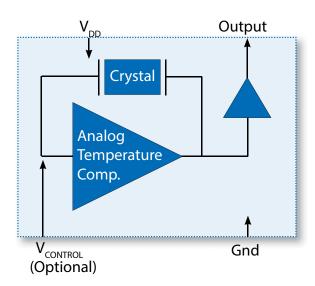


Vectron's VT-860 Temperature Compensated Crystal Oscillator (TCXO) is a quartz stabilized, Clipped sine wave output, analog temperature compensated oscillator, operating off a 3.3, 2.8, 2.5 or 1.8 volt supply in a hermetically sealed 2.0 x 1.6 mm ceramic package.

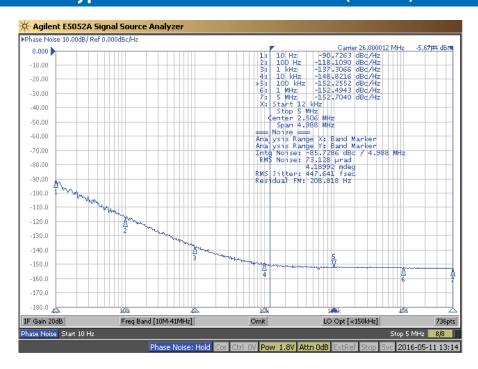

Features

- 13.000 52.000MHz Output Frequency
- ±0.5ppm Temperature Stability over -40 °C to 85 °C
- Optional Frequency Tuning
- · Fundamental Crystal Design
- Gold over nickel contact pads
- Hermetically Sealed 2.0 x 1.6mm Ceramic SMD package
- Product is compliant to RoHS directive
 and fully compatible with lead free assembly

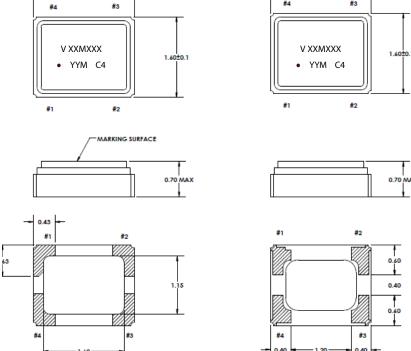
Applications

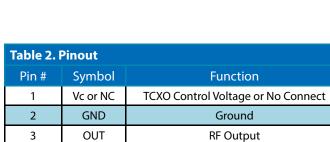
- GNSS Modules
- LoRa Base Station
- Wireless Connectivity
- · Point to Point Radio
- Manpack Radio
- · Test and Measurement

Block Diagram



Specifications


Table 1. Electrical Performance, Clipped S	ine Wave Opti	on			
Parameter	Symbol	Min.	Тур	Max	Units
Output Frequency ¹ , Ordering Option	$f_{_{O}}$	13		52	MHz
Supply Voltage ³ , Ordering Option	V _{DD}	+1.8,	+2.5, +2.8, +3.0	, +3.3	V
Supply Current	I _{DD}			2.3	mA
Operating Temperature, Ordering Option	T _{OP}	-10/70, -20	0/70, -30/80, -30	/85, -40/85	°C
	Frequenc	y Stability			
Stability Over T _{OP} ⁴ , Ordering Option	F _{STAB}	±0.5	0, ±1.00,±1.50, =	±2.00	ppm
Frequency Tolerance⁵	F _{TOL}			±2.0	ppm
Power Supply Stability, ±5%	F _{PWR}			±0.1	ppm
Load Stability, ±10%	F _{LOAD}			±0.2	ppm
Static Hysteresis	HYS			±0.6	ppm
Aging / 1st year	F_{AGE}			±1.0	ppm
Fred	quency Tuning (E	FC), Ordering Op	tion		
Tuning Range ⁶	PR	±5.0, ±8.0,	ppm		
Tuning Slope			Positive		
Control Voltage to reach Pull Range 1.8V Supply Voltage Option 2.5V, 2.8V, 3.0V and 3.3V Supply Voltage Option	V _c	0.3 0.5	0.9 1.5	1.5 2.5	V V
Linearity	Lin			10	%
Control Voltage Impedance		500			Kohm
RF Outp	out (Clipped Sine	e Wave), Ordering	Option		
Output Level High	V _o p-p	0.8			V
Output Load	C_{L}		10k 10pF		
Start Up Time	t _{su}			2	ms
	Phase	Noise ⁷			
Phase Noise, 26.00MHz ⁷ 10Hz 100Hz 1kHz 10kHz 10kHz	0,		-90 -112 -132 -145 -147		dBc/Hz
Integrated Phase Jitter, 26.00MHz (12k-5MHz) ⁷	0,		0.4	1.0	ps


- 1. Refer to Table 7 for Standard Frequencies. Other Frequencies are available on request. Check with factory.
- 2. Output DC-cut capacitor is optional.
- 3. The VT-860 power supply pin (Pin4) should be filtered using a by-pass capacitor of 0.1uF for optimal performance.
- 4. Referenced to the midpoint between minimum and maximum frequency value over Operating Temperature Range.
- 5. Frequency measured at 25 °C, 1 hour after 2 IR reflows.
- 6. Referenced to Mid Control Voltage
- 7. Measured at ambient temperature using Agilent E5052B Signal Source Analyzer.

Typical Phase Noise Performance (26MHz)

Package Outline Drawing & Pad Layout

Supply Voltage

Dimensions in mm

Marking Information

PRIMARY PACKAGE

V - Vectron

XXMXX - Frequency (Example: 26M000)

YY - Year of Manufacture

M - Month of the Year (A-Jan, B-Feb.....K-Nov, L-Dec)

C4 - Manufacturing Location

• - Pin 1 Indicator

Note:

4

V_{DD}

0.1uF capacitor is a by-pass power supply filter capacitor placed between Pin4 (Vdd) and Ground for optimal performance. Optional 1000pF DC cut capacitor can be used in the output.

OPTIONAL PACKAGE

Maximum Ratings

Absolute Maximum Ratings and Handling Precautions

Stresses in excess of the absolute maximum ratings can permanently damage the device. Functional operation is not implied or any other excess of conditions represented in the operational sections of this data sheet. Exposure to absolute maximum ratings for extended periods may adversely affect device reliability.

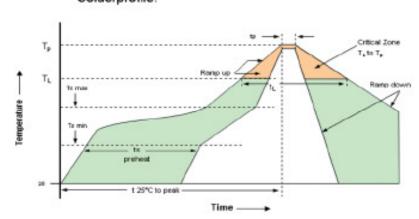
Although ESD protection circuitry has been designed into the VT-860, proper precautions should be taken when handling and mounting, VI employs a Human Body Model and Charged Device Model for ESD susceptibility testing and design evaluation.

ESD thresholds are dependent on the circuit parameters used to define the model. Although no industry standard has been adopted for the CDM a standard resistance of 1.5kOhms and capacitance of 100pF is widely used and therefor can be used for comparison purposes.

Table 3. Maximum Ratings			
Parameter	Symbol	Rating	Unit
Storage Temperature	$T_{_{STORE}}$	-55/125	۰C
Supply Voltage	$V_{_{\mathrm{DD}}}$	-0.6/6	V
Control Voltage	V _c	-0.6/V _{DD} +0.6	V
Enable/Disable Voltage	E/D	-0.6/V _{DD} +0.6	V
ESD, Human Body Model		1500	V
ESD, Charged Device Model		1000	V

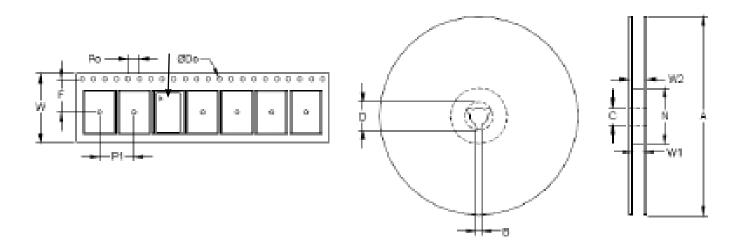
Reliability

Table 4. Environmental Compliance						
Parameter	Condition					
Mechanical Shock	MIL-STD-883 Method 2002					
Mechanical Vibration	MIL-STD-883 Method 2007					
Temperature Cycle	MIL-STD-883 Method 1010					
Solderability	MIL-STD-883 Method 2003					
Fine and Gross Leak	MIL-STD-883 Method 1014					
Resistance to Solvents	MIL-STD-883 Method 2015					
Moisture Sensitivity Level	MSL1					
Contact Pads	Gold over Nickel					

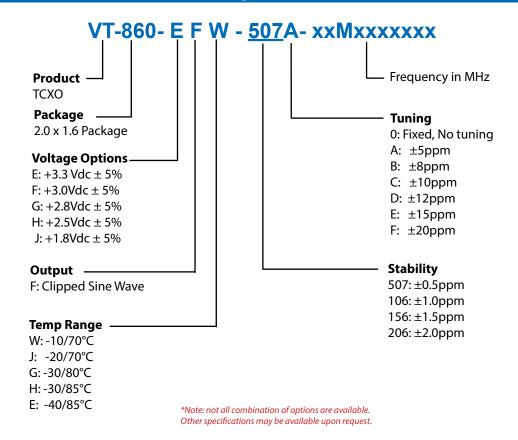

IR Reflow

Suggested IR Profile

Devices are built using lead free epoxy and can be subjected to standard lead free IR reflow conditions shown in Table 5. Contact pads are gold over nickel and lower maximum temperatures can also be used, such as 220°C.


Table 5. Reflow Profile		
Parameter	Symbol	Value
PreHeat Time Ts-min Ts-max	t _s	200 sec Max 150°C 200°C
Ramp Up	$R_{_{\mathrm{UP}}}$	3°C/sec Max
Time above 217C	t _L	150 sec Max
Time to Peak Temperature	t _{25C to peak}	480 sec Max
Time at 260C	t _p	30 sec Max
Time at 240C	t _{P2}	60 sec Max
Ramp down	$R_{_{DN}}$	6°C/sec Max

Solderprofile:



Tape & Reel

Table 6.	Tape and	Reel Info	rmation									
Tape Dimensions (mm)				Reel Dimensions (mm)								
W	F	Do	Ро	P1	Α	В	С	D	N	W1	W2	#/Reel
8	3.5	1.5	4	4	180	2.0	13	20.2	60	9.0	11.4	1000

Ordering Information

Example: VT-860-EFW-507A-26M0000000

* Add _SNPBDIP for tin lead solder dip Example: VT-860-EFW-507A- 26M000000 SNPBDIP

Standard Frequencies & Capability Chart

Table 7. Sta	Table 7. Standard Frequencies (MHz)								
12.000	12.288	16.000	16.368	16.369	19.200	20.000	24.000	26.000	32.000
32.736	38.400	40.000	48.000						

Note: Other Frequencies may be available on request.

Revision History

Revision Date	Approved	Description
May 10, 2016	VN	Rev 0.1 - VT-860 Preliminary Datasheet - Internal Verification, Factory Approval, Product Launch
May 19, 2016	VN	Rev 0.2 - Updated Features and Application section
June 27, 2016	VN	Rev 0.3: Corrected marking information and updated standard frequency table (Table 7)
August 10, 2018	FB	Rev 0.4: Update logo and contact information, update PCB layout, add "SNPBDIP" ordering option

Microsemi Headquarters One Enterprise, Aliso Viejo, CA 92656 USA Within the USA: +1 (800) 713-4113 Outside the USA: +1 (949) 380-6100 Sales: +1 (949) 380-6136

Fax: +1 (949) 215-4996 email: sales.support@microsemi.com www.microsemi.com Microsemi, a wholly owned subsidiary of Microchip Technology Inc. (Nasdaq: MCHP), offers a comprehensive portfolio of semiconductor and system solutions for aerospace & defense, communications, data center and industrial markets. Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FP6As, SoCs and ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world's standard for time; voice processing devices; RF solutions; discrete components; enterprise storage and communication solutions, security technologies and scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs and midspans; as well as custom design capabilities and services. Learn more at www.microsemi.com.

Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not rely on any data and performance specifications or parameters provided by Microsemii. It is the Buyer's responsibility to independently determine suitability of any potted and toerful the same. The information provided by Microsemi hereunder is provided "as is, where is" and with all faults, and the entire risk associated with such information is entirely with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP injoints, whether with regard to such information is entirely or anything described by such information. Information information information information in mission or anything described by such information. Information provided by such information.

©2018 Microsemi, a wholly owned subsidiary of Microchip Technology Inc. All rights reserved. Microsemi and the Microsemi logo are registered trademarks of Microsemi Corporation. All other trademarks and senice marks are the property of their respective owners.