Protect Existing GPS Systems Today and Secure PNT Infrastructure for the Future

GPS revolutionized the world with its ability to provide an accurate, reliable and cost-effective Positioning, Navigation and Timing (PNT) service with global coverage. Its rapid adoption and widespread proliferation enhances our way of life, but has also led to a dependency on GPS to maintain that way of life.

BlueSky™ GNSS Firewall

- Protects GPS systems from spoofing and jamming
- Integrates seamlessly between existing GPS antenna and GPS system
- Compatible with any GPS antenna that receives the L1 frequency
- Optional Rubidium Miniature Atomic Clock (MAC) can be configured inside to provide holdover
- Optional 1 PPS and 10 MHz timing reference inputs for connection of external references (such as cesium standards) providing resiliency even in case of complete GPS outage
- Redundant AC or DC power supplies with hitless switching load sharing
- Command Line Interface (CLI) in addition to secure and easy-to-use web interface
- BlueSky GNSS Firewall embedded software is field upgradeable
- Integration with TimePictra™ provides end-to-end management of 10s, 100s or 1,000s of units deployed over large geographical areas
- BlueSky performance monitoring provides visibility of GPS reception quality (software option that runs within TimePictra)

Applications

- Wireline and wireless networks
- Utility and power grids
- Data centers
- Transportation networks
- Emergency services
- Financial services

Secure Firewall Overlay

The BlueSky GNSS Firewall solves the problem of protecting already deployed systems by providing a cost-effective overlay solution installed between existing GPS antennas and GPS systems. Similar to a network firewall, the BlueSky GNSS Firewall protects systems inside the firewall from untrusted sky-based signals outside the firewall.

Contained within the BlueSky GNSS Firewall is a software engine that analyzes the GPS signal. GPS signal data is received and evaluated from each satellite to ensure compliance with GPS standards along with analyzing received signal characteristics. This information is used by the firewall to block anomalous GPS signals and provide a hardened GPS signal output to downstream GPS systems.

The BlueSky GNSS Firewall also supports a range of atomic clock technologies enabling continuous operation where GPS may be completely denied for extended periods of time, even in cases where disruptions may last for more than 30 days. The system incorporates an optional internal Rubidium MAC enabling continuous output of the GPS signal to the downstream GPS receiver in case of complete loss of live sky GPS reception. Alternatively, cesium clocks, such as the 5071A or TimeCesium can be connected to the BlueSky GNSS Firewall enabling UTC traceable time for more than 30 days.

Management and performance monitoring of wide scale deployment of the BlueSky GNSS Firewall units is simplified using TimePictra management system. TimePictra also includes BlueSky performance monitoring that enables a regional, national, or global view of your PNT infrastructure to provide early alerting to threats before your PNT network is affected.
BlueSky GNSS Firewall is deployed in-line between an existing GPS antenna and GPS receiver system. The BlueSky GNSS Firewall analyzes incoming GPS signals from the antenna to identify anomalous or spoofed GPS signals.

When anomalous signal conditions are detected, the BlueSky GNSS Firewall blocks the unwanted signals and prevents them from propagating to downstream GPS systems. This isolates and protects downstream GPS systems from harmful GPS signals outside the firewall.

The BlueSky GNSS Firewall installs in a standard 19-inch rack and can be placed near the GPS receiver system or near the point at which the GPS antenna cable enters the building.

Power for the GPS antenna is provided by the BlueSky GNSS Firewall using a software configurable setting for 0, 3.3, 5 or 12 VDC. Thus, nearly all currently deployed GPS antennas are supported without modifying the existing installation.

Power for the BlueSky GNSS Firewall is provided by redundant and hitless AC or DC power supplies contained within the system. The power supplies use load share equally, which improves overall reliability, and an active power management system constantly monitors the operation. If the power to one cord is lost or if one power supply fails, the entire load is immediately picked up by the remaining energized power supply with no interruption to the GPS signal delivery.
Timing and synchronization are increasingly important to the operation of critical infrastructure sectors. A comprehensive view of an operator’s time and frequency systems is paramount to identifying and localizing issues, taking corrective actions, and ensuring continued operations.

The software environment of the BlueSky GNSS Firewall integrates seamlessly with TimePictra management system. TimePictra is a web-based management system for time, frequency, and synchronization of network elements. It features a modular architecture that scales and evolves to address new or changing operational requirements. When using TimePictra to manage a deployment of BlueSky GNSS Firewall devices, users have centralized control and visibility of their network to ensure their enterprise is operating properly.

Within TimePictra, the BlueSky GNSS Firewall is managed as a network element similar to other products. This includes auto discovery and alarm reporting, latitude and longitude for mapping, remote control and the ability to upgrade anomaly detection criteria or the entire BlueSky client.

As with any network connected device, network security is critical to ensuring continued operations. The BlueSky GNSS Firewall uses the latest security measures and protocols to protect against network intrusion.

- CLI over SSHv2, secure web-based management (HTTPS/SSL)
- x.509 Certificate support, Radius, LDAP, TACACS+
- IPv4, IPv6, DHCP and remote syslog logging

Available as an option within TimePictra is BlueSky performance monitoring. This set of features enables performance charting of GPS reception through data collection from individual BlueSky GNSS Firewalls. The BlueSky performance monitoring software option enables visibility of GPS reception parameters across a wide-scale deployment of firewalls. GPS signal analytics such as GPS phase deviation, GPS satellites in view status, GPS signal strength, RF power level, GPS satellite tracking, GPS position data, and phase error are measured between the GPS time and the internal timescale of the firewall can all be viewed from a centralized console. Specific time periods can be selected for plotting and identifying exactly when and where an anomaly occurred. This aids critical infrastructure operations to more quickly identify and isolate GPS incidents.

Performance metrics of GPS reception are visible over large geographies.

For direct user management, the BlueSky GNSS Firewall provides an intuitive, web-based GUI. This GUI provides basic status and control and includes the ability to update the BlueSky client application and anomaly detection criteria.

The BlueSky GNSS Firewall provides users control from a web-based graphical interface and the ability to update data validation rules.
The BlueSky GNSS Firewall provides protection by monitoring the data contained within the GPS signals along with the GPS signal characteristics coming directly from the GPS antenna before the GPS signal reaches the downstream receivers. When a GPS incident is detected, the BlueSky GNSS Firewall alerts users of the condition and takes appropriate action to prevent the GPS signal from propagating downstream, effectively creating the BlueSky environment for users regardless of current live-sky GPS conditions.

Hardened GPS

Hardened GPS is the most secure GPS output because it provides a synthesized GPS signal isolated from the live-sky environment.

The hardened GPS output is not a copy of the live-sky GPS signal and is only loosely based on information received from the live-sky signal. Thus, a secure BlueSky GPS environment is created.

When GPS incidents are detected by the BlueSky GNSS Firewall, the hardened GPS output continues to be available. Downstream users can continue to use the hardened GPS signal during times of GPS jamming or GPS spoofing without impacting their system performance.

The hardened GPS output provides a synthesized version of the GPS L1 signal. Because the GPS L1 signal is supported by all current and foreseeable GPS based systems, it provides backward compatibility while also being future-proof.

Validated GPS

The Validated GPS output provides a copy of the actual GPS signal being analyzed by the firewall. When anomalous conditions are detected, the firewall turns the validated GPS output off to protect users from potentially corrupted GPS signals. Once conditions are deemed safe, the validated GPS output is turned back on.

The validated GPS output also includes copies of the L1, L2, and L5 signals on a single output. This enables downstream systems that use multiple GPS frequencies (such as SAASM or M-code) to use the BlueSky GNSS Firewall to provide an additional layer of protection. Because the validated output is a pure copy of the input, if other constellation bands are being received, such as Galileo, GLONASS and Beidou, these signals are available on the validated output as well. These satellite signals are simply passed through, but not analyzed for spoofing as with the GPS signal.

Atomic Reference

The BlueSky GNSS Firewall provides two options for atomic references to be connected: (1) inside the BlueSky GNSS Firewall, a Rubidium MAC can be installed, or (2) atomic references (such as TimeCesium or 5071A cesium clocks) can be connected using the 10 MHz or 1 PPS inputs. Adding an atomic reference enables the BlueSky GNSS Firewall to enhance its GPS event detection capabilities while also extending its ability to provide accurate time (using the hardened GPS output) during live-sky GPS incidents. All downstream systems inherit the performance of the atomic reference being utilized by the BlueSky GNSS Firewall and GPS time continues to be delivered even in the case of a complete outage of the GPS signal input.
Similar to network security threats, new GPS threats are on the rise including GPS signal manipulation and degradation including spoofing threats, jamming incidents, multipath signal interference, space weather and many other issues that can create GPS signal anomalies, disruptions and outages. At the core of the BlueSky GNSS Firewall is a programmable anomaly detector that validates the GPS subframes for spoofing attacks based on defined data validation rules. A wide range of rules have already been built into the BlueSky GNSS Firewall to detect suspicious time and position inconsistencies. As with traditional security firewalls, new validation rules are dynamically loaded into the BlueSky GNSS Firewall as new threats are identified.

The BlueSky GNSS Firewall uses advanced algorithms based on fundamental observables and expected values to establish a layered defense in securing GPS signals. This provides protection against currently conceived threats and enables security updates to protect against future threats to maintain an evolving, secure system.

Data Validator
The BlueSky GNSS Firewall analyzes all data received from a GPS signal and validates that it complies with GPS standards and expected values. Otherwise, the signal is deemed to be non-compliant and actions are taken to prevent its dissemination to downstream systems.

A standard set of data validation rules are included on the BlueSky GNSS Firewall. Additionally, the BlueSky subscription service provides users with access to new validation rules which can be securely installed on the BlueSky GNSS Firewall to protect against new threats.

Autonomous Timescale
Unique to BlueSky GNSS Firewall is the deployment of an autonomous timescale. An autonomous timescale is crucial to detecting anomalous GNSS events because it provides an independent means of validating time from external sources (such as GPS). It enables a user to optimize the BlueSky GNSS Firewall to achieve their cost and performance requirements using an optional internal MAC or by using external references such as cesium clocks.

Signal Characteristics
Most GPS attacks are precipitated by a “knock-off” event that forces GPS systems to momentarily lose lock on actual GPS signals and then replaces those signals with spoofed GPS signals. The BlueSky GNSS Firewall identifies potential knock-off events by analyzing incoming GPS signal power in conjunction with other indicators that detect the presence of potentially corrupted GPS transmissions.

Updates to GPS Data Validation Rules
Microchip is continuously tracking GPS signal activity. Microchip’s worldwide deployment of atomic clocks and GPS systems are used as a reference frame to continuously analyze GPS data for changes including spoofing threats, jamming attacks, multipath signal interference, atmospheric activity and any other effect that degrades GPS performance.

New GPS data validation rules, available as part of the BlueSky Subscription service, can be deployed using either TimePictra management software or using the BlueSky GNSS Firewall’s secure web-based interface.
Features and Services

Microchip provides a wide range of services. With over 40 years of designing timing systems for mission-critical applications, we have comprehensive support resources available to ensure that customers are able to use all of the features of the BlueSky GNSS Firewall. The BlueSky subscription service provides on-going improvements to the GPS anomaly detectors contained within the BlueSky GNSS Firewall. Details of this service are available on a separate BlueSky subscription datasheet. Additional services for the BlueSky GNSS Firewall include:

- Site survey and Verification
- On-site installation
- Consulting Services
- Training
- Extended Hardware Warranty
- Rapid Replacement Service

Please register through the online support portal at my.microsemi.com. A broad collection of information is available through the portal and Microchip will keep you informed of important updates once you have registered.

For More Information
www.microsemi.com
Support
Microchip is committed to supporting its customers in developing products faster and more efficiently. We maintain a worldwide network of field applications engineers and technical support ready to provide product and system assistance. For more information, please visit www.microchip.com:
• Technical Support: www.microchip.com/support
• Evaluation samples of any Microchip device: www.microchip.com/sample
• Knowledge base and peer help: www.microchip.com/forums
• Sales and Global Distribution: www.microchip.com sales

Training
If additional training interests you, Microchip offers several resources including in-depth technical training and reference material, self-paced tutorials and significant online resources.
• Overview of Technical Training Resources: www.microchip.com/training
• MASTERS Conferences: www.microchip.com/masters
• Developer Help Website: www.microchip.com/developerhelp
• Technical Training Centers: www.microchip.com/seminars