
TU0827
Tutorial

PolarFire FPGA Debugging Using Splash Kit

50200827. 1.0 4/18

Microsemi Corporate Headquarters
One Enterprise, Aliso Viejo,
CA 92656 USA
Within the USA: +1 (800) 713-4113
Outside the USA: +1 (949) 380-6100
Fax: +1 (949) 215-4996
Email: sales.support@microsemi.com
www.microsemi.com

© 2018 Microsemi Corporation. All
rights reserved. Microsemi and the
Microsemi logo are trademarks of
Microsemi Corporation. All other
trademarks and service marks are the
property of their respective owners.

Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of
its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the
application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have
been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any
performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all
performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not
rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer's responsibility to
independently determine suitability of any products and to test and verify the same. The information provided by Microsemi
hereunder is provided “as is, where is” and with all faults, and the entire risk associated with such information is entirely
with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP
rights, whether with regard to such information itself or anything described by such information. Information provided in this
document is proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this
document or to any products and services at any time without notice.

About Microsemi

Microsemi Corporation (Nasdaq: MSCC) offers a comprehensive portfolio of semiconductor and system solutions for
aerospace & defense, communications, data center and industrial markets. Products include high-performance and
radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and ASICs; power management products;
timing and synchronization devices and precise time solutions, setting the world's standard for time; voice processing
devices; RF solutions; discrete components; enterprise storage and communication solutions, security technologies and
scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs and midspans; as well as custom design
capabilities and services. Microsemi is headquartered in Aliso Viejo, California, and has approximately 4,800 employees
globally. Learn more at www.microsemi.com.

mailto:sales.support@microsemi.com
http://www.microsemi.com
http://www.microsemi.com
http://www.microsemi.com

TU0827 Tutorial Revision 1.0 iii

Contents

1 Revision History . 1
1.1 Revision 1.0 . 1

2 PolarFire FPGA Debugging Using Splash Kit . 2
2.1 Design Requirements . 2

2.2 Prerequisites . 3

2.3 Demo Design . 3

2.4 Clocking Structure . 5

2.5 Programming the Device . 5

2.6 Launching SmartDebug from Libero . 6

2.7 Debugging the Design . 7
2.7.1 View Device Status . 7
2.7.2 Debug FPGA Array . 8
2.7.3 Debug µPROM . 12
2.7.4 sNVM Debug . 12
2.7.5 Debug TRANSCEIVER . 14

2.8 Conclusion . 19

3 Appendix: Known Issues . 20
3.1 Probe Points Write Issue . 20

3.2 Data Traffic Errors on XCVR Lanes in CDR Mode . 21

4 Appendix: References . 22

TU0827 Tutorial Revision 1.0 iv

Figures

Figure 1 SmartDebug Top-Level Blocks . 3
Figure 2 XCVR_Debug Overall Design Blocks . 4
Figure 3 Fabric_Debug Overall Design Blocks . 4
Figure 4 Clocking Structure . 5
Figure 5 Board Setup . 6
Figure 6 Programming the Device . 6
Figure 7 Launching SmartDebug Design . 6
Figure 8 SmartDebug Window Debug Options . 7
Figure 9 Device Status Report Sample . 7
Figure 10 Debug FPGA Array—Live Probes . 8
Figure 11 Debug FPGA Array—Active Probes . 9
Figure 12 Pseudo-static Signal Polling . 9
Figure 13 Debug FPGA Array—Memory Blocks . 10
Figure 14 Memory Blocks—Read Block . 10
Figure 15 Memory Blocks—Write Block . 11
Figure 16 Debug FPGA Array—Probe Insertion . 11
Figure 17 µPROM Debug . 12
Figure 18 sNVM Debug . 12
Figure 19 sNVM Debug—Client View . 13
Figure 20 Secured NVM Details . 13
Figure 21 sNVM Debug—Page View . 14
Figure 22 Configuration Report . 14
Figure 23 Debug TRANSCEIVER—Smart BERT . 15
Figure 24 Smart BERT—Error Counter . 15
Figure 25 Debug TRANSCEIVER—Loopback Modes . 16
Figure 26 Static Pattern Transmit . 17
Figure 27 Recommended Settings for Eye Monitor . 17
Figure 28 Debug TRANSCEIVER—Eye Monitor . 18
Figure 29 Signal Integrity . 18
Figure 30 Programming Connectivity and Interface . 20

TU0827 Tutorial Revision 1.0 v

Tables

Table 1 Design Requirements . 2
Table 2 Jumper Settings . 5

Revision History

TU0827 Tutorial Revision 1.0 1

1 Revision History

The revision history describes the changes that were implemented in the document. The changes are
listed by revision, starting with the current publication.

1.1 Revision 1.0
The first publication of this document.

PolarFire FPGA Debugging Using Splash Kit
2 PolarFire FPGA Debugging Using Splash Kit

Design debug is a critical phase of the FPGA design flow. Microsemi's SmartDebug enables debugging
of PolarFire devices in real time, and it does not require any other internal logic analyzer (ILA).

SmartDebug supports the following features:

• Device Status View
• FPGA Array Debug
• sNVM Debug
• µPROM Debug
• Transceiver Debug

These features enable designers to check the state of inputs and outputs in real time, without any re-
layout of the design.

The built-in probe points of the PolarFire device and the probe capabilities of SmartDebug enable the
real-time debug features.

SmartDebug provides the following capabilities:

• Live probes: Two dedicated probes can be configured to observe a probe point. The probe point
may be any output of a register. After selecting the probe points, the probe data can be sent to two
dedicated pins (PROBE_A and PROBE_B). You can connect an oscilloscope to the probe pins and
monitor the signal status.

• Active probes: It allows dynamic asynchronous read and write to a flip-flop or probe point. This
enables user to quickly observe the output of the logic internally, or to quickly experiment on how the
logic is affected by writing to a probe point.

• Debug memory: SmartDebug provides the Memory Blocks tab to dynamically and asynchronously
read from and write to a selected FPGA fabric SRAM block.

• sNVM debug capabilities: It enables reading each page or multiple pages from sNVM.
• Probe insertion: It is a post-layout process that enables you to insert probes into the design and

gets the signals out to the FPGA package pins to evaluate and debug the design.
• TRANSCEIVER debug capabilities: It makes debugging of high-speed serial designs simple. The

SmartDebug JTAG interface extends access to configure, control, and observe XCVR operations
and is accessible in every TRANSCEIVER design. The designs are implemented using the Libero
System Builder to incorporate the TRANSCEIVER block enabling XCVR access from the
SmartDebug. The Debug TRANSCEIVER window displays real-time system and the lane status
information. XCVR configurations are supported with TCL scripting, allowing access to the entire
XCVR register map for real-time customized tuning.

This tutorial provides a demo design to demonstrate SmartDebug’s capabilities, which are used to
perform real-time signal integrity testing and debugging.

2.1 Design Requirements
The following table lists the hardware, software, and IP requirements for this demo design.

Table 1 • Design Requirements

Requirement Version

Operating system 64-bit Windows 7 or 10

Hardware

PolarFire Splash Kit (MPF300TS-1FCG484EES)
– PolarFire Splash Board
– 12 V/5 A power adapter and cord
– USB 2.0 A to mini-B cable for UART and programming

Rev 2 or later
TU0827 Tutorial Revision 1.0 2

PolarFire FPGA Debugging Using Splash Kit
2.2 Prerequisites
Before you start:

1. Download the design files from the following link:
http://soc.microsemi.com/download/rsc/?f=mpf_tu0827_liberosocpolarfirev2p1_df

2. Download and install Libero SoC PolarFire v2.1 from the following location:
https://www.microsemi.com/products/fpga-soc/design-resources/design-software/libero-soc-
polarfire#downloads

2.3 Demo Design
Figure 1 • SmartDebug Top-Level Blocks

The design consists of five main blocks: the XCVR debug block (XCVR_Debug), the fabric debug block
(Fabric_Debug), PF_INIT_MON block, PF_CCC, and Reset_des_sync_0 as shown in Figure 1, page 3.

Software

Libero® SoC PolarFire v2.1

IP

PF_INIT_MONITOR 2.0.101

CORERESET_PF 2.1.100

PF_XCVR_REF_CLK 1.0.103

PF_TX_PLL 1.0.109

PF_XCVR_REF_CLK 1.0.103

PF_CCC 1.0.112

CORESMARTBERT 2.0.106

PF_UPROM 1.0.108

PF_URAM 1.1.107

PF_DPSRAM 1.1.110

Table 1 • Design Requirements (continued)

Requirement Version
TU0827 Tutorial Revision 1.0 3

http://soc.microsemi.com/download/rsc/?f=mpf_tu0827_liberosocpolarfirev2p1_df
https://www.microsemi.com/products/fpga-soc/design-resources/design-software/libero-soc-polarfire#downloads
https://www.microsemi.com/products/fpga-soc/design-resources/design-software/libero-soc-polarfire#downloads

PolarFire FPGA Debugging Using Splash Kit
Figure 2 • XCVR_Debug Overall Design Blocks

XCVR_Debug: The XCVR_Debug block demonstrates SmartDebug's real-time signal integrity (SI)
testing and debugging capabilities to test and debug the PolarFire transceiver. The XCVR_Debug block
consists of a CoreSmartBERT core along with TX_PLL and XCVR_REF_CLK macros. It implements the
PolarFire transceiver in PMA mode.

Figure 3 • Fabric_Debug Overall Design Blocks

Fabric_Debug: The Fabric_Debug block demonstrates several FPGA fabric debug features of
SmartDebug. First, it demonstrates SmartDebug's FPGA array debugging capabilities using a counter
that loads a counting pattern into the LSRAM instance (DPSRAM). The data value of the LSRAM block is
the same as the address value of the block. On the read side of the LSRAM, a count checker (count_chk)
ensures that the count progresses as expected. If there is an error, the output (error) is latched high.
Second, the Fabric_Debug block demonstrates the debug µPROM feature of SmartDebug using a
µPROM instance. Third, the Fabric_Debug block demonstrates how to set live probes to monitor an
internal user-selected point on the device in real time, and how to set active probes for dynamic
asynchronous read and write to a flip-flop or probe point. These features help to quickly observe the
output of the logic internally or quickly experiment to determine how the logic is affected by writes to a
probe point. Lastly, the Fabric_Debug block demonstrates SmartDebug's capabilities to read and modify
fabric SRAM content in real-time.

The PF_CCC block generates 125 MHz clock. Fabric_Debug logic works on this clock.

The PF_INIT_MON block checks the status of device initialization. When the initialization of SRAM and
µPROM is completed, the IP asserts DEVICE_INIT_DONE signal. This signal is tied with an external
reset and PLL lock.

The reset_des_sync_0 block is an instantiation of CoreRESET_PF IP. It synchronizes the de-assertion of
asynchronous reset.
TU0827 Tutorial Revision 1.0 4

PolarFire FPGA Debugging Using Splash Kit
2.4 Clocking Structure
The reference design has two clock domains. As shown in the following illustration, clock domain 1, used
for transceiver debug, runs at 125 MHz, and clock domain 2, used for fabric debug, runs at 125 MHz.

Figure 4 • Clocking Structure

2.5 Programming the Device
Before programming the device, SmartBERT probe related constraints need to be generated. The
SmartDebug reads and writes to probe points associated with the SmartBERT IP for debugging. JTAG
write to some probe points are not working as expected. This is a known issue. A software workaround is
provided to determine the working probe points. The constraints need to be updated by following the
steps mentioned in Appendix: Known Issues, page 20.

The following steps describe how to program the device on a PolarFire Splash Kit.

1. Ensure that the following jumper settings are followed.
Note: Power-down the board before making the jumper connections.

2. Connect the power supply cable to the J2 connector on the board.
3. Connect the USB cable from the Host PC to the J1 (FTDI port) on the board.
4. Power on the board using the SW1 slide switch.

Table 2 • Jumper Settings

Jumper Description

J11 Close pin 1 and 2 for programming through FTDI chip

J5, J6, J7, J8, J9 Close pin 2 and 3 for programming the PolarFire FPGA through FTDI

J10 Open pin 1 and 2 for programming through the FTDI SPI

J4 Short pin 1 and 2 for manual power switching using SW1

J3 Open pin 1 and 2 for 1.0 V
TU0827 Tutorial Revision 1.0 5

PolarFire FPGA Debugging Using Splash Kit
Figure 5 • Board Setup

In the Design Flow window, select Run PROGRAM Action, as shown in the following figure. This
programs the design into the device.

Figure 6 • Programming the Device

2.6 Launching SmartDebug from Libero
On the Design Flow window, double-click SmartDebug Design, as shown in the following figure.

Figure 7 • Launching SmartDebug Design
TU0827 Tutorial Revision 1.0 6

PolarFire FPGA Debugging Using Splash Kit
The SmartDebug window is displayed, as shown in the following figure.

Figure 8 • SmartDebug Window Debug Options

2.7 Debugging the Design
Debugging the device involves the following:

• View Device Status, page 7
• Debug FPGA Array, page 8
• Debug µPROM, page 12
• sNVM Debug, page 12
• Debug TRANSCEIVER, page 14

2.7.1 View Device Status
The View Device Status option provides the device status report. It summarizes the device information,
programmer information, design information, factory serial number, and security information, if any are
set. To view the device status report, click View Device Status in the SmartDebug window. The
following figure shows a sample of the device status information.

Figure 9 • Device Status Report Sample
TU0827 Tutorial Revision 1.0 7

PolarFire FPGA Debugging Using Splash Kit
2.7.2 Debug FPGA Array
The Debug FPGA Array provides an interface to probe the user logic implemented in the logic elements
(LEs) of the FPGA using active and live probes, read-write access to the fabric flip-flops, and read-write
access to the memories implemented using LSRAMs/URAMs. Probe insertion allows assignment of the
internal signals to the assigned or unassigned pins. These signals can be monitored using the
oscilloscope in real-time.The Debug FPGA Array supports the following four features:

• Live Probes
• Active Probes
• Memory Blocks
• Probe Insertion

2.7.2.1 Live Probes
Live Probes enables the monitoring of two internal signals at a time in the design without having to repeat
place and route. PolarFire devices have two dedicated live probe channels (for example, pin H6 and G6
of PolarFire MPF300TS device).

To use Live Probes, reserve pins using Reserve Pins for Probes under Constraints Manager in Libero
SoC PolarFire. If you do not reserve pins for live probes, the live probe I/O's function as GPIOs and are
used for routing nets in the design. The following figure shows the Live Probes tab.

Figure 10 • Debug FPGA Array—Live Probes

2.7.2.2 Active Probes
Active Probes enables to read or change the values of probe points in a design through JTAG. Active
Probes dynamically and asynchronously read or write to any logic element register bit. The probe points
of a design are selected using active probes. Active probes are useful for a quick observation of an
internal signal. All of the probe points for the design are displayed in Hierarchical View and Netlist View
in the left pane of the Active Probes tab.

• Hierarchical View: Available probe points are listed in hierarchical order.
• Netlist View: Available probe points are listed with the Name and Type, which are physical locations

of flip-flops.

To add probe points to a list:

1. Select the Active Probes tab in the right pane. The probe signals are displayed in the left pane.
2. Select the probe points that you want to add from the Hierarchical View or Netlist View in the left

pane.
TU0827 Tutorial Revision 1.0 8

PolarFire FPGA Debugging Using Splash Kit
3. Right-click the selected points and click Add to add them to the Active Probes. You can also add
the selected probe points by clicking Add in the top-right corner of the left pane. The probes signals
can be filtered with the Filter option.

4. Click Read Active Probes to read the content of the registers added to the window.

Figure 11 • Debug FPGA Array—Active Probes

5. To use pseudo static signal polling, on the Active Probes tab, right-click any probe point and select
Poll, as shown in the following figure.

Static signal polling is used to check whether the logical bit value is changed to expected polled value.

Figure 12 • Pseudo-static Signal Polling

2.7.2.3 Memory Blocks
SmartDebug provides the Memory Blocks tab to dynamically and asynchronously read from and write to
a selected FPGA fabric SRAM block. Memory blocks are categorized into two views:

• Physical View—shows the actual memory view of the RAM in FPGA
• Logical View—shows a logical representation of RAM block

Using the Memory Blocks tab, you can select the required memory block to:

• Read
• Capture a snapshot of the memory
• Modify memory values, and then write the values back to that block

To read and write memory blocks:

1. Select the Memory Blocks tab in the right pane of the SmartDebug window.
2. View the memory blocks in the left pane in the Hierarchical View.
3. Select the memory block in the left pane and click select in the top-right corner of the pane.
4. Right-click the selected memory block and click Add.
TU0827 Tutorial Revision 1.0 9

PolarFire FPGA Debugging Using Splash Kit
The following figure shows the Memory Blocks tab in Debug FPGA Array window.

Figure 13 • Debug FPGA Array—Memory Blocks

5. Click Read Block. The specified memory block is read as shown in the following figure.

Figure 14 • Memory Blocks—Read Block

6. Enter a hexadecimal value in the memory block locations and click Write Block to write content into
memory.

Note: The counter writes to the SRAM constantly. To prevent the overwrite of the changes that are forced into
the SRAM, the writing is stopped by forcing A_WEN signal value to low through DIP1 (first switch of
SW8). This drives a SELECT of a MUX that selects between high and low inputs. When DIP1 is
asserted, A_WEN becomes low, which prevents any write from the counter to the SRAM block.
TU0827 Tutorial Revision 1.0 10

PolarFire FPGA Debugging Using Splash Kit
7. Switch On DIP1, enter a hexadecimal value in the memory block location(s) and click Write Block to
write the modified value to the SRAM, as shown in the following figure.

Figure 15 • Memory Blocks—Write Block

8. The error LED(P8) light turns on, indicating an error in the counting pattern.
9. Go to Active Probes tab, read the value of error signal, it should show '1'. To use static signal

polling, right-click error_c:Fabric_Debug_0/count_chk_0/error:Q and select Poll (Poll for 0), as
shown in Figure 12, page 9.

10. Move DIP1 to off state to resume the write operation from the counter to the SRAM. This overwrites
the error that was injected into the SRAM. Check the status of LED, it must turn off. Hit the Poll for
0, User value match message should appear on the polling window. Close the Pseudo-static
signal polling window.

11. The content of the SRAM can be rechecked by clicking Read Block in the Memory Blocks tab.

2.7.2.4 Probe Insertion
Probe insertion is a post-layout debug process that enables internal nets in the FPGA design to be
routed to unused or used I/Os. Nets are selected and assigned to probes using the Probe Insertion tab
in SmartDebug. The rerouted design is reprogrammed automatically by Libero into the FPGA, where an
external logic analyzer or oscilloscope can be used to view the activity of the probed signal. The following
figure shows the Probe Insertion tab in the Debug FPGA Array window.

Figure 16 • Debug FPGA Array—Probe Insertion
TU0827 Tutorial Revision 1.0 11

PolarFire FPGA Debugging Using Splash Kit
2.7.3 Debug µPROM
SmartDebug enables debugging µPROM and reading its µPROM contents. The clients added in the
design can be debugged using the SmartDebug Debug µPROM feature.

1. Click Debug µPROM in the SmartDebug window. The µPROM Debug window is displayed as
shown in the following figure.

2. Select Initialization in the User Design View tab and then click Read from Device to read the
µPROM content. Check whether the content provided in uprom.mem file (part of design stimulus
files) matches with the data read from µPROM.

Figure 17 • µPROM Debug

Note: PolarFire devices have a single user programmable read only memory (µPROM) row located at the
bottom of the fabric, providing up to 459 Kb of non-volatile, read-only memory. The address bus is 16 bits
wide, and the read data bus is 9-bit wide. µPROM is used to store the configuration data, which is used
by Fabric logic to process.

2.7.4 sNVM Debug
sNVM Debug feature enables reading from the sNVM during debug. Debug Pass Key is required to carry
out SNVM_DEBUG instruction. This feature supports debugging of non-authenticated plain text,
authenticated plain text, and clients cipher authenticated.

1. Click Debug SNVM in the SmartDebug window.
2. Click the Client View tab. The client view details are listed—Client Names, Start Page, Number of

Bytes, Write Cycles, Page Type, Used as ROM, and USK Status.
3. Select a client from the list in the Client View and click Read from Device as shown in the following

figure.

Figure 18 • sNVM Debug
TU0827 Tutorial Revision 1.0 12

PolarFire FPGA Debugging Using Splash Kit
The following figure shows the Client View window.

Figure 19 • sNVM Debug—Client View

4. Click View All Page Status to view the page status such as Write Cycle Count, Page Type, Use as
ROM, and Data Read Status as shown in the following figure.

Figure 20 • Secured NVM Details
TU0827 Tutorial Revision 1.0 13

PolarFire FPGA Debugging Using Splash Kit
5. Click the Page View tab in the sNVM Debug window, Page view displays the client details of the
required pages. You can read pages from 0-220 in the page view.

6. Enter the page number that you want to read in the Start Page and Number of Bytes in the
respective boxes.

7. Click Check Page Status. The page status information is displayed as shown in the following figure.

Figure 21 • sNVM Debug—Page View

2.7.5 Debug TRANSCEIVER
SmartDebug enables transceiver debugging, which includes checking lane functionality and health for
different settings of lane parameters. To access the debug transceiver feature, select Debug
TRANSCEIVER in the SmartDebug window. Debug Transceiver supports the following features:

• Configuration Report
• SmartBERT
• Loopback Modes
• Static Pattern Transmit
• Eye Monitor

2.7.5.1 Configuration Report
The Configuration Report feature creates a report that shows the physical location, Tx and Rx PLL lock
status, and data width of all enabled transceiver lanes. This report includes the following lane
parameters:

• Physical Location: Physical location of the transceiver lanes in the system.
• Tx PMA Ready: Tx lane of the transceiver is powered up and ready for transactions.
• Rx PMA Ready: Rx lane is powered up and ready for transactions.
• TX PLL: TX PLL of the transceiver is locked.
• RX PLL: RX PLL of the transceiver is locked.
• Data Width: Configured data width of the corresponding lanes in the transceiver.

The following figure shows Configuration Report tab.

Figure 22 • Configuration Report
TU0827 Tutorial Revision 1.0 14

PolarFire FPGA Debugging Using Splash Kit
2.7.5.2 SmartBERT
SmartBERT enables you to run diagnostic tests on the transceiver lanes. SmartBERT uses the PRBS
generator and checker functionality available in each transceiver lane to determine the bit error rate
(BER) of a lane. The various PRBS patterns supported are PRBS7, PRBS9, PRBS15, PRBS23, and
PRBS31. Near-end loopback can be performed using one of these PRBS patterns.

To run SmartBERT in Debug TRANSCEIVER, follow these steps:

1. Select the SmartBERT tab in the Debug TRANSCEIVER window.
2. Select the Pattern from the drop-down list.
3. Select the EQ-NearEnd check box to enable internal loop back, (this step can be ignored if external

loop back is enabled).
4. Click Start. It enables both transmitter and the receiver for a particular lane and for a particular

PRBS pattern. The following figure shows the status of the TXPLL, RXPLL, Lock to Data, Data rate,
and the BER.

Figure 23 • Debug TRANSCEIVER—Smart BERT

When a SmartBERT IP lane is added, the Error Injection column is displayed in the in the right pane.
The error injection feature is provided to inject an error while running a PRBS pattern. This feature is
unavailable if regular lanes are added. Also, this feature is disabled for a SmartBERT IP lane that has a
non-configured PRBS pattern selected.

5. Click Reset to clear the error count under Error Counter. Error Count is displayed when the lane is
added.

The following figure shows the Smart BERT tab in the Debug TRANSCEIVER window.

Figure 24 • Smart BERT—Error Counter
TU0827 Tutorial Revision 1.0 15

PolarFire FPGA Debugging Using Splash Kit
2.7.5.3 Loopback Modes
Loopback modes perform the following types of loopback tests:

• EQ-Near End Loopback: Serialized data from PMA is looped from Tx to Rx internally before the
transmit buffer. This is called near-end serial loopback. EQ-Near End loopback supports data
transmission rates of up to 10.315 Gbps.

• EQ-Far End Loopback: Serialized data from Rx is looped back to Tx in PMA. This is called far-end
serial loopback. EQ-Far End loopback supports data transmission rates of up to 1.25 Gbps.

• CDR-Far End Loopback: De-serialized data from PCS Rx channel is looped back to Tx.
• No Loopback: Data is not looped internally.

Figure 25 • Debug TRANSCEIVER—Loopback Modes

2.7.5.4 Static Pattern Transmit
Static Pattern Transmit enables the selection of pattern to be transmitted on a specific transceiver (Tx)
lane. The following patterns are supported:

• Fixed pattern
• Max run length pattern
• User pattern

The user pattern is defined in the value column. It must be hex numbers and not greater than the
configured data width.

TX-PLL indicates lane lock onto TX PLL when a static pattern is transmitted. RX-PLL indicates RX PLL
lock when a static pattern is transmitted. Data Width displays the data width configured for a transceiver
lane.
TU0827 Tutorial Revision 1.0 16

PolarFire FPGA Debugging Using Splash Kit
To view static pattern transmit:

1. Select the Static Pattern Transmit tab.
2. Select the Transceiver Hierarchy in the left pane of the window. The selected lane data is displayed

in the right pane. Select a pattern from the Pattern drop-down list.
3. Click Start. The static pattern for the selected lanes is transmitted.
4. Click Stop. The static pattern transmission is stopped for the selected lanes.

The following figure shows the Static Pattern Transmit tab.

Figure 26 • Static Pattern Transmit

2.7.5.5 Eye Monitor
Eye Monitor enables visualizing the eye diagram present within the receiver. This feature plots the
receive eye after the CTLE and DFE functions. The diagram representation provides vertical and
horizontal measurements of the eye and BER performance measurements. Whenever PRBS/static
pattern transmission is in progress, click the Eye Monitor tab in the Debug TRANSCEIVER window to
see the eye monitor representation within the receiver.

The following figure shows the recommended SI settings for the demo design. These settings are for
short reach and less lossy cables.

Figure 27 • Recommended Settings for Eye Monitor
TU0827 Tutorial Revision 1.0 17

PolarFire FPGA Debugging Using Splash Kit
The following figure shows the Eye Monitor tab.

Figure 28 • Debug TRANSCEIVER—Eye Monitor

2.7.5.6 Signal Integrity
The Signal Integrity feature in SmartDebug works with Signal Integrity in the I/O Editor, allowing the
import and export of .pdc files. The Signal Integrity pane appears in the following SmartDebug pages:

• SmartBERT
• Loopback Modes
• Static Pattern Transmit
• Eye Monitor

When a lane is selected in the SmartBERT, Loopback Modes, Static Pattern Transmit, or Eye Monitor
pages, the corresponding Signal Integrity parameters (configured in the I/O Editor or changed in
SmartDebug) are enabled, as shown in the following figure.

Figure 29 • Signal Integrity
TU0827 Tutorial Revision 1.0 18

PolarFire FPGA Debugging Using Splash Kit
2.7.5.6.1 Design Defaults
Click Design Defaults to load the signal integrity parameter options for the selected lane instance.
These are the signal integrity settings selected in the Libero design flow and reside in the STAPL file.
Design default parameter options are applied to the device and updated in Modified Constraints.

2.7.5.6.2 Export
Click Export to export the selected parameter options and other physical information to an external PDC
file. A popup box prompts to choose the location where you want the .pdc file to be exported.

The exported content is in two set_io commands form—TXP and RXP ports of the selected lane
instance.

2.8 Conclusion
This tutorial demonstrated capabilities of SmartDebug to observe and analyze many embedded device
features. Live probes give a real-time access to device test points, and internal logic states can be
accessed using active probes. The SmartDebug TRANSCEIVER utility assists FPGA and board
designers to validate signal integrity of high-speed serial links in a system and improve board bring-up
time. This can be done in real-time without any design modifications. The PMA analog settings can be
tuned to optimize link performance and to match the design to the system.
TU0827 Tutorial Revision 1.0 19

Appendix: Known Issues
3 Appendix: Known Issues

This chapter lists known issues related to SmartDebug hardware design debug and provides
workarounds for each of the issues.

3.1 Probe Points Write Issue
The SmartDebug reads and writes to the probe points associated with the SmartBERT IP for debugging.
There is a known issue where JTAG writes to some probe points do not work. The following procedure
provides a workaround to ensure that this issue does not impact the functionality of the SmartBERT IP.
The workaround involves generating a constraint file that ensures the design is placed only in probe
points that work.

Note: This procedure be followed before running Place and Route in the Libero design flow.

The following files are provided in a Active_Probes_Constraints_SB_IP folder.

• DDC file (Full_Fabric_FF.ddc – a test design)
• TCL script (Execute_probes.tcl – execute from SmartDebug)
• Input file (Input_File.txt – edit before executing TCL)
• Reference_Files folder (internal use), which contains the following files:

• sd.reference.pdc
• SmartBERT_IP_Quad0.fp.pdc
• SmartBERT_IP_Quad1.fp.pdc
• SmartBERT_IP_Quad2.fp.pdc
• SmartBERT_IP_Quad3.fp.pdc

1. Go to Active_Probes_Constraints_SB_IP. folder
2. Open the Standalone SmartDebug.
3. Click Project > New Project to create a new project.
4. Import DDC Full_Fabric_FF.ddc file. Click OK.
5. Program the design using the Programming Connectivity and Interface window as shown in the

following figure. Close the window when the design has been programmed.

Figure 30 • Programming Connectivity and Interface

6. Open Input_Files.txt in text editor. Enter Quad and number of lanes that are configured for
CoreSmartBERT IP in the design.

7. Go back to the SmartDebug window and click Project > Execute script and enter the TCL script file
path (Execute_probes.tcl).

8. Click Run to execute. This may take approximately three minutes to complete.
9. Close the Standalone SmartDebug.

The output of the TCL execution is a PDC (*.pdc) file/files that can be used in the Libero flow.

10. Go to the current directory and locate the Output_PDC_Files folder.
Generated PDC file contains a list of registers used in CoreSmartBERT IP.

11. Import the PDC files into the design.
TU0827 Tutorial Revision 1.0 20

Appendix: Known Issues
12. Replace the top-level name for each constraint mentioned in the PDC file with the hierarchy name of
the IP in the design.

13. If multiple hierarchy levels are present, include all levels in the space specified in the PDC file.

For example, if design has CoreSmartBERT IP with component name SmartBERT_IP_0, replace
“<Enter_module_path_here>” with “SmartBERT_IP_0” for each location constraint in the PDC file.

14. Run the Libero flow till Run PROGRAM Action.
Note: For this demo design, replace <Enter_module_path_here> with

XCVR_Debug_0/SmartBert_xcvr_chk_0. Use the updated pdc file instead of the file provided in the
design (place_pll.pdc).

3.2 Data Traffic Errors on XCVR Lanes in CDR Mode
While plotting the eye using eye monitor, errors are introduced in data traffic on transceiver lanes
configured to use the CDR receiver path. The errors are introduced when DFE and EM blocks are turned
off during normal operation to save power. This issue does not impact the functionality. The cumulative
error count and BER values can be ignored when plotting the eye. A software update will be provided in
future Libero releases to fix the issue.
TU0827 Tutorial Revision 1.0 21

Appendix: References

TU0827 Tutorial Revision 1.0 22

4 Appendix: References

This section lists documents that provide more information about the SmartDebug and IP cores used in
the reference design.

• For more information about SmartDebug, see UG0743: PolarFire FPGA Debugging User Guide and
UG0773: PolarFire SmartDebug User Guide.

• For more information about PolarFire transceiver blocks, see UG0677: PolarFire FPGA Transceiver
User Guide.

• Fore more information about PF_CCC, see UG0684: PolarFire FPGA Clocking Resources User
Guide.

• For more information about Libero, see the Microsemi Libero SoC PolarFire web page.
• For more information about PolarFire FPGA Splash Kit, see UG0786: PolarFire FPGA Splash Kit

User Guide.
• For more information about PF_UPROM, PF_URAM, and PF_DPSRAM, see Libero catalog.

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=137616
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=137616
https://coredocs.s3.amazonaws.com/Libero/pf_sp1/Tool/pf_smartdebug_ug.pdf
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=136529
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=136531
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=136531
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=136524
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=136524
https://www.microsemi.com/products/fpga-soc/design-resources/design-software/libero-soc-polarfire#documents

	Contents
	Figures
	Tables
	1 Revision History
	1.1 Revision 1.0

	2 PolarFire FPGA Debugging Using Splash Kit
	2.1 Design Requirements
	2.2 Prerequisites
	2.3 Demo Design
	2.4 Clocking Structure
	2.5 Programming the Device
	2.6 Launching SmartDebug from Libero
	2.7 Debugging the Design
	2.7.1 View Device Status
	2.7.2 Debug FPGA Array
	2.7.3 Debug µPROM
	2.7.4 sNVM Debug
	2.7.5 Debug TRANSCEIVER

	2.8 Conclusion

	3 Appendix: Known Issues
	3.1 Probe Points Write Issue
	3.2 Data Traffic Errors on XCVR Lanes in CDR Mode

	4 Appendix: References

