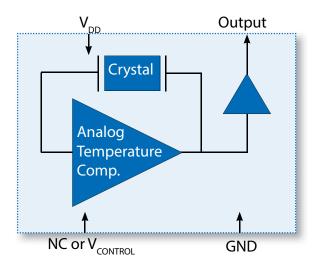


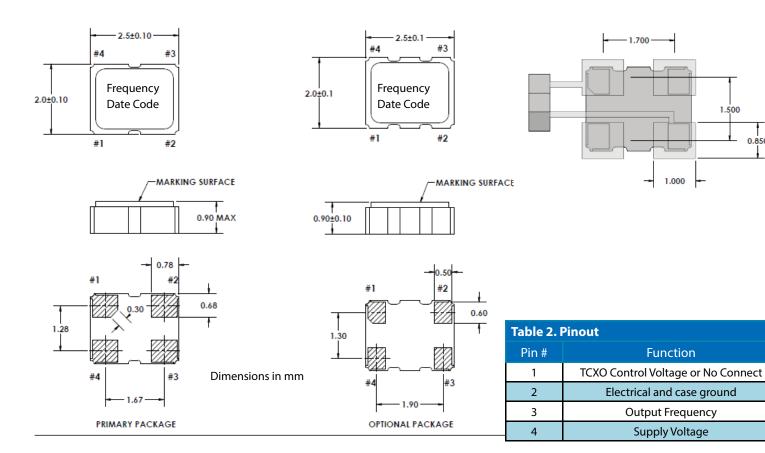
Vectron's VT-841 Temperature Compensated Crystal Oscillator (TCXO) is a quartz stabilized, clipped sine wave output, analog temperature compensated oscillator, operating off a 1.8, 2.5, 2.8, 3.0, 3.3 volt supply in a hermetically sealed 2.5x2.0mm 4-pad ceramic package.


Features

- Output Frequencies to 52MHz
- ±0.5ppm Temperature Stability
- Fundamental Crystal Design
- Optional VCXO Function Available
- Gold over nickel contact pads
- Hermetically Sealed Ceramic SMD package
- Product is compliant to RoHS directive and fully compatible with lead free assembly

Applications

- Wireless Communications
- Global Positioning Systems
- Base Stations
- · Point to Point Radio
- Broadband Access
- Test Equipments


Block Diagram

Specifications

Table 1. Electrical Performance							
Parameter	Symbol	Min.	Тур	Max	Units		
Output Frequency ¹ , <i>Ordering Option</i>	f _o	10.000		52.000	MHz		
Supply Voltage ² , Ordering Option	V _{DD}	1.8	, 2.5, 2.8, 3.0,	3.3	V		
Supply Current 10.000MHz to 26.000MHz 26.001MHz to 52.000MHz	I _{DD}			2.0 2.5	mA		
Operating Temperature, Ordering Option	T _{OP}	0/55, -2	20/70, -30/85	, -40/85	°C		
Freque	ncy Stability	/					
Stability Over T _{OP} ³ , Ordering Option	F _{STAB}	±0.5, ±	:1.0, ±1.5, ±2	.0, ±2.5	ppm		
Initial Accuracy ⁴				±1.0	ppm		
Power Supply Stability, ±5% change				±0.2	ppm		
Load Stability				±0.2	ppm		
Aging				±1.0	ppm/yr		
Frequency Tuning	g (EFC), Orde	ring Option					
Tuning Range⁵	PR	±5.0,	±12.0	ppm			
Tuning Slope		Positive					
Control Voltage to reach Pull Range 1.8V Supply Voltage Option 2.5V, 2.8V, 3.0V, 3.3V Supply Voltage Option	V _c	0.3 0.5	0.9 1.5	1.5 2.5	٧		
Control Voltage Impedance		500			KOhm		
RF Output (Clipped S	ine Wave), C	ordering Opti	on				
Output Level	V _o p/p	0.8			V		
Output Load				10K II 10pF			
Start Up Time				2	ms		
Phase Noise ⁶							
Phase Noise, 19.2MHz 10Hz 100Hz 1kHz 10kHz			-91 -115 -135 -148		dBc/Hz		

- 1. Refer to Table for Standard Frequencies. Other frequencies are available on request. Check with factory.
- 2. The VT-841 power supply pin should be filtered, eg, a 0.1 and 0.01uf capacitor
- 3. Referenced to the mid point between minimum and maximum frequency value over T_{OP} 4. Initial Accuracy is before IR reflow. Allow an additional 1ppm shift through 2 reflows and 24 hours.
- 5. Referenced to Mid Control Voltage.
- 6. Measured at ambient temperature using Agilent E5052B Signal Source Analyzer.

VCXO Function

VCXO Feature: The VT-841 can be ordered with a VCXO function for applications were it will be used in a PLL, or the output frequency needs fine tune or calibration adjustments. This is a high impedance input, 500kOhm, and can be driven with an op-amp or terminated with adjustable resistors etc. **Pin 1 should not be left floating on the VCXO optional device.**

In Applications where the VT-841 output frequency do not need fine tune adjustments, Pin 1 can be grounded or left open as a "No Connect". It should not be set to a voltage such as an RF signal or power supply voltage.

Maximum Ratings

Absolute Maximum Ratings and Handling Precautions

Stresses in excess of the absolute maximum ratings can permanently damage the device. Functional operation is not implied or any other excess of conditions represented in the operational sections of this data sheet. Exposure to absolute maximum ratings for extended periods may adversely affect device reliability.

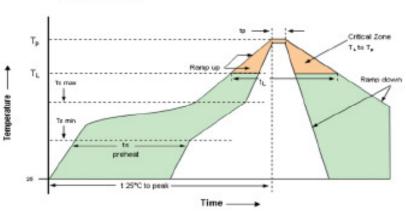
Although ESD protection circuitry has been designed into the VT-841, proper precautions should be taken when handling and mounting, VI employs a Human Body Model and Charged Device Model for ESD susceptibility testing and design evaluation.

ESD thresholds are dependent on the circuit parameters used to define the model. Although no industry standard has been adopted for

ESD thresholds are dependent on the circuit parameters used to define the model. Although no industry standard has been adopted for the CDM a standard resistance of 1.5kOhms and capacitance of 100pF is widely used and therefor can be used for comparison purposes.

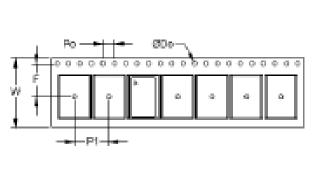
Table 3. Maximum Ratings			
Parameter	Symbol	Rating	Unit
Storage Temperature	$T_{_{STORE}}$	-55/125	°C
Supply Voltage	$V_{_{\mathrm{DD}}}$	-0.6 to 6.0	V
Control Voltage	V_{c}	0/V _{DD}	V
ESD, Human Body Model	НВМ	1500	V
ESD, Charged Device Model	CDM	1000	V

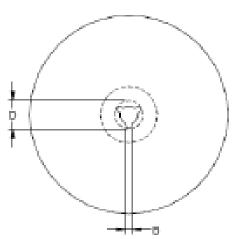
Table 4. Environmental Compliance			
Parameter	Condition		
Mechanical Shock	MIL-STD-883 Method 2002		
Mechanical Vibration	MIL-STD-883 Method 2007		
Temperature Cycle	MIL-STD-883 Method 1010		
Solderability	MIL-STD-883 Method 2003		
Fine and Gross Leak	MIL-STD-883 Method 1014		
Resistance to Solvents	MIL-STD-883 Method 2015		
Moisture Sensitivity Level	MSL1		
Contact Pads	Gold over Nickel		

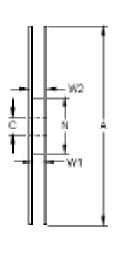

IR Reflow

Suggested IR Profile

Devices are built using lead free epoxy and can be subjected to standard lead free IR reflow conditions shown in Table 5. Contact pads are gold over nickel and lower maximum temperatures can also be used, such as 220C.

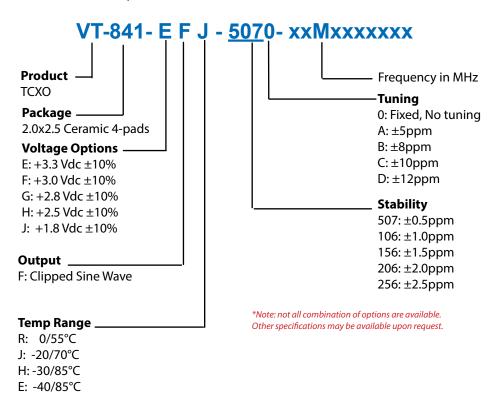

Table 5. Reflow Profile		
Parameter	Symbol	Value
PreHeat Time Ts-min Ts-max	t _s	200 sec Max 150°C 200°C
Ramp Up	$R_{_{\mathrm{UP}}}$	3°C/sec Max
Time above 217C	t _L	150 sec Max
Time to Peak Temperature	t _{25C to peak}	480 sec Max
Time at 260C	t _p	30 sec Max
Time at 240C	t _{P2}	60 sec Max
Ramp down	$R_{_{\mathrm{DN}}}$	6°C/sec Max


Solderprofile:



Tape & Reel

Table 6.	Tape and	Reel Info	rmation									
	Tape D	imension	s (mm)		Reel Dimensions (mm)							
W	F	Do	Ро	P1	А	В	С	D	N	W1	W2	#/Reel
8.0	3.5	1.5	4.0	4.0	180	2.0	13.0	21.0	60.0	9.0	11.4	1000



Ordering Information

Table 7. Sta	ındard Frequ	encies (MHz	:)						
10.000	12.8000	16.368	16.369	16.384	19.200	20.000	24.000	25.000	26.000
30.000	32.000	38.400	40.000	45.000	50.000	52.000			

Note: Other Frequencies are available on request.

Example: VT-841-EFJ-5070-26M0000000

* Add **_SNPBDIP** for tin lead solder dip Example: VT-841-EFJ5070-26M0000000 SNPBDIP

Table 8. Capability Chart						
	±0.5ppm	±1.0ppm	±1.5ppm	±2.0ppm	±2.5ppm	
0/55°C	•	•	•	•		
-20/70°C	•	•	•	•	•	
-30/85°C	•	•	•	•	•	
-40/85°C	•	•	•	•	•	

= Can be provided.

= Under development. Please consult with factory.

Revision History

Revision Date	Approved	Description
Aug 13, 2014	VN	VT-841 Product Initial Release
Jan 17, 2017	VN	Updated Reflow Profile (Table 5) to show 30s maximum for time at 260C
Aug 10, 2018	FB	Update logo, contact information, layout, add "SNPBDIP" ordering option, delete AC output coupling ordering option note 6

Microsemi Headquarters

microsemi Headquarters
One Enterprise, Aliso Viejo, CA 92656 USA
Within the USA: +1 (800) 713-4113
Outside the USA: +1 (949) 380-6100
Sales: +1 (949) 380-636
Fax: +1 (949) 215-4996
email: sales.support@microsemi.com
www.microsemi.com

Microsemi, a wholly owned subsidiary of Microchip Technology Inc. (Nasdaq: MCHP), offers a comprehensive portfolio of semiconductor and system solutions for aerospace & defense, communications, data center and industrial markets. Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and ASICs, power management products; timing and synchronization devices and precise time solutions, setting the world's standard for time, voice processing devices; RF solutions, discrete components, enterprise storage and communication solutions, security technologies and scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs and midspans; as well as custom design capabilities and services. Learn more at www.microsemi.com.

Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer's responsibility to independently determine suitability of any products and to test and verify the same. The information provided by Microsemi hereunder is provided "as is, where is" and with all faults, and the entire risk associated with such information is entirely with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP injust, whether with regard to such information is testif or anything desention. Information Informa

©2018 Microsemi, a wholly owned subsidiary of Microchip Technology Inc. All rights reserved. Microsemi and the Microsemi logo are registered trademarks of Microsemi Corporation. All other trademarks and senice marks are the property of their respective owners.