Vectron's VC-806 Crystal Oscillator is a quartz stabilized, differential output oscillator, operating off either a 2.5 or 3.3 volt supply in a hermetically sealed 3.2x5 ceramic package. ## Features Applications - Ultra Low Jitter Performance, Fundamental or 3rd OT Crystal Design - Output Frequencies to 250.000MHz - < 0.7 ps RMS jitter, 12kHz-20MHz - Differential Output - · Enable/Disable - -10/70°C or -40/85°C Operation - Hermetically Sealed 3.2x5 Ceramic Package - Product is compliant to RoHS directive and fully compatible with lead free assembly - Storage Area Networking - Telecom - Ethernet, GE, SynchE - Fiber Channel - PON - Driving A/D's, D/A's, FPGA's - Test and Measurement - Medical - COTS ### **Block Diagram** # **Performance Specifications** | Table 1. Electrical Performance, LVPECL Option | | | | | | | | | |--|--|--|--------------------------|--|----------------------|--|--|--| | Parameter | Symbol | Min | Тур | Max | Units | | | | | Supply | | | | | | | | | | Voltage ¹ | V _{DD} | 3.135
2.375 | 3.3
2.5 | 3.465
2.625 | V | | | | | Current (No Load) | l _{DD} | | 50 | 75 | mA | | | | | | | Frequency | | | | | | | | Nominal Frequency ² | f _N | 25 | | 250.000 | MHz | | | | | Stability ^{2,3} (Ordering Option) | | | ±25, ±50, ±100 |) | ppm | | | | | | • | Outputs | | | | | | | | Output Logic Levels ⁴ , -10/70°C
Output Logic High
Output Logic Low | V _{OH}
V _{OL} | V _{DD} -1.025
V _{DD} -1.810 | | V _{DD} -0.880
V _{DD} -1.620 | V | | | | | Output Logic Levels⁴, -40/85°C
Output Logic High
Output Logic Low | V _{OH}
V _{OL} | V _{DD} -1.085
V _{DD} -1.830 | | V _{DD} -0.880
V _{DD} -1.555 | V | | | | | Output Rise and Fall Time⁴
Rise Time
Fall Time | t _R | | | 600
600 | ps
ps | | | | | Load | | 50 | | | | | | | | Duty Cycle⁵ | | 45 | 50 | 55 | % | | | | | Jitter (12 kHz - 20 MHz BW) ⁶ | фЈ | | 0.3 | 0.7 | ps | | | | | Period Jitter ⁷ RMS P/P Random Jitter Deterministic Jitter | фJ
R _J
D _J | | 2.6
23
2.6
<0.2 | | ps
ps
ps
ps | | | | | | Ena | able/Disable | | | | | | | | Output Enabled ⁸
Output Disabled | V _{IH}
V _{IL} | 0.7*V _{DD} | | 0.3*V _{DD} | V
V | | | | | Enable/Disable Time | t _D | | | 200 | ns | | | | | Enable/Disable Leakage Current | | | | ±200 | uA | | | | | Enable Pull-Up Resistor
Output Enabled
Output Disabled | | | 33
1 | | KOhm
MOhm | | | | | Start-Up Time | t _{su} | | | 10 | ms | | | | | Operating Temp. (Ordering Option) | T _{OP} | | -10/70 or -40/85 | | °C | | | | | Package Size | | 3.2x5.0x1.3 mm | | | | | | | ^{1.} The VC-806 power supply pin should be filtered, eg, a 0.1 and 0.01uf capacitor. ^{2.} See Standard Frequencies and Ordering Information for more information. ^{3.} Includes calibration tolerance, operating temperature, supply voltage variations, aging and IR reflow. ^{4.} Figure 2 defines these parameters and Figure 1 defines the test circuit. ^{5.} Duty Cycle is defines as the On/Time Period. ^{6.} Measured using an Agilent E5052, 156.25MHz. ^{7.} Measured using a Wavecrest SIA3300C, 90K samples. $^{{\}bf 8.\,Outputs\,\,will\,\,be\,\,Enabled\,\,if\,\,Enable/Disable\,\,is\,\,left\,\,open.}$ # **Performance Specifications** | Table 2. Electrical Performance, L | /DS Option | | | | | | | | | |---|--|---------------------|----------------------------|---------------------|----------------------|--|--|--|--| | Parameter | Symbol | Min | Тур | Max | Units | | | | | | Supply | | | | | | | | | | | Voltage ¹ | V _{DD} | 3.135
2.375 | 3.3
2.5 | 3.465
2.625 | V | | | | | | Current (No Load) | I _{DD} | | | 60 | mA | | | | | | | | Frequency | | | | | | | | | Nominal Frequency ² | f _N | 80 | | 250.000 | MHz | | | | | | Stability ^{2,3} (Ordering Option) | | | ±25, ±50, ±100 |) | ppm | | | | | | | | Outputs | | | | | | | | | Output Logic Levels⁴
Output Logic High
Output Logic Low | V _{OH}
V _{OL} | 0.9 | 1.43
1.10 | 1.6 | V | | | | | | Output Swing | | 247 | 330 | 454 | mV | | | | | | Differential Output Swing | | 494 | 660 | 908 | mV | | | | | | Differential Output Error | | | | 50 | mV | | | | | | Offset Voltage | | 1.125 | 1.25 | 1.375 | V | | | | | | Offset Voltage Error | | | | 50 | mV | | | | | | Output Leakage Current | | | | 10 | uA | | | | | | Output Rise and Fall Time⁴
Rise Time
Fall Time | t _R /t _F | | | 600
600 | ps
ps | | | | | | Load | · | 10 | | | | | | | | | Duty Cycle⁵ | | 45 | 50 | 55 | % | | | | | | Jitter (12 kHz - 20 MHz BW) ⁶ | фЛ | | 0.35 | 0.8 | ps | | | | | | Period Jitter ⁷ RMS P/P Random Jitter Deterministic Jitter | фJ
R _J
D _J | | 2.9
25.1
2.9
<0.2 | | ps
ps
ps
ps | | | | | | | Ena | able/Disable | | | | | | | | | Output Enabled ⁸
Output Disabled | V _{IH}
V _{IL} | 0.7*V _{DD} | | 0.3*V _{DD} | V
V | | | | | | Enable/Disable Time | t _D | | | 200 | ns | | | | | | Enable/Disable Leakage Current | | | | ±200 | uA | | | | | | Enable Pull-Up Resistor
Output Enabled
Output Disabled | | | 33
1 | | KOhm
MOhm | | | | | | Start-Up Time | t _{su} | | | 10 | ms | | | | | | Operating Temp. (Ordering Option) | T _{OP} | | -10/70 or -40/85 | | °C | | | | | | Package Size | | 3.2x5.0x1.3 mm | | | | | | | | - 1. The VC-806 power supply pin should be filtered, eg, a 0.1 and 0.01uf capacitor. - 2. See Standard Frequencies and Ordering Information for more information. - 3. Includes calibration tolerance, operating temperature, supply voltage variations, aging and IR reflow. - 4. Figure 2 defines these parameters and Figure 3 defines the test circuit. - 5. Duty Cycle is defines as the On/Time Period. - 6. Measured using an Agilent E5052, 156.250MHz. - 7. Measured using a Wavecrest SIA3300C, 90K samples. - 8. Outputs will be Enabled if Enable/Disable is left open. ## **Test Diagrams** # **Package and Pinout** Figure 3 Package Dimensions in mm | Table 3. Pinout | | | | | | | | |-----------------|----------------------|---------------------------------|--|--|--|--|--| | Pin # | Symbol | Function | | | | | | | 1 | E/D or NC | Enable Disable or No Connection | | | | | | | 2 | E/D or NC | Enable Disable or No Connection | | | | | | | 3 | GND | Electrical and Lid Ground | | | | | | | 4 | f _o | Output Frequency | | | | | | | 5 | Cf _o | Complementary Output Frequency | | | | | | | 6 | $V_{_{\mathrm{DD}}}$ | Supply Voltage | | | | | | The Enable/Disable function is set at the factory on either pin 1 or pin 2 and is an ordering option. 1.3 max Figure 4 Pad Layout Dimensions in mm ## **LVPECL Application Diagrams** Figure 5 Standard PECL Output Configuration Figure 6 Single Resistor Termination Scheme Resistor values are typically 140 ohms for 3.3V operation. Resistor values are typically 84 for 2.5V operation. #### Figure 7 Pull-Up Pull Down Termination Resistor values are typically for 3.3V operation For 2.5V operation, the resistor to ground is 62 ohms and the resistor to supply is 240 ohms The VC-806 incorporates a standard PECL output scheme, which are un-terminated emitters as shown in Figure 5. There are numerous application notes on terminating and interfacing PECL logic and the two most common methods are a single resistor to ground, Figure 6, and a pull-up/pull-down scheme as shown in Figure 7. An AC coupling capacitor is optional, depending on the application and the input logic requirements of the next stage. ### **LVDS Application Diagrams** Figure 8 Standard LVDS **Output Configuration** **Figure 9 LVDS to LVDS Connection, Internal 100ohm** Some LVDS structures have an internal 100 ohm resistor on the input and do not need additional components. Figure 10 LVDS to LVDS Connection External 100ohm and AC blocking caps Some input structures may not have an internal 100 ohm resistor on the input and will need an external 100ohm resistor for impedance matching. Also, the input may have an internal DC bias which may not be compatible with LVDS levels, AC blocking capacitors can be used. One of the most important considerations is terminating the Output and Complementary Outputs equally. An unused output should not be left un-terminated, and if it one of the two outputs is left open it will result in excessive jitter on both. PC board layout must take this and 50 ohm impedance matching into account. Load matching and power supply noise are the main contributors to jitter related problems. ## **Environmental and IR Compliance** | Table 4. Environmental Compliance | | |-----------------------------------|-------------------------| | Parameter | Condition | | Mechanical Shock | MIL-STD-883 Method 2002 | | Mechanical Vibration | MIL-STD-883 Method 2007 | | Temperature Cycle | MIL-STD-883 Method 1010 | | Solderability | MIL-STD-883 Method 2003 | | Fine and Gross Leak | MIL-STD-883 Method 1014 | | Resistance to Solvents | MIL-STD-883 Method 2015 | | Moisture Sensitivity Level | MSL1 | | Contact Pads | Gold over Nickel | ### **IR Compliance** #### Suggested IR Profile Devices are built using lead free epoxy and can be subjected to standard lead free IR reflow conditions shown in Table 5. Contact pads are gold over nickel and lower maximum temperatures can also be used, such as 220C. | Table 5. Reflow Profile | | | |--------------------------|----------------------|-------------| | Parameter | Symbol | Value | | PreHeat Time | ts | 200 sec Max | | Ramp Up | R_{UP} | 3°C/sec Max | | Time above 217°C | tL | 150 sec Max | | Time to Peak Temperature | tAMB-P | 480 sec Max | | Time at 260°C | tP | 30 sec Max | | Time at 240°C | tP2 | 60 sec Max | | Ramp down | $R_{_{\mathrm{DN}}}$ | 6°C/sec Max | #### Solderprofile: # **Maximum Ratings, Tape & Reel** #### **Absolute Maximum Ratings and Handling Precautions** Stresses in excess of the absolute maximum ratings can permanently damage the device. Functional operation is not implied or any other excess of conditions represented in the operational sections of this data sheet. Exposure to absolute maximum ratings for extended periods may adversely affect device reliability. Although ESD protection circuitry has been designed into the VC-806, proper precautions should be taken when handling and mounting, VI employs a Human Body Model and Charged Device Model for ESD susceptibility testing and design evaluation. ESD thresholds are dependent on the circuit parameters used to define the model. Although no industry standard has been adopted for the CDM a standard resistance of 1.5kOhms and capacitance of 100pF is widely used and therefor can be used for comparison purposes. | Table 6. Maximum Ratings | | | | |---------------------------|--------------------|------------------------------|------| | Parameter | Symbol | Rating | Unit | | Storage Temperature | T _{STORE} | -55/125 | °C | | Supply Voltage | V _{DD} | -0.5 to 5.0 | V | | Enable Disable Voltage | E/D | -0.5 to V _{DD} +0.5 | V | | ESD, Human Body Model | | 1500 | V | | ESD, Charged Device Model | | 1000 | V | | Table 7. | Tape and | l Reel Info | ormation | | | | | | | | | | |----------------------|----------|-------------|----------|----|-----|---|--------|----------|--------|----|----|--------| | Tape Dimensions (mm) | | | | | | | Reel D | imension | s (mm) | | | | | W | F | Do | Ро | P1 | Α | В | С | D | N | W1 | W2 | #/Reel | | 16 | 7.5 | 1.5 | 4 | 8 | 180 | 2 | 13 | 21 | 60 | 17 | 21 | 250 | Page6 | Table 8. Standard Frequencies (MHz) | | | | | | | | | | | | |-------------------------------------|---------|---------|----------|----------|---------|---------|---------|----------|---------|---------|------------| | 25.000 | 27.000 | 32.000 | 33.000 | 38.880 | 40.000 | 50.000 | 53.125 | 56.000 | 56.250 | 60.000 | 61.440 | | 62.500 | 66.000 | 66.667 | 67.500 | 75.000 | 77.760 | 80.000 | 83.333 | 98.304 | 100.000 | 106.250 | 108.000 | | 114.285 | 122.880 | 124.512 | 125.000 | 133.000 | 143.000 | 148.500 | 150.000 | 153.600 | 155.520 | 1562.50 | 156.253906 | | 160.000 | 161.130 | 164.355 | 166.6286 | 166.6667 | 167.000 | 167.330 | 168.750 | 173.3707 | 180.000 | 186.667 | 187.500 | | 190.000 | 200.000 | 212.500 | 218.750 | 250.000 | | | | | | | | ### **Ordering Information** Example: VC-806-ECE-KAAN-155M520000 * Add _SNPBDIP for tin lead solder dip Example: VC-806-ECE-KAAN-155M520000_SNPBDIP ### **Revision History** | Revision Date | Approved | Description | |---------------|----------|--| | Aug 10, 2018 | FB | Update logo and contact information, added SNPBDIP ordering option | | | | | #### Microsemi Headquarters Microsemi Headquarters One Enterprise, Aliso Viejo, CA 92656 USA Within the USA: +1 (800) 713-4113 Outside the USA: +1 (949) 380-6100 Sales: +1 (949) 380-6136 Fax: +1 (949) 215-4996 email: sales.support@microsemi.com www.microsemi.com Microsemi, a wholly owned subsidiary of Microchip Technology Inc. (Nasdaq: MCHP), offers a comprehensive portfolio of semiconductor and system solutions for aerospace & defense, communications, data center and industrial markets. Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world's standard for time; voice processing devices; RF Solutions; discrete components; enterprise storage and communication solutions, security technologies and scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs and midspans; as well as custom design capabilities and services. Learn more at www.microsemi.com. Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the application or use of any product or circuit. The products sol behreuder and any other products sold by Microsemi have been subject to limitesting and should not be used in conjunction with mission-critical equipment or applications. Any performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer's responsibility to independently determine suitability of any products. Buyer shall not rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer's responsibility to independently determine suitability of any products. Buyer shall not rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer's responsibility to independently determine suitability of any products. Buyer shall not rely on any data and performance specifications or better the provided by Microsemi have been any to the provided by Microsemi and the standard of the suitability of any products and to test and verified when the provided by Microsemi and the standard of the suitability of any products and services and services of any time determined to the suitability of any products and services at any time without notice. ©2018 Microsemi, a wholly owned subsidiary of Microchip Technology Inc. All rights reserved. Microsemi and the Microsemi logo are registered trademarks of Microsemi Corporation. All other trademarks and sentee marks are the property of their respective owners.