

## **Total Ionizing Dose Test Report**

No. 16T-RTAX2000D-CQ352E-D5G821

February 17, 2016



## **Table of Contents**

| I.   | Summary Table                                      | 3  |
|------|----------------------------------------------------|----|
| II.  | Total Ionizing Dose (TID) Testing                  |    |
| Α.   | Device-Under-Test (DUT) and Irradiation Parameters | 3  |
| В.   | Test Method                                        | 4  |
| C.   | Design and Parametric Measurements                 | 5  |
| III. | Test Results                                       | 6  |
| Α.   | Functionality                                      | 6  |
| В.   | Power Supply Current (ICCA and ICCI)               | 6  |
| C.   | Output-Drive Voltage (VOL/VOH)                     | 10 |
| D.   | Propagation Delay                                  | 12 |
| Ε.   | Transition Characteristics                         | 14 |



#### TOTAL IONIZING DOSE TEST REPORT

No. 16T-RTAX2000D-CQ352E-D5G821 February 17, 2016 Solomon Wolday and Yaron Milwid (408) 643-6388, (408) 643-6461 <u>solomon.wolday@microsemi.com</u>, <u>yaron.milwid@microsemi.com</u>

## I. Summary Table

| Parameter                           | Tolerance                           |
|-------------------------------------|-------------------------------------|
| 1. Gross Functionality              | Passed 300 krad (SiO <sub>2</sub> ) |
| 2. Power Supply Current (ICCA/ICCI) | Passed 200 krad (SiO <sub>2</sub> ) |
| 3. Input Threshold (VTIL/VIH)       | Passed 300 krad (SiO <sub>2</sub> ) |
| 4. Output Drive (VOL/VOH)           | Passed 300 krad (SiO <sub>2</sub> ) |
| 5. Propagation Delay                | Passed 200 krad (SiO <sub>2</sub> ) |
| 6. Transition Characteristics       | Passed 300 krad (SiO <sub>2</sub> ) |

## II. Total Ionizing Dose (TID) Testing

This testing is designed on the base of an extensive database (see TID data of antifuse-based FPGAs at http://www.klabs.org and http://www.microsemi.com/soc) accumulated from the TID testing of many generations of antifuse-based FPGAs.

## A. Device-Under-Test (DUT) and Irradiation Parameters

Table 1 lists the DUT and irradiation parameters. During irradiation, each input and most of the output is grounded through a 1 M $\Omega$  resistor; during annealing, each input or output is tied to the ground or VCCI with a 2.7 k $\Omega$  resistor. Appendix A contains the schematics of the irradiation-bias circuit.

| Dort Number                                  |                                   |  |  |  |
|----------------------------------------------|-----------------------------------|--|--|--|
| Part Number                                  | RTAX2000D                         |  |  |  |
| Package                                      | CQ352E                            |  |  |  |
| Foundry                                      | United Microelectronics Corp.     |  |  |  |
| Technology                                   | 0.15 µm CMOS                      |  |  |  |
| DUT Design                                   | TOP_AX2000S_TID                   |  |  |  |
| Die Lot Number                               | D5G821                            |  |  |  |
| Quantity Tested                              | 5                                 |  |  |  |
| Sorial Number                                | 300 krad(SiO2): 5105, 5106, 5107  |  |  |  |
| Senai Number                                 | 200 krad(SiO2): 5112, 5113        |  |  |  |
| Radiation Facility                           | Defense Microelectronics Activity |  |  |  |
| Radiation Source                             | Co-60                             |  |  |  |
| Dose Rate (±5%)                              | 10 krad(SiO2)/min                 |  |  |  |
| Irradiation Temperature                      | Room                              |  |  |  |
| Irradiation and Measurement Bias (VCCI/VCCA) | Static at 3.3 V/1.5 V             |  |  |  |

#### Table 1 DUT and Irradiation Parameters



## **B. Test Method**



Figure 1 Parametric Test Flow Chart

The test method generally follows the guidelines in the military standard TM1019.8. Figure 1 is the flow chart describing the steps for functional and parametric tests, irradiation, and post-irradiation annealing.

The accelerated aging, or rebound test mentioned in TM1019.8, is unnecessary; because there is no adverse time-dependent effect (TDE) in Microsemi products manufactured by deep sub-micron CMOS technologies. Elevated temperature annealing basically reduces the effects originating from radiation-induced leakage currents. As indicated by test data in the following sections, the predominant radiation effects in RTAX2000D are due to radiation-induced leakage currents.

Room temperature annealing is performed in this test; the duration is approximately 7 days.



## C. Design and Parametric Measurements

The DUT uses a high utilization, generic design (TOP\_AX2000S\_TID) to evaluate total dose effects for typical space applications. Appendix B contains the schematics and Verilog files of this design.

Table 2 lists measured electrical parameters and the corresponding logic design. The functionality is measured on the output pin (O\_BS) of a combinational buffer-string with 14,000 buffers, output pins (O\_ANDP\_CLKF, O\_ORP\_CLKF, O\_FF\_CLKF, O\_ANDC\_CLKF, O\_ORC\_CLKF, O\_ANDP\_CLKG, O\_ORP\_CLKG, O\_FF\_CLKG, O\_ANDC\_CLKG, O\_ORC\_CLKG, O\_ANDP\_CLKH, O\_ORP\_CLKH, O\_FF\_CLKH, O\_ANDC\_CLKH, O\_ORC\_CLKH, O\_ANDP\_HCLKA, O\_ORP\_HCLKA, O\_FF\_HCLKA, O\_FF\_CLKA, o\_ANDC\_HCLKA, and O\_ORC\_HCLKA) of four (4) shift registers with 10,728 bits total, and half of the output pins (OUTX0, OUTX1, OUTX2, OUTX3, OUTX4, OUTX5, OUTX6 and OUTX7) of the embedded RAM configured as 16K×16.

ICC is measured on the power supply of the logic-array (ICCA) and I/O (ICCI) respectively. The input logic threshold (VIL/VIH) is measured on single-ended inputs EN8, DA, IO\_I1, IO\_I2, IO\_I3, IO\_I4, IO\_I5 and IO\_I6, and also on differential inputs DIO\_I1P, DIO\_I2P, DIO\_I3P, DIO\_I4P, DIO\_I5P, DIO\_I6P and DIO\_I7P. The differential inputs are configured as LVPECL instead of LVDS; because LVPECL using 3.3 VDC, is worse than LVDS which uses 2.5 VDC. During the measurement on the differential inputs, the N (negative) side of the differential pair is biased at 1.8 V. The output-drive voltage (VOL/VOH) is measured on QA0 and YQ0. The propagation delay is measured on the output (O\_BS) of the buffer string; the definition is the time delay from the triggering edge at the CLOCK input to the switching edge at the output O\_BS. Both the delays of low-to-high and high-to-low output transitions are measured; the reported delay is the average of these two measurements. The transition characteristics, measured on the output O\_BS, are shown as oscilloscope captures.

| Parameters                   | Logic Design                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |
|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| 1. Functionality             | All key logic functions (O_BS, O_ANDP_CLKF, O_ORP_CLKF, O_FF_CLKF,<br>O_ANDC_CLKF, O_ORC_CLKF, O_ANDP_CLKG, O_ORP_CLKG, O_FF_CLKG,<br>O_ANDC_CLKG, O_ORC_CLKG, O_ANDP_CLKH, O_ORP_CLKH, O_FF_CLKH,<br>O_ANDC_CLKH, O_ORC_CLKH, O_ANDP_HCLKA, O_ORP_HCLKA,<br>O_FF_HCLKA, O_ANDC_HCLKA, and O_ORC_HCLKA), and outputs of embedded<br>RAM (OUTX0, OUTX1, OUTX2, OUTX3, OUTX4, OUTX5, OUTX6 and OUTX7) |  |  |  |  |  |  |
| 2. ICC (ICCA/ICCI)           | DUT power supply                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |
| 3. Input Threshold (VIL/VIH) | Single ended inputs (EN8/YQ0, DA/QA0, IO_11/IO_O1, IO_12/IO_O2, IO_13/IO_O3, IO_14/IO_O4, IO_15/IO_O5, IO_16/IO_O6), and differential inputs (DIO_11P/DIO_O1, DIO_12P/DIO_O2, DIO_13P/DIO_O3, DIO_14P/DIO_O4, DIO_15P/DIO_O5, DIO_16P/DIO_06, DIO_17P/DIO_O7)                                                                                                                                       |  |  |  |  |  |  |
| 4. Output Drive (VOL/VOH)    | Output buffer (EN8/YQ0, DA/QA0)                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |
| 5. Propagation Delay         | String of buffers (CLOCK to O_BS)                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |
| 6. Transition Characteristic | String of buffers output (O_BS)                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |

| Table 2 | Logic | Design | for | Parametric | Measurements |
|---------|-------|--------|-----|------------|--------------|
|         |       |        |     |            |              |



## **III. Test Results**

## A. Functionality

Every DUT passed the pre-irradiation and post-annealing functional tests. The as-irradiated DUT is functionally tested on the output (O\_FF\_HCLKA) of the largest shift register.

## B. Power Supply Current (ICCA and ICCI)

Figure 2 through Figure 6 plot the influx standby ICCA and ICCI versus total dose for each DUT. The postannealing ICC for four different bit patterns, all '0', all '1', checkerboard and inverted-checkerboard, in the RAM are basically the same.

In compliance with TM1019.8 subsection 3.11.2.c, the post-irradiation-parametric limit (PIPL) for the postannealing ICCI in this test is defined as the addition of highest ICCI, ICCDA and ICCDIFFA values in Table 2-6 of *the RTAX-S/SL and RTAX-DSP Radiation-Tolerant FPGAs* datasheet:

http://www.microsemi.com/soc/documents/RTAXS\_DS.pdf

For ICCA, the PIPL is 500 mA; the PIPL of ICCI equals to  $35 + 10 + 3.7 \times 2 = 52.4$  (mA). Note that there are 2 pairs of differential LVPECL inputs in each DUT.

Table 3 summarizes the pre-irradiation, post-irradiation right after irradiation and before anneal, and postannealing ICCA and ICCI data.

| DUT  | Total Dose |           | ICCA (mA)  |          | ICCI (mA) |            |          |  |  |
|------|------------|-----------|------------|----------|-----------|------------|----------|--|--|
|      |            | Pre-irrad | Post-irrad | Post-ann | Pre-irrad | Post-irrad | Post-ann |  |  |
| 5105 | 300 krad   | 1         | 272.46     | 9        | 41        | 311.93     | 31.44    |  |  |
| 5106 | 300 krad   | 1         | 290.56     | 11       | 42        | 342.63     | 48.90    |  |  |
| 5107 | 300 krad   | 1         | 185.58     | 7        | 43        | 241.64     | 54.01    |  |  |
| 5112 | 200 krad   | 1         | 24.68      | 2        | 43        | 108.58     | 29.90    |  |  |
| 5113 | 200 krad   | 0         | 29.47      | 1        | 39        | 125.36     | 37.06    |  |  |

Table 3 Pre-Irradiation, Post Irradiation and Post-Annealing ICC









Figure 3 DUT 5106 Influx ICCA and ICCI









Figure 5 DUT 5112 Influx ICCA and ICCI









## C. Output-Drive Voltage (VOL/VOH)

The pre-irradiation and post-annealing VOL/VOH values for various pins are listed in Tables 4 and 5. The post-annealing data are within the specification limits.

| Sourcing |                                  | 510<br>k    | 5 (300<br>rad) | 5106<br>kra | (300<br>d)  | 5107 (300 krad) |             | 5112 (200<br>krad) |             | 5113 (200<br>krad) |             |
|----------|----------------------------------|-------------|----------------|-------------|-------------|-----------------|-------------|--------------------|-------------|--------------------|-------------|
| Current  | PINDUT                           | Pre-<br>rad | Post-<br>an    | Pre-<br>rad | Post<br>-an | Pre-<br>rad     | Post-<br>an | Pre-<br>rad        | Post<br>-an | Pre-<br>rad        | Post-<br>an |
|          | IO_Outs<br>_EAQ_<br>14           | 187         | 181            | 190         | 192         | 189             | 190         | 188                | 180         | 188                | 180         |
| 24 mA    | ALU_test<br>_mon_<br>QBI         | 190         | 173            | 191         | 195         | 191             | 164         | 189                | 183         | 189                | 172         |
|          | Shiftout_<br>0                   | 204         | 197            | 211         | 203         | 206             | 197         | 204                | 198         | 204                | 199         |
|          | Array_<br>out_EAQ<br>_1          | 145         | 141            | 144         | 140         | 146             | 141         | 143                | 140         | 146                | 141         |
| 16 mA    | IO_Outs<br>_EAQ_1<br>9           | 163         | 160            | 166         | 162         | 164             | 158         | 162                | 157         | 163                | 158         |
|          | Math_ac<br>c_18x18<br>_ok        | 150         | 157            | 154         | 159         | 154             | 160         | 152                | 154         | 153                | 154         |
|          | Math_<br>acc_9x9<br>_SIMD_<br>ok | 147         | 162            | 146         | 158         | 147             | 159         | 145                | 151         | 147                | 151         |
| 12 mA    | IO_Outs<br>_EAQ_0                | 150         | 147            | 151         | 145         | 151             | 144         | 150                | 145         | 150                | 145         |
|          | Ram_<br>test_mon<br>_QBI         | 151         | 140            | 152         | 144         | 153             | 143         | 151                | 149         | 152                | 145         |
|          | IO_Outs<br>_EAQ_<br>17           | 174         | 168            | 175         | 165         | 177             | 165         | 174                | 166         | 175                | 167         |
| 8 mA     | Shiftout_<br>2                   | 181         | 171            | 183         | 174         | 183             | 172         | 181                | 173         | 182                | 174         |
|          | rcell_out<br>z_HSB_0             | 181         | 171            | 182         | 174         | 182             | 172         | 180                | 172         | 181                | 173         |

Table 4 Pre-Irradiation and Post-Annealing VOL (mV) at Various Sinking Currents and Pins



# Table 5 Pre-Irradiation and Post-Annealing VOH (mV) at Various Sourcing Currents and Pins

| Sourcing | Bin) DUT                         | 5105<br>kra | (300<br>d)  | 5106<br>kra | (300<br>d)  | 300 5107 (300 krad)<br>) |             |             | (200<br>ad) | 5113 (200 krad) |             |
|----------|----------------------------------|-------------|-------------|-------------|-------------|--------------------------|-------------|-------------|-------------|-----------------|-------------|
| Current  | Pin\DUT                          | Pre-<br>rad | Post<br>-an | Pre-<br>rad | Post<br>-an | Pre-<br>rad              | Post-<br>an | Pre-<br>rad | Post<br>-an | Pre-<br>rad     | Post-<br>an |
|          | IO_Outs<br>_EAQ_<br>14           | 2721        | 2722        | 2718        | 2706        | 2719                     | 2706        | 2722        | 2712        | 2720            | 2720        |
| 24 mA    | ALU_test<br>_mon_<br>QBI         | 2718        | 2719        | 2717        | 2697        | 2718                     | 2705        | 2720        | 2717        | 2718            | 2739        |
|          | Shiftout_<br>0                   | 2700        | 2694        | 2695        | 2690        | 2700                     | 2695        | 2703        | 2698        | 2701            | 2697        |
|          | Array_<br>out_EAQ<br>_1          | 2771        | 2765        | 2772        | 2766        | 2771                     | 2764        | 2773        | 2769        | 2771            | 2766        |
| 16 mA    | IO_Outs<br>_EAQ_<br>19           | 2754        | 2753        | 2753        | 2747        | 2754                     | 2750        | 2756        | 2754        | 2756            | 2753        |
|          | Math<br>_acc_<br>18x18_<br>ok    | 2767        | 2766        | 2765        | 2763        | 2764                     | 2763        | 2765        | 2765        | 2765            | 2764        |
|          | Math_<br>acc_9x9<br>_SIMD_<br>ok | 2763        | 2759        | 2764        | 2760        | 2762                     | 2758        | 2765        | 2765        | 2763            | 2759        |
| 12 mA    | IO_Outs<br>_EAQ_0                | 2760        | 2757        | 2759        | 2754        | 2758                     | 2754        | 2761        | 2757        | 2760            | 2755        |
|          | Ram_<br>test_mon<br>_QBI         | 2758        | 2754        | 2756        | 2749        | 2756                     | 2752        | 2758        | 2758        | 2757            | 2746        |
|          | IO_Outs<br>_EAQ_<br>17           | 2718        | 2715        | 2716        | 2712        | 2715                     | 2710        | 2720        | 2716        | 2717            | 2713        |
| 8 mA     | Shiftout_<br>2                   | 2712        | 2706        | 2712        | 2705        | 2711                     | 2707        | 2713        | 2710        | 2713            | 2708        |
|          | rcell_<br>outz_<br>HSB_0         | 2712        | 2709        | 2716        | 2710        | 2715                     | 2711        | 2715        | 2714        | 2716            | 2714        |



## D. Propagation Delay

The propagation delay was measured in-situ, post-irradiation, and post-annealing. The results are plotted in Figure 8, and listed in Table 6. As shown in Figure 8, the propagation delay moves with the total dose, but the change is small throughout the irradiation. Referring to influx static current plots (Figure 2 through Figure 6), a device probably heats up as the dose increases. The rising temperature could be the root cause of the increasing trend at high doses. The post-annealing data, on the other hand, show decreased delay in every case.

The radiation delta in every case is well within the 10% degradation criterion. The user can take the worst case for the design margin consideration.



Figure 8 In-Situ Propagation Delay versus Total Dose



| Delay (µs)             |                           |            |         |          |          |          |          |
|------------------------|---------------------------|------------|---------|----------|----------|----------|----------|
|                        | DUTTotal Dose5105300 krad |            | Pre-rad | 100 krad | 200 krad | 300 krad | Post-ann |
|                        |                           |            | 3.51    | 3.53     | 3.59     | 4.09     | 3.45     |
|                        | 5106                      | 300 krad   | 3.54    | 3.57     | 3.64     | 4.28     | 3.5      |
|                        | 5107                      | 300 krad   | 3.49    | 3.52     | 3.58     | 3.95     | 3.44     |
|                        | 5112                      | 200 krad   | 3.52    | 3.53     | 3.59     | -        | 3.44     |
|                        | 5113                      | 200 krad   | 3.53    | 3.54     | 3.62     | -        | 3.46     |
| Radiation $\Delta$ (%) |                           |            |         |          |          |          |          |
|                        | DUT                       | Total Dose | Pre-rad | 100 krad | 200 krad | 300 krad | Post-ann |
|                        | 5105                      | 300 krad   | -       | 0.57 %   | 2.28 %   | 16.53 %  | -1.7 %   |
|                        | 5106                      | 300 krad   | -       | 0.85 %   | 2.83 %   | 20.91 %  | -1.12 %  |
|                        | 5107                      | 300 krad   | -       | 0.86 %   | 2.58 %   | 13.19 %  | -1.43 %  |
|                        | 5112                      | 200 krad   | -       | 0.29 %   | 1.99 %   | -        | -2.27 %  |
|                        | 5113                      | 200 krad   | -       | 0.29 %   | 2.55 %   | -        | -1.98 %  |

#### Table 6 Radiation-Induced Propagation Delay Degradations



## E. Transition Characteristics

Figure 9a to Figure 19b show the pre-irradiation and post-annealing transition edges. In each case, the radiation-induced transition-time degradation is insignificant.



Figure 9a DUT 5105 Pre-Irradiation Rising Edge



Figure 9b DUT 5105 Post-Annealing Rising Edge





Figure 10a DUT 5106 Pre-Irradiation Rising Edge



Figure 10b DUT 5106 Post-Annealing Rising Edge









Figure 11b DUT 5107 Post-Annealing Rising edge





Figure 12a DUT 5112 Pre-Irradiation Rising Edge



Figure 12b DUT 5112 Post-Annealing Rising Edge









Figure 13b DUT 5113 Post-Annealing Rising Edge





Figure 14a DUT 5105 Pre-Irradiation Falling Edge



Figure 14b DUT 5105 Post-Annealing Falling Edge









Figure 15b DUT 5106 Post-Annealing Falling Edge





Figure 16a DUT 5107 Pre-Irradiation Falling Edge



Figure 16b DUT 5107 Post-Annealing Falling Edge





Figure 17a DUT 5112 Pre-Irradiation Falling Edge



Figure 17b DUT 5112 Post-Annealing Falling Edge



Figure 18a DUT 5113 Pre-Irradiation Falling Edge



Figure 18b DUT 5113 Post-Annealing Falling Edge