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1 Revision History 

The revision history describes the changes that were implemented in the document. The changes 
are listed by revision, starting with the most current publication. 

1.1 Revision 2.0 
Updated changes related to CoreRISCV_AXI4 v2.0. 

1.2 Revision 1.0 
Revision 1.0 was released for CoreRISCV_AXI4 v1.0. 
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2 Introduction 

2.1 Overview 
CoreRISCV_AXI4 is a softcore processor designed to implement the RISC-V instruction set for use in 
Microsemi FPGAs. The processor is based on the Coreplex E31 designed by SiFive, containing a high-
performance single-issue, in-order execution pipeline E31 32-bit RISC-V core. The core includes an 
industry-standard JTAG interface to facilitate debug access, along with separate AXI4 bus interfaces 
for memory access and support for 31 dedicated interrupt ports. 

Example Libero Designs and Firmware can be found through the following links: 

• Libero Projects - https://github.com/RISCV-on-Microsemi-FPGA 
• Firmware - https://github.com/RISCV-on-Microsemi-FPGA/riscv-junk-

drawer/tree/master/examples 

Figure 1 CoreRISCV_AXI4 Block Diagram 
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2.2 Features 
CoreRISCV_AXI4 supports the following features: 

• Designed for low power ASIC microcontroller and FPGA soft-core implementations. 

• Integrated 8Kbytes instructions cache and 8 Kbytes data cache. 
• A Platform-Level Interrupt Controller (PLIC) can support up to 31 programmable interrupt with a 

single priority level.  

• Supports the RISCV standard RV32IM ISA. 
• On-Chip debug unit with a JTAG interface. 
• Two external AXI interfaces for IO and memory. 

2.3 Core Version 
This Handbook applies to CoreRISCV_AXI4 version 2.0. 

Note: There are two accompanying manuals for this core: 

• The RISCV Instruction Set Manual, Volume 1, User Level ISA, Version 2.1 
• The RISCV Instruction Set Manual, Volume 2, Privileged Architecture, Version 1.9 (draft) 

2.4 Supported Families 
• PolarFire 
• RTG4™ 
• IGLOO®2 
• SmartFusion®2 

2.5 Device Utilization and Performance 
Utilization and performance data is listed in Table 1 for the supported device families. The data 
listed in this table is indicative only. The overall device utilization and performance of the core is 
system dependent. 

Table 1 Device Utilization and Performance 

Family Sequential Combinatorial uSRAM LSRAM Math 
Frequency 
(MHz) 

SmartFusion2 5741 9608 46 8 2 99.01 

IGLOO2 5741 9608 46 8 2 98.06 

RTG4 5124 9282 46 8 2 68.67 

PolarFire 4900 8614 67 10 2 122.40 
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3 Functional Description 

3.1 CoreRISCV_AXI4 Architecture 

Table 2 CoreRISCV_AXI4 Architecture 

Parameter Value Units Notes 

ISA Support RV32IM 

  Cores 1 

  Harts/Cores 1 

  Branch prediction None 

 

Static Not Taken 

Multiplier occupancy 16 cycles 2-bit/cycles iterative multiply 

I-cache size 8 KiB 

 I-cache associativity 1 way direct-mapped 

I-cache line-size 64 bytes 

 D-cache size 8 KiB 

 D-cache associativity 1 way direct-mapped 

D-cache line-size 64 bytes 

 Reset Vector configurable 

  External interrupts 31 

  PLIC Interrupt priorities 1 

 

Fixed priorities 

External memory bus AXI 

  External I/O bus AXI 

  JTAG debug transport address 
width 5 bits 

 Hardware breakpoints 2 
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Figure 2 CoreRISCV_AXI4 Block Diagram 
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3.2 CoreRISCV_AXI4 Processor Core 
CoreRISCV_AXI4 is based on the E31 Coreplex Core by SiFive. The core provides a single hardware 
thread (or hart) supporting the RISCV standard RV32IM ISA and machine-mode privileged 
architecture. 

CoreRISCV_AXI4 provides a high-performance single-issue in-order 32-bit execution pipeline, with a 
peak sustainable execution rate of one instruction per clock cycle. The RISCV ISA standard M 
extensions add hardware multiply and divide instructions. CoreRISCV_AXI4 has a range of 
performance option including a fully pipelined multiply unit. 

3.3 Memory System 
CoreRISCV_AXI4 memory system supports configurable split first-level instruction and data caches 
with full support for hardware cache flushing, as well as uncached memory accesses. External 
connections are provided for both cached and uncached TileLink fabrics. 

3.4 Platform-Level Interrupt Controller 
CoreRISCV_AXI4 includes a RISC-V standard platform-level interrupt controller (PLIC) configured to 
support up 31 inputs with a single priority level. 
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3.5 Debug support via JTAG 
CoreRISCV_AXI4 includes full external debugger support over an industry-standard JTAG port, 
supporting two hardware breakpoints. 

3.6 External AXI interfaces 
CoreRISCV_AXI4 includes two external AXI interfaces, bridged from the internal TileLink interfaces. 
The AXI memory interface is used by the cache controller to refill the instruction and data caches. 
The AXI I/O interface is used for uncached accesses to I/O peripherals. 
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4 Feature Description 

4.1 CoreRISCV_AXI4 Processor Core 
The CoreRISCV_AXI4 processor core comprises of an instruction fetch unit, an execution pipeline, 
and a data memory system. 

4.1.1 CoreRISCV_AXI4 Instruction Fetch Unit 
The CoreRISCV_AXI4 instruction fetch unit consists of an instruction memory system and no branch 
predictor. 

The instruction memory system includes an instruction cache. The instruction cache is 8 KiB, direct-
mapped, with a 64 bytes line size. The access latency is one clock cycle. 

The instruction memory system is not coherent with the data memory system. Writes to memory 
may be synchronized with the instruction fetch stream with a FENCE.I instruction. 

There are no dynamic branch prediction. All control-flow instructions are predicted as not taken, 
and incur a three-cycle penalty on all taken branches and jumps. 

4.1.2 CoreRISCV_AXI4 Execution Pipeline 
The CoreRISCV_AXI4 execution unit is a single-issue, in-order pipeline. The pipeline comprises five 
stages: instruction fetch, instruction decode and register fetch, execute, data memory access, and 
register writeback. 

The pipeline has a peak execution rate of one instruction per clock cycle. It is fully bypassed, so most 
instructions have an apparent one-cycle result latency. There are several exceptions: 

• LW has a two-cycle result latency, assuming a cache hit. 
• LH, LHU, LB, and LBU have a three-cycle result latency, assuming a cache hit. 
• MUL, MULH, MULHU, MULHSU, DIV, DIVU, REM, and REMU have between a 2-cycleand 34-

cycle result latency, depending on the pipeline configuration and operand values. 

• CSR reads have a three-cycle result latency. 

The pipeline only interlocks on read-after-write and write-after-write hazards, so instructions may 
be scheduled to avoid stalls. 

CoreRISCV_AXI4 includes an iterative multiplier with 16 cycles latency. 

Branch and jump instructions transfer control from the memory access pipeline stage. Not taken 
branches and jumps incur no penalty, whereas taken branches and jumps incur a three-cycle 
penalty. 

Most CSR writes result in a pipeline flush, a five-cycle penalty. 

4.1.3 CoreRISCV_AXI4 Data Memory System 
The CoreRISCV_AXI4 data memory system includes a data cache. The data cache size is 8 KiB, direct-
mapped, with a line size of 64 bytes. The access latency is two clock cycles for full words and three 
clock cycles for smaller quantities. Misaligned accesses are not supported in hardware and result in a 
trap to support software emulation. 

 50200761 Handbook Revision 2 13 



HB0761: CoreRISCV_AXI4 v2.0 Handbook  

 
Stores are pipelined and commit on cycles where the data memory system is otherwise idle. Loads 
to addresses currently in the store pipeline result in a five-cycle penalty. 

4.2 Platform-Level Interrupt Controller 
This section describes the operation of the platform-level interrupt controller (PLIC). The CoreRISCV 
PLIC complies with the RISC-V Privileged Architecture specification, and supports 31 external 
interrupt sources. 

4.2.1 Memory Map 
The memory map for the CoreRISCV_AXI4 PLIC control registers is shown in Table 3. The PLIC 
memory map has been designed to only require naturally aligned 32-bit memory accesses. 

4.2.2 Interrupt Sources 
CoreRISCV_AXI4 contains both local interrupt sources wired directly to the hart contexts and global 
interrupt sources routed via the PLIC. 

4.2.3 Interrupt Source Priorities 
All external interrupt sources priority are hardwired at priority 1. Interrupts with the lowest ID have 
the highest effective priority. 
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4.2.4 Interrupt Pending Bits 

The current status of the interrupt source pending bits in the PLIC core can be read from the 
pending array, organized as 32 words of 32 bits. The pending bit for interrupt ID N is stored in bit (N 
mod 32) of word (N=32). Bit 0 of word 0, which represents the non-existent interrupt source 0, is 
always hardwired to zero. 

The pending bits are read-only. A pending bit in the PLIC core can be cleared by setting enable bits 
to only enable the desired interrupt, then performing a claim. A pending bit can be set by instructing 
the associated gateway to send an interrupt service request. 

Table 3 PLIC Control Registers 

Address Description 

0x4000_0000 Reserved 

0x4000_0004 source 1 priority  

0x4000_0008 source 2 priority  

…   

0x4000_0FFC source 1023 priority 

0x4000_1000 Start of pending array  

… (read only) 
0x4000_107C End of pending array 

0x4000_1800   

… Reserved 

0x4000_1FFF   

0x4000_2000 target 0 enables 

0x4000_2080 target 1 enables 

…   

0x401E_FF80 target 15871 enables 

0x401F_0000   

  Reserved 

0x401F_FFFC   

0x4020_0000 target 0 priority threshold 

0x4020_0004 target 0 claim/complete 

0x4020_1000 target 1 priority threshold 

0x4020_1004 target 1 claim/complete  

…   

0x43FF_F000 target 15871 priority threshold 

0x43FF_F004 target 15871  claim/complete 
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4.2.5 Target Interrupt Enables 

For each interrupt target, each device’s interrupt can be enabled by setting the corresponding bit in 
that target’s enables registers. The enables for a target are accessed as a contiguous array of 32_32-
bit words, packed the same way as the pending bits. For each target, bit 0 of enable word 0 
represents the non-existent interrupt ID 0 and is hardwired to 0. Unused interrupt IDs are also 
hardwired to zero. The enables arrays for different targets are packed contiguously in the address 
space. 

Only 32-bit word accesses are supported by the enables array in RV32 systems. 

Implementations can trap on accesses to enables for non-existent targets, but must allow access to 
the full enables array for any extant target, treating all non-existent interrupt source’s enables as 
hardwired to zero. 

4.2.6 Target Priority Thresholds 
The threshold for a pending interrupt priority that can interrupt each target can be set in the target’s 
threshold register. CoreRISCV_AXI4 has its threshold hardwired to zero. The target priority threshold 
is not relevant to CoreRISCV_AXI4because it includes only one hart. 

4.2.7 Target Claim 
Each target can perform a claim by reading the claim/complete register, which returns the ID of the 
highest priority pending interrupt or zero if there is no pending interrupt for the target. A successful 
claim will also atomically clear the corresponding pending bit on the interrupt source.  

A target can perform a claim at any time, even if the EIP is not set. 

4.2.8 Target Completion 
A target signals it has completed running a handler by writing the interrupt ID it received from the 
claim to the claim/complete register. This is routed to the corresponding interrupt gateway, which 
can now send another interrupt request to the PLIC. The PLIC does not check whether the 
completion ID is the same as the last claim ID for that target. If the completion ID does not match an 
interrupt source that is currently enabled for the target, the completion is silently ignored. 

4.2.9 Hart Contexts 
CoreRISCV_AXI4 cores always support a machine-mode context for each hart. For machine-mode 
hart contexts, interrupts generated by the PLIC appear on meip in the mip register. Interrupt targets 
are mapped to hart contexts sequentially such that target X corresponds to hart ID X. 

4.3 Power, Reset, Clock, Interrupt (PRCI) 
PRCI is an umbrella term for memory-mapped control and status registers associated with physical 
hardware submodules that are only visible to machine-mode software. These include the registers 
controlling component power states, resets, clock selection, and low-level interrupts, hence the 
name, but other similar functions are also included. 
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4.3.1 PRCI Address Space Usage 

Table 4 shows the memory map for PRCI on CoreRISCV_AXI4 systems. 

Because PRCI is only visible to machine-mode software, the memory address space can be densely 
packed. To simplify interconnect implementation, PRCI interfaces are designed to only require 32-bit 
or larger accesses. Hardware modules might expose other memory-mapped interfaces suitable for 
use at lower privilege levels, but these should be mapped to the I/O memory region in a way that 
can be easily protected from each other using either physical or virtual memory protections. 

4.3.2 MSIP Registers 
Machine-mode software interrupts are generated by writing to a per-hart memory-mapped control 
register. The msip registers are 32-bit wide WARL registers, where the LSB is reflected in the msip bit 
of the associated hart’s mip register. Other bits in the msip registers are hardwired to zero. The 
mapping supports up to 4095 machine-mode harts. 

Table 4 Mapping Supports 

Address Description    

0x4400_0000 msip for hart 0   

0x4400_0004 msip for hart 1   

…   MSIP Registers (16 KiB) 

0x4400_3FF8 msip for hart 4094   

0x4400_4000 mtimecmp for hart 0   

0x4400_4008 mtimecmp for hart 1   

…   Time Registers (32 KiB) 

0x4400_BFF0  mtimecmp for hart 4094   

0x4400_BFF8 mtime   

4.3.3 Timer Registers 
Machine-mode timer interrupts are generated by a real-time counter and a per-hart comparator. 
The mtime register is a 64-bit read-only register that contains the current value of the real-time 
counter. Each mtimecmp register holds its hart’s time comparator. A timer interrupt is pending 
whenever the value in a hart’s mtimecmp register is greater than or equal to mtime. The timer 
interrupt is reflected in the mtip bit of the associated hart’s mip register. 

4.4 JTAG Port 
CoreRISCV_AXI4 microcontrollers use a single external industry-standard 1149.1 JTAG interface to 
test and debug the system. The JTAG interface can be directly connected off-chip in a single-chip 
microcontroller, or can be an embedded JTAG controller for a microcontroller complex designed to 
be included in a larger SoC. 
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4.4.1 JTAG Pinout 

CoreRISCV_AXI4 uses the industry-standard JTAG interface which includes the four standard signals, 
TCK, TMS, TDI, and TDO, and optionally also the TRST connection. 

On-chip JTAG connections must be driven (no pullups), with a normal two-state driver for TDO under 
the expectation that on-chip mux logic will be used to select between alternate on-chip 

JTAG controllers’ TDO outputs. 

4.4.2 JTAG TAPC State Machine 
The JTAG controller includes the standard TAPC state machine shown in Figure 3. 

4.4.3 Resetting JTAG logic 
The JTAG logic can be asynchrously reset by pulling TRST low, if TRST is available. The TRST signal 
should be deasserted cleanly while TMS is held high before the first active TCK edge. If TRST is not 
available, the JTAG logic can be reset by holding TMS high and providing five rising edges on TCK. 

Table 5 Resetting JTAG Logic 

Signal Name  Description  Direction  Off-Chip  On-Chip 

TRST (optional) Active-low Reset Input Must connect Must connect 

TCK Test Clock input  weak pull-up Must connect 

TMS Test Mode Select input  weak pull-up Must connect 

TDI Test Data Input input  weak pull-up Must connect 

TDO Test Data Output output tri-state Driven 
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Figure 3 JTAG TAPC State Machine 

 
Only JTAG logic is reset by this action. The remaining system can be reset by using the JTAG interface 
to the debug module to write appropriate control registers. 

4.4.4 JTAG Clocking 
The JTAG logic always operates in its own clock domain clocked by TCK. The JTAG logic is fully static 
and has no minimum clock frequency. The maximum TCK frequency is part-specific. 

4.4.5 JTAG Standard Instructions 
BYPASS and IDCODE are provided. The CoreRISCV JTAG manufacturer’s ID is 0x489. 

4.4.6 JTAG Debug Commands 
The JTAG DEBUG instruction gives access to the CoreRISCV_AXI4 debug module by connecting the 
debug scan register in between TDI and TDO. The debug scan register includes a 2-bit opcode field, a 
5-bit debug module address field, and a 32-bit data field to allow various memory-mapped 
read/write operations to be specified with a single scan of the debug scan register. The Debug 
Module runs on a different clock than the JTAG logic, so the interface between the JTAG debug scan 
register and the Debug Module includes an asynchronous clock-domain crossing. Refer to the Design 
Constraints section of this document to determine the appropriate timing constraint that is required 
on this interface. 
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4.5 Debug 
This section describes the operation of CoreRISCV_AXI4 trace and debug hardware, which follows 
the standard. 

RISC-V debug spec. Currently only interactive debug and hardware breakpoints are supported. 

4.5.1 Debug CSRs 
This section describes the per-hart trace and debug registers (TDRs), which are mapped into the CSR 
space as follows: 

Table 6 Debug Control and Status Registers (CSR) 

CSR Number Name Description Allowed Access Modes 

0x7A0 tdrselect Trace and debug register select D,M 

0x7A1 tdrdata1 First field of selected TDR D,M 

0x7A2 tdrdata2 Second field of selected TDR D,M 

0x7A3 tdrdata3 Third field of selected TDR D,M 

0x7B0 dcsr Debug control and staus registers D 

0x7B1 dpc Debug PC D 

0x7B2 dscratch Debug scratch register D 

The dcsr, dpc, and dscratch registers are only accessible in debug mode, while the tdrselect and 
tdrdata1–3 registers are accessible from either debug mode or machine mode. 

Trace and Debug Register Select (tdrselect) 

To support a large and variable number of TDRs for tracing and breakpoints, they are accessed 
through one level of indirection where the tdrselect register selects which bank of three tdrdata1–3 
registers are accessed via the other three addresses. The tdrselect register has the format shown 
below: 

The MSB of tdrselect selects between debug mode (tdrmode=0) and machine mode (tdrmode=1) 
views of the registers, where only debug mode code can access the debug mode view of the TDRs. 
Any attempt to read/write the tdrdata1–3 registers in machine mode when tdrmode=0 raises an 
illegal instruction exception. 

Figure 4 Instruction Exception 

 
Note: The polarity of tdrmode was chosen such that debug mode needs only a single csrrwi 
instruction to write tdrselect in most cases. 

The tdrindex field is a WARL field that will not hold indices of unimplemented TDRs. Even if tdrindex 
can hold a TDR index, it does not guarantee the TDR exists. The tdrtype field of tdrdata1 must be 
inspected to determine whether the TDR exists. 

Test and Debug Data Registers (tdrdata1–3) 

The tdrdata1–3 registers are XLEN-bit read/write registers selected from a larger underlying bank of 
TDR registers by the tdrselect register. 

 50200761 Handbook Revision 2 20 



HB0761: CoreRISCV_AXI4 v2.0 Handbook  

 
Figure 5 TDR registers 

 
The high nibble of tdrdata1 contains a 4-bit tdrtype code that is used to identify the type of TDR 
selected by tdrselect. The currently defined tdrtypes are shown below: 

Figure 6 Defined tdrtypes 

 

Debug Control and Status Register dcsr 

Debug PC dpc 

Debug Scratch dscratch 

4.5.2 Breakpoints 
Each implementation supports a number of hardware breakpoint registers, which can be flexibly 
shared between debug mode and machine mode.  

When a breakpoint register is selected with tdrselect, the other CSRs access the following 
information for the selected breakpoint: 

Figure 7 CSRs Access 

 
Breakpoint Control Register bpcontrol 

Each breakpoint control register is a read/write register laid out as follows: 

Figure 8 Register Laid Out 

 
The tdrtype field is a four-bit read-only field holding the value 1 to indicate this is a breakpoint 
containing address match logic.  

The bpaction field is an eight-bit read-write WARL field that specifies the available actions when the 
address match is successful. Currently only the value 0 is defined, and this generates a breakpoint 
exception. 
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The R/W/X bits are individual WARL fields and if set, indicate an address match should only be 
successful for loads/stores/instruction fetches respectively, and all combinations of implemented 
bits must be supported.  

The M/H/S/U bits are individual WARL fields and if set, indicate that an address match should only 
be successful in the machine/hypervisor/supervisor/user modes respectively, and all combinations 
of implemented bits must be supported. 

The bpmatch field is a 4-bit read-write WARL field that encodes the type of address range for 
breakpoint address matching. Three different bpmatch settings are currently supported: exact, 
NAPOT, and arbitrary range. A single breakpoint register supports both exact address matches and 
matches with address ranges that are naturally aligned powers-of-two (NAPOT) in size. Breakpoint 
registers can be paired to specify arbitrary exact ranges, with the lower-numbered breakpoint 
register giving the byte address at the bottom of the range and the higher-numbered breakpoint 
register giving the address one byte above the breakpoint range. 

NAPOT ranges make use of low-order bits of the associated breakpoint address register to encode 
the size of the range as follows: 

Figure 9 Breakpoint Address Register 

 
The bpamaskmax field is a 5-bit read-only field that specifies the largest supported NAPOT range. 
The value is the logarithm base 2 of the number of bytes in the largest supported NAPOT range. 

A value of 0 indicates that only exact address matches are supported (one byte range). A value of 31 
corresponds to the maximum NAPOT range, which is 231 bytes in size. The largest range is encoded 
in bpaddr with the 30 least-signicant bits set to 1, bit 30 set to 0, and bit 31 holding the only address 
bit considered in the address comparison. 

Note: The unary encoding of NAPOT ranges was chosen to reduce the hardware cost of storing and 
generating the corresponding address mask value.  

To provide breakpoints on an exact range, two neighboring breakpoints are combined as shown in 
Figure 9, with the lowest matching address in the lower-numbered breakpoint address and the 
address one byte above the last matching address in the higher-numbered breakpoint address. The 
bpmatch field in the upper bpcontrol register must be set to 01, after which the values in the upper 
bpcontrol register control the range match, and all values in the lower bpcontrol are ignored for the 
purposes of the range match. 

The bpcontrol register for breakpoint 0 has the low bit of bpmatch hardwired to zero, so it cannot 
be accidentally made into the top of a range. 
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Figure 10 Creating a Range Breakpoint with a Match on Address a...aa _ address < b...bb. 

 
The value in the lower breakpoint’s bpcontrol register for the purposes of the match generated by 
the upper breakpoint register. An independent breakpoint condition can be set in the lower 
bpcontrol using the same value in the lower bpaddress register. 

Breakpoint Address Register (bpaddress) 

Each breakpoint address register is an XLEN-bit read/write register used to hold significant address 
bits for address matching, and also the unary-encoded address masking information for NAPOT 
ranges. 

Breakpoint Execution 

Breakpoint traps are taken precisely. Implementations that emulate misaligned accesses in software 
will generate a breakpoint trap when either half of the emulated access falls within the address 
range. Implementations that support misaligned accesses in hardware must trap if any byte of an 
access falls within the matching range. 

Debug-mode breakpoint traps jump to the debug trap vector without altering machine-mode 
registers. 

Machine-mode breakpoint traps jump to the exception vector with “Breakpoint” set in the mcause 
register, and with badaddr holding the instruction or data address that cause the trap. 

Sharing Breakpoints between Debug and machine Mode 

When debug mode uses a breakpoint register, it is no longer visible to machine-mode (that is, the 
tdrtype will be 0). Usually, the debugger will grab the breakpoints it needs before entering machine 
mode, so machine mode will operate with the remaining breakpoint registers. 

4.5.3 Debug Memory Map 
This section describes the debug module’s memory map when accessed through the regular system 
interconnect. The debug module is only accessible to debug code running in debug mode on a hart 
(or through a debug transport module). 

Component Signal Registers (0x100–0x1FF) 

The 8-bit address space from 0x100–0x1FF is used to access per-component single-bit registers. This 
region only supports 32-bit writes. On a 32-bit write to this region, the 32-bit data value selects a 
component, bits 7–3 of the address select one out of 32 per-component single-bit registers, and bit 
2 is the value to be written to that single-bit register, as shown in Figure 11. 
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Figure 11 Single-bit Register 

This addressing scheme was adopted so that RISC-V debug ROM routines can signal that a hart has 
stopped using a single store instruction to an absolute address (offset from register x0) and one free 
data register, which holds the hart ID.  

The set of valid component identifiers is defined by each implementation. 

There are only two per-component registers specified so far, the debug interrupt signal (register 0) 
and the halt notification register (register 1), resulting in the following four possible write actions. 

Debug RAM (0x400–0x43f) 

CoreRISCV systems provide at least 64 bytes of debug RAM. 

Debug ROM (0x800–0xFFF) 

This ROM region holds the debug routines on CoreRISCV systems. The actual total size may vary 
between implementations. 
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5 Interface 

5.1 Configuration Parameters 

5.1.1 CoreRISC_AXI4 Configurable Options 
There are a number of configurable options that apply to CoreRISCV_AXI4 as shown in Table 7. If a 
configuration other than the default is required, use the configuration dialog box in SmartDesign to 
select appropriate values for the configurable options. 

Table 7 CoreRISCV_AXI4 Configuration Options 

Parameter Valid Range Default Description 

RESET_VECTOR_ADDR 0x8FFFFFFC >= 
RESET_VECTOR_ADDR 
>= 0x60000000 

0x60000000 This is the address the processor will start executing 
from after a reset. 

In order to facilitate instantiating this core on smaller Microsemi parts with limited RAM resources, 
all RAM inferences other than the Instruction and Data caches within CoreRISCV_AXI4 can be 
optionally implemented with fabric registers rather than allowing the synthesis tool to infer RAM. 
This requires modification of the coreriscv_axi4_defines.v file in the 
work/SmartDesign_name/CoreRISCV_AXI4_Instance_name/rtl/vlog/core folder of the Libero project 
as follows: 

• To use regsiters for all RAM blocks other than the internal instruction and data caches, 
uncomment the USE_REGISTERS define. 

Note: The contents of the coreriscv_axi4_defines.v file will need to be replaced every time that the 
SmartDesign sheet containing the CorRISCV_AXI4 instance is generated. 

5.1.2 Signal Descriptions 
Signal descriptions for CoreRISCV_AXI4 are defined in Table 8. 

Table 8 CoreRISCV_AXI4 I/O Signals 

Port Name Width Direction Description 

Global Signal Ports 

CLK 1 In System clock. All other I/Os are synchronous to this clock. 

RESET 1 In Active-high reset signal. The source of this reset signal must be 
de-asserted synchronous to CLK via a reset synchronizer. Refer 
to the System Integration section for implementation details. 

JTAG INTERFACE 

TDI 1 In Test Data In (TDI). This signal is used by the JTAG device for 
downloading and debugging programs. Sampled on the rising 
edge of TCK. 

TCK 1 In Test Clock (TCK). This signal is used by the JTAG device for 
downloading and debugging programs. 

TMS 1 In Test Mode Select (TMS). This signal is used by the JTAG device 
when downloading and debugging programs. It is sampled on 
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the rising edge of TCK to determine the next state. 

TRST 1 In Test Reset (TRST). This is an optional signal used to reset the 
TAP controllers state machine.  

TDO 1 Out Test Data Out (TDO). This signal is the data which is shifted out 
of the device during debugging. It is valid on FALLING/RISING 
edge of TCK. 

DRV_TDO 1 Out Drive Test Data Out (DRV_TDO). This signal denotes when the 
TDO output of this core is being driven.  

External Interrupts 

IRQ 31 In External interrupts from off-chip or peripheral sources. These 
are level-based interrupt signals. 

AXI Slave Interface Ports 

AXI Memory Bus Master Interface 

AXI_MST_MEM_AWREADY 1 In 

AXI4 Master Write Address Channel for performing Memory 
accesses.  

AXI_MST_MEM_AWVALID 1 Out 

AXI_MST_MEM_AWADDR 32 Out 

AXI_MST_MEM_AWLEN 8 Out 

AXI_MST_MEM_AWSIZE 3 Out 

AXI_MST_MEM_AWBURST 2 Out 

AXI_MST_MEM_AWLOCK 1 Out 

AXI_MST_MEM_AWCACHE 4 Out 

AXI_MST_MEM_AWPROT 3 Out 

AXI_MST_MEM_AWQOS 4 Out 

AXI_MST_MEM_AWREGION 4 Out 

AXI_MST_MEM_AWID 5 Out 

AXI_MST_MEM_AWUSER 1 Out 

AXI_MST_MEM_WREADY 1 In  

AXI_MST_MEM_WVALID 1 Out AXI4 Master Write Data  

AXI_MST_MEM_WDATA 64 Out Channel for performing 

AXI_MST_MEM_WLAST 1 Out Memory accesses. 

AXI_MST_MEM_WSTRB 8 Out  

AXI_MST_MEM_WUSER 1 Out  

AXI_MST_MEM_BREADY 1 Out  

AXI_MST_MEM_BVALID 1 In AXI4 Master Write. 

AXI_MST_MEM_BRESP 2 In Response channel for. 

AXI_MST_MEM_BID 5 In  Performing memory. 

AXI_MST_MEM_BUSER 1 In  Accesses. 

AXI_MST_MEM_ARREADY 1 Out AXI4 master Read Address. 

AXI_MST_MEM_ARVALID 1 In Channel for performing. 

AXI_MST_MEM_ARCACHE 4 Out Memory accesses. 

AXI_MST_MEM_ARPROT 3 Out  

AXI_MST_MEM_ARQOS 4 Out  AXI4 master Read Address. 
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AXI_MST_MEM_ARREGION 4 Out Channel for performing. 

AXI_MST_MEM_ARUSER 1 Out Memory accesses. 

AXI_MST_MEM_ARID 5 Out  

AXI_MST_MEM_ARADDR 32 Out  

AXI_MST_MEM_ARLEN 8 Out  

AXI_MST_MEM_ARSIZE 3 Out  

AXI_MST_MEM_ARBURST 2 Out  

AXI_MST_MEM_ARLOCK 1 Out  

AXI_MST_MEM_RID 5 In  

AXI_MST_MEM_RDATA 64 In  AXI4 Master Read Data. 

AXI_MST_MEM_RRESP 2 In  Channel for performing. 

AXI_MST_MEM_RLAST 1 In Memory accesses. 

AXI_MST_MEM_RVALID 1 In  

AXI_MST_MEM_RREADY 1 Out  

AXI_MST_MEM_RUSER 1 In   

AXI_MST_MEM_WID 5 Out This signal is included for compatibility with AXI3. 

AXI Memory-Mapped I/O (MMIO) Bus Master Interface 

AXI_MST_MMIO_AWID 5 Out  

AXI_MST_MMIO_AWADDR 32 Out  

AXI_MST_MMIO_AWLEN 8 Out  

AXI_MST_MMIO_AWSIZE 3 Out  

AXI_MST_MMIO_AWBURST 2 Out AXI4 Master Write Address. 

AXI_MST_MMIO_AWLOCK 1 Out Channel for performing. 

AXI_MST_MMIO_AWVALID 1 Out MMIO accesses. 

AXI_MST_MMIO_AWREADY 1 In  

AXI_MST_MMIO_AWCACHE 4 Out  

AXI_MST_MMIO_AWPROT 3 Out  

AXI_MST_MMIO_AWUSER 1 Out  

AXI_MST_MMIO_AWREGION 4 Out  

AXI_MST_MMIO_AWQOS 4 Out   

AXI_MST_MMIO_WDATA 64 Out  

AXI_MST_MMIO_WSTRB 8 Out  

AXI_MST_MMIO_WLAST 1 Out AXI4 Master Write Data. 

AXI_MST_MMIO_WVALID 1 Out Channel for performing. 

AXI_MST_MMIO_WREADY 1 In MMIO accesses. 

AXI_MST_MMIO_WUSER 1 Out  

AXI_MST_MMIO_BID 5 In   

AXI_MST_MMIO_BRESP 2 In AXI4 Master Write. 

AXI_MST_MMIO_BVALID 1 In Response channel for. 

AXI_MST_MMIO_BREADY 1 Out MMIO accesses. 

AXI_MST_MMIO_BUSER 1 In   
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AXI_MST_MMIO_ARCACHE 4 Out  

AXI_MST_MMIO_ARPROT 3 Out  

AXI_MST_MMIO_ARQOS 4 Out   

AXI_MST_MMIO_ARREGION 4 Out AXI4 Master Read Address. 

AXI_MST_MMIO_ARUSER 1 Out Channel for performing. 

AXI_MST_MMIO_ARID 5 Out MMIO accesses. 

AXI_MST_MMIO_ARADDR 32 Out  

AXI_MST_MMIO_ARLEN 8 Out  

AXI_MST_MMIO_ARSIZE 3 Out  

AXI_MST_MMIO_ARBURST 2 Out  

AXI_MST_MMIO_ARLOCK 1 Out  

AXI_MST_MMIO_ARVALID 1 In  

AXI_MST_MMIO_ARREADY 1 Out  

AXI_MST_MMIO_RID 5 In  

AXI_MST_MMIO_RDATA 64 In   

AXI_MST_MMIO_RRESP 2 In  AXI4 Master Read Data. 

AXI_MST_MMIO_RLAST 1 In Channel for performing. 

AXI_MST_MMIO_RVALID 1 In MMIO accesses. 

AXI_MST_MMIO_RREADY 1 Out  

AXI_MST_MMIO_RUSER 1 In  

AXI_MST_MMIO_WID 5 Out This signal is included for compatibility with AXI3. 
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6 Register Map and Descriptions 

Table 9 Physical Memory Map (from E3 Coreplex Series) 

Base Top Description   

0x0000_0000  0x0000_00FF Reserved    

0x0000_0100    Clear debug interrupt to component    

0x0000_0104   Set debug interrupt to component Debug Area(4 KiB) 

0x0000_0108   clear halt notification from component   

0x0000_010C   set halt notification from component   

0x0000_0110 0x0000_03FF Reserved    

0x0000_0400 0x0000_07FF Debug RAM (≤1KiB)   

0x0000_0800 0x0000_0FFF Debug ROM (≤1KiB)   

0x0000_1000   Reset   

0x0000_1004   NMI   

0x0000_1008   Reserved    

0x0000_100C   Configuration string address   

0x0000_1010 0x0000_XXXX Trap vector table start Small ROM Area (60 KiB) 

0x0000_XXXX   Reset code   

    Interrupt handlers   

    Emulation routines   

    Register save/restore routines    

  0x0000_FFFF User ROM   

0x0001_0000 0x3FFF_FFFF Reserved  ROM/Misc./Reserved (≈1GiB) 

0x4000_0000 0x43FF_FFFF Platform-Level Interrupt Control (PLIC)   

0x4400_0000 0x47FF_FFFF Power/Reset/Clock/Interrupt (PRCI)   

0x4800_0000 0x4800_0FFF Device Bank 0:   

…     On-Coreplex Devices (128 MiB) 

0x4800_F000 0x4800_FFFF Device Bank 15:   

0x4801_0000 0x4FFF_FFFF Reserved   

0x5000_0000 0x5FFF_FFFF I/O Off-Coreplex Devices (768 MiB) 

0x6000_0000 0x7FFF_FFFF AXI I/O Interface   

0x8000_0000 0x8FFF_FFFF AXI Memory Interface RAM Area (256 MiB) 
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7 Tool Flow 

7.1 License 
A license is not required to use this IP Core with Libero SoC. 

7.1.1 RTL 
Complete RTL code is provided for the core, allowing the core to be instantiated with SmartDesign. 
Simulation, Synthesis, and Layout can be performed within Libero SoC. 

7.2 SmartDesign 
An example instantiated view of CoreRISCV_AXI4 is shown in Figure 12. 

For more information on using SmartDesign to instantiate and generate cores, refer to the Using 
DirectCore in Libero® SoC User Guide. 

Figure 12 SmartDesign CoreRISCV_AXI4 Instance View 

 

7.3 Configuring CoreRISCV_AXI4 in SmartDesign 
The core can be configured using the configuration GUI within SmartDesign. An example of the GUI 
for the SmartFusion2 family is shown in Figure 13. 
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Figure 13 Configuring CoreRISCV_AXI4 in SmartDesign 

 

7.4 Simulation Flows 
No testbench is provided with CoreRISCV_AXI4. 

The CoreRISCV_AXI4 RTL can be used to simulate the processor executing a program using a 
standard Libero generated HDL testbench. 

7.5 Synthesis in Libero 
Click the Synthesis icon in Libero SoC. The Synthesis window displays the Synplify Pro project. Set 
Synplify Pro to use the Verilog 2001 standard if Verilog is being used. To run Synthesis, select the 
Run icon. 

7.6 Place-and-Route in Libero 
Click the Layout icon in the Libero SoC to invoke Designer.  After synthesis has been completed the 
Place-and-Route tool can be run. 
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8 System Integration 

8.1 Example System 

Figure 14 CoreRISCV_AXI4 Example System 

Microsemi SoC FPGA Fabric

CoreRISCV_AXI4

JTAG I/F

AXI4 Memory I/FAXI4 MMIO I/F

AXI4 Glue Logic AXI4 Glue Logic

CoreAXIToAHBL CoreAXIToAHBL

CoreAHBLite CoreAHBLite

CoreAHBtoAPB3

CoreAPB3

CoreGPIO CoreTimer CoreSPI

DDR Controller

CoreJTAGDebug

CCC

Reset 
Synchronizer

eNVM

RST

LOCK

CLK

Off-chip
DDR

Memory

LEDs Off-chip
SPI Peripherals

External
OSC

Push Button
Reset

JTAG
Header

INV

 

8.2 Reset Synchronization 

8.2.1 RST 
All sequential elements clocked by CLK within CoreRISCV_AXI4, which require a reset employ a 
synchronous reset topology. Since most designs source CLK from a CCC/PLL, it is common practice to 
AND the LOCK output of the CCC with the push button reset to generate the RST input for 
CoreRISCV_AXI4. However, this results in the reset being deasserted when the CLK comes up, hence 

 50200761 Handbook Revision 2 32 



HB0761: CoreRISCV_AXI4 v2.0 Handbook  

 
the reset assertion is not clocked through the sequential reset elements and goes unnoticed most 
commonly leading to the processor locking-up. To guarantee that the RST assertion is seen by all 
sequential elements, a reset synchronizer is required on the RST input, as shown in Figure 15. 

Figure 15 RST Reset Synchronization 
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The Verilog code snippet below implements the reset synchronizer block shown in Figure 15. The 
function of this block is to make the reset assertion and deassertion synchronous to CLK whilst 
guaranteeing that the reset will be seen asserted for one or more CLK cycles within CoreRISCV_AXI4 
to ensure that it is registered by all sequential elements. 

module reset_synchronizer ( 
    input  clock, 
    input  reset, 
    output reset_sync 
); 
reg [1:0]   sync_deasert_reg; 
reg [1:0]   sync_asert_reg; 
 
always @ (posedge clock or negedge reset) 
    begin 
        if (!reset) 
            begin 
                sync_deasert_reg[1:0] <= 2'b00; 
            end 
        else 
            begin 
                sync_deasert_reg[1:0] <= {sync_deasert_reg[0], 1'b1}; 
            end 
    end 
     
 
always @ (posedge clock) 
    begin 
        sync_asert_reg[1:0] <= {sync_asert_reg[0], sync_deasert_reg[1]}; 
    end 
assign reset_sync = sync_asert_reg[1]; 
 
endmodule 

To include this synchronizer in your Libero design, select Create HDL from the Design Flow tab in 
your Libero project. In the popup window, name the HDL file accordingly and select Verilog as the 
HDL type whilst unchecking the option to Initialize file with standard template. Copy and paste the 
Verilog code snippet above into this file and save the changes. From the Design Hierarchy tab drag 
and drop the file into the SmartDesign sheet containing the CoreRISCV_AXI4 instance and connect 
up the pins as shown above. 
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8.2.2 TRST 

No reset synchronization is required on this reset input as all sequential elements in the debug logic 
within CoreRISCV_AXI4 use an asynchronous reset topology. 

 

 50200761 Handbook Revision 2 34 



HB0761: CoreRISCV_AXI4 v2.0 Handbook  

 

9 Design Constraints 

Designs containing CoreRISCV_AXI4 require the application of the following constraints in the design 
flow to allow timing-driven placement and static timing analysis to be performed on 
CoreRISCV_AXI4. The procedure for adding the required constraints in the Enhanced Constraints 
flow in Libero v11.7 or later is as follows: 

1. Double-click Constraints > Manage Constraints in the Design Flow window and click the Timing 
tab. 

Assuming that the system clock used to clock CoreRISCV_AXI4 is sourced from a PLL, select 
Derive to automatically create a constraints file containing the PLL constraints. Select Yes when 
prompted to allow the constraints to be automatically included for Synthesis, Place-and-Route, 
and Timing Verification stages. 

If changes are made to the PLL configuration in the design, update the contents of this file by 
clicking Derive. Select Yes when prompted to allow the constraints to be overwritten. 

2. In the Timing tab of the Constraint Manager window, select New to create a new SDC file, and 
name it. Design constraints other than the system clock source derived constraints can be 
entered in this blank SDC file. Keeping derived and manually added constraints in separate SDC 
files allows the Derive stage to be reperformed if changes are made to the PLL configuration, 
without deleting all manually added constraints in the process. 

3. Calculate the TCK period and half period. TCK is typically 6 MHz when debugging with FlashPro, 
with a maximum frequency of 30 MHz supported by FlashPro5. After completion, enter the 
following constraints in the blank SDC file: 

create_clock -name { TCK } \ 
    -period TCK_PERIOD \ 
    -waveform { 0 TCK_HALF_PERIOD } \ 
    [ get_ports { TCK } ] 

For example, the following constraints need to be applied for a design that uses a TCK frequency of 6 
MHz: 

create_clock -name { TCK } \ 
    -period 166.67 \ 
    -waveform { 0 83.33 } \ 
    [ get_ports { TCK } ] 

4. Next constraints must be applied to paths crossing the clock domain crossing between the TCK 
and system clock clock domains. CoreRISCV_AXI4 implements two clock domain crossing FIFOs 
to handle the CDC and as such paths between the two clock domains may be declared as false 
paths to prevent min and max violations from being reported by SmartTime. 

set_false_path -from [ get_clocks { TCK } ] \ 
               -to [ get_clocks { PLL_GEN_CLK } ] 
 
set_false_path -from [ get_clocks { PLL_GEN_CLK } ] \ 
               -to [ get_clocks { TCK } ] 
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Where: 

 PLL_GEN_CLK is the name applied to the create_generated_clock constraint derived in 
step 1 above. 

5. Associate all constraints files with the Synthesis, Place-and-Route and Timing Verification stages 
in the Constraint Manager > Timing tab by selecting the related check boxes for the SDC files in 
which the constraints were entered in. 
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