
FlashPro User Guide
Software v11.9

NOTE: PDF files are intended to be viewed on the printed page; links and cross-references in this PDF file
may point to external files and generate an error when clicked. View the online help included with
software to enable all linked content.

 FlashPro User Guide

1

Microsemi makes no warranty, representation, or guarantee regarding the information contained
herein or the suitability of its products and services for any particular purpose, nor does
Microsemi assume any liability whatsoever arising out of the application or use of any product or
circuit. The products sold hereunder and any other products sold by Microsemi have been
subject to limited testing and should not be used in conjunction with mission-critical equipment
or applications. Any performance specifications are believed to be reliable but are not verified,
and Buyer must conduct and complete all performance and other testing of the products, alone
and together with, or installed in, any end-products. Buyer shall not rely on any data and
performance specifications or parameters provided by Microsemi. It is the Buyer’s responsibility
to independently determine suitability of any products and to test and verify the same. The
information provided by Microsemi hereunder is provided “as is, where is” and with all faults,
and the entire risk associated with such information is entirely with the Buyer. Microsemi does
not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP rights,
whether with regard to such information itself or anything described by such information.
Information provided in this document is proprietary to Microsemi, and Microsemi reserves the
right to make any changes to the information in this document or to any products and services
at any time without notice.

About Microsemi
Microsemi Corporation (NASDAQ: MSCC) offers a comprehensive portfolio of semiconductor
and system solutions for aerospace & defense, communications, data center and industrial
markets. Products include high-performance and radiation-hardened analog mixed-signal
integrated circuits, FPGAs, SoCs and ASICs; power management products; timing and
synchronization devices and precise time solutions, setting the world's standard for time; voice
processing devices; RF solutions; discrete components; enterprise storage and communication
solutions; security technologies and scalable anti-tamper products; Ethernet solutions; Power-
over-Ethernet ICs and midspans; as well as custom design capabilities and services. Microsemi
is headquartered in Aliso Viejo, California, and has approximately 4,800 employees globally.
Learn more at www.microsemi.com.

5-02-9138-5/08.18

Microsemi Corporate
Headquarters
One Enterprise, Aliso Viejo,
CA 92656 USA
Within the USA: +1 (800) 713-4113
Outside the USA: +1 (949) 380-6100
Fax: +1 (949) 215-4996
Email:
sales.support@microsemi.com
www.microsemi.com

©2018 Microsemi Corporation. All
rights reserved. Microsemi and the
Microsemi logo are registered
trademarks of Microsemi
Corporation. All other trademarks and
service marks are the property of
their respective owners.

http://www.microsemi.com/
mailto:sales.support@microsemi.com
http://www.microsemi.com/

FlashPro User Guide

2

Table of Contents

Table of Contents... 2

About FlashPro .. 8
Programming Tool Model Overview ... 8
Programming Tool User Model Overview - SmartFusion Only .. 10
SmartFusion2 Programming .. 12
Supported Families .. 12
Installing FlashPro Software and Hardware .. 13
Starting FlashPro ... 13

FlashPro Interface ... 14
Creating a New Project .. 15
Opening a Project .. 16
Saving a Project ... 16
Parallel Programming with FlashPro5/4/3/3X .. 16
Serialization with FlashPro ... 17
FlashPro and SVF .. 18
FlashPro and the 1532 File Format ... 19

Introductory Programming Tutorials ... 21
Single STAPL/PDB File Basic Tutorial... 21
Single Microsemi Device with Serialization Tutorial .. 24
Chain Programming Tutorial .. 29
SmartFusion Programming Tutorial ... 33
Modifying Memory Contents and Programming a Device Tutorial .. 34
Modifying FlashROM Contents and Programming a Device Tutorial 35
Programming Only Security Settings Tutorial .. 38
Automatic Chain Construction Tutorial .. 40
eNVM/EFMB Client JTAG Protection Use Flow .. 43
eNVM Client JTAG Protection Tutorial - SmartFusion ... 44
EFMB Client JTAG Protection Tutorial - Fusion .. 49
Fusion Calibration Backup and Recovery Tutorial ... 52
Specify I/O States During Programming Tutorial ... 53

Advanced Tutorials.. 56
Multiple Device Chain Programming .. 56
Multiple Device Serialization Chain Programming ... 58
Multiple Programmer Multiple Device Chain Programming ... 61
Multiple Programmer and Multiple Device Serialization Chain Programming 64
Setting Disabled Microsemi SoC Devices to HIGH-Z .. 67

FlashPro User Guide

3

Programming Settings and Operations ... 69
Programmer Settings ... 69
Ping Programmers ... 71
Performing a Self-Test ... 71
Scanning a Chain ... 72
Enabling and Disabling Programmers ... 72
Renaming a Programmer ... 72
Removing a Programmer ... 72
Selecting Programmers ... 72

Single Device Programming ... 74
Loading a Programming File .. 74
Select Target Device .. 75
Chain Settings .. 76
Serial Settings .. 76

Chain Programming... 78
Chain Order .. 78
Multiple Device Chain Programming .. 78
Chain Configuration Window ... 80
Editing the Chain Configuration Grid ... 81
Chain Editing .. 83
Using the Organize Buttons in the Chain Programming Grid .. 83
Cutting, Copying and Pasting Devices from the Chain .. 84
Removing Devices from the Chain .. 84
Moving Devices within the Chain ... 84
Skip Serial Data ... 84
Reuse Serial Data .. 84
Serialization with Parallel Programming .. 85

Chain Editing .. 86
Adding a Microsemi Device ... 86
Adding a Microsemi Device from Files... 86
Adding a Non-Microsemi Device .. 86

Configuring a Programmer ... 89
Selecting an Action .. 89
Using Serialization ... 89
Modifying Programming Settings in FlashPro with a PDB File .. 90

Configuring Security ... 92
Configuring Security, FlashROM and Embedded Flash Memory Settings in FlashPro 92
Configuring Security Settings in FlashPro ... 93
Custom Security Settings ... 95
Changing or Disabling Security Keys... 99
Configuring FlashROM Settings in FlashPro ... 99
Express Configuration .. 100

FlashPro User Guide

4

IGLOO and ProASIC3 Programming .. 101
Programming File Actions for IGLOO and ProASIC3 Devices .. 101

SmartFusion and Fusion (AFS) Programming .. 104
Programming File Actions - SmartFusion and Fusion ... 104

ProASICPLUS and ProASIC Families Programming 108

Generating Programming Files .. 109
Generate a Programming File in FlashPoint .. 109
Programming File Types .. 110
Generate a Programming File for SmartFusion ... 111
Generate a Programming File for CoreMP7/Cortex-M1 Device Support 112
Generate a Programming File for AFS Device Support - Designer Only 112
Generate a Programming File for Serialization Support in In House Programming (IHP) 113
Creating a Programming Database (PDB) File in Designer .. 115
Programming Embedded Flash Memory Block ... 116
Programming the FPGA Array ... 117
Programming the FlashROM ... 117
Silicon Signature .. 119
Programming Security Settings ... 119

Custom Security Levels .. 121
Reprogramming a Secured Device .. 125
Custom Serialization Data for FlashROM Region ... 126
Custom Serialization Data File Format .. 127
Specifying I/O States During Programming ... 129
Custom I/O Settings and Boundary Scan Registers .. 131
Specifying I/O States During Programming - I/O States and BSR Details 131
Specify I/O States During Programming Dialog Box ... 133
Generate a DAT file ... 134
Parallel Port Cable Information .. 135

Importing and Exporting Files .. 136
Importing Configuration Files ... 136
Exporting Configuration Files ... 136
Export Programming Files (SmartFusion Only) ... 136
Exporting a Chain STAPL File ... 139
Exporting a Chain SVF File .. 139
Exporting Single Device STAPL Files .. 139
Exporting Single Device SVF Files .. 139
Exporting Single Device 1532 Files ... 140
Opening an Existing FlashPro Project on a Different Machine .. 140

Using Hot Keys .. 142
General Hot Keys ... 142
Single Device Programming Hot Keys ... 142

FlashPro User Guide

5

Chain Programming Hot Keys ... 142
Batch Mode .. 143

Tcl Commands ... 144
About TCL Commands - FlashPro Tcl Command Reference.. 144
Running Tcl Scripts from within FlashPro .. 147
Running Tcl Scripts from the Command Line .. 147
Exporting Tcl Scripts from within FlashPro .. 148
add_actel_device ... 149
add_non_actel_device ... 149
add_non_actel_device_to_database ... 150
check_flash_memory ... 150
close_project .. 152
compare_analog_config ... 152
compare_flashrom_client ... 153
compare_memory_client .. 153
configure_flashpro_prg .. 154
configure_flashpro3_prg .. 155
configure_flashpro4_prg .. 155
configure_flashpro5_prg .. 156
configure_flashproLite_prg .. 157
connect_cable .. 157
construct_chain_automatically ... 158
copy_device ... 158
cut_device .. 159
dump_tcl_support ... 159
enable_device .. 160
enable_prg ... 160
enable_prg_type .. 160
enable_procedure .. 161
enable_serialization ... 161
export_chain_stapl ... 162
export_chain_svf .. 162
export_config .. 163
export_secured_pdb .. 163
export_script ... 164
export_single_1532 .. 164
export_single_dat ... 165
export_single_stapl .. 165
export_single_svf ... 166
export_spi_directory ... 167
import_config .. 168
new_project .. 168
open_project .. 169
paste_device .. 169
ping_prg ... 169

FlashPro User Guide

6

read_analog_block_config ... 170
read_device_status .. 170
read_flash_memory ... 171
read_flashrom .. 172
read_id_code ... 173
recover_flash_memory .. 173
refresh_prg_list .. 174
remove_device ... 175
remove_non_actel_device_from_database ... 175
remove_prg .. 175
run_selected_actions ... 176
sample_analog_channel .. 176
save_log ... 178
save_project ... 178
save_project_as ... 179
scan_chain_prg .. 179
select_from_region_name ... 180
select_libero_design_device (SmartFusion2, IGLOO2, RTG4) ... 180
select_serial_range .. 181
select_target_device .. 181
self_test_prg ... 181
set_bsdl_file ... 182
set_chain_param .. 182
set_debug_device .. 183
set_debug_programmer ... 183
set_device_ir .. 184
set_device_name ... 184
set_device_order .. 185
set_device_tck ... 185
set_device_to_highz .. 186
set_device_type ... 186
set_main_log_file ... 187
set_prg_name .. 187
set_programming_action ... 188
set_programming_file... 188
set_programming_mode .. 189
set_serialization_log_file .. 189
set_serialization_mode .. 189
update_programming_file .. 190

Troubleshooting .. 196
Loopback Test .. 196
Exit Codes (SmartFusion2 and IGLOO2) .. 196
Exit Codes for Software v8.6 and Above (SmartFusion, IGLOO, ProASIC3 and Fusion) 202
Exit Codes for pre-v8.6 Software (SmartFusion, IGLOO, ProASIC3 and Fusion) 218
ProASICPLUS and ProASIC Exit Codes .. 224

FlashPro User Guide

7

SmartDebug ... 231

Electrical Parameters .. 233
DC Characteristics for FlashPro5/4/3/3X ... 233
DC Characteristics for FlashPro Lite.. 234
DC Characteristics for FlashPro .. 235

Electrical Specifications .. 237
FlashPro5 ... 237
FlashPro4 ... 238
FlashPro3 ... 239
FlashPro Lite .. 240
FlashPro ... 241
FlashPro 5/4/3/3X Characteristics ... 242
FlashPro and FlashPro Lite Characteristics .. 242
Illustration of the JTAG Switching Characteristics ... 243

References ... 244
Customizing the Toolbar .. 244
Customizing the Programming Window ... 245
FlashPro Preferences .. 246
FlashPro File Menu .. 249
FlashPro Edit Menu.. 250
FlashPro View Menu .. 250
FlashPro Tools Menu ... 251
FlashPro Programmers Menu .. 251
FlashPro Configuration Menu .. 252
FlashPro Customize Menu ... 252
FlashPro Help Menu .. 253
FlashPro Flow Window .. 253
FlashPro Log Window .. 254
FlashPro Status Bar ... 254
FlashPro Programmer List Window ... 254
Programmer Details Window ... 255
FlashPro Single Device Configuration Window ... 256
Chain Configuration Window ... 259
Microsemi SoC Products Group Headquarters ... 261
Contact Information .. 261

Regulatory and Compliance Information ... 263

FlashPro User Guide

8

About FlashPro

FlashPro is a Microsemi programming software tool for SmartFusion2, IGLOO2, RTG4, SmartFusion, IGLOO,
ProASIC3, and Fusion devices. You will be able to navigate easily through the FlashPro software because of its
similarities with other Microsemi software tools.
The FlashPro software includes the following features:
• Supports modification of I/O states during programming
• Supports automatic construction of chain from scan chain operation
• Supports importing non-Microsemi BSDL files for automatic chain construction
• Supports direct multiple Microsemi device chain programming and serialization
• Supports single device STAPL files generation
• Supports single device SVF files generation
• Supports single device IEEE 1532 files generation
• Supports Chain SVF file generation
• Supports a single GUI to drive multiple FlashPro5/4/3/3X programmers for parallel programming
• Supports 1.2V programming for IGLOO devices
• Supports device serialization for parallel programming
• A redesigned GUI, which features a project manager to manage the programming files and data
• Enhanced In-System Programming (ISP) Support

An optional In-House Programming (IHP) service is available if you are purchasing Microsemi devices in volume.
Contact Microsemi for more information.
For step-by-step instructions on how to use these features, see the FlashPro Tutorial.
If you arrived here by pressing the F1 key in FlashPro, use the Search tool in help for more information on
specific content, or click the Help button embedded in any dialog box or GUI for context-specific help.
Support Notes
• PC support: Libero supports programming of all families. For SmartFusion, Fusion, IGLOO, and

ProASIC3 projects, use FlashPro. For SmartFusion2, IGLOO2, and RTG4 projects, use FlashPro
Express.

• Linux support: Libero supports programming for SmartFusion2, IGLOO2, and RTG4 projects only using
FlashPro Express.

• The JTAG chain supports programming of all Microsemi device families.
• Parallel programming via FlashPro (USB/LPT1) or FlashPro Lite programmers is not supported.

Programming Tool Model Overview
The FlashPro software is designed for use in the operation, user design, and production programming flows.

Design Debug
The figure below illustrates the programming design flow when an engineer is in debug mode. In the programming
design flow, the new Programming files (STAPL/ PDB) are generated for a design change and are sent to the
FlashPro software for testing and debugging the design.

Note: FlashPoint is integrated into Designer; therefore, the STAPL file is generated from Designer.
FlashPro v6.2 and greater can be used to export STAPL files from PDB files created by FlashPoint
(Designer).

https://www.microsemi.com/

FlashPro User Guide

 9

Figure 1 · Programming Design Flow

Operation/Production Planning
The figure below shows an illustration of the operation flow. In this illustration, the production coordinator
generates the programming files (STAPL/PDB) with or without serialization and/or security settings (see
Programming application note for further information). The production coordinator loads the programming file in
the FlashPro software to set up the configurations for production programming, such as Serialization options,
Action selections, and Procedure selections, etc.

Figure 2 · Operation Flow

The production coordinator may want to generate different configuration files for each programming station
(depending on the logistics and serialization options). For example, if the Programming file contains 10,000 serial
data and the production coordinator decides to split the serial data designation to one thousand for each
programming station, then ten configuration files will be generated (one for each of the ten programming stations).
However, if you are not using serialization, you only need one configuration file.
The production coordinator can test the configuration files with one or more FlashPro5/4/3/3X programmers
before sending it to the production programming floor. If PDB files are used in the production flow, warning icons
may appear on the FlashPro/FlashPoint GUI because the automatic audit cannot find the source file on the
production environment; the PDB file contains the valid programming data. If STAPL files are used, loaded
STAPL files will be audited on execution of an action to determine if the original STAPL file has been modified. If it
has not been modified, the action will continue to run. If it has been modified you will be prompted to reload the
modified STAPL file, or to continue running the current action. If you select to reload the modified STAPL file, all
previous programming settings will be refreshed and will need to be performed again.

FlashPro User Guide

 10

Operation/Production Programming
The figure below shows an illustration of the production programming flow. The operator imports the configuration
file and begins programming the devices by clicking the Run button. The operator's interaction with FlashPro
should be limited.
At the end of a programming session, the serialization log file (if applicable) and the programming log file are sent
back to the production coordinator for record keeping.

Figure 3 · Production Programming Flow

Express Configuration Programming (IGLOO, ProASIC3 and Fusion devices only)
The figure below illustrates the Express Configuration Programming Flow. In this flow, you can program the
security setting into the IGLOO, ProASIC3 and Fusion family device directly from the FlashPro software.

Note: FlashPoint is integrated into the FlashPro v6.0 and later software.

Figure 4 · Express Configuration Programming Flow

Programming Tool User Model Overview - SmartFusion Only
The FlashPro software is designed for use in the operation, user design, and production programming flows.

Design Debug
The figure below illustrates the programming design flow when an engineer is in debug mode. In the programming
design flow, the new files (FDB, UFC, EFC) are generated for a design change and are sent to the FlashPro
software for testing and debugging the design.

FlashPro User Guide

 11

Figure 5 · SmartFusion Programming Design Debug Flow

Operation/Production Planning
The figure below shows an illustration of the operation flow. In this illustration, the production coordinator
generates the programming files (STAPL/PDB) with or without serialization and/or security settings (see
Programming application note for further information). The production coordinator loads the programming file in
the FlashPro software to set up the configurations for production programming, such as Serialization options,
Action selections, and Procedure selections, etc.

Figure 6 · SmartFusion Operation Flow

The production coordinator may want to generate different configuration files for each programming station
(depending on the logistics and serialization options). For example, if the Programming file contains 10,000 serial
data and the production coordinator decides to split the serial data designation to one thousand for each
programming station, then ten configuration files will be generated (one for each of the ten programming stations).
However, if you are not using serialization, you only need one configuration file.
The production coordinator can test the configuration files with one or more FlashPro5/4/3/3X programmers
before sending it to the production programming floor. If PDB files are used in the production flow, warning icons
may appear on the FlashPro/FlashPoint GUI because the automatic audit cannot find the source file on the
production environment; the PDB file contains the valid programming data. If STAPL files are used, loaded
STAPL files will be audited on execution of an action to determine if the original STAPL file has been modified. If it
has not been modified, the action will continue to run. If it has been modified you will be prompted to reload the
modified STAPL file, or to continue running the current action. If you select to reload the modified STAPL file, all
previous programming settings will be refreshed and will need to be performed again.

Operation/Production Programming
The figure below shows an illustration of the production programming flow. The operator imports the configuration
file and begins programming the devices by clicking the Run button. The operator's interaction with FlashPro
should be limited.

FlashPro User Guide

 12

At the end of a programming session, the serialization log file (if applicable) and the programming log file are sent
back to the production coordinator for record keeping.

Figure 7 · SmartFusion Production Programming Flow

Creating a New PDB for SmartFusion
The figure below illustrates the new SmartFusion programming flow. In this flow you can program the security,
FPGA Array, FlashROM and Embedded Flash Memory (NVM) for SmartFusion.

Figure 8 · Creating a New PDB for SmartFusion

SmartFusion2 Programming
SmartFusion2 programming is executed from within Libero SoC.
See the Libero SoC help for information on SmartFusion2 programming, including programming authentication
error codes and programming error codes.

Supported Families
Microsemi's Libero SoC software supports the following device families and their derivatives.

Table 1 · Product Families and Derivatives

Device Family Family
Derivatives

Description

SmartFusion2 N/A Address fundamental requirements for advanced security, high
reliability and low power in critical industrial, military, aviation,
communications and medical applications.

IGLOO2 N/A Low-power mixed-signal programmable solution

RTG4 N/A Radiation-tolerant programmable solution

http://www.microsemi.com/products/fpga-soc/soc-fpga/smartfusion2#overview
http://www.microsemi.com/products/fpga-soc/fpga/igloo2-fpga#overview
http://www.microsemi.com/products/fpga-soc/radtolerant-fpgas/rtg4#overview

FlashPro User Guide

 13

Device Family Family
Derivatives

Description

SmartFusion SmartFusion SmartFusion intelligent mixed-signal FPGAs are the only devices
that integrate an FPGA, ARM Cortex-M3, and programmable
analog, offering full customization and IP protection.

Fusion N/A Mixed-signal FPGA integrating ProASIC3 FPGA fabric,
programmable analog block, support for ARM® CortexTM-M1 soft
processors, and flash memory into a monolithic device.

IGLOO IGLOO The ultra-low-power, programmable solution

IGLOOe Higher density IGLOO FPGAs with six PLLs and additional I/O
standards

IGLOO nano The industry’s lowest power, smallest size solution

IGLOO PLUS The low-power FPGA with enhanced I/O capabilities

ProASIC3 ProASIC3 The low-power, low-cost, FPGA solution

ProASIC3E Higher density ProASIC3 FPGAs with six PLLs and additional I/O
standards

ProASIC3 nano Lowest cost solution with enhanced I/O capabilities

ProASIC3L The FPGA that balances low power, performance, and low cost

Automotive
ProASIC3

ProASIC3 FPGAs qualified for automotive applications

Military
ProASIC3/EL

Military temperature A3PE600L, A3P1000, and A3PE3000L

RT ProASIC3 Radiation-tolerant RT3PE600L and RT3PE3000L

.

Installing FlashPro Software and Hardware
See the Microsemi Website for more information about FlashPro.

Starting FlashPro
You can start the FlashPro software from Programs > Microsemi FlashPro vx.x >
FlashPro. If you installed the program in a folder other than FlashPro, choose that folder from the Programs
menu.
The figure below shows the FlashPro GUI. From this GUI, you can create a new project by clicking the New
Project button or open an existing project by clicking the Open Project button.
You can also access the above features from the menu bar. You can access all the other features after you open
or create a new project.

http://www.microsemi.com/products/fpga-soc/soc-fpga/smartfusion#overview
http://www.microsemi.com/products/fpga-soc/fpga/fusion#overview
http://www.microsemi.com/products/fpga-soc/fpga/igloo-overview
http://www.microsemi.com/products/fpga-soc/fpga/proasic3-overview
http://www.microsemi.com/products/fpga-soc/radtolerant-fpgas/rt-proasic3#overview
https://www.microsemi.com/products/fpga-soc/design-resources/programming/flashpro

FlashPro User Guide

 14

FlashPro Interface

The main FlashPro interface consists of two views, one for Single Device Programming and the other for Chain
Programming (see figure below). The GUI consists of a Flow window, Device Configuration Window (for single or
chain programming), Log window and a Status bar. The Log window displays programming information, error
messages, and warning messages. The Status bar displays your programming mode (chain programming or
single device programming) and file status.

Figure 9 · FlashPro for Single Device File Programming

Note the different options in the Flow window for the Chain Programming GUI and the Single Device
Programming GUI. In addition to the different Flow window options, the Chain Programming GUI view consists of
the Chain Configuration window which displays the devices in your chain.

FlashPro User Guide

 15

Figure 10 · FlashPro for Chain Programming

Creating a New Project
With the FlashPro software, you have the option of choosing either the Single STAPL file or Chain
programming mode. You make this choice through the New Project dialog box (see figure below). By choosing
the Chain Programming mode, you are enabling chain programming. The Single STAPL file Programming
mode functions with the same programming capabilities as the FlashPro software v4.2.

To create a new project:
1. Click the New Project button or from the File menu choose New Project.
2. From the New Project dialog box, type in the name of your project in the Project Name field.

Figure 11 · New Project Dialog Box

3. If necessary, change the default location of your project in the Project Location field.
4. Choose your Programming mode (Single device or Chain).
5. Click OK. The FlashPro GUI displays (see figure below).

FlashPro User Guide

 16

Figure 12 · FlashPro GUI

Note: You can switch between the two programming modes from Tools > Mode. From there, you can
choose either Single Device Programming or Chain Programming.

Opening a Project
You can open a project from the File menu or by clicking on the Open Project button in the flow window.

To open a project:
1. From the File menu, choose Open Project. The Open Project dialog box appears.
2. Find your project file or type in your project file name in the File name field.
3. Click Open.

Saving a Project
Click the Save button on the toolbar, or from the File menu choose Save Project to save your project.
If you want to save your project under a different name/path, from the File menu choose Save Project As and
save your project with the new name.

Parallel Programming with FlashPro5/4/3/3X
Parallel programming enables you to program multiple Microsemi devices in parallel with multiple programmers.
In parallel programming, all targeted devices are programmed with the same programming file (STAPL). The
targeted device or chain configuration that is connected to each programmer must be identical.
The FlashPro software together with the FlashPro5/4/3/3X programmers supports parallel programming via a
USB port. You can connect up to sixteen FlashPro5/4/3/3X's to a PC via a USB v1.1 or a USB v2.0 port.
FlashPro5/4/3/3X requires a self-powered hub.
Connecting FlashPro5/4/3/3X (a USB v2.0 enabled programmer) to USB v1.1 port increases device programming
time due to a slow data transfer rate on the USB v1.1 port in comparison to a USB v2.0 port.

Note: FlashPro (USB/LPT1) or FlashPro Lite programmers do not support parallel programming.
The following figure illustrates how you can connect a FlashPro5/4/3/3X programmer for parallel programming.

FlashPro User Guide

 17

Figure 13 · Connecting a FlashPro5/4/3/3X Programmer

An independent thread processes the STAPL file during parallel programming. In an Microsemi test, parallel
programming is approximately five times faster than programming 16 devices sequentially.

Note: Microsemi has tested Belkin PCI-USB cards and hubs. We have found that parallel programming
works best with the vendor's latest driver installed and with the matching hubs.

Serialization with FlashPro
You can use the FlashROM in the ProASIC3 device for serialization. For each target ProASIC3 device, different
FlashROM contents are generated.
Serial Programming enables you to program a sequence of ProASIC3 devices in serial with an identical FPGA
program and with different serialization data. Serialization data can consist of different FlashROM content and/or
AES key values. To learn how to activate the serialization feature, see Skip Serial Data or Reuse Serial Data.
There are two different STAPL formats that support serial programming, multiple actions to multiple serial data
and single action to multiple FlashROM.

Multiple Actions to Multiple FlashROM Serial Data
This format supports a generic STAPL player because the STAPL player does not provide a mechanism for Serial
Programming. One programming action is created to target different serial data. See examples below:

 - PROGRAM_1 programs the FPGA Array and the first serial data.
 - PROGRAM_2 programs the FPGA Array and the second serial data.

FlashPro User Guide

 18

Single Action to Multiple FlashROM Serial Data
This format is created when the target programmer is FlashPro, Sculptor II, or BP auto programmer, where the
newly innovated Microsemi Serial Programming mechanism is supported. One programming action will program
multiple serial data in serial.

FlashPro and SVF
SVF (Serial Vector Format) is an industry standard file format that is used to describe JTAG operations. Like
STAPL files, SVF files are used for describing the in-system programming algorithm for SmartFusion, IGLOO,
ProASIC3 and Fusion family devices. Unlike STAPL files, SVF files support only one ACTION or programming
flow per file, due to language limitations. In addition, the SVF specification does not support message display and
flow control, such as conditional statements or loops.
As a result, Microsemi tools (Designer and FlashPro software) generate a set of SVF files corresponding to the
equivalent STAPL ACTIONS that are applicable to the silicon features selected.
For example, for a typical STAPL file that has the following ACTIONS: ERASE, ERASE_ALL, PROGRAM,
PROGRAM_ARRAY, VERIFY, VERIFY_ARRAY, DEVICE_INFO, READ_IDCODE, and VERIFY_DEVICE_INFO,
a set of corresponding SVF files are generated and named: ERASE.svf, ERASE_ALL.svf, PROGRAM.svf,
PROGRAM_ARRAY.svf, etc. These files are generated in a folder, <Programming File Name>_svf, created
during generation. The diagram below demonstrates the differences between the STAPL and SVF files that are
created.

Figure 14 · STAPL vs SVF files

Note: DEVICE_INFO.svf file is not generated because SVF files do not support messsage display or flow
control.

Table 2 · SVF Outline

SVF File Array FROM NVM (Flash
Memory
System
Builder)

Security
Settings

Previously
Programmed

Device?

ERASE X X YES or NO

ERASE_ALL X X X YES or NO

ERASE_ARRAY X YES or NO

ERASE_FROM X YES or NO

ERASE_SECURITY X YES or NO

FlashPro User Guide

 19

SVF File Array FROM NVM (Flash
Memory
System
Builder)

Security
Settings

Previously
Programmed

Device?

PROGRAM X X YES or NO

PROGRAM_ARRAY X YES or NO

PROGRAM_FROM X YES or NO

PROGRAM_NVM X YES or NO

PROGRAM_SECU
RITY

 X YES or NO

VERIFY X X X YES or NO

VERIFY_ARRAY X YES or NO

VERIFY_FROM X YES or NO

VERIFY_NVM X NO

ENC_DATA_AUTH
ENTICATION

X YES

STAPL Actions not Available with SVF
The following STAPL actions are not available with SVF: DEVICE_INFO, VERIFY_DEVICE_INFO,
READ_IDCODE

FlashPro and the 1532 File Format
1532 is an IEEE industry standard file format that is used to describe JTAG operations. Like STAPL files, 1532
files are used for describing the in-system programming algorithm for SmartFusion, IGLOO, ProASIC3 and Fusion
family devices. 1532 programming file generation will generate two files (*.isc, *.bsd) within a folder.
The folder will be created with the following name <Programming File Name>_1532. The *.bsd file contains the
IEEE 1532 programming algorithm. The *.isc file contains the programming data to be programmed into the
device.

IEEE 1532 programming files will only be exported in FlashPro for SmartFusion devices when an FDB has been
properly imported.

STAPL to 1532 Action Mapping
The IEEE 1532 standard requires using default ACTION names in order to function with 1532 compliant players.
The table below describes the STAPL to 1532 ACTION name mappings.

Note: 1532 ACTIONs can have a data member parameter to allow reuse of the same ACTION name for
different features.

FlashPro User Guide

 20

Table 3 · STAPL to 1532 Action Name Mapping

STAPL Action 1532 Action

ERASE_FROM ERASE(FROM)

PROGRAM_FROM PROGRAM(FROM)

VERIFY_FROM VERIFY(FROM)

PROGRAM PROGRAM

PROGRAM_ARRAY PROGRAM(ARRAY)

ERASE_ARRAY ERASE(ARRAY)

ERASE ERASE

ERASE_ALL ERASE(ALLDATA)

VERIFY VERIFY

VERIFY_ARRAY VERIFY(ARRAY)

READ_IDCODE READ(IDCODE)

ENC_DATA_AUTHENTICATION VERIFY(ENCDATA)

PROGRAM_SECURITY PROGRAM(SECURITY)

DEVICE_INFO READ

VERIFY_NVM VERIFY_NVM

VERIFY_SECURITY VERIFY(SECURITY)

PROGRAM_NVM PROGRAM_NVM

STAPL Actions not Available with 1532
The following STAPL action is not available with 1532: VERIFY_DEVICE_INFO

FlashPro User Guide

 21

Introductory Programming Tutorials

Single STAPL/PDB File Basic Tutorial
This section provides step-by-step instructions to familiarize you with the basic features of the FlashPro software,
specifically how to program a device. For more detailed step-by-step instructions and help with advanced features
of the software, please see specific topics in the online help.

Note: This tutorial assumes that you have already installed the latest version of FlashPro software and have
started the program.

First, create a new project and name it Tutorial. If FlashPro is launched through the Libero SoC, a new project will
be created automatically and a PDB or FDB file loaded, if available.

To Create a Project:
1. Click the New Project button in FlashPro.
2. In the New Project dialog box, type Tutorial in the Project Name field.

Figure 15 · New Project Dialog Box

3. If necessary, change the default location of your project in the Project Location field.
4. Select the Single device Programming mode
5. Click OK. The FlashPro GUI displays (see figure below). The Programmer List Window updates with your

programmer information.

FlashPro User Guide

 22

Figure 16 · FlashPro Main Window

Loading and Configuring a Programming File
Once you have created your project and connected your programmer, you are ready to load your PDB or STAPL
file.

To load a Programming file:
1. Click the Configure device button. The Single Device Configuration window displays in FlashPro .
2. Click the Browse button to find your Programming file.
3. From the Load Programming File dialog box, select your Programming file and click Open.

The Single Device Configuration Window updates to list your Programming file information and the actions
available with your Programming file in the Action list box (see figure below). Program is the default action
displayed in the Action list box.

Note: Microsemi recommends using the default settings.

Figure 17 · Single Device Configuration Window

FlashPro User Guide

 23

This tutorial gives instructions on how to program a device. For an explanation on the other actions available, see
Programming File Actions.

Programming a Device
Now that you have loaded your PDB file, programming a device is the next step.

To program a device:
1. From the Action list, select Program (see figure below).

Figure 18 · Selecting Program from the Action List box

2. Click the Procedures button (see figure below).

Figure 19 · Procedures Button

The Select Action And Procedures dialog box appears, showing the procedures for the Programming
action (see figure below). Microsemi recommends using the default settings.

FlashPro User Guide

 24

Figure 20 · Select Action and Procedures Dialog Box

3. Click the Restore Default Procedures button.
4. In FlashPro click the Program button to program your device.
The Programmer List Window updates the Programmer Status column with Run Passed indicating that you
have successfully programmed the device (see figure below).

Note: The status indicator updates during programming to show the programming progress, then it will
change to a pass or fail result when the operation is complete.

Figure 21 · Successfully Programmed Device

5. View the Log window and take note of the details about your programmed device.

Single Microsemi Device with Serialization Tutorial
This tutorial provides step-by-step instructions on how to program a single Microsemi Device with Serialization.
Before you begin this tutorial, make sure you have already installed the FlashPro software and that you are
familiar with the basic features of using the FlashPro software.
First, create the file generator using FlashROM for device serialization.

To Configure the FlashROM data for serialization:
1. In Libero SoC, generate FlashROM from the Catalog.
2. Drag the mouse across a page to create a region between Word 0 and Word 15. The region can range

between 1 to 16 words.
3. Click Create.

FlashPro User Guide

 25

4. From the Properties section in the FlashROM Create Core dialog box, select Auto Inc or Read From File
region from the Content drop-down. For the Auto Inc region, specify the Step value (you cannot change this
value later in FlashPro). Start Value and Max Value can be configured later in FlashPro. For Read from File,
enter the File name, and File Type (BIN/HEX/DEC/TEXT).

5. Click Generate.
6. Click OK in the Generate Core pop-up that appears.
7. Complete the normal design flow and finish Place and Route.

Figure 22 · FlashROM Settings

8. Inside the Design Flow window, right-click Export Programming File and select Open Interactively. This
opens FlashPro and automatically loads the PDB from Libero SoC.

9. Click Configure Device.
10. Click Modify, which opens FlashPoint.

FlashPro User Guide

 26

Figure 23 · FlashPoint

FlashROM is selected for programming by default.
The FlashROM Configuration File (*.ufc) file is imported from Libero SoC by default.

11. Click Next. The FlashROM Settings window appears (as shown in the figure below).

FlashPro User Guide

 27

12. All pages are selected by default for programming. You can deselect/uncheck the FROM page you want to

program. Note: The generated PDB file contains only the data that targets the selected FROM page.
13. Modify properties for the serialization by specifying the Start and Max values. For the Auto Inc region,

specify the Start and Max values. For the Read From File region, select the file name of the custom
serialization file.

14. Enter the number of devices you want to program and generate the required programming file. Entering a
value greater than 1 enables serialization.

15. Select Save PDB to save settings and serialization will be enabled by default
You have completed the steps to enable device serialization. Now you are ready to program a device using
Device Serialization in FlashPro.

To program a device using device serialization:
1. From FlashPro, click Select Serialization Indexes.

FlashPro User Guide

 28

Figure 24 · FlashPro

2. The Serial Settings dialog box appears. See the figure below.

Figure 25 · Serial Settings Dialog Box

3. From the Serial Settings dialog box, click All to select all the serial data or use the left or right arrows to
select what you need.

4. Click OK. The Serialization Indexes text box updates (see the figure below).

FlashPro User Guide

 29

Figure 26 · Single STAPL File Configuration Window- Serialization Indexes Update

5. Click the Program button inside FlashPro to program your device using serialization.

Chain Programming Tutorial
This tutorial demonstrates how to directly program an APA300 device that is part of a heterogeneous JTAG chain.
The example in this tutorial uses one APA300 device and three non-Microsemi devices configured as shown in
the figure below.

Note: This tutorial is performed in Advanced Mode. You can change your display mode to Advanced Mode
from the Preferences dialog box.

Figure 27 · APA Device Tutorial Example

First, create a new project.

To create a new project:
1. Click the New Project button in FlashPro.
2. In the New Project dialog box, type Tutorial in the Project Name field.
3. Select the Chain option in the Programming Mode.

FlashPro User Guide

 30

Figure 28 · New Project Dialog Box

4. If necessary, change the default location of your project in the Project Location field.
5. Click OK. The FlashPro GUI appears (see figure below).

Figure 29 · FlashPro Main GUI

Note: The Programmer List Window updates with your programmer information.
6. From the Menu bar, click Programmers > Scan Chain (or select the programmer in the Programmer List

Window, right-click and choose Scan Chain).
Scan Chain shows how the devices are ordered in the chain in the Log window (see figure below). In this
example, APA300 is the first device and will be programmed first in the chain since it is connected directly to
TDO.

FlashPro User Guide

 31

Figure 30 · Log Window Scan Chain Order

7. From the Chain Configuration window, click either; or
buttons to add devices to the chain. In this example, click the Add Microsemi Device button because the
APA300 is the first device in the chain.
The Add Microsemi Device dialog box displays (see figure below).

Figure 31 · Add Microsemi Device Dialog Box

8. Select the File radio button and click the Browse button to find your programming file.
9. Select the Device radio button, then choose the APA300 device from the Device drop-down.

10. In the STAPL File field, load the APA300.stp file by using the Browse button to locate the file.
11. In the Name field, keep APA300 as the default name.
12. The APA300 device is added to the Chain Configuration Window (see figure below).

Figure 32 · Chain Configuration Window: Device One

12. Click the Add Non-Microsemi Device button to add the non-Microsemi device. The Add Non-Microsemi
Device dialog box appears (see figure below). You can load the BSDL file or enter the IR length and Max
TCK Frequency of the device. In this tutorial, you will enter the IR length and Max TCK frequency for this
device.

FlashPro User Guide

 32

Figure 33 · Add Non-Microsemi Device Window

14. For this device, enter 8 in the IR length field and keep the Max TCK freq default to 1MHz.
15. Name the device, "Device 2” and click OK. The second device now appears in the Chain Configuration

Window (as shown in the figure below).

Figure 34 · Chain Configuration Window: Device Two

16. Repeat step 15 for Device 3 and Device 4.
17. Check the Enable Device box for the APA300 device. After you add all the devices in the chain, the Chain

Configuration Window should look like the figure below.

Figure 35 · Chain Configuration Window: All Devices in the Chain

18. After you have added all of the devices to the chain in the correct order, click the Run button to program the
chain.

19. When programming is complete, the results are listed in the Log window (see figure below).

FlashPro User Guide

 33

Figure 36 · Programmer List Window: Programming Complete

SmartFusion Programming Tutorial
You can program your SmartFusion device without using the Libero SoC by using an EFC or UFC file from
standalone SmartDesign, or using an FDB file from standalone Designer.

To program a SmartFusion device without using the Libero SoC:
1. Start FlashPro and click New Project to create a new project. Specify your Project Name, Project

Location and Programming Mode.
2. Click Configure Device.
3. Single Mode: Click the Create button to create your new PDB programming file. The create PDB dialog box

appears (as shown in the figure below).

Figure 37 · Create PDB Dialog Box

Chain Mode: Click Add Microsemi Device and choose a SmartFusion device from the drop-down menu.
Click the Create PDB button in the Chain Configuration Window. The Create PDB dialog box appears.

4. Specify your PDB parameters. Click OK to continue. The FlashPoint SmartFusion Programming File dialog
box appears.

5. Specify your security settings and select which silicon features you want to program. Click the Import button
for your FPGA Array, FlashROM and Embedded Flash Memory files to add them to your PDB file.

You must have a FDB file to program your FPGA Array, a UFC file to program your FlashROM, and a EFC
file to program your Embedded Flash Memory.

Click the Modify buttons if you wish to modify your FlashROM or Embedded Flash Memory files before you
save your PDB file.

6. (Optional) Specify your I/O States During Programming.
7. Click Save PDB to save your new PDB file.

If you make changes to your Security, I/O States During Programming, EFC, UFC or FDB file, click Modify in
FlashPro to open and re-save your PDB with the updated files and settings.
See Reprogramming a Secured Device for information on programming a secured SmartFusion device.

FlashPro User Guide

 34

Modifying Memory Contents and Programming a Device Tutorial
This tutorial provides step-by-step instructions on how to load a Program Database (PDB) file, modify the memory
contents, and program the device.
Before you begin this tutorial, you should have a design with an EFMB client in it with a generated programming
file for this design. You will first create a new project and title it "tutorial." If FlashPro is launched through Libero
SoC, a new project will automatically be created and a PDB file will be loaded, if available.

Creating a new project
If you are familiar with this feature, follow the basic procedures for creating a new project. However, if you would
like step-by-step instructions, see the creating a new project section in the Single STAPL/PDB File Basic Tutorial.

Loading and Configuring a PDB File
Once you have created your project and connected your programmer, you are ready to load your PDB file.

To load a PDB file:
1. Click the Configure Device button. The Single PDB Configuration window appears in FlashPro.
2. Click the Browse button to find your PDB file.
3. From the Load PDB File dialog box, find your PDB file and click Open.

Modify Embedded Flash Memory Block Content
Now, you are ready to modify the Embedded Flash Memory Block content.

To modify Embedded Flash Memory Block content:
1. Click the PDB Configuration button to open FlashPoint.

B
Figure 38 · Program File Generator

2. Check the Program box.

FlashPro User Guide

 35

3. Click the Modify button to import Embedded Flash Memory Block configuration and memory content file.
The Modify Embedded Flash Memory Block dialog box appears

Figure 39 · Modify Embedded Flash Memory Block Content Dialog Box

4. Click the Import Configuration File button to import the Embedded Flash Memory Block configuration and
memory content from the EFC file. This will populate the client table below. All clients that belong to this
block will be selected by default.

5. Click the Import content button if you want to change the client memory content.
6. Click OK.
7. Click Finish.

Note: FlashPoint audits original configuration and memory content files and warns you if the files cannot be
located or if they have been updated. These files are not required as the last updated configuration
and memory content is stored in the PDB.

Figure 40 · Audit Warning

Proceed to program the device. For steps on how to program a device, see the Programming a device section
of the Single STAPL/PDB file basic tutorial.

Modifying FlashROM Contents and Programming a Device Tutorial
This tutorial provides step-by-step instructions on how to load a Program Database (PDB) file, modify the memory
contents, and program the device.
Before you begin this tutorial, you should have a design with an EFMB client in it with a generated programming
file for this design. You will first create a new project and title it "tutorial." If FlashPro is launched through the
Libero SoC Project Manager, a new project will automatically be created and a PDB file will be loaded, if
available.

Creating a new project
If you are familiar with this feature, follow the basic procedures for creating a new project. However, if you would
like step-by-step instructions, see the creating a new project section in the Single STAPL/PDB File Basic Tutorial.

FlashPro User Guide

 36

Loading and Configuring a PDB File
Once you have created your project and connected your programmer, you are ready to load your PDB file.

 To load a PDB file:
1. Click the Configure Device button. The Single Device Configuration Window displays in FlashPro (see

figure below).

Figure 41 · Single Device Configuration Window

2. Click the Browse button to find your PDB file. From the Load Programming File dialog box, find your PDB
file and click Open. .

Modify FlashROM Content
Now you are ready to modify the FlashROM content.
1. Click the PDB Configuration button. This opens FlashPoint.
2. Select FlashROM under Silicon feature(s) to be programmed (see figure below).

FlashPro User Guide

 37

Figure 42 · FlashPoint Programming File Generator

3. Click the Browse button to select the *.ufc FlashROM configuration file by and navigating to the
configuration file. This file is normally present in the SmartGen subfolder of the Libero SoC project, in a
folder with the FlashROM IP block's name.

4. Click Next.
5. Select the FlashROM pages you want to program (see figure below).

FlashPro User Guide

 38

Figure 43 · FlashROM Settings Dialog Box

6. Click Finish.
Proceed to program the device. For steps on how to program a device, see the Programming a device section
of the Single STAPL/PDB file basic tutorial.

Programming Only Security Settings Tutorial
This tutorial provides step-by-step instructions on how to program only the security settings into a device.
No design or PDB file is needed to follow this tutorial.
 First create a new project and name it tutorial. If FlashPro is launched from the Project Manager, a new project
will automatically be created and a PDB file will be loaded, if available. For this tutorial you always need to create
a new project.

Creating a New Project
If you are familiar with this feature, follow the basic procedures for creating a new project. However, if you would
like step-by-step instructions, see the creating a new project section in the Single STAPL/PDB file basic tutorial.

Configuring the Security Settings
Once you have created your project and connected your programmer, you are ready to load your PDB file.

To configure the security settings:
1. Click the Configure Device button. The Single Device Configuration window appears in FlashPro (see

figure below).

FlashPro User Guide

 39

Figure 44 · Single Device Configuration Window

2. Click Create. This opens the Create PDB dialog box, as shown in the figure below.

Figure 45 · Create PDB Dialog Box

3. Select the desired device and package (if available) from the drop down list, and specify the filename and
location. Click OK. FlashPoint opens. SmartFusion, IGLOO, ProASIC3 and Fusion family devices support
securing the device with a pass key as well as encrypting programming files using an AES key. Flash
devices can also be permanently locked, preventing reprogramming.

4. Check the Security Settings checkbox to secure the unsecured device.
Warning: Make a note of the security keys that you are using. Once a device is secured, it cannot be
reprogrammed without those keys.

FlashPro User Guide

 40

Figure 46 · Security Settings Dialog Box

5. Click Finish.
Proceed to program the device. For steps on how to program a device, see the Programming a device section of
the Single STAPL/PDB file basic tutorial.

Automatic Chain Construction Tutorial
This tutorial demonstrates how to automatically scan a chain of devices and construct the chain within FlashPro.
Automatic chain construction saves the effort of manually adding each device to your chain.
The software also scans the chain before constructing it, which reduces the possibilities of having errors in the
chain. This feature is fully automated if your chain is composed of only Microsemi devices. If you have non-
Microsemi devices in your chain, you can still use the Auto Chain Construction feature. However, you will be
required to either manually add the BSDL file or enter the IR length and max TCK for each non-Microsemi device.
This tutorial goes through the flow for an Microsemi-only chain first, followed by instructions on adding Non-
Microsemi devices to the database.

Note: This tutorial requires that your chain is connected to the computer you are using, via an Microsemi
programmer, and that you have suitable programming files to program the devices in your chain.

To automatically scan a chain of devices and construct the chain:
1. Start a new project in FlashPro. Select Chain as the Programming Mode.
2. Click the Configure Chain button in FlashPro.
3. From the Configuration menu, choose Construct Chain Automatically; or click the Construct the chain

from a Scan Chain operation link in the Chain Configuration Window, see below.

FlashPro User Guide

 41

Figure 47 · Construct Chain Automatically

4. A popup appears asking you to select the programmer you would like to use from the ones attached to your
computer. Choose the appropriate programmer (as shown in the figure below) and click OK.

Figure 48 · Select Programmer Popup

Automatic chain construction starts. The Log window documents the detection and verification of all devices
in your chain. The devices are added to the chain in the Chain Configuration Window; see figure below for
an example.

Figure 49 · Scan Chain Configuration Passed

FlashPro User Guide

 42

In some cases, FlashPro is not able to uniquely identify the device due to shared IDCODEs, and lists all
possible devices (ex: AGL030V2/AGL030V5). Once a programming file is loaded for that device, the device
field only shows one device, since the programming file will only be targeted to one device.

Adding Non-Microsemi Devices to the Chain
FlashPro recognizes non-Microsemi devices in the chain, but it does not contain any device information, such as
IR length or Max TCK. The figure below lists Microsemi devices and non-Microsemi devices in the chain.

Figure 50 · Non-Microsemi Devices in a Chain

You must import the BSDL file into Microsemi's non-Microsemi device database for FlashPro to recognize your
non-Microsemi device.

To import the device BSDL into the FlashPro non-Microsemi device database and run the scan
chain:

1. From the Tools menu, choose Import Settings for Non-Microsemi Devices. This opens the Import
Settings for Non-Microsemi Devices dialog box. This dialog box enables you to import and remove BSDL
files from the database and lists all the device information contained in the BSDL file.

2. Click the Import BSDL Files button and navigate to the folder that contains your BSDL files. Select the file
and click OK. Once the BSDL is imported into the database, the original BSDL file is no longer audited by
FlashPro. If changes are made to the original source BSDL file, it will not affect the BSDL file that has been
imported into the non-Microsemi device database.

Remove BSDL files from the database by selecting the file and clicking the Remove button.

3. Once you have the appropriate BSDL files loaded to the database, you can construct the chain. To do so,
from the Configuration menu, choose Construct Chain Automatically and select the appropriate
programmer from the dialog box. FlashPro runs a scan chain, detects the devices in the chain, and
associates them with the BSDL files in the database, as shown in the figure below.

Figure 51 · Non-Microsemi Devices in the Chain with Associated BSDL Files

It is possible to add multiple BSDL files to your Non-Microsemi device database that have the same IDCODE. If
the BSDL files list the same IR length but different TCK values, FlashPro automatically chooses the file with the
lowest TCK value by default and no action is required. If the IR lengths are different you receive an error message
asking you to resolve the conflict.
To resolve the issue, click the drop-down arrow adjacent to the device name. This opens the Non-Microsemi
Device Configuration dialog box (as shown in the figure below). From here you can choose the BSDL file that you
wish to use. Browse to the BSDL file or use the Data to input the IR length and Max TCK Frequency. Once you
select your data you can enter a new name or use the default.

FlashPro User Guide

 43

Figure 52 · Non-Microsemi Device Configuration Dialog Box

For a tutorial on manually adding both Microsemi and non-Microsemi devices to your chain as well as
programming the chain, refer to the Chain Programming Tutorial.

See Also
Understanding the Chain Configuration Window
Import Settings for Non-Microsemi Devices

eNVM/EFMB Client JTAG Protection Use Flow
eNVM/EFMB client JTAG protection enables you to protect specific clients with a User Pass Key while leaving
others unprotected.
See the eNVM Client JTAG Protection Tutorial or EFMB Client JTAG Protection Tutorial for step by step
instructions.

FlashPro User Guide

 44

Figure 53 · eNVM/EFMB Client JTAG Protection Tutorial Use Flow

.

eNVM Client JTAG Protection Tutorial - SmartFusion
This tutorial provides step-by-step instructions on how to enable JTAG protection for eNVM clients. The protection
can be read, write or both and it is protected with a User Pass Key (FlashLock).
The JTAG protection of eNVM clients enables you to protect specific clients with a User Pass Key while leaving
others unprotected.
One example use is IP customization. This enables an IP vendor to allow limited visibility to eNVM clients for IP
customers. The IP vendor can protect specific clients and leave other clients unprotected for modification by IP
customers. See the eNVM/EFMB Client JTAG Protection use flow diagram for a detailed example of a typical use
case.
Before you begin this tutorial, make sure you have already installed the FlashPro software and that you are
familiar with its basic features.

FlashPro User Guide

 45

JTAG READ/WRITE protection is set when you create your original eNVM in Libero SoC. You cannot change this
setting in FlashPro/FlashPoint.

Importing an EFC (Embedded Flash Configuration) File with Client JTAG protection in a
Previously Unsecured PDB

1. Create a client in eNVM configurator with JTAG read and write protect (as shown in the figure below).
If the MSS block is generated with an eNVM client with JTAG protection then FlashPro requires that you
specify a User Pass Key prior to programming or exporting programming files.

Figure 54 · Generating the EFC File with JTAG Protection

2. Import the EFC file with JTAG protection in FlashPoint. When the EFC file is imported the Security Settings
box is checked automatically, implying that you must set the User Pass Key (as shown in the figure below).
The PDB file cannot be saved without specifying the pass key.

FlashPro User Guide

 46

Figure 55 · Importing the EFC File with JTAG Protection

3. Click Specify to open the Security Settings dialog box. Notice that Enable eNVM client JTAG protection box
is checked. This indicates that reading, writing, and verifying of other eNVM pages are allowed but the
reading and writing of specific eNVM clients are protected.

4. To enforce the eNVM client JTAG protection in the PDB file, enter a Pass Key or click Generate random
key (as shown in the figure below).

FlashPro User Guide

 47

Figure 56 · Setting Security

Custom Level Security Settings
If you select Custom Level security and decide to protect writing of the entire eNVM block, then the eNVM client
JTAG protection Write, if enabled, will be overridden by full block protection.
If the Read protection of the eNVM block is left open, then the eNVM client JTAG protection Read will be enabled
if a client has a read protection enabled.
If you choose to encrypt the entire eNVM block, then the eNVM client JTAG protection Write will be disabled if
enabled, due to enforced encryption. The eNVM client JTAG protection Write, if enabled, will be overridden by full
block protection.

To set Custom Level Security:
1. Click Custom Level to open the Custom Security Level dialog box (as shown in the figure below)

FlashPro User Guide

 48

Figure 57 · Setting Security for Unprotected eNVM Clients

2. Click the Set Security checkbox to secure Read, Write and Verify using Flash Lock. In this mode you can
unlock Read and Verify and only protect Write by FlashLock. The eNVM client JTAG read protection will be
enabled.

3. Click the Encrypt checkbox to secure Write using the AES Key. Read, Verify will be secured by FlashLock
in this mode. You must enter the AES key in addition to the Pass Key before saving the PDB file.

Setting Standard Security Levels
There are two types of standard level security: High and Medium. If either of the two is selected the eNVM client
JTAG protection is overridden or disabled. You can enforce Read, Write and Verify protection of the entire eNVM
block with the Pass Key and/or AES key. JTAG protection of specific pages will not be available.

Importing EFC (Embedded Flash Configuration) File with Client JTAG Protection in
Previously Secured PDB

The secure PDB file exported from FlashPro is called a secured PDB.
If you import an EFC file that has JTAG protection into a secured PDB file but does not have eNVM clients with
JTAG protection enabled then the FlashPro returns an EFC file has eNVM client JTAG protection and cannot
be loaded error, as shown in the figure below.

FlashPro User Guide

 49

Figure 58 · EFC File with JTAG Protection Cannot be Imported into a Secured PDB Error Message

You can import any EFC file that does not have JTAG protection.
You cannot import a new EFC with JTAG protection into a secured PDB that already has an EFC file imported
with eNVM client JTAG protection. You can update the memory content by importing MEM files for the specific
clients (as shown in the figure below).

Figure 59 · New EFC File Cannot Overwrite Existing eNVM Client JTAG Protection Error Message

EFMB Client JTAG Protection Tutorial - Fusion
This tutorial provides step-by-step instructions on how to enable JTAG protection for eNVM clients. The protection
can be read, write or both and it is protected with a User Pass Key (FlashLock).
The JTAG protection of EFMB clients enables you to protect specific clients with a User Pass Key while leaving
others unprotected.
One example use is IP customization. This enables an IP vendor to allow limited visibility to EFMB clients for IP
customers. The IP vendor can protect specific clients and leave other clients unprotected for modification by IP
customers. See the eNVM/EFMB Client JTAG Protection use flow diagram for a detailed example of a typical use
case.
Before you begin this tutorial, make sure you have already installed the FlashPro and/or Designer software and
that you are familiar with its basic features.
JTAG READ/WRITE protection is set when you create your original EFMB in Libero SoC. You cannot change this
setting in Designer/FlashPoint or FlashPro/FlashPoint.

EFMB Client JTAG Protection in Designer/FlashPoint
If the ADB file has an EFM (Embedded Flash Memory) block with page/client JTAG protection enabled, the EFC
file appears in the FlashPoint window when you click the Programming File button in Designer.
A message indicating JTAG protection is enabled appears in the Embedded Flash Memory Block (EFMB) tooltip,
as shown in the figure below.

FlashPro User Guide

 50

Figure 60 · EFMB Client JTAG Protection

To set EFMB Client JTAG Protection:
1. Check the Security Settings or Programming previously secured devices checkbox and click Next. The

Security Settings dialog box opens.
2. Specify the appropriate security settings.

If the EFM block is generated with an EFMB client with JTAG protection then FlashPro requires that you
specify a User Pass Key prior to programming or exporting programming files.

3. Import the EFC file with JTAG protection in the FlashPoint dialog box. When the EFC file is imported the
Security Settings box is checked automatically, implying that you must set the User Pass Key (as shown in
the figure below).
The PDB file cannot be saved without specifying the pass key.

FlashPro User Guide

 51

Figure 61 · Importing the EFC File with JTAG Protection

4. Click Next to open the Security Settings dialog box. Notice that the Enable EFMB client JTAG protection
box is checked. This indicates that reading, writing, and verifying of other EFMB pages are allowed but the
reading and writing of specific EFMB clients are protected.

5. To enforce the EFMB client JTAG protection in the PDB file, enter a Pass Key or click Generate random
key (as shown in the figure below).

Figure 62 · Setting Security

Custom Level Security Settings
If you select Custom Level security and decide to protect writing of the entire EFMB, then the EFMB client JTAG
protection Write, if enabled, will be overridden by full block protection.

FlashPro User Guide

 52

If the Read protection of the EFMB is left open, then the EFMB client JTAG protection Read will be enabled if a
client has Read protection enabled.
If you choose to encrypt the entire EFMB, then the EFMB client JTAG protection Write will be disabled due to
enforced encryption. The EFMB client JTAG protection Write, if enabled, will be overridden by full block
protection.

To set Custom Level Security:
1. Click Custom Level to open the Custom Security Level dialog box (as shown in the figure below)

Figure 63 · Setting Security for Unprotected eNVM Clients

2. Click the Set Security checkbox to secure Read, Write and Verify using Flash Lock. In this mode you can
unlock Read and Verify and only protect Write by FlashLock. The EFMB client JTAG read protection will be
enabled.

3. Click the Encrypt checkbox to secure Write using the AES Key. Read, Verify will be secured by FlashLock
in this mode. You must enter the AES Key in addition to the Pass Key before saving the PDB file.

Setting Standard Security Levels
There are two types of standard level security: High and Medium. If either of the two is selected the EFMB client
JTAG protection is overridden or disabled. You can enforce Read, Write and Verify protection of the entire EFMB
with the Pass Key and/or AES key. JTAG protection of specific pages will not be available.

EFMB client JTAG Protection via FlashPro/FlashPoint
If the PDB file was created with the EFMB client and JTAG protection is enabled you can click Modify in FlashPro
to change the settings.

Fusion Calibration Backup and Recovery Tutorial
 This tutorial provides step-by-step instructions on how to backup and recover default calibration data on a Fusion
device. It assumes that you have created a new project, connected your programmer, and loaded a Fusion
PDB/STAPL file created in Designer v8.4 or above.
 If you would like step-by-step instructions on how to create a new project, see the Creating a New Project section
in the FlashPro Single STAPL Basic Tutorial..
 If you would like step-by-step instructions on loading a programming file, see the Loading and Configuring a
Programming File section in the FlashPro Single STAPL Basic Tutorial.

Note: This feature is only supported in STAPL and PDB programming files.

FlashPro User Guide

 53

Backing Up Default Fusion Calibration Data
A backup copy of the Fusion calibration data is created once after ANY programming ACTION, except
READ_IDCODE, is executed. The copy will be stored in the spare pages of eNVM. The FlashPro Log window
shows that a backup copy of the calibration data has been created (as shown in the figure below).

Figure 64 · FlashPro Log Window

Recovering Default Fusion Calibration Data
1. Load the PDB/STAPL file created in Designer v8.4 or above.
2. In the FlashPro Configuration window, click Advanced and select RECOVER_CALIB (as shown in the

figure below).

Figure 65 · RECOVER_CALIB

3. Click Run to restore the original Fusion calibration data. The Log window shows the data is restored (as shown in the
figure below).

Figure 66 · Restoring Original Calibration Data

Note: The Calibration data can only be restored after a backup has been made.

Specify I/O States During Programming Tutorial
This tutorial explains how to modify the I/O states during programming within FlashPro for used and unused I/Os.
It also explains how to modify the Boundary Scan Registers (BSRs) for each I/O to allow for more detailed
customization of the I/O states during programming. Finally, it shows how to save and load these settings with a
file.

Note: This tutorial requires a design with a valid *.pdb file associated with it. If you launch FlashPro from a
Libero SoC project, a FlashPro project is created automatically and the PDB file loaded. Otherwise,
you can start a new FlashPro project and load a PDB file; refer to Single STAPL/PDB file basic
tutorial for more information.

FlashPro User Guide

 54

You can also modify the individual Boundary Scan Registers; see the Modify Boundary Scan Registers section for
more information.

To modify the state of an I/O during programming:
1. Once your PDB is successfully loaded, from the Configuration menu, choose PDB Configuration. This

brings up FlashPoint . FlashPoint is the tool that allows you to modify the PDB programming file from within
FlashPro.

2. In FlashPoint, click the Specify I/O States During Programming button. The Specify I/O States During
Programming dialog box appears (as shown below). This dialog box enables you to modify the I/O states
during programming for all used and unused I/Os.

Figure 67 · I/O States During Programming Window

The default view displays a grid with 4 columns: Port Name, Macro Cell, Pin Number, and I/O State (Output
Only). Port Name lists the port associated with each of theses pins, if the pin is not used in the design, the
Port Name for this pin reads Unused. The Pin Number column contains a list of all the pins for the package
associated with the design open in FlashPro.The Macro Cell column contains the Microsemi macro
associated with each pin, as with Port Names, if the pin is not used, the Macro Cell for this pin reads
Unused. The I/O State column is the only column editable in FlashPro.

3. Select an I/O State from the drop-down menu for each I/O you want to modify.
Please refer to Specifying I/O States During Programming for information on sorting and selecting multiple
entries in the grid.

4. Click Save in the Specify I/O States During Programming window, then Finish in FlashPoint to return to
FlashPro. The PDB is updated with your new settings.

Congratulations, you have successfully modified the I/O states that will be held during programming.

Modifying Boundary Scan Registers
Each I/O in your device is comprised of an Input, Output and Output Enable Boundary Scan Register (BSR) cell.
The BSR cells enable you to define I/O states during programming and control the individual states for each Input,
Output, and Output Enable register.

FlashPro User Guide

 55

To modify the individual Boundary Scan Registers of an I/O in your device:
1. Select the Show BSR Details checkbox in the Specify I/O States During Programming window. This

replaces the I/O State (Output Only) column with a Boundary Scan Registers column that is split into Input,
Output Enable and Output.

2. Modify each of the registers for any I/O to set your custom options. See the Specifying I/O States During
Programming - I/O States and BSR Details help topic for an explanation of the individual BSR settings.

3. (Optional) Uncheck the Show BSR Details checkbox to return to the default view.
Note: Updated I/Os with non-default settings are displayed as User-Defined BSR in the default view.

Click OK and complete programming to save your updated settings to the ADB and programming files.

Saving and Loading I/O State Settings
Click Save to File to save your changes. This enables you to save your custom I/O settings in an IOS file.
Click Load from File to load a previously saved *.ios file.

Note: You must click OK and complete programming to save your updated settings to the ADB and
programming files.

See Also
Specifying I/O States During Programming
Specifying I/O States During Programming - I/O States and BSR Details

FlashPro User Guide

 56

Advanced Tutorials

Multiple Device Chain Programming
This tutorial provides step-by-step instructions on how to program multiple Microsemi devices in a chain. You
should already be familiar with the basic features of the FlashPro software.

Note: This tutorial does not provide software installation instructions. Please have FlashPro already
installed before you begin.

In the figure below, there are three devices in a chain (two A3P250 and one A3PE600). In this section, we will
program these three devices in the chain.

Figure 68 · APA Device Tutorial Example

First you need to create a project.

To create a new project:
1. Click the New Project button in FlashPro.
2. From the New Project dialog box, type “Tutorial” in the Project Name field.
3. Check the Chain box (see figure below).

Figure 69 · New Project Dialog Box

4. If necessary, change the default location of your project in the Project Location field.
5. Click OK. The FlashPro main window appears.

Note: The Programmer List window updates with your programmers information.
6. From the Programmers menu, choose Scan Chain (or select the programmer in the Programmer List

window, right-click, then choose Scan Chain) (see figure below).

FlashPro User Guide

 57

Figure 70 · Select Programmer Window

Scan Chain shows how the devices are ordered in the chain in the log window (see figure below). In this case,
A3P250 is the first device that will be programmed in the chain since it is connected directly to TDO.

Figure 71 · Scan Chain Order in the Log Window

7. Click the Configure Chain button. The Chain Configuration window displays (see figure below).

Figure 72 · Chain Configuration Window

8. In the Chain Configuration window, click the Add Device button to add devices to the chain. The Add
Microsemi Device dialog box appears (as shown in the figure below).

Figure 73 · Add Microsemi Device Dialog Box

FlashPro User Guide

 58

9. Choose the "A3P250" device from the Device drop-down.
10. In the STAPL file field, use the Browse button to locate the A3P250.stp file.
11. In the Name field, leave A3P250 as default. The A3P250 device is added into the Chain Configuration

window (see figure below).

Figure 74 · Device One Chain Configuration Window

12. Repeat the same process for A3PE600 and the other A3P250 respectively.
13. After you have finished adding all of the devices in the chain, the Chain Configuration window updates.

Figure 75 · Chain Configuration Window: All Devices in the Chain

14. Once all the devices have been added to the chain in the correct order, click the Run button to program the
chain.

15. When Programming is complete, the Programmer List window displays. See figure below.

Figure 76 · Programmer List Window Done

Congratulations! You have just completed the FlashPro Multiple Microsemi Device Chain Programming tutorial.

Multiple Device Serialization Chain Programming
This tutorial provides step-by-step instructions on how to program multiple Microsemi devices with serialization.
Before you begin this tutorial, you should already be familiar with the basic features of the FlashPro software.

Note: This tutorial does not provide software installation instructions. Please have FlashPro already
installed before you begin.

In this tutorial you will program two devices in a chain (one device is A3P250 and the other is A3PE600). The
STAPL file for the first A3P250 device contains 10 serialization data. See figure below.

FlashPro User Guide

 59

Figure 77 · APA Device Tutorial Example

First you need to create a project.

To create a new project:
1. Click the New Project button in FlashPro.
2. From the New Project dialog box, type "Tutorial" in the Project Name field.
3. Check the Chain box (as shown in the figure below).

Figure 78 · New Project Dialog Box

4. If necessary, change the default location of your project in the Project Location field.
5. Click OK. The FlashPro main window appears and updates the Programmer List info with your programmer

information.
6. From the Programmers menu, choose Scan Chain (or select the programmer in the Programmer List

window, right-click, then choose Scan Chain) (as shown in the figure below).

Figure 79 · Scan Chain Selection

Scan Chain shows how the devices are ordered in the chain in the log window (see figure below). In this
case, A3P250 is the first device will be programmed in the chain since it is connected directly to TDO.

FlashPro User Guide

 60

Figure 80 · Scan Chain Order in the Log Window

7. Click the Configure Chain button . The Chain Configuration window appears (see figure below).

Figure 81 · Chain Configuration Window

8. In the Chain Configuration window, click the Add Device button to add devices to the chain. The Add
Microsemi Device dialog box appears.

9. Choose A3P250 device from the Device drop-down menu (as shown in the figure below).

Figure 82 · Add Microsemi Device Dialog Box

10. In the STAPL file field, use the Browse button to locate the A3P250.stp file.
11. In the Name field, leave A3P250 as default.
12. Click OK. The A3P250 device is added into the Chain Configuration window.
13. Repeat steps 8 to 11 for A3PE600 and A3P250 respectively. After you are finished adding all devices in the

chain, the Chain Configuration window updates (as shown in the figure below).

Figure 83 · Chain Configuration Window for all Devices

FlashPro User Guide

 61

14. From the Chain Configuration Window, check the Enable Serial box. This enables the Serial Data option
in the Chain Configuration window.

15. Click Select in the Serial Data column, the Serial Settings dialog box displays as shown in the figure
below.

Figure 84 · Serial Settings Dialog Box

16. From the Serial Settings dialog box, click the All button to select all the serial data.
17. Click OK.
18. Once all the devices have been added to the chain in the correct order and serialization has been selected,

click the Run button to program the chain.
19. When programming is complete, the Programmer List window appears and indicates that the devices are

ready for programming (as shown in the figure below).

Figure 85 · Programmer List Window Done

Congratulations! You have just completed the FlashPro Multiple Device Serialization Chain Programming tutorial.

Multiple Programmer Multiple Device Chain Programming
This tutorial demonstrates step-by-step instructions on how to parallel program two chains using two
programmers, each with two Microsemi SoC Devices (A3P250 and A3PE600). See the figure below for an
illustration.

Figure 86 · APA Device Tutorial Example

You should already be familiar with the basic features of the FlashPro software before you begin this tutorial.

FlashPro User Guide

 62

Note: This tutorial does not provide software installation instructions. Please have FlashPro already
installed before you begin.

First you need to create a project.
1. Click the New Project button in FlashPro.
2. From the New Project dialog box, type “Tutorial” in the Project Name field.
3. Check the Chain box (see figure below).

Figure 87 · New Project Dialog Box

4. If necessary, change the default location of your project in the Project Location field.
5. Click OK. The FlashPro main window appears and displays your updated programmer information (as

shown in the figure below).

Figure 88 · FlashPro User Interface

6. From the Programmers menu, choose Scan Chain (or select the programmer in the Programmer List
window, right-click, then choose Scan Chain). The Select Programmer(s) dialog box displays (see figure
below).

Figure 89 · Select Programmer Window

FlashPro User Guide

 63

The Programmer List window shows the Scan Chain Test was passed and how the devices are ordered in the
chain (see figure below).

Figure 90 · Scan Chain Order in the Log Window

7. Click the Configure Chain button. The Chain Configuration window appears (as shown in the figure
below).

Figure 91 · Chain Configuration Window

8. In the Chain Configuration window, click the Add Device button to add devices to the chain. The Add
Microsemi Device dialog box appears.

9. Choose A3PE600 device from the Device drop-down menu (as shown in the figure below).

Figure 92 · Add Microsemi Device Dialog Box

10. In the STAPL file field, use the Browse button to locate the A3PE600.stp file.
11. In the Name field, leave A3PE600 as default.
12. The A3PE600 device is added into the Chain Configuration window (as shown in the figure below).

FlashPro User Guide

 64

Figure 93 · Device One Chain Configuration Window

13. Repeat steps 8 to 11 for A3P250. After you are finished adding all devices in the chain, the Chain
Configuration window updates (as shown in the figure below).

Figure 94 · Chain Configuration Window for all Devices

14. Once all the devices have been added to the chain in the correct order and serialization has been selected,
click the Run button to program the chain.

15. When programming is complete, the Programmer List Window appears (as shown in the figure below).

Figure 95 · Programmer List Window Done

Congratulations! You have just completed the FlashPro Multiple Device Serialization Chain Programming tutorial.

Multiple Programmer and Multiple Device Serialization Chain
Programming

This tutorial demonstrates step-by-step instructions on how to parallel program two chains using two
programmers, each with two Microsemi SoC Devices (A3P250 with Serialization and A3PE600). See the figure
below for an illustration.

Figure 96 · APA Device Tutorial Example

You should already be familiar with the basic features of the FlashPro software before you begin this tutorial. The
STAPL file for the A3P250 device contains 10 serialization data.

Note: This tutorial does not provide software installation instructions. Please have FlashPro already
installed before you begin.

First you need to create a project.
1. Click the New Project button in FlashPro.
2. From the New Project dialog box, type “Tutorial” in the Project Name field.
3. Check the Chain box (see figure below).

FlashPro User Guide

 65

Figure 97 · New Project Dialog Box

4. If necessary, change the default location of your project in the Project Location field.
5. Click OK. The FlashPro main window and the Programmer List window displays your updated programmer

information.
6. From the Programmers menu, choose Scan Chain (or select the programmer in the Programmer List

window, right-click, then choose Scan Chain). The Select Programmer(s) dialog box appears (as shown in
the figure below).

Figure 98 · Select Programmer Window

The Programmer List window shows the Scan Chain Test was passed and how the devices are ordered in the
chain (see figure below). In this example, A3PE600 will be programmed first in the chain since it is connected
directly to TDO.

Figure 99 · Scan Chain Order in the Log Window

7. Click the Configure Chain button. The Chain Configuration window appears (as shown in the figure
below).

FlashPro User Guide

 66

Figure 100 · Chain Configuration Window

8. In the Chain Configuration window, click the Add Microsemi Device button to add devices to the chain.
The Add Microsemi Device dialog box appears.

9. Choose A3PE600 device from the Device drop-down menu (as shown in the figure below).

Figure 101 · Add Microsemi Device Dialog Box

10. In the STAPL file field, use the Browse button to locate the A3PE600.stp file.
11. In the Name field, leave A3PE600 as default. The A3PE600 device is added into the Chain Configuration

window.
12. Repeat the steps above to add the A3P250. After finished adding all devices in the chain, the Chain

Configuration window updates (see figure below).

Figure 102 · Chain Configuration Window for all Devices

14. In the Chain Configuration Window, check the Enable Serial box.
15. Click Select in the Serial Data column. The Serial Settings dialog box appears (as shown in the figure

below).

FlashPro User Guide

 67

Figure 103 · Serial Settings Dialog Box

16. From the Serial Settings dialog box, click the All button to select all the serial data.
17. Click OK.
18. Once all the devices have been added to the chain in the correct order and serialization has been selected,

click the Runbutton to program the chain.
19. When programming is complete, the Programmer List window updates (as shown in the figure below).

Figure 104 · Programmer List Window Done

Congratulations! You have just completed the FlashPro Multiple Programmer and Multiple Device Serialization Chain
Programming tutorial.

Setting Disabled Microsemi SoC Devices to HIGH-Z
This tutorial explains how to set disabled Microsemi SoC SmartFusion, IGLOO, ProASIC3, Fusion devices in a
chain to HIGH-Z during chain programming.

Note: This tutorial requires a design with valid *.pdb/*.stp files for a chain of devices. If you launch FlashPro
from a Libero SoC project, a FlashPro project is created automatically and the PDB/STP file loaded.
Otherwise, you can start a new FlashPro project and load a PDB/STP file; refer to the Chain
Programming Tutorial for more information.

1. Once all your devices have been added to the chain, from the Chain Configuration window, choose which
devices you would like disabled during programming by de-selecting the appropriate checkbox from the
Enable Device column.
Now that you have disabled devices a checkbox appears in the HIGH-Z column of the Chain Configuration
window. If the HIGH-Z column is not shown in the Chain Configuration Grid, right-click any column header
and choose HIGH-Z.

2. Select the HIGH-Z checkbox to ensure your disabled devices enter HIGH-Z mode and remains in that mode
until chain programming is complete.

HIGHZ is not supported if enabled Microsemi devices are executing one of the following ACTIONS:

FlashPro User Guide

 68

• PROGRAM_NVM_ACTIVE_ARRAY
• VERIFY_NVM_ACTIVE_ARRAY
• READ_IDCODE

Disabled devices I/Os will not go to HIGHZ and the they will not tri-state. Any other ACTION will work as expected

Figure 105 · HIGH-Z Option in FlashPro

FlashPro User Guide

 69

Programming Settings and Operations

The FlashPro software enables you to connect multiple programmers to your computer. With each programmer
you select, you can connect the programmer, perform a self-test, customize, add, and remove and analyze the
JTAG chain.

Programmer Settings
The Programmer Settings dialog box includes setting options for FlashPro5/4/3/3X, FlashPro Lite and FlashPro.

Note: You can set the TCK setting in the PDB/STAPL file by selecting the TCK frequency in the
Programmer Settings dialog box.

Limitation of the TCK frequency for the selected programmer:
• FlashPro supports 1-4 MHz
• FlashPro Lite is limited to 1, 2, or 4 MHz only.
• FlashPro5: 1, 2, 3, 4, 5, 6, 10, 15, 30 MHz
• FlashPro4: 1, 2, 3, 4, 5, 6 MHz
• FlashPro3/3X: 1, 2, 3, 4, 6 MHz

Limitation of the TCK frequency for the target device:
• IGLOO, ProASIC3, and Fusion – 10MHz to 20MHz
• ProASICPLUS and ProASIC – 10 MHz
• SmartFusion2, IGLOO2, and RTG4 - 30MHz

During execution, the frequency set by the FREQUENCY statement in the PDB/STAPL file will override the TCK
frequency setting selected by you in the Programmer Settings dialog box unless the Force TCK Frequency
checkbox is selected.

To set your programmer settings:
1. From the Tools menu, choose Programmer Settings.The Programmer Settings dialog box appears (as

shown in the figure below).

FlashPro User Guide

 70

Figure 106 · Programmer Settings Dialog Box for FlashPro

2. Click a programmer tab and check the appropriate settings for your programmer.
3. Click OK.

FlashPro Programmer Settings
Choose your programmer settings for FlashPro (see above figure). If you choose to add the Force TCK
Frequency, select the appropriate MHz frequency. After you have made your selection(s), click OK.

Default Settings
• The Vpp, Vpn, Vdd(l), and Vddp options are checked (Vddp is set to 2.5V) to instruct the FlashPro

programmer(s) to supply Vpp, Vpn, Vdd(l) and Vddp.
• The Drive TRST option is unchecked to instruct the FlashPro programmer(s) NOT to drive the TRST pin.
• The Force TCK Frequency option is unchecked to instruct FlashPro to use the TCK frequency specified by

the Frequency statement in the STAPL file(s).

FlashPro Lite Programmer Settings
If you choose to add the Force TCK Frequency, select the appropriate MHz frequency. After you have made your
selection(s), click OK.

Default Settings
• The Vpp and Vpn options are checked to instruct the FlashPro Lite programmer(s) to supply Vpp and Vpn.
• The Drive TRST option is unchecked to instruct the FlashPro Lite programmer(s) NOT to drive the TRST

pin.
• The Force TCK Frequency option is unchecked to instruct the FlashPro Lite to use the TCK frequency

specified by the Frequency statement in the STAPL file(s).

FlashPro User Guide

 71

FlashPro5/4/3/3X Programmer Settings
 For FlashPro5/4/3/3X, you have the option of choosing the Set Vpump setting or the Force TCK Frequency. If
you choose the Force TCK Frequency, select the appropriate MHz frequency. For FlashPro4/3X settings, you
have the option of switching the TCK mode between Free running clock and Discrete clocking. After you have
made your selections(s), click OK.

Default Settings
• The Vpump option is checked to instruct the FlashPro5/4/3/3X programmer(s) to supply Vpump to the

device.
NOTE: VPUMP voltage will not be checked for the SmartFusion2/IGLOO2 and newer families of devices.
VPUMP does not need to be connected to the programmer for these devices.

• The Force TCK Frequency option is unchecked to instruct the FlashPro5/4/3/3X to use the TCK frequency
specified by the Frequency statement in the PDB/STAPL file(s).

• FlashPro5/4/3/3X default TCK mode setting is Free running clock

TCK Setting (ForceTCK Frequency)
If Force TCK Frequency is checked (in the Programmer Setting) then the selected TCK value is set for the
programmer and the Frequency statement in the PDB/STAPL file is ignored.

Note: FlashPro Lite RevA supports only 4MHz on TCK.

Default TCK frequency
When the PDB/STAPL file or Chain does not exist, the default TCK frequency is set to 4MHz. In the Single
Device File Programming mode, FlashPro will parse through the file and search for the "freq" keyword and the
"MAX_FREQ" Note field, which are expected in all Microsemi flash device files. The FlashPro software uses the
lesser value of the two as the default TCK frequency.
In Chain Programming mode, when more than one Microsemi flash device is targeted in the chain, the FlashPro
software passes through all of the files and searches for the "freq" keyword and the "MAX_FREQ" Note field. The
FlashPro software uses the lesser value of all the TCK frequency settings and the "MAX_FREQ" Note field
values.

Ping Programmers
To ping a programmer(s):

1. From the Programmers menu, choose Ping.
2. Select the programmers you want to connect from the Select Programmer(s) dialog box.
3. Click OK.

Note: You can click the Refresh/Rescan for Programmers button to quickly ping new programmers.

Performing a Self-Test
To perform a self-test:

1. From the Programmers menu, choose Self Test.
2. Select the programmer(s) you want to self-test from the Select Programmer(s) dialog box.
3. Click OK.

Note: You must connect the programmer to the self-test board that comes with your programmer before
performing a self-test.

You can also perform self-test by right-clicking on a specific programmer from the Programmer List Window and
selecting Self-Test.

Note: Self-test is not supported with FlashPro4 or FlashPro Lite programmers. These programmers are
rigorously tested at the factory during production.

FlashPro User Guide

 72

Scanning a Chain
The scan chain operation scans and analyzes the JTAG chain connected to programmer(s) you have selected.

To scan a chain:
1. From the Programmers menu, choose Scan Chain.
2. Select the programmers you want to scan from the Select Programmer(s) dialog box.
3. Click OK.

You can also perform Scan Chain by right-clicking on a specific programmer from the Programmer List Window
and selecting Scan Chain.

To scan and check a chain:
1. From the Tools menu, choose Modes > Chain Programming.
2. From the Chain Configuration window, select auto construct or add devices.
3. From the Programmers menu, choose Scan and Check Chain.
4. Select the programmers that you want to scan and check chain from the Select Programmer(s) dialog box.
5. Click OK.

You can also perform Scan Chain and Scan and Check Chain by right-clicking a specific programmer from the
Programmer List Window and selecting Scan Chain or Scan and Check Chain.

Enabling and Disabling Programmers
Once your programmer is enabled you can connect the programmer, perform a self-test, scan the chain, or
remove it.

To enable a programmer:
1. From the View menu, choose Programmer Details Window.
2. Check the Enable programmer checkbox in the Programmer Details Window.

The Programmer Details window displays all the information about your programmer.
Note: You can also enable your programmer from the Programmer List window by checking the

checkbox in the Programmer Enabled column.
Disable your programmer by unchecking the Enable programmer checkbox from the Programmer Details
Window or by unchecking the checkbox in the Programmer Enabled column in the Programmer window.

Renaming a Programmer
Enter the new programmer name in the Programmer Details window to rename the programmer. By default, the
programmer name is the same as the programmer ID.

Removing a Programmer
To remove a programmer:

1. From the Programmers menu, choose Remove.
2. Select the programmers you want to remove from the Select Programmer(s) dialog box.
3. Click OK.

Selecting Programmers
The Select Programmer(s) dialog box gives you the option of selecting all and unselecting all of the
programmers that you want to ping. See figure below.

FlashPro User Guide

 73

Figure 107 · Selecting Programmer(s) Dialog Box

FlashPro User Guide

 74

Single Device Programming

When devices are joined together in a JTAG chain, all of their Instruction Registers (IR) and Data Registers (DR)
are put in a long shift register from TDI to TDO. The IR length defers from device to device and the DR length
depends on the instruction that shifts into the instruction register.
When targeting Device 2 (see figure below), you need to know the IR length for Device 1 and Device 3. Given this
information, you can bypass both devices by shifting an all one pattern into their instruction registers before and
after the instruction targeted at Device 2. The number of bits you shift before Device 2's instruction is the pre IR
length, and the number of bits you need to add after Device 2's instruction is the post IR length. In this case, the
pre IR bits are shifted into
Device 1 and post IR bits are shifted into Device 3.

Targeting Device 2

When the bypass instruction is shifted into Device 1 and Device 3, the TDI and TDO of the two devices are
connected to the 1-bit bypass register at the Shift-DR state. To correctly shift the data in and data out of Device
2's register, you need to shift one bit of data before and after Device 2's data.
The number of bits you need to shift into the data register for Device 1 is the pre-DR length and the number of bits
we need to shift into the data register for Device 3 is the post-DR length. With the IR and DR length information,
you can shift instructions and data into Device 2 with the correct registration.

To create the JTAG chain (shown in the above figure):
1. Connect the TCK and TMS from the programmer to all of the devices.
2. Connect the programmer’s TDI pin to the TDI pin of device 3.
3. For all devices in the chain, connect the TDO output of one device to the TDI input of the next device.
4. Connect the TDO output of the last device to the programmer’s TDO input.

The order of devices in the chain is set by the connections of TDI to TDO.
The ChainBuilder software takes the order of the devices in a chain and their IR lengths and adds the pre-IR,
post-IR, pre-DR, and post-DR padding bits in the device you want to program, which properly aligns the
instructions and data within the IR and DR of the devices.
If you do not use the ChainBuilder software, the FlashPro software tries to find the pre-IR, post IR, pre-DR, and
post-DR values during the Analyze Chain operation.
For more information, see ProASIC programming and ProASICPLUS and ProASIC programming introduction.
To find out how to set the IR length, see Chain Settings.

Loading a Programming File
You can either load a programming file from the Configuration menu or from the Single Device Programming
Window. The section below describes how to load a programming file from the Single Device Programming
Window.

To Load a programming file from the Single Device Programming window:
1. From the View menu, choose Single Device Configuration to activate the Single Device Configuration

Window.
2. Click the Browse button in the Single Device Configuration Window (see figure below).

FlashPro User Guide

 75

Figure 108 · Signal Device Configuration Window

The Load Programming File dialog box appears.
3. Navigate to your programming file, select it, and click Open. The programming file is loaded and the Single

Device Configuration Window updates.

Select Target Device
The Select Target Device dialog box is located in the Configuration menu.
The Select Target Device dialog box enables you to select the target device you want to program. If you are only
programming one device in a chain, there is no need for you to make a selection. The Select Target Device
dialog box automatically displays your device (see figure below).

Figure 109 · Select Target Device (One Device in a Chain)

If you are programming more than one Flash device in a chain, you need to select the target device you want to
program. If you attempt to program your device without selecting a target device, a warning message appears.
If the warning message appears, click OK and the Select Target Device dialog box appears. From the Select
Target Device dialog box, select the device you want to program (see figure below).

Figure 110 · Select Target Device (Multiple Devices in a Chain)

Click the down arrow to display the list of devices in your chain. Then, make your selection and click OK.
Note: When the FlashPro software does not detect your chain configuration, you must specify the Pre/Post

IR fields by entering these values in the Set Pre/Post IR Values dialog box (see figure below).

FlashPro User Guide

 76

Figure 111 · Pre IR and Post IR Values for the Target Device

For more information, see Single STAPL file programming information.

Chain Settings
Click the Chain Parameter button in the Single Device Configuration window to set the chain settings (see the
Chain Settings dialog box below). See Single Device Programming Information for more information about these
STAPL settings.

Figure 112 · Chain Settings Dialog Box

Serial Settings
Click the Select Serialization Indexes/Select Serialization Actions button from the Single Device
Configuration Window. The Serial Settings dialog box appears (as shown in the figure below).

Note: Depending on the STAPL file format (Microsemi format or generic format) used, you will either see
Indexes columns or Actions columns in the Serial Settings dialog box.

FlashPro User Guide

 77

Figure 113 · Serial Settings Dialog Box

Click the red arrow buttons in the center of the dialog box to move from the Actions column to the Selected
Actions column. The indexes/actions available for selection are located on the left and the indexes/actions you
choose to select are located on the right column. Viewing options are available in the checkboxes under the
Actions column. If you check Log serial data, you can select the FlashROM region name where the serial data
will be stored.

FlashPro User Guide

 78

Chain Programming

Chain Order
The chain order is located in the Chain Configuration Window. The devices you add to the chain must be in the
correct order and must match the physical chain to be programmed. The TDO for the first device connects to the
programmer, and the last device's TDI connects to the programmer. The devices in the chain go in order from a
device's TDI into the next device's TDO, as shown in the figure below.

Figure 114 · Chain Order

Multiple Device Chain Programming
The FlashPro software enables direct chain programming without generating a chain STAPL file. Each device will
be programmed in sequential order starting from device 1 to device N. See example below. For more information
about chain order, see the Chain Order help topic.
TDI > Device N > Device N-1 >… > Device 2 > Device 1 > TDO
You have the advantage of using the Chain Builder GUI interface to construct the target physical chain.
Therefore, you do not need to calculate the PRE/POST IR/DR value of the target device. Instead, you must
provide either a valid BSDL file or the IR length and TCK Fmax values when you add a non-Microsemi device to
the chain.
You also have the advantage of automatically generating the chain from a scan chain operation. If you connect
the target chain to your Microsemi programmer, then you can automatically construct the chain. Refer to the
Automatic Chain Construction Tutorial for more information.

Note: Even though the FlashPro software enables direct chain programming without generating a Chain
STAPL file, this functionality is still available. For more information, see Export Chain STAPL file.

Device Programming Compatibility
The following is a list of flash devices that can be programmed together in a chain.
• SmartFusion, IGLOO, ProASIC3 and Fusion, excluding ProASIC3L, families can be programmed in the

same chain.
• ProASICPLUS can only be programmed with other ProASICPLUS devices.
• ProASIC can only be programmed with other ProASIC devices.

Programmer Support
FlashPro5/4/3/3X supports only SmartFusion, IGLOO, ProASIC3 and Fusion family devices. The Vpump on
FlashPro5/4/3/3X is designed to support the programming of only one device. Please make sure that Vpump, Vcc
and Vjtag are provided on board for chain programming. Connect the Vpump to the header as the FlashPro
software will attempt to check for all external supplies, including Vpump, to ensure successful programming.
There is no limitation to the chain length; however, ensure that the JTAG signal integrity and the timing are
preserved.
FlashPro and FlashPro Lite support both ProASICPLUS and ProASIC devices. However you cannot program both
devices in the same chain.
Unless all supplies are provided on board, there is a limitation of programming eight ProASICPLUS or ProASIC
devices in a chain.

FlashPro User Guide

 79

Multiple Device Serialization in a Chain
When you program multiple SmartFusion, IGLOO, ProASIC3 and Fusion family parts, you can use the
serialization functionality for more than one device. You must generate STAPL files with the correct serialization
data in them to use this functionality.
Each serialization enabled STAPL file may contain a different number of serialization data, but you may only
select the same number of serialization data to program in a single Serialization/Programming session.
See the example below for further explanation:
In this example, you have a chain of two devices (one device is an A3P250 and the other device is an A3PE600).
The STAPL file for the A3P250 contains 10,000 serialization data and the STAPL file for the A3PE600 has 5,000
serialization data. In a single Serialization/Programming session, you are allowed to select serialization data
indexed from 1 to 1,000 for the A3PE600 device and serialization data indexed from 5,001 to 6000 for the
A3P250 device. However, FlashPro errors out (at the beginning of a programming operation) when the amount of
the Serialization data you select is different from the devices.

Reuse Serial Data That Failed Programming
If any of the devices in the chain fail programming, the entire chain fails. All of the devices with serialization
enabled will fail as well. The serialization data will be reused or skipped based on your settings. See the example
below for more information:
You have a chain with three devices. Device 1 and Device 3 are serialization enabled. You have selected
Serialization Data 1 to 100 for Device 1 and 501 to 600 for Device 3, and you have set to reuse any unused
Serialization Data. Device 2 is targeted for programming without serialization. See the figure below for an
illustration.

At time t0, all devices in the chain passed programming so the Serialization Data indexes are advance to 2 and
502 for Device 3 and Device 1 respectively. At time t1 and t2, one of the devices failed programming so the
device indexes are reused for time t3.
Note that at time t2, when Device 2 failed to program; Device 3 will not be programmed.

FlashPro User Guide

 80

Multiple Device Serialization and Parallel Programming
The FlashPro software enables parallel programming for ProASIC3, excluding ProASIC3L, family devices using
multiple FlashPro5/4/3/3X programmers. The following figure illustrates how the indexes are reused in a parallel
programming environment.

At time t0, the chain failed to program so index 2 and 502 are reassigned to Device 3 and Device 1 respectively at
time t1. The failed indexes are not assigned to the programmer that previously failed. It will always be assigned to
the devices in the first programmer in the Programmer List.

Chain Configuration Window
The Chain Configuration Window displays the chain order, the chain editing options, and the chain configuration
grid (see figure below). The Chain Configuration Grid enables you to view and set options for each of your
devices. Right-click a column heading in the grid and choose a menu option to show or hide a specific column.
The Chain Configuration Grid enables you to view, sort and/or set the following options:
• Device - Device name
• Name - Editable field for a user-specified device name. If you have two or more identical devices in your

chain you can use this column to give them unique names.
• File - Path to programming file
• IR Length - Device instruction length.
• Max TCK (MHz) - Maximum clock frequency to program a specific device. FlashPro uses this information to

ensure that the programmer operates at a frequency lower than the slowest device in the chain.
• Enable Device - Select to enable the device for programming
• Enable Serial- Select to enable serialization when you have loaded a serialization programming file
• Action - List of programming actions for your device.

FlashPro User Guide

 81

• Procedures - Advanced option; enables you to customize the list of recommended and optional procedures
for the selected Action.

• Serial Data - Opens the Serial Settings dialog box; enables you to set your serialization data.
• Serial Status - Displays serialization status; lists serialization index(es)/action(s) that have been used and

shows the next serialization data that will be programmed.
• HIGH-Z - Sets disabled Microsemi SoC SmartFusion, IGLOO, ProASIC3, Fusion devices in the chain to

HIGH-Z (tri-states all the I/Os) during chain programming of enabled Microsemi devices in the daisy chain.
The Show Chain Editing checkbox, when checked displays your chain editing options (Configure device, Add
Microsemi Device, Add Non-Microsemi Device, and organization buttons to move your device within the grid).

Note: For information on how to Add Microsemi and Non-Microsemi devices, see Chain Editing.
Note: For information on how to use the Organize buttons (located next to the Add Microsemi and Add Non-

Microsemi buttons) in the Chain Configuration grid, see Using the Organize buttons in the Chain
Programming grid.

You can enable programming and serialization by checking the Enable Device checkbox and the Enable Serial
checkbox in the Chain Configuration grid.

Figure 115 · Chain Configuration Window

Chain Editing Options
The FlashPro software enables you to automatically construct the chain by clicking the Construct the chain from
a Scan Chain operation link, or by selecting Construct Chain Automatically from the Configuration menu.
FlashPro also enables you to manually edit your chain by adding Microsemi and Non-Microsemi devices. You can
add devices by clicking the Add Microsemi Device button and the Add Non-Microsemi Device button, or you
can select these options from the Configuration menu.
For more information about how to edit the chain, see Chain Editing.

Editing the Chain Configuration Grid
The Chain Configuration Grid enables you to select an Action for your device, Enable Serialization, and edit the
grid using the right-click menu.

To select an Action from the Configuration Grid:
1. Choose the device you would like to program and check the Enable Device checkbox.
2. In the Action column, click the down arrow to expose the drop down menu (see figure below).
3. Select your desired action.

FlashPro User Guide

 82

Figure 116 · Drop Down Menu for Select Action

Before you can enable serialization, you must check the Enable Device checkbox.

To enable Serialization:
1. Check the Enable Serial checkbox. By enabling serialization, the action options change.
2. In the Action column, click the down arrow to expose the drop down menu (see figure below).

Figure 117 · Drop Down Menu for Select Action

3. Select your desired action.

Figure 118 · Serial Data Column

4. Click the Select button from the Serial Data column, which is next to the Action column (see above figure).
The Serial Settings dialog box displays.

5. Choose your serial settings from the Serial Settings dialog box.
See Serial Settings for more information about this topic.
Note: Uncheck the Enable Serial checkbox to disable serialization.

To edit the Chain Configuration Grid:
1. Select the device you would like to edit and right click anywhere in the row of the selected device.
2. Select and click an option from the right-click menu.

Note: The Device Configuration menu (see figure below) includes options for configuring your device.

Figure 119 · Device Configuration Menu

FlashPro User Guide

 83

Chain Editing
The chain order is located in the Chain Configuration Window (see figure below). The devices you add to the
chain must be in the correct order and must match the physical chain to be programmed.

Figure 120 · Chain Configuration Window

Check the Show Chain Editing checkbox to display chain editing options (Add Microsemi Device, Add Non-
Microsemi Device). See figure below.

Figure 121 · Chain Configuration Window

You can edit the chain by adding Microsemi and Non-Microsemi Devices, for information refer to:
• Adding Microsemi Devices
• Adding Non-Microsemi Devices
• Adding Microsemi Devices from a STAPL File
• Automatic Chain Construction Tutorial
• Chain Programming Tutorial

Using the Organize Buttons in the Chain Programming Grid
The organize buttons enable you to select the order of the devices in your Chain Programming grid (see figure
below).

Figure 122 · Chain Configuration Window (Displaying Organize Buttons)

You can move devices up and down or delete devices within the grid. See the table below for a description of
each button.

Table 4 · Organize Buttons

Button Description

Moves your device up in the Chain Programming grid.

Moves your device down in the Chain Programming grid.

Deletes your device from the Chain Programming grid.

FlashPro User Guide

 84

Cutting, Copying and Pasting Devices from the Chain
If you want to make changes to your chain, you must make these changes from the spreadsheet in the Chain
Programming grid.

To copy or cut a device from the chain programming grid:
1. Select the device you would like to edit and right click anywhere in the row of the selected device. The right-

click menu appears.
2. Select Copy or Cut from the right-click menu to copy your device.

To paste a device from the chain programming grid:
1. Right-click the location where you would like to Paste the device.
2. Select Paste from the right-click menu .

Removing Devices from the Chain
If you want to make changes to your chain, you must make these changes from the spreadsheet in the Chain
Programming grid.

To remove a device from the chain programming grid:
1. Select the device you would like to remove and right click anywhere in the row of the selected device. The

right-click menu appears.
2. ChooseRemove from the right-click menu to delete your device.

Moving Devices within the Chain
You can move devices within the chain by using the Organize buttons (located next to the Add Microsemi and
Add Non-Microsemi Device buttons) in the Chain Programming grid (as shown in the figure below).

Figure 123 · Organize Buttons

To move or delete a device within the chain:
1. Click a device to select it.
2. Click one of the Organize button arrows to move your device up or down the spreadsheet. Click the delete

button (red X) to remove a device.
For more information about the Organize buttons, see Using the Organize buttons in the Chain Programming grid.

Skip Serial Data
If you are unable to perform the programming action on your device, if your device fails to program, and you have
selected the Skip Serial Data serialization setting, the software automatically uses the next serial data when you
program the next device. By default, the software is set to Skip Serial Data.
You can change the serialization setting by selecting Tools > Serialization or you can click the Skip serial data
icon or the Reuse serial data icon from the toolbar.

Reuse Serial Data
If your device fails to program, and you have selected the Reuse Serial Data serialization setting, the software
automatically reuses the current serial data when you program the next device.

Note: The FlashPro default setting is Skip Serial Data.
You can change the serialization setting by selecting Tools > Serialization or you can click the Skip serial data
icon or the Reuse serial data icon from the toolbar.

FlashPro User Guide

 85

Serialization with Parallel Programming
When programming the multiple ProASIC3 devices in parallel, while performing serialization at the same time,
each target device is assigned a Serial Index/Action for each programming run. Upon each successful completion
of each programming run, a new index is assigned to each target device for the next programming run. This
process continues until the selected Serial Indices/Actions are exhausted.

Note: If programming failure is encountered, depending on the user setting, the failed serial data may be
reused or skipped in the next programming run.

Note: If, in the last programming run, the remaining number selected Serial Indices/Actions is less than the
number of targeted ProASIC3 devices, the targeted devices without an assigned Serial Index/Action
are skipped in the final serial programming run.

FlashPro User Guide

 86

Chain Editing

Adding a Microsemi Device
To add an Microsemi device:

1. Click the Add Microsemi Device button from the Chain Programming grid. The Add Microsemi Device
dialog box appears (see figure below).

Figure 124 · Add Microsemi Device

2. Click the Device radio button and choose your device from the Device list drop-down menu.
3. Click the File radio button, then click the Browse button in the Programming file text box to find your

PDB/STAPL file. The Use File dialog box appears.
4. Find your PDB/STAPL file and click Open. Your PDB/STAPL file name appears in the Name text box. You

can change the name by clicking in the text box.
5. Click OK. Your device displays in the Chain Programming grid.
You can also add a Microsemi device from Configuration > Add Microsemi Device.

Adding a Microsemi Device from Files
To add a Microsemi device from a file:

1. From the Configuration menu, choose Add Microsemi Devices From Files. The Add Microsemi
Devices From Files dialog box appears.

2. Locate your file and click Open. Your device displays in the Chain Programming grid.

Adding a Non-Microsemi Device
When adding a non-Microsemi device, you must choose either a BSDL file or customize the Instruction Register
(IR) length and the Max TCK frequency of the device.

IR Length
The IR length specifies the number of IR bits in a specific device.

FlashPro User Guide

 87

Max TCK Frequency
Maximum clock frequency to program a specific device. FlashPro uses this information to ensure that the
programmer operates at a frequency lower than the slowest device in the chain.

BSDL File
Boundary Scan Description Language (BSDL) files describe the characteristics of a specific device. When using a
BSDL file, FlashPro extracts the IR length and TCK frequency for the specific device and uses the information to
build the FlashPro STAPL file. If you do not have a BSDL file for your specific device, you must manually enter
the IR length and Max TCK for your device. This information should be found in the datasheet for the device.

To add a non Microsemi device using a BSDL file:
1. Click the Add Non-Microsemi Device button in the Chain Programming window. The Add Non-

Microsemi Device dialog box appears (see figure below).

Figure 125 · Add Non-Microsemi Device Dialog Box

2. Type in the BSDL file or locate it by clicking the Browse button. If you click the Browse button to find your
BSDL file, the Use File dialog box displays.

3. Select your BSDL file from the Use File dialog box, and click Open.
4. Click OK, and your device appears in the Chain Programming grid.

When closing the Add Non-Microsemi Device window, if you specified a BSDL file, it is parsed and its IR length
and Max TCK frequency are retrieved.

Note: If you select a BSDL file, you cannot specify an IR length and Max TCK frequency.

To add a Non-Microsemi device using an IR length and a Max TCK frequency:
1. Click the Add Non-Microsemi Device button from the Chain Programming window.
2. Click the Data option from the Add Non-Microsemi Device dialog box.
3. Enter the IR length AND the Max TCK frequency in MHz.
4. Click OK.

If you decide to use custom data, you must specify both an IR length and Max TCK frequency.
Note: The IR length must be an integer greater than or equal to 2, and the Max TCK frequency must be a

float greater than or equal to 1.

FlashPro User Guide

 88

Non-Microsemi Device Configuration Dialog Box
It is possible to add multiple BSDL files to your Non-Microsemi device database that have the same IDCODE. If
the BSDL files list the same IR length but different TCK values, FlashPro automatically chooses the file with the
lowest TCK value by default and no action is required. If the IR lengths are different you receive an error message
asking you to resolve the conflict.
To resolve the issue, click the drop-down arrow adjacent to the device name. This opens the Non-Microsemi
Device Configuration dialog box (as shown in the figure below). From here you can choose the device that you
wish to use. Select the device from the dropdown menu and enter a new name or use the default.

Figure 126 · Non-Microsemi Device Configuration Dialog Box

FlashPro User Guide

 89

Configuring a Programmer

Selecting an Action
The available actions are depend on what type of STAPL file you have loaded into the software.

To configure a programmer:
1. From the Configuration menu, choose Select Action. The Select Action and Procedures dialog box

appears (see figure below). You can change the procedures for each action; the procedures that appear will
vary depending on both your device and the action you have selected.

Figure 127 · Select Action and Procedures Dialog Box

2. Click the checkboxes of the available procedures or click the Restore Default Procedures button in the
Select Action and Procedures dialog box.

3. Click OK.
Click the Restore Default Procedures to return to default settings.
For example, if you wish to disable the gathering of Check and Backup calibration data:
1. In the Action drop-down menu, choose DEVICE_INFO.
2. Click Procedures to open the Select Action and Procedures dialog box (as shown in the figure above).
3. Click CHECK_AND_BACKUP_CALIB to clear the checkbox and disable it.
4. Click OK to continue.

Using Serialization
To use serialization:

1. Enable serialization by checking the Serialization checkbox.
2. Select an action in the Action text box.
3. Click the Select Serialization Indexes button. The Serial Settings dialog box displays (see figure below).

FlashPro User Guide

 90

Note: Depending on the STAPL file format (Microsemi format or generic format) used, you will either see
Indexes columns or Actions columns in the Serial Settings dialog box.

Figure 128 · Serial Settings Dialog Box

Note: Depending on your STAPL file, you would click the Select Serialization Action button (see figure
below).

Figure 129 · Select Serialization Actions Button

Modifying Programming Settings in FlashPro with a PDB File
FlashPro enables you to modify programming settings within the software by using a PDB file. This feature is
available only for PDB files generated from Designer v8.1 or greater. This feature allows modification of features
being programmed, security settings, and memory content update for FlashROM and Embedded Flash Memory
Blocks (Fusion only). Please refer to Modifying Memory Contents and Programming a Device Tutorial (EFMB)
and Modifying FlashROM Contents and Programming a Device Tutorial for an example.

FlashPro User Guide

 91

Note: You cannot add or remove the FPGA feature from your PDB. If you would like to add or remove this
feature from your PDB, regenerate the PDB from Designer.

See Also
Configuring security, FlashROM and Embedded Flash Memory Block settings in FlashPro

FlashPro User Guide

 92

Configuring Security

Configuring Security, FlashROM and Embedded Flash Memory
Settings in FlashPro

1. From the Configuration menu, choose Load Programming File (PDB).
2. Select the PDB file and click Open, this loads the programming file.
3. From the Configuration menu, choose PDB Configuration. The Programming File Generator appears

(see figure below).

Figure 130 · Programming File Generator

4. Select the Silicon feature(s) you want to program:
• Security settings

• FlashROM

• Embedded Flash Memory Block

5. Check the Programming previously secured device(s) box if you are reprogramming a device that has
been secured.
Because the SmartFusion, IGLOO, ProASIC3 and Fusion families enable you to program the Security
Settings separately from the FPGA Array and/or FlashROM, you must indicate if the Security Settings were
previously programmed into the target device. This requirement also applies when you generate
programming files for reprogramming.

6. Enter the Silicon signature (0-8 HEX characters).
7. Click Next.

FlashPro User Guide

 93

Configuring Security Settings in FlashPro
To configure the security settings:

1. From the Configuration menu, choose Load Programming File (PDB).
2. Select the PDB file and click Open, this loads the programming file.
3. From the Configuration menu, choose PDB Configuration. The Programming File Generator appears

(as shown in the figure below).

Figure 131 · Programming File Generator

4. Check the Security Settings checkbox and click Next. This brings up the Security Settings dialog box
(shown below).

FlashPro User Guide

 94

Figure 132 · Security Settings Dialog Box

5. Move the sliding bar to select the security level for FPGA, FlashROM, and EFMB (see table for a description
of the security levels).

Table 5 · Security Level Descriptions

Security
Level

Security
Option

Description

High Protect with
a 128-bit
Advanced
Encryption
Standard
(AES) key
and a Pass
Key

Access to the device is protected by an AES Key and the Pass Key. The
Write and Verify operations of the FPGA Array use a 128-bit AES encrypted
bitstream. From the JTAG interface, the Write operation of the FlashROM
uses a 128-bit AES encrypted bitstream. Read back of the FlashROM
content via the JTAG interface is protected by the Pass Key. Read back of
the FlashROM content is allowed from the FPGA Array.

Medium Protect with
Pass Key

The Write and Verify operations of the FPGA Array require a Pass Key.
From the JTAG interface, the Read and Write operations on the FlashROM
content require a Pass Key. You can Verify the FlashROM content via the
JTAG interface without a Pass Key. Read back of the FlashROM content is
allowed from the FPGA Array.

None No Security The Write and Verify operations of the FPGA Array do not require keys. The
Read, Write, and Verify operations of the FlashROM content also do not
require keys.

Note: When a device is programmed with a Pass key and AES key, only the Pass key is required for

reprogramming since re-entering the correct Pass key unlocks the bits that restrict programming to
require AES encryption and also unlocks the bits that prohibit reprogramming altogether (if locked);
thus both plaintext and encrypted programming are [re-] enabled.

FlashPro User Guide

 95

6. Enter the Pass Key and/ or the AES Key as appropriate. You can generate a random key by clicking the
Generate random key button.
The Pass Key protects all the Security Settings for the FPGA Array and/or FlashROM.
The AES Key decrypts FPGA Array and/or FlashROM programming file content. Use the AES Key if you
intend to program the device at an unsecured site or if you plan to update the design at a remote site in the
future.

7. Click Finish.
You can also customize the security levels by clicking the Custom Level button.
To change or disable your security keys you must run the ERASE_SECURITY action code. This erases your
security settings and enables you to generate the programming file with new keys and reprogram, or to generate
a programming file that has no security key.

Custom Security Settings
For advanced use, you can customize your security levels.

To set custom security levels:
1. Click the Custom Level button in the Setup Security page. The Custom Security dialog box appears (see

figure below).

Figure 133 · Custom Security Level

2. Select the FPGA Array Security, the FlashROM Security, and Embedded Flash Memory block levels.
 The silicon features can have different Security Settings. See the tables below for a description of the
custom security option levels for FPGA Array, FlashROM, and Embedded Flash Memory block.

FlashPro User Guide

 96

Table 6 · FPGA Array

Security Option Description

Lock for both writing and verifying

Allows writing/erasing and
verification of the FPGA
Array via the JTAG interface
only with a valid Pass Key.

Lock for writing

Allows the writing/erasing of
the FPGA Array only with a
valid Pass Key. Verification is
allowed without a valid Pass
Key.

Use the AES Key for both writing and verifying

Allows the writing/erasing
and verification of the FPGA
Array only with a valid AES
Key via the JTAG interface.
This configures the device to
accept an encrypted
bitstream for reprogramming
and verification of the FPGA
Array. Use this option if you
intend to complete final
programming at an
unsecured site or if you plan
to update the design at a
remote site in the future.
Accessing the device security
settings requires a valid Pass
Key.

Allow write and verify Allows writing/erasing and
verification of the FPGA
Array with plain text bitstream
and without requiring a Pass
Key or an AES Key. Use this
option when you develop
your product in-house.

Note: The ProASIC3 family FPGA Array is always read protected regardless of the Pass Key or the AES

Key protection.
Table 7 · FlashROM

Security Option Description

Lock for both reading and writing

Allows the writing/erasing and
reading of the FlashROM via
the JTAG interface only with a
valid Pass Key. Verification is
allowed without a valid Pass
Key.

FlashPro User Guide

 97

Security Option Description

Lock for writing

Allows the writing/erasing of
the FlashROM via the JTAG
interface only with a valid
Pass Key. Reading and
verification is allowed without
a valid Pass Key.

Use the AES Key for writing

Allows the writing/erasing of
the FlashROM via the JTAG
interface only with a valid AES
Key. This configures the
device to accept an encrypted
bitstream for reprogramming
of the FlashROM. Use this
option if you complete final
programming at an unsecured
site or if you plan to update
the design at a remote site in
the future. The bitstream that
is read back from the
FlashROM is always
unencrypted (plain text).

Allow reading, writing, and verifying

Allows writing/erasing, reading
and verification of the
FlashROM content with a plain
text bitstream and without
requiring a valid Pass Key or
an AES Key.

Note: The FPGA Array can always read the FlashROM content regardless of these Security Settings.

Table 8 · Embedded Flash Memory Block

Security Option Description

Lock for reading, verifying, and writing

Allows the writing and reading
of the Embedded Flash
Memory Block via the JTAG
interface only with a valid
Pass Key. Verification
accomplished by reading back
and compare.

Lock for writing

Allows the writing of the
Embedded Flash Memory
Block via the JTAG interface
only with a valid Pass Key.
Reading and verification is
allowed without a valid Pass
Key.

FlashPro User Guide

 98

Security Option Description

Use AES Key for writing

Allows the writing of the
Embedded Flash Memory
Block via the JTAG interface
only with a valid AES Key.
This configures the device to
accept an encrypted bitstream
for reprogramming of the
Embedded Flash Memory
Block. Use this option if you
complete final programming at
an unsecured site or if you
plan to update the design at a
remote site in the future. The
bitstream that is read back
from the Embedded Flash
Memory Block is always
unencrypted (plain text),
when a valid pass key is
provided.

Allow reading, writing, and verifying

Allows writing, reading and
verification of the Embedded
Flash Memory Block content
with a plain text bitstream and
without requiring a valid Pass
Key or an AES Key.

3. To make the Security Settings permanent, select the Permanently lock the security settings check box.

This option prevents any future modifications of the Security Setting of the device. A Pass Key is not
required if you use this option.

Note: When you make the Security Settings permanent, you can never reprogram the Silicon Signature.
If you lock the write operation for the FPGA Array or the FlashROM, you can never reprogram the
FPGA Array or the FlashROM, respectively. If you use an AES key, this key cannot be changed
once you permanently lock the device.

4. To use the Permanent FlashLock™ feature (One-time programmable or OTP), select Lock for both writing
and verifying for FPGA Array, Lock for both reading and writing for FlashROM, Lock for reading,
writing, and verifying for each Embedded Flash Memory Block (for Fusion and SmartFusion), if present,
and select the Permanently lock the security settings checkbox as shown in the figure below. This will
make your device one-time programmable.

FlashPro User Guide

 99

Figure 134 · Custom Security Level- Permanent Lock

4. Click the OK button. The Security Settings page appears with the Custom security setting information.

Changing or Disabling Security Keys
To change or disable your security keys you must run the ERASE_SECURITY action code. ERASE_SECURITY
erases your security settings and enables you to generate the programming file with new keys and reprogram, or
to generate a programming file that has no security key.
Your action codes vary according to device family:
• Programming File Actions - SmartFusion and Fusion Devices
• Programming Actions - IGLOO and ProASIC3 Devices

Configuring FlashROM Settings in FlashPro
To configure the FlashROM settings:

1. From the Configuration menu, choose Load Programming File (PDB).
2. Select the PDB file and click Open, this loads the programming file.
3. From the Configuration menu, choose PDB Configuration. The Programming File Generator appears.
4. Check the FlashROM checkbox and click Browse to load a FlashROM configuration file. Click Next. This

brings up the FlashROM Settings dialog box (see figure below).

FlashPro User Guide

 100

Figure 135 · FlashROM Settings Dialog Box

5. Select the FlashROM memory page that you want to program.
6. Enter the data value for the configured regions.
7. If you selected the region with a Read From File, specify the file location.
8. If you selected the Auto Increment region, specify the Start and Max values.
9. Enter the number of devices you want to program.

10. Click the Target Programmer button. The Select Programmer Type dialog box appears.
11. Click Finish. FlashPoint generates your programming file.

Note: You cannot change the FlashROM region configuration from FlashPoint. You can only change the
configuration from the FlashROM core generator.

Express Configuration
The express configuration feature in FlashPro allows you to set the security settings as well as FlashROM content
without a design. This allows the production flow to be executed in parallel to the design effort if needed.
For example, you can pre-program the security settings with the High Security setting and serialize the device
using FlashROM without the FPGA design in a secured programming environment. The FPGA Array and EFMB
design can be programmed in unsecured programming environment using encrypted programming file. Refer to
Programming Only Security Settings Tutorial for more information.

Note: This feature is only available for SmartFusion, IGLOO, ProASIC3 and Fusion devices.

FlashPro User Guide

 101

IGLOO and ProASIC3 Programming

Programming File Actions for IGLOO and ProASIC3 Devices
IGLOO and ProASIC3 devices support the following features:
• FPGA Array
• FlashROM
• Security settings

You can program these features separately or together using different programming files or by using one
programming file.

Note: When a family name is specified, it refers to the device family and all its derivatives, unless otherwise
noted. See the Supported Families topic for a complete list of families and their derivatives.

The STAPL files for IGLOO and ProASIC3, excluding ProASIC3L, devices include actions targeted at one, two, or
all three of the IGLOO and ProASIC3 features (FPGA Array, FlashROM, and Security Settings). The
combinations of the features you selected to target results in different actions that are available in the STAPL file.
See the following table.
The table indicates that if you choose the feature FPGA Array, it will be affected by the PROGRAM file action.
If you choose the feature Security, it will be unaffected by the PROGRAM action.

Table 9 · IGLOO and ProASIC3 Device Programming Actions

 Features Selected

 FPGA Array FlashROM Security FPGA Array
and
FlashROM

FPGA Array
and
Security

FlashROM
and Security

 STAPL Actions Available (correspond with Features Selected above)

PROGRAM X X X X X

VERIFY X X X X X

ERASE X X X X X

ERASE_ALL X X X X X X

DEVICE_INFO X X X X X X

READ_IDCODE X X X X X X

ERASE_FROM X X X

PROGRAM_FRO
M

ERASE_ARRAY X X X

VERIFY_ARRAY X X X

FlashPro User Guide

 102

 Features Selected

ENC_DATA_AUT
HENTICATION

X X X

PROGRAM_SEC
URITY

 X X X

ERASE_SECURI
TY

 X X X

Note: The ENC_DATA_AUTHENTICATION Action is only available when you choose encrypted

programming.

Programming Actions
See the table below for a list of all the actions for the programming file.

Table 10 · Programming File Actions

Action Description

PROGRAM Programs all selected family features: FPGA Array, targeted FlashROM
pages, security setting and silicon signature (if provided).
Note: If the FPGA Array is selected, the FPGA Array core is enabled after
successful programming.

VERIFY Verifies all selected features: FPGA Array, targeted FlashROM pages,
security setting and silicon signature (if provided).

ERASE Erases all selected family features: FPGA Array, targeted FlashROM pages,
security setting and silicon signature (if provided).

ERASE_ALL Erases all features in the targeted device regardless of the features selected
to generate the STAPL file.

DEVICE_INFO Displays the IDCODE, Silicon Signature, the design name, the checksum,
and device security settings and programming environment information
programmed into the device.

VERIFY_DEVICE_INFO Verifies the IDCODE, silicone signature, design name, checksum, device
security settings and programming information programmed into the device.

READ_IDCODE Reads the device ID code from the device.

ERASE_FROM Erases only the targeted FlashROM pages, not the entire FlashROM.

PROGRAM_FROM Programs only the targeted FlashROM pages.

VERIFY_FROM Verfies the targeted FlashROM pages.

PROGRAM_ARRAY Programs the FPGA Array and Silicon Signature (if applicable) into the
device.
Note: The FPGA Array core is enabled after successful programming of the
FPGA.

FlashPro User Guide

 103

Action Description

VERIFY_ARRAY Verifies the FPGA Array and Silicon Signature (if applicable) into the device.

ERASE_ARRAY Erases the FPGA Array and Silicon Signature (if provided).

DISABLE_FPGA_ARRAY

Disables the FPGA Array core.
Note: The FPGA Array core is enabled after successful programming of the
FPGA.

DISABLE_FPGA_ARRAY
_PROGRAM

Disables the FPGA Array core, then programs all selected family features:
FPGA Array, targeted FlashROM pages, security setting, and silicon
signature (if provided).
Note: The FPGA Array core is enabled after successful programming of the
FPGA.

PROGRAM_SECURITY Programs only the Security Settings.

ERASE_SECURITY Erases only the Security Settings.

Note: FIX_INT_ARRAYS - This function only applies to STAPL files. Depending on the STAPL player

implementation, the indexing of an integer array may start from a different direction. The STAPL
standard did not clearly specify how it should be implemented. The FIX_INT_ARRAYS function
detects the indexing implemented by the STAPL player and flips the content of the integer array if
needed.

Note: UNLOCK_UKEY: This function unlocks a secured device if it is locked by FlashLock.

Options available in Programming Actions
The table below shows the available actions in the programming file.

Table 11 · Programming File Actions

Action Description

PROGRAM When you target the Security Setting, you have the option of not erasing and
programming the Security Setting by deselecting the following 2 procedures before
executing the action. - SET_ERASE_SEC, - DO_PROGRAM_SECURITY. When you
perform encrypted programming, you have the option of skipping the data
authentication before programming by deselecting the DO_ENC_AUTHENTICATION
procedure before executing the action.

ERASE When you target the Security Setting, you have the option of not erasing the Security
Setting by deselecting the SET_ERASE_SEC procedures before executing the action.

PROGRAM_A
RRAY

When you perform encrypted programming, you have the option of skipping the data
authentication before programming by deselecting the DO_ENC_AUTHENTICATION
procedure before executing the action.

Note: The DO_ENC_AUTHENTICATION procedure prevents you from proceeding with encrypted

programming with incorrect data due to corruption or an operator error. If incorrect data is detected
during encrypted programming, the device will not be functional after programming.

FlashPro User Guide

 104

SmartFusion and Fusion (AFS) Programming

Programming File Actions - SmartFusion and Fusion
FlashPro enables you to program security settings, FPGA Array, eNVM and embedded flash memory blocks
(EFMB), and FlashROM features for AFS device support. You can program these features separately using
different programming files or you can combine them into one programming file.

Note: If you are programming SmartFusion devices you are using eNVM. If you are programming Fusion
devices you are using the Embedded Flash Memory Block (EFMB). When referring to these elements
together we refer to them as eNVM/EFMB.

The STAPL files for SmartFusion and Fusion devices include actions targeted at one, two, or all four of the
programming features: FPGA Array and FlashROM, Security Settings, and eNVM/EFMB. The combinations of the
features you selected to target, results in different actions that are available in the STAPL file. See the following
table for an illustration.
The table indicates that if you select ERASE_ALL that it will affect any Programming Feature (or combination of
features) marked with an X. According to the table, the only Programming Feature unaffected by ERASE_ALL is
the eNVM/EFMB.
Compare that to the ERASE command: ERASE does not have any effect on the following Programming Features:
Security; Embedded Flash Memory Block; Security AND eNVM/EFMB.

Table 12 · SmartFusion and Fusion Programming File Actions

 Programming Features Selected

 FPGA
Array

FlashR
OM

Security eNVM/
Embed
ded
Flash
Memory
Block
(EFMB)

FPGA
Array
and
eNVM/
EFMB

FlashR
OM and
eNVM/
EFMB

Security
and
eNVM/
EFMB

FPGA
Array
and
FlashR
OM

FPGA
Array
and
Security

FlashR
OM and
Security

FPGA
Array,
FlashR
OM and
eNVM/
EFMB

FPGA
Array,
Security
and
eNVM/
EFMB

FlashROM,
Security and
eNVM/ EFMB

 STAPL Actions Available (correspond with Features Selected above)

PROGRA
M

X X X X X X X X X X

VERIFY X X X X X X X X X X

ERASE X X X X X X X X X X

ERASE_
ALL

X X X X X X X X X X X X

DEVICE_
INFO

X X X X X X X X X X X X X

READ_ID
CODE

X X X X X X X X X X X X X

ERASE_
FROM

 X X X X X X

FlashPro User Guide

 105

 Programming Features Selected

PROGRA
M_ARRA
Y

X X X X X X

VERIFY_
ARRAY

X X X X X X

ENC_DA
TA_AUT
HENTIFI
CATION

X X X X X X

PROGRA
M_SECU
RITY

 X X X X X X

ERASE_
SECURIT
Y

 X X X X X X

VERIFY_
SECURIT
Y

 X X X X X X

PROGRA
M_FP

 X X X X X X X

VERIFY_
FP

 X X X X X X X

PROGRA
M_NVM

 X X X X X X X

VERIFY_
NVM

 X X X X X X X

PROGRA
M_NVM_
ACTIVE_
ARRAY

 X X X X

VERIFY_
NVM_AC
TIVE_AR
RAY

 X X X X

PROGRA
M_NVM_
ACTIVE_
RSTM3

 X X X X

RESET_
CORTEX
M3

 X X X X X X X

FlashPro User Guide

 106

 Programming Features Selected

(SmartFu
sion only)

Note: The ENC_DATA_AUTHENTICATION Action is only available when you choose encrypted

programming.
Note: PROGRAM_NVM_ACTIVE_ARRAY and VERIFY_NVM_ACTIVE_ARRAY actions are not available

when the EFMB read/write/verify is locked with FlashLock.

STAPL Actions
See the table below for a list of all the actions for the STAPL file.

Table 13 · STAPL File Actions

Action Description

PROGRAM Programs all selected family features: FPGA Array, targeted FlashROM pages, security setting
and silicon signature (if provided).

SmartFusion only: Resets the CORTEX M3.

VERIFY Verifies all selected family features: FPGA Array, targeted FlashROM pages, security setting
and silicon signature (if provided).

ERASE Erases the selected family features.

ERASE_ALL Erases all features in the targeted family device except Embedded Flash Memory Blocks,
regardless of the features selected to generate the STAPL file.

DEVICE_INFO Displays the IDCODE, Silicon Signature, the design name, the checksum, and device security
settings and programming environment information programmed into the device.

READ_IDCODE Reads the device ID code from the device.

ERASE_FROM Erases only the targeted FlashROM pages, not the entire FlashROM.

PROGRAM_FROM Programs only the targeted FlashROM pages.

PROGRAM_ARRAY Programs the FPGA Array and Silicon Signature (if applicable) into the device.

SmartFusion only: Resets the CORTEX M3.

VERIFY_ARRAY Verifies the FPGA Array and Silicon Signature (if applicable) into the device.

ERASE_ARRAY Erases the FPGA Array and Silicon Signature (if provided).

PROGRAM_SECURITY Programs only the Security Settings.

ERASE_SECURITY Erases only the Security Settings.

PROGRAM_NVM Programs the targeted EFMBs.

SmartFusion only: Resets the CORTEX M3.

VERIFY_NVM Verifies the targeted EFMBs.

FlashPro User Guide

 107

Action Description

PROGRAM_NVM_ACTIV
E_ARRAY

Programs the targeted EFMBs while the FPGA Array remains active.

VERIFY_NVM_ACTIVE_
ARRAY

Verifies the targeted EFMBs while the FPGA Array remains active.

PROGRAM_NVM_ACTIV
E_RSTM3

SmartFusion only; programs the eNVM while the core is active and then resets the CORTEX
M3.

RESET_CORTEXM3 SmartFusion only; resets the CORTEX M3.

Options available in STAPL Actions
The table below shows the available actions in the STAPL file.

Table 14 · STAPL File Actions

Action Description

PROGRAM When you target the Security Setting, you have the option of not erasing and programming the
Security Setting by deselecting the following two procedures before executing the action.
- SET_ERASE_SEC,
- DO_PROGRAM_SECURITY. When you perform encrypted programming, you have the option of
skipping the data authentication before programming by deselecting the
DO_ENC_AUTHENTICATION procedure before executing the action.

ERASE When you target the Security Setting, you have the option of not erasing the Security Setting by
deselecting the SET_ERASE_SEC procedures before executing the action.

PROGRAM_ARRAY When you perform encrypted programming, you have the option of skipping the data authentication
before programming by deselecting the DO_ENC_AUTHENTICATION procedure before executing
the action.

Note: The DO_ENC_AUTHENTICATION procedure prevents you from proceeding with encrypted

programming with incorrect data due to corruption or an operator error. If incorrect data is detected
during encrypted programming, the device will not be functional after programming.

FlashPro User Guide

 108

ProASICPLUS and ProASIC
Families Programming

ProASICPLUS and ProASIC family devices support security settings and FPGA Array. You can program these
features together using one programming file. The table below shows the STAPL actions for the FPGA Array only.

Table 15 · FPGA Array Only STAPL File

Action Description

 PROGRAM Checks the security status of the device. If you are programming the security key,
you may select to program only the FPGA Array by unselecting the
PROGRAM_SECURITY procedure. If the device is programmed with the security
key, then this command returns with Read inhibit:1 Write inhibit:1. If the security key
is not present, the values are Read inhibit:0 Write inhibit:0.

 ERASE_ARRAY Erases the device.

 READ_IDCODE Reads the device ID code.

 VERIFY Verifies whether the device was programmed with the loaded STAPL file. Can be
used to ensure that the bitstream programmed in the device is the same as the
original STAPL file. If you load the wrong STAPL file, Exit 11 appears in the log
window. A successful operation results in Exit 0.

 PROGRAM Programs the device.

 DEVICE_INFO Displays the serial number of the device, the Design Name that is programmed into
the device, and the checksum that is programmed into the device.

FlashPro User Guide

 109

Generating Programming Files

Generate a Programming File in FlashPoint
FlashPoint enables you to program security settings, FPGA Array, and FlashROM features for SmartFusion,
IGLOO, ProASIC3, Fusion family devices. You can program these features separately using different
programming files or you can combine them into one programming file. Each feature is listed as a silicon feature
in the GUI.

Note: You can generate a programming file with one, two, or all of the silicon features from the
Programming File Generator first page.

To generate a programming file:
1. Select the Silicon feature(s) you want to program.
• Security settings
• FPGA Array
• FlashROM

Figure 136 · Programming File Generator – Step 1 of 1

Note: When FlashPoint is invoked for the first time, after netlist files are imported and the design is in
post-layout state, the software retrieves the FlashROM and EFM blocks configuration files from
the imported netlists and imports the configuration files. Otherwise, you need to import
configuration files.

2. Click the Programming previously secured device(s) check box if you are reprogramming a device that
has been secured.

FlashPro User Guide

 110

Because the SmartFusion, IGLOO, ProASIC3, Fusion families enable you to program the Security Settings
separately from the FPGA Array and/or FlashROM, you must indicate if the Security Settings were
previously programmed into the target device. This requirement also applies when you generate
programming files for reprogramming.

3. Enter the silicon signature (0-8 HEX characters). See Silicon Signature for more information.
4. Click Save PDB.

Programming File Types
The table below summarizes the Microsemi SoC programming file types and programmers.
Unless otherwise noted, listing an individual device indicates the device family and all its derivatives. For
example, IGLOO indicates IGLOO, IGLOOe, IGLOO nano and IGLOO plus. See the Supported Families topic for
more information. See the list of programming file type descriptions below for more details.

Programming File
Type

Device Support Programmer

PDB (*.pdb) See device
specifications

FlashPro 4/3/3x

STAPL (*.stp) FlashPro 4/3/3x, FlashPro Lite, FlashPro, Silicon
Sculptor III/II

SVF (*.svf) Third party programmer

IEEE 1532 (*.isc or
*.bsd)

Third party programmer

The following programming-related files are required if you use the related functional block elements in your
enabled devices. See the appropriate sections of the FlashPro help for more information on creating these files.

File Type Device Support Function

FDB (*.fdb) See device specifications Contains your FPGA array data

UFC (*.ufc) Contains your FlashROM data

EFC (*.efc) Contains your Embedded Flash Memory file

PDB Files

A proprietary Microsemi programming data file.
STAPL Files

The Standard Test And Programming Language (STAPL) is designed to support the programming of
programmable devices and testing of electronic systems, using the IEEE Standard 1149.1: “Standard Test
Access Port and Boundary Scan Architecture” (commonly referred to as JTAG) interface. As a STAPL file is
executed, signals are produced on the IEEE 1149.1 interface, as described in the STAPL file. STAPL operates on
a single IEEE 1149.1 chain. STAPL supports the programming of any IEEE 1149.1-compliant programmable
device.
STAPL has support for programming and test systems with user interface features. A single STAPL file may
perform several different functions, such as programming, verifying, and erasing a programmable device.

Bitstream Files
Proprietary Microsemi programming data file.

SVF Files
Courtesy Serial Vector Format Specification from ASSET InterTech, 1999:

FlashPro User Guide

 111

Serial Vector Format (SVF) is the media for exchanging descriptions of high-level IEEE 1149.1 bus operations. In
general, IEEE 1149.1 bus operations consist of scan operations and movements between different stable states
on the IEEE 1149.1 state diagram. SVF does not explicitly describe the state of the IEEE 1149.1 bus at every
Test Clock.
The SFV file is defined as an ASCII file that consists of a set of SVF statements. The maximum number of
characters on a line is 256, although one SVF statement can span more htan one line. Each statement consists of
a command and associated parameters. Each SVF statement is terminated by a semicolon. SVF is not case
sensitive.

IEEE 1532 Files
Courtesy ieee.org:
The IEEE 1532 files implement programming capabilities within programmable integrated circuit devices, utilizing
(and compatible with) the 1149.1 communication protocol. This standard allows the programming of one or more
compliant devices concurrently, while mounted on a board or embedded in a system, known as In-System
Configuration.

Generate a Programming File for SmartFusion
You can configure and generate a new PDB file from FlashPoint.
If you are using Single Mode, click Create to add a new PDB, or click Modify to make changes to a loaded PDB.
In Chain Mode, if you have not already done so, construct a chain and click Create PDB to create a new PDB for
programming, or click Modify PDB to make changes to a loaded PDB.
FlashPoint enables you to specify your security settings and silicon features when you generate your
programming file in SmartFusion. You can specify your FPGA Array, FlashROM, and Embedded Flash Memory
by importing FDB, UFC and EFC files, respectively (as shown in the figure below). If you have imported a
FlashROM and Embedded Flash Memory file you can click Modify to configure these feature before saving your
PDB file.
Click Specify I/O States During Programming to set custom I/O states.

Note: You must import an FDB to populate Port Name and Macro Cell columns.

Figure 137 · FlashPoint Programming Settings for SmartFusion

FlashPro User Guide

 112

Generate a Programming File for CoreMP7/Cortex-M1 Device
Support

FlashPoint enables you to program FPGA Array and FlashROM features for CoreMP7/Cortex-M1 devices. You can
program these features separately using different programming files or you can combine them into one programming
file. Each feature is listed as a silicon feature in the GUI. You can generate a programming file with one, two, or all of
the silicon features from the Programming File Generator first page. For CoreMP7/Cortex-M1 device support, you
cannot select your own security settings. The generated programming file always has the encrypted FPGA Array
content. The programming file generation is the same as the ProASIC3 family devices.

To generate a programming file:
1. Select the Silicon feature(s) you want to program.

FPGA Array
FlashROM

2. Click Next or Finished depending on the silicon features you selected.
If you click Next, follow the instructions in the appropriate dialog box. If you click Finish, the Generate
Programming Files dialog box appears. Use this dialog box box to specify the programming file name,
location, and output format (STAPL file, SVF file, PDB file, DirectC DAT file, 1532 file).
For more information on DAT files, refer to the Data File Generator (DatGen) section of the DirectC User's
Guide.

CoreMP7/Cortex-M1 Device Security
CoreMP7/Cortex-M1 devices are shipped with the following security enabled:

• FPGA Array enabled for AES encrypted programming and verification.
• FlashROM enabled for plain text read and write.

You cannot select your own security settings. The generated programming file includes the encrypted
FPGA Array content.

Programming FlashROM and FPGA Array
For CoreMP7/Cortex-M1 device support, the programming generation for FlashROM and FPGA Array is the same
as the programming generation for ProASIC3 and ProASIC family devices.

Generate a Programming File for AFS Device Support - Designer
Only

FlashPoint enables you to program Security Settings, FPGA Array, Embedded Flash Memory Blocks, and
FlashROM features for AFS device support. You can program these features separately using different
programming files or you can combine them into one programming file. Each feature is listed as a silicon feature
in the GUI. You can generate a programming file with one, two, or all of the silicon features from the
Programming File Generator first page.

AFS Programming
In addition to FPGA Array, FlashROM and security setting, the Fusion devices provide Embedded Flash Memory
Blocks (FB) for both Analog configuration initialization and regular memory storage. Depending on the targeted
AFS device, you may have one, two, or four FBs available to you. FlashPoint enables you to initialize the FB
Instance(s), as desribed in the Embedded Flash Memory help.

To generate a programming file:
1. Select the Silicon feature(s) you want to program.

• Security Settings

https://www.microsemi.com/document-portal/doc_download/135605-directc-v3-2-user-guide

FlashPro User Guide

 113

• FPGA Array

• FlashROM

• Embedded Flash Memory Block

Figure 138 · FlashPoint- Programming File Generator for AFS

Note: Check the check box in the Program column to enable block modification.
2. Check the Programming previously secured devices(s) box if you want to program previously secured

devices.
3. Enter the Silicon signature.
4. Depending upon the Silicon features you selected, click Finish or Next.

If you click Next, follow the instructions in the appropriate dialog box. If you click Finish, the Generate
Programming Files dialog box appears. Use this dialog box box to specify the programming file name,
location, and output format (STAPL file, SVF file, PDB file, DirectC DAT file, 1532 file).
For more information on DAT files, refer to the Data File Generator (DatGen) section of the DirectC User's
Guide.

Programming Security Settings, FlashROM, and FPGA Array
For AFS device support, the programming generation for Security Settings, FlashROM and FPGA Array is the
same as the programming generation for ProASIC3 family devices.

Generate a Programming File for Serialization Support in In House
Programming (IHP)

FlashPoint allows you to program security settings, FPGA Array, and FlashROM features for SmartFusion,
IGLOO, ProASIC3, Fusion family devices. You can program these features separately using different
programming files or you can combine them into one programming file. Each feature is listed as a silicon feature
in the GUI.

https://www.microsemi.com/document-portal/doc_download/135605-directc-v3-2-user-guide

FlashPro User Guide

 114

SVF Serialization Support in IHP
In addition to FPGA Array, FlashROM, and security setting, FlashPoint supports generating SVF files with
serialization support in IHP.

To generate SVF with serialization support:
1. Select the Silicon feature(s) you want to program.

• Security settings

• FPGA Array

• FlashROM

• Programming Embedded Flash Memory Block

2. Import the UFC file which contains serialization data to FlashROM. Click Next.
3. Type in the number of devices to program (as shown in the figure below).

Figure 139 · Type Number of Devices

4. Click Target Programmer and select Microsemi IHP.

FlashPro User Guide

 115

Figure 140 · Select Microsemi IHP

5. Click OK. The Generate Programming Files window appears (as shown in the figure below). Select Serial
Vector Files (*.svf).

Figure 141 · Select Serial Vector Files

6. Click Generate. An Microsemi-specific SVF file will be generated with a corresponding serialization data file.
Note: Generated SVF files will only work with IHP.

Creating a Programming Database (PDB) File in Designer
The programming database (PDB) file supports SmartFusion, IGLOO, ProASIC3 and Fusion devices only. This
allows reconfiguration of the security settings, FlashROM, FPGA Array, and Embedded Flash Memory Blocks.
You create the file in Designer using FlashPoint and you modify the file in FlashPro.

FlashPro User Guide

 116

You must create programming files for SmartFusion in FlashPro; see the Generate a Programming File for
SmartFusion topic for more information.
1. From the Designer main window, click the Programming File button. This brings up FlashPoint (see figure

below).

Figure 142 · FlashPoint Programming File Generator - PDB File

2. Select the silicon feature(s) to be programmed: Security Settings, FPGA array, FlashROM, and Embedded
Flash Memory Block. If you are programming a previously secured device, check the Programming
previously secured device(s) and enter the silicon signature.

3. Click Finish to create the PDB file.

See Also
Configuring security and FlashROM settings in FlashPro
Configuring security settings in FlashPro
Configuring FPGA array settings
Configuring FlashROM settings in FlashPro
Configuring Embedded Flash Memory Block settings in FlashPro

Programming Embedded Flash Memory Block
For more information about the Embedded Flash Memory Block, see the Flash Memory System Builder online
help.

To program the Embedded Flash Memory Block:
1. Check the Program box to enable Embedded Flash Memory Block modification.
2. Click the Modify button to import Embedded Flash Memory Block configuration and memory content.

The Modify Embedded Flash Memory Block dialog box appears.

http://www.actel.com/documents/asb_flashrom_nvm_ug.pdf

FlashPro User Guide

 117

Figure 143 · Modify Embedded Flash Memory Block Content Dialog Box

3. Click the Import Configuration File button (if available) to import the Embedded Flash Memory Block
configuration and memory content from the EFC file. This will populate the client table below. All clients that
belong to this block will be selected by default.

4. Click the Import content button if you want to change the client memory content.
5. Click OK.

Note: FlashPoint audits original configuration and memory content files and warns you if the files
cannot be located or if they have been updated.

Programming the FPGA Array
The FPGA Array contains your design; in FlashPro for SmartFusion you must have an FDB file to program your
FPGA Array.
You can program the FPGA Array by selecting the silicon feature FPGA Array in the Generate Programming File
page and clicking OK.
In FlashPro, if you are using a PDB with an FPGA Array you cannot de-select it for programming unless you are
using SmartFusion.
See Generate a programming file for more information.

Programming the FlashROM
You can program selected memory pages and specify the region values of the FlashROM.
• Single STAPL file for all devices: generates one programming file with all the generated increment values

or with values in the custom serialization file.
• One STAPL file per device: generates one programming file for each generated increment value or for

each value in the custom serialization file.
1. Select your target Programmer type.

• Select Generic STAPL Player when generating STAPL files for generic STAPL players.
• Select Silicon Sculptor II, BP Auto Programmer, or FlashPro5/4/3x/3 when generating programming files
for those programmers.
• Select Microsemi IHP (In House Programming) when generating STAPL or SVF files for Microsemi SoC
(formerly Actel) IHP.

2. Click OK.
FlashPoint generates your programming file.
Note: You cannot change the FlashROM region configuration from FlashPoint. You can only change the

configuration from the FlashROM core generator.
For more information, click the Help button in FlashROM.

FlashPro User Guide

 118

To program FlashROM:
1. Select FlashROM from the Generate Programming File page.
2. Enter the location of the FlashROM configuration file. The FlashROM Settings page appears (see figure

below).

Figure 144 · FlashROM Settings

3. Select the FlashROM memory page that you want to program.
4. Enter the data value for the configured regions.
5. If you selected the region with a Read From File, specify the file location.
6. If you selected the Auto Increment region, specify the Start and Max values.

Enter the number of devices you want to program.
Select your target Programmer Type.

Figure 145 · Select Programmer

 7. Click Finish.

FlashPro User Guide

 119

FlashPoint generates your programming file.

Note: You cannot change the FlashROM region configuration from FlashPoint. You can only change the
configuration from the FlashROM core generator.

Silicon Signature
With Libero SoC tools, you can use the silicon signature to identify and track Microsemi designs and devices.
When you generate a programming file, you can specify a unique silicon signature to program into the device.
This signature is stored in the design database and in the programming file, and programmed into the device
during programming.
The silicon signature is accessible through the USERCODE JTAG instruction.

Note: If you set the security level to high, medium, or custom, you must program the silicon signature along
with the Security Setting. If you have already programmed the Security Setting into the target device,
you cannot reprogram the silicon signature without reprogramming the Security Setting.

Note: The previously programmed silicon signature will be erased if:
• You have already programmed the silicon signature and
• You are programming the security settings, but you do not have an entry in the silicon signature field

Programming Security Settings
FlashPoint allows you to set a security level of high, medium, or none (SmartFusion uses radio buttons and the
option Clear Security instead of None).

To program Security Settings on the device:
1. If you choose to program Security Settings on the device from the Generate Programming File page, the

wizard takes you to the Security Settings page.

Your Security Settings page depends on your family.

2. Set the security level for FPGA, FlashROM, and EFMB (see the table below for a description of the security
levels).

Table 16 · FPGA, FlashROM, and EFMB Security Settings

Security
Level

Security Option Description

High Protect with a 128-
bit Advanced
Encryption
Standard (AES)
key and a Pass
Key

Access to the device is protected by an AES Key and the Pass
Key.
The Write and Verify operations of the FPGA Array use a 128-bit
AES encrypted bitstream.
 From the JTAG interface, the Write and Verify operations of the
FlashROM use a 128-bit AES encrypted bitstream. Read back of
the FlashROM content via the JTAG interface is protected by the
Pass Key.
Read back of the FlashROM content is allowed from the FPGA
Array. The Read and Verify operations of the EFMB module are
protected by Pass Key from the JTAG interface. The Write
operations of the EFMB module use a 128-bit AES encrypted
bitstream.

Medium Protect with Pass
Key

The Write and Verify operations of the FPGA Array require a Pass
Key.
From the JTAG interface, the Read and Write operations on the
FlashROM content require a Pass Key. You can Verify the
FlashROM content via the JTAG interface without a Pass Key.

FlashPro User Guide

 120

Security
Level

Security Option Description

Read back of the FlashROM content is allowed from the FPGA
Array. The Read, Write, and Verify operations of the EFMB
module are protected by Pass Key from the JTAG interface.

None No security The Write and Verify operations of the FPGA Array do not require
keys. The Read, Write, and Verify operations of the FlashROM
content also do not require keys. The Read, Write, and Verify
operations of the EFMB module content do not require keys.

This option is available for SmartFusion; to choose it, de-select the
Security Settings checkbox.

Note: When a Device is programmed with a Pass key and AES key, only the Pass key is required for

reprogramming since re-entering the correct Pass key unlocks the bits that restrict programming to
require AES encryption and also unlocks the bits that prohibit reprogramming altogether (if locked);
thus both plaintext and encrypted programming are [re-] enabled.

3. Enable eNVM client JTAG protection - Enables eNVM client JTAG protection in the
event you have not set Medium or High security. Enables you to protect specific clients
with a user pass key and then leave others unprotected. This can be advantageous if you
want to protect your IP, but give another user access to the rest of the eNVM for storage.
You can also set custom security levels for your eNVM.
NOTE: EFMB (Fusion) is called eNVM for SmartFusion devices.

4. Enter the Pass Key and/ or the AES Key as appropriate. You can generate a random key
by clicking the Generate random key button.
The Pass Key protects all the Security Settings for the FPGA Array, FlashROM, and/or
EFMB.
The AES Key decrypts the FPGA Array, FlashROM, and/or EFMB programming file
content. Use the AES Key if you intend to program the device at an unsecured site or if
you plan to update the design at a remote site in the future.

You can also customize the security levels by clicking the Custom Level button. For more information, see the
Custom Security Levels section.
To change or disable your security keys you must run the ERASE_SECURITY action code. This erases your
security settings and enables you to generate the programming file with new keys and reprogram, or to generate
a programming file that has no security key.

FlashPro User Guide

 121

Custom Security Levels

For advanced use, you can customize your security levels.

To set custom security levels:
1. Click the Custom Level button in the Security Settings page. The Custom Security Level dialog box

appears.
2. Select the FPGA Array Security and the FlashROM Security levels. For SmartFusion and Fusion devices,

you can also choose the Embedded Flash Memory Block level of security. The FPGA Array and the
FlashROM can have different Security Settings. See the tables below for a description of the custom
security option levels for FPGA Array and FlashROM.

Table 17 · FPGA Array

Security Option Description

Lock for both writing and verifying

Allows writing/erasing and
verification of the FPGA
Array via the JTAG interface
only with a valid Pass Key.

Lock for writing

Allows the writing/erasing of
the FPGA Array only with a
valid Pass Key. Verification is
allowed without a valid Pass
Key.

Use the AES Key for both writing and verifying

Allows the writing/erasing
and verification of the FPGA
Array only with a valid AES
Key via the JTAG interface.
This configures the device to
accept an encrypted
bitstream for reprogramming
and verification of the FPGA
Array. Use this option if you
intend to complete final
programming at an
unsecured site or if you plan
to update the design at a
remote site in the future.
Accessing the device security
settings requires a valid Pass
Key.

Allow write and verify

Allows writing/erasing and
verification of the FPGA
Array with plain text bitstream
and without requiring a Pass
Key or an AES Key. Use this
option when you develop
your product in-house.

FlashPro User Guide

 122

Note: The ProASIC3 family FPGA Array is always read protected regardless of the Pass Key or the AES
Key protection.

Table 18 · FlashROM

Security Option Description

Lock for both reading and writing

Allows the writing/erasing
and reading of the FlashROM
via the JTAG interface only
with a valid Pass Key.
Verification is allowed without
a valid Pass Key.

Lock for writing

Allows the writing/erasing of
the FlashROM via the JTAG
interface only with a valid
Pass Key. Reading and
verification is allowed without
a valid Pass Key.

Use the AES Key for both writing and verifying

Allows the writing/erasing
and verification of the
FlashROM via the JTAG
interface only with a valid
AES Key. This configures the
device to accept an
encrypted bitstream for
reprogramming and
verification of the FlashROM.
Use this option if you
complete final programming
at an unsecured site or if you
plan to update the design at
a remote site in the future.
Note: The bitstream that is
read back from the
FlashROM is always
unencrypted (plain text).

Allow reading, writing, and verifying

Allows writing/erasing,
reading and verification of the
FlashROM content with a
plain text bitstream and
without requiring a valid Pass
Key or an AES Key.

Note: The FPGA Array can always read the FlashROM content regardless of these Security Settings.

Table 19 · Embedded Flash Memory Block

Security Option Description

Lock for reading, verifying, and writing

Allows the writing and
reading of the Embedded
Flash Memory Block via the
JTAG interface only with a
valid Pass Key. Verification

FlashPro User Guide

 123

Security Option Description

accomplished by reading
back and compare.

Lock for writing

Allows the writing of the
Embedded Flash Memory
Block via the JTAG interface
only with a valid Pass Key.
Reading and verification is
allowed without a valid Pass
Key.

Use AES Key for writing

Allows the writing of the
Embedded Flash Memory
Block via the JTAG interface
only with a valid AES Key.
This configures the device to
accept an encrypted
bitstream for reprogramming
of the Embedded Flash
Block. Use this option if you
complete final programming
at an unsecured site or if you
plan to update the design at
a remote site in the future.
The bitstream that is read
back from the Embedded
Flash Memory Block is
always unencrypted (plain
text), when a valid pass key
is provided.

Allow reading, writing, and verifying

Allows writing, reading and
verification of the Embedded
Flash Memory Block content
with a plain text bitstream
and without requiring a valid
Pass Key or an AES Key.

3. To make the Security Settings permanent, select Permanently lock the security settings check box. This

option prevents any future modifications of the Security Setting of the device. A Pass Key is not required if
you use this option.

Note: When you make the Security Settings permanent, you can never reprogram the Silicon Signature.
If you Lock the write operation for the FPGA Array or the FlashROM, you can never reprogram the
FPGA Array or the FlashROM, respectively. If you use an AES key, this key cannot be changed
once you permanently lock the device.

4. (SmartFusion Only) Enable M3 Debugger option enables access to the M3 debugger even if security is
enforced. Select the Enable M3 debugger checkbox if you want to access the M3 debugger after
programming.

5. To use the Permanent FlashLock™ feature (One-time programmable or OTP), select Lock for both writing
and verifying for FPGA Array, Lock for both reading and writing for FlashROM, Lock for reading,
writing, and verifying each Embedded Flash Memory Block (for Fusion and SmartFusion), if present, and
select the Permanently lock the security settings checkbox as shown in the figure below. This will make
your device one-time programmable.

FlashPro User Guide

 124

Figure 146 · Custom Security Level

6. Click the OK button. The Security Settings page appears with the Custom security settings information

as shown in the figure below.

Figure 147 · Security Settings

FlashPro User Guide

 125

Reprogramming a Secured Device
You must know the previous Security Settings of the device before you can reprogram a device with Security
Settings.

To program a secured device:
1. In the Generate Programming File window, click the Programming previously secured devices(s) check

box (see figure below).

Figure 148 · Generate Programming File

2. Specify the previously programmed security setting for the FlashROM and/or the FPGA Array. To generate
a programming file for encrypted programming please ensure that the Security settings checkbox is
unchecked.

3. If you programmed the device with a custom security level, click the Custom Level button to open the
Custom security dialog box, and select the Security Settings for the FPGA Array or the FlashROM that
you programmed (see figure below).

FlashPro User Guide

 126

Figure 149 · Security Settings

4. Enter the previously programmed Pass Key and/or the AES Key.
5. Click Finish.

Note: Enter the AES Key only if you want to perform encrypted programming.

Programming a Secured SmartFusion Device
After you create a PDB you may wish to export a programming file for a secured device. To do so:
1. Create a PDB file (as explained above) with security set to High or Medium. Save the PDB file.
2. From the File menu, choose Export Single Programming File. The Export Programming Files dialog box

appears.
3. Click the Export programming file(s) for currently secured device checkbox. This exports programming

files for devices that already have security settings programmed.
4. Choose your outputs and enter your output file Name and Location.
5. Click Export to create the file(s). Your updated secured programming files are in the directory you specified.

Custom Serialization Data for FlashROM Region
FlashPoint enables you to specify a custom serialization file as a source to provide content for programming into a
Read from file FlashROM region. You can use this feature for serializing the target device with a custom
serialization scheme.

To specify a FlashROM region:
1. From the Properties section in the FlashROM Settings page, select the file name of the custom serialization

file (see figure below). For more information on custom serialization files, see Custom Serialization Data File
Format.

FlashPro User Guide

 127

Figure 150 · FlashROM Settings

2. Select the FlashROM programming file type you want to generate from the two options below:
• Single programming file for all devices option: generates one programming file with all the values in the

custom serialization file.
• One programming file per device: generates one programming file for each value in the custom serialization

file.
3. Enter the number of devices you want to program.
4. Click the Target Programmer button.
5. Select your target Programmer type.
6. Click OK.

Custom Serialization Data File Format
FlashPoint supports custom serialization data files that specify the data in binary, HEX, decimal, or ASCII text.
The custom serialization data files may contain multiple data with the Line Feed (LF) character as the delimiter.
You can create a file by entering serialization data into any type of text editor. Depending on the serialization data
format (hex, ASCII, binary, decimal), input the serialization data according to the size of the region you specified
in the FlashROM settings page.

Semantics
 Each custom serialization file has only one type of data format (binary, decimal, Hex or ASCII text). For example,
if a file contains two different data formats (i.e. binary and decimal) it is considered an invalid file.
The length of each data file must be shorter or equal to the selected region length. If the data is shorter then the
selected region length, the most significant bits shall be padded with 0’s. If the specified region length is longer
then the selected region length, it is considered an invalid file.
The digit / character length is as follows:

-Binary digit: 1 bit

-Decimal digit: 4 bits

-Hex digit: 4 bits

-ASCII Character: 8 bits

Note: Note the standard example below:
If you wanted to use, for example, device serialization for three devices with serialization data 123, 321, and 456,
you would create file name from_read.txt. Each line in from_read.txt corresponds to the serialization data that will
be programmed on each device. For example, the first line corresponds to the first device to be programmed, the
second line corresponds to the second device to be programmed, and so on.

Hex serialization data file example
The following example is a Hex serialization data file for a 40-bit region. Enter the serialization data below into file
created by any text editor:

123AEd210

AeB1

0001242E

FlashPro User Guide

 128

Note: If you enter an invalid Hex digit such as 235SedF1, an error occurs. An error will also occur if you
enter data that is out of range, i.e. 4300124EFE.

The following is an example of programming "AeB1" into Region_7_1 located on page 7, from Word 5 to Word 1
in the FlashROM settings page. See Custom serialization data for FlashROM region for more information.

 Table 15 ... Word 5 Word 4 Word 3 Word 2 Word 1 Word 0

Page 7 00 00 00 AE B1 ...

Binary serialization data file example
The following example is a binary serialization data file for a 16-bit region:
1100110011010001

100110011010011

11001100110101111 (This is an error: data out of range)

1001100110110111

1001100110110112 (This is an error: invalid binary digit)

Decimal serialization data file example
The following example is a decimal serialization data file for a 16-bit region:

65534

65535

65536 (This is an error: data out of range)

6553A (This is an error: invalid decimal digit)

Text serialization data file example
The following example is a text serialization data file for a 32-bit region:

AESB

A)e

ASE3 23 (This is an error: data out of range)

65A~

1234

AEbF

Syntax
Indentations in the syntax below indicate a wrapped line. If a line wraps and is not indented, then it should appear
on one line; you may need to expand your help window to view the syntax correctly.

Custom serialization data file =

 <hex region data list> | <decimal region data list> |

 <binary region data list> | <ascii text data list>

Hex region data list = <hex data> <new line> { < hex data> <new line> }

Decimal region data list = <decimal data> <new line> {<decimal data><new line> }

Binary region data list = <binary data> <new line> { <binary data> <new line> }

ASCII text region data list = < ascii text data> <new line> { < ascii text data> <new
line> }

hex data = <hex digit> {<hex digit>}

decimal data = < decimal digit> {< decimal digit>}

binary data = < binary digit> {< binary digit>}

ASCII text data = <ascii character> {< ascii character >}

new line = LF

FlashPro User Guide

 129

binary digit = ‘0’|‘1’

decimal digit = ‘0’|‘1’|‘2’|‘3’|‘4’|‘5’|‘6’|‘7’|‘8’| ‘9’

hex digit = ‘0’|‘1’|‘2’|‘3’|‘4’|‘5’|‘6’|‘7’|‘8’|‘9’|‘A’|‘B’|‘C’|‘D’ | ‘E’| ‘F’ |

 ‘a’| ‘b’ | ‘c’| ‘d’ | ‘e’| ‘f’

ascii character = characters from SP(0x20) to‘~’(0x7E).

File Format Limitations
The read from file data size cannot exceed the size of the region. The maximum size supported for each format is
described below:
HEX - limited to the size of the FlashROM page. Maximum size of 128-bits
DEC - 32-bit unsigned numbers. Maximum decimal value is: 4294967295
BIN - limited to the size of the FlashROM page. Maximum size of 128-bits
TEXT - limited to the size of the FlashROM page. Maximum size of 128-bits

Specifying I/O States During Programming
You can modify the I/O states during programming in FlashPro. In FlashPro, this feature is supported for PDB
files generated from Designer v8.5 or greater.

Note: PDB files generated from Designer v8.1 to Designer v8.4 (including all service packs) have limited
display of Pin Numbers only.

1. Load a PDB from the FlashPro GUI. You must have a PDB loaded to modify the I/O states during
programming.

2. From the FlashPro GUI, click PDB Configuration. The FlashPoint – Programming File Generator window
appears.

3. Click Specify I/O States During Programming to display the Specify I/O States During Programming
dialog box.

4. Sort the pins as desired by clicking any of the column headers to sort the entries by that header. Select the
I/Os you wish to modify (as shown in the figure below).

5. Set the I/O Output State. You can set Basic I/O settings if you want to use the default I/O settings for your
pins, or use Custom I/O settings to customize the settings for each pin. See Specifying I/O States During
Programming - I/O States and BSR Details for more information about setting your I/O state and the
corresponding pin values. Basic I/O state settings are:

• 1 – I/O is set to drive out logic High

• 0 – I/O is set to drive out logic Low

• Last Known State: I/O is set to the last value that was driven out prior to entering the programming mode, and then
held at that value during programming

• Z - Tri-State: I/O is tristated

FlashPro User Guide

 130

Figure 151 · I/O States During Programming Window

6. Click OK to return to the FlashPoint – Programming File Generator window.

Note: I/O States During Programming are saved to the ADB and resulting programming files after
completing programming file generation.

In Libero SoC, the I/O states can be set prior to programming, and held at the set values during programming.
This feature is only available after layout is completed.
1. From the Designer GUI, click Modify I/O States During Programming . The Programming File Generator

window appears.
2. Click Specify I/O States During Programming to display the Specify I/O States During Programming

dialog box.
3. Sort the pins as desired by clicking any of the column headers to sort the entries by that header. Select the

I/Os you wish to modify (as shown in the figure below).
4. Set the I/O Output state. You can set Basic I/O settings if you want to use the default I/O settings for your

pins, or use Custom I/O settings to customize the settings for each pin. See Specifying I/O States During
Programming - I/O States and BSR Details for more information about setting your I/O state and the
corresponding pin values. Basic I/O state settings are:

• 1 – I/O is set to drive out logic High

• 0 – I/O is set to drive out logic Low

• Last Known State: I/O is set to the last value that was driven out prior to entering the
programming mode, and then held at that value during programming

• Z - Tri-State: I/O is tristated

FlashPro User Guide

 131

Figure 152 · I/O States During Programming Window

6. Click OK to return to the FlashPoint – Programming File Generator window.
Note: I/O States During Programming are saved to the ADB and resulting programming files after

completing programming file generation.

Custom I/O Settings and Boundary Scan Registers
Each I/O in your device is comprised of an Input, Output and Output Enable Boundary Scan Register (BSR) cell..
The BSR cells enable you to define I/O states during programming and control the individual states for each Input,
Output, and Output Enable register.
The Specify I/O States During Programming dialog box enables access to each of these BSR cells for control
over the individual states. You can use the I/O State (Output Only) settings to set a specific output state and
ignore the other values for the individual BSR elements, or you can click the Show BSR Details checkbox for
control over the settings for each Input, Output Enable, and Output as you exit programming.

Specifying I/O States During Programming - I/O States and BSR
Details

The I/O States During Programming dialog box enables you to set custom I/O states prior to programming.

I/O State (Output Only)
Sets your I/O states during programming to one of the values shown in the list below.
• 1 – I/Os are set to drive out logic High
• 0 – I/Os are set to drive out logic Low
• Last Known State: I/Os are set to the last value that was driven out prior to entering the programming mode,

and then held at that value during programming
• Z - Tri-State: I/Os are tristated

When you set your I/O state, the Boundary Scan Register cells are set according to the table below. Use the
Show BSR Details option to set custom states for each cell.

FlashPro User Guide

 132

Table 20 · Default I/O Output Settings

Output State Settings

Input Control
(Output Enable)

Output

Z (Tri-State) 1 0 0

0 (Low) 1 1 0

1 (High) 0 1 1

Last_Known_State Last_Known_State Last_Known_State Last_Known_State

Table Key:
• 1 – High: I/Os are set to drive out logic High
• 0 – Low: I/Os are set to drive out logic Low
• Last_Known_State - I/Os are set to the last value that was driven out prior to entering the programming

mode, and then held at that value during programming

Boundary Scan Registers - Enabled with Show BSR Details
 Sets your I/O state to a specific output value during programming AND enables you to customize the values for
the Boundary Scan Register (Input, Output Enable, and Output). You can change any Don't Care value in
Boundary Scan Register States without changing the Output State of the pin (as shown in the table below).
For example, if you want to Tri-State a pin during programming, set Output Enable to 0; the Don't Care indicates
that the other two values are immaterial.
If you want a pin to drive a logic High and have a logic 1 stored in the Input Boundary scan cell during
programming, you may set all the values to 1.

Table 21 · BSR Details I/O Output Settings

Output State Settings

Input Output Enable Output

Z (Tri-State) Don't Care 0 Don't Care

0 (Low) Don't Care 1 0

1 (High) Don't Care 1 1

Last Known State Last State Last State Last State

Table Key:
• 1 – High: I/Os are set to drive out logic High
• 0 – Low: I/Os are set to drive out logic Low
• Don't Care – Don’t Care values have no impact on the other settings.
• Last_Known_State – Sampled value: I/Os are set to the last value that was driven out prior to entering the

programming mode, and then held at that value during programming
The figure below shows an example of Boundary Scan Register settings.

FlashPro User Guide

 133

Figure 153 · Boundary Scan Registers

Specify I/O States During Programming Dialog Box
The I/O States During Programming dialog box enables you to specify custom settings for I/Os in your
programming file. This is useful if you want to set an I/O to drive out specific logic, or if you want to use a custom
I/O state to manage settings for each Input, Output Enable, and Output associated with an I/O.

Load from file
Load from file enables you to load an I/O Settings (*.ios) file. You can use the IOS file to import saved custom
settings for all your I/Os. The exported IOS file have the following format:
• Used I/Os have an entry in the IOS file with the following format:

set_prog_io_state -portName {<design_port_name>} -input <value> -outputEnable <value> -
output <value>

• Unused I/Os have an entry in the IOS file with the following format:
set_prog_io_state -pinNumber {<device_pinNumber>} -input <value> -outputEnable <value> -
output <value>

Where <value> is:
• 1 – I/O is set to drive out logic High
• 0 – I/O is set to drive out logic Low
• Last_Known_State: I/O is set to the last value that was driven out prior to entering the programming mode,

and then held at that value during programming
• Z - Tri-State: I/O is tristated

Save to file
Saves your I/O Settings File (*.ios) for future use. This is useful if you set custom states for your I/Os and want to
use them again later in conjunction with a PDC file.

FlashPro User Guide

 134

Port Name
Lists the names of all the ports in your design.

Macro Cell
Lists the I/O type, such as INBUF, OUTBUF, PLLs, etc.

Pin Number
The package pin associate with the I/O.

I/O State (Output Only)
Your custom I/O State set during programming. This heading changes to Boundary Scan Register if you select
the BSR Details checkbox; see the Specifying I/O States During Programming - I/O States and BSR Details help
topic for more information on the BSR Details option.

Figure 154 · I/O States During Programming Dialog Box

Generate a DAT file
DAT files are generated via the Generate Programming Files dialog box.

To access the Generate Programming Files dialog box from Libero SoC and generate a DAT file:
1. In the Design Flow window, expand Implement Design, right-click Generate Programming Data and

choose Open Interactively. This opens Designer.
2. Click Programming File to start FlashPoint.
3. Set your feature and I/O options if necessary. Click Finish. This opens the Generate Programming File

dialog box, as shown in the figure below.

FlashPro User Guide

 135

Figure 155 · Generate Programing Files Dialog Box - DirectC File (*.dat)

4. Set your output file Name and Location.
5. Set your Output Formats to DirectC file (*.dat) and Programming Data File (*.pdb).
6. Click Generate to create your file.

Parallel Port Cable Information
The FlashPro software supports the generic Parallel Port Cable.

To connect to the Parallel Port Cable:
1. From the Parallel Port Cable text box, select the Parallel Port Buffer Cable (as shown in the figure below).
2. Select the parallel port that is connected to the cable from the Parallel Port text box.

Figure 156 · Connect Parallel Port Cable

3. Click OK.
The Para2Buff programmer is added to the programmer list.

FlashPro User Guide

 136

Importing and Exporting Files

Importing Configuration Files
To import a configuration file:

1. From the File menu, choose Import Configuration File . The Import Configuration File dialog box
appears.

2. Navigate to your file and click Open.

Exporting Configuration Files
To export a configuration file:

1. From the File menu, choose Export and then choose Export Configuration File. The Export
Configuration File dialog box appears.

2. Navigate to your file and click Save.

Export Programming Files (SmartFusion Only)
Export Programming Files enables you to export DirectC DAT, PDB, IEEE, 1532, SVF, and STP programming
files. Exporting programming files is supported in both Chain and Single mode; to export programming files in
Chain mode you must select one SmartFusion device in your chain.

To export a programming file:
1. From the FlashPro File menu choose Export > Single Programming File. The Export Programming Files

dialog box appears.
2. Specify the Output format, Name, and Location and click Export to create the files.

Export programming files for currently secured device enables you to export DirectC DAT, PDB, IEEE 1532,
and SVF files for devices that have already been programmed with security settings. It generates encrypted data
for encrypted features.
Export programming files for Microsemi IHP enables you to generate programming files required for
Microsemi In House Programming. This option is enabled when there is no serialization as shown below. When
the user selects this option, both STAPL and SVF output formats are selected and disabled for the user to
change, to make sure STAPL and SVF files will be exported.

FlashPro User Guide

 137

Figure 157 · Export Programming Files Dialog Box with no serialization

When serialization is available, Target Programming Solution and STAPL file type options are available for the
user to choose the appropriate Target Programming Solution and STAPL File Type for the programming chain.
Click Export to export the programming files.

FlashPro User Guide

 138

Figure 158 · Export Programming Files Dialog Box with serialization

Target programming solution for serialization
• Select Microsemi IHP (In House Programming) when generating STAPL or SVF files for Microsemi IHP.
• Select Silicon Sculptor 3/4 or FlashPro 3/4/5 when generating programming files for those programmers.
• Select Generic STAPL Player when generating STAPL files for generic STAPL players.

STAPL file type for serialization
• Single STAPL file for all devices: Generates one programming file with all the generated increment values

or with values in the custom serialization file.
• One STAPL file per device: Generates one programming file for each generated increment value or for

each value in the custom serialization file.
Limit SVF file size

Some testers may have memory size restrictions for a single SVF file. The SVF limit file option enables you to limit the
size of each SVF file by either file size or vectors.
The generated SVF files append an index to the file name indicating the sequence of files. The format is:

 <SVF_filename>_XXXXX.svf

where XXXXX is the index of the SVF file. The first SVF file begins with <SVF_filename>_00000.svf and increments by
1 until file generation is complete.
Maximum file size: Max file size limit for the SVF file; use this option to limit the size of your SVF based on number of
kB.
Maximum number of vectors: Max vector limit for the SVF file; use this option to limit the size of your SVF based on
number of vectors.

FlashPro User Guide

 139

Exporting a Chain STAPL File
To export a chain STAPL file:

1. From the File menu, select Export and then choose Export Chain STAPL File. The Export Chain STAPL
File dialog box appears.

2. Name your file and click Save.
Note: Chain STAPL file export is supported if all selected SmartFusion, IGLOO, ProASIC3 and Fusion

devices have STAPL or PDB files loaded.

Exporting a Chain SVF File
To export a chain SVF file:

1. From the File menu, choose Export and then choose Export Chain SVF File. The Export Chain SVF File
dialog box appears.

2. Name your file and click Save.
Note: Chain SVF file export is supported if all selected devices have STAPL or PDB files loaded.

Exporting Single Device STAPL Files
To export a single STAPL file in single mode:

This option is available only for single programming mode projects with a PDB file loaded (refer to Single STAPL
file basic tutorial for more information).
1. From the File menu, choose Export > Export Single Device STAPL File. The Export Single Device

STAPL File dialog box appears.
2. Name your file and click Save.

To export a single device STAPL file in chain mode:
This option is available only for chain programming mode projects with a PDB file loaded (refer to Chain
programming tutorial for more information). Exporting a single device STAPL file is only supported for one device
in the chain.
1. Select only one device from the chain, and from the File menu, select Export and then choose Export

Single Device STAPL File. The Export Single Device STAPL File dialog box appears.
2. Name your file and click Save.

Or
1. Right-click a device in the Chain Configuration Window, and then choose Export Single Device STAPL

File. The Export Single Device STAPL File dialog box appears.
2. Name your file and click Save.

Exporting Single Device SVF Files
The following steps describe how to export SVF files.

To export single device SVF files in single mode:
This option is available only for single programming mode projects with a PDB file loaded (refer to Single STAPL
file basic tutorial for more information).
1. From the File menu, select Export and then choose Export Single Device SVF File. The Export Single

Device SVF File dialog box appears.
2. Name your file and click Save.

Note: Multiple SVF files will be generated from a single PDB. Each file corresponds to a PDB action, and
will be saved in the <SVF_filename> folder as <SVF_filename>_<action name>.SVF.

FlashPro User Guide

 140

To export single device SVF files in chain mode:
This option is available only for chain programming mode projects with a PDB file loaded (refer to Chain
programming tutorial for more information).
1. Select only one device from the chain, and from the File menu, choose Export and then choose Export

Single Device SVF File. The Export Single Device SVF File dialog box appears.
2. Name your file and click Save.

Or
1. Right-click a device in the Chain Configuration Window, and then choose Export Single Device SVF File.

The Export Single Device SVF File dialog box appears.
2. Name your file and click Save.

Note: Multiple SVF files will be generated from a single PDB. Each file corresponds to a PDB action, and
will be saved in the <SVF_filename> folder as <SVF_filename>_<action name>.SVF.

Exporting Single Device 1532 Files
IEEE 1532 programming files will only be exported in FlashPro for SmartFusion devices when an FDB has been
properly imported.

To export single device 1532 files in single mode:
This option is available only for single programming mode projects with a PDB file loaded (refer to Single STAPL
file basic tutorial for more information).
1. From the File menu, choose Export Single Device 1532 File. The Export Single Device 1532 File dialog

box appears.
2. Name your file and click Save.

Note: Two files will be generated from a single PDB and will be saved in the <1532_filename>_1532
folder as

Note: IEEE 1532 BSDL file - <1532_filename>.bsd
Note: IEEE 1532 Data file - <1532_filename>.isc

To export single device 1532 files in chain mode:
This option is available only for chain programming mode projects with a PDB file loaded (refer to Chain
programming tutorial for more information). Exporting a single device STAPL file is only supported for one device
in the chain.
1. Select only one device from the chain, and from the File menu, choose Export and then choose Export

Single Device 1532 File. The Export Single Device 1532 File dialog box appears.
2. Name your file and click Save.

Or
1. Right-click a device in the Chain Configuration Window, and then choose Export Single Device 1532 File.

The Export Single Device 1532 File dialog box appears.
2. Name your file and click Save.

Note: Two files will be generated from a single PDB and will be saved in the <1532_filename>_1532
folder as

Note: IEEE 1532 BSDL file - <1532_filename>.bsd
Note: IEEE 1532 Data file - <1532_filename>.isc

Opening an Existing FlashPro Project on a Different Machine
Opening a FlashPro project created on a different PC than it was created on causes tool problems. The project
cannot be opened and the PDB file cannot be imported. You must export the configuration file from the original
machine and import it on the new machine in order to preserve your project.

FlashPro User Guide

 141

To move a FlashPro project and open it on a different machine:
1. Export configuration files on the machine where you created the original project. The configuration files

contain all FlashPro settings, including loaded programming files.
2. Send the configuration files to the new desktop
3. Open FlashPro on the new desktop and create a new FlashPro project.
4. Import the configuration file.

FlashPro User Guide

 142

Using Hot Keys

General Hot Keys
You can use hot keys for a lot of the features of the FlashPro software. See the table below for a list of general
hot keys.

Table 22 · FlashPro Software General Hot Keys

Feature Hot Key

 New Project Ctrl+N

 Open Project Ctrl+O

Save Project Ctrl+S

 Import Configuration File Ctrl+I

 Refresh Views F5

Refresh/Rescan for Programmers Ctrl+F5

See Also
Single STAPL programming hot keys
Chain programming hot keys

Single Device Programming Hot Keys
See the table below for the hot keys for single device programming.

Table 23 · Single Device Programming Hot Keys

Feature Hot Key

Load a STAPL file Ctrl + Shift + L

Select Action and Procedures Ctrl + Shift + A

Enable Serialization Ctrl + Shift + S

Select Serialization Data Ctrl + Shift + R

View Serialization Status Ctrl + Shift + U

View Chain Parameter (Pre/Post IR/DR) Ctrl + Shift + H

Configure Target Device Ctrl + Shift + D

Run Ctrl + Return

Chain Programming Hot Keys
See the table below for the hot keys for chain programming.

FlashPro User Guide

 143

Table 24 · Chain Programming Hot Keys

Feature Hot Key

Add Microsemi Device Ctrl + Shift + T

Add non Microsemi Device Ctrl + Shift + N

Remove Device Ctrl + R

Configure Device Ctrl + F

Load STAPL File Ctrl + Shift + L

Load BSDL File Ctrl + Shift + B

Enable Device Ctrl + E

Select Action and Procedures Ctrl + Shift + A

Enable Serialization Ctrl + Shift + S

Select Serialization Data Ctrl + Shift + R

View Serialization Data Ctrl + Shift + u

Copy Device Ctrl + Shift + C

Cut Device Ctrl + Shift + X

Paste Device Ctrl + Shift + V

Move Device Down Ctrl + D

Move Device Up Ctrl + U

Run Ctrl + Return

Batch Mode
Batch mode programming can be achieved by executing FlashPro TCL scripts from the command line.
The example below executes The FlashPro TCL script batch.tcl from the command line:

<location of Microsemi software>/bin/flashpro.exe script:batch.tcl

Batch.tcl contains the following script:
new_project -name {newproject} -location {./newproject} -mode {single}

 set_programming_file -file {./design.stp}

set_programming_action -action {PROGRAM}

run_selected_actions

close_project

FlashPro User Guide

 144

Tcl Commands

About TCL Commands - FlashPro Tcl Command Reference
A Tcl (Tool Command Language) file contains scripts for simple or complex tasks. You can run scripts from the
Windows command line or store and run a series of Tcl commands in a *.tcl batch file. The Tcl commands
supported by FlashPro are listed in the table below.

Note: Tcl commands are case sensitive. However, their arguments are not.

Command Action

add_actel_device Adds an Actel device to the chain

add_non_actel_device Adds a non-Actel device in the chain

add_non_actel_device_to_databa
se

Imports settings via a BSDL file that adds non-Actel or non-
Microsemi devices to the device database

check_flash_memory Performs diagnostics of the page status and data information

close_project Closes the FlashPro project

compare_analog_config Compares the content of the analog block configurations in your
design against the actual values in the device

compare_flashrom_client Compares the content of the FlashROM configurations in your design
against the actual values in the selected device

compare_memory_client Compares the memory client in a specific device and block

configure_flashpro_prg Changes FlashPro programmer settings

configure_flashpro3_prg Changes FlashPro 3 programmer settings

configure_flashpro4_prg Changes FlashPro 4 programmer settings

configure_flashpro5_prg Changes FlashPro 5 programmer settings

configure_flashproLite_prg Changes FlashPro Lite programmer settings

connect_cable Connects a parallel cable to a port

construct_chain_automatically Automatically starts chain construction for the specified programmer

copy_device Copies a device in the chain to the clipboard

cut_device Removes one or more devices from the chain

dump_tcl_support Unloads the list of supported FlashPro Tcl commands

enable_device Enables or disables a device in the chain

enable_prg Enables or disables one or more programmers

FlashPro User Guide

 145

Command Action

enable_prg_type Enables or disables all programmers of a specified programmer type

enable_procedure Enables/disables an optional procedure for an action

enable_serialization Enables/disables serialization for a device

export_config Exports a configuration file

export_script Exports the history in a Tcl script

export_secured_pdb Exports a single device secured PDB from the loaded PDB

export_single_1532 Exports a single device 1532 file

export_single_dat Exports a single device DirectC data file

export_single_stapl Exports a single device STAPL file

export_single_svf Exports a single device SVF file

export_stapl Exports the ChainBuilder STAPL file in chain programming mode

import_config Imports a configuration file

new_project Creates a new FlashPro project or convert an old ChainBuilder
project into a new FlashPro project

open_project Opens a FlashPro project

paste_device Pastes the devices that are on the clipboard in the chain

ping_prg Pings one or more programmers

read_analog_block_config Reads analog block configuration information

read_device_status Compares the memory client in a specific device and block

read_flash_memory Reads information from the eNVM modules

read_flashrom Reads the content of the FlashROM

read_id_code Reads IDCode from the device without masking any IDCode fields

recover_flash_memory Removes ECC2 errors due to memory corruption by reprogramming
specified flash memory (NVM) pages

refresh_prg_list Refreshes the programmer list

remove_device Removes the device from the chain

remove_non_actel_device_to_dat
abase

Removes settings for non-Microsemi or non-Actel device from the
device database

remove_prg Removes the programmer from the programmer list

FlashPro User Guide

 146

Command Action

run_selected_actions Runs the selected action on the specified programmer and returns
the exit code from the action

sample_analog_channel Samples the configured analog channel with the ADC parameters
you provided

save_log Saves the log file

save_project Saves the FlashPro project

save_project_as Saves the FlashPro project under a new project name

scan_chain_prg Runs scan chain on a programmer

select_from_region_name Enables you to select the serialization region you want to add to the
log file

select_libero_design_device Selects the Libero design device to resolve when there are two or
more identical Libero design devices in the configured JTAG chain.
This TCL command is for Libero usage only.

select_serial_range Selects the serialization data

select_target_device Sets the target device for programming in Single Device
Programming mode

self_test_prg Runs Self-Test on a programmer

set_bsdl_file Sets a BSDL file to a non-Actel device in the chain

set_chain_param Sets the chain parameters in single programming mode

set_debug_device Identifies the device you intend to debug

set_debug_programmer Identifies the programmer you want to use for debugging (if you have
more than one)

set_device_to_highz Sets a disabled Microsemi or Actel device in Chain programming
mode to HIGH-Z

set_device_ir Sets the IR length of a non-Actel device in the chain

set_device_name Changes the user name of a device in the chain

set_device_order Sets the order of the devices in the chain to the order specified

set_device_tck Sets the maximum TCK frequency of a non-Actel device in the chain

set_device_type Changes the family of an Actel device in the chain

set_main_log_file Sets the FlashPro log file

set_prg_name Changes the user name of a programmer

set_programming_action Selects the action for a device

FlashPro User Guide

 147

Command Action

set_programming_file Sets the programming file for a device

set_programming_mode Sets the programming mode

set_serialization_log_file Sets the log file to be used for serialization

set_serialization_mode Sets the serialization mode

update_programming_file Updates the programming file with the selected parameters

Running Tcl Scripts from within FlashPro
Instead of running scripts from the command line, you can use FlashPro's Run Script dialog box to run a script.

To execute a Tcl script file within FlashPro:
1. From the File menu, choose Run Script to display the Execute Script dialog box.

Figure 159 · Execute Script Dialog Box

2. Click Browse to display the Open dialog box, in which you can navigate to the folder containing the script
file to open. When you click Open, FlashPro enters the full path and script filename into the Execute Script
dialog box for you.

3. In the Arguments box, enter the arguments to pass to your Tcl script. Separate each argument by a space
character. For information about accessing arguments passed to a Tcl script, see

4. Click Run.

Running Tcl Scripts from the Command Line
You can run Tcl scripts from your Windows command line.

To execute a Tcl script file in the FlashPro software from a shell command line:
1. At the prompt, type the path to the Microsemi software followed by the word "SCRIPT" and a colon, and then

the name of the script file as follows:
<location of Microsemi software>/bin/flashpro.exe SCRIPT:<filename>

The example below executes in batch mode the script foo.tcl:
<location of Microsemi software>/bin/flashpro.exe script:foo.tcl

The example below executes in batch mode the script foo.tcl and exports the log in the file foo.txt:
<location of Microsemi software>/bin/flashpro.exe script:foo.tcl logfile:foo.txt

The example below executes in batch mode the script foo.tcl, creates a console where the log is
displayed briefly, and exports the log in the file foo.txt:

FlashPro User Guide

 148

<location of Microsemi software>/bin/flashpro.exe script:foo.tcl console_mode:brief
logfile:foo.txt

If you leave console_mode unspecified or set it to 'hide' FlashPro executes without a console window. If
you want to leave the console window open you can run the script with the console_mode parameter set
to 'show', as in the following example:
<location of Microsemi software>/bin/flashpro.exe script:foo.tcl console_mode:show
logfile:foo.txt

2. If you want to pass arguments to the Tcl script from the command line, then use the "SCRIPT_ARGS"
variable as follows:
<location of Microsemi software>/bin/flashpro.exe SCRIPT:<filename> SCRIPT_ARGS:"param1
param2 param3"

Arguments passed to a Tcl script can be accessed through the Tcl variables argc and argv. The example
below demonstrates how a Tcl script accesses these arguments:
puts "Script name: $argv0"

puts "Number of arguments: $argc"

set i 0

foreach arg $argv {

 puts "Arg $i : $arg"

 incr i

}

Note: Script names can contain spaces if the script name is protected with double quotes:
flashpro.exe script:"flashpro tcl/foo 1.tcl"

Exporting Tcl Scripts from within FlashPro
To export a set of Tcl commands from the FlashPro history:

1. From the File menu, choose Export > Export Script.
2. Enter the filename and click Save. The Script Export Options dialog is appears (see image below).

Figure 160 · Script Export Options Dialog Box

Check the Include commands from current project only to export commands of the current project
only. You can specify the filename formatting by selecting Relative filenames (relative to the current
directory) or Qualified filenames(absolute path, including the directory name).

4. Click OK.

FlashPro User Guide

 149

add_actel_device
Adds an Actel device to the chain. Either the file or device parameter must be specified. Chain
programming mode must have been set.

add_actel_device [-file {filename}] [-device {device}] -name {name} [-ukey {ukey_value}]

Arguments
Where:

-file{filename}

Specifies a programming filename.
-device{device}

Specifies the Actel device family(such as AFS600).
-name{name}

Specifies the device user name.
-ukey{ukey_value}

Optional (SmartFusion only) - Specifies the ukey value.

Supported Families
All

Exceptions
None

Example
add_actel_device –file {e:/design/stp/TOP.stp} –name {MyDevice1}

add_actel_device –device {A3P250} –name {MyDevice2}

add_non_actel_device
Adds a non-Actel device in the chain. Either the file, or (-tck And -ir) parameters must be specified. The
Chain programming mode must have been set.

add_non_actel_device [-file {file}] [-ir {ir}] [-tck {tck}] [-name {name}]

Arguments
-file {filename}

Specifies a BSDL file.
-ir {ir}

 Specifies the IR length.
-tck {tck}

Specifies the maximum TCK frequency (in MHz).
-name {name}

Specifies the device user name.

Supported Families
All

FlashPro User Guide

 150

Exceptions
None

Examples
add_non_actel_device –file {e:/design/bsdl/DeviceX.bsdl } –name {MyDevice3}

add_non_actel_device –ir 8 – tck 5 –name {MyDevice4}

add_non_actel_device_to_database
Imports settings via a BSDL file that adds non-Actel or non-Microsemi devices to the device database so
that they are recognized during scan chain and auto-construction operations.

add_non_actel_device_to_database [-file {bsdl_filename}]

Arguments
-file {bsdl_filename}

Specifies the path to the BSDL file and the BSDL filename add to the database.

Supported Families
All non-Microsemi and non-Actel families

Exceptions
N/A

Examples
The following example uses a BSDL file to add a non-Microsemi (1502AS J44) device to the device database:

add_non_actel_device_to_database –file {c:/bsdl/atmel/1502AS_J44.bsd}

The following example uses a BSDL file to add a non-Microsemi (80200) device to the device database:
add_non_actel_device_to_database –file {c:/bsdl/intel/80200_v1.0.bsd}

check_flash_memory
The command performs diagnostics of the page status and data information as follows:
• Page Status – includes ECC2 check of the page status information, write count
• Page Data - ECC2 check

check_flash_memory
[-name {device_name}]
[-block {integer_value}]
[-client {client_name}]
[-startpage {integer_value}]
[-endpage {integer_value}]
[-access {all | status | data}]
[-show {summary | pages}]
[-file {filename}]

At a minimum you must specify -client <name> OR
-startpage <page_number> -endpage <page_number> -block <number>

Arguments
-name {device_name}

FlashPro User Guide

 151

Optional user-defined device name. The device name is not required if there is only one device in the
current configuration, or a device has already been selected using the set_debug_device command.
-block {integer_value}

(Optional argument; you must set -client or –startpage, –endpage and –block before use.) Specifies
location of block for memory check.
-client {client_name}

Name of client for memory check.
-startpage {integer_value}

Startpage for page range; value must be an integer. You must specify a –endpage and –block along with
this argument.
-endpage {integer_value}

Endpage for page range; value must be an integer. You must specify a –startpage and -block along with
this argument.
-access {all | status | data}

(Optional argument; you must set -client or –startpage, –endpage and –block before use.) Specifies what
NVM information to check: page status, data or both.

Value Description

all Shows the number of pages with corruption status, data corruption and
out-of-range write count (default)

status Shows the number of pages with corruption status and the number of
pages with out-of-range write count

data Shows only the number of pages with data corruption

-show {summary | pages}

(Optional argument; you must set -client or –startpage, –endpage and –block before use.) Specifies
output level, as explained in the table below.

Value Description

summary Displays the summary for all checked pages (default)

pages Displays the check results for each checked page

-file {filename}

(Optional argument; you must set -client or –startpage, –endpage and –block before use.) Name of output
file for memory check.

Supported Families
SmartFusion, Fusion

Exceptions
None

Example
The following command checks the page status for block 0 from starpage 0 to endpage 2:

check_flash_memory -startpage 0 -endpage 2 -block 0

The following command checks the memory status for the client 'DS8bit' and saves it to the file
'checkFlashMemory.log':

FlashPro User Guide

 152

check_flash_memory -client {DS8bit} -file {checkFlashMemory.log}

close_project
Closes the FlashPro or FlashPro Express project.

close_project

Arguments
None

Supported Families
All

Exceptions
None

Example
close_project

compare_analog_config
Compares the content of the analog block configurations in your design against the actual values in the device. In
a typical SoC project, this directory is located at <project_root>/smartgen/<analog_block_core_name>.

compare_analog_config
[-name "device_name"] -mem_file_dir "mem_file_directory"
[-file "filename"]

Arguments
-name {device_name}

Optional user-defined device name. The device name is not required if there is only one device in the
current configuration, or a device has already been selected using the set_debug_device command.
-mem_file_dir {mem_file_directory}

Location of memory file.
-file {filename}

Output filename.

Supported Families
Fusion

Exceptions
None

Example
The following command reads the analog block configuration in the directory F:/tmp/Analog_Block and
saves the data in the logfile compare_analogReport.log:
compare_analog_config -mem_file_dir {F:/tmp/Analog_Block} -file
{compare_analogReport.log}

FlashPro User Guide

 153

The following command reads the analog block configuration information in the device 'AFS600' in the
directory F:/tmp/Analog_Block and saves the data in the log file compare_analogReport.log:
compare_analog_config –name {AFS600} -mem_file_dir {F:/tmp/Analog_Block} -file
{compare_analogReport.log}

compare_flashrom_client
Compares the content of the FlashROM configurations in your design against the actual values in the selected
device.

compare_flashrom_client [-name {device_name}] [-file {filename}]

Arguments
-name {device_name}

Optional user-defined device name. The device name is not required if there is only one device in the
current configuration, or a device has already been selected using the set_debug_device command.
-file {filename}

Optional file name for FlashROM compare log.

Supported Families
SmartFusion, IGLOO, ProASIC3 and Fusion

Exceptions
None

Example
The following command saves the FlashROM data to the file 'FlashRomCompReport.log':

compare_flashrom_client -file {FlashRomCompReport.log}

The following command compares the data in the device 'A3P250' and saves the data in the logfile
'FlashRomCompReport.log':

compare_flashrom_client –name {A3P250} -file {FlashRomCompReport.log}

compare_memory_client
Compares the memory client in a specific device and block.

compare_memory_client [-name {device_name}] [-block integer_value] -client {client_name}
[-file {filename}]

Arguments
-name { device_name}

Optional user-defined device name. The device name is not required if there is only one device in the
current configuration, or a device has already been selected using the set_debug_device command.
-block {integer_value}

(Optional argument; you must set -client.) Specifies location of block for memory compare.
-client {client_name}

Name of client for memory compare.
-file {filename}

Optional file name.

FlashPro User Guide

 154

Supported Families
SmartFusion and Fusion

Exceptions
None

Example
The following command compares the memory in the client 'DS32' on the device 'AFS600'.

compare_memory_client -client DS32 -name AFS600

The following command compares the data at block '0' to the client 'DS8bit':
compare_memory_client -block 0 -client {DS8bit}

The following command compares the memory in the device 'AFS600' at block '0' to the memory client 'DS8bit':
compare_memory_client –name {AFS600} -block 0 -client {DS8bit}

The following command compares the memory at block '1' to the memory client 'DS8bit' and saves the information
in a log file to F:/tmp/NVMCompReport.log:

compare_memory_client -block 1 -client {DS8bit} -file {F:/tmp/NVMCompReport.log}

configure_flashpro_prg
Changes FlashPro programmer settings.

configure_flashpro_prg [-vpp {ON|OFF}] [-vpn {ON|OFF}] [-vddl {ON|OFF}] [-force_vddp
{ON|OFF}] [-vddp {2.5|3.3}] [-drive_trst {ON|OFF}] [-force_freq {ON|OFF}] [-freq {freq}]

Arguments
-vpp {ON|OFF}

Enables FlashPro programmer to drive VPP. Set to ON to drive VPP.
-vpn {ON|OFF}

Enables FlashPro programmer to drive VPN; set to ON to drive VPN.
-vddl {ON|OFF}

Enables FlashPro programmer to drive VDDL; set to ON to drive VDDL.
-force_vddp {ON|OFF}

Enables FlashPro programmer to drive VDDP; set to ON to drive VDDP.
-vddp {2.5|3.3}

Sets VDDP to 2.5 or 3.3 volts.
-drive_trst {ON|OFF}

Enables FlashPro programmer to drive TRST; set to ON to drive TRST.
-force_freq {ON|OFF}

Forces the FlashPro software to use the TCK frequency specified by the software rather than the TCK
frequency specified in the programmer file.
-freq {freq}

Specifies the TCK frequency in MHz.

Supported Families
ProASICPLUS, ProASIC

Exceptions
None

FlashPro User Guide

 155

Example
The following example enables the FlashPro programmer to drive the VPP, VPN, VDDL, VDDP, sets the
drive voltage to 3.3v, disables the driver for TRST, and does not force the programmer to use the TCK
frequency specified in the software.
configure_flashpro_prg –vpp {ON} –vpn {ON} –vddl {ON} –force_vddp {ON} –vddp {3.3} –
drive_trst {OFF} –force_freq {OFF}

configure_flashpro3_prg
Changes FlashPro3 programmer settings.

configure_flashpro3_prg [-vpump {ON|OFF}] [-clk_mode {discrete_clk|free_running_clk}] [-
force_freq {ON|OFF}] [-freq {freq}]

Arguments
-vpump {ON|OFF}

Enables FlashPro programmer to drive VPUMP. Set to ON to drive VPUMP.
-clk_mode {discrete_clk|free_running_clk}

Specifies free running or discrete TCK.
-force_freq {ON|OFF}

Forces the FlashPro software to use the TCK frequency specified by the software rather than the TCK
frequency specified in the programmer file.
-freq {freq}

Specifies the TCK frequency in MHz.

Supported Families
SmartFusion, IGLOO, ProASIC3 and Fusion

Exceptions
None

Example
The following example sets the VPUMP option to ON, TCK to free running, and uses the TCK frequency specified
in the programmer file (force_freq is set to OFF):

configure_flashpro3_prg -vpump {ON} -clk_mode {free_running_clk} -force_freq {OFF} -freq
{4}

The following example sets VPUMP to ON, TCK to discrete, forces the FlashPro software to use the TCK
frequency specified in the software (-force_freq is set to ON) at a frequency of 2 MHz.

configure_flashpro3_prg -vpump {ON} -clk_mode {discrete_clk} -force_freq {ON} -freq {2}

configure_flashpro4_prg
Changes FlashPro4 programmer settings.

configure_flashpro4_prg [-vpump {ON|OFF}] [-clk_mode {discrete_clk|free_running_clk}] [-
force_freq {ON|OFF}] [-freq {freq}]

Arguments
-vpump {ON|OFF}

Enables FlashPro4 programmer to drive VPUMP. Set to ON to drive VPUMP.
-clk_mode {discrete_clk|free_running_clk}

FlashPro User Guide

 156

Specifies free running or discrete TCK.
-force_freq {ON|OFF}

Forces the FlashPro software to use the TCK frequency specified by the software rather than the TCK
frequency specified in the programmer file.
-freq {freq}

Specifies the TCK frequency in MHz.

Supported Families
SmartFusion, IGLOO, ProASIC3 and Fusion

Exceptions
None

Example
The following example sets the VPUMP option to ON and uses a free running TCK at a frequency of 4 MHz
(force_freq is set to OFF).

configure_flashpro4_prg -vpump {ON} -clk_mode {free_running_clk} -force_freq {OFF} -freq
{4}

The following example sets the VPUMP option to ON, uses a discrete TCK and sets force_freq to ON at 2 MHz.
configure_flashpro4_prg -vpump {ON} -clk_mode {discrete_clk} -force_freq {ON} -freq {2}

configure_flashpro5_prg
Tcl command; changes FlashPro5 programmer settings.

configure_flashpro5_prg [-vpump {ON|OFF}] [-clk_mode {free_running_clk}]
 [-force_freq {ON|OFF}] [-freq {freq}]

Arguments
-vpump {ON|OFF}

Enables FlashPro5 programmer to drive VPUMP. Set to ON to drive VPUMP. Default is ON.
-clk_mode {free_running_clk}

Specifies free running TCK. Default is free_running_clk.
-force_freq {ON|OFF}

Forces the FlashPro software to use the TCK frequency specified by the software rather than the TCK
frequency specified in the programmer file. Default is OFF.
-freq {freq}

Specifies the TCK frequency in MHz. Default is 4.

Supported Families
SmartFusion2, IGLOO2

Exceptions
None

Example
The following example sets the VPUMP option to ON and uses a free running TCK at a frequency of 4 MHz
(force_freq is set to OFF).

configure_flashpro5_prg -vpump {ON} -clk_mode {free_running_clk} -force_freq {OFF} -freq {4}

FlashPro User Guide

 157

The following example sets the VPUMP option to ON, uses a free running TCK and sets force_freq to ON at 2
MHz.

configure_flashpro5_prg -vpump {ON} -clk_mode {free_running_clk} -force_freq {ON} -freq {2}

configure_flashproLite_prg
Changes FlashPro Lite programmer settings.

configure_flashproLite_prg [-vpp {ON|OFF}] [-vpn {ON|OFF}] [-drive_trst {ON|OFF}] [-
force_freq {ON|OFF}] [-freq {freq}]

Arguments
-vpp {ON|OFF}

Enables FlashPro programmer to drive VPP. Set to ON to drive VPP.
-vpn {ON|OFF}

Enables FlashPro programmer to drive VPN; set to ON to drive VPN.
-drive_trst {ON|OFF}

Enables FlashPro programmer to drive TRST; set to ON to drive TRST.
-force_freq {ON|OFF}

Forces the FlashPro software to use the TCK frequency specified by the software rather than the TCK
frequency specified in the programmer file.
-freq {freq}

Specifies the TCK frequency in MHz.

Supported Families
ProASICPLUS

Exceptions
None

Example
The following example sets the programmer to drive the VPP, drive VPN, drive the TRST and uses the
frequency set by the programmer file (sets force_freq to OFF):
configure_flashprolite_prg –vpp {ON} –vpn {ON} –drive_trst {ON} –force_freq {OFF}

connect_cable
Connects a parallel cable to a port.

connect_cable -cable_name {cable_name} -port_name {port_name} [-drive_trst {ON|OFF}]

Arguments
-cable_name {cable_name}

Identifies the name of the parallel port cable you wish to connect.
-port_name {port_name}

Specifies the parallel port where the parallel programmer is connected.
-drive_trst {ON|OFF}

Enables the parallel port cable to drive TRST.

FlashPro User Guide

 158

Supported Families
All

Exceptions
None

Example
The following example connects the cable named Parallel_Port_Buffer_Cable to the port LPT1 and
enables drive TRST:
connect_cable -cable_name {Parallel_Port_Buffer_Cable} -port_name {Lpt1} -drive_trst
{ON}

construct_chain_automatically
Automatically starts chain construction for the specified programmer.

construct_chain_automatically[(-name {name})+]

Arguments
-name {name}

Specifies the programmer(s) name(s).

Supported Families
All

Exceptions
N/A

Example
Example for one programmer:

construct_chain_automatically -name {21428}

Example for two programmers:
construct_chain_automatically -name {21428} –name {00579}

copy_device
Copies a device in the chain to the clipboard. Chain programming mode must be set. See the paste_device command for
more information.

copy_device (-name {name})*

Arguments
-name {name}

Specifies the device name. Repeat this argument to copy multiple devices.

Supported Families
All

FlashPro User Guide

 159

Exceptions
None

Example
The example copies the device 'mydevice1' to the same location with a new name 'mydevice2'.
copy_device –name {MyDevice1} –name {MyDevice2}

cut_device
Removes one or more devices from the chain. It places the removed device in the clipboard. Chain programming
mode must be set to use this command. See the paste_device command for more information.

cut_device (-name {name})*

Arguments
-name {name}

Specifies the device name. You can repeat this argument for multiple devices.

Supported Families
All

Exceptions
None

Example
The following example removes the devices 'mydevice1' and 'mydevice2' from the chain.
cut_device –name {MyDevice1} –name {MyDevice2}

dump_tcl_support
Unloads the list of supported FlashPro or FlashPro Express Tcl commands.

dump_tcl_support -file {file}

Arguments
-file {file}

Supported Families
All

Exceptions
None

Example
The following example dumps your Tcl commands into the file 'tcldump.tcl'
dump_tcl_support -file {tcldump.tcl}

FlashPro User Guide

 160

enable_device
Enables or disables a device in the chain (if the device is disabled, it is bypassed). Chain programming
mode must be set. The device must be a Microsemi device.

enable_device -name {name} -enable {TRUE|FALSE}

Arguments
-name {name}

Specifies your device name
-enable {TRUE|FALSE}

Specifies whether the device is to be enabled or disabled. If you specify multiple devices, this argument
applies to all specified devices. (TRUE = enable. FALSE = disable)

Supported Families
All

Exceptions
None

Example
The following example disables the device 'mydevice1' in the chain.
enable_device –name {MyDevice1} –enable {FALSE}

enable_prg
Enables or disables one or more programmers.

enable_prg (-name {name})* -enable {TRUE|FALSE}

Arguments
-name {name}*

Specifies the programmer name. You can repeat this argument for multiple programmers.
-enable {TRUE|FALSE}

Specifies whether the programmer is to be enabled or disabled. If you specify multiple programmers, this
argument applies to all of them (TRUE = enable. FALSE = disable).

Supported Families
All

Exceptions
None

Example
The following example enables the programmers 'FP300085' and 'FP300086'.
enable_prg –name {FP300085} –name {FP300086} –enable {TRUE}

enable_prg_type
Enables or disables all programmers of a specified programmer type.

FlashPro User Guide

 161

enable_prg_type -prg_type {prg_type} -enable { TRUE | FALSE }

Arguments
-prgType { FP | FPLite | FP3 | PP }

Specifies the programmer type to be enabled/disabled (FP–FlashPro type programmers, FPLite–FlashPro
Lite type programers, FP3–FlashPro3 type programmers, PP–Parallel port cable type programmers).
-enable {TRUE|FALSE}

Specifies whether the programmers are to be enabled or disabled (TRUE–enable, FALSE–disable).

Supported Families
All

Exceptions
None

Example
The following example enables the FlashPro3 programmer.
enable_prog_type –prg_type{FP3} –enable{TRUE}

enable_procedure
To enable/disable an optional procedure of an action. The device name parameter must be specified only
in chain programming mode. A programming file must have been loaded.

enable_procedure [-name {name}] -action {action} -procedure {procedure} -enable
{TRUE|FALSE}

Arguments
-name {name}
-action {action}
-procedure {procedure}
-enable {TRUE|FALSE}

Supported Families
All

Exceptions
None

Example
In single programming mode:
enable_procedure –action {PROGRAM} –procedure {DO_ERASE} –enable {TRUE}

In chain programming mode:
enable_serialization –name {MyDevice2} –action {PROGRAM} –procedure {DO_ERASE} –enable
{FALSE}

enable_serialization
This Tcl command enables or disables serialization programming.

FlashPro User Guide

 162

enable_serialization –name {device_name} -enable {true|false}

Arguments
-name

Specifies the device name.
-enable

Enables (true) or disables (false) serialization programming.

Exceptions
Must be a Microsemi Device

Supported Families
Fusion, ProASIC3, IGLOO, SmartFusion, SmartFusion2, IGLOO2

Example
enable_serialization -name M2S/M2GL050{T|S|TS} -enable true

export_chain_stapl
Exports the ChainBuilder STAPL file in chain programming mode.

export_chain_stapl -file {file}

Arguments
-file {file}

Specifies the file to be exported.

Supported Families
All

Exceptions
None

Example
The following example exports the STAPL file 'tcl_testing_chain.stp':
-export_chain_stapl -file {./tcl_testing_chain.stp}

export_chain_svf
Tcl command; FlashPro only.

export_chain_svf -file [path to svf folder] [-tck {double-value}]

Arguments
-file

Required. SVF folder name will be name_svf.
Example: If the SVF file name is top.svf, folder top_svf will be created, which will contain the individual
SVF files per PROGRAMMING action.

FlashPro User Guide

 163

-tck

Optional. This is the TCK used in the exported SVF files. This value needs to be specified in MHz. The
default is 4.00 MHz.

Supported Families
SmartFusion, IGLOO, ProASIC3, and Fusion

Example
export_chain_svf -file {d:\66316\top.svf} -tck {6.25}

export_config
Exports a configuration file.

export_config -file {file}

Arguments
-file {file}

Specifies the file to export.

Supported Families
All

Exceptions
None

Example
The following example exports the configuration file 'myconfig1'

export_config -file {myconfig1}

export_secured_pdb
Exports a single device secured PDB from the loaded PDB.

export_secured_pdb -file {file} [-name {name}]

Arguments
-file {file}

Specifies the file to export.
-name {name}

Specifies the name of the device in chain mode to export a single device currently secured PDB.

Supported Families
SmartFusion, Fusion

Exceptions
'-secured' is only supported for SmartFusion devices.

FlashPro User Guide

 164

Example
In single mode, the following command exports the secured PDB 'my_design.pdb':
export_secured_pdb -file {D:/TOP/my_design.pdb}

In chain mode, the following example exports the secured PDB 'my_design.pdb' from the A2F200M3F
device in the chain:
export_secured_pdb -name {A2F200M3F} -file {./my_design.pdb}

export_script
Exports the history in a Tcl script.

export_script -file {file} -relative_path {TRUE|FALSE}

Arguments
-file {file}

Specifies the file to export.
-relative_path {TRUE|FALSE}

Specifies whether the file path must be exported as a relative path or an absolute path.

Supported Families
All

Exceptions
None

Example
The following example exports your Tcl history to the file 'history.tcl' with absolute pathnames.
export_script –file {./history.tcl} –relative_path {FALSE}

export_single_1532
Exports a single device IEEE 1532 file.

export_single_1532 -file {file} [–name {name}] [-pdb {pdb_file}] [-secured]

Arguments
-file {file}

Specifies the file to export.
-name {name}

Specifies the name of the device in chain mode to export single device IEEE 1532 programming file.
-pdb {pdb_file}

Specifies the PDB to use for exporting a IEEE 1532 programming file. By default, the loaded PDB is used
for exporting a IEEE 1532 programming file.
-secured

Exports a IEEE 1532 programming file for a secured device.

Supported Families
SmartFusion, IGLOO, ProASIC3 and Fusion

FlashPro User Guide

 165

Exceptions
'-secured' is only supported for SmartFusion devices.

Example
 Single Mode, exports the secured IEEE 1532 files 'my_design.isc' and 'my_design.bsd' into folder
'D:/TOP/my_design_1532' using the PDB 'my_design.pdb':

export_single_1532 -file {D:/TOP/my_design_1532) -pdb {D:/TOP/my_design.pdb} -secured

Chain Mode example exports secured IEEE 1532 files 'my_design.isc' and 'my_design.bsd' into folder
'D:/TOP/my_design_1532' from a device in the chain named 'A2F200M3F' using the PDB 'my_design.pdb':

export_single_1532 -name {A2F200M3F} -file {./my_design_1532} -pdb {./my_design.pdb} -
secured

export_single_dat
Exports a single device DirectC data file.

export_single_dat -file {file} [-name {name}] [-pdb {pdb_file}] [-secured]

Arguments
-file {file}

Specifies the name of the file you are exporting.
-name {name}

Specifies the name of the device in chain mode to export a single device DirectC data file.
-pdb {pdb_file}

Specifies the PDB to use for exporting a DirectC data file. By default, the loaded PDB will be used for
exporting a DirectC data file.
-secured

Use this argument to export a secured DirectC data file.

Supported Families
SmartFusion, IGLOO, ProASIC3 and Fusion

Exceptions
'-secured' is only supported for SmartFusion devices.

Example
Single Mode, exports a secured DirectC DAT file 'my_design.dat' using the PDB file 'my_design.pdb':

export_single_dat -file {D:/TOP/my_design.dat} -pdb {D:/TOP/my_design.pdb} -secured

Chain Mode, exports a secured DirectC DAT file 'my_design.dat' from a device in the chain named 'A2F200M3F',
using the PDB 'my_design.pdb':

export single_dat -name {A2F200M3F} -file {./my_design.dat} -pdb {./my_design.pdb} -
secured

export_single_stapl
Exports a single device STAPL file or single device chain STAPL file.

export_single_stapl -file {file} [-name {name}] [-pdb {pdb_file}] [-secured] [-chain]

FlashPro User Guide

 166

Arguments
-file {file}

Specifies the file to export.
-name {name}

Specifies the name of the device in chain mode to export a single device STAPL or single device chain
STAPL file.
-pdb {pdb_file}

Specifies the PDB to use for exporting a STAPL file. By default, the loaded PDB is used for exporting a
STAPL file.
-secured

Exports a secured STAPL file.
-chain

Indicates that you want to export a single device chain STAPL file.
Note: This parameter is only supported for SmartFusion2, IGLOO2, and RTG4 families.

Supported Families
SmartFusion2, IGLOO2, RTG4, SmartFusion, IGLOO, ProASIC3 and Fusion

Exceptions
None

Example
Single Mode example exports the secured file 'my_design.stp' using the PDB 'my_design.pdb':

export_single_stapl -file {D:/TOP/my_design.stp} -pdb {D:/TOP/my_design.pdb} -secured

Chain Mode example exports secured STAPL file 'my_design.stp' from device 'A2F200M3F' using the PDB
'my_design.pdb':

export single_stapl -name {A2F200M3F} -file {./my_design.stp} -pdb {./my_design.pdb} -
secured

export_single_svf
Exports a single device SVF programming file.

export_single_svf -file {file} [–name {name}] [-pdb {pdb_file}] [-secured]

Arguments
-file {file}

Specifies the file to export.
-name {name}

Specifies the name of the device in chain mode to export a single device SVF programming file.
-pdb {pdb_file}

Specifies the PDB to use for exporting a SVF programming file. By default, the loaded PDB is used for
exporting a SVF programming file.
-secured

Exports a SVF programming file for a secured device.

Supported Families
SmartFusion, IGLOO, ProASIC3 and Fusion

FlashPro User Guide

 167

Exceptions
'-secured' is only supported for SmartFusion devices.

Example
Single Mode, exports the secured SVF files for each programming ACTION with the following format
'my_design_ACTION.svf' into folder 'D:/TOP/my_design_SVF' using the PDB 'my_design.pdb':

export_single_SVF -file {D:/TOP/my_design_SVF) -pdb {D:/TOP/my_design.pdb} -secured

Chain Mode example exports secured SVF files for each programming ACTION with the following format
'my_design_ACTION.svf' into folder 'D:/TOP/my_design_SVF' from a device in the chain named 'A2F200M3F'
using the PDB 'my_design.pdb':

export_single_SVF -name {A2F200M3F} -file {./my_design_SVF} -pdb {./my_design.pdb} -
secured

export_spi_directory
Tcl command; exports the SPI directory that contains address and design version information for the
Golden and Update SPI images.

export_spi_directory [-golden_ver {decimal}] [-golden_addr {hex}] [-update_ver {decimal}]
[-update_addr {hex}] -file {file}

Arguments
-golden_ver {decimal}

Specifies Golden SPI Image design version where decimal is a decimal value and less than 65536
(exclusive).
-golden_addr {hex}

Specifies Golden SPI Image address where hex is 32-bit hexadecimal value with prefix 0x/0X.
-update_ver {decimal}

Specifies Update SPI Image design version where decimal is a decimal value and less than 65536
(exclusive).
-update_addr {hex}

Specifies Update SPI Image address where hex is a 32-bit hexadecimal value with prefix 0x/0X.
-file {file}

Mandatory argument; specifies the file export location.

Supported Families
SmartFusion2, IGLOO2

Examples
Both golden* options go together. The same is true for both update* options.; the file argument is required:

export_spi_directory -golden_ver {23} -golden_addr {0x40001234} -file
{D:\flashpro_files\m2s090t_spi_1\designer\m2s090t_spi_1_MSS\export\m2s090t_spi_1_MSS1.spi
Dir}

export_spi_directory -update_ver {8} -update_addr {0x2000abcd} -file
{D:\flashpro_files\m2s090t_spi_1\designer\m2s090t_spi_1_MSS\export\m2s090t_spi_1_MSS2.spi
Dir}

export_spi_directory -golden_ver {23} -golden_addr {0x40001234} -update_ver {8} -
update_addr {0x2000abcd} -file
{D:\flashpro_files\m2s090t_spi_1\designer\m2s090t_spi_1_MSS\export\m2s090t_spi_1_MSS3.spi
Dir}

FlashPro User Guide

 168

import_config
Imports a configuration file.

import_config -file {file}

Arguments
-file {file}

Specifies the file to import.

Supported Families
All

Exceptions
None

Example
The following example imports the configuration file 'my_config1.ufc':

import_config -file {my_config1.ufc'}

new_project
Creates a new FlashPro project or convert an old ChainBuilder project into a new FlashPro project (the
mode parameter must be 'chain' in this case).

new_project -name {name} -location {location} -mode {single|chain} [-convert_chb
{convert_chb}]

Arguments
-name {name}

Specifies the project name.
-location {location}

Specifies the project location.
-mode {single|chain}

Specifies programming mode; either single or chain.
-convert_chb {convert_chb}

An optional argument that specifies the ChainBuilder project to be converted.

Supported Families
All

Exceptions
None

Example
Create a new FlashPro single device project named 'FPPrj1' in a directory with the name 'FPProject1':
new_project -name {FPPrj1} -location {./FPProject1} -mode {single}

Create a new FlashPro project named 'FPPrjChb' in the directory 'ChbProject1'; converts the ChainBuilder
project 'prj1.chb' project to FlashPro.

FlashPro User Guide

 169

new_project -name {FPPrjChb} -location {./ChbProject1} -mode {chain} -convert_chb
{./chb_prj/prj1.chb}

open_project
Opens a FlashPro or FlashPro Express project.

open_project -project {project}

Arguments
-project {project}

Specifies the location and name of the project you wish to open.

Supported Families
All

Exceptions
None

Example
Opens the 'FPPrj1.pro' project from the FPProject1 directory
open_project -project {./FPProject1/FPPrj1.pro}

paste_device
Pastes the devices that are on the clipboard in the chain, immediately above the position_name device,
if this parameter is specified. Otherwise it places the devices at the end of the chain. The chain
programming mode must be enabled.

paste_device [-position_name {position_name}]

Arguments
-position_name {position_name}

Optional argument that specifies the name of a device in the chain.

Supported Families
All

Exceptions
None

Examples
The following example pastes the devices on the clipboard immediately above the device 'mydevice3' in
the chain.
paste_device –position_name {MyDevice3}

ping_prg
Pings one or more programmers.

FlashPro User Guide

 170

ping_prg (-name {name})*

Arguments
-name {name}

Specifies the programmer to be pinged. Repeat this argument for multiple programmers.

Supported Families
All

Exceptions
None

Example
The following example pings the programmers 'FP300085' and 'FP30086'.

ping_prg –name {FP300085} –name {FP300086}

read_analog_block_config
Reads each channel configuration on your analog system, enabling you to identify if/how each channel is
configured.

read_analog_block_config [-name {device_name}] [-file {filename}]

Arguments
-name {device_name}

Optional user-defined device name. The device name is not required if there is only one device in the
current configuration, or a device has already been selected using the set_debug_device command.
-file {filename}

(Optional) Identifies the name of the file to which read results will be saved.

Supported Families
Fusion

Exceptions
None

Example
The following command reads the analog block configuration information in the device 'AFS600':
read_analog_block_config –name {AFS600}

read_device_status
Displays the Device Information report; the Device Information report is a complete summary of your device state,
analog block test values, user information, factory serial number and security information..

read_device_status [-name {device_name}] [-file {filename}]

FlashPro User Guide

 171

Arguments
-name device_name

Optional user-defined device name. The device name is not required if there is only one device in the
current configuration, or a device has already been selected using the set_debug_device command.
-file {filename}

(Optional) Identifies the name of the file to which read results will be saved.

Supported Families
SmartFusion, IGLOO, ProASIC3 and Fusion

Exceptions
None

Example
The following reads device info from the 'AFS600' device.
read_device_status -name AFS600

read_flash_memory
The command reads information from the NVM modules. There are two types of information that can be read:
• Page Status – includes ECC2 status, write count, access protection
• Page Data

read_flash_memory
[-name {device_name}]
[-block {integer_value}]
[-client {client_name}]
[-startpage {integer_value}]
[-endpage {integer_value}]
[-access {all | status | data}]
[-file {filename}]

At a minimum you must specify -client <name> OR
-startpage <page_number> -endpage <page_number> -block <number>

Arguments
-name {device_name}

Optional user-defined device name. The device name is not required if there is only one device in the
current configuration, or a device has already been selected using the set_debug_device command.
-block {integer_value}

(Optional argument; you must set -client or –startpage and –endpage before use.) Specifies location of
block for memory read.
-client {client_name}

Name of client for memory read.
-startpage {integer_value}

Startpage for page range; value must be an integer. You must specify a –endpage and -block along with
this argument.
-endpage {integer_value}

Endpage for page range; value must be an integer. You must specify a –startpage and -block along with
this argument.
-access {all | status | data}

FlashPro User Guide

 172

(Optional argument; you must set -client or –startpage, –endpage and –block before use.) Specifies what
eNVM information to check: page status, data or both.

Value Description

all Shows the number of pages with corruption status, data corruption and
out-of-range write count (default)

status Shows the number of pages with corruption status and the number of
pages with out-of-range write count

data Shows only the number of pages with data corruption

-file {filename}

(Optional argument; you must set -client or –startpage, –endpage and –block before use.) Name of output
file for memory read.

Supported Families
SmartFusion, Fusion

Exceptions
None

Example
The following command reads the flash memory for the client 'DS8bit' and reports the data in a logfile
'readFlashMemoryReport.log':

read_flash_memory -client {DS8bit} -file {readFlashMemoryReport.log}

read_flash_memory –startpage 0 –endpage 2 –block 0 –access {data}

read_flashrom
Reads the content of the FlashROM from the selected device.

read_flashrom [-name {device_name}] [-mapping {logical | physical}] [-file {filename}]

Arguments
-name device_name

Optional user-defined device name. The device name is not required if there is only one device in the
current configuration, or a device has already been selected using the set_debug_device command.
-mapping {logical | physical}

(Optional) Specifies how the data read from the UFROM is mapped. Values are explained in the table
below.

Value Description

logical Logical mapping (default)

physical Physical mapping

-file {filename}

(Optional) Identifies the name of the file to which read results will be saved.

FlashPro User Guide

 173

Supported Families
SmartFusion, IGLOO, ProASIC3 and Fusion

Exceptions
None

Example
The following reads the FROM content on the device 'AFS600' and sets to physical mapping:
read_flashrom -name {AFS600} -mapping {physical}

read_id_code
The command reads IDCode from the device without masking any IDCode fields. This is the raw IDcode from the
silicon.
Note: Being able to read the IDCode is an indication that the JTAG interface is working correctly.

read_id_code [-name {device_name}]

Arguments
-name device_name

Optional user-defined device name. The device name is not required if there is only one device in the
current configuration, or a device has already been selected using the set_debug_device command.

Supported Families
SmartFusion, IGLOO, ProASIC3 and Fusion

Exceptions
None

Example
The following command reads the IDCODE from the device 'AFS600':
read_id_code –name {AFS600}

recover_flash_memory
The command removes ECC2 errors due to memory corruption by reprogramming specified flash memory (NVM)
pages and initializing all pages to zeros. The recovery affects data blocks and auxiliary blocks.
The write counters of the corrupted pages might not be accurate due to corruption. The recovery operation will not
change state of the page write counters.
Use the check_flash_memory command to detect flash memory errors.

recover_flash_memory
[-name {device_name}]
[-block {integer_value}]
[-client {client_name}]
[-startpage {integer_value}]
[-endpage {integer_value}]

At a minimum you must specify -client <name> OR
-startpage <page_number> -endpage <page_number> -block <number>

FlashPro User Guide

 174

Arguments
-name {device_name}

Optional user-defined device name. The device name is not required if there is only one device in the
current configuration, or a device has already been selected using the set_debug_device command.
-block {integer_value}

(Optional argument; you must set -client or –startpage and –endpage before use.) Specifies location of
block for memory recovery.
-client {client_name}

Name of client for memory recovery.
-startpage {integer_value}

Startpage for page range; value must be an integer.You must specify a –endpage and -block along with
this argument.
-endpage {integer_value}

Endpage for page range; value must be an integer. You must specify a –startpage and -block along with
this argument.

Supported Families
SmartFusion, Fusion

Exceptions
None

Example
The following command recovers flash memory data in the client 'DS8bit':

recover_flash_memory -client {DS8bit}

The following command recovers flash memory from block 0, startpage 0, and endpage 3:
recover_flash_memory -block 0 -startpage 0 -endpage 3

refresh_prg_list
Refreshes the programmer list. This is most often used to have FlashPro or FlashPro Express detect a
programmer that you have just connected.

refresh_prg_list

Arguments
None

Supported Families
All

Exceptions
None

Example
refresh_prg_list

FlashPro User Guide

 175

remove_device
Removes the device from the chain. Chain programming mode must be set.

remove_device (-name {name})*

Arguments
-name {name}

Specifies the device name. You can repeat this argument for multiple devices.

Supported Families
All

Exceptions
None

Example
Remove a device 'A3P250' from the chain:

remove_device (-name {A3P250})*

remove_non_actel_device_from_database
Removes settings for non-Microsemi or non-Actel device from the device database.

remove_non_actel_device_from_database [-name {device_name}]

Arguments
-name {device_name}

Specifies the non-Actel or non-Microsemi device name to be removed from the database. You can repeat
this argument for multiple devices.

Supported Families
Non-Microsemi and non-Actel devices

Exceptions
None

Example
The following example removes the F1502AS_J44 device from the database:

remove_non_actel_device_from_database –name {F1502AS_J44}

The following example removes the SA2_PROCESSOR device from the database:
remove_non_actel_device_from_database –name {SA2_PROCESSOR}

remove_prg
Removes the programmer from the programmer list.

remove_prg (-name {name})*

FlashPro User Guide

 176

Arguments
-name {name}*

Specifies the programmer to be removed. You can repeat this argument for multiple programmers.

Supported Families
All

Exceptions
None

Example
The following example removes the programmer '03178' from the programmer list:
remove_prg (name {03178})*

run_selected_actions
Runs the selected action on the specified programmer and returns the exit code from the action. If no
programmer name is specified, the action is run on all connected programmers. Only one exit code is
returned, so return code cannot be used when action is run on more than one programmer. A
programming file must be loaded.

run_selected_actions [(-name {name})*]

Arguments
-name {name}

Optional argument that specifies the programmer name. You can repeat this argument for multiple
programmers.

Supported Families
All

Exceptions
None

Example
The following example runs the selected actionS on the programmers 'FP30085' and 'FP30086'.
run_selected_actions –name {FP300085} –name {FP300086}

Example using return code:
if {[catch {run_selected_actions} return_val]} {puts "Error running Action"} else {puts
"exit code $return_val"}

Example returning exit code to the command line (returns exit 99 on script failure, otherwise returns exit
code from selected action):
if {[catch {run_selected_actions} return_val]}{exit 99} else {exit $return_val}

sample_analog_channel
Performs analog-to-digital conversion of a selected analog channel. This command is used when debugging the
Analog Subsystem and is performed on the pre-configured analog channel with user-supplied ADC conversion
parameters. The command also performs digital filtering using a single-pole low-pass filter if you opt to use it.

FlashPro User Guide

 177

sample_analog_channel [(-name {name})*]
[-resolution {8 | 10 | 12}]
[-clock_periods {int_value}]
[-clock_divider {int_value}]
[-num_samples { int_value}]
[-filtering_factor {real_value}]
[-initial_value {int_value}]
[-show_details {yes | no}]
[-file {filename}]

Arguments
-name { name}

Specifies the analog channel to be sampled. Channel name is a combination of the channel type followed
by the channel index. Valid channel names are listed in the table below.

Family Valid Channel Name

Fusion AV<n>, AT<n>, AC<n>

SmartFusion AV<n>, AT<n>, AC<n>, ADC<n>

The maximum number of channels depends on particular device type; refer to the Analog Block
specification in the device handbook.
-resolution {8 | 10 | 12}

ADC conversion resolution. Specifies bit size of the conversion results. Selection of certain resolutions
may affect timing parameter valid ranges. See your device handbook for details.
-clock_periods {int_value }

Parameter specifying sampling time: Sampling_time = clock_periods * adc_clock_period.
-clock_divider {int_value }

Specifies clock prescaling factor.
-num_samples { int_value }

Optional argument that specifies the number of samples to be performed by the ADC. Default number of
samples is 1. Selecting multiple vs single sample will change appearance of the generated report. For the
single sample a single result is shown and if “show_details” is set to “yes” then detailed status of the ADC
register is also shown.
If multiple samples are requested then the results are printed in a table. If the digital filtering is enabled the
table also includes filtered results.
-filtering_factor {real_value}

Optional argument that specifies the filtering factor if multiple samples requested. The default value of 1.0
disables digital filtering.
-initial_value {int_value}

Optional argument that specifies the initial value for the digital averaging filter. The value is specified in
ADC register counts. Default value is set to 0. Specifying this parameter improves filtering process during
initial samples.
-show_details {yes | no}

Optional argument that specifies the level of the report output. Detailed output includes initial user-
supplied conversion parameters. For the single-sampling case final output also includes detailed content
of ADC register after sampling.
-file {filename}

Optional argument. Specifies name of output file for conversion results.

FlashPro User Guide

 178

Supported Families
SmartFusion and Fusion

Exceptions
None

Example
The following example performs single sample analog-to-digital conversion for channel AV0:

sample_analog_channel –channel AV0 –resolution 8 –clock_periods 4 –clock_divider 4

Example with multiple sampling and digital signal filtering for AV0:
sample_analog_channel –channel AV0 –resolution 10 –clock_periods 4 –clock_divider 4 –
num_samples 10 –filtering_factor 2.5

save_log
Saves the log file.

save_log -file {file}

Arguments
-file {file}

Specifies the log filename.

Supported Families
All

Exceptions
None

Example
The following example saves the log file with the name 'my_logfile1.log':
save_log -file {my_logfile1.log}

save_project
Saves the FlashPro or FlashPro Express project.

save_project

Arguments
None

Supported Families
All

Exceptions
None

FlashPro User Guide

 179

Example
save_project

save_project_as
Saves the FlashPro project under a new project name.

save_project_as -name {name} -location {location}

Arguments
 -name {name}

Specifies the project name.
-location {location}

Specifies the project location.

Supported Families
All

Exceptions
None

Example
The following example saves the FlashPro project 'FPPrj2' to the directory 'FPProject2':
save_project_as -name {FPPrj2} -location {./FPProject2}

scan_chain_prg
In single mode, this command runs scan chain on a programmer.
In chain mode, this command runs scan and check chain on a programmer if devices have been added in
the grid.

scan_chain_prg [(-name {name})+]

Arguments
-name {name}

Specifies the programmer name.

Supported Families
All

Exceptions
None

Example
The following example runs scan chain on a single programmer (single mode) named '21428':
scan_chain_prg -name {21428}

FlashPro User Guide

 180

select_from_region_name
Enables you to select the serialization region you want to add to the log file.

select_from_region_name –enable {1|0} –region_name {name}

Arguments
-enable {1|0}

Enable serialization region logging. '1' enables serialization region logging; '0' disables it.
-region_name {name}

The name of the target serialization/client within FlashRom you wish to log.

Supported Families
SmartFusion, IGLOO, ProASIC3 and Fusion

Exceptions
None

Example
The following example enables select_from_region_name and adds the serialization region 'afs090_b' to the log
file:

select_from_region_name -enable {1} -region_name {afs090_b}

select_libero_design_device (SmartFusion2, IGLOO2, RTG4)
FlashPro-specifc Tcl command. This command selects the Libero design device for the Programming
Connectivity and Interface tool within Libero. This command is needed when the tool cannot automatically
resolve the Libero design device when there are two or more identical devices that match the Libero
design device in the configured JTAG chain.

select_libero_design_device -name {device_name}

Arguments
-name {device_name}

Specifies a user-assigned unique device name in the JTAG chain.

Supported Families
SmartFusion2, IGLOO2, RTG4

Exceptions
None

Example
select_libero_design_device –name {M2S050TS (2)}

select_libero_design_device –name {my_design_device}

Note
This Tcl command is typically used in a Flashpro Tcl command script file that is passed to the Libero
run_tool command.
run_tool –name {CONFIGURE_CHAIN} -script {<flashPro_cmd>.tcl}

FlashPro User Guide

 181

select_serial_range
This Tcl command selects the range of indexes to program.

select_serial_range -name device_name -from_data start_index_to_program -to_data
end_index_to_program

Arguments
-name

Specifies the device name.
-from_data

Specifies the start index to program.
-to_data

Specifies the end index.

Supported Families
Fusion, ProASIC3, IGLOO, SmartFusion, SmartFusion2, IGLOO2

Exceptions
Must be a Microsemi Device

Example
select_serial_range -name M2S/M2GL050{T|S|TS} -from_data 3 -to_data 5

select_target_device
Enables you to set a target device for programming in Single Device Programming mode. The command
is identical to the Select Target Device dialog box in FlashPro.

Select_target_device -name {device_name}

Arguments
-name {device_name}

Specifies the name of the target device.

Supported Families
SmartFusion, IGLOO, ProASIC3 and Fusion

Exceptions
None

Examples
The following example targets the A3P(L) / AGL1000 device for programming:

select_target_device –name {A3P(L)/AGL1000 (1)}

self_test_prg
Runs Self-Test on a programmer.

self_test_prg (-name {name})*

FlashPro User Guide

 182

Arguments
-name {name}

Specifies the programmer name. You can repeat this argument for multiple programmers.

Supported Families
All

Exceptions
None

Example
The following examples runs the self test on the programmer '30175':
self_test_prg (-name {30175})*

set_bsdl_file
Sets a BSDL file to a non-Microsemi device in the chain. Chain programming mode must have been set.
The device must be a non-Microsemi device.

set_bsdl_file -name {name} -file {file}

Arguments
name {name}

Specifies the device name.
-file {file}

Specifies the BSDL file.

Supported Families
Any non-Microsemi device supported by FlashPro.

Exceptions
None

Example
The following example sets the BSDL file /design/bsdl/NewBSDL2.bsdl to the device 'MyDevice3':
set_bsdl_file –name {MyDevice3} –file {e:/design/bsdl/NewBSDL2.bsdl}

set_chain_param
Sets the chain parameters in single programming mode. Single programming mode must be set .

set_chain_param [-pre_ir {pre_ir}] [-pre_dr {pre_dr}] [-post_ir {post_ir}] [-post_dr
{post_dr}]

Arguments
-pre_ir {pre_ir}

Specifies the pre IR length.
-pre_dr {pre_dr}

Specifies the pre DR length.

FlashPro User Guide

 183

-post_ir {post_ir}

Specifies the post IR length.
-post_dr {post_dr}

Specifies post DR length.

Supported Families
All

Exceptions
None

Example
The following example sets the chain parameters for pre IR length to 2, pre DR length to 3, post IR length
to 4, and post DR length to 5:
set_chain_param –pre_ir {2} –pre_dr {3} –post_ir {4} –post_dr {5}

set_debug_device
Identifies the device you intend to debug.

set_debug_device -name {device_name}

Arguments
name {device_name}

Device name. The device name is not required if there is only one device in the current configuration.

Supported Families
SmartFusion2, IGLOO2, SmartFusion, IGLOO, ProASIC3 and Fusion

Exceptions
None

Example
The following example identifies the device 'A3P250' for debugging:

set_debug_device –name {A3P250}

set_debug_programmer
Identifies the programmer you want to use for debugging (if you have more than one). The name of the
programmer is the serial number on the bar code label on the FlashPro programmer.

set_debug_programmer -name {programmer_name}

Arguments
-name {programmer_name}

Programmer name is the serial number on the bar code label of the FlashPro programmer.

Supported Families
SmartFusion, IGLOO, ProASIC3 and Fusion

FlashPro User Guide

 184

Exceptions
None

Example
The following example selects the programmer 10841

set_debug_programmer -name {10841}

set_device_ir
Sets the IR length of a non-Microsemi device in the chain. Chain programming mode must be set. The
device must be a non-Microsemi device.

set_device_ir -name {name} -ir {ir}

Arguments
-name {name}

Specifies the device name.
-ir {ir}

Specifies the IR length.

Supported Families
Any non-Microsemi device supported by FlashPro.

Exceptions
None

Example
The following example sets the IR length to '2' for the non-Microsemi device 'MyDevice4':
set_device_ir –name {MyDevice4} –ir {2}

set_device_name
Changes the user name of a device in the chain. Chain programming mode must be set .

set_device_name -name {name} -new_name {new_name}

Arguments
-name {name}

Identifies the old device name.
-new_name {new_name}

Specifies the new device name.

Supported Families
All

Exceptions
None

FlashPro User Guide

 185

Example
The following example changes the user name of the device from 'MyDevice4' to 'MyDevice5':
set_device_name –name {MyDevice4} –new_name {MyDevice5}

set_device_order
 Sets the order of the devices in the chain to the order specified. Chain programming mode must have
been set. Unspecified devices will be at the end of the chain.

set_device_order (-name {name})*

Arguments
-name {name}

Specifies the device name. To specify a new order you must repeat this argument and specify each
device name in the order desired.

Supported Families
All

Exceptions
None

Example
The following example sets the device order for 'MyDevice1', 'MyDevice2', 'MyDevice3', and 'MyDevice4'.
'MyDevice2' is unspecified so it moves to the end of the chain.
set_device_order –name {MyDevice3} –name {MyDevice1} –name {MyDevice4}

the new order is:
MyDevice3 MyDevice1 MyDevice4 MyDevice2

set_device_tck
Sets the maximum TCK frequency of a non-Microsemi device in the chain. Chain programming mode
must be set. The device must be a non-Microsemi device.

set_device_tck -name {name} -tck {tck}

Arguments
-name {name}

Specifies the device name.
-tck {tck}

Specifies the maximum TCK frequency (in MHz).

Supported Families
Any non-Microsemi device supported by FlashPro.

Exceptions
None

FlashPro User Guide

 186

Example
The following example sets the maximum TCK frequency of the non-Microsemi device 'MyDevice4':
set_device_tck –name {MyDevice4} –tck {2.25}

set_device_to_highz
Sets a disabled Microsemi or Microsemi device in Chain programming mode to HIGH-Z. This Tcl
command is related to the Set Device to HIGH-Z GUI command.

set_device_to_highz -name {device_name} –highz {1|0}

Arguments
-name {device_name}

Target device name in chain mode.
-highz {1|0}

Sets disabled device to HIGH-Z. '1' sets the device to HIGH-Z, '0' removes the setting.

Supported Families
SmartFusion, IGLOO, ProASIC3 and Fusion

Exceptions
None

Example
The following example sets the AFS090 device to HIGH-Z:

set_device_to_highz –name {AFS090} –highz 1

The following example removes the HIGH-Z setting from the AFS1500 device:
set_device_to_highz –name {AFS1500} –highz 0

set_device_type
Changes the family of a Microsemi device in the chain. The device must be a Microsemi device. The
device parameter below is now optional.

set_device_type -name {name} -type {type}

Arguments
-name {name}

Identifies the name of the device you want to change.
-type {type}

Specifies the device family.

Supported Families
Any Microsemi device supported by FlashPro.

Exceptions
None

FlashPro User Guide

 187

Example
The following example sets the device 'MyDevice2' to the type A3PE600.
set_device_type –name {MyDevice2} –type {A3PE600}

set_main_log_file
Sets the FlashPro log file.

set_main_log_file -file {file}

Arguments
-file {file}

Specifies the log file.

Supported Families
All

Exceptions
None

Example
The following example sets the FlashPro log file to 'log1000.txt'.
set_main_log_file –file {e:/log/log1000.txt}

set_prg_name
Changes the user name of a programmer.

set_prg_name -name {name} -new_name {new_name}

Arguments
-name {name}

Identifies the old programmer name.
-new_name {new_name}

Specifies the new programmer name.

Supported Families
All devices supported by FlashPro.

Exceptions
None

Example
The following example changes the name of the programmer 'FP300086' to 'FP3Prg2':
set_prg_name –name {FP300086} –new_name {FP3Prg2}

FlashPro User Guide

 188

set_programming_action
Selects the action for a device. The device name parameter must be specified only in chain programming
mode. A programming file must be loaded. The device must be a Microsemidevice.

set_programming_action [-name {name}] -action {action}

Arguments
-name {name}

Specifies the device name.
-action {action}

Specifies the action.

Supported Families
SmartFusion, IGLOO, ProASIC3, Fusion, SmartFusion2, IGLOO2, RTG4

Exceptions
Must be a Microsemi device

Example
The following example sets the programming action in single programming mode:
set_programming_action –action {PROGRAM}

And in chain programming mode:
set_programming_action –name {MyDevice1} –action {ERASE}

set_programming_file
Sets the programming file for a device. Either the file or the no_file flag must be specified. A
programming file must be loaded. The device must be a Microsemi device .

set_programming_file [-name {name}] [-file {file}] [-no_file { }]

Arguments
 -name {name}

Specifies the device name. This argument must be specified only in chain programming mode.
-file {file}

Specifies the programming file.
-no_file

Specifies to unload the current programming file.

Supported Families
SmartFusion, IGLOO, ProASIC3, Fusion, SmartFusion2, IGLOO2, RTG4

Exceptions
Must be a Microsemi device.

Examples
In single programming mode:
set_programming_file –file {e:/design/pdb/TopA3P250.pdb}

FlashPro User Guide

 189

 In chain programming mode:
set_programming_file –name {MyDevice2} –file {e:/design/pdb/TopA3P250.pdb}

set_programming_file –name {MyDevice1} –no_file

set_programming_mode
Sets the programming mode.

set_programming_mode -mode {single|chain}

Arguments
-mode {single|chain}

Specifies the mode, either single programming or chain programming.

Supported Families
All devices supported by FlashPro.

Exceptions
None

Example
The following example sets the programming mode to 'single':
set_programming_mode -mode {single}

set_serialization_log_file
This Tcl command sets the path and name of the serialization log file.

set_serialization_log_file -file {log_file_path}

Arguments
-file

Specifies the serialization log file path and name

Supported Families
Fusion, ProASIC3, IGLOO, SmartFusion, SmartFusion2, IGLOO2

Exceptions
Must be a Microsemi Device

Example
set_serialization_log_file -file {C:/local_z_folder/work/my_serial_log}

set_serialization_mode
Sets the serialization mode.

set_serialization_mode -mode {skip|reuse}

FlashPro User Guide

 190

Arguments
-mode {skip|reuse}

Supported Families
All devices supported by FlashPro.

Exceptions
None

Example
The following example sets the serialization mode to 'skip':
set_serialization_mode -mode {skip}

update_programming_file
Updates the programming file with the selected parameters.

update_programming_file
[(-name {name})*]
-feature {value}
-signature {value}
-from_content {name}
-from_config_file {name}
-number_of_devices {value}
-from_program_pages {value}
-custom_security {value}
-security_permanent {value}
-fpa_security_level {value}
-from_security_level {value}
-efm_block_security{location:X;security_level: value}
-pass_key {value} -aes_key {value}
-efm_content {location:X;source: value}
-efm_block {location:X;config_file: value}
-efm_client {location:X;client:value; mem_file: value}
-tie_off_arch {value}
-set_io_state {value}
-pdb_file {name}
-enable_m3debugger {value}

Arguments
-name {name}

Specifies the device name. This argument must be specified only in chain programming mode.
-feature {value}

Select the silicon feature(s) you want to program. Possible values for this option are listed in the table
below, or the instance-specific program options available only for specific families (as shown in the table
below). Microsemi recommends that you specify your program parameters for each Embedded Flash
Memory Block (EFMB) instance, from 0-3. The instance specific program options replace [-feature
{value}].

value Family

{setup_security:on/off} SmartFusion

FlashPro User Guide

 191

value Family

{prog_fpga:on/off} SmartFusion

{prog_from:on/off} SmartFusion

{prog_nvm:on/off} SmartFusion

{setup_security} Fusion

{prog_from} Fusion

{all} IGLOO; ProASIC3

To program the Embedded Flash Memory Block, use the following EFM arguments: -efm_block, -
efm_client, and -efm_block_security.
-signature {value}

Optional argument that identifies and tracks Microsemi designs and devices.
-from_content {name}

Optional argument that identifies the source file for the FlashROM content. The file type is UFC or PDB
(default). This argument only applies when programming the FlashROM (prog_from option).
-from_config_file {name}

Optional argument that specifies the location of the FlashROM configuration file. This argument only
applies when programming the FlashROM (prog_from option) and the from_content is set to UFC.
-number_of_devices{value}

Optional argument that specifies the number of devices to be programmed. This argument only applies
when FlashROM has serialization regions. This argument only applies when programming the
FlashROM (prog_from option).
-from_program_pages {value}

Optional argument that identifies the program pages in FlashPoint. This argument only applies when
programming the FlashROM (prog_from option).
-custom_security {value}

Optional argument that specifies the security level. This argument only applies when programming the
security settings (setup_security) or programming previously secured devices. The following table shows
the acceptable values for this argument:

Value Description

Yes Custom security level

No Standard security level

-security_permanent {value}

Optional argument that specifies whether the security settings for this file are permanent or not. This
argument only applies when programming the security settings (setup_security) or programming
previously secured devices. The following table shows the acceptable values for this argument:

Value Description

Yes Permanently disables future modification of security settings

No Enables future modifications of security settings

FlashPro User Guide

 192

-fpga_security_level {value}

Optional argument that specifies the security level for the FPGA Array. This argument only applies when
programming the security settings (setup_security) or programming previously secured devices. Possible
values:

Value Description

write_verify_pr
otect

The security level is medium (standard) and the FPGA Array cannot be written or
verified without a Pass Key

write_protect The security level is write protected. The FPGA Array cannot be written without a Pass
Key, but it is open for verification (custom FPGA)

encrypted The security level is high (standard) and uses a 128-bit AES encryption

none The FPGA Array can be written and verified without a Pass Key

-from_security_level {value}

Optional argument that specifies the security level for the FlashROM. This argument only applies when
programming the security settings (setup_security) or programming previously secured devices. Possible
values:

Value Description

write_verify_pr
otect

The security level is medium (standard) and the FlashROM cannot be read, written or
verified without a Pass Key

write_protect The security level is write protected. The FlashROM cannot be written without a Pass
Key, but it is open for reading and verification (custom FlashROM)

encrypted The security level is high (standard) and uses a 128-bit AES encryption

none The FlashROM can be written and verified without a Pass Key

-efm_block_security{location:X;security_level: value}

This option is available only for SmartFusion and Fusion; this argument only applies when
programming the security settings (setup_security) or programming previously secured devices.
'X' identifies an Embedded Flash Memory Block instance from 0-3.
Possible values for security_level:

Value Description

clients_jtag_pr
otect

Enables eNVM client JTAG protection; a pass key is required for this option.

write_verify_pr
otect

The security level is medium (standard) and the Embedded Flash Memory Block cannot
be read, written or verified without a Pass Key

write_protect The security level is write protected. The Embedded Flash Memory Block cannot be
written without a Pass Key, but it is open for reading (custom FB)

encrypted The security level is high (standard) and uses a 128-bit AES encryption

none The Embedded Flash Memory Block can be written and read without a Pass Key

FlashPro User Guide

 193

-pass_key {value}

Protects all the security settings for FPGA Array, FlashROM, and Embedded Flash Memory Block. The
maximum length of this value is 32 characters. You must use hexadecimal characters for the pass key
value.
-aes_key {value}

Decrypts FPGA Array and/or FlashROM and Embedded Flash Memory Block programming file content.
Max length is 32 HEX characters.
-efm_content {location:X;source: value}

This option is available only for SmartFusion and Fusion; X identifies an Embedded Flash Memory Block
from 0-3. Option identifies the source file for the Embedded Flash Memory Block configuration content,
either an EFC or PDB file. If you specify EFC as your source, you need to specify the -efm_block
parameter. Possible values:

Value Description

PDB Embedded Flash Memory Block configuration and content is taken from your PDB

EFC FlashPoint uses the Embedded Flash Memory Block configuration and content from the EFC
file specified in -efm_block parameter

-efm_block {location:X;config_file: value}

This option is available only for SmartFusion and Fusion; X identifies an Embedded Flash Memory Block
(EFMB) from 0-3.
Config_file specifies the location of the EFMB configuration file (must be an EFC file with full pathname).
-efm_client {location:X;client:value; mem_file: value}

This option is available only for SmartFusion and Fusion; X identifies an EFMB from 0-3.
You must specify the client name and its memory content file for each client of EFMB you wish to
program.
Mem_file specifies the file with the memory content for the client. If you want to program a client with a
PDB or EFC file memory content (as defined by the -efm_content argument), the mem_file path should be
empty (see example 3); but if a mem_file path is specified, the memory content from this file will overwrite
the client content in PDB or EFC (as defined by the -efm_content argument).
 -tie_off_arch {value}

This optional argument is used only for IT6X6M2 and M7IT6X6M2 devices. Possible values:

Value Description

pull-down Pull-down resistor: reduced quiescent power consumption

pull-up Pull-up resistor: compatible behavior for migrated ProASICPLUS designs

-set_io_state {value}

Sets the I/O state during programming by port name or pin number.
 To set the I/O by port name, use -set_io_state {portName:<port name>; state:<state>}.
To set the I/O by pin number, use -set_io_state {pinNumber:<pin number>; state:<state>}.
To set all I/Os to the specified state, use -set_io_state {all; state:<state>}.
Possible state values:

Value Description

Tri-State Sets the I/O state to tristate

Last Known State Sets the I/O state to last known state

FlashPro User Guide

 194

Value Description

High Sets the I/O state to high

Low Sets the I/O state to low

-pdb_file {name}

Optional PDB filename; if not specified the default is 'expresspdbX'.
-enable_m3debugger {yes | no}

SmartFusion only; .enables the M3 debugger.

Supported Families
All devices supported by FlashPro.

Exceptions
None

Example
Fusion example 1:

update_programming_file \

-feature {setup_security} \

 -feature {prog_from} \

 -from_content {ufc} \

-from_config_file {D:/from_ah.ufc} \

 -number_of_devices {1} \

 -from_program_pages {1 2 3 4 5 6 7 } \

 -custom_security {no} \

-security_permanent {no} \

 -fpga_security_level {write_verify_protect} \

 -from_security_level {write_verify_protect} \

-efm_block_security {location:1;security_level:write_verify_protect} \

 -efm_content {location:1;source:efc} \

 -efm_block {location:1;config_file:{D:\ nvm_all_new.efc}} \

-efm_client {location:1;client:asb;mem_file:{}} \

-efm_client {location:1;client:cfiData;mem_file:{D:\cfid.mem}} \

 -efm_client {location:1;client:ds;mem_file:{D:\ds.hex}} \

-efm_client {location:1;client:init1;mem_file:{D:\init1.hex}} \

 -efm_client {location:1;client:raminit;mem_file:{}}

Update loaded PDB file: use ufc file for FlashROM configuration and content; use efc file for block 1
configuration; efc memory content will be overwritten by memory content from specified mem files for
each client.

Fusion example 2:
update_programming_file \

-feature {prog_from} \

-from_content {pdb} \

-from_program_pages {1} \

-efm_content {location:1;source:pdb} \

-efm_client {location:1;client:cfiData;mem_file:{D:\cfid.mem}}

FlashPro User Guide

 195

Update loaded PDB file: use pdb data for FlashROM; program only page 1; use pdb data for block 1;
program only client cfiData; overwrite memory content for this client with memory content from the
specified file.

Fusion example 3:
update_programming_file \

-efm_content {location:1;source:pdb} \

 -efm_client {location:1;client:cfiData;mem_file:{D:\cfid.mem}} \

-efm_client {location:1;client:init1;mem_file:{}}

Update loaded PDB file: use pdb data for block 1; program client cfiData using memory content from the
specified file; program client init1 using memory content from pdb (no mem_file path is specified) .

SmartFusion example:
update_programming_file \

update_programming_file \

-feature {setup_security:on} \

-feature {prog_fpga:off} \

-feature {prog_from:off} \

-feature {prog_nvm:on} \

-custom_security {no} \

-security_permanent {no} \

-fpga_security_level {none} \

-from_security_level {none} \

-efm_block_security {location:0;security_level:clients_jtag_protect} \

-efm_block_security {location:1;security_level:clients_jtag_protect} \

-pass_key {73F09973E792EC9F462AE5A446FB6C77} \

-efm_content {location:0;source:pdb} \

-efm_block

{location:0;config_file:{./eNVM_client_JTAG_protection_A2F500/allClients_Read_ON_Write_O
N.efc}}

\

-pdb_file {./fpro_jtag/fpro_jtag_30.pdb} \

-enable_m3debugger {no}

FlashPro User Guide

 196

Troubleshooting

Loopback Test
The console software supports all JTAG functions and a diagnostic loopback test. Note that loopback is not
supported on all boards.

To perform the diagnostic test
1. Connect the loopback test board to the FlashPro.
2. Connect the FlashPro to the parallel/USB port of the PC.
3. Power-on the FlashPro.
4. From the Start menu, choose Programs > Microsemi FlashPro > Diagnotics. This opens the diagnostics

console program.
5. Connect to the FlashPro by entering openport lpt1 or openport usb. The parallel port number depends on

the port used to connect the FlashPro.
6. Enter test. The unit runs into self-test mode. Do not interrupt the unit during self-test mode.

Note: To see a complete list of all functions, enter help. To get a more detail description of each function,
enter help <command>.

Exit Codes (SmartFusion2 and IGLOO2)
Error
Code

Exit
Code

Exit Message Possible Cause Possible Solution

 0 Passed (no error) - -

0x8002 5 Failure to configure
device programming at
1.2/1.0 VCC voltage

Unstable voltage level

Signal integrity issues on
JTAG pins

Monitor related power supplies that cause
the issue during programming; check for
transients outside of Microsemi
specifications. See your device datasheet
for more information on transient
specifications.

Monitor JTAG supply pins during
programming; measure JTAG signals for
noise or reflection.

0x8032 5 Device is busy Unstable VDDIx voltage level Monitor related power supplies that cause
the issue during programming; check for
transients outside of Microsemi
specifications. See your device datasheet
for more information on transient
specifications.

0x8003 5 Failed to enter
programming mode

Unstable voltage level

Signal integrity issues on
JTAG pins

DEVRST_N is tied to LOW

Monitor related power supplies that cause
the issue during programming; check for
transients outside of Microsemi
specifications. See your device datasheet
for more information on transient
specifications.

FlashPro User Guide

 197

Error
Code

Exit
Code

Exit Message Possible Cause Possible Solution

Monitor JTAG supply pins during
programming; measure JTAG signals for
noise or reflection.

Tie DEVRST_N to HIGH prior to
programming the device.

0x8004 6 Failed to verify IDCODE Incorrect programming file

Incorrect device in chain

Signal integrity issues on
JTAG pins

Choose the correct programming file and
select the correct device in the chain.

Measure JTAG pins and noise for
reflection. If TRST is left floating then add
pull-up to pin.

Reduce the length of Ground connection.

 0x8005
0x8006
8x804A

10 Failed to program eNVM Unstable voltage level.

Signal integrity issues on
JTAG pins.

Monitor related power supplies that cause
the issue during programming; check for
transients outside of Microsemi
specifications. See your device datasheet
for more information on transient
specifications.

Monitor JTAG supply pins during
programming; measure JTAG signals for
noise or reflection.

0x8027
0x8028

10 Authentication Error

Bitstream and device
mismatch

Libero device selection does
not match the target device.

Generate a programming file with the
correct device selection for the target
device.

0x8007
0x804C

11 Failed to verify FPGA
Array

Failed to verify Fabric
Configuration

Failed to verify Security

Device is programmed with a
different design or the
component is blank.

Unstable voltage level.

Signal integrity issues on
JTAG pins.

Verify the device is programmed with the
correct data/design.

Monitor related power supplies that cause
the issue during programming; check for
transients outside of Microsemi
specifications. See your device datasheet
for more information on transient
specifications.

Monitor JTAG supply pins during
programming; measure JTAG signals for
noise or reflection.

0x8008
0x8009
0x8049

11 Failed to verify eNVM Device is programmed with a
different design.

Unstable voltage level.

Signal integrity issues on
JTAG pins.

Verify the device is programmed with the
correct data/design.

Monitor related power supplies that cause
the issue during programming; check for
transients outside of Microsemi
specifications. See your device datasheet
for more information on transient
specifications.

FlashPro User Guide

 198

Error
Code

Exit
Code

Exit Message Possible Cause Possible Solution

Monitor JTAG supply pins during
programming; measure JTAG signals for
noise or reflection.

0x8013 -18 Digest request from
SPI/JTAG is protected by
User Pass Key 1

Digest request from SPI/JTAG
is protected by user pass key
1. Lock bit has been
configured in the Debug Policy
within SPM (Security Policy
Manager)

Provide a programming file with a pass
key that matches pass key programmed
into the device.

0x8014 -19 Failed to verify digest >Unstable voltage level

Signal integrity issues on
JTAG pins

Monitor related power supplies that cause
the issue during programming; check for
transients outside of Microsemi
specifications. See your device datasheet
for more information on transient
specifications.

Monitor JTAG supply pins during
programming; measure JTAG signals for
noise or reflection.

0x8015 -20 FPGA Fabric digest
verification: FAIL

Programming bitstream
components do not match
components programmed

FPGA Fabric is either erased
or the data has been
corrupted or tampered with

Use the same programming file that was
used to program the device.

0x8016 -20 eNVM_0 digest
verification: FAIL

Programming bitstream
components do not match
components programmed

eNVM_0 data has been
corrupted or tampered with

Use the same programming file that was
used to program the device.

0x8017 -20 eNVM_1 digest
verification: FAIL

Programming bitstream
components do not match
components programmed

eNVM_1 data has been
corrupted or tampered with

Use the same programming file that was
used to program the device.

0x8018 -20 User security policies
segment digest
verification: FAIL

Programming bitstream
components do not match
components programmed

User security policy segment
data has been corrupted or
tampered with

Use the same programming file that was
used to program the device.

0x8019 -20 User key set 1 segment
digest verification: FAIL

Programming bitstream
components do not match

Use the same programming file that was
used to program the device.

FlashPro User Guide

 199

Error
Code

Exit
Code

Exit Message Possible Cause Possible Solution

components programmed

User key set 1 segment data
has been corrupted or
tampered with

0x801A -20 User key set 2 segment
digest verification: FAIL

Programming bitstream
components do not match
components programmed

User key set 2 segment data
has been corrupted or
tampered with

Use the same programming file that was
used to program the device.

0x801B -20 Factory row and factory
key segment digest
verification: FAIL

Programming bitstream
components do not match
components programmed

Factory row and factory key
segment data has been
corrupted or tampered with

Use the same programming file that was
used to program the device.

0x801C -20 Fabric configuration
segment digest
verification: FAIL

Programming bitstream
components do not match
components programmed.

Fabric configuration segment
data has been corrupted or
tampered with

Use the same programming file that was
used to program the device.

 0x801D
0x801E
0x804B

-21 Device security
prevented operation

The device is protected with
user pass key 1 and the
bitstream file does not contain
user pass key 1.

User pass key 1 in the
bitstream file does not match
the device.

Run DEVICE_INFO to view security
features that are protected.

Provide a bitstream file with a user pass
key 1 that matches the user pass key 1
programmed into the device.

0x801F
0x8020
0x8040

-22 Authentication Error

Bitstream or data is
corrupted or noisy

eNVM has been locked by a
master in your design

Running VERIFY action on a
blank device.

Bitstream file has been
corrupted

Bitstream was incorrectly
generated

Release the lock on the eNVM after your
master has completed its access
operations. Write 0x00 to "REQACCESS"
register in eNVM Control Registers
(address 0x600801FC) to release the
access.

Program the device prior to running
VERIFY action

Regenerate bitstream file.

0x8021
0x8022

-23 Authentication Error

Invalid/Corrupted
encryption key

File contains an encrypted key
that does not match the
device

Provide a programming file with an
encryption key that matches that on the
device.

FlashPro User Guide

 200

Error
Code

Exit
Code

Exit Message Possible Cause Possible Solution

Attempting to erase a device
with no security using master
security file

File contains user encryption
key, but device has not been
programmed with the user
encryption key

Device has user encryption
key 1/2 enforced and you are
attempting to reprogram
security settings

Run DEVICE_INFO action to verify that
the device has no security. If the device
does not have secuirty, you cannot erase
it.

First program security with master
programming file, then program with user
encryption 1/2 field update programming
files.

You must first ERASE security with the
master security file, then you can
reprogram new security settings.

0x8041 -23 Authentication Error

Invalid/Corrupted
encryption key

File contains an encrypted key
that does not match the
device

File contains user encryption
key, but device has not been
programmed with the user
encryption key

Attempting to erase a device
with no security using master
security file

Device has user encryption
key 1/2 enforced and you are
attempting to reprogram
security settings

Provide a programming file with an
encryption key that matches that on the
device.

Run DEVICE_INFO action to verify that
the device has no security. If the device
does not have secuirty, you cannot erase
it.

First program security with master
programming file, then program with user
encryption 1/2 field update programming
files.

You must first ERASE security with the
master security file, then you can
reprogram new security settings.

0x8023
0x8024
0x8042

-24 Authentication Error

Back level not satisfied

Design version is not higher
than the back-level
programmed device

Generate a programming file with a design
version higher than the back level version.

0x8001 -24 Failure to read DSN Device is in System Controller
Suspend Mode

Check board connections

TRSTB should be driven High or disable
"System Controller Suspend Mode".

0x8025
0x8026
0x8043

-25 Authentication Error

DSN binding mismatch

DSN specified in programming
file does not match the device
being programmed

Use the correct programming file with a
DSN that matches the DSN of the target
device being programmed.

0x8044

-26 Authentication Error

Insufficient device
capabilities

Device does not support the
capabilities specified in
programming file

Generate a programming file with the
correct capabilities for the target device.

0x8027
0x8028

-26 Authentication Error

Bitstream and device
mismatch

Libero device selection does
not match the target device

Generate a programming file with the
correct device selection for the target
device.

FlashPro User Guide

 201

Error
Code

Exit
Code

Exit Message Possible Cause Possible Solution

0x8029
0x802A
0x8045

-27 Authentication Error

Incorrect DEVICEID

Incorrect programming file

Incorrect device in chain

Signal integrity issues on
JTAG pins

Choose the correct programming file and
select the correct device in chain.

Measure JTAG pins and noise or
reflection. If TRST is left floating, then add
pull-up to pin.

Reduce the length of ground connection.

0x802B
0x802C

-28 Authentication Error

Programming file is out
of date, please
regenerate

Programming file version is
out of date

Generate programming file with latest
version of Libero SoC.

0x8046 -28 >Authentication Error

Unsupported bitstream
protocol version

Old programming file Generate programming file with latest
version of Libero SoC.

0x802F -30 JTAG interface is
protected by UPK1

Invalid or no UPK1 is provided User needs to provide correct UPK1 to
unlock device.

0x8030
0x8031
0x8048

-31 Authentication Error

Invalid or inaccessible
Device Certificate

M2S090 Rev. A or M2S150
Rev. A:

Either certificate is corrupted
or the user hasn't provided the
application code in the eNVM
or provided invalid application
code

FAB_RESET_N is tied to
ground

User can program a valid application
code. This can be done with SoftConsole.

FAB_RESET_N should be tied to HIGH.

0x8032
0x8033
0x8034
0x8035
0x8036
0x8037
0x8038
0x8039

-32 Instruction timed out Unstable voltage level

Signal integrity issues on
JTAG pins

 Monitor related power supplies that cause
the issue during programming; check for
transients outside of Microsemi
specifications. See your device datasheet
for more information on transient
specifications.

Monitor JTAG supply pins during
programming; measure JTAG signals for
noise or reflection.

0x8010 -35 Failed to unlock User
Pass Key 1

Pass key in file does not
match device.

Plaintext pass key match is
disabled. This occurs if HSM
was used to program the
device.

Provide a programming file with a pass
key that matches pass key programmed
into the device.

Match pass key using HSM.

FlashPro User Guide

 202

Error
Code

Exit
Code

Exit Message Possible Cause Possible Solution

0x8011 -35 Failed to unlock User
Pass Key 2

Pass key in file does not
match device.

Plaintext pass key match is
disabled. This occurs if HSM
was used to program the
device.

Provide a programming file with a pass
key that matches pass key programmed
into the device.

Match pass key using HSM.

0x8012 -35 Failed to unlock debug
pass key

Pass key in file does not
match device.

Plaintext pass key match is
disabled. This occurs if HSM
was used to program the
device.

Provide a programming file with a pass
key that matches pass key programmed
into the device.

Match pass key using HSM.

0x804D -36 <HSM related error
message based on
scenario>

HSM communication error.
HSM call returns error.

Check if HSM the communication path to
HSM is up. Make sure project is loaded
properly and that HSM tickets have not
been cleaned.

0x804E -37 Device already has
Security programmed.
Please erase the device
using master file before
reprogramming Security
Settings.

HSM flow does not support
reprogramming device directly
if Security has already been
programmed.

Erase security and try programming the
device.

Exit Codes for Software v8.6 and Above (SmartFusion, IGLOO,
ProASIC3 and Fusion)

The table below lists exit codes for SmartFusion, IGLOO, ProASIC3 and Fusion devices in software v8.6 and
ABOVE only. See the Device Exit Codes for pre-v8.6 Software help topic for exit codes for older versions.

Note: Exit codes with positive integers are reserved for current and future standard EXIT codes of the
STAPL standard. Exit codes with negative integers are reserved for vendor-specific EXIT codes.

Table 25 · Exit Codes for SmartFusion, IGLOO, ProASIC3 and Fusion Family Devices in Software v8.6 and Above

Error Code Exit
Code

Exit Message Possible Cause Possible Solution

 0 Passed (no error)

 1 A physical chain
does not match the
expected set up from
the STAPL file.
Also known as
Checking Chain
Error.

Physical chain
configuration has
been altered.
Something has
become
disconnected in the
chain.
The specific IR
length of non-

FlashPro User Guide

 203

Error Code Exit
Code

Exit Message Possible Cause Possible Solution

Microsemi devices
may be incorrect.
The order of the
specified chain may
be incorrect.

0x8052 5 Failed to enter
programming mode.

Unstable VPUMP
voltage level.

Unstable VCC

Signal integrity
issues on JTAG
pins.

Device is in
FlashFreeze mode
(ProASICL or IGLOO
devices)

Older software or
programming file
used.

Monitor related power supplies that cause the
issue during programming; check for transients
outside of Microsemi specifications. See your
device datasheet for more information on
transient specifications.

Monitor VJTAG during programming; measure
JTAG signals for noise or reflection.

Disble the FlashFreeze pin (ProASICL or
IGLOO devices)

Generate STAPL file with the latest version of
Designer/FlashPro.
Use latest version of FlashPro software.

0x801D
0x8053

6 Failed to verify
IDCODE

Incorrect
programming file

Incorrect device in
chain

Signal integrity
issues on JTAG pins

Choose the correct programming file and select
the correct device in chain.

Measure JTAG pins and noise or reflection. If
TRST is left floating then add pull-up to pin.

Reduce the length of ground connection.

0x8005
0x8009
0x800B

6 Failed to verify AES
Sec.

Programming file
generated with an
older version of
software

Generate STAPL file with the latest version of
Designer/FlashPro. Use latest version of
FlashPro software.

Try again at a slower TCK.

Contact Microsemi Technical Support.

0x8008 6 Failed to verify
IDCODE.

Target is an M7
device

File is not for M7, but
target device is M7

Signal integrity
issues on JTAG
pins.

Check that the target device is M7 enabled.

Make sure that the programming file you
generated is for an M7-enabled device.

Measure JTAG pins, noise and reflection.

0x800A 6 Failed to verify
IDCODE

Target is an M1
device

Files not for M1, but
target device is M1.

Signal integrity
issues on JTAG pins

Check that the target device is M1 enabled.

Make sure the programming file generated is for
an M1-enabled device.

Monitor VJTAG during programming; measure
JTAG signals for noise or reflection.

https://www.microsemi.com/products/fpga-soc/fpga-and-soc

FlashPro User Guide

 204

Error Code Exit
Code

Exit Message Possible Cause Possible Solution

0x800C 6 Failed to verify
IDCODE.

Core enabled device
detected

File is not for target
device.

Signal integrity
issues on JTAG pins

Check the target device; make sure the
programming file generated is matches the
target device.

Monitor VJTAG during programming; measure
JTAG signals for noise or reflection.

0x800D 6 Failed to verify
IDCODE.

The target is not M7
device

File is for M7 but
target device is not
M7.

Signal integrity
issues on JTAG
pins.

Check that the target device is not M7 enabled.

Make sure that the programming file generated
is for non-M7 enabled device.

Monitor VJTAG during programming; measure
JTAG signals for noise or reflection.

0x800E 6 Failed to verify
IDCODE.

Target is not an M1
device

File is for M1, but
target device is not
M1.

Signal integrity
issues on JTAG pins

Check that the target device is not M1 enabled.

Make sure that the generated programming file
is for non-M1 enabled device.

Monitor VJTAG during programming; measure
JTAG signals for noise or reflection.

0x8006 6 Failed to verify
IDCODE.

Target is not a P1
device

File is not for P1, but
target device is a P1
device.

Signal integrity
issues on JTAG pins

Check that the target device is P1 enabled.

Make sure programming file generated is for M1
enabled device.

Monitor VJTAG during programming; measure
JTAG signals for noise or reflection.

0x801E 6 A3PE600
Engineering Sample
Device Detected.
This device is
supported with pre-
v8.3 SP1 STAPL files
only

 Contact Microsemi Technical Support

0x8057 8 Failed Erase
Operation.

Unstable VPUMP
voltage level.

Unstable VCC

Unstable VCC_OSC
(Fusion only)

Unstable
VCC_ROSC voltage
level (SmartFusion
only)

Signal integrity

Monitor related power supplies that cause the
issue during programming; check for transients
outside of Microsemi specifications. See your
device datasheet for more information on
transient specifications.

Monitor VJTAG during programming; measure
JTAG signals for noise or reflection.

https://www.microsemi.com/products/fpga-soc/fpga-and-soc

FlashPro User Guide

 205

Error Code Exit
Code

Exit Message Possible Cause Possible Solution

issues on JTAG
pins.

0x8058 10 Failed to program
FPGA array at row
<row number>.

Unstable VPUMP
voltage level.

Unstable VCC

Unstable VCC_OSC
(Fusion only)

Unstable
VCC_ROSC voltage
level (SmartFusion
only)

Signal integrity
issues on JTAG
pins.

Monitor related power supplies that cause the
issue during programming; check for transients
outside of Microsemi specifications. See your
device datasheet for more information on
transient specifications.

Monitor VJTAG during programming; measure
JTAG signals for noise or reflection.

0x805D
0x805E
0x807B

10 Failed to enable
FPGA Array.

Unstable VPUMP
voltage level.

Unstable VCC

Unstable VCC_OSC
(Fusion only)

Unstable
VCC_ROSC voltage
level (SmartFusion
only)

Signal integrity
issues on JTAG
pins.

Monitor related power supplies that cause the
issue during programming; check for transients
outside of Microsemi specifications. See your
device datasheet for more information on
transient specifications.

Monitor VJTAG during programming; measure
JTAG signals for noise or reflection.

0x8095
0x8096
0x8097

10 Failed to disable
FPGA Array.

Unstable VPUMP
voltage level.

Unstable VCC

Unstable VCC_OSC
(Fusion only)

Unstable
VCC_ROSC voltage
level (SmartFusion
only)

Signal integrity
issues on JTAG
pins.

Monitor related power supplies that cause the
issue during programming; check for transients
outside of Microsemi specifications. See your
device datasheet for more information on
transient specifications.

Monitor VJTAG during programming; measure
JTAG signals for noise or reflection.

https://www.microsemi.com/products/fpga-soc/fpga-and-soc
https://www.microsemi.com/products/fpga-soc/fpga-and-soc
https://www.microsemi.com/products/fpga-soc/fpga-and-soc

FlashPro User Guide

 206

Error Code Exit
Code

Exit Message Possible Cause Possible Solution

0x8061
0x8062

10 Failed to program
FlashROM.

Unstable VPUMP
voltage level.

Unstable VCC

Unstable VCC_OSC
(Fusion only)

Unstable
VCC_ROSC voltage
level (SmartFusion
only)

Signal integrity
issues on JTAG
pins.

Monitor related power supplies that cause the
issue during programming; check for transients
outside of Microsemi specifications. See your
device datasheet for more information on
transient specifications.

Monitor VJTAG during programming; measure
JTAG signals for noise or reflection.

0x801B
0x801C
0x806C
0x806D
0x806E

10 Error programming
Embedded Flash
Memory Block
(EFMB)

Unstable
VCC_NVM/VCC_OS
C voltage level
(Fusion only)

Unstable
VCC_ENVM/VCC_R
COSC voltage level
(SmartFusion only)

Signal integrity
issues on JTAG pins

NVM corruption is
possible when
writing from your
design; check the
NVM status for
confirmation.

Monitor related power supplies that cause the
issue during programming; check for transients
outside of Microsemi specifications. See your
device datasheet for more information on
transient specifications.

Monitor VJTAG during programming; measure
JTAG signals for noise or reflection.

Reset signal is not properly tied off in your
design.

Inspect device using Device Debug.
Inspect device using Device Debug.

0x807D
0x807E

10 Error programming
system init and boot
clients

Unstable VCC

Unstable VCC_OSC
(Fusion only)

Unstable
VCC_ROSC voltage
level (SmartFusion
only)

Signal integrity
issues on JTAG pins

Monitor related power supplies that cause the
issue during programming; check for transients
outside of Microsemi specifications. See your
device datasheet for more information on
transient specifications.

Monitor VJTAG during programming; measure
JTAG signals for noise or reflection.

Inspect device using Device Debug.
Inspect device using Device Debug.

0x8069
0x806A
0x806B

10 Error programming
Embedded Flash
Memory Block
(EMFB)

Programming file
generated with an
older version of
software

Generate STAPL file with the latest version of
Designer/FlashPro; use the latest version of
FlashPro software

Try again at a slower TCK

https://www.microsemi.com/products/fpga-soc/fpga-and-soc
https://www.microsemi.com/products/fpga-soc/fpga-and-soc
http://coredocs.s3.amazonaws.com/Libero/11_8_3/Tool/smartdebug_ug.pdf
https://www.microsemi.com/products/fpga-soc/fpga-and-soc
http://coredocs.s3.amazonaws.com/Libero/11_8_3/Tool/smartdebug_ug.pdf

FlashPro User Guide

 207

Error Code Exit
Code

Exit Message Possible Cause Possible Solution

Inspect device using Device Debug.
Inspect device using Device Debug.

Contact Microsemi Technical Support

0x808E
0x808F
0x8090
0x8091

10 Error programming
Embedded Flash
Memory Block
(EFMB)

 Try reprogramming

Contact Microsemi Technical Support

0x807F
0x8080

10 Error programming
system init and boot
clients

Programming file
generated with an
older version of
software

Generate STAPL file with the latest version of
Designer/FlashPro; use the latest version of
FlashPro software

Try again at a slower TCK

Inspect device using Device Debug.
Inspect device using Device Debug.

Contact Microsemi Technical Support

0x8059
0x805B

11 Verify 0 failed at row
<row number>

 Verify 1 failed at row
<row number>.

Unstable VPUMP
voltage level.

Unstable VCC

Unstable VCC_OSC
(Fusion only)

Unstable
VCC_ROSC voltage
level (SmartFusion
only)

Signal integrity
issues on JTAG
pins.

Monitor related power supplies that cause the
issue during programming; check for transients
outside of Microsemi specifications. See your
device datasheet for more information on
transient specifications.

Monitor VJTAG during programming; measure
JTAG signals for noise or reflection.

0x8060 11
Failed to verify
FlashROM at row
<FlashROM row
number>.

Device is
programmed with a
different design.

Unstable VPUMP
voltage level.

Unstable VCC

Unstable VCC_OSC
(Fusion only)

Unstable
VCC_ROSC voltage

Run VERIFY_DEVICE_INFO to verify the
device is programmed with the correct
data/design.

Monitor related power supplies that cause the
issue during programming; check for transients
outside of Microsemi specifications. See your
device datasheet for more information on
transient specifications.

Monitor VJTAG during programming; measure
JTAG signals for noise or reflection.

http://coredocs.s3.amazonaws.com/Libero/11_8_3/Tool/smartdebug_ug.pdf
http://coredocs.s3.amazonaws.com/Libero/11_8_3/Tool/smartdebug_ug.pdf
https://www.microsemi.com/products/fpga-soc/fpga-and-soc
https://www.microsemi.com/products/fpga-soc/fpga-and-soc

FlashPro User Guide

 208

Error Code Exit
Code

Exit Message Possible Cause Possible Solution

level (SmartFusion
only)

Signal integrity
issues on JTAG
pins.

0x8075
0x8076
0x8077

11 Failed to verify
Embedded Flash
Memory Block
(EFMB)

Device is
programmed with a
different design.

Unstable VCC

Unstable
VCC_NVM/VCC_OS
C (Fusion only)

Unstable
VCC_ENVM/VCC_R
OSC voltage level
(SmartFusion only)

Signal integrity
issues on JTAG
pins.

The EFMB data was
modified in your
FPGA design after
programming. This
could have occurred
during standalone
verify.

The target EFMB is
locked with
FlashLock when
running ACTION
PROGRAM_NVM_A
CTIVE_ARRAY or
VERIFY_NVM_ACTI
VE_ARRAY.

Verify the device is programmed with the correct
data/design.

Monitor related power supplies that cause the
issue during programming; check for transients
outside of Microsemi specifications. See your
device datasheet for more information on
transient specifications.

Measure JTAG pins, and noise or reflection.

Run DEVICE_INFO to confirm if the target
EFMB block is locked with FlashLock (pass
key). If the target EFMB block is locked, then
you must unlock it by erasing the security and
then reprogramming with the desired security
settings. After unlocking the target EFMB block
attempt to rerun the target ACTION.

Inspect device using Device Debug.
Inspect device using Device Debug.

0x8085
0x8086

11 Failed to verify
system init and boot
clients

Device is
programmed with a
different design.

Unstable VCC

Unstable
VCC_NVM/VCC_OS
C (Fusion only)

Unstable
VCC_ENVM/VCC_R

Verify the device is programmed with the correct
data/design.

Monitor related power supplies that cause the
issue during programming; check for transients
outside of Microsemi specifications. See your
device datasheet for more information on
transient specifications.

Measure JTAG pins, and noise or reflection.

Run DEVICE_INFO to confirm if the target

https://www.microsemi.com/products/fpga-soc/fpga-and-soc
http://coredocs.s3.amazonaws.com/Libero/11_8_3/Tool/smartdebug_ug.pdf
https://www.microsemi.com/products/fpga-soc/fpga-and-soc

FlashPro User Guide

 209

Error Code Exit
Code

Exit Message Possible Cause Possible Solution

OSC voltage level
(SmartFusion only)

Signal integrity
issues on JTAG
pins.

The EFMB data was
modified in your
FPGA design after
programming. This
could have occurred
during standalone
verify.

The target EFMB is
locked with
FlashLock when
running ACTION
PROGRAM_NVM_A
CTIVE_ARRAY or
VERIFY_NVM_ACTI
VE_ARRAY.

EFMB block is locked with FlashLock (pass
key). If the target EFMB block is locked, then
you must unlock it by erasing the security and
then reprogramming with the desired security
settings. After unlocking the target EFMB block
attempt to rerun the target ACTION.

Inspect device using Device Debug.
Inspect device using Device Debug.

0x8072
0x8073
0x8074

11 Failed to verify
Embedded Flash
Memory Block
(EFMB)

Programming file
generated with an
older version of
software

Generate STAPL file with the latest version of
Designer/FlashPro; use the latest version of
FlashPro software

Try again at a slower TCK

Inspect device using Device Debug.
Inspect device using Device Debug.

Contact Microsemi Technical Support

0x8083
0x8084

11 Failed to verify
system init and boot
clients

Programming file
generated with an
older version of
software

Generate STAPL file with the latest version of
Designer/FlashPro; use the latest version of
FlashPro software

Try again at a slower TCK

Inspect device using Device Debug.
Inspect device using Device Debug.

Contact Microsemi Technical Support

0x8014
0x8015

11 Failed to verify
calibration data

Unstable VCC

Unstable
VCC_NVM/VCC_OS
C (Fusion only)

Unstable

Monitor related power supplies that cause the
issue during programming; check for transients
outside of Microsemi specifications. See your
device datasheet for more information on
transient specifications.

Monitor VJTAG during programming; measure

http://coredocs.s3.amazonaws.com/Libero/11_8_3/Tool/smartdebug_ug.pdf
http://coredocs.s3.amazonaws.com/Libero/11_8_3/Tool/smartdebug_ug.pdf
http://coredocs.s3.amazonaws.com/Libero/11_8_3/Tool/smartdebug_ug.pdf
https://www.microsemi.com/products/fpga-soc/fpga-and-soc

FlashPro User Guide

 210

Error Code Exit
Code

Exit Message Possible Cause Possible Solution

VCC_ENVM/VCC_R
OSC voltage level
(SmartFusion only)

Signal integrity
issues on JTAG pins

JTAG signals for noise or reflection.

Try reprogramming.

Workaround: Disable optional procedure
CHECK_AND_BACKUP_CALIB

0x805A
0x805C

11 Verify 0 failed at row
<row number> .

Verify 1 failed at row
<row number>

Device is
programmed with a
different design

Unstable VPUMP
voltage level.

Unstable VCC

Unstable VCC_OSC
(Fusion only)

Unstable
VCC_ROSC voltage
level (SmartFusion
only)

Signal integrity
issues on JTAG pins

Run VERIFY_DEVICE_INFO to verify the
device is programmed with the correct
data/design.

Monitor related power supplies that cause the
issue during programming; check for transients
outside of Microsemi specifications. See your
device datasheet for more information on
transient specifications.

Monitor VJTAG during programming; measure
JTAG signals for noise or reflection.

0x8063 14 Failed to program
Silicon Signature.
Failed to program
security lock settings.

Signal integrity
issues on JTAG
pins.

Monitor related power supplies that cause the
issue during programming; check for transients
outside of Microsemi specifications. See your
device datasheet for more information on
transient specifications.

Monitor VJTAG during programming; measure
JTAG signals for noise or reflection.

0x8068 -18 Failed to authenticate
the encrypted data.

Incorrect AES key.

Signal integrity
issues on JTAG
pins.

Generate a programming file with the correct
AES key.

Monitor VJTAG during programming; measure
JTAG signals for noise or reflection.

0x805F -20 Failed to verify
FlashROM at row
<FlashROM row
number>.

Programming file
generated with an
older version of
software

Device is
programmed with a
different design.

Unstable VPUMP
voltage level.

Unstable VCC

Generate STAPL file with the latest version of
Designer/FlashPro; use the latest version of
FlashPro software.

Program with the correct data/design.

Monitor related power supplies that cause the
issue during programming; check for transients
outside of Microsemi specifications. See your
device datasheet for more information on
transient specifications.

Measure JTAG pins and noise or reflection.

https://www.microsemi.com/products/fpga-soc/fpga-and-soc
https://www.microsemi.com/products/fpga-soc/fpga-and-soc
https://www.microsemi.com/products/fpga-soc/fpga-and-soc

FlashPro User Guide

 211

Error Code Exit
Code

Exit Message Possible Cause Possible Solution

Unstable VCC_OSC
(Fusion only)

Unstable
VCC_ROSC voltage
level (SmartFusion
only)

Signal integrity
issues on JTAG
pins.

0x8065 -22 Failed to program
pass key.

Unstable VPUMP
voltage level.

Unstable VCC

Unstable VCC_OSC
(Fusion only)

Unstable
VCC_ROSC voltage
level (SmartFusion
only)

Signal integrity
issues on JTAG
pins.

Monitor related power supplies that cause the
issue during programming; check for transients
outside of Microsemi specifications. See your
device datasheet for more information on
transient specifications.

Monitor VJTAG during programming; measure
JTAG signals for noise or reflection.

0x8066 -23 Failed to program
AES key.

 Unstable VPUMP
voltage level.

Unstable VCC

Unstable VCC_OSC
(Fusion only)

Unstable
VCC_ROSC voltage
level (SmartFusion
only)

Signal integrity
issues on JTAG
pins.

Monitor related power supplies that cause the
issue during programming; check for transients
outside of Microsemi specifications. See your
device datasheet for more information on
transient specifications.

Measure JTAG pins and noise or reflection.

0x8055
0x8056

-24 Failed to program
UROW.

Unstable VPUMP
voltage level.

Unstable VCC

Unstable VCC_OSC
(Fusion only)

Monitor related power supplies that cause the
issue during programming; check for transients
outside of Microsemi specifications. See your
device datasheet for more information on
transient specifications.

Monitor VJTAG during programming; measure
JTAG signals for noise or reflection.

https://www.microsemi.com/products/fpga-soc/fpga-and-soc
https://www.microsemi.com/products/fpga-soc/fpga-and-soc
https://www.microsemi.com/products/fpga-soc/fpga-and-soc

FlashPro User Guide

 212

Error Code Exit
Code

Exit Message Possible Cause Possible Solution

Unstable
VCC_ROSC voltage
level (SmartFusion
only)

Signal integrity
issues on JTAG
pins.

Make sure you mounted 0.01µF and 0.33µF
caps on Vpump (close to the pin).

0x802A -27 FlashROM
Write/Erase is
protected by the
passkey.
 A valid passkey
needs to be
provided.

File contains no
passkey and device
is secured with a
passkey.

 Passkey in the file
does not match
device.

Provide a programming file with a passkey that
matches the passkey programmed into the
device.

0x8025 -28 FPGA Array
Write/Erase is
protected by the
passkey.
A valid pass key
needs to be
provided.

File contains no
passkey and device
is secured with a
passkey.
 Passkey in the file
does not match
device.

Provide a programming file with a passkey that
matches the passkey programmed into the
device.

0x802B
0x802D

-29 FlashROM Read is
protected by
passkey.
A valid passkey
needs to be
provided.

File contains no
passkey and device
is secured with a
passkey.
Passkey in the file
does not match
device.

Provide a programming file with a pass key that
matches the passkey programmed into the
device

0x8024
0x8026

-30 FPGA Array
verification is
protected by a
passkey.
 A valid passkey
needs to be
provided.

File contains no
passkey and device
is secured with a
passkey.
 Passkey in the file
does not match
device.

Provide a programming file with a passkey that
matches the passkey programmed into the
device.

0x804B
0x8001
0x8007

-31 Failed to verify AES
key.

AES key in the file
does not match the
device.

Unstable VCC

Unstable VCC_OSC
(Fusion only)

Unstable
VCC_ROSC voltage
level (SmartFusion
only)

Provide a programming file with an AES key
that matches the AES key programmed into the
device.

Monitor related power supplies that cause the
issue during programming; check for transients
outside of Microsemi specifications. See your
device datasheet for more information on
transient specifications.

Monitor VJTAG during programming; measure
JTAG signals for noise or reflection.

https://www.microsemi.com/products/fpga-soc/fpga-and-soc

FlashPro User Guide

 213

Error Code Exit
Code

Exit Message Possible Cause Possible Solution

 Unstable
JTAG/VPUMP
voltage level.

0x8000 -31 Failed to verify AES
key.

Programming file
generated with an
older version of
software

Generate STAPL file with the latest version of
Designer/FlashPro; use the latest version of
FlashPro software.

Try again at a slower TCK

Contact Microsemi Technical Support

0x8020
0x8022
0x8028

-33 FPGA Array
encryption is
enforced. A
programming file with
encrypted FPGA
array data needs to
be provided.

File contains
unencrypted array
data, but device
contains AES key.

Provide a programming file with an encrypted
FPGA Array data.

0x802C
0x802F

-34 FlashROM
encryption is
enforced. A
programming file with
encrypted FlashROM
data needs to be
provided.

File contains
unencrypted
FlashROM data, but
the device contains
an AES key.

Provide a programming file with an encrypted
FlashROM data.

0x801F
0x804A

-35 Failed to match pass
key.

Pass key in file does
not match pass key
in device.

Provide a programming file with a pass key that
matches the pass key programmed into the
device.

0x802E
0x8030

-36 FlashROM
Encryption is not
enforced.

Cannot guarantee
valid AES key
present in target
device.

Unable to proceed
with Encrypted
FlashROM
programming.

File contains
encrypted
FlashROM, but
device encryption is
not enforced for
FlashROM

Regenerate security programming file with
proper AES key.

Program device security.

Retry programming FlashROM with encrypted
programming file.

0x8021
0x8023
0x8027
0x8029

-37 FPGA Array
Encryption is not
enforced.

Cannot guarantee
valid AES key
present in target
device.

File contains
encrypted FPGA
Array, but the device
encryption is not
enforced for FPGA
Array.

Regenerate security programming file with
proper AES key.

Program device security.

Retry programming FPGA Array with encrypted
programming file.

FlashPro User Guide

 214

Error Code Exit
Code

Exit Message Possible Cause Possible Solution

Unable to proceed
with Encrypted FPGA
Array verification.

0x8067 -38 Failed to program
pass key.

Unstable VPUMP
voltage level.

Unstable VCC

Unstable VCC_OSC
(Fusion only)

Unstable
VCC_ROSC voltage
level (SmartFusion
only)

Signal integrity
issues on JTAG
pins.
Bad device.

Monitor related power supplies that cause the
issue during programming; check for transients
outside of Microsemi specifications. See your
device datasheet for more information on
transient specifications.

 Measure JTAG pins and noise or reflection.

0x806F
0x8070
0x8071
0x8081
0x8082
0x8089

-39 ERROR: 2 or more
errors found on this
page

Unstable
VCC_NVM/VCC_OS
C voltage (Fusion
only)

Unstable
VCC_ENVM/VCC_R
OSC (SmartFusion
only)

NVM reset signal is
floating in user
design

2 or more ECC
errors found when
reading the eNVM

Monitor related power supplies that cause the
issue during programming; check for transients
outside of Microsemi specifications. See your
device datasheet for more information on
transient specifications.

Bias NVM reset to a logic state in user design.

Try reprogramming.

0x8010 -39 ERROR: 2 or more
errors found on this
page.

2 or more ECC
errors found when
reading the master
calibration data

The master calibration data has been corrupted.
Try restoring master calibration from backup, if it
exists, by running RECOVER_CALIB.

Workaround: Disable optional procedure
CHECK_AND_BACKUP_CALIB

0x8013 -39 ERROR: 2 or more
errors found on this
page.

2 or more ECC
errors found when
verifying the backup
calibration

Rerun action to attempt to write backup
calibration again.

Workaround: Disable optional procedure
CHECK_AND_BACKUP_CALIB

https://www.microsemi.com/products/fpga-soc/fpga-and-soc
https://www.microsemi.com/products/fpga-soc/fpga-and-soc

FlashPro User Guide

 215

Error Code Exit
Code

Exit Message Possible Cause Possible Solution

0x8078
0x8079
0x807A
0x8087
0x8088

-40 Embedded Flash
Memory Block MAC
Failure.

Data in the file is
encrypted with a
different AES key
than the device.

Verify the programming file is generated from
the latest version of Designer/FlashPro.

0x8002
0x8003

-42 Failed to verify
security settings.

File security settings
do not match device.

Provide a programming file with security setting
that match the security settings programmed
into the device.

0x8093 -42 Failed to verify
eNVM/EFMB client
JTAG protection
settings

Device eNVM/EFMB
client JTAG
protection settings
are not programmed
or are programmed
with different settings

Verify the device is programmed with the correct
eNVM/EFMB client JTAG protection settings

0x8004 -43 Failed to verify
design information.

File checksum and
design name do not
match the device.

Verify the device is programmed with the correct
data and design.

0x8049 -44 Failed to verify AES
key.

The AES key in the
file does not match
the AES key in the
device.
 File does not
contain an AES key
and the device is
secured with an AES
key.

Provide a programming file with an AES key
that matches the AES key programmed into the
device.

0x8054 -45 Device package does
not match the
programming file.

Programming file
was generated with
an older version of
software

Generate STAPL file with the latest version of
Designer/FlashPro; use the latest version of
FlashPro software.

0x8033
0x8038
0x803D
0x8042
0x8045
0x8046
0x8047
0x8048

-46 Embedded Flash
Memory Block X
Read is protected by
pass key. A valid
pass key needs to be
provided.

File contains no pass
key or incorrect pass
key but EFMB read
is secured with a
pass key.

Provide a programming file with the correct pass
key.

0x8034
0x8039
0x803E
0x8043

-46 Embedded Flash
Memory Block
(EFMB) block X
Read is not protected
by pass key.

EFMB content is not
secure after
encrypted

File contains
encrypted EFMB for
block X but the
device encryption is
not enforced for
EFMB block X.

Regenerate security programming file with the
proper AES key.

Program device security. Retry programming
with EFMB block X with encrypted programming
file.

FlashPro User Guide

 216

Error Code Exit
Code

Exit Message Possible Cause Possible Solution

programming.

Unable to proceed
with encrypted NVM
programming.

0x8032
0x8037
0x803C
0x8041

-47 Embedded Flash
Memory Block
(EFMB) block X
encryption is
enforced. A
programming file with
encrypted EFMB
data needs to be
provided.

The programming
EFMB data is not
encrypted, but the
device contains an
AES key with
encryption enforced.

Provide a programming file with encrypted
EFMB data.

0x8031
0x8036
0x803B
0x8040

-48 Embedded Flash
Memory Block
(EFMB) block X
Write is protected by
pass key.

A valid pass key
needs to be
provided.

File contains no pass
key or incorrect pass
key, but device is
secured with a pass
key.

Provide a programming file with a passkey that
matches the passkey programmed into the
device.

0x8035
0x803A
0x803F
0x8044

-49 Embedded Flash
Memory Block
(EFMB) block X
Encryption is not
enforced.

Cannot guarantee
valid AES key
present in target
device.

Unable to proceed
with Encrypted
EFMB programming.

File contains
encrypted EFMB for
block X, but the
device encryption is
not enforced for
EFMB block X.

Regenerate security programming file with
proper AES key.

Program device security. Retry programming
EFMB block X with encrypted programming file.

0x801A -50 No backup
calibration data found
or backup calibration
data has been
corrupted

No backup
calibration copy has
been made or the
backup copy has
been corrupted

If master copy is still intact, rerun Action to
create backup calibration copy.

Workaround: Disable optional procedure
CHECK_AND_BACKUP_CALIB

8x804E -51 Failed to access
Embedded Flash
Memory.
(AFS600 only)

This version of the
silicon does not
support
programming of the
Embedded Flash
Memory Block while
the FPGA Array is
active.

If programming the EFMB while the FPGA is
active is not required, then use actions
PROGRAM_NVM or VERIFY_NVM. Otherwise,
use latest revision of silicon.

FlashPro User Guide

 217

Error Code Exit
Code

Exit Message Possible Cause Possible Solution

0x804F -52 Failed to access
Embedded Flash
Memory.
(AFS1500 only)

This version of the
silicon does not
support
programming of the
Embedded Flash
Memory Block while
the FPGA Array is
active.

If programming the EFMB while the FPGA is
active is not required, then use actions
PROGRAM_NVM or VERIFY_NVM. Otherwise,
use latest revision of silicon.

0x8050 -53 Failed to access
Embedded Flash
Memory.
(AFS1500 only)

This version of the
silicon does not
support
programming block 3
of the EFMBs while
the FPGA Array is
active.

If programming the EFMB while the FPGA is
active is not required, then use actions
PROGRAM_NVM or VERIFY_NVM. Otherwise,
use EFMB blocks 0, 1, or 2, but do not use
block 3.

0x8051 -54 Failed to access
Embedded Flash
Memory.

FPGA Array is
accessing the target
EFMB block while
attempting
programming.

NVM reset signal is
stuck in design.

Unstable VCC

MSS Clock is
disabled during
programming.

MSS Clock is not
properly routed to
the correct pin.

If programming the EFMB while the FPGA is
active is not required, then use actions
PROGRAM_NVM or VERIFY_NVM. Otherwise,
check the FPGA design or use a different EFMB
block that is not being accessed. Check if target
EFMB block logic is tied to reset.

Monitor related power supplies that cause the
issue during programming; check for transients
outside of Microsemi specifications. See your
device datasheet for more information on
transient specifications.

Verify that the NVM reset signal in the design is
not stuck.

Verify the MSS clock is enabled during
programming.

If the MSS clock is defined as an external I/O,
then verify that it is properly routed to the
correct pin.

0x808A
0x8094

-55 Failed to read
Embedded Flash
Memory Block
(EFMB)

Programming file
generated with an
older version of
software

Generate STAPL file with the latest version of
Designer/FlashPro; use the latest version of
FlashPro software

Try again at a slower TCK

Inspect device using Device Debug

Contact Microsemi Technical Support

0x808B -55 Failed to read
Embedded Flash
Memory Block
(EFMB)

Unstable VPUMP
voltage level.

Unstable VCC

Monitor related power supplies that cause the
issue during programming; check for transients
outside of Microsemi specifications. See your
device datasheet for more information on

https://www.microsemi.com/products/fpga-soc/fpga-and-soc

FlashPro User Guide

 218

Error Code Exit
Code

Exit Message Possible Cause Possible Solution

Unstable VCC_OSC
(Fusion only)

Unstable
VCC_ROSC voltage
level (SmartFusion
only)

Signal integrity
issues on JTAG pins

transient specifications.

Monitor VJTAG during programming; measure
JTAG signals for noise or reflection.

0x808C -55 Failed to read
Embedded Flash
Memory Block
(EFMB)

Internal errror Contact Microsemi Technical Support

0x8011 -56 Failed to read
calibration data

 Try reprogramming.

Workaround: Disable optional procedure
CHECK_AND_BACKUP_CALIB

0x8012 -56 Failed to read
calibration data

Unstable VCC

Unstable
VCC_NVM/VCC_OS
C (Fusion only)

Unstable
VCC_ENVM/VCC_R
OSC voltage level
(SmartFusion only)

Signal integrity
issues on JTAG pins

 Monitor related power supplies that cause the
issue during programming; check for transients
outside of Microsemi specifications. See your
device datasheet for more information on
transient specifications.

Measure JTAG voltages, noise, and reflection.

Try reprogramming.

Workaround: Disable optional backup procedure
CHECK_BACKUP_CALIB

0x808D
0x8092

-57 eNVM/EFMB is
protected by a Pass
Key; you must
provide a valid Pass
Key

File contains no
Pass Key and device
is secured with a
Pass Key

Pass Key in the file
does not match
device

Provide a programming file with a Pass Key that
matches the Pass Key programmed into the
device

Exit Codes for pre-v8.6 Software (SmartFusion, IGLOO, ProASIC3
and Fusion)

The table below lists exit codes for SmartFusion, IGLOO, ProASIC3 and Fusion devices in pre-v8.6 software only.
This includes v8.5 SP2, v8.5 SP1, v8.5, etc. See the Device Exit Codes for Software v8.6 and Above help topic
for exit codes for older versions.

https://www.microsemi.com/products/fpga-soc/fpga-and-soc

FlashPro User Guide

 219

Note: Exit codes with positive integers are reserved for current and future standard EXIT codes of the
STAPL standard. Exit codes with negative integers are reserved for vendor-specific EXIT codes.

Table 26 · Exit Codes for SmartFusion, IGLOO, ProASIC3 and Fusion Family Devices in pre-v8.6 Software

Exit
Code

Exit Message Possible Cause Possible Solution

0 Passed (no error).

1 A physical chain does
not match the expected
set up from the STAPL
file.
Also known as Checking
Chain Error.

Physical chain
configuration has been
altered. Something has
become disconnected in
the chain.
The specific IR length of
non-Microsemi devices
may be incorrect.
The order of the specified
chain may be incorrect.

5 Failed to enter
programming mode.

Unstable VPUMP voltage
level.

Signal integrity issues on
JTAG pins.

Older software or
programming file used.

Monitor VPUMP voltage during programming

Measure JTAG voltages, noise, and reflection.

Generate STAPL file with the latest version of
Designer/FlashPro.
Use latest version of FlashPro software.

6 Failed to verify IDCODE.
Signal integrity issues on
JTAG pins.

Measure JTAG pins, noise and reflection.

8 Failed Erase Operation. Signal integrity issues on
JTAG pins.

Monitor VPUMP voltage during programming.
Measure JTAG voltages, noise, and reflection.

10 Failed to program FPGA
array at row ",
rowNumber,"."

Signal integrity issues on
JTAG pins.

Monitor VPUMP voltage during programming.
Measure JTAG voltages, noise, or reflection.

10 Failed to enable FPGA
Array.

Signal integrity issues on
JTAG pins.

Monitor VPUMP voltage during programming.
Measure JTAG voltages, noise, or reflection.

10 Failed to program
FlashROM.

Signal integrity issues on
JTAG pins.

Monitor VPUMP voltage during programming.
Measure JTAG voltages, noise, and reflection.

11 Verify 0 failed at
row",rowNumber,"."
Verify 1 failed at
row",rowNumber,"."
Failed to verify
FlashROM at row",from
rowNumber-1.

Device is programmed
with a different design.

Signal integrity issues on
JTAG pins.

Run VERIFY_DEVICE_INFO to verify the device is
programmed with the correct data/design.
Monitor VPUMP voltage during programming.
Measure JTAG voltages, noise and reflection .

14 Failed to program Silicon
Signature.

Signal integrity issues on
JTAG pins.

Monitor VPUMP voltage during programming.
Measure JTAG voltages, noise, and reflection.

FlashPro User Guide

 220

Exit
Code

Exit Message Possible Cause Possible Solution

Failed to program
security lock settings.

-18 Failed to authenticate
the encrypted data.

Incorrect AES key.

Signal integrity issues on
JTAG pins.

Generate a programming file with the correct AES key.

Measure JTAG voltages, noise and reflection

-20 Failed to verify
FlashROM at row ",
FRomRowNumber-1.

Device is programmed
with a different design.

Signal integrity issues on
JTAG pins.

Program with the correct data/design.

Monitor VPUMP level during programming.
Measure JTAG pins and noise or reflection.

-22 Failed to program pass
key.

Unstable VPUMP voltage
level.

Signal integrity issues on
JTAG pins.

Monitor VPUMP voltage during programming.

Measure JTAG voltages, noise, and reflection.

-23 Failed to program AES
key.

Unstable VPUMP voltage
level.

Signal integrity issues on
JTAG pins.

Monitor VPUMP voltage during programming.

Measure JTAG pins and noise or reflection.

-24 Failed to program
UROW.

Unstable VPUMP voltage
level.

Signal integrity issues on
JTAG pins.

Monitor VPUMP voltage during programming.

Measure JTAG voltages, noise, and reflection.
Make sure you mounted 0.01ìF and 0.33ìF caps on Vpump
(close to the pin).

-25 Failed to enter
programming mode

Signal integrity issues on
JTAG pins.

Measure JTAG voltages, noise, and reflection.

-26 Failed to enter
programming mode

Signal integrity issues on
JTAG pins.

Measure JTAG voltages, noise, and reflection.

-27 FlashROM Write/Erase
is protected by the
passkey.
A valid passkey needs to
be provided.

File contains no passkey
and device is secured with
a passkey.
Passkey in the file does
not match device.

Provide a programming file with a passkey that matches
the passkey programmed into the device.

-28 FPGA Array Write/Erase
is protected by the
passkey.
A valid pass key needs
to be provided.

File contains no passkey
and device is secured with
a passkey.
Passkey in the file does
not match device.

Provide a programming file with a passkey that matches
the passkey programmed into the device.

-29 FlashROM Read is
protected by passkey.
A valid passkey needs to
be provided.

File contains no passkey
and device is secured with
a passkey.
Passkey in the file does
not match device.

Provide a programming file with a pass key that matches
the passkey programmed into the device

FlashPro User Guide

 221

Exit
Code

Exit Message Possible Cause Possible Solution

-30 FPGA Array verification
is protected by a
passkey.
A valid passkey needs to
be provided.

File contains no passkey
and device is secured with
a passkey.
Passkey in the file does
not match device.

Provide a programming file with a passkey that matches
the passkey programmed into the device.

-31 Failed to verify AES key. AES key in the file does
not match the device.

Unstable JTAG/VPUMP
voltage level.

Provide a programming file with an AES key that matches
the AES key programmed into the device.

Monitor VPUMP/VJTAG voltage during programming.

Measure JTAG voltages, noise, and reflection.

-32 Failed to verify IDCODE.
Target is an M7 device

File is not for M7, but
target device is an M7.

Signal integrity issues on
JTAG pins.

Check that the target device is M7 enabled.
Make sure programming file generated is for M7 enabled
device.

Measure JTAG pins , noise, and reflection.

-32 Failed to verify IDCODE.
Target is an M1 device

File is not for M1, but
target device is an M1
device.

Signal integrity issues on
JTAG pins.

Check that the target device is M1 enabled.
Make sure programming file generated is for M1 enabled
device.

Measure JTAG pins, noise, and reflection.

-32 Failed to verify IDCODE.
Core enabled device
detected

File is not for target device.

Signal integrity issues on
JTAG pins

Check the target device. Make sure programming file
generated for target device.

Measure JTAG voltages, noise, and reflection.

-32 Failed to verify IDCODE.
The target is not an M7
device

File is for M7, but target
device is not M7.

Signal integrity issues on
JTAG pins.

Check that the target device is not M7 enabled.
Make sure programming file generated is for non M7
enabled device.

Measure JTAG voltages, noise, and reflection.

-32 Failed to verify IDCODE.
The target is not an M1
device

File is for M1, but target
device is not an M1
device.

Signal integrity issues on
JTAG pins.

Check that the target device is not M1 enabled.
Make sure programming file generated is for non M1
enabled device.

Measure JTAG voltages, noise and reflection.

-33 FPGA Array encryption
is enforced. A
programming file with
encrypted FPGA array
data needs to be
provided.

File contains unencrypted
array data, but device
contains AES key.

Provide a programming file with an encrypted FPGA Array
data.

-34 FlashROM encryption is
enforced. A
programming file with

File contains unencrypted
FlashROM data, but the

Provide a programming file with an encrypted FlashROM
data.

FlashPro User Guide

 222

Exit
Code

Exit Message Possible Cause Possible Solution

encrypted FlashROM
data needs to be
provided.

device contains an AES
key.

-35 Failed to match pass
key.

Pass key in file does not
match pass key in device.

Provide a programming file with a pass key that matches
the pass key programmed into the device.

-36 FlashROM Encryption is
not enforced.

Cannot guarantee valid
AES key present in
target device.

Unable to proceed with
Encrypted FlashROM
programming.

File contains encrypted
FlashROM, but device
encryption is not enforced
for FlashROM

Regenerate security programming file with proper AES
key.

Program device security.

Retry programming FlashROM with encrypted
programming file.

-37 FPGA Array Encryption
is not enforced.

Cannot guarantee valid
AES key present in
target device.

Unable to proceed with
Encrypted FPGA Array
verification.

File contains encrypted
FPGA Array, but the
device encryption is not
enforced for FPGA Array.

Regenerate security programming file with proper AES
key.

Program device security.

Retry programming FPGA Array with encrypted
programming file.

-38 Failed to program pass
key.

Unstable VPUMP voltage
level.

Signal integrity issues on
JTAG pins.
Bad device.

Monitor VPUMP voltage during programming.

Measure JTAG pins and noise or reflection.

-39 Failed to verify
Embedded Flash
Memory Block (EFMB).

Device is programmed
with a different design.
Signal integrity issues on
JTAG pins.

The EFMB data was
modified through user
FPGA design after
programming; this could
occur during standalone
verify.

The target EFMB block is
locked with FlashLock
when running ACTION
PROGRAM_NVM_ACTIV
E_ARRAY or
VERIFY_NVM_ACTIVE_A
RRAY.

Verify the device is programmed with the correct
data/design.

Monitor VPUMP voltage during programming.
Measure JTAG pins and noise or reflection.

Run DEVICE_INFO to confirm if the target EFMB block is
locked with FlashLock (pass key). If the target EFMB block
is locked, then you must unlock it by erasing the security
and then reprogramming with the desired security settings.
After unlocking the target EFMB block attempt to rerun the
target ACTION.

FlashPro User Guide

 223

Exit
Code

Exit Message Possible Cause Possible Solution

-40 Embedded Flash
Memory Block MAC
Failure.

Data in the file is
encrypted with a different
AES key than the device.

Verify the programming file is generated from the latest
version of Designer/FlashPro.

-41 Error programming
Embedded Flash
Memory Block. (EFMB)

Signal integrity issues on
JTAG pins.

Measure JTAG pins and noise or reflection.

-42 Failed to verify security
settings.

File security settings do
not match device.

Provide a programming file with security setting that match
the security settings programmed into the device.

-43 Failed to verify design
information.

File checksum and design
name do not match the
device.

Verify the device is programmed with the correct data and
design.

-44 Failed to verify AES key. The AES key in the file
does not match the AES
key in the device.
File does not contain an
AES key and the device is
secured with an AES key.

Provide a programming file with an AES key that matches
the AES key programmed into the device.

-45 Device package does
not match the
programming file.

-46 Embedded Flash
Memory Block X Read is
protected by pass key. A
valid pass key needs to
be provided.

File contains no pass key
or incorrect pass key but
EFMB read is secured with
a pass key.

Provide a programming file with the correct pass key.

-47 Embedded Flash
Memory Block, block X
encryption is enforced. A
programming file with
encrypted EFMB data
needs to be provided.

The programming EFMB
data is not encrypted, but
the device contains an
AES key with encryption
enforced.

Provide a programming file with encrypted EFMB data.

-48 Embedded Flash
Memory Block (EFMB)
block X Write is
protected by pass key.

A valid pass key needs
to be provided.

File contains no pass key
or incorrect pass key, but
device is secured with a
pass key.

Provide a programming file with a passkey that matches
the passkey programmed into the device.

-49 Embedded Flash
Memory Block (EFMB)
block X Encryption is not
enforced.

Cannot guarantee valid
AES key present in

File contains encrypted
EFMB for block X, but the
device encryption is not
enforced for EFMB block
X.

Regenerate security programming file with proper AES
key.

Program device security. Retry programming EFMB block
X with encrypted programming file.

FlashPro User Guide

 224

Exit
Code

Exit Message Possible Cause Possible Solution

target device.

Unable to proceed with
Encrypted EFMB
programming.

-51 Failed to access
Embedded Flash
Memory.
(AFS600 only)

This version of the silicon
does not support
programming of the
Embedded Flash Memory
Block while the FPGA
Array is active.

If programming the EFMB while the FPGA is active is not
required, then use actions PROGRAM_NVM or
VERIFY_NVM. Otherwise, use latest revision of silicon.

-52 Failed to access
Embedded Flash
Memory.
(AFS1500 only)

This version of the silicon
does not support
programming of the
Embedded Flash Memory
Block while the FPGA
Array is active.

If programming the EFMB while the FPGA is active is not
required, then use actions PROGRAM_NVM or
VERIFY_NVM. Otherwise, use latest revision of silicon.

-53 Failed to access
Embedded Flash
Memory.
(AFS1500 only)

This version of the silicon
does not support
programming block 3 of
the EFMBs while the
FPGA Array is active.

If programming the EFMB while the FPGA is active is not
required, then use actions PROGRAM_NVM or
VERIFY_NVM. Otherwise, use EFMB blocks 0, 1, or 2, but
do not use block 3.

-54 Failed to access
Embedded Flash
Memory.

FPGA Array is accessing
the target EFMB block
while attempting
programming.

NVM reset signal is stuck
in design.

If programming the EFMB while the FPGA is active is not
required, then use actions PROGRAM_NVM or
VERIFY_NVM. Otherwise, check the FPGA design or use
a different EFMB block that is not being accessed. Check if
target EFMB block logic is tied to reset.

Verify that the NVM reset signal in the design is not stuck.

ProASICPLUS and ProASIC Exit Codes
The table below lists the exit codes for ProASICPLUS and ProASIC family devices.

Table 27 · ProASIC PLUS and ProASIC Family Devices Exit Codes

Exit Code Exit Message Possible Cause Possible Solution

0 This message means
passed. This does not
indicate an error.

1 A physical chain does
not match the
expected set up from
the STAPL file.
Also known as
Checking Chain Error.

Physical chain configuration
has been altered. Something
has become disconnected in
the chain.
The specific IR length of non-
Microsemi devices may be
incorrect.

FlashPro User Guide

 225

Exit Code Exit Message Possible Cause Possible Solution

The order of the specified
chain may be incorrect.

2 There is a reading
device ID failure.

The device either does not
have a valid device ID or the
data cannot be read
correctly.

Check the device ID.

3 This occurs when
using ProASICPLUS
devices.

Connect was set up for a
ProASIC device and the
device is actually
ProASICPLUS.

Set up for a ProASICPLUS
device.

5 Programming set up
problem. Also known
as Entering ISP
Failure.

The A500K device senses
the VDDL power supply as
being on.

Power the VDDL down
during programming. Check
the device has the correct
voltages on VDDP, VDDL,
VPP, and VPN.

6 The IDCODE of the
target device does not
match the expected
value in the STAPL
file. This is a JEDEC
standard message.

The device targeted in the
STAPL file does not match
the device being
programmed.
User selected wrong device.
Device TRST pin is
grounded.
Noise or reflections on one
or more of the JTAG pins
caused by the IR Bits
reading it back incorrectly.

Choose the correct STAPL
file and select the correct
device.
Measure JTAG pins and
noise or reflection. TRST
should be floating or tied
high.
Cut down the extra length of
ground connection.

7 Unknown algorithm:
alg=x, prev=x Invalid
data read from device

This occurs with current
STAPL files when the
revision written into the
factory row is not rev 1 for
ProASICPLUS or rev 2 for
ProASIC devices. The
STAPL files from last year
may "exit 7" with newer
devices or the older revision
may cause this failure if the
STAPL file used is from
latest version.
It can occur if you are using
Engineering Sample parts
that are no longer supported,
such as ProASIC
Engineering Sample parts.
This error can also occur if
the programmer has trouble
reading the factory row due
to signal noise, crosstalk, or
reflections on the JTAG
signal and clock lines.
It can occur if you program
an -F ProASICPLUS device

Re-generate STAPL file
from Designer 6.1 SP1.
Replace A500K ES parts
with commercial parts.
Double check VPP and VPN
connections.
Make sure VPP and VPN
have correct bypass caps.
Make sure that your power
supply can deliver the
correct current during
programming.

FlashPro User Guide

 226

Exit Code Exit Message Possible Cause Possible Solution

with an old STAPL file.
This error occurs if you
connected VPP and VPN the
wrong way.
It occurs if there are no
bypass Caps on VPP VPN,
which damaged the device.

This error may occur if your
power supply cannot source
the correct current for
programming.

8 FPGA failed during the
erase operation.

The device is secured, and
the corresponding STAPL file
is not loaded.
The device has been
permanently secured and
cannot be unlocked.

Load the correct STAPL file.

11 FPGA failed verify The device is secured and
the corresponding STAPL file
is not loaded.
You used the Libero IDE
software v2.3 or earlier or the
Designer R1-2003 software
or earlier to generate the
STAPL file.
VPN caps were soldered in
the wrong polarity.

Load the correct STAPL file.
Use later software versions
—at least Libero v2.3 SP1
and Designer R1-2003 SP1.
Double-check the VPN
bypass caps polarity.

12 Security is enabled. The device is secured and
the wrong key/STAPL file
was entered.
The device is damaged.
The verification was
interrupted and therefore
fails, causing the software to
think the device is secure.

14 Program security
failure.

15 This is a factory
Calibration Data CRC
error.

During program, erase, or
verify, you must read back
Calibration Data from the
FPGA. The data contains a
CRC. You use the CRC to
ensure the data is not
corrupted/wrong.
Device is damaged.
Noise on the FTAL signals
causes the programmer to
read back wrong data.

FlashPro User Guide

 227

Exit Code Exit Message Possible Cause Possible Solution

17 The device has been
secured. Write-
security is enabled.

The device is secured and
the wrong key or STAPL file
was entered.
The device is damaged.

Load the correct STAPL file.

-54 Failed to access
Embedded Flash
Memory

Analog power supplies
(Vcc15A, Vcc33A, GNDAQ
and GNDA) are not
connected.

Connect the analog power
supplies (Vcc15A, Vcc33A,
GNDAQ and GNDA)

-80 Error code results from
STAPL files for A500K
devices.

An internal calibration (based
on DDP and VPP) failed.

Check voltages on the
device pins.
Check voltages on the
VDDP and VPP pins.

-90 Unexpected RCK
detected.

Noise on the RCK signal.
You connected a CLK source
to the RCK signal.
The polarized bypass
capacitors on VPP or VPN
are reversed-biased and are
affecting the programmer’s
VPP or VPN output voltage.
This causes programming to
fail. Several FlashPros are
programming at the same
time and are too close to
each other.
Programmer not properly
installed by Admin.

Disconnect the RCK and
make sure TCK has a clean
signal.
Separate FlashPros away
from each other while they
are programming Internal
ISP.
Connect programmer as an
Admin in FlashPro.

-91 Calibration data parity
error.

Device is damaged. Replace the device.

 Null Several FlashPros are
programming at the same
time and are too close to
each other.
FlashPro connects to PC
parallel port through a dongle
key.
Data length mismatch when
performing DRSCAN on
STAPL file.

 Cable to target is not
connected properly.

When the Analyze command
is executed, the FlashPro
looks for target devices. If
the cable connection is
wrong, FlashPro assumes
that nothing is connected at
all.

Confirm the connection
between the header to the
device. If the board supplies
the power to the device,
make sure the voltage level
is correct.

FlashPro User Guide

 228

Exit Code Exit Message Possible Cause Possible Solution

 Chain integrity test
failed: xx

The connection between the
FlashPro programmer and
the device is broken.
The programmer cable might
not be securely inserted into
the header.
The header is not connected
to the JTAG pins of the
FPGA correctly.
The configuration setting
(ProASIC/ProASICPLUS)
does not match the target
device.
Noise or reflections on the
JTAG pins has caused
communication between the
programmer and the device
to fail.
A dongle is plugged in
between the PC parallel port
and the FlashPro parallel
port cable.

Secure the connections.
Check the JTAG pins for
signal activity.
Check for broken TDO,
TMS, and TCK pins.
After checking all type of
connections if the failure
exists, you may need to
replace the first device (the
devices closest to the TDO
of the programming header)
in the chain.
Remove the dongle.

 Could not connect to
programmer on port
lp1 or parallel port
device does not
support IEEE-1284
negotiation protocol

The remote device does not
respond to the negotiation
protocol, for a variety of
reasons.

Make sure the port is
connected.
Make sure the connected
device is a FlashPro/Lite
programmer.
Turn the programmer on.
Check parallel port setting in
BIOS.
 Make sure that there are no
dongles in between the
parallel port and the
FlashPro connection.
Try another parallel cable,
the parallel cable might be
defective.
Check to see if the
programmer is damaged.
Make sure the FlashPro Lite
has power. The FlashPro
Lite is powered from the
target board through the
Vdd pin of the programming
header.
Make sure the Vdd pin is
connected and the target
board is powered up.
Secure the connection
between the cable
connector and the
programming header.
Before you program any
devices, you should run the
self-diagnostic test. The

FlashPro User Guide

 229

Exit Code Exit Message Possible Cause Possible Solution

diagnostic software can be
found on the Microsemi web
site. If the test fails, please
contact Microsemi
Customer Technical
Support at
tech@Microsemi.com for
credit and replacement.
Note: The Self-test is only
available for FlashPro, not
FlashPro Lite.

 External voltage
detected on <Supply>

The voltage supply for the
FPGA is driven by another
source (board, external
power-supply), but the user
forgot to turn off the supply in
the Connect menu.

Set appropriate options in
the Connect menu.

 VDPP Disconnected. There is no Vddp voltage
supply to the FPGA.
You accidentally turned off
the Vddp supply in the
Connect menu.
The Vddp supply on the
board is not functioning.

Check the Vddp supply on
the board for appropriate
voltages and correct the
Connect menu.

 More than one unidentified device.

 If you want to perform
an operation on the
ProASIC device, the
rest of the devices in
the chain must be in
bypass mode.
To put devices in
bypass mode, select
Configuration > Chain
Parameter (or click the
Chain Parameter
button in the Single
STAPL Configuration
window), then set the
Pre IR, Pre DR, Post
IR or Post DR.

STAPL settings of Pre IR,
Pre DR, Post IR, and Post
DR do not match the chain
configuration.
One or more of the devices
in the chain is damaged and
the ID CODE cannot be read
back.

Make sure you have set Pre
IR, Pre DR, Post IR, and
Post DR to match the chain
configuration. If you are still
experiencing the failure, it is
likely that the device's ID
CODE cannot be read and
you need to replace the
device.

 Cannot find the
programmer with ID
xxx

The programmer is removed
from the PC.

Delete programmer (or
reconnect programmer) and
select the Refresh
Programmer button. See
Connecting Programmers
for more information.

FlashPro User Guide

 230

Exit Code Exit Message Possible Cause Possible Solution

 Fatal Error: Please
check programmer set
up.

Software cannot resolve the
error encountered in the
programmer.

Save the project file, restart
the software, and power
cycle the programmer.

 External voltage xxx
mV is detected on xxx.

You have specified the
programmer to drive the xxx
but external xxx is detected.

Deselect the xxx in the
programmer setting.

 Executing action xxx
failed.

The STAPL runtime failed.

 Executing action xxx
with serial index/action
xx failed.

The STAPL runtime failed.

 No Vpump voltage
source is detected.

 Select the Vpump in the
Programmer setting. Make
sure the external Vpump is
properly turned on.

 Vpump short detected. Use a different programmer.
If the problem persists,
check the board layout.

 xxx Mhz TCK
frequency in this
STAPL file is not
supported by the
FlashPro Lite
detected. It supports
only 4 MHz TCK
frequency.

 Check FlashPro Lite version
being used. Use FlashPro
Lite Rev C or modify the
STAPL file to 4 MHz.

 xxx Mhz TCK
frequency in this
STAPL file is not
supported by the
FlashPro Lite RevC
detected. It supports
only 1, 2 or 4 Mhz
TCK frequency.

 Modify STAPL file to 1, 2, or
4 MHz.

 Cannot find the serial
Index/Action xxx in
STAPL file.

Mismatch between STAPL
file and the Index/Action
selection.

Make sure the STAPL file
was not overwritten. Save
the project with updated
serial/action selection.

 Duplicated serial
Index/Action xxx was
removed.

Mismatch between STAPL
file and the Index/Action
selection.

Make sure the STAPL file
was not overwritten. Save
the project with updated
serial/action selection.

 Using local backup
copy xxx

Cannot find original copy. Check for available space
on the disk. Check that write
permissions are enabled.

FlashPro User Guide

 231

Exit Code Exit Message Possible Cause Possible Solution

 FlashPro cannot
rename the
programmer/device
with an existing name.

Name is already in use. Create a new name.

 FlashPro cannot
rename the
programmer/device
with an invalid
character.

Invalid character used in
programmer/device name.

Do not use invalid
characters.

 Automatic check for
updates.

 FlashPro can check the
Microsemi website to find if
an updated version of the
software is available. If you
would like to have FlashPro
automatically check for
software updates, choose
Preferences from the File
menu. From the Updates
tab, you can choose your
automatic software update
settings. You can also
select Software Updates
from the Help menu for
updates to the FlashPro
software.

 FlashPro parse error. FlashPro software failed to
parse the file.

 FlashPro does not
support STAPL files
for xxx.

STAPL file not allowed. Use a STAPL file for your
device that is supported by
FlashPro.

SmartDebug
Microsemi’s SmartDebug tool complements design simulation by allowing verification and troubleshooting at the
hardware level.
SmartDebug can be run in the following modes:
• Integrated mode from the Libero Design Flow
• Standalone mode
• Demo mode

Integrated Mode
When run in integrated mode from Libero, SmartDebug can access all design and programming hardware
information. No extra setup step is required. In addition, the Probe Insertion feature is available in Debug FPGA
Array.
To open SmartDebug in the Libero Design Flow window, expand Debug Design and double-click SmartDebug
Design.

FlashPro User Guide

 232

Standalone Mode
SmartDebug can be installed separately in the setup containing FlashPro, FlashPro Express, and Job Manager.
This provides a lean installation that includes all the programming and debug tools to be installed in a lab
environment for debug. In this mode, SmartDebug is launched outside of the Libero Design Flow. When launched
in standalone mode, you must to go through SmartDebug project creation and import a Design Debug Data
Container (DDC) file, exported from Libero, to access all debug features in the supported devices.
Note: In standalone mode, the Probe Insertion feature is not available in FPGA Array Debug, as it requires
incremental routing to connect the user net to the specified I/O.

Demo Mode
Demo mode allows you to experience SmartDebug features (Active Probe, Live Probe, Memory Blocks,
SERDESDebug Transceiver) without connecting a board to the system running SmartDebug.
Note: SmartDebug demo mode is for demonstration purposes only, and does not provide the functionality of
integrated mode or standalone mode.
Note: You cannot switch between demo mode and normal mode while SmartDebug is running.
For detailed information about SmartDebug, refer to the SmartDebug User Guide.

https://coredocs.s3.amazonaws.com/Libero/11_8_4/Tool/smartdebug_ug.pdf

FlashPro User Guide

 233

Electrical Parameters

DC Characteristics for FlashPro5/4/3/3X
Note: The target board must provide the VCC, VCCI, VPUMP, and VJTAG during programming. However,

if there is only one ProASIC3 device on the target board, the FlashPro5/4/3/3X can provide the
VPUMP power supply via the USB port.

Note: The VJTAG signal is driven from the target/DUT board. The VJTAG pin is sensed by the FP4 to
configure the internal input and output buffers to the same IO Voltage levels. The VJTAG pin is only
an input pin to the programmer.

Table 28 · DC Characteristic for FlashPro5/4/3/3X

Description Symbol Min Max Unit

Input low voltage, TDO VIL -0.5 0.35*VJTAG V

Input high voltage, TDO VIH 0.65*VJTAG 3.6 V

Input current, TDO IIL, IIH -20 +20 mA

Input capacitance, TDO 40 pF

Output voltage, VPUMP, operating VPP +3.0 +3.6 V

Output current, VPUMP IPP 250 mA

VJTAG = 1.5V

Output low voltage, TCK, TMS, TDI, 100µA load VOL 0.0 0.2 V

Output low voltage, TCK, TMS, TDI, 4mA load VOL 0.0 0.30*VJTAG V

Output high voltage, TCK, TMS, TDI, 100µA load V VJTAG-0.2 VJTAG V

Output high voltage, TCK, TMS, TDI, 4mA load VOH 0.70*VJTAG VJTAG V

Output current, TCK, TMS, TDI IOL, IOH -4 +4 mA

VJTAG = 1.8V

Output low voltage, TCK, TMS, TDI, 100µA load VOL 0.0 0.2 V

Output low voltage, TCK, TMS, TDI, 6mA load VOL 0.0 0.3 V

Output high voltage, TCK, TMS, TDI, 100µA load VOH VJTAG-0.2 VJTAG V

Output high voltage, TCK, TMS, TDI, 6mA load VOH 1.25 VJTAG V

Output current, TCK, TMS, TDI IOL, IOH -6 +6 mA

VJTAG = 2.5V

Output low voltage, TCK, TMS, TDI, 100µA load VOL 0.0 0.2 V

FlashPro User Guide

 234

Description Symbol Min Max Unit

Output low voltage, TCK, TMS, TDI, 8mA load VOL 0.0 0.6 V

Output high voltage, TCK, TMS, TDI, 100µA load VOH VJTAG-0.2 VJTAG V

Output high voltage, TCK, TMS, TDI, 8mA load VOH 1.8 VJTAG V

Output current, TCK, TMS, TDI IOL, IOH -8 +8 mA

VJTAG = 3.3V

Output low voltage, TCK, TMS, TDI, 100µA load VOL 0.0 0.2 V

Output low voltage, TCK, TMS, TDI, 8mA load VOL 0.0 0.4 V

Output high voltage, TCK, TMS, TDI, 100µA load VOH VJTAG-0.2 VJTAG V

Output high voltage, TCK, TMS, TDI, 8mA load VOH 2.4 VJTAG V

Output current, TCK, TMS, TDI IOL, IOH -8 +8 mA

DC Characteristics for FlashPro Lite
Table 29 · DC Characteristic for FlashPro Lite

Description Symbol Min Max Unit

Input low voltage, TDO VIL -0.5 0.7 V

Input high voltage, TDO VIH 1.7 5.0 V

Input current, TDO IIL, IIH -10 +10 uA

Input capacitance, TDO 40 pF

Input voltage, VDD, operating (see note) +2.3 +3.5 V

Input voltage, VDD, power off -1.0 +1.0 V

Input current, VDD IVDD 500 mA

Output voltage, VPP, operating VPP +15.9 +16.5 V

Output voltage, VPN, operating VPN -13.8 -13.4 V

Output current, IPP IPP 0 35 mA

Output current, IPN IPN 0 -15 mA

Output low voltage, TCK, TMS, TDI, 100uA load VOL 0.0 0.2 V

Output low voltage, TCK, TMS, TDI, 1mA load VOL 0.0 0.5 V

Output low voltage, TCK, TMS, TDI, 2mA load VOL 0.0 0.8 V

Output high voltage, TCK, TMS, TDI, 100uA
load

VOH 2.1 2.5 V

Output high voltage, TCK, TMS, TDI, 1mA load VOH 1.9 2.5 V

FlashPro User Guide

 235

Description Symbol Min Max Unit

Output high voltage, TCK, TMS, TDI, 2mA load VOH 1.6 2.5 V

Output current, TCK, TMS, TDI, nTRST IOL, IOH -2 +2 mA

Note: Up to 3.5 V can be supplied to the FlashPro Lite on the VDD pin. However, if the VDD supply for the

FlashPro is also connected to the APA VDD supply, the voltage for the VDD pin cannot exceed 2.7 V.

DC Characteristics for FlashPro
Table 30 · DC Characteristic for FlashPro

Description Symbol Min Max Unit

Input low voltage, TDO VIL -0.5 0.30 * VDDP V

Input high voltage, TDO VIH 0.70 * VDDP 5.5 V

Input current, TDO IIL, IIH -10 +10 uA

Input voltage, VDDP, VDDL 0 5.25 V

Input voltage, VPP 0 21.0 V

Input voltage, VPN -21.0 V

Input current, VDDP, VDDL, VPN, VP IVCC 5.0 mA

Output voltage range, VDDP VDDP 1.5 3.3 V

Output voltage range, VPP VPP 15.0 18.0 V

Output voltage range, VPN VPN -16.0 -12.0 V

Output voltage resolution / Acccuracy 100 / ±50 mV

Output current, IDDP IDDP -1351 +135 mA

Output current, IDDL IDDL -1351 +135 mA

Output current, IPP IPP -27011 +270 mA

Output current, IPN IPN -270 +2701 mA

Output low voltage, TCK, TMS, TDI, OUT0, nTRST VOL 0.0 0.4 V

Output high voltage, TCK, TMS, TDI, OUT0, nTRST VOH 0.85 *
VDDP

+ 0.3
VDDP

V

Output current, TCK, TMS, TDI, OUT0, nTRST IOL, IOH -12 +12 mA

Note: Note (1): When power supply mode is set to ABI_GROUND.

FlashPro User Guide

 236

Note: * - If you want to power-up the device from the board power supply, clear the checkboxes for VDDL
and VDDP. VPP and VPN are required during programming only and are supplied by the FlashPro
programmer.

Note: (2) Microsemi does not have operating temperature information for the FlashPro programmer.
FlashPro is intended to be used as lab or production equipment and not tested at extreme
temperatures. All devices in the unit are commercial temp. FlashPro4 went through a burn-in cycle
operating at 100C for 250 hours during quality testing. This involved repeatedly powering the
programmers and then programming after the burn in; they are not actively programming during the
burn in.

FlashPro User Guide

 237

Electrical Specifications

FlashPro5
The FlashPro5 is a JTAG and a SPI based programmer for flash based Microsemi devices.
The FlashPro5 output is supplied via a connector to which a detachable 10-pin cable is fitted. The connector on
the FlashPro5 unit is a 2x5, RA male Header connector, which is manufactured by AMP and has a manufacturer’s
part number of 103310-1. This is a standard 2x5, 0.1 pitch connector which is keyed. Use the 10 pin right-angle
header, AMP P/N 103310-1 (DigiKey P/N A26285-ND) for FlashPro4 and use the 10 pin straight header, AMP
P/N 103308-1 (DigiKey P/N A26267-ND) for the straight version.
The signals on the pins of the FlashPro5 10-pin connector are shown in the figure below.

Figure 161 · FlashPro5 10-Pin Connector

Note: All ground pins must be connected. The rectangular shape shows connections on the programmer
itself. Arrows show current flow towards or from the rectangular programmer.

The table below shows a description of the signals.
Table 31 · FlashPro5 Signal Description

Signal Description

VPUMP 3.3V Programming voltage

GND Signal reference

TCK/SCK JTAG clock; SPI clock

TDI/SDI JTAG data input to device; SPI MOSI

TDO/SDO JTAG data output from device; SPI MISO

TMS/SS# JTAG mode select; SPI Chip Select

nTRST Programmable output pin may be set to off, toggle, low, or high level

VJTAG Reference voltage from the target board

PROG_MODE IGLOO v2 family - Used for switching from VCC 1.2V to 1.5V during programming

Some designers of high-integrity boards (military and avionic) may arrange their boards so that TRST is tied to
ground via a weak pull-down resistor. The purpose of this is to hold the JTAG state-machine in a reset state by

FlashPro User Guide

238

default, so that even with TCK oscillating, some sudden ion bombardment or other electrical even will not
suddenly throw the JTAG state-machine into an unknown state. If your design also uses a weak pull-down
resistor on TRST on your board, then enabling the “Drive TRST” flag will be required to force the JTAG state-
machine out of reset to permit programming to take place. With most boards, there is no need to select this flag.

FlashPro4
The FlashPro4 output is supplied via a connector to which a detachable 10-pin cable is fitted. The connector on
the FlashPro4 unit is a 2x5, RA male Header connector, which is manufactured by AMP and has a manufacturer’s
part number of 103310-1. This is a standard 2x5, 0.1 pitch connector which is keyed. Use the 10 pin right-angle
header, AMP P/N 103310-1 (DigiKey P/N A26285-ND) for FlashPro4 and use the 10 pin straight header, AMP
P/N 103308-1 (DigiKey P/N A26267-ND) for the straight version..
The signals on the pins of the FlashPro4 10-pin connector are shown in the figure below (extracted from
FlashPro4 product specification):

Figure 162 · FlashPro4 10-Pin Connector
Note: All ground pins must be connected. The rectangular shape shows connections on the programmer

itself. Arrows show current flow towards or from the rectangular programmer.
The table below shows a description of the signals.

Table 32 · FlashPro4 Signal Description

Signal Description

VPUMP 3.3V Programming voltage

GND Signal reference

TCK JTAG clock

TDI JTAG data input to device

TDO JTAG data output from device

TMS JTAG mode select

nTRST Programmable output pin may be set to off, toggle, low, or high level

VJTAG Reference voltage from the target board

PROG_MODE IGLOO v2 family - Used for switching from VCC 1.2V to 1.5V during programming

Some designers of high-integrity boards (military and avionic) may arrange their boards so that TRST is tied to
ground via a weak pull-down resistor. The purpose of this is to hold the JTAG state-machine in a reset state by
default, so that even with TCK oscillating, some sudden ion bombardment or other electrical even will not
suddenly throw the JTAG state-machine into an unknown state. If your design also uses a weak pull-down

FlashPro User Guide

239

resistor on TRST on your board, then enabling the “Drive TRST” flag will be required to force the JTAG state-
machine out of reset to permit programming to take place. With most boards, there is no need to select this flag.

FlashPro3
The FlashPro3 output is supplied via a connector to which a detachable 10-pin cable is fitted. The connector on
the FlashPro3 unit is a 2x5, RA male Header connector, which is manufactured by AMP and has a
manufacturer’s part number of 103310-1. This is a standard 2x5, 0.1 pitch connector which is keyed. Use the 10
pin right-angle header, AMP P/N 103310-1 (DigiKey P/N A26285-ND) for FlashPro5/4/3/3X and use the 10 pin
straight header, AMP P/N 103308-1 (DigiKey P/N A26267-ND) for the straight version.
The signals on the pins of the FlashPro3 10-pin connector are shown in the figure below (extracted from
FlashPro3 product specification):

Figure 163 · FlashPro3 10-Pin Connector
Note: All ground pins must be connected. The rectangular shape shows connections on the programmer

itself. Arrows show current flow towards or from the rectangular programmer.
The table below shows a description of the signals.

Table 33 · FlashPro3 Signal Description

Signal Description

VPUMP 3.3V Programming voltage

GND Signal reference

TCK JTAG clock

TDI JTAG data input to device

TDO JTAG data output from device

TMS JTAG mode select

nTRST Programmable output pin may be set to off, toggle, low, or high level

VJTAG Reference voltage from the target board

N/C Programmer does not connect to this pin

Some designers of high-integrity boards (military and avionic) may arrange their boards so that TRST is tied to
ground via a weak pull-down resistor. The purpose of this is to hold the JTAG state-machine in a reset state by
default, so that even with TCK oscillating, some sudden ion bombardment or other electrical even will not
suddenly throw the JTAG state-machine into an unknown state. If your design also uses a weak pull-down

FlashPro User Guide

 240

resistor on TRST on your board, then enabling the “Drive TRST” flag will be required to force the JTAG state-
machine out of reset to permit programming to take place. With most boards, there is no need to select this flag.

FlashPro Lite
For FlashPro Lite, the existing 26-pin connector is shown in the figure below.

Figure 164 · 26-pin Connector for FlashPro Lite

Note: All ground pins must be connected. The rectangular shape shows connections on the programmer
itself. Arrows show current flow towards or from the rectangular programmer.

The appropriate SAMTEC micro connector target cable for this is:
Samtec FFSD-13-D-12.00-01-N.
The 12 inch cable is specified. This is likely to be more than enough to connect to the board and reducing the
inductance will help compared with 18 inches, which is supplied by the default with FlashPro Lite.
See the table below for a description of the signals.

Table 34 · FlashPro Lite Signal Description

Signal Description

VDDP VDD supply for logic I/O pads

VDDL VDD supply for core

VPP Positive programming supply (+16.5V)

VPN Negative programming supply(-13.8V)

GND Signal reference

SENSE Input from target board to programmer to indicate connection to ground

TCK JTAG clock

TDI JTAG data input to device

TDO JTAG data output from device

FlashPro User Guide

 241

Signal Description

TMS JTAG mode select

nTRST Programmable output pin may be set to off, toggle, low, or high level

RCK/OUT0 Programmable output pin may be set to off, toggle, low, or high level

N/C Programmer does not connect to this pin

Some designers of high-integrity boards (military and avionic) may arrange their boards so that TRST is tied to
ground via a weak pull-down resistor. The purpose of this is to hold the JTAG state-machine in a reset state by
default, so that even with TCK oscillating, some sudden ion bombardment or other electrical even will not
suddenly throw the JTAG state-machine into an unknown state. If your design also uses a weak pull-down
resistor on TRST on your board, then enabling the "Drive TRST" flag will be required to force the JTAG state-
machine out of reset to permit programming to take place. With most boards, there is no need to select this flag.

FlashPro
For FlashPro, you can use the same 26-pin target cable you used for FlashPro Lite, but the connections are
shown in the figure below.

Figure 165 · 26-pin connections for FlashPro

Note: All ground pins must be connected. The rectangular shape shows connections on the programmer
itself. Arrows show current flow towards or from the rectangular programmer.

The table below shows the signal pin descriptions for FlashPro.
Table 35 · FlashPro Signal Description

Signal Description

VDDP VDD supply for logic I/O pads

VDDL VDD supply for core

VPP Positive programming supply (+16.5 V)

FlashPro User Guide

 242

Signal Description

VPN Negative programming supply (-13.8 V)

GND Signal reference

SENSE Input from target board to programmer to indicate connection to
ground

TCK JTAG clock

TDI JTAG data input to device

TDO JTAG data output from device

TMS JTAG mode select

nTRST Programmable output pin may be set to off, toggle, low, or high level

RCK/OUT0 Programmable output pin may be set to off, toggle, low, or high level

2.5V, 2.5V/3.3V,
N/C

Programmer does not connect to these pins

Some designers of high-integrity boards (military and avionic) may arrange their boards so that TRST is tied to
ground via a weak pull-down resistor. The purpose of this is to hold the JTAG state-machine in a reset state by
default, so that even with TCK oscillating, some sudden ion bombardment or other electrical even will not
suddenly throw the JTAG state-machine into an unknown state. If your design also uses a weak pull-down
resistor on TRST on your board, then enabling the "Drive TRST" flag will be required to force the JTAG state-
machine out of reset to permit programming to take place. With most boards, there is no need to select this flag.

FlashPro 5/4/3/3X Characteristics
Table 36 · JTAG Switching Characteristics for FlashPro5/4/3/3X

Description Symbol Min Max Unit

Output delay from TCK to TDI, TMS TTCKTDI -2 2 ns

TDO setup time before TCK rising, VJTAG=3.3 TTDOTCK 12 ns

TDO setup time before TCK rising, VJTAG=1.5 TTDOTCK 14.5 ns

TDO hold time after TCK rising TTCKTDO 0 ns

TCK period TTCK 41.7 10667 ns

FlashPro and FlashPro Lite Characteristics
The table below shows the JTAG switching characteristics for FlashPro and FlashPro Lite measured at the
programmer end of the JTAG cable.

FlashPro User Guide

 243

Table 37 · JTAG Switching Characteristics for FlashPro and FlashPro Lite

Description Symbol Min Max Unit

Output delay from TCK falling to TDI, TMS TTCKTDI -2 2 ns

TDO setup time before TCK rising TTDOTCK 5.0 ns

TDO hold time after TCK rising TTCKTDO 0 ns

TCK period TTCK 40 10240 ns

Illustration of the JTAG Switching Characteristics
The figure below is an illustration of the JTAG switching characteristics.

Figure 166 · JTAG Switching Characteristics

FlashPro User Guide

 244

References

Customizing the Toolbar
Display the tools and commands you frequently use in the toolbar by customizing it.

To customize the toolbar:
1. From the Customize menu, choose Toolbars. The Customize dialog appears.
2. Click the Toolbar tab and check the tools you want to display by checking their respective boxes, (see figure

below).
Note: You can remove tools from your toolbar by deselecting tools from the Toolbar field.

Figure 167 · Customize Dialog Box

3. Click inside the Show Tooltips checkbox for assistance in identifying icons on your toolbar when you scroll
across them with your mouse.

4. Click inside the Cool Look checkbox to change the look of your toolbar.
5. Click OK.

You can create multiple toolbars and assign names to them. Click the New button and type in a name in the New
toolbar dialog box to create a new toolbar. The name of your toolbar will display in the Toolbar field. Reset your
toolbar to the default settings by clicking the Reset button.

To customize commands:
1. From the Customize menu, choose Toolbars. The Customize dialog appears.
2. Click the Commands tab.

FlashPro User Guide

 245

Figure 168 · Customize Dialog Box

3. Select a category by clicking one of three options (File, Tools, or Programmers). As you click an option,
the buttons to the right of the category area change accordingly.

4. Click and drag a button to your toolbar.
5. Click OK after you have customized your toolbar.
You can also remove commands from your toolbar by reversing the click and drag method described in the steps
above. Click and drag tools from your toolbar to the Buttons field in the Customize dialog box.

Customizing the Programming Window
The FlashPro software also enables you to customize the programmer window by right-clicking on the
programmer window's header (see figure below).

Figure 169 · Programming Window Header

The following right-click menu displays (see figure below).

FlashPro User Guide

 246

Figure 170 · Right-click Menu

The Customize right-click menu (as shown above) is divided into three sections. Click an item in the first section
to set default sizes. Click an item in the second/middle section to add that item to the programmer window, and
click the Advanced or last section to customize the columns in the Programmer window from the Customize
Columns dialog box (see figure below).

Figure 171 · Customize Columns Dialog Box

Note: Follow the instructions in the Customize Columns dialog box to customize the programming window.
Use the Up and Down buttons to move through the list. Use the Show and Hide buttons to hide or
show columns in the programmer window.

FlashPro Preferences
The Preferences dialog box includes three tabs: Log Window, Display Mode, and Updates (see figure below). You
can access the Preferences dialog box by choosing File > Preferences.

FlashPro User Guide

 247

Figure 172 · Preferences Dialog Box

Log Window
The Log Window tab includes options for you to choose color settings for the various messages (Errors,
Warnings, Information, Links) displayed in the Log window (see figure above).

Display Mode
The Display Mode tab describes the two display modes available in the FlashPro software (as shown in the figure
below). Read each option carefully and choose the mode that will meet your programming needs. As the
Preferences dialog box indicates, the Classic Mode is designed for multiple programming runs when it is not
necessary for you to change your device settings. The Advanced Mode differs from the Classic Mode because
displays both windows (Programmer List and Device Configuration) in the same GUI. Use this mode when you
need to change device settings frequently.

FlashPro User Guide

 248

Figure 173 · Preferences Dialog Box- Display Mode

Software Updates
The Updates tab lists the FlashPro software setting options. You can choose to have the FlashPro software
automatically check for updates at startup (from the Microsemi website) or remind you to check for updates at
startup (requires you to go to the Microsemi SoC website). If you want to decline both options, choose the last
option: Do not check for updates or remind me at startup.

Figure 174 · Preferences Dialog Box- Updates

Software version is up to date
This informational message notifies you that there are no software updates available from Microsemi at this time.
You can set your update preferences to automatically check for software updates.

FlashPro User Guide

 249

FlashPro File Menu
 In the Chain Programming mode, the Edit menu and the Configuration menu changes. The table notes these
changes.

Command Icon Shortcut Sub-menu Function

New Project

Ctrl + N Create a new project

Open Project

Ctrl + O Opens the FlashPro Open Project dialog box

Restore
Chainbuilder
Project

 Restores a ChainBuilder project in FlashPro

Close Project Closes the current project

Save Project

Ctrl + S Saves the current project

Save Project As Opens the Save As dialog box; enables you to
save your project in a different directory or with
a different name

Import
Configuration
File

 Ctrl + I Opens the Import Configuration File dialog
box; enables you to import configuration files
for your device(s)

Set Project Log
File >

 Main Log File Opens the Set Log File dialog box; sets the
location of your main log file

 Serialization Log
File

Opens the Set Serialization Log File dialog
box; sets the location of your serialization log
file

Run Script Opens the Execute Script dialog box; enables
you to run Tcl Scripts with arguments

Export > Configuration
File

Opens the Export Configuration File dialog
box; enables you to export configuration file(s)

 Script Opens the Save As dialog box; enables you to
export your actions as a Tcl script

 Chain STAPL
File

Opens the Export Chain STAPL File dialog
box; enables you to export and save your
Chain STAPL file

 Chain SVF File Opens the Export Chain SVF File dialog box;
enables you to export and save your Chain
SVF file

 Single Device
STAPL File

Opens the Export Single Device STAPL File
dialog box; enables you to export and save
your single device STAPL file

FlashPro User Guide

 250

Command Icon Shortcut Sub-menu Function

 Single Device
SVF File

Opens the Export Single Device SVF File
dialog box; enables you to export and save
your single device SVF file

 Single 1532 File Opens the Export Single 1532 File dialog box;
enables you to export and save your single
1532 file

Preferences Opens the Preferences dialog box; enables
you to set your Log window, Display Mode and
Update preferences for FlashPro

Exit Exits FlashPro

FlashPro Edit Menu

Command Shortcut Function

Cut Devices Ctrl + Shift + X Removes (cuts) devices from the project

Copy Devices Ctrl + Shift + C Copies the selected device(s) to your Clipboard

Paste Devices Ctrl + Shift + V Pastes the devices from your Clipboard into the project

Clear Log Window Clears the Log window (deletes all Log window content)

FlashPro View Menu
The View menu shows or hides the FlashPro GUI elements.

Command Sub-menu Function

Status Bar Shows/hides the FlashPro Status Bar

Programmer List Window Shows/hides the Programmer List Window

Programmer Details Window Shows/hides the Programmer Details Window

Single Device Configuration
Window

 Shows/hides the Single Device Configuration Window

Log Window Shows/hides the Log window

Single Device Configuration > Basic View Enables the Basic view for the Single Device
Configuration window

Advanced
View

Enables the Advanced view for the Single Device
Configuration window

FlashPro User Guide

 251

FlashPro Tools Menu

Command Icon Shortcut Sub-menu Function

Mode >

 Single-Device
Programming

Sets FlashPro to Single-Device Programming
mode

 Chain

Programming
Sets FlashPro to Chain Programming mode

Serialization >

 Skip Serial Data Sets FlashPro to skip serial data during
programming

 Reuse Serial

Data
Sets FlashPro to reuse serial data during
programming

Programmer
Settings

 Opens the Programmer Settings dialog box;
enables you to set options for all FlashPro
programmer types

Import Settings
for Non-
Microsemi
Devices

 Opens the Import Settings for Non-Microsemi
Devices dialog box; enables you to import
your settings for non-Microsemi devices you
wish to program with FlashPro

Connect
Parallel Port
Cable

 Opens the Connect Parallel Port Cable dialog

box; enables you to connect your parallel port
buffer cable

Run

Ctrl +
Enter

 Programs your device

FlashPro Programmers Menu

Command Icon Shortcut Function

Ping

 Pings a selected programmer(s)

Self Test

 Runs a self-test on the selected programmer(s)

Scan Chain

 Runs scan chain on the selected programmer(s)

Remove

 Removes the selected programmer(s) from FlashPro

Refresh/Rescan Ctrl + F5 Refreshes FlashPro and rescans for programmers

FlashPro User Guide

 252

FlashPro Configuration Menu

Command Icon Shortcut Sub-menu Function

Select Action

Ctrl + Shift
+ A

Serialization > Ctrl + Shift
+ S

Use
Serialization

Enables you to use Serialization in FlashPro

 Ctrl + Shift
+ R

Select Range Enables you to set your Serialization range

 Ctrl + Shift
+ U

View Status Enables you to view your Serialization status

Load
Programming
File

 Ctrl + Shift
+ L

 Opens the Load Programming File dialog box

Unload
Programming
File

 Removes (unloads) your programming file from
FlashPro

PDB
Configuration

 Ctrl + Shift
+ P

 Opens the PDB Configuration dialog box;
enables you to set your PDF configuration
options

Select Target
Device

 Ctrl Shift +
D

 Opens the Select Target Device dialog box;
enables you to set your target device for
programming

Chain
Parameter

 Ctrl + Shift
+ H

 Opens the Chain Parameter dialog box;
enables you to set parameters for your
programming chain

FlashPro Customize Menu

Command Function

Toolbars Opens the Customize dialog box to the Toolbars tab; enables you to show/hide toolbars
and tooltips

Commands Opens the Customize dialog box to the Commands tab; enables you to add/remove
individual commands to your toolbars

FlashPro User Guide

 253

FlashPro Help Menu

Command Icon Sub-menu Function

Help > Help Topics Opens the help

 Programmer View Opens the help to the FlashPro Programmer List
Window topic

 Details on
Programmer View

Opens the help to the Programmer Details Window
topic

 Single Device
Programming

Opens the Single Device Programming help topic

 Chain Programming Opens the Chain Configuration Window help topic

Microsemi Web Site Opens the Microsemi website in your default browser

Check for Software
Updates

 Checks for software updates (works only if you are
connected to the internet)

About FlashPro Lists the FlashPro release information

FlashPro Flow Window
The Flow window (located between the toolbar and Log window in the FlashPro GUI)consists of the following
buttons: New Project, Open Project, Configure Device, View Programmers, and Run. See the table below for
a description of these features.

Figure 175 · Flow Window

Table 38 · Flow Window Button Description

Button Description

New Project Creates a new project. Opens the New Project dialog box.

Open Project Opens a new project. Opens the Open Project dialog box.

Configure Device Opens the Single Device Configuration window to
configure your file.

View Programmers Opens the Programmer List Window for you to view your
programmers.

Refresh/Rescan for
Programmers

Rescans for programmers.

http://www.microsemi.com/

FlashPro User Guide

 254

Button Description

Run Executes programming.

FlashPro Log Window
The Log window displays errors, warnings, and basic information about your device. Click the tabs at bottom of
the Log window to toggle between messages or click the All tab to display all of the messages.
You can access the Log window from the View menu.

Setting Log window preferences
From the Preferences dialog box, you can change the text color of the messages that appear in the Log window.

To set Log window preferences:
1. From the File menu, choose Preferences.
2. Follow the directions in the Color Settings area or click the Restore Defaults button.

Figure 176 · Preferences

3. Click OK to apply settings.
Note: You can clear the Log window by choosing Clear Log window from the Edit menu or you can

automatically erase the information by checking the Clear Log Window Automatically checkbox.

FlashPro Status Bar
The Status bar displays the program status, the programmer information (the file name for single device
programming and number of devices for chain programming), and the programming mode (single or chain).

FlashPro Programmer List Window
To activate the Programmer List Window, select View > Programmer List Window. The FlashPro
Programmer List Window consists of a spreadsheet with the programmer name, programmer type, port number,

FlashPro User Guide

 255

programmer status, programmer enable check box, and a Refresh/Rescan for New Programmers button as
shown in the figure below.

Note: Double-clicking any of the spreadsheet columns opens the Programmer Details window.

Figure 177 · Programmer List Window

Changing the Name of your Programmer
You can change the name of your programmer by double-clicking in the spreadsheet cell or you can choose Edit
Cell from the right-click menu.

Connecting New Programmers
You can connect new programmers by clicking the Refresh/Rescan for Programmers button.

Accessing Right-Click Menus
If you have checked the Programmer Enabled checkbox, you can right-click on any of the spreadsheet fields to
access the menu in the figure below.

Right-Click Menu

If you have not checked the Programmer Enabled checkbox, you can right-click in the on any of the spreadsheet
fields, to access a menu to remove or enable the programmer (see figure below).

Figure 178 · Right-Click Menu

Programmer Details Window
The Programmer Details Window displays your programmer ID, port, type, name, and programming status (see
figure below). Use this window to check the status and access common commands (ping, self-test, scan chain)
and to enable/disable or remove the programmer from the chain.

FlashPro User Guide

 256

Figure 179 · Programmer Details Window

You can access this window from the View menu or you can double click any of the fields in the Programmer
List Window (Programmer Name, Programmer Type, Port, Programmer Status, and Programmer Enabled).
Click the Enable Programmer checkbox to enable your programmer and activate the Programmer Details
Window.
From the Programmer Details Window, you can ping a programmer, perform a self-test, scan a programmer, or
remove a programmer.

FlashPro Single Device Configuration Window
To access the Single Device Configuration Window click the Configure Device button in the Flow window. The
Single Device Configuration window displays PDB/STAPL file and serialization information (see figure below).
You can also deactivate serialization by clicking the Serialization checkbox.

FlashPro User Guide

 257

Figure 180 · Single Device Configuration Window

Loading the PDB/STAPL File
You can load your PDB/STAPL file from the Configuration menu by choosing Load Programming File or by
clicking the Browse button in the Single Device Configuration Window.
You can set chain parameter settings by clicking the Chain Parameter button.

Selecting Serialization Indexes
To select the serialization indexes:

1. Check the Serialization checkbox to activate serialization.
2. Click the Select Serialization Indexes button. The Serial Settings dialog box appears (as shown in the figure below).

Figure 181 · Serial Settings Dialog Box

3. Click to select an index in the Indexes column.

FlashPro User Guide

 258

4. Click the red arrow button that is pointing toward the Selected Indexes column to move an index to the
Selected Indexes column.

5. If you want to move all the Indexes to the Selected Indexes column, click the All button.
6. Click OK. Information about your serial indexes displays.

You can move indexes from the Selected Indexes column to the Indexes column by clicking the red arrow
buttons pointing toward the Indexes column.
You can set your indexes by choosing the following check boxes: View unused data, View used data, and View
skipped data.

Selecting Action and Procedures
You can select actions from the Basic mode and the Advanced mode. The Basic mode is provided for users that
only require the Program, Verify and Erase actions. In Basic mode, other actions are not visible, and the
Procedures run by an Action cannot be modified.

Figure 182 · Basic Mode

The Advanced mode enables you to select an action and modify the procedures for the selected action. In
Advanced mode, actions are determined by the stapl standard used.

Figure 183 · Advanced Mode

To select an action (Advanced Mode):
1. Click the down arrow in the Action menu and select and action (see figure below).

Figure 184 · Action Menu

FlashPro User Guide

 259

2. Click the Procedures button. The Select Action and Procedures dialog box appears.

Figure 185 · Select Action And Procedures Dialog Box

3. Select a procedure or click the Restore Default Procedures button. Gray checkboxes indicate that the
procedure is mandatory.

Note: The procedures in the Select Action And Procedures dialog box are determined by the
STAPL standard. The Recommended procedures are selected by default and the Optional
procedures are unselected by default.

4. Click OK.
Note: You can also click the Select Action and Procedures dialog box from the toolbar.

Chain Configuration Window
The Chain Configuration Window displays the chain order, the chain editing options, and the chain configuration
grid (see figure below).
The Show Chain Editing checkbox, when checked, displays your chain editing options (Configure device, Add
Microsemi Device, Add Non-Microsemi Device, and organization buttons to move your device within the grid).
For information on how to add Microsemi and Non-Microsemi devices, see the Chain Editing help topic.
For information on how to use the Organize buttons, see Using the Organize Buttons in the Chain Programming
Grid.
You can enable programming and serialization by checking the Enable Device checkbox and the Enable Serial
checkbox in the Chain Configuration grid.

Figure 186 · Chain Configuration Window

FlashPro User Guide

 260

Auto-Construction of Chain from Scan Chain
When in chain programming mode, the FlashPro software enables you to automatically construct the chain by
clicking the Construct the chain from a Scan Chain operation link, or by selecting Construct Chain
Automatically from the Configuration menu.
This enables you to scan a chain of devices and automatically construct the chain within FlashPro. If you are
using non-Microsemi devices, you will need to import the device settings into the database by using the Import
Settings for Non-Microsemi Devices dialog box. The software also scans the chain before constructing it, which
reduces the possibilities of having errors in the chain. For more information on how to automatically construct a
chain from scan chain, refer to the Automatic Chain Construction Tutorial.

Chain Editing Options
The FlashPro software enables you to edit your chain by adding Microsemi and Non-Microsemi devices. You can
add devices by clicking the Add Microsemi Device button and the Add Non-Microsemi Device button or you
can select these options from the Configuration menu.

Note: For more information about how to edit the chain, see Chain Editing.

Editing the Chain Configuration Grid
The Chain Configuration Grid enables you to select an Action for your device, Enable Serialization, and edit
the grid using the right-click menu.

To select an Action from the Configuration Grid:
1. Choose the device you would like to program and check the Enable Device checkbox.
2. In the Action column, click the down arrow to expose the drop-down menu (see figure below).
3. Select your desired action.

Figure 187 · Drop-Down Menu for Select Action

To enable Serialization:
1. Check the Enable Serial checkbox. By enabling serialization, the action options change.

Note: Before you can enable serialization, you must check the Enable Device checkbox.
2. In the Action column, click the down arrow to expose the drop-down menu (see figure below).

Figure 188 · Drop-Down Menu for Select Action

FlashPro User Guide

 261

3. Select your desired action.
4. Choose Select button from the Serial Data column, which is next to the Action column (see figure below).

Figure 189 · Serial Data Column

The Serial Settings dialog box appears.
5. Choose your serial settings from the Serial Settings dialog box.

See Serial Settings for more information about this topic.
Note: Uncheck the Enable Serial checkbox to disable serialization.

To edit the Chain Configuration Grid:
1. Select the device you would like to edit and right click anywhere in the row of the selected device. The right-

click menu below displays.
2. Select and click an option from the right-click menu.

Note: The Device Configuration menu includes options for configuring your device.

Microsemi SoC Products Group Headquarters
Microsemi Corporation is a supplier of innovative programmable logic solutions, including field-programmable
gate arrays (FPGAs) based on antifuse and flash technologies, high-performance intellectual property (IP) cores,
software development tools, and design services targeted for the high-speed communications, application-specific
integrated circuit (ASIC) replacement, and radiation-tolerant markets.

Address: Microsemi SoC Products Group
3870 North First Street
San Jose, CA 95134

Phone: 408-643-6000

Contact Information
For the most up-to-date contact information, check the Microsemi Home Page.
Contact information for FPGAs & SoCs can be found at the FPGAs and SoCs Support Page
If you do not have internet access, the following information was accurate at the time of publication:
• Technical Support

• Web: https://soc.microsemi.com/mycases
• Phone (NA): 800.262.1060
• Phone (Int'l): +1 650.313.4460
• Email: soc_tech@microsemi.com

• Customer (non-technical) Support
• Phone: +1 650.318.2470
• Email: customer.service@microsemi.com

• Sales Support
• For pricing, order status and lead time information for all Microsemi SoC products, contact your

Microsemi Sales Representative
• Technical Support for RH and RT FPGAs that are regulated by International Traffic in Arms Regulations

(ITAR)

https://www.microsemi.com/
https://www.microsemi.com/product-directory/product-support/4217-fpgas-socs-support
https://soc.microsemi.com/mycases
https://www.microsemi.com/salescontacts

FlashPro User Guide

 262

• Phone (NA): 888.988.ITAR
• Phone (Int'l): +1 650.318.4900
• Email: soc_tech_itar@microsemi.com

FlashPro User Guide

 263

Regulatory and Compliance Information

EU Declaration of Conformity:
This product complies with Directive 2011/65/EU of the European Parliament and of the Council of 8 June 2011
on the restriction of the use of certain hazardous substances in electrical and electronic equipment.
To view the Declaration of Conformity in English:
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=131772

Non-English:
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=131748

Markings:

 This product complies with 2004/108/EC, Electromagnetic Compatibility (EMC) Directive

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=131772
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=131748

	Table of Contents
	Programming Tool Model Overview 8
	Programming Tool User Model Overview - SmartFusion Only 10
	SmartFusion2 Programming 12
	Supported Families 12
	Installing FlashPro Software and Hardware 13
	Starting FlashPro 13
	Creating a New Project 15
	Opening a Project 16
	Saving a Project 16
	Parallel Programming with FlashPro5/4/3/3X 16
	Serialization with FlashPro 17
	FlashPro and SVF 18
	FlashPro and the 1532 File Format 19
	Single STAPL/PDB File Basic Tutorial 21
	Single Microsemi Device with Serialization Tutorial 24
	Chain Programming Tutorial 29
	SmartFusion Programming Tutorial 33
	Modifying Memory Contents and Programming a Device Tutorial 34
	Modifying FlashROM Contents and Programming a Device Tutorial 35
	Programming Only Security Settings Tutorial 38
	Automatic Chain Construction Tutorial 40
	eNVM/EFMB Client JTAG Protection Use Flow 43
	eNVM Client JTAG Protection Tutorial - SmartFusion 44
	EFMB Client JTAG Protection Tutorial - Fusion 49
	Fusion Calibration Backup and Recovery Tutorial 52
	Specify I/O States During Programming Tutorial 53
	Multiple Device Chain Programming 56
	Multiple Device Serialization Chain Programming 58
	Multiple Programmer Multiple Device Chain Programming 61
	Multiple Programmer and Multiple Device Serialization Chain Programming 64
	Setting Disabled Microsemi SoC Devices to HIGH-Z 67
	Programmer Settings 69
	Ping Programmers 71
	Performing a Self-Test 71
	Scanning a Chain 72
	Enabling and Disabling Programmers 72
	Renaming a Programmer 72
	Removing a Programmer 72
	Selecting Programmers 72
	Loading a Programming File 74
	Select Target Device 75
	Chain Settings 76
	Serial Settings 76
	Chain Order 78
	Multiple Device Chain Programming 78
	Chain Configuration Window 80
	Editing the Chain Configuration Grid 81
	Chain Editing 83
	Using the Organize Buttons in the Chain Programming Grid 83
	Cutting, Copying and Pasting Devices from the Chain 84
	Removing Devices from the Chain 84
	Moving Devices within the Chain 84
	Skip Serial Data 84
	Reuse Serial Data 84
	Serialization with Parallel Programming 85
	Adding a Microsemi Device 86
	Adding a Microsemi Device from Files 86
	Adding a Non-Microsemi Device 86
	Selecting an Action 89
	Using Serialization 89
	Modifying Programming Settings in FlashPro with a PDB File 90
	Configuring Security, FlashROM and Embedded Flash Memory Settings in FlashPro 92
	Configuring Security Settings in FlashPro 93
	Custom Security Settings 95
	Changing or Disabling Security Keys 99
	Configuring FlashROM Settings in FlashPro 99
	Express Configuration 100
	Programming File Actions for IGLOO and ProASIC3 Devices 101
	Programming File Actions - SmartFusion and Fusion 104
	Generate a Programming File in FlashPoint 109
	Programming File Types 110
	Generate a Programming File for SmartFusion 111
	Generate a Programming File for CoreMP7/Cortex-M1 Device Support 112
	Generate a Programming File for AFS Device Support - Designer Only 112
	Generate a Programming File for Serialization Support in In House Programming (IHP) 113
	Creating a Programming Database (PDB) File in Designer 115
	Programming Embedded Flash Memory Block 116
	Programming the FPGA Array 117
	Programming the FlashROM 117
	Silicon Signature 119
	Programming Security Settings 119
	Reprogramming a Secured Device 125
	Custom Serialization Data for FlashROM Region 126
	Custom Serialization Data File Format 127
	Specifying I/O States During Programming 129
	Custom I/O Settings and Boundary Scan Registers 131
	Specifying I/O States During Programming - I/O States and BSR Details 131
	Specify I/O States During Programming Dialog Box 133
	Generate a DAT file 134
	Parallel Port Cable Information 135
	Importing Configuration Files 136
	Exporting Configuration Files 136
	Export Programming Files (SmartFusion Only) 136
	Exporting a Chain STAPL File 139
	Exporting a Chain SVF File 139
	Exporting Single Device STAPL Files 139
	Exporting Single Device SVF Files 139
	Exporting Single Device 1532 Files 140
	Opening an Existing FlashPro Project on a Different Machine 140
	General Hot Keys 142
	Single Device Programming Hot Keys 142
	Chain Programming Hot Keys 142
	Batch Mode 143
	About TCL Commands - FlashPro Tcl Command Reference 144
	Running Tcl Scripts from within FlashPro 147
	Running Tcl Scripts from the Command Line 147
	Exporting Tcl Scripts from within FlashPro 148
	add_actel_device 149
	add_non_actel_device 149
	add_non_actel_device_to_database 150
	check_flash_memory 150
	close_project 152
	compare_analog_config 152
	compare_flashrom_client 153
	compare_memory_client 153
	configure_flashpro_prg 154
	configure_flashpro3_prg 155
	configure_flashpro4_prg 155
	configure_flashpro5_prg 156
	configure_flashproLite_prg 157
	connect_cable 157
	construct_chain_automatically 158
	copy_device 158
	cut_device 159
	dump_tcl_support 159
	enable_device 160
	enable_prg 160
	enable_prg_type 160
	enable_procedure 161
	enable_serialization 161
	export_chain_stapl 162
	export_chain_svf 162
	export_config 163
	export_secured_pdb 163
	export_script 164
	export_single_1532 164
	export_single_dat 165
	export_single_stapl 165
	export_single_svf 166
	export_spi_directory 167
	import_config 168
	new_project 168
	open_project 169
	paste_device 169
	ping_prg 169
	read_analog_block_config 170
	read_device_status 170
	read_flash_memory 171
	read_flashrom 172
	read_id_code 173
	recover_flash_memory 173
	refresh_prg_list 174
	remove_device 175
	remove_non_actel_device_from_database 175
	remove_prg 175
	run_selected_actions 176
	sample_analog_channel 176
	save_log 178
	save_project 178
	save_project_as 179
	scan_chain_prg 179
	select_from_region_name 180
	select_libero_design_device (SmartFusion2, IGLOO2, RTG4) 180
	select_serial_range 181
	select_target_device 181
	self_test_prg 181
	set_bsdl_file 182
	set_chain_param 182
	set_debug_device 183
	set_debug_programmer 183
	set_device_ir 184
	set_device_name 184
	set_device_order 185
	set_device_tck 185
	set_device_to_highz 186
	set_device_type 186
	set_main_log_file 187
	set_prg_name 187
	set_programming_action 188
	set_programming_file 188
	set_programming_mode 189
	set_serialization_log_file 189
	set_serialization_mode 189
	update_programming_file 190
	Loopback Test 196
	Exit Codes (SmartFusion2 and IGLOO2) 196
	Exit Codes for Software v8.6 and Above (SmartFusion, IGLOO, ProASIC3 and Fusion) 202
	Exit Codes for pre-v8.6 Software (SmartFusion, IGLOO, ProASIC3 and Fusion) 218
	ProASICPLUS and ProASIC Exit Codes 224
	SmartDebug 231
	DC Characteristics for FlashPro5/4/3/3X 233
	DC Characteristics for FlashPro Lite 234
	DC Characteristics for FlashPro 235
	FlashPro5 237
	FlashPro4 238
	FlashPro3 239
	FlashPro Lite 240
	FlashPro 241
	FlashPro 5/4/3/3X Characteristics 242
	FlashPro and FlashPro Lite Characteristics 242
	Illustration of the JTAG Switching Characteristics 243
	Customizing the Toolbar 244
	Customizing the Programming Window 245
	FlashPro Preferences 246
	FlashPro File Menu 249
	FlashPro Edit Menu 250
	FlashPro View Menu 250
	FlashPro Tools Menu 251
	FlashPro Programmers Menu 251
	FlashPro Configuration Menu 252
	FlashPro Customize Menu 252
	FlashPro Help Menu 253
	FlashPro Flow Window 253
	FlashPro Log Window 254
	FlashPro Status Bar 254
	FlashPro Programmer List Window 254
	Programmer Details Window 255
	FlashPro Single Device Configuration Window 256
	Chain Configuration Window 259
	Microsemi SoC Products Group Headquarters 261
	Contact Information 261

	About FlashPro
	Programming Tool Model Overview
	Design Debug
	Operation/Production Planning
	Operation/Production Programming
	Express Configuration Programming (IGLOO, ProASIC3 and Fusion devices only)

	Programming Tool User Model Overview - SmartFusion Only
	Design Debug
	Operation/Production Planning
	Operation/Production Programming
	Creating a New PDB for SmartFusion

	SmartFusion2 Programming
	Supported Families
	Installing FlashPro Software and Hardware
	Starting FlashPro

	FlashPro Interface
	Creating a New Project
	Opening a Project
	Saving a Project
	Parallel Programming with FlashPro5/4/3/3X
	Serialization with FlashPro
	Multiple Actions to Multiple FlashROM Serial Data
	Single Action to Multiple FlashROM Serial Data

	FlashPro and SVF
	STAPL Actions not Available with SVF

	FlashPro and the 1532 File Format
	STAPL to 1532 Action Mapping
	STAPL Actions not Available with 1532

	Introductory Programming Tutorials
	Single STAPL/PDB File Basic Tutorial
	Loading and Configuring a Programming File
	Programming a Device

	Single Microsemi Device with Serialization Tutorial
	Chain Programming Tutorial
	SmartFusion Programming Tutorial
	Modifying Memory Contents and Programming a Device Tutorial
	Creating a new project
	Loading and Configuring a PDB File
	Modify Embedded Flash Memory Block Content

	Modifying FlashROM Contents and Programming a Device Tutorial
	Creating a new project
	Loading and Configuring a PDB File
	Modify FlashROM Content

	Programming Only Security Settings Tutorial
	Creating a New Project
	Configuring the Security Settings

	Automatic Chain Construction Tutorial
	Adding Non-Microsemi Devices to the Chain
	See Also

	eNVM/EFMB Client JTAG Protection Use Flow
	eNVM Client JTAG Protection Tutorial - SmartFusion
	Importing an EFC (Embedded Flash Configuration) File with Client JTAG protection in a Previously Unsecured PDB
	Importing EFC (Embedded Flash Configuration) File with Client JTAG Protection in Previously Secured PDB

	EFMB Client JTAG Protection Tutorial - Fusion
	EFMB Client JTAG Protection in Designer/FlashPoint
	EFMB client JTAG Protection via FlashPro/FlashPoint

	Fusion Calibration Backup and Recovery Tutorial
	Backing Up Default Fusion Calibration Data
	Recovering Default Fusion Calibration Data

	Specify I/O States During Programming Tutorial
	Modifying Boundary Scan Registers
	Saving and Loading I/O State Settings
	See Also

	Advanced Tutorials
	Multiple Device Chain Programming
	Multiple Device Serialization Chain Programming
	Multiple Programmer Multiple Device Chain Programming
	Multiple Programmer and Multiple Device Serialization Chain Programming
	Setting Disabled Microsemi SoC Devices to HIGH-Z

	Programming Settings and Operations
	Programmer Settings
	FlashPro Programmer Settings
	FlashPro Lite Programmer Settings
	FlashPro5/4/3/3X Programmer Settings
	TCK Setting (ForceTCK Frequency)
	Default TCK frequency

	Ping Programmers
	Performing a Self-Test
	Scanning a Chain
	Enabling and Disabling Programmers
	Renaming a Programmer
	Removing a Programmer
	Selecting Programmers

	Single Device Programming
	Loading a Programming File
	Select Target Device
	Chain Settings
	Serial Settings

	Chain Programming
	Chain Order
	Multiple Device Chain Programming
	Device Programming Compatibility
	Programmer Support
	Multiple Device Serialization in a Chain
	Reuse Serial Data That Failed Programming
	Multiple Device Serialization and Parallel Programming

	Chain Configuration Window
	Chain Editing Options

	Editing the Chain Configuration Grid
	Chain Editing
	Using the Organize Buttons in the Chain Programming Grid
	Cutting, Copying and Pasting Devices from the Chain
	Removing Devices from the Chain
	Moving Devices within the Chain
	Skip Serial Data
	Reuse Serial Data
	Serialization with Parallel Programming

	Chain Editing
	Adding a Microsemi Device
	Adding a Microsemi Device from Files
	Adding a Non-Microsemi Device
	IR Length
	Max TCK Frequency
	BSDL File
	Non-Microsemi Device Configuration Dialog Box

	Configuring a Programmer
	Selecting an Action
	Using Serialization
	Modifying Programming Settings in FlashPro with a PDB File
	See Also

	Configuring Security
	Configuring Security, FlashROM and Embedded Flash Memory Settings in FlashPro
	Configuring Security Settings in FlashPro
	Custom Security Settings
	Changing or Disabling Security Keys
	Configuring FlashROM Settings in FlashPro
	Express Configuration

	IGLOO and ProASIC3 Programming
	Programming File Actions for IGLOO and ProASIC3 Devices
	Programming Actions
	Options available in Programming Actions

	SmartFusion and Fusion (AFS) Programming
	Programming File Actions - SmartFusion and Fusion
	Options available in STAPL Actions

	ProASICPLUS and ProASIC Families Programming
	Generating Programming Files
	Generate a Programming File in FlashPoint
	Programming File Types
	Generate a Programming File for SmartFusion
	Generate a Programming File for CoreMP7/Cortex-M1 Device Support
	CoreMP7/Cortex-M1 Device Security
	Programming FlashROM and FPGA Array

	Generate a Programming File for AFS Device Support - Designer Only
	AFS Programming
	Programming Security Settings, FlashROM, and FPGA Array

	Generate a Programming File for Serialization Support in In House Programming (IHP)
	SVF Serialization Support in IHP

	Creating a Programming Database (PDB) File in Designer
	See Also

	Programming Embedded Flash Memory Block
	Programming the FPGA Array
	Programming the FlashROM
	Silicon Signature
	Programming Security Settings

	Custom Security Levels
	Reprogramming a Secured Device
	Custom Serialization Data for FlashROM Region
	Custom Serialization Data File Format
	Binary serialization data file example
	Decimal serialization data file example

	Specifying I/O States During Programming
	Custom I/O Settings and Boundary Scan Registers
	Specifying I/O States During Programming - I/O States and BSR Details
	I/O State (Output Only)
	Boundary Scan Registers - Enabled with Show BSR Details

	Specify I/O States During Programming Dialog Box
	Load from file
	Save to file
	Port Name
	Macro Cell
	Pin Number
	I/O State (Output Only)

	Generate a DAT file
	Parallel Port Cable Information

	Importing and Exporting Files
	Importing Configuration Files
	Exporting Configuration Files
	Export Programming Files (SmartFusion Only)
	Exporting a Chain STAPL File
	Exporting a Chain SVF File
	Exporting Single Device STAPL Files
	Exporting Single Device SVF Files
	Exporting Single Device 1532 Files
	Opening an Existing FlashPro Project on a Different Machine

	Using Hot Keys
	General Hot Keys
	See Also

	Single Device Programming Hot Keys
	Chain Programming Hot Keys
	Batch Mode

	Tcl Commands
	About TCL Commands - FlashPro Tcl Command Reference
	Running Tcl Scripts from within FlashPro
	Running Tcl Scripts from the Command Line
	Exporting Tcl Scripts from within FlashPro
	add_actel_device
	Arguments
	Supported Families
	Exceptions
	Example

	add_non_actel_device
	Arguments
	Supported Families
	Exceptions
	Examples

	add_non_actel_device_to_database
	Arguments
	Supported Families
	Exceptions
	Examples

	check_flash_memory
	Arguments
	Supported Families
	Exceptions
	Example

	close_project
	Arguments
	Supported Families
	Exceptions
	Example

	compare_analog_config
	Arguments
	Supported Families
	Exceptions
	Example

	compare_flashrom_client
	Arguments
	Supported Families
	Exceptions
	Example

	compare_memory_client
	Arguments
	Supported Families
	Exceptions
	Example

	configure_flashpro_prg
	Arguments
	Supported Families
	Exceptions
	Example

	configure_flashpro3_prg
	Arguments
	Supported Families
	Exceptions
	Example

	configure_flashpro4_prg
	Arguments
	Supported Families
	Exceptions
	Example

	configure_flashpro5_prg
	Arguments
	Supported Families
	Exceptions
	Example

	configure_flashproLite_prg
	Arguments
	Supported Families
	Exceptions
	Example

	connect_cable
	Arguments
	Supported Families
	Exceptions
	Example

	construct_chain_automatically
	Arguments
	Supported Families
	Exceptions
	Example

	copy_device
	Arguments
	Supported Families
	Exceptions
	Example

	cut_device
	Arguments
	Supported Families
	Exceptions
	Example

	dump_tcl_support
	Arguments
	Supported Families
	Exceptions
	Example

	enable_device
	Arguments
	Supported Families
	Exceptions
	Example

	enable_prg
	Arguments
	Supported Families
	Exceptions
	Example

	enable_prg_type
	Arguments
	Supported Families
	Exceptions
	Example

	enable_procedure
	Arguments
	Supported Families
	Exceptions
	Example

	enable_serialization
	Arguments
	Exceptions
	Supported Families
	Example

	export_chain_stapl
	Arguments
	Supported Families
	Exceptions
	Example

	export_chain_svf
	Arguments
	Supported Families
	Example

	export_config
	Arguments
	Supported Families
	Exceptions
	Example

	export_secured_pdb
	Arguments
	Supported Families
	Exceptions
	Example

	export_script
	Arguments
	Supported Families
	Exceptions
	Example

	export_single_1532
	Arguments
	Supported Families
	Exceptions
	Example

	export_single_dat
	Arguments
	Supported Families
	Exceptions
	Example

	export_single_stapl
	Arguments
	Supported Families
	Exceptions
	Example

	export_single_svf
	Arguments
	Supported Families
	Exceptions
	Example

	export_spi_directory
	Arguments
	Supported Families
	Examples

	import_config
	Arguments
	Supported Families
	Exceptions
	Example

	new_project
	Arguments
	Supported Families
	Exceptions
	Example

	open_project
	Arguments
	Supported Families
	Exceptions
	Example

	paste_device
	Arguments
	Supported Families
	Exceptions
	Examples

	ping_prg
	Arguments
	Supported Families
	Exceptions
	Example

	read_analog_block_config
	Arguments
	Supported Families
	Exceptions
	Example

	read_device_status
	Arguments
	Supported Families
	Exceptions
	Example

	read_flash_memory
	Arguments
	Supported Families
	Exceptions
	Example

	read_flashrom
	Arguments
	Supported Families
	Exceptions
	Example

	read_id_code
	Arguments
	Supported Families
	Exceptions
	Example

	recover_flash_memory
	Arguments
	Supported Families
	Exceptions
	Example

	refresh_prg_list
	Arguments
	Supported Families
	Exceptions
	Example

	remove_device
	Arguments
	Supported Families
	Exceptions
	Example

	remove_non_actel_device_from_database
	Arguments
	Supported Families
	Exceptions
	Example

	remove_prg
	Arguments
	Supported Families
	Exceptions
	Example

	run_selected_actions
	Arguments
	Supported Families
	Exceptions
	Example

	sample_analog_channel
	Arguments
	Supported Families
	Exceptions
	Example

	save_log
	Arguments
	Supported Families
	Exceptions
	Example

	save_project
	Arguments
	Supported Families
	Exceptions
	Example

	save_project_as
	Arguments
	Supported Families
	Exceptions
	Example

	scan_chain_prg
	Arguments
	Supported Families
	Exceptions
	Example

	select_from_region_name
	Arguments
	Supported Families
	Exceptions
	Example

	select_libero_design_device (SmartFusion2, IGLOO2, RTG4)
	Arguments
	Supported Families
	Exceptions
	Example
	Note

	select_serial_range
	Arguments
	Supported Families
	Exceptions
	Example

	select_target_device
	Arguments
	Supported Families
	Exceptions
	Examples

	self_test_prg
	Arguments
	Supported Families
	Exceptions
	Example

	set_bsdl_file
	Arguments
	Supported Families
	Exceptions
	Example

	set_chain_param
	Arguments
	Supported Families
	Exceptions
	Example

	set_debug_device
	Arguments
	Supported Families
	Exceptions
	Example

	set_debug_programmer
	Arguments
	Supported Families
	Exceptions
	Example

	set_device_ir
	Arguments
	Supported Families
	Exceptions
	Example

	set_device_name
	Arguments
	Supported Families
	Exceptions
	Example

	set_device_order
	Arguments
	Supported Families
	Exceptions
	Example

	set_device_tck
	Arguments
	Supported Families
	Exceptions
	Example

	set_device_to_highz
	Arguments
	Supported Families
	Exceptions
	Example

	set_device_type
	Arguments
	Supported Families
	Exceptions
	Example

	set_main_log_file
	Arguments
	Supported Families
	Exceptions
	Example

	set_prg_name
	Arguments
	Supported Families
	Exceptions
	Example

	set_programming_action
	Arguments
	Supported Families
	Exceptions
	Example

	set_programming_file
	Arguments
	Supported Families
	Exceptions
	Examples

	set_programming_mode
	Arguments
	Supported Families
	Exceptions
	Example

	set_serialization_log_file
	Arguments
	Supported Families
	Exceptions
	Example

	set_serialization_mode
	Arguments
	Supported Families
	Exceptions
	Example

	update_programming_file
	Arguments
	Supported Families
	Exceptions
	Example

	Troubleshooting
	Loopback Test
	Exit Codes (SmartFusion2 and IGLOO2)
	Exit Codes for Software v8.6 and Above (SmartFusion, IGLOO, ProASIC3 and Fusion)
	Exit Codes for pre-v8.6 Software (SmartFusion, IGLOO, ProASIC3 and Fusion)
	ProASICPLUS and ProASIC Exit Codes
	SmartDebug
	Integrated Mode
	Standalone Mode
	Demo Mode

	Electrical Parameters
	DC Characteristics for FlashPro5/4/3/3X
	DC Characteristics for FlashPro Lite
	DC Characteristics for FlashPro

	Electrical Specifications
	FlashPro5
	FlashPro4
	FlashPro3
	FlashPro Lite
	FlashPro
	FlashPro 5/4/3/3X Characteristics
	FlashPro and FlashPro Lite Characteristics
	Illustration of the JTAG Switching Characteristics

	References
	Customizing the Toolbar
	Customizing the Programming Window
	FlashPro Preferences
	Log Window
	Display Mode
	Software Updates
	Software version is up to date

	FlashPro File Menu
	FlashPro Edit Menu
	FlashPro View Menu
	FlashPro Tools Menu
	FlashPro Programmers Menu
	FlashPro Configuration Menu
	FlashPro Customize Menu
	FlashPro Help Menu
	FlashPro Flow Window
	FlashPro Log Window
	Setting Log window preferences

	FlashPro Status Bar
	FlashPro Programmer List Window
	Changing the Name of your Programmer
	Connecting New Programmers
	Accessing Right-Click Menus

	Programmer Details Window
	FlashPro Single Device Configuration Window
	Loading the PDB/STAPL File
	Selecting Serialization Indexes
	Selecting Action and Procedures

	Chain Configuration Window
	Auto-Construction of Chain from Scan Chain
	Chain Editing Options
	Editing the Chain Configuration Grid

	Microsemi SoC Products Group Headquarters
	Contact Information

	Regulatory and Compliance Information

