
UG0837
User Guide

IGLOO2 and SmartFusion2 FPGA
 System Services Simulation

June 2018

IGLOO2 and SmartFusion2 FPGA System Services Simulation

Microsemi Proprietary and Confidential. UG0837 User Guide Revision 1.0

Contents

1 Revision History .. 1
1.1 Revision 1.0 .. 1

2 IGLOO2 and SmartFusion2 FPGA System Services Simulation ... 2
2.1 Types of Available System Services .. 3
2.2 IGLOO2 System Service Simulation .. 3
2.3 SmartFusion2 System Service Simulation ... 4
2.4 Simulation Examples .. 5
2.5 IGLOO2 Serial Number Service Simulation ... 5
2.6 SmartFusion2 Serial Number Service Simulation ... 8
2.7 IGLOO2 Zeroization Service Simulation .. 13
2.8 SmartFusion2 Zeroization Service Simulation .. 16

3 Appendix: Types Of System Services ... 19
3.1 Simulation Message Services .. 19

3.1.1 Flash*Freeze .. 19

3.1.2 Zeroization ... 19

3.2 Data Pointer Services .. 19
3.2.1 Serial Number .. 19

3.2.2 Usercode ... 19

3.3 Data Descriptor Services ... 19
3.3.1 AES ... 20

3.3.2 SHA 256 ... 20

3.3.3 HMAC .. 20

3.3.4 DRBG Generate ... 20

3.3.5 DRBG Reset ... 20

3.3.6 DRBG Self Test ... 21

3.3.7 DRBG Instantiate ... 21

3.3.8 DRBG Uninstantiate ... 21

3.3.9 DRBG Reseed ... 21

3.3.10 KeyTree .. 21

3.3.11 Challenge Response .. 21

3.4 Other Services .. 22
3.4.1 Digest Check .. 22

3.4.2 Unrecognized Command Response ... 22

3.4.3 Unsupported Services ... 22

3.5 System Services Simulation Support File .. 22
3.5.1 Forcing Error Responses .. 22

3.5.2 Parameter Setting ... 23

IGLOO2 and SmartFusion2 FPGA System Services Simulation

Microsemi Proprietary and Confidential. UG0837 User Guide Revision 1.0

3.5.3 Device Priority ... 23

IGLOO2 and SmartFusion2 FPGA System Services Simulation

Microsemi Proprietary and Confidential. UG0837 User Guide Revision 1.0 1

1 Revision History
The revision history describes the changes that were implemented in the document. The changes are
listed by revision, starting with the most current publication.

1.1 Revision 1.0
Revision 1.0 was published in June 2018. It was the first publication of this document.

IGLOO2 and SmartFusion2 FPGA System Services Simulation

Microsemi Proprietary and Confidential. UG0837 User Guide Revision 1.0 2

2 IGLOO2 and SmartFusion2 FPGA System Services Simulation
The SmartFusion®2 FPGA family's System Services block features a collection of services responsible for
various tasks. These include simulation message services, data pointer services, and data descriptor
services. The system services can be accessed through the Cortex-M3 in SmartFusion2 and from the
FPGA fabric through the fabric interface controller (FIC) for both SmartFusion2 and IGLOO®2. These
access methods are sent to the system controller through the COMM_BLK. The COMM_BLK has an
advanced peripheral bus (APB) interface and acts as a message passing conduit to exchange data with
the system controller. System service requests are sent to the system controller and system service
responses are sent to the CoreSysSerrvice through the COMM BLK. The address location for the
COMM_BLK is available inside the microcontroller sub-system (MSS)/high performance memory sub-
system (HPMS). For details, see the UG0450: SmartFusion2 SoC and IGLOO2 FPGA System Controller

.User Guide

The following illustration shows system services data flow.

Figure 1 • System Service Data Flow Diagram

For both IGLOO2 and SmartFusion2 system service simulation, you need to send out system service
requests and check the system service responses to verify that the simulation is correct. This step is
necessary to access the system controller, which provides the system services. The way to write to and
read from the system controller is different for IGLOO2 and SmartFusion2 devices. For SmartFusion2,
the Coretex-M3 is available and you can write and read from the system controller using bus functional
model (BFM) commands. For IGLOO2, the Cortex-M3 is not available and the system controller is not
accessible using BFM commands.

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132038
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132038

IGLOO2 and SmartFusion2 FPGA System Services Simulation

Microsemi Proprietary and Confidential. UG0837 User Guide Revision 1.0 3

1.
2.

2.1 Types of Available System Services
Three different types of system services are available and each type of service has different sub-types.

Simulation message services
Data pointer services
Data descriptor services

The chapter of this guide describes the different types Appendix –System Services Types (see page 19)
of system services. For more information on system services, see UG0450: SmartFusion2 SoC and

.IGLOO2 FPGA System Controller User Guide

2.2 IGLOO2 System Service Simulation
System services involve writing to and reading from the system controller. To write to and read from the
system controller for simulation purposes, you need to perform the steps as follows.

Instantiate the CoreSysServices soft IP core, available in the SmartDesign catalog.
Write the HDL code for a finite state machine (FSM).

The HDL FSM interfaces with the CoreSysServices Core, which serves as the fabric master of the AHBLite
bus. The CoreSysServices core initiates system service request to the COMM BLK and receives system
service responses from the COMM BLK through the FIC_0/1, fabric interface controller as shown in the
following illustration.

Figure 2 • IGLOO2 System Services Simulation Topology

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132038
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132038

IGLOO2 and SmartFusion2 FPGA System Services Simulation

Microsemi Proprietary and Confidential. UG0837 User Guide Revision 1.0 4

2.3 SmartFusion2 System Service Simulation
To simulate system services in SmartFusion2 devices, you need to write to and read from the system
controller. Two options are available to access the system controller for simulation purposes.

Option 1 — Write the HDL code for an FSM to interface with the CoreSysService soft IP core, which
serves as an AHBLite fabric master and initiates system service request to the COMM BLK and
receives system service responses from the COMM BLK through the FIC_0/1 fabric interface as
shown in the following illustration.

Figure 3 • SmartFusion2 System Services Simulation Topology

Option 2 — As the Cortex-M3 is available for SmartFusion2 devices, you may use BFM commands to
directly write to and read from the memory space of the system controller.

Using BFM commands (option 2) saves the need to write the HDL codes for the FSM. In this user guide,
option 2 is used to show system services simulation in SmartFusion2. With this option, the system
controller's memory space is accessed to find out the memory map of the COMM BLK and the fabric
interface interrupt controller (FIIC) block when you write your BFM commands.

IGLOO2 and SmartFusion2 FPGA System Services Simulation

Microsemi Proprietary and Confidential. UG0837 User Guide Revision 1.0 5

1.
2.

3.
4.

5.

6.
7.

8.

2.4 Simulation Examples
The user guide covers the following simulations.

IGLOO2 Serial Number Service Simulation (see page 5)
SmartFusion2 Serial Number Service Simulation (see page 8)
IGLOO2 Zeroization Service Simulation (see page 13)
SmartFusion2 Zeroization Service Simulation (see page 16)

Similar simulation methods can be applied to other system services. For a complete list of the different
system services available, go to . Appendix – System Services Types (see page 19)

2.5 IGLOO2 Serial Number Service Simulation
To prepare for IGLOO2 serial number service simulation, perform the steps as follows.

Invoke system builder to create your HPMS block.
Check the HPMS System Services checkbox in the Device Features page. This will instruct the system
builder to expose the HPMS_FIC_0 SYS_SERVICES_MASTER bus interface (BIF).
Leave all other checkboxes unchecked.
Accept the default in all other pages and click to complete the system builder block. In the Finish
Libero® SoC's HDL editor, write the HDL code for the FSM . Include the following (File > New > HDL)
three states in your FSM.

INIT state (initial state)
SERV_PHASE (service request state)
RSP_PHASE (service response state).
The following figure shows the three states of FSM.

Figure 4 • Three-State FSM

In your HDL code for the FSM, use the correct command code ("01" Hex for serial number service)
to enter the service request state from the INIT state.
Save your HDL file. The FSM appears as a component in the .Design Hierarchy
Open SmartDesign. Drag and drop your top-level system builder block and your FSM block into the
SmartDesign canvas. From the catalog, drag and drop the CoreSysService soft IP core into the
SmartDesign canvas.

Right-click the CoreSysService soft IP core to open the configurator. Check the Serial Number Service

IGLOO2 and SmartFusion2 FPGA System Services Simulation

Microsemi Proprietary and Confidential. UG0837 User Guide Revision 1.0 6

8.

9.

10.

11.

Right-click the CoreSysService soft IP core to open the configurator. Check the Serial Number Service
checkbox (under the group) to enable serial number service.Device and Design Information Services
Leave all other checkboxes unchecked. Click to exit the configurator.OK

Figure 5 • CoreSysServices soft IP Core Configurator

Connect the HPMS_FIC_0 SYS_SERVICES_MASTER BIF of the system builder block to the
AHBL_MASTER BIF of the CoreSysService block.

Connect the output of your HDL FSM block to the input of the CoreSysService soft IP core. Make all

IGLOO2 and SmartFusion2 FPGA System Services Simulation

Microsemi Proprietary and Confidential. UG0837 User Guide Revision 1.0 7

11.

12.
13.
14.
15.

Connect the output of your HDL FSM block to the input of the CoreSysService soft IP core. Make all
other connections in the SmartDesign canvas as shown in the following figure.

Figure 6 • SmartDesign Canvas with HDL Block, CoreSysServices Soft IP and HPMS Blocks

In the SmartDesign canvas, right-click > to generate the top Level Design.Generate Component
In the view, right-click the top level design and select .Design Hierarchy create Testbench > HDL
Use a text editor to create a text file named ."status.txt"
Include the command for system service and the 128-bit serial number. For more information, see

 (System Services Command/Response Values) in the for the Table 1 CoreSysServices v3.1 Handbook
command codes (Hex) to be used for different system services. For serial number service, the
command code is "01" Hex.

The format of the file for serial number service is as follows.status.txt

< 2 Hex digit CMD><32 Hex digit Serial Number>
Example: 01A1A2A3A4B1B2B3B4C1C2C3C4D1D2D3D4

Save the file in the folder of your project. The design is now ready for status.txt Simulation
simulation.

Once the service has begun execution, a message indicating the destination location and serial number

http://www.actel.com/ipdocs/CoreSysServices_HB.pdf

IGLOO2 and SmartFusion2 FPGA System Services Simulation

Microsemi Proprietary and Confidential. UG0837 User Guide Revision 1.0 8

1.
2.

3.
4.

Once the service has begun execution, a message indicating the destination location and serial number
is displayed in the ModelSim transcript window, as shown in the following figure.

Figure 7 • ModelSim Simulation Transcript Window

The system controller conducts an AHB write to the address with the serial number. Upon completion of
the service, the COMM_BLK's RXFIFO will be loaded with the service response.

Note: For a complete listing of the command codes to be used for different system services, see Table 1
(System Services Command/Response Values) in or CoreSysServices v3.1 Handbook UG0450:

.SmartFusion2 SoC and IGLOO2 FPGA System Controller User Guide

2.6 SmartFusion2 Serial Number Service Simulation
In this user guide, BFM commands (option 2) are used to access the system controller for system
service. BFM commands are used as the Cortex-M3 processor is available on the device for BFM
simulation. BFM commands allow you to write directly to and read from the COMM BLK once you know
the memory mapping of the COMM_BLK.
To prepare your design for SmartFusion2 serial number service simulation, perform the following steps.

Drag and drop the MSS from the catalog to the design canvas of your project.
Disable all MSS peripherals except the MSS_CCC, Reset Controller, Interrupt Management, and
FIC_0, FIC_1 and FIC_2.
Configure the interrupt management to use MSS to fabric interrupt.
Prepare the file in a text editor or in the Libero's HDL editor. Save the serialnum.bfm

 file in the project's folder. The should include the serialnum.bfm Simulation serialnum.bfm
following details.

Memory mapping to the COMM BLK (CMBLK)
Memory mapping to interrupt management peripheral (FIIC)
Command for serial number system service request ("01" Hex)

Address for the location of the serial number

http://www.actel.com/ipdocs/CoreSysServices_HB.pdf
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132038
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132038

IGLOO2 and SmartFusion2 FPGA System Services Simulation

Microsemi Proprietary and Confidential. UG0837 User Guide Revision 1.0 9

Address for the location of the serial number

An example of the file is as follows.serialnum.bfm

memmap FIIC 0x40006000; #Memory Mapping to Interrupt Management

memmap CMBLK 0x40016000; #Memory Mapping to COMM BLK

memmap DESCRIPTOR_ADDR 0x20000000; #Address location for Serial Num

#Command Code in Hexadecimal

constant CMD 0x1 # Comand code for Serial NumberService

#FIIC Configuration Registers

constant FICC_INTERRUPT_ENABLE0 0x0

#COMM_BLK Configuration Registers

constant CONTROL 0x00

constant STATUS 0x04

constant INT_ENABLE 0x08

constant DATA8 0x10

constant DATA32 0x14

constant FRAME_START8 0x18

constant FRAME_START32 0x1C

procedure serialnum;

int x;

write w FIIC FICC_INTERRUPT_ENABLE0 0x20000000 #Configure
#FICC_INTERRUPT_ENABLE0 # Register to enable COMBLK_INTR #

#interrupt from COMM_BLK block to fabric

#Request Phase

write w CMBLK CONTROL 0x10 # Configure COMM BLK Control #Register to
enable transfers on the COMM BLK Interface

write w CMBLK INT_ENABLE 0x1 # Configure COMM BLK Interrupt Enable
#Register to enable Interrupt for TXTOKAY (Corresponding bit in the
#Status Register)

waitint 19 # wait for COMM BLK Interrupt , Here #BFM waits

IGLOO2 and SmartFusion2 FPGA System Services Simulation

Microsemi Proprietary and Confidential. UG0837 User Guide Revision 1.0 10

waitint 19 # wait for COMM BLK Interrupt , Here #BFM waits

#till COMBLK_INTR is asserted

readstore w CMBLK STATUS x # Read COMM BLK Status Register for #TXTOKAY

Interrupt

set x x & 0x1

if x

write w CMBLK FRAME_START8 CMD # Configure COMM BLK FRAME_START8

#Register to request Serial Number service

endif

endif

waitint 19 # wait for COMM BLK Interrupt , Here

#BFM waits till COMBLK_INTR is asserted

readstore w CMBLK STATUS x # Read COMM BLK Status Register for

#TXTOKAY Interrupt

set x x & 0x1

set x x & 0x1

if x

write w CMBLK CONTROL 0x14 #Configure COMM BLK Control

#Register to enable transfers on the COMM BLK Interface

write w CMBLK DATA32 DESCRIPTOR_ADDR

write w CMBLK INT_ENABLE 0x80

write w CMBLK CONTROL 0x10

endif

wait 20

#Response Phase

waitint 19

readstore w CMBLK STATUS x

set x x & 0x80

if x

readcheck w CMBLK FRAME_START8 CMD

IGLOO2 and SmartFusion2 FPGA System Services Simulation

Microsemi Proprietary and Confidential. UG0837 User Guide Revision 1.0 11

readcheck w CMBLK FRAME_START8 CMD

write w CMBLK INT_ENABLE 0x2

endif

waitint 19

readstore w CMBLK STATUS x

set x x & 0x2

if x

readcheck w CMBLK DATA8 0x0

write w CMBLK CONTROL 0x18

endif

waitint 19

readcheck w FIIC 0x8 0x20000000

readstore w CMBLK STATUS x

set x x & 0x2

if x

readcheck w CMBLK DATA32 DESCRIPTOR_ADDR

endif

readcheck w DESCRIPTOR_ADDR 0x0 0xE1E2E3E4; #Readcheck to check S/N

readcheck w DESCRIPTOR_ADDR 0x4 0xC1C2C3C4; #Readcheck to check S/N

readcheck w DESCRIPTOR_ADDR 0x8 0xB1B2B3B4; #Readcheck to check S/N
readcheck w DESCRIPTOR_ADDR 0xC 0xA1A2A3A4; #Readcheck to check S/N

return

5. Create the file in Libero's HDL editor or any text editor. Include the serial number status.txt
system service command ("01" in Hex) and the serial number in the file. See the status.txt

 for using the correct command code.CoreSysServices v3.1 Handbook

6. The syntax of this file for serial number service is, <2 Hex digit CMD>< 32 Hex digit
Example: 01A1A2A3A4B1B2B3B4C1C2C3C4E1E2E3E4.Serial Number>.

7. Save the file in the project's folder.status.txt Simulation

8. Edit the (located inside the folder) to include the file and user.bfm Simulation serialnum.bfm
call the serial number procedure as shown in the following code snippet.

include "serialnum.bfm" #include the serialnum.bfm

http://www.actel.com/ipdocs/CoreSysServices_HB.pdf

IGLOO2 and SmartFusion2 FPGA System Services Simulation

Microsemi Proprietary and Confidential. UG0837 User Guide Revision 1.0 12

include "serialnum.bfm" #include the serialnum.bfm
procedure user_main;
print "INFO:Simulation Starts";
print "INFO:Service Command Code in Decimal:%0d", CMD ;

call serialnum; #call the serialnum procedure
print "INFO:Simulation Ends";
return

9. In the view, generate the (Right-click, Design Hierarchy testbench Top Level Design > Create
) and you are ready to run serial number service simulation.Testbench > HDL

Once the service has begun execution, a message indicating the destination location and serial number
is displayed. The system controller conducts an AHB write to the address with the serial number. Upon
completion of the service, the COMM_BLK's RXFIFO will be loaded with the service response. The
ModelSim transcript window displays the address and the serial number received as shown in the
following figure.

Figure 8 • SmartFusion2 Serial Number Service Simulation in ModelSim Transcript Window

IGLOO2 and SmartFusion2 FPGA System Services Simulation

Microsemi Proprietary and Confidential. UG0837 User Guide Revision 1.0 13

1.

2.

2.7 IGLOO2 Zeroization Service Simulation
To prepare for IGLOO2 zeroization service simulation, perform the steps as follows.

Invoke system builder to create the HPMS block. Check the checkbox in the HPMS System Services
page. This instructs the system builder to expose the HPMS_FIC_0 Device Features

SYS_SERVICES_MASTER BIF. Leave all other checkboxes unchecked. Accept the default in all other
pages and click to complete the configuration of the system builder block.Finish
In the Libero SoC's HDL editor, write the HDL code for the FSM. In your HDL code for the FSM,
include the following three states.

INIT state (initial state)
SERV_PHASE (service request state)
RSP_PHASE (service response state)

The following figure shows the three states of FSM.

Figure 9 • Three-State FSM

3. In your HDL code, use the command code "F0"(Hex) to enter the service request state from the INIT
state.

4. Save your HDL file.

5. Open SmartDesign, drag and drop your top-level system builder block and your HDL FSM block into
the SmartDesign canvas. From the catalog, drag and drop the CoreSysService soft IP core into the
SmartDesign canvas.

IGLOO2 and SmartFusion2 FPGA System Services Simulation

Microsemi Proprietary and Confidential. UG0837 User Guide Revision 1.0 14

6. Right-click the CoreSysServices soft IP core, to open the configurator and check the Zeroization Service
checkbox under the group. Leave all other checkboxes unchecked. Click to Data Security Services OK
exit.

Figure 10 • CoreSysServices Configurator

7. Connect the HPMS_FIC_0 SYS_SERVICES_MASTER BIF of the system builder block to the
AHBL_MASTER BIF of the CoreSysService block.

IGLOO2 and SmartFusion2 FPGA System Services Simulation

Microsemi Proprietary and Confidential. UG0837 User Guide Revision 1.0 15

8. Connect the output of your HDL FSM block to the input of the CoreSysService soft IP core. Make all
other connections in the SmartDesign canvas.

Figure 11 • SmartDesign Canvas with HDL Block, CoreSysServices Soft IP, and HPMS Blocks

9. In the SmartDesign canvas, generate the top-level design ().Right-click > Generate Component

IGLOO2 and SmartFusion2 FPGA System Services Simulation

Microsemi Proprietary and Confidential. UG0837 User Guide Revision 1.0 16

1.
2.

3.
4.

9. In the SmartDesign canvas, generate the top-level design ().Right-click > Generate Component

10. In the view, right-click the top-level design and select You Design Hierarchy create Testbench > HDL.
are now ready to run simulation.

Once the service has begun execution, a message indicating that the zeroization has been completed at
time is displayed as shown in the following figure.x

Figure 12 • IGLOO2 Zeroization System Service Simulation Transcript Window

The system controller conducts an AHB write to the address with the serial number. Upon completion of
the service, the COMM_BLK's RXFIFO will be loaded with the service response. It should be noted that
the simulation model simulates zeroization by stopping the simulation rather than zeroizing the design
itself.

Note: For a complete listing of the command codes to be used for different system services, see Table 1
(System Services Command/Response Values) in the or CoreSysServices v3.1 Handbook UG0450:

.SmartFusion2 SoC and IGLOO2 FPGA System Controller User Guide

2.8 SmartFusion2 Zeroization Service Simulation
In this guide, BFM commands (option 2) are used to access the system controller for system service.
BFM commands are used as the Cortex-M3 processor is available on the device for BFM simulation. BFM
commands allow you to write directly to and read from the COMM BLK once you know the memory
mapping of the COMM_BLK. To prepare your design for SmartFusion2 zeroization service simulation,
perform the following steps.

Drag and drop the MSS from the catalog to the design canvas of your project.
Disable all MSS peripherals except the MSS_CCC, Reset Controller, Interrupt Management, and
FIC_0, FIC_1 and FIC_2.
Configure the interrupt management to use MSS to fabric interrupt.
Prepare the file in a text editor or in Libero's HDL editor. Your zeroizaton.bfm zeroization.

 should include:bfm

Memory mapping to the COMM BLK (CMBLK)
Memory mapping to interrupt management peripheral (FIIC)
Command for zeroizaton service request ("F0" Hex for zeriozation)

An example of the file is shown in the following figure.serialnum.bfm

http://www.actel.com/ipdocs/CoreSysServices_HB.pdf
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132038
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132038

IGLOO2 and SmartFusion2 FPGA System Services Simulation

Microsemi Proprietary and Confidential. UG0837 User Guide Revision 1.0 17

Command for zeroizaton service request ("F0" Hex for zeriozation)
An example of the file is shown in the following figure.serialnum.bfm

Figure 13 • Zeroization.bfm for SmartFusion2 Zeroization System Services Simulation

5. Save the file in the project's folder.zeroization.bfm Simulation

6. Edit the (located in the folder) to include the using the user.bfm Simulation zeroization.bfm
following code snippet.
include "zeroization.bfm" #include zeroization.bfm file
procedure user_main;
print "INFO:Simulation Starts";
print "INFO:Service Command Code in Decimal:%0d", CMD ;
call zeroization; #call zeroization procedure

return

7. In the , generate the () and Design Hierarchy Testbench Right click top level > Create Testbench > HDL
you are ready to run the SmartFusion2 zeroization simulation.

Once the service has begun execution, a message indicating that the device has been zeroized at time x
is displayed. It should be noted that the simulation model simulates zeroization by stopping the
simulation rather than zeroizing the design itself. The ModelSim transcript window in the following
figure shows that the device has been zeroized.

IGLOO2 and SmartFusion2 FPGA System Services Simulation

Microsemi Proprietary and Confidential. UG0837 User Guide Revision 1.0 18

Figure 14 • SmartFusion2 Zeroization System Service Simulation Log

IGLOO2 and SmartFusion2 FPGA System Services Simulation

Microsemi Proprietary and Confidential. UG0837 User Guide Revision 1.0 19

3 Appendix: Types Of System Services
This chapter describes various types of system services.

3.1 Simulation Message Services
The following sections describe various types of simulation message services.

3.1.1 Flash*Freeze
The simulation will enter the Flash*Freeze state when the proper service request is sent to the
COMM_BLK from either the FIC (in the case of IGLOO2 devices) or the Cortex-M3 (in SmartFusion2
devices). Once the service has been detected by the system controller, the simulation will be stopped
and a message indicating the system has entered Flash*Freeze (along with the option selected) will be
displayed. Upon resumption of the simulation, the RXFIFO of the COMM_BLK will be filled with the
service response consisting of the service command and status. It should be noted that there is no
simulation support for Flash*Freeze exit.

3.1.2 Zeroization
Zeroization is currently the only high priority service within system services processed by the
COMM_BLK. The simulation will enter the zeroization state as soon as the correct service request is
detected by the COMM_BLK. Execution of other services will be halted and discarded by the system
controller, and the zeroization service will be executed instead. Once the zeroization service request is
detected, the simulation stops and a message indicating the system has entered zeroization is displayed.
Manual restarts of simulation after zeroization are invalid.

3.2 Data Pointer Services
The following sections describe various types of data pointer services.

3.2.1 Serial Number
The serial number service will write a 128-bit serial number to an address location provided as part of
the service request. This 128-bit parameter can be set using a System Service Simulation Support file

. If the 128-bit serial number parameter is not defined within the file, a default serial (see page 22)
number of 0 will be used. Once the service has begun execution, a message indicating the destination
location and serial number is displayed. The system controller conducts an AHB write to the address
with the serial number. Upon completion of the service, the COMM_BLK's RXFIFO will be loaded with
the service response.

3.2.2 Usercode
The usercode service writes a 32-bit usercode parameter to an address location provided as part of the
service request. This 32-bit parameter can be set using the System Service Simulation Support file (see

. If the 32-bit parameter is not defined within the file, a default value of 0 is used. Once the page 22)
service has begun execution, a message indicating the target location and usercode is displayed. The
system controller conducts an AHB write to the address with the 32-bit parameter. Upon completion of
the service, the COMM_BLK's RXFIFO is loaded with the service response, which includes the service
command and target address.

3.3 Data Descriptor Services
The following sections describe various types of data descriptor services.

IGLOO2 and SmartFusion2 FPGA System Services Simulation

Microsemi Proprietary and Confidential. UG0837 User Guide Revision 1.0 20

3.3.1 AES
The simulation support for this service is only concerned with moving the original data from the source
to the destination, without actually performing any encryption/decryption on the data. The data that
needs to be encrypted/decrypted and the data structure should be written before the service request is
sent. Once the service has begun execution, a message indicating the execution of the AES service is
displayed. The AES service reads both the data structure and data to be encrypted/decrypted. The
original data is copied and written to the address provided within the data structure. Once the service is
completed, the command, status, and data structure address are pushed into the RXFIFO.

Note: This service is only for 128-bit and 256-bit data, and both 128-bit and 256-bit data have different
data structure lengths.

3.3.2 SHA 256
The simulation support for this service is only concerned with moving the data, without actually
performing any hashing on the data. The SHA 256 function is designed to generate a 256-bit hash key
based on the input data. The data that needs to be hashed and the data structure should be written to
their respective addresses before the service request is sent to the COMM_BLK. The length in bits and
pointer defined within the SHA 256 data structure must correctly correspond to the length and address
of the data to be hashed. Once the service has begun execution, a message indicating the execution of
the SHA 256 service is displayed. Rather than executing the actual function, a default hash key will be
written to the destination pointer from the data structure. The default hash key is hex "ABCD1234". Forr
setting a custom key, go to the section. Upon completion of the Parameter Setting (see page 23)
service, the RXFIFO is loaded with the service response consisting of the service command, status, and
SHA 256 data structure pointer.

3.3.3 HMAC
The simulation support for this service is only concerned with moving of data, without actually
performing any hashing on the data. The data that needs to be hashed and the data structure should be
written to their respective addresses before the service request is sent to the COMM_BLK. The HMAC
service requires a 32-byte key in addition to the length in bytes, source pointer, and destination pointer.
Once the service has begun execution, a message indicating the execution of the HMAC service is
displayed. The key is read and the 256-bit key is copied from the data structure to the destination
pointer. Upon completion of the service, the RXFIFO is loaded with the service response consisting of
the service command, status, and HMAC data structure pointer.

3.3.4 DRBG Generate
Generation of random bits is performed by this service. It should be noted that the simulation model
does not exactly follow the same random number generation methodology used by the silicon. The data
structure must be correctly written into its intended location before the service request is sent to the
COMM_BLK. The data structure, destination pointer, length and other relevant data are read by the
system controller. The DRBG generate service generates a pseudo random set of data of the requested
length (0-128). The system controller writes the random data into the destination pointer. A message
indicating the execution of DRBG generate service is displayed in simulation. Once the service is
completed, the command, status, and data structure address are pushed into the RXFIFO. If the
requested data length is not within the range of 0-128, an error code of "4" (Max Generate

) will be pushed into the RXFIFO. If the additional data length is not within the Request Too Big
range of 0-128, an error code of "5" () will be Max Length of Additional Data Exceeded
pushed into the RXFIFO. If both the requested data length for generate and additional data length are
not within their defined range (0-128), an error code of "1" () is pushed into Catastrophic Error
the RXFIFO.

3.3.5 DRBG Reset
The actual reset function is performed by removing DRBG instantiations and resetting DRBG. Once the
service request has been detected, the simulation displays a DRBG Reset service completed
message. The response, which includes the service and status, is pushed into the RXFIFO.

IGLOO2 and SmartFusion2 FPGA System Services Simulation

Microsemi Proprietary and Confidential. UG0837 User Guide Revision 1.0 21

3.3.6 DRBG Self Test
The simulation support for the DRBG self-test does not actually execute the self-test function. Once the
service request has been detected, the simulation will display a DRBG self-test service execution
message. The response, which includes the service and status, will be pushed into the RXFIFO.

3.3.7 DRBG Instantiate
The simulation support for the DRBG instantiate service does not actually perform the instantiate
service. The data structure must be correctly written into its intended location before the service
request is sent to the COMM_BLK. Once the service request has been detected, the structure and
personalization string defined within the MSS address space will be read. The simulation will display a
message indicating that the DRBG Instantiate service has begun execution. Once the service is complete,
the response, which includes the service command, status, and pointer to the data structure, will be
pushed into the RXFIFO. If the data length (PERSONALIZATIONLENGTH) is not within the range of 0-128,
an error code of "1" () will be pushed into the RXFIFO for the status.Catastrophic Error

3.3.8 DRBG Uninstantiate
The simulation support for the DRBG uninstantiate service does not actually perform the uninstantiate
service of removing a previously instantiated DRBG, like the silicon does. The service request must
include both the command and DRBG handle. Once the service request has been detected, the DRBG
handle will be stored. The simulation will display a message indicating that the DRBG uninstantiate
service has been initialized. Once the service is complete, the response, which includes the service
command, status, and DRBG handle, will be pushed into the RXFIFO.

3.3.9 DRBG Reseed
Due to the simulative nature of the system services block, the DRBG reseed service in simulation is not
executed automatically after every 65535 DRBG generate services. The data structure must be correctly
written into its intended location before the service request is sent to the COMM_BLK. Once the service
request has been detected, the structure and additional input parameter in the MSS address space will
be read. A message indicating that the DRBG reseed service has begun executed, will be displayed. The
data structure must be correctly written into its intended location before the service request is sent to
the COMM_BLK. Once the service is complete, the response, which includes the service command,
status, and pointer to the data structure, will be pushed into the RXFIFO.

3.3.10 KeyTree
The actual function is not executed in simulation for the KeyTree service. The KeyTree service data
structure consists of a 32-byte key, 7-bit optype data (MSB ignored), and 16-byte path. The data within
the data structure should be written to their respective addresses, before the service request is sent to
the COMM_BLK. Once the service has begun execution, a message indicating the execution of the
KeyTree service will be displayed. The contents of the data structure will be read, the 32-byte key will be
stored, and the original key located within the data structure is overwritten. After this AHB write, the
value of the key within the data structure should not change, but AHB transactions for the write will
occur. Upon completion of the service, the RXFIFO is loaded with the service response, consisting of the
service command, status, and the KeyTree data structure pointer.

3.3.11 Challenge Response
The actual function, like authentication of the device, is not executed in simulation for the challenge
response service. The data structure for this service requires a pointer to the buffer, to receive a 32-byte
result, 7-bit optype, and a 128-bit path. The data within the data structure should be written to their
respective addresses before the service request is sent to the COMM_BLK. Once the service has begun
execution, a message indicating the execution of the challenge response service will be displayed. A
generic 256-bit response will be written into the pointer provided within the data structure. The default
key is set as hex "ABCD1234". To get a custom key, check . Upon Parameter Setting (see page 23)
completion of the service, the RXFIFO will be loaded with the service response, consisting of the service
command, status, and challenge response data structure pointer.

IGLOO2 and SmartFusion2 FPGA System Services Simulation

Microsemi Proprietary and Confidential. UG0837 User Guide Revision 1.0 22

3.4 Other Services
The following sections describe various other system services.

3.4.1 Digest Check
The actual function of recalculating and comparing digests of selected components is not executed for
the digest check service in simulation. This service request consists of service commands, and service
options (5-bit LSB). Once the service has begun execution, a message detailing the execution of the
digest check service will be displayed, along with the selected options from the request. Upon
completion of the service, the RXFIFO will be loaded with the service response, consisting of the service
command, and the digest check pass/fail flags.

3.4.2 Unrecognized Command Response
When an unrecognized service request is sent to the COMM_BLK, the COMM_BLK will automatically
reply with a unrecognized command message pushed into the RXFIFO. The message consists of the
command sent into the COMM_BLK and the unrecognized command status (252D). A display message
indicating an unrecognized service request has been detected will also be displayed. The COMM_BLK
will return to an idle state, waiting to accept the next service request.

3.4.3 Unsupported Services
Unsupported services set to the COMM_BLK will trigger a message in simulation indicating that the
service request is unsupported. The COMM_BLK will return to an idle state, waiting to accept the next
service request. The PINTERRUPT will not be set, indicting that a service has been complete. The current
list of unsupported services include: IAP, ISP, Device Certificate, and the DESIGNVER Service.

3.5 System Services Simulation Support File
To support system services simulation, a text file called, "status.txt" can be used to pass
instructions about the required behavior of the simulation model to the simulation model. This file
should be located in the same folder, that the simulation is run from. The file can be used, among other
things, to force certain error responses for the system services supported or even for setting some
parameters needed for simulation, (for example, serial number). The maximum number of lines

 supported in the " status.txt" file is 256. Instructions that appear after line number 256 will not be
used in the simulation.

3.5.1 Forcing Error Responses
The user can force a certain error response for a particular service during testing by passing the
information to the simulation model using the file, which should be placed in the "status.txt"
folder the simulation is run from. In order to force error responses to a certain service, the command
and the required response should be typed in the same line in the following format: <Service

 where both are two hexadecimal digits. For example, to Command><Response Expected>;
instruct the simulation model to generate an MSS memory access error response to the serial number
service, the command is as follows.

Service: Serial Number: 01

Error message requested: MSS Memory Access Error: 7F

You should have the line 017F entered in file."status.txt"

IGLOO2 and SmartFusion2 FPGA System Services Simulation

Microsemi Proprietary and Confidential. UG0837 User Guide Revision 1.0 23

3.5.2 Parameter Setting
The file can also be used to set some parameters needed in simulation. As an "status.txt"
example, in order to set the 32-bit parameter for the usercode, the format of the line must be in this
order: where both values are entered in <Service Command><32 Bit USERCODE>;
hexadecimal. In order to set the 128-bit parameter for the serial number, the format of the line must be
in this order: ; where both values <Service Command><128 Bit Serial Number [127:0]>
are entered in hexadecimal. In order to set the 256-bit parameter for the SHA 256 key; the format of the
line must be in this order: where both values <Service Command><256 Bit Key [255:0]>;
are entered in hexadecimal. In order to set the 256-bit parameter for the challenge response key, the
format of the line must be in this order: <Service Command><256 Bit Key [255:0]>;
where both values are entered in hexadecimal.

3.5.3 Device Priority
Systems services and the COMM_BLK utilize a high priority system. Currently, the only high priority
service is zeroization. In order to perform a high-priority service, while another service is being
executed, the current service is halted and the higher priority service will be executed in its place. The
COMM_BLK will discard the current service in order to perform the higher priority service. If multiple
non-high-priority services are sent before the completion of a current service, these services will be
queued within the TXFIFO. Once the current service is complete, the next service in the TXFIFO will be
executed.

IGLOO2 and SmartFusion2 FPGA System Services Simulation

Microsemi Proprietary and Confidential. UG0837 User Guide Revision 1.0 24

Microsemi Headquarters
One Enterprise, Aliso Viejo,
CA 92656 USA
Within the USA: +1 (800) 713-4113
Outside the USA: +1 (949) 380-6100
Sales: +1 (949) 380-6136
Fax: +1 (949) 215-4996
Email: sales.support@microsemi.com
www.microsemi.com

© 2018 Microsemi. All rights reserved. Microsemi and the Microsemi logo
are trademarks of Microsemi Corporation. All other trademarks and service
marks are the property of their respective owners.

Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of its products and services
for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the application or use of any product or circuit. The
products sold hereunder and any other products sold by Microsemi have been subject to limited testing and should not be used in conjunction with
mission-critical equipment or applications. Any performance specifications are believed to be reliable but are not verified, and Buyer must conduct and
complete all performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not rely on any data
and performance specifications or parameters provided by Microsemi. It is the Buyer's responsibility to independently determine suitability of any
products and to test and verify the same. The information provided by Microsemi hereunder is provided "as is, where is" and with all faults, and the
entire risk associated with such information is entirely with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights,
licenses, or any other IP rights, whether with regard to such information itself or anything described by such information. Information provided in this
document is proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this document or to any products
and services at any time without notice.

Microsemi, a wholly owned subsidiary of Microchip Technology Inc. (Nasdaq: MCHP), offers a comprehensive portfolio of semiconductor and system
solutions for aerospace & defense, communications, data center and industrial markets. Products include high-performance and radiation-hardened
analog mixed-signal integrated circuits, FPGAs, SoCs and ASICs; power management products; timing and synchronization devices and precise time
solutions, setting the world's standard for time; voice processing devices; RF solutions; discrete components; enterprise storage and communication
solutions; security technologies and scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs and midspans; as well as custom design
capabilities and services. Microsemi is headquartered in Aliso Viejo, California, and has approximately 4,800 employees globally. Learn more at www.
microsemi.com.

50200837

	 Revision History
	Revision 1.0

	IGLOO2 and SmartFusion2 FPGA System Services Simulation
	Types of Available System Services
	IGLOO2 System Service Simulation
	SmartFusion2 System Service Simulation
	Simulation Examples
	IGLOO2 Serial Number Service Simulation
	SmartFusion2 Serial Number Service Simulation
	IGLOO2 Zeroization Service Simulation
	SmartFusion2 Zeroization Service Simulation

	Appendix: Types Of System Services
	Simulation Message Services
	Flash*Freeze
	Zeroization

	Data Pointer Services
	Serial Number
	Usercode

	Data Descriptor Services
	AES
	SHA 256
	HMAC
	DRBG Generate
	DRBG Reset
	DRBG Self Test
	DRBG Instantiate
	DRBG Uninstantiate
	DRBG Reseed
	KeyTree
	Challenge Response

	Other Services
	Digest Check
	Unrecognized Command Response
	Unsupported Services

	System Services Simulation Support File
	Forcing Error Responses
	Parameter Setting
	Device Priority

