	See Also

	Programmer Settings
	FlashPro5/4/3/3X Programmer Settings
	TCK Setting (ForceTCK Frequency)
	Default TCK frequency
	FlashPro Programmer Settings

	Select Programmer
	See Also
	Programmer Settings

	Program Design
	Generate FPGA Array Data
	Update uPROM Memory Content - RTG4 Only
	Update eNVM Memory Content (SmartFusion2 and IGLOO2)
	Modify Data Storage Client
	Modify Serialization Client

	Configure I/O States During JTAG Programming
	Configure Programming Options (SmartFusion2 and IGLOO2)
	Options
	Programming recovery settings:

	Configure Programming Options (RTG4 Only)
	Options
	Bitstream Settings

	Configure Security
	Configure Security Policy Manager
	Update Policy
	Debug Security Policy
	Key Mode Policy
	Security Features Frequently Asked Questions
	Security Programming Files

	Configure Bitstream
	Generate Bitstream
	See also

	Run Programming Device Actions - SmartFusion2, IGLOO2, RTG4
	Programming File Actions
	Options Available in Programming Actions

	Exit Codes (SmartFusion2 and IGLOO2)
	Exit Codes (RTG4)

	Debug Design
	Generate SmartDebug FPGA Array Data
	SmartDebug
	Integrated Mode
	Standalone Mode
	See Also
	SmartDebug User Guide

	Identify Debug Design

	Handoff Design for Production
	Export Bitstream
	See Also
	Export Bitstream tool when the device is configured with Bitstream Encryption with Default Key in the Security Policy Manager
	Export Bitstream tool when the device is configured with Custom Security option in the Security Policy Manager - SmartFusion2 and IGLOO2
	Security Programming Files

	Export Bitstream - RTG4
	Export FlashPro Express Job - SmartFusion2, IGLOO2, RTG4
	SmartFusion2 and IGLOO2
	Export FlashPro Express Job when the design is configured with Bitstream Encryption with Default Key in the Security Policy Manager
	RTG4
	Prepare Design for Production Programming in FlashPro Express

	Export Job Manager Data - SmartFusion2, IGLOO2
	Export Pin Report
	Export BSDL File
	Export IBIS Model

	Handoff Design for Firmware Development
	Software IDE Integration
	See Also

	Export Firmware – SmartFusion2
	TCL Command
	Version Supported

	Export SmartDebug Data (Libero SoC)
	References
	Catalog
	Viewing Cores in the Catalog
	Catalog Options
	Manually Downloading MegaVaults and Individual CPZ files

	Catalog Options Dialog Box
	Vault/Repositories Settings
	Repositories
	Vault location
	Read only vault

	View Settings
	Display
	Filters

	Changing Output Port Capacitance
	Configure Bitstream
	Importing Source Files – Copying Files Locally
	Create Clock Constraint Dialog Box
	Clock Source
	Clock Name
	Period
	Frequency
	Starting Clock Edge Selector
	Offset
	Duty Cycle
	Add this clock to existing one with same source
	Comment

	See Also
	Create Generated Clock Constraint Dialog Box
	Clock Pin
	Reference Pin
	Generated Clock Name
	Generated Frequency
	Generated Clock Edges
	Edge Shift
	Generated Waveform
	Phase
	PLL Output
	PLL Feedback
	Add Clock to Existing Clock
	Master Clock
	Comment

	See Also
	Design Hierarchy in the Design Explorer
	Digest File
	Use Case
	Example Using STAPL File
	Example Using Programming Job

	Editable Constraints Grid
	extended_run_lib
	Arguments
	Return
	Supported Families
	Exceptions

	See Also
	Files Tab and File Types
	File Types

	Importing Files
	File Types for Import

	Layout Error Message: layoutg4DesignHard
	Layout Error Message: layoutg4NoValidPlacement
	list_clock_groups
	Arguments
	Supported Families
	Example

	See Also
	Project Manager - Cores Dialog Box (Advanced Download Mode)
	Project Settings Dialog Box
	Device Selection
	Device Settings
	Design Flow
	Analysis Operating Conditions (For SmartFusion2, IGLOO2, RTG4)
	Simulation Options and Simulation Libraries

	Project Settings: Design flow
	HDL source files language options
	HDL generated files language options
	Block flow
	Root <module_name>
	Synthesis gate level netlist format
	Design methodology (Available only in SmartFusion2 and IGLOO2)
	Design Separation(Available only in SmartFusion2 and IGLOO2)
	Reports
	Abort Flow Conditions

	Project Settings: Simulation - Options and Libraries
	DO file
	Waveforms
	Vsim Commands
	Timescale
	Simulation Libraries

	remove_clock_groups
	Arguments
	Supported Families
	Example

	See Also
	Running Libero SoC from your Software Tool Chain
	Search in Libero SoC
	Current Open SmartDesign
	Current Open Text Editor
	Design Hierarchy
	Stimulus Hierarchy
	Log Window
	Reports
	Files
	Files on disk

	Select Generated Clock Reference Dialog Box

	See Also
	Select Generated Clock Source Dialog Box
	Select Source or Destination Pins for Constraint Dialog Box
	Select Source Pins for Clock Constraint Dialog Box

	See Also
	Set a Disable Timing Constraint
	Set Clock Source Latency Dialog Box
	Clock Name or Source
	Late Rise
	Early Rise
	Late Fall
	Early Fall
	Clock Edges
	Comment

	See Also
	Set Constraint to Disable Timing Arcs Dialog Box
	Instance Name
	Exclude All Timing Arcs in the Instance
	Specify Timing Arc to Exclude
	Comment

	See Also
	Set False Path Constraint Dialog Box
	From
	Through
	To
	Comment

	Set Maximum Delay Constraint Dialog Box
	Maximum Delay
	From
	Through
	To
	Comment

	See Also
	Set Minimum Delay Constraint Dialog Box
	Minimum Delay
	From
	Through
	To
	Comment

	See Also
	Set Multicycle Constraint Dialog Box
	Setup Path Multiplier
	From
	Through
	To
	Comment
	Hold Path Multiplier

	See Also
	set_clock_groups
	Arguments
	Supported Families
	Example

	See Also
	set_clock_to_output
	Arguments
	Supported Families

	set_clock_uncertainty
	Arguments
	Supported Families
	Description
	Examples

	set_external_check
	Arguments
	Supported Families
	Description
	Examples

	See Also
	set_min_delay
	Arguments
	Supported Families
	Description
	Examples
	Microsemi Implementation Specifics

	See Also
	Organize Source Files Dialog Box – Synthesis
	Specify I/O States During Programming Dialog Box
	Load from file
	Save to file
	Port Name
	Macro Cell
	Pin Number
	I/O State (Output Only)

	Specifying a False Path Constraint
	Specifying a Maximum Delay Constraint

	See Also
	Specifying a Minimum Delay Constraint

	See Also
	Specifying a Multicycle Constraint

	See Also
	Specifying Disable Timing Constraint

	See Also
	Specifying Clock Constraints
	Specifying Generated Clock Constraints
	Specifying I/O States During Programming - I/O States and BSR Details
	I/O State (Output Only)
	Boundary Scan Registers - Enabled with Show BSR Details

	Stimulus Hierarchy
	Timing Exceptions Overview
	Tool Profiles Dialog Box
	User Preferences Dialog Box – Design Flow Preferences
	Constraint Flow
	Design Flow Rule Checks
	SmartDesign Generation Options

	Synopsys Design Constraints (SDC)
	See Also
	Libero DesignFlow SDC Commands
	SDC Syntax Conventions
	Example
	Wildcard Characters
	Special Characters ([], { }, and \)
	Entering Arguments on Separate Lines

	See Also
	create_clock
	Arguments
	Supported Families
	Description
	Exceptions
	Examples
	Microsemi Implementation Specifics

	See Also
	create_generated_clock
	Arguments
	Supported Families
	Description
	Examples
	Microsemi Implementation Specifics

	See Also
	remove_clock_uncertainty
	Arguments
	Supported Families
	Description
	Exceptions
	Examples

	See Also
	set_clock_latency
	Arguments
	Supported Families
	Description
	Exceptions
	Examples
	Microsemi Implementation Specifics

	See Also
	set_clock_to_output
	Arguments
	Supported Families

	set_clock_uncertainty
	Arguments
	Supported Families
	Description
	Exceptions
	Examples
	Microsemi Implementation Specifics

	See Also
	set_disable_timing
	Arguments
	Supported Families
	Description
	Examples
	Microsemi Implementation Specifics

	See Also
	set_external_check
	Arguments
	Supported Families
	Description
	Examples

	See Also
	set_false_path
	Arguments
	Supported Families
	Description
	Examples
	Microsemi Implementation Specifics

	See Also
	set_input_delay
	Arguments
	Notes:
	Supported Families
	Description
	Examples
	Microsemi Implementation Specifics

	See Also
	set_load
	Arguments
	Description
	Examples
	Supported Families
	Microsemi Implementation Specifics

	See Also
	set_max_delay (SDC)
	Arguments
	Supported Families
	Description
	Examples
	Microsemi Implementation Specifics

	See Also
	set_min_delay
	Arguments
	Supported Families
	Description
	Examples
	Microsemi Implementation Specifics

	See Also
	set_multicycle_path
	Arguments
	Supported Families
	Description
	Examples
	Microsemi Implementation Specifics

	See Also
	set_output_delay
	Arguments
	Notes:
	Supported Families
	Description
	Examples
	Microsemi Implementation Specifics

	See Also
	Design Object Access Commands

	See Also
	all_inputs
	Arguments
	Supported Families
	Exceptions
	Example
	Microsemi Implementation Specifics

	See Also
	all_outputs
	Arguments
	Supported Families
	Exceptions
	Example
	Microsemi Implementation Specifics

	See Also
	all_registers
	Arguments
	Supported Families
	Description
	Exceptions
	Examples
	Microsemi Implementation Specifics

	See Also
	get_cells
	Arguments
	Supported Families
	Description
	Exceptions
	Examples
	Microsemi Implementation Specifics

	See Also
	get_clocks
	Arguments
	Supported Families
	Description
	Exceptions
	Example
	Microsemi Implementation Specifics

	See Also
	get_pins
	Arguments
	Supported Families
	Exceptions
	Example
	Microsemi Implementation Specifics

	See Also
	get_nets
	Arguments
	Supported Families
	Description
	Exceptions
	Examples
	Microsemi Implementation Specifics

	See Also
	get_ports
	Argument
	Supported Families
	Exceptions
	Example
	Microsemi Implementation Specifics

	See Also

