PX-610

Vectron offers a High Temperature Crystal Oscillator (PX-610) product platform for extreme environment applications. In addition to its wide operating temperature range, PX-610 HTXO is also ideal for high shock \& vibration applications. The foot print of the PX-610 design is based on an industry standard TO-39 package.

Vectron's vertical integration in the following technical areas ensures the ability to design and manufacture state of the art high temperature frequency control products:

- BAW \& SAW Design \& Fabrication to produce high quality resonators.
- RF Oscillator Circuit Design.
- Established $250^{\circ} \mathrm{C}$ High Temperature Electronics Packaging Expertise.
- Established $250^{\circ} \mathrm{C}$ High Temperature Electronics Assembly \& Test Expertise.
- Environmental Screening.

Vectron's manufacturing processes, from quartz resonator fabrication to oscillator electronics assembly and test, are painstakingly controlled via ISO and SPC procedures. Vectron fabricates high temperature quartz resonators using proprietary manufacturing processes designed specifically for high temperature and harsh environment applications. In order to ensure high reliability in the field, critical electrode metallization and testing processes are conducted inside state-of-the-art Class 1 K cleanrooms, while oscillator assembly is conducted in Class 10 K cleanrooms. All high temperature oscillators are 100% tested before delivery.

Features

- Continuous operating temperature range $-55^{\circ} \mathrm{C}$ to $\mathbf{2 3 0}{ }^{\circ} \mathrm{C}$

Applications

- Low jitter and phase noise
- Oil / Gas downhole tool
- $1.8 \mathrm{Vdc}, 2.5 \mathrm{Vdc}, 3.3 \mathrm{Vdc}$ or 5 Vdc operation
- Geophysical services
- High temperature industrial process control
- Compliant crystal mount for high shock \& vibration
- Extended temperature Military/Aerospace
- Output frequency 32 kHz to 40 MHz standard
- Avionics
- 0.380" diameter x $0.185^{\prime \prime}$ high resistance welded 3 pin TO-39 package
- Engine control
- RoHS Compliant
- Made in USA

Block Diagram

Performance Specifications

Specification Parameters	Values	
Frequency Range	32 kHz to 40MHz	
Supply (Vdd)	$\begin{aligned} & +5.0 \mathrm{Vdc} \pm 5 \% \text { (D) } \\ & +3.3 \mathrm{Vdc} \pm 5 \% \text { (E) } \end{aligned}$	$\begin{aligned} & +2.5 \mathrm{Vdc} \pm 5 \%(\mathrm{H}) \\ & +1.8 \mathrm{Vdc} \pm 5 \%(\mathrm{~J}) \end{aligned}$
Current	5 mA typical @ 20MHz, 3.3V (low current option is available, consult factory)	
Level "0" \&"1"	<0.4V / >Vdd-0.5V	
Output	HCMOS compatibility (A)	
Rise \& Fall Time	1 ns typical / 5ns Max	
Symmetry	45/55\%	
Operating Temperature	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C}(1) \\ -20^{\circ} \mathrm{C} \text { to }+180^{\circ} \mathrm{C}(\mathrm{Z}) \\ -55^{\circ} \mathrm{C} \text { to }+180^{\circ} \mathrm{C}(\mathrm{Y}) \end{gathered}$	$\begin{aligned} & 0^{\circ} \mathrm{C} \text { to }+200^{\circ} \mathrm{C}(2) \\ & 0^{\circ} \mathrm{C} \text { to }+230^{\circ} \mathrm{C} \text { (3) } \end{aligned}$ (other custom temperature ranges are available, consult factory)
Jitter (12kHz - 20MHz)	<0.5ps	
Phase Noise (Typical @40MHz, HCMOS, 3.3V)	10 Hz $-80 \mathrm{dBc} / \mathrm{Hz}$ 100 Hz $-120 \mathrm{dBc} / \mathrm{Hz}$ 1 kHz $-140 \mathrm{dBc} / \mathrm{Hz}$	10 kHz $-155 \mathrm{dBc} / \mathrm{Hz}$ 100 kHz $-160 \mathrm{dBc} / \mathrm{Hz}$ 1 MHz $-160 \mathrm{dBc} / \mathrm{Hz}$
Temperature Stability	$\begin{gathered} \pm 40 \mathrm{ppm}(\mathrm{~J}) \\ \pm 100 \mathrm{ppm}(\mathrm{~S}) \\ \pm 150 \mathrm{ppm}(\mathrm{U}) \end{gathered}$	$\begin{aligned} & \pm 250 \mathrm{ppm}(\mathrm{~W}) \\ & \pm 350 \mathrm{ppm}(\mathrm{Y}) \end{aligned}$
Package Size (mm)	0.38 " $\times .0185^{\prime \prime} 3$ pin TO-39 resistance weld package	
Storage Temperature	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	

Environmental Compliance		
Vibration-Sine	$20 \mathrm{~g}, 10 \mathrm{~Hz}$ to 2 kHz Sine	MIL-STD-202 Method 204 Condition D
Vibration-Random	$20 \mathrm{grms}, 10 \mathrm{~Hz}$ to 2 kHz Random	MIL-STD-202 Method 214 Condition I-F
Shock	$1000 \mathrm{~g}, 0.5 \mathrm{~ms}$	MIL-STD-202 Method 213 Condition E
Seal Test	Fine	MIL-STD-883 Method 1014 Condition A2
Seal Test	Gross	MIL-STD-202 Method 112 Condition D
Temperature Cycling	10 Cycles minimum	MIL-STD-883 Method 1010 Condition B
Acceleration	$5000 \mathrm{~g} \mathrm{Y1} \mathrm{axis}$	MIL-STD-883 Method 2001 Condition A

Physical Specifications

Pin	Function
1	Vdd Power Supply Voltage
2	RF Output
3	Case \& Electrical Ground

Typical Phase Noise Performance

Standard Frequency List							
32.768 kHz	512.000 kHz	1.000 MHz	1.024 MHz	2.000 MHz	2.048 MHz	3.6864 MHz	4.000 MHz
4.096 MHz	4.9152 MHz	5.000 MHz	7.3728 MHz	7.500 MHz	8.000 MHz	8.192 MHz	10.000 MHz
12.000 MHz	16.000 MHz	16.384 MHz	20.000 MHz	24.000 MHz	32.000 MHz	32.768 MHz	40.000 MHz
48.000 MHz							

This Page Intentionally Left Blank

For Additional Information, Please Contact

USA:

Vectron International
267 Lowell Road, Unit 102
Hudson, NH 03051
Tel: 1.888.328.7661
Fax: 1.888.329.8328

Europe:

Vectron International
Landstrasse, D-74924
Neckarbischofsheim, Germany
Tel: +49 (0) 3328.4784.17
Fax: +49 (0) 3328.4784 .30

Asia:
Vectron International
68 Yin Cheng Road(C), 22nd Floor
One LuJiaZui
Pudong, Shanghai 200120, China
Tel: 86.21.6194.6886
Fax: 86.21.6194.6699

