
AC471
Application Note

PolarFire FPGA Auto Update and In-Application
Programming Using Splash Kit

51900471. 2.0 7/18

Microsemi Headquarters
One Enterprise, Aliso Viejo,
CA 92656 USA
Within the USA: +1 (800) 713-4113
Outside the USA: +1 (949) 380-6100
Sales: +1 (949) 380-6136
Fax: +1 (949) 215-4996
Email: sales.support@microsemi.com
www.microsemi.com

©2018 Microsemi, a wholly owned

subsidiary of Microchip Technology Inc. All

rights reserved. Microsemi and the

Microsemi logo are registered trademarks of

Microsemi Corporation. All other trademarks

and service marks are the property of their

respective owners.

Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of
its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the
application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have
been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any
performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all
performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not
rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer’s responsibility to
independently determine suitability of any products and to test and verify the same. The information provided by Microsemi
hereunder is provided “as is, where is” and with all faults, and the entire risk associated with such information is entirely
with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP
rights, whether with regard to such information itself or anything described by such information. Information provided in this
document is proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this
document or to any products and services at any time without notice.

About Microsemi

Microsemi, a wholly owned subsidiary of Microchip Technology Inc. (Nasdaq: MCHP), offers a comprehensive portfolio of
semiconductor and system solutions for aerospace & defense, communications, data center and industrial markets.
Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and
ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world's
standard for time; voice processing devices; RF solutions; discrete components; enterprise storage and communication
solutions, security technologies and scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs and
midspans; as well as custom design capabilities and services. Learn more at www.microsemi.com.

mailto:sales.support@microsemi.com
http://www.microsemi.com

Microsemi Proprietary and Confidential AC471 Application Note Revision 2.0 iii

Contents

1 Revision History . 1
1.1 Revision 2.0 . 1

1.2 Revision 1.0 . 1

2 PolarFire FPGA Auto Update and In-Application Programming using Splash Kit . . . 2
2.1 CoreSysService_PF IP Overview . 3

2.2 Design Requirements . 5

2.3 Prerequisites . 6

2.4 Demo Design . 6
2.4.1 Design Implementation . 8
2.4.2 IP Configuration . 9

2.5 Clocking Structure . 21

3 Libero Design Flow . 22
3.1 Synthesize . 23

3.2 Place and Route . 23
3.2.1 Resource Utilization . 23

3.3 Verify Timing . 23

3.4 Generate FPGA Array Data . 23

3.5 Configure Design Initialization Data and Memories . 24

3.6 Configure Programming Options . 26

3.7 Generate Bitstream . 27

3.8 Run PROGRAM Action . 27

4 Programming the Device Using FlashPro Software . 29

5 Serial Terminal Emulation Program Setup . 30

6 Running the Demo . 32
6.1 Programming the SPI Flash Using Fabric Logic . 32

6.2 Running Auto Update . 34

6.3 Running Authentication . 34

6.4 Running Auto Programming . 35

6.5 Running IAP . 36

7 Appendix: Programming On-board SPI Flash Using Libero 37

8 Appendix: References . 38

Microsemi Proprietary and Confidential AC471 Application Note Revision 2.0 iv

Figures

Figure 1 Core System Services IP Interfacing with Fabric User Logic . 3
Figure 2 Firmware catalog . 4
Figure 3 PolarFire Programming Design Block Diagram . 6
Figure 4 Accessing On-board SPI Flash Using Fabric . 7
Figure 5 SPI Flash Memory . 7
Figure 6 Top Level Libero Design . 8
Figure 7 PF_INIT_MONITOR Configuration . 9
Figure 8 PF_CCC_0 Input Clock Configuration . 10
Figure 9 PF_CCC_0 Output Clock Configuration . 10
Figure 10 Mi-V Configuration . 11
Figure 11 UART Configuration . 12
Figure 12 PF_SRAM_AHBL_AXI Configuration . 13
Figure 13 CoreGPIO_0 Configuration . 14
Figure 14 CoreSPI Configuration . 15
Figure 15 CoreSysService_PF Configuration . 16
Figure 16 Memory Map . 17
Figure 17 CoreAHBLite_0 Configuration . 18
Figure 18 CoreAHBLite_1 Configuration . 19
Figure 19 CoreAPB3_0 Configuration . 20
Figure 20 Clocking Structure . 21
Figure 21 Libero Design Flow Options . 22
Figure 22 Design and Memory Initialization . 24
Figure 23 Fabric RAMs Tab . 25
Figure 24 Edit Fabric RAM Initialization Client . 25
Figure 25 Apply Fabric RAM Content . 26
Figure 26 Configure Programming Options . 26
Figure 27 Generate Bitstream—Configure Bitstream Options . 27
Figure 28 Board Setup . 28
Figure 29 COM Port Number . 30
Figure 30 Select Serial as the Connection Type . 30
Figure 31 PuTTY Configuration . 31
Figure 32 Authentication and Programming Options . 32
Figure 33 Authentication Error . 32
Figure 34 Erasing SPI Flash . 33
Figure 35 Command Prompt Status . 34
Figure 36 Auto Update . 34
Figure 37 Successful Bitstream Authentication . 34
Figure 38 Successful IAP Image Authentication . 35
Figure 39 Notifying ERASE Action . 35
Figure 40 Successful Auto Programming . 35
Figure 41 Successful IAP at Index 2 . 36
Figure 42 Successful IAP by Address . 36
Figure 43 Configure Design Initialization Data and Memories Option . 37
Figure 44 SPI Flash Tab . 37
Figure 45 SPI Flash Programming . 37

Microsemi Proprietary and Confidential AC471 Application Note Revision 2.0 1

Tables

Table 1 System Services Descriptor . 3
Table 2 Design Requirements . 5
Table 3 I/O Signals . 8
Table 4 Resource Utilization . 23
Table 5 Jumper Settings for PolarFire Device Programming . 27
Table 6 Jumper Settings for PolarFire Device Programming . 29
Table 7 Programming Images . 33

Revision History

Microsemi Proprietary and Confidential AC471 Application Note Revision 2.0 1

1 Revision History

The revision history describes the changes that were implemented in the document. The changes are
listed by revision, starting with the current publication.

1.1 Revision 2.0
The document was updated for Libero SoC PolarFire v2.2 release.

1.2 Revision 1.0
The first publication of this document.

PolarFire FPGA Auto Update and In-Application Programming using Splash Kit
2 PolarFire FPGA Auto Update and
In-Application Programming using Splash Kit

PolarFire® FPGAs support the SPI master programming mode for auto update and in-application
programming (IAP). In this programming mode, the programming images are stored in an external SPI
flash memory.

Auto update—on power-up, if the version of the update image is found to be different from the current
programmed version, the System Controller reads the update image bitstream from the external SPI
flash memory and programs the device.

IAP—the user application initiates the program action and the System Controller reads the bitstream
from the external SPI flash memory to program the device.

The System Controller supports fetching programming images from SPI Flash device based on the Index
value or direct addressing. The SPI directory contains the start addresses of the programming images.

The following components of PolarFire devices are programmable:

• FPGA fabric
• Secure non-volatile memory (sNVM)
• User security settings (keys, passcodes, and locks)

This document explains how to use the accompanying design to demonstrate the auto update and IAP
features on the PolarFire Splash kit.

The on-board 1 GB Micron SPI flash device is connected to System Controller SPI and can be
programmed using the fabric logic or Libero® SoC PolarFire software. For more information about
programming the on-board SPI flash using Libero, see Appendix: Programming On-board SPI Flash
Using Libero, page 37.

This application note includes the Mi-V soft processor, which initiates the system service requests for the
device programming and enables the CoreSysService_PF IP core to access the System Controller. For
more information about the design implementation, and the necessary blocks and IP cores instantiated in
Libero SoC PolarFire, see Demo Design, page 6.

This design can be programmed using any of the following options:

• Using the pre-generated.stp file: To program the device using the.stp file provided along with
the design, see Programming the Device Using FlashPro Software, page 29.

• Using Libero SoC PolarFire: To program the device using Libero SoC PolarFire, see Libero Design
Flow, page 22.

This design can be used as a reference to build a fabric design with programming features.
Microsemi Proprietary and Confidential AC471 Application Note Revision 2.0 2

PolarFire FPGA Auto Update and In-Application Programming using Splash Kit
2.1 CoreSysService_PF IP Overview
System Controller actions are initiated by the fabric logic through the system service interface (SSI) of
the System Controller. The fabric logic requires the CoreSysService_PF IP for initiating the system
services. A service request interrupt to the System Controller is triggered when the fabric user logic
writes a 16-bit system service descriptor to the SSI. The lower seven bits of the descriptor specify the
service to be performed. The upper nine bits specify the address offset (0–511) in the 2 KB mailbox RAM.
The mailbox address specifies the service-specific data structure used for any additional inputs or
outputs for the service. The fabric logic must write additional parameters to the mailbox before requesting
a system service. The following table lists the system service descriptor bits.

SSI consists of an asynchronous command-response interface that transfers a system service command
from the fabric master to the System Controller and the status from the System Controller to the fabric
master. The following figure shows how the CoreSysService_PF IP Interfaces with the fabric logic.

Figure 1 • Core System Services IP Interfacing with Fabric User Logic

The system services driver and the sample SoftConsole project are generated from Firmware Catalog as
shown Figure 2, page 4.

Table 1 • System Services Descriptor

Descriptor Bit Value

15:7 MBOXADDR

6:0 SERVICEID
Microsemi Proprietary and Confidential AC471 Application Note Revision 2.0 3

PolarFire FPGA Auto Update and In-Application Programming using Splash Kit
In this design, the sample SoftConsole project is migrated to SoftConsole v5.2. The Mi-V soft processor
is compatible with only SoftConsole v5.2 or later. The application files main.c and hw_platform.h
are modified to provide the programming user options, system clock frequency, and APB peripheral
addresses.

Figure 2 • Firmware catalog
Microsemi Proprietary and Confidential AC471 Application Note Revision 2.0 4

PolarFire FPGA Auto Update and In-Application Programming using Splash Kit
2.2 Design Requirements
The following table lists the resources required to run the design.

Note: Any serial terminal emulation program can be used. PuTTY is used in this application note.

Table 2 • Design Requirements

Requirement Version

Operating System Windows 7, 8.1, or 10

Hardware

PolarFire Splash Kit (MPF300TS-1FCG484EES)
– PolarFire Splash board
– 12 V, 5 A AC power adapter and cord
– USB 2.0 A to mini-B cable for universal
asynchronous receiver-transmitter (UART) and
programming

Rev 2 or later

Host PC

Software

FlashPro 12.200.30.10

Libero SoC PolarFire Design Suite 2.2

Serial Terminal Emulation Program PuTTY or HyperTerminal
www.putty.org

IP

PF_INIT_MONITOR 2.0.103

PF_CCC 1.0.113

CoreJTAGDEBUG 2.0.100

CORESET_PF 2.1.100

Mi-V soft processor (MIV_RV32IMA_L1_AHB) 2.0.100

COREAHBLite 5.3.101

COREAHBTOAPB3 3.1.100

CoreAPB3 4.1.100

CoreUARTapb 5.6.102

CoreGPIO 3.2.102

CoreSysService_PF 2.3.116

CORESPI 5.1.104

PF_SRAM_AHBL_AXI 1.1.125

PF_SPI macro

CLKINT 1.0
Microsemi Proprietary and Confidential AC471 Application Note Revision 2.0 5

PolarFire FPGA Auto Update and In-Application Programming using Splash Kit
2.3 Prerequisites
Before you start:

1. Download the design files from the following location:
http://soc.microsemi.com/download/rsc/?f=mpf_ac471_liberosocpolarfirev2p2_df

2. Download and install Libero SoC PolarFire v2.2 on the host PC from the following location.
https://www.microsemi.com/products/fpga-soc/design-resources/design-software/libero-soc-
polarfire#downloads
The latest versions of ModelSim and Synplify Pro are included in the Libero SoC PolarFire
installation package.

2.4 Demo Design
The following steps describe the data flow in the design:

1. The host PC sends the system service requests to CoreUARTapb block through the UART Interface.
2. The Mi-V soft processor initializes the System Controller using the CoreSysService_PF IP and

sends the requested system service command to the System Controller.
3. The System Controller executes the system service command by reading the bitstream images from

the external SPI flash and sends the relevant response to the CoreSysService_PF IP over the
mailbox interface.

4. The Mi-V processor receives the service response and forwards the data to the UART interface.

The following figure shows the block diagram of the PolarFire programming design.

Figure 3 • PolarFire Programming Design Block Diagram
Microsemi Proprietary and Confidential AC471 Application Note Revision 2.0 6

http://soc.microsemi.com/download/rsc/?f=mpf_ac471_liberosocpolarfirev2p2_df
https://www.microsemi.com/products/fpga-soc/design-resources/design-software/libero-soc-polarfire#downloads
https://www.microsemi.com/products/fpga-soc/design-resources/design-software/libero-soc-polarfire#downloads

PolarFire FPGA Auto Update and In-Application Programming using Splash Kit
To initiate auto update or IAP system service request, the on-board SPI flash must be programmed with
programming images. The fabric logic interfaces to the on-board SPI flash using SPI controller and
PF_SPI macro. When the System Controller’s SPI is enabled and configured as master, the System
Controller hands over the control of the SPI to the fabric on device power-up. The fabric logic programs
the on-board SPI flash with flash directory and programming images using UART interface. The
programming images are transfered from the host PC using SPI flash loader (spi_loader.exe).

The on-board SPI flash can be programmed using fabric logic as shown in the following figure.

Figure 4 • Accessing On-board SPI Flash Using Fabric

The following figure shows the SPI flash memory with directory and programming images.

Figure 5 • SPI Flash Memory
Microsemi Proprietary and Confidential AC471 Application Note Revision 2.0 7

PolarFire FPGA Auto Update and In-Application Programming using Splash Kit
When System Controller receives programming or authentication system service from fabric user logic,
the System Controller fetches the programming images from the on-board SPI flash to execute the
service request. In this application note, the following system services are initiated on user request.

• Bitstream authentication
• IAP image authentication
• Auto update
• IAP

For more information about the preceding services, see the UG0714: PolarFire FPGA Programming
User Guide.

2.4.1 Design Implementation
The following figure shows the top-level Libero design of the PolarFire system services design.

Figure 6 • Top Level Libero Design

The following table lists the important I/O signals of the design.

Table 3 • I/O Signals

Signal Description

REF_CLK_0 Input 50 MHz clock from the on-board 50 MHz oscillator

resetn On-board reset push-button for the PolarFire device

RX Input signals received from the serial UART terminal

TX Output signals transmitted to the serial UART terminal

GPIO_OUT[3:0] On-board LED outputs

GPIO_IN[3:0] To interface on-board DIP switches.
Microsemi Proprietary and Confidential AC471 Application Note Revision 2.0 8

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=136523
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=136523

PolarFire FPGA Auto Update and In-Application Programming using Splash Kit
2.4.2 IP Configuration
The following sections describe the IP cores used in the design and their configurations. The other IP
cores retain the default configuration.

2.4.2.1 PF_INIT_MONITOR
The PolarFire Initialization Monitor gets the status of device initialization including the LSRAM
initialization. The following figure shows PF_INIT_MONITOR configuration.

Figure 7 • PF_INIT_MONITOR Configuration

2.4.2.2 Instantiating CLKINT
From the Catalog, drag the CLKINT macro to SmartDesign. This macro is required as a 50 MHz clock
oscillator with an accuracy of +/-50 ppm is available on the board. This clock oscillator is connected to
the FPGA fabric to provide a system reference clock. The pin number of the 50 MHz oscillator is H7, and
the pin name is GPIO239PB5/CLKIN_W_2/CCC_SW_CLKIN_W_2/CCC_SW_PLL0_OUT0. When the
pin is not hardwired to the PLL reference clock input, use CLKINT macro to promote it to global clock
network.
Microsemi Proprietary and Confidential AC471 Application Note Revision 2.0 9

PolarFire FPGA Auto Update and In-Application Programming using Splash Kit
2.4.2.3 PF_CCC_0 Configuration
The PolarFire Clock Conditioning Circuitry (CCC) block takes an input clock of 50 MHz from the on-board
oscillator passed through CLKINT and generates a 100 MHz fabric clock to the Mi-V processor
subsystem and other peripherals. The following figures show the input and output clock configurations.

Figure 8 • PF_CCC_0 Input Clock Configuration

Figure 9 • PF_CCC_0 Output Clock Configuration
Microsemi Proprietary and Confidential AC471 Application Note Revision 2.0 10

PolarFire FPGA Auto Update and In-Application Programming using Splash Kit
2.4.2.4 Mi-V Soft Processor Configuration
The Mi-V soft processor Reset Vector Address is set to 0x8000_0000 from default value 0x6000_0000.
After device reset, the processor executes the application from LSRAM, which is mapped to
0x80000000, Hence, the Reset Vector Address is set to 0x80000000 as shown in the following figure.

In the Mi-V processor memory map, the 0x8000_0000 to 0x8FFF_FFFC range is defined for AHB
memory interface and the 0x6000_0000 to 0x7FFF_FFFF range is defined for AHB I/O interface.

Figure 10 • Mi-V Configuration
Microsemi Proprietary and Confidential AC471 Application Note Revision 2.0 11

PolarFire FPGA Auto Update and In-Application Programming using Splash Kit
2.4.2.5 CoreUARTapb
The CoreUARTapb IP is connected to Mi-V soft processor as an APB slave. It interfaces with the host PC
for UART communication. The default configuration settings of the CoreUARTapb IP are shown in the
following figure:

• TX FIFO: Disabled by default.
The UART transmit state machine immediately begins to transmit data and continues transmission
until the data buffer is empty in normal mode. If TX FIFO is enabled, it continues to transmit until TX
FIFO is empty. In this design, normal mode (without FIFO) is selected.

• RX FIFO: Disabled by default.
The UART receive state machine stores the data in receive data buffer if FIFO is not enabled.

• Configuration: Set to Programmable by default.

Figure 11 • UART Configuration

The SoftConsole application programs the baud rate, character size, and the parity configuration using
the UART driver. If the Fixed option is selected, the user application can not overwrite these parameters.

2.4.2.6 CoreJTAGDEBUG
The CoreJTAGDebug IP connects the Mi-V soft processor to the JTAG header for debugging.
Microsemi Proprietary and Confidential AC471 Application Note Revision 2.0 12

PolarFire FPGA Auto Update and In-Application Programming using Splash Kit
2.4.2.7 PF_SRAM_AHBL_AXI Configuration
The PF_SRAM_AHBL_AXI IP is the main memory of the Mi-V processor, and it gets initialized with the
user application from µPROM. It is connected to Mi-V soft processor as an AHB slave. LSRAM is
configured for the following settings:

• Optimize for: By default, Low power is selected. It optimizes the LSRAM macro for low power. If
design demands high speed memory access, High Speed can be selected.

• Fabric Interface type: By default, AHBLite is selected. The Mi-V soft processor is AHB based, so
the SRAM is interfaced to the processor using AHB bus for code execution.

• Memory depth: This field is set to 65536 words to accommodate an application of up to 256 KB into
LSRAM. The present application is below 50 KB so this can fit into either sNVM or µPROM. In this
design, µPROM is selected as data storage client. The following figure shows the
PF_SRAM_AHBL_AXI (LSRAM_0) IP configuration.

Figure 12 • PF_SRAM_AHBL_AXI Configuration
Microsemi Proprietary and Confidential AC471 Application Note Revision 2.0 13

PolarFire FPGA Auto Update and In-Application Programming using Splash Kit
2.4.2.8 CoreGPIO_0 Configuration
The CoreGPIO IP controls the on-board LEDs using GPIOs. It is connected to Mi-V soft processor as an
APB slave. The configuration settings of the COREGPIO_0 IP are as follows:

In the Global Configurations pane:

• APB Data width is set to 32
The design uses 32-bit data width for APB read and write data.

• Number of I/Os is set to 4
The design controls 2 on-board LEDs for output and 2 DIP Switches for input.

• I/O Bit: The following list shows the sub-options under I/O Bit option.
• Output on reset: Set to 0.
• Fixed Config: Yes
• I/O type: As shown in the following figure, first two I/Os are configured as output and the last

two I/Os are configured as input.
Note: The first two I/Os configured as output are used by the design and last two I/Os are not used.

The I/Os are interfaced to on-board LEDS and DIP switches.

• Interrupt Type: Disabled
When I/O states change, no interrupt is required for the application.

The following figure shows the CoreGPIO_0 configuration.

Figure 13 • CoreGPIO_0 Configuration
Microsemi Proprietary and Confidential AC471 Application Note Revision 2.0 14

PolarFire FPGA Auto Update and In-Application Programming using Splash Kit
2.4.2.9 CoreSPI Configuration
The CoreSPI is used to program the external SPI flash using Mi-V processor. PF_SPI macro interfaces
the fabric logic to the external SPI flash, which is connected to System Controller.

• APB Data Width: select 32 as APB data width in the design is 32-bit. The default value is 8.
• Mode: select Motorola Mode (default) as the target SPI slave (VSC Phy) supports Motorola mode.
• Frame Size: enter 8. The default value is 4.
• FIFO Depth: enter 32 to store maximum frames (Tx and Rx) in FIFO. The default value is 4.
• Clock Rate: enter 16. The default value is 8.

The SPI clock becomes system clock/ 2*(16+1).
• Keep SSEL active: enabled to keep the slave peripheral active between back to back data

transfers.

The following figure shows the CoreSPI configurator.

Figure 14 • CoreSPI Configuration
Microsemi Proprietary and Confidential AC471 Application Note Revision 2.0 15

PolarFire FPGA Auto Update and In-Application Programming using Splash Kit
2.4.2.10 CoreSysService_PF Configuration
CoreSysServices IP provides access to the System Controller. It is connected to Mi-V soft processor as
an APB slave. By default, all the service check boxes are selected. The application can initiate these
selected services. CoreSysServices IP is configured as shown in the following figure.

Figure 15 • CoreSysService_PF Configuration
Microsemi Proprietary and Confidential AC471 Application Note Revision 2.0 16

PolarFire FPGA Auto Update and In-Application Programming using Splash Kit
2.4.2.11 Design Memory Map
The Mi-V processor bus interface memory map is shown in the following figure.

Figure 16 • Memory Map
Microsemi Proprietary and Confidential AC471 Application Note Revision 2.0 17

PolarFire FPGA Auto Update and In-Application Programming using Splash Kit
2.4.2.11.1 CoreAHBLite Configuration
Two instances of CoreAHBLite are used in this design. The following figures show the configurations of
CoreAHBLite_0 and CoreAHBLite_1 IP cores.The CoreAHBLite_0 interfaces with the APB peripherals to
the Mi-V processor at 0x6000_0000.

Figure 17 • CoreAHBLite_0 Configuration
Microsemi Proprietary and Confidential AC471 Application Note Revision 2.0 18

PolarFire FPGA Auto Update and In-Application Programming using Splash Kit
The CoreAHBLite_1 interfaces PF_SRAM with Mi-V soft processor for accessing the LSRAM at memory
address 0x8000_0000. This configuration is required as the Mi-V processor executes the code from
0x8000_0000.

Figure 18 • CoreAHBLite_1 Configuration
Microsemi Proprietary and Confidential AC471 Application Note Revision 2.0 19

PolarFire FPGA Auto Update and In-Application Programming using Splash Kit
2.4.2.11.2 COREAHBTOAPB3
The CoreAHBtoAPB3 works as a bridge in between the AHB and the APB domains. CoreAHBtoAPB3
interfaces with CoreAHBLite through its AHB interface and with CoreAPB3 through its APB interface.

2.4.2.11.3 CoreAPB3 Configuration
The CoreAPB3 IP connects the peripherals, CoreSysService_PF, CoreSPI, CoreGPIO, and
CoreUARTapb as slaves.The configuration settings of COREAPB3 are as follows:

• APB Master Data bus width: 32-bit
The design uses 32-bit data width for APB read and write data.

• Number of address bits driven by master: 16
The Mi-V processor accesses the slaves using the 16-bit. The final addresses for these slaves are
translated into 0x6000_0000, 0x6000_1000, 0x6000_2000 and 0x6000_3000.

• Enabled APB slave slots: Slot 0 for CoreUARTapb, Slot 1 for CoreGPIO, Slot 2 for
CoreSysService_PF, and Slot 3 for CoreSPI.

The following figure shows the CoreAPB3 configuration.

Figure 19 • CoreAPB3_0 Configuration
Microsemi Proprietary and Confidential AC471 Application Note Revision 2.0 20

PolarFire FPGA Auto Update and In-Application Programming using Splash Kit
2.5 Clocking Structure
The following figure shows the clocking structure of this design. The Mi-V processor supports up to
120 MHz and this design uses 100 MHz system clock.

Figure 20 • Clocking Structure
Microsemi Proprietary and Confidential AC471 Application Note Revision 2.0 21

Libero Design Flow
3 Libero Design Flow

The Libero design flow involves running the following processes in the Libero SoC PolarFire:

• Synthesize, page 23
• Place and Route, page 23
• Verify Timing, page 23
• Generate FPGA Array Data, page 23
• Configure Design Initialization Data and Memories, page 24
• Configure Programming Options, page 26
• Generate Bitstream, page 27
• Run PROGRAM Action, page 27

The following figure shows these options in the Design Flow tab.

Figure 21 • Libero Design Flow Options
Microsemi Proprietary and Confidential AC471 Application Note Revision 2.0 22

Libero Design Flow
3.1 Synthesize
To synthesize the design:

1. Double-click Synthesize from the Design Flow tab.
When the synthesis is successful, a green tick mark appears as shown in Figure 21, page 22.

2. Right-click Synthesize and select View Report to view the synthesis report and log files in the
Reports tab.

Note: PROC_SUBSYSTEM.srr and the PROC_SUBSYSTEM_compile_netlist.log files are recommended
to be viewed for debugging synthesis and compile errors.

3.2 Place and Route
The Place and Route process requires the I/O, timing, and floor planner constraints. This design includes
following constraint files in the Constraint Manager window:

• The io.pdc and the user.pdc file for the I/O assignments
• The PROC_SUBSYSTEM_derived_constaints.sdc file for timing constraints
• JTAG_constraint.sdc file for creating the JTAG clock with 30 MHz frequency.
• The Async_Clock_groups.sdc file defines that the CCC_0 output clock and the JTAG clock as

asynchronous clocks.

To Place and Route, double-click Place and Route from the Design Flow window.

When place and route is successful, a green tick mark appears next to Place and Route.

Note: The file, PROC_SUBSYSTEM_place_and_route_constraint_coverage.xml is recommended to
be viewed for place and route constraint coverage.

3.2.1 Resource Utilization
The resource utilization report is written to the PROC_SUBSYSTEM_layout_log.log file in the
Reports tab -> PROC_SUBSYSTEM reports -> Place and Route. It lists the resource
utilization of the design after place and route. These values may vary slightly for different Libero runs,
settings, and seed values.

3.3 Verify Timing
To verify timing:

1. Double-click Verify Timing from the Design Flow tab.
When the design successfully meets the timing requirements, a green tick mark appears as shown
in Figure 21, page 22.

2. Right-click Verify Timing and select View Report, to view the verify timing report and log files in the
Reports tab.

3.4 Generate FPGA Array Data
To generate the FPGA array data:

1. Double-click Generate FPGA Array Data from the Design Flow window.
2. A green tick mark is displayed after the successful generation of the FPGA array data as shown in

Figure 21, page 22.

Table 4 • Resource Utilization

Type Used Total Percentage

4LUT 17822 299544 5.95

DFF 10918 299544 3.64

I/O Register 0 242 0.00

Logic Element 18529 299544 6.19
Microsemi Proprietary and Confidential AC471 Application Note Revision 2.0 23

Libero Design Flow
3.5 Configure Design Initialization Data and Memories
The Configure Design Initialization Data and Memories step generates the LSRAM initialization client
and adds it to sNVM, μPROM, or an external SPI flash, based on the type of non-volatile memory
selected. In this design, the LSRAM initialization client is stored in the sNVM.

This process requires the user application executable file (hex file) to initialize the LSRAM blocks on
device power-up. The hex file (application.hex) is available in the
DesignFiles_Directory\Libero_Project\hw_project folder. When the hex file is imported, a
memory initialization client is generated for LSRAM blocks.

Follow these steps:

1. Double-click Configure Design Initialization Data and Memories from the Design Flow window.
The Design and Memory Initialization window opens as shown in the following figure.

Figure 22 • Design and Memory Initialization
Microsemi Proprietary and Confidential AC471 Application Note Revision 2.0 24

Libero Design Flow
2. Select the Fabric RAMs tab and select the pf_lsram client from the list and click Edit as shown in
the following figure.

Figure 23 • Fabric RAMs Tab

3. In the Edit Fabric RAM Initialization Client dialog box, select the Content from file option, and
locate the application.hex file from
DesignFiles_directory\Libero_Project\hw_project folder and Click OK as shown in
the following figure.

Figure 24 • Edit Fabric RAM Initialization Client
Microsemi Proprietary and Confidential AC471 Application Note Revision 2.0 25

Libero Design Flow
4. Click Apply as shown in the following figure.

Figure 25 • Apply Fabric RAM Content

5. Click Apply in the Design Initialization tab.
6. From Libero Design Flow, click Generate Initialization Data to generate design initialization data.

After successful generation of the Initialization data, a green tick mark appears next to Generate
Initialization Data option as shown in the Figure 21, page 22.

3.6 Configure Programming Options
The Design version and user code (Silicon signature) are configured in this step. Double click Design
flow->Program and Debug Design->Configure Programming Options to give values as
shown in the following figure.

Figure 26 • Configure Programming Options
Microsemi Proprietary and Confidential AC471 Application Note Revision 2.0 26

Libero Design Flow
3.7 Generate Bitstream
To generate the bitstream:

1. Right-click Generate Bitstream and select Configure Options... to select the bitstream
components—Custom security, Fabric, and sNVM.

Figure 27 • Generate Bitstream—Configure Bitstream Options

2. Double-click Generate Bitstream from the Design Flow tab. When the bitstream is successfully
generated, a green tick mark appears as shown in Figure 21, page 22

3. Right-click Generate Bitstream and select View Report to view the corresponding log file in the
Reports tab.

3.8 Run PROGRAM Action
After generating the bitstream, the PolarFire device must be programmed with the Auto Update and IAP
design.

Follow these steps to program the PolarFire device:

1. Ensure that the following jumper settings are set on the board.

2. Connect the power supply cable to the J2 connector on the board.
3. Connect the USB cable from the host PC to the J1 (FTDI port) on the board.
4. Power on the board using the SW1 slide switch.

Table 5 • Jumper Settings for PolarFire Device Programming

Jumper Description

J5, J6, J7, J8, J9 Close pin 2 and 3 for programming the PolarFire FPGA through FTDI

J11 Close pin 1 and 2 for programming through FTDI chip

J10 Close pin 1 and 2 for programming through FTDI SPI

J4 Close pin 1 and 2 for manual power switching using SW1

J3 Open pin 1 and 2 for 1.0 V
Microsemi Proprietary and Confidential AC471 Application Note Revision 2.0 27

Libero Design Flow
The following figure shows the board setup after these connections are made.

Figure 28 • Board Setup

5. Double-click Run PROGRAM Action from the Libero Design Flow.

The device is successfully programmed and the on-board LEDs glow. A green tick mark appears next to
Run PROGRAM Action as shown in Figure 21, page 22.
Microsemi Proprietary and Confidential AC471 Application Note Revision 2.0 28

Programming the Device Using FlashPro Software

Microsemi Proprietary and Confidential AC471 Application Note Revision 2.0 29

4 Programming the Device Using FlashPro
Software

This section describes how to program the PolarFire device with the .stp programming file using
FlashPro. The .stp file is available at the following design files folder location:

mpf_ac471_liberosocpolarfirev2p2_df\Programming_File

To program the PolarFire device using FlashPro, complete the following steps:

1. Ensure that the jumper settings on the board are the same as those listed in the following table.
Note: The power supply switch must be switched off while making the jumper connections.

2. Connect the power supply cable to the J2 connector on the board.
3. Connect the USB cable from the host PC to the J1 (FTDI port) on the board.
4. Power on the board using the SW1 slide switch.
5. On the host PC, launch the FlashPro software.
6. Click New Project to create a new project.

In the New Project window, enter a project name.

7. Click Browse and navigate to the location where you want to save the project.
8. Select Single device as the programming mode and click OK to save the project.
9. Click Configure Device.
10. Click Browse, and select the progamming_appnote_v1.stp file from the following folder:

<$design file directory>\mpf_ac471_liberosocpolarfirev2p2_df\Programming_File
11. Click Open. The required programming file is selected and ready to be programmed in the device.
12. Click PROGRAM to program the device.

When the device is programmed successfully, a Run PASSED status is displayed.

Table 6 • Jumper Settings for PolarFire Device Programming

Jumper Description

J5, J6, J7, J8, J9 Close pin 2 and 3 for programming the PolarFire FPGA through FTDI

J11 Close pin 1 and 2 for programming through FTDI chip

J10 Close pin 1 and 2 for programming through FTDI SPI

J4 Close pin 1 and 2 for manual power switching using SW1

J3 Open pin 1 and 2 for 1.0 V

Serial Terminal Emulation Program Setup
5 Serial Terminal Emulation Program Setup

The user application receives programming commands on the serial terminal through the UART
interface. This chapter describes how to set up the serial terminal program.

To setup PuTTY, perform the following steps:

1. Connect the USB cable from the host PC to the J1 (USB) port on the board.
2. Connect the power supply cable to the J2 connector on the board.
3. Power on the board using the SW1 slide switch.
4. From the host PC, click Start and open Device Manager to note the second highest COM Port

number and use that in the PuTTY configuration. In this example, COM Port 9 (COM9) is selected
as shown in the following figure. COM Port-numbers may vary.

Figure 29 • COM Port Number

5. From the host PC, click Start, and then find and select the PuTTY program.
6. Select Serial as the Connection type as shown in the following figure.

Figure 30 • Select Serial as the Connection Type

7. Set the Serial line to connect to COM port number noted in Step 3.
8. Set the Speed (baud) to 115200 as shown in the following figure.
Microsemi Proprietary and Confidential AC471 Application Note Revision 2.0 30

Serial Terminal Emulation Program Setup
9. Set the Flow control to None as shown in the following figure and click Open.

Figure 31 • PuTTY Configuration

PuTTY opens successfully, and this completes the serial terminal emulation program setup. See
Running the Demo, page 32.
Microsemi Proprietary and Confidential AC471 Application Note Revision 2.0 31

Running the Demo
6 Running the Demo

This section describes how to run the authentication, auto update and IAP. The following procedure
assumes that the serial terminal is setup, for more information about setting up the serial terminal, see
Serial Terminal Emulation Program Setup, page 30.

The on-board 1 GB Micron SPI flash device is connected to System Controller SPI and can be
programmed using the fabric logic or Libero SoC PolarFire software. For more information about
programming the on-board SPI flash using Libero, see Appendix: Programming On-board SPI Flash
Using Libero, page 37.

Before you start:

1. Ensure that the device is programmed with the programming_appnote_v1.stp file.
2. Connect the power supply cable to the J2 connector on the board.
3. Connect the USB cable from the host PC to J1 (FTDI port) on the board.
4. Ensure that on-board SW8 DIP 1 is set to Off.
5. Power-up the board using the SW1 slide switch.

6.1 Programming the SPI Flash Using Fabric Logic
After power-up, PuTTY displays the options as shown in the following figure. Observe the design
version 01 in the device.

Figure 32 • Authentication and Programming Options

At this point, the on-board SPI Flash device is empty. Hence, selecting Option 1 or 2 returns
unsuccessful status codes as shown in the following figure.

Figure 33 • Authentication Error

Selecting option 4, 5, or 6 does not initiate any program operation as the on-board SPI flash is empty.
Power cycle the board. Observe the design version 01 in the device. This indicates auto update is not
initiated and the device is not updated.
Microsemi Proprietary and Confidential AC471 Application Note Revision 2.0 32

Running the Demo
To program the SPI flash:

1. Power off the board using the SW1 slide switch. Close the PuTTY and set the on-board SW8 DIP 1
to On.

2. Disconnect and connect the USB cable from the host PC to J1 (FTDI port) on the board. This
ensures clearing off UART buffers.

3. Power on the board using the SW1 slide switch.
4. Locate the load_spi_flash.bat batch file from the

$DesignFiles_Folder\host_pc_tool_pf folder.
5. Right-click load_spi_flash.bat batch file and edit it as follows to match the COM port number.

For example, COM Port 9 in this instance.

spi_loader.exe 54 golden_image_v0.spi update_image_v2.spi iap_image_v5.spi

6. Double-click the load_spi_flash.bat file to load the programming images—listed in the
following table—into external SPI flash.The application firmware writes the flash directory contents
into the external SPI flash along with programming images.

The command window prompts to press enter to erase and program the SPI Flash with programming
images.

The LED 4 blinks to indicate that the SPI Flash Erase operation is in progress. The command prompt
displays the status as shown in the following figure.

Figure 34 • Erasing SPI Flash

Table 7 • Programming Images

Image Name Version
Silicon Signature/
User Code

Image Index in SPI
Flash Directory

Image Address in SPI
Flash Memory

golden_image_v0.spi 0 0x01234567 0 0x00000400

update_image_v2.spi 2 0x23456789 1 0x00A00000

iap_image_v5.spi 5 0x56789ABC 2 0x01400000
Microsemi Proprietary and Confidential AC471 Application Note Revision 2.0 33

Running the Demo
7. The SPI Flash programming operation starts and takes 20-30 minutes to complete. LED 5 blinks to
indicate that the SPI Flash programming operation is in progress.
When the SPI Flash programming operation completes successfully, LED 5 starts to glow.
The Command prompt shows the status and the time taken as shown in the following figure.

Figure 35 • Command Prompt Status

8. Close the application.

This concludes programming the on-board SPI flash memory.

6.2 Running Auto Update
To run auto update:

1. Set the on-board SW8 DIP 1 to Off.
2. Start the PuTTY and power-cycle the board. The auto update is initiated and update image

(update_image_v2.spi) gets programmed into the device.

Observe the design version 02 as shown in the following figure.

Figure 36 • Auto Update

6.3 Running Authentication
To run bitstream authentication:

1. Press 1 to initiate the bitstream authentication.

After successful authentication, PuTTY displays the status code as shown in the following figure.

Figure 37 • Successful Bitstream Authentication
Microsemi Proprietary and Confidential AC471 Application Note Revision 2.0 34

Running the Demo
2. Press 2 to initiate the IAP image authentication.

After successful authentication, PuTTY displays the status code, as shown in the following figure.

Figure 38 • Successful IAP Image Authentication

This concludes the bitstream and IAP image authentication.

6.4 Running Auto Programming
To run Auto programming:

1. Press 3 in PuTTY. The PuTTY notifies to erase the device using FlashPro and power-cycle the
board as shown in the following figure.

Figure 39 • Notifying ERASE Action

2. Using FlashPro, erase the device and power-cycle the board.
All the LEDs stop glowing for few seconds, which indicates that the auto programming is in progress.
The highest programming image version is selected from first two available images in external SPI
Flash for auto programming. In this case, it is version 2 (update_image_v2.spi).

PuTTY displays the updated design version, as shown in the following figure.

Figure 40 • Successful Auto Programming

This concludes running the Auto programming feature.
Microsemi Proprietary and Confidential AC471 Application Note Revision 2.0 35

Running the Demo
6.5 Running IAP
To run IAP:

1. Press 4, IAP program by Index. After around 28 seconds, the IAP with image at index 2 is executed
successfully and the design version 05 is displayed as shown in the following figure.

Figure 41 • Successful IAP at Index 2

2. Press 5, IAP program by address. After around 28 seconds, the IAP with image at address
0x1400000 is executed successfully and the design version 05 is displayed as shown in the
following figure.

Figure 42 • Successful IAP by Address

This concludes running the IAP feature.
Microsemi Proprietary and Confidential AC471 Application Note Revision 2.0 36

Appendix: Programming On-board SPI Flash Using Libero

Microsemi Proprietary and Confidential AC471 Application Note Revision 2.0 37

7 Appendix: Programming On-board SPI Flash
Using Libero

Libero SoC PolarFire Design Suite supports the on-board SPI Flash programming using JTAG. For more
information about the SPI Flash programming modes, see UG0714: PolarFire FPGA Programming User
Guide.

To program the SPI flash using JTAG:

1. Ensure that the jumper settings on the board are the same as those listed in Table 5, page 27.
2. In the Design Flow window, select Program and Debug Design and then double-click Configure

Design Initialization Data and Memories.

Figure 43 • Configure Design Initialization Data and Memories Option

3. In the Design and Memory Initialization page, select the SPI Flash tab, as shown in Figure 44,
page 37.

4. In SPI Flash Clients pane, add the required programming images (.spi images), and click Apply.
These images are provided at
mpf_ac471_liberosocpolarfirev2p2_df\Libero_Project\hw_project\designer\PROC_SUBSYSTEM\ex
port.

Figure 44 • SPI Flash Tab

5. Connect the power supply cable to the J2 connector on the board.
6. Connect the USB cable from the host PC to J1 (FTDI port) on the board.
7. Double-click Generate SPI Flash Image and double-click Run PROGRAM_SPI_IMAGE Action to

get the SPI flash programmed with the programming images as shown in the following figure.

Figure 45 • SPI Flash Programming

8. Power-cycle the board once you program the device.
Note: If you program the external SPI flash using Libero, set the on-board SW8 DIP 1 to On because the fabric

design is not required to program the SPI flash. Libero takes approximately 30 minutes to program the
three programming files into SPI Flash.

This concludes the on-board SPI Flash Programming.

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=136523
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=136523

Appendix: References

Microsemi Proprietary and Confidential AC471 Application Note Revision 2.0 38

8 Appendix: References

This section lists documents that provide more information about programming and other IP cores used.

• For more information about PolarFire FPGA programming, see the UG0714: PolarFire FPGA
Programming User Guide.

• For more information about the CoreJTAGDEBUG IP core, see CoreJTAGDebug_HB.pdf from
Libero->Catalog.

• For more information about the CoreAHBtoAPB3 IP core, see CoreAHBtoAPB3_HB.pdf.
• For more information about the CoreUARTapb IP core, see CoreUARTapb_HB.pdf.
• For more information about the CoreAHBLite IP core, see CoreAHBLite_HB.pdf.
• For more information about the CoreAPB3 IP core, see CoreAPB3_HB.pdf.
• For more information about the CoreGPIO IP core, see CoreGPIO_HB.pdf.
• For more information about the PolarFire initialization monitor, see UG0725: PolarFire FPGA Device

Power-Up and Resets User Guide.
• For more information about how to build a Mi-V processor subsystem for PolarFire devices, see

TU0775: PolarFire FPGA: Building a Mi-V Processor Subsystem Tutorial.
• For more information about the PF_CCC IP core, see UG0684: PolarFire FPGA Clocking Resources

User Guide.
• For more information about migration of SoftConsole v5.1 project to SoftConsole v5.2, see

AC465: Migrating a SoftConsole v5.1 Project to SoftConsole v5.2 Application Note.
• For more information about the SRAM buffer, see UG0680: PolarFire FPGA Fabric User Guide.
• For more information about Libero, ModelSim, and Synplify, see the Microsemi Libero SoC PolarFire

web page.

https://www.microsemi.com/products/fpga-soc/design-resources/design-software/libero-soc-polarfire#documents
https://www.microsemi.com/products/fpga-soc/design-resources/design-software/libero-soc-polarfire#documents
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=136522
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=136524
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=136524
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=136523
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=136523
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=136530
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=136530
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130958
http://soc.microsemi.com/ipdocs/CoreAHBLite_HB.pdf
http://soc.microsemi.com/ipdocs/CoreAPB3_HB.pdf
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=137669
http://soc.microsemi.com/ipdocs/CoreGPIO_HB.pdf
http://soc.microsemi.com/ipdocs/CoreAHBtoAPB3_HB.pdf
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=136945

	1 Revision History
	1.1 Revision 2.0
	1.2 Revision 1.0

	2 PolarFire FPGA Auto Update and In-Application Programming using Splash Kit
	2.1 CoreSysService_PF IP Overview
	2.2 Design Requirements
	2.3 Prerequisites
	2.4 Demo Design
	2.4.1 Design Implementation
	2.4.2 IP Configuration

	2.5 Clocking Structure

	3 Libero Design Flow
	3.1 Synthesize
	3.2 Place and Route
	3.2.1 Resource Utilization

	3.3 Verify Timing
	3.4 Generate FPGA Array Data
	3.5 Configure Design Initialization Data and Memories
	3.6 Configure Programming Options
	3.7 Generate Bitstream
	3.8 Run PROGRAM Action

	4 Programming the Device Using FlashPro Software
	5 Serial Terminal Emulation Program Setup
	6 Running the Demo
	6.1 Programming the SPI Flash Using Fabric Logic
	6.2 Running Auto Update
	6.3 Running Authentication
	6.4 Running Auto Programming
	6.5 Running IAP

	7 Appendix: Programming On-board SPI Flash Using Libero
	8 Appendix: References

