AC4T71

Application Note
PolarFire FPGA Auto Update and In-Application

Programming Using Splash Kit

& Microsemi

a A%\ MicrocHIP company

& Microsemi

a A8\ MicracHIP company

Microsemi Headquarters

One Enterprise, Aliso Viejo,

CA 92656 USA

Within the USA: +1 (800) 713-4113
Outside the USA: +1 (949) 380-6100
Sales: +1 (949) 380-6136

Fax: +1 (949) 215-4996

Email: sales.support@microsemi.com
www.microsemi.com

©2018 Microsemi, a wholly owned
subsidiary of Microchip Technology Inc. All
rights reserved. Microsemi and the
Microsemi logo are registered trademarks of
Microsemi Corporation. All other trademarks
and service marks are the property of their
respective owners.

Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of
its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the
application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have
been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any
performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all
performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not
rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer’s responsibility to
independently determine suitability of any products and to test and verify the same. The information provided by Microsemi
hereunder is provided “as is, where is” and with all faults, and the entire risk associated with such information is entirely
with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP
rights, whether with regard to such information itself or anything described by such information. Information provided in this
document is proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this
document or to any products and services at any time without notice.

About Microsemi

Microsemi, a wholly owned subsidiary of Microchip Technology Inc. (Nasdaq: MCHP), offers a comprehensive portfolio of
semiconductor and system solutions for aerospace & defense, communications, data center and industrial markets.
Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and
ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world's
standard for time; voice processing devices; RF solutions; discrete components; enterprise storage and communication
solutions, security technologies and scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs and
midspans; as well as custom design capabilities and services. Learn more at www.microsemi.com.

51900471.2.0 7/18

mailto:sales.support@microsemi.com
http://www.microsemi.com

& Microsemi

a AX\MicracHp company

Contents

1 Revision History 1
1.1 ReVISION 2.0 . . o e 1
1.2 ReVISION 1.0 e 1

2 PolarFire FPGA Auto Update and In-Application Programming using Splash Kit . . . 2

2.1 CoreSysService _PF IP OVeIrVIEW e e e 3

2.2 Design Requirements 5

2.3 PrereqUISItESo e e 6

24 DemO DESIgN . . .o 6
241 Design Implementation 8

242 IP Configuration 9

2.5 Clocking StrUCIUre 21

3 Libero Design Flow 22
3.1 SYNINESIZE . . . o 23

3.2 Place and Route 23
3.2.1 Resource Utilization 23

3.3 Verify TImMiNg ..o 23

3.4 Generate FPGA Array Data o 23

3.5 Configure Design Initialization Data and Memories i 24

3.6 Configure Programming Options e 26

3.7 Generate Bitstream 27

3.8 Run PROGRAM ACHONottt e e e e e e e e e e e 27

4 Programming the Device Using FlashPro Software 29
5 Serial Terminal Emulation Program Setup 30
6 Runningthe Demo 32
6.1 Programming the SPI Flash Using FabricLogic 32

6.2 Running Auto Update 34

6.3 Running Authentication 34

6.4 Running Auto Programmingot 35

6.5 RUNNING AP 36

7 Appendix: Programming On-board SPI Flash Using Libero 37
8 Appendix: References 38

Microsemi Proprietary and Confidential AC471 Application Note Revision 2.0 iii

Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22
Figure 23
Figure 24
Figure 25
Figure 26
Figure 27
Figure 28
Figure 29
Figure 30
Figure 31
Figure 32
Figure 33
Figure 34
Figure 35
Figure 36
Figure 37
Figure 38
Figure 39
Figure 40
Figure 41
Figure 42
Figure 43
Figure 44
Figure 45

& Microsemi

a AX\MicracHp company

Core System Services IP Interfacing with Fabric User Logic 3
Firmware catalog e 4
PolarFire Programming Design Block Diagram i 6
Accessing On-board SPI Flash Using Fabric, 7
SPIFIash Memory 7
Top Level Libero Designot e 8
PF_INIT_MONITOR Configuration e e 9
PF_CCC_0 Input Clock Configuration i 10
PF_CCC_0 Output Clock Configuration i 10
Mi-V Configuration 11
UART Configuration e e e e 12
PF_SRAM_AHBL_AXI Configuration e 13
CoreGPIO_0 Configuration e 14
CoreSPI Configuration e 15
CoreSysService_PF Configuration 16
MemOry Mapo 17
CoreAHBLite_0 Configuration 18
CoreAHBLIite_1 Configuration i 19
CoreAPB3_0 Configuration e 20
Clocking StrUCtUre 21
Libero Design Flow Options 22
Design and Memory Initialization 24
Fabric RAMS Tab 25
Edit Fabric RAM Initialization Client 25
Apply Fabric RAM Content 26
Configure Programming Options i e e 26
Generate Bitstream—Configure Bitstream Options 27
Board Setup 28
COM Port Number ... e 30
Select Serial as the Connection Type 30
PUTTY Configuration e e e 31
Authentication and Programming Options i 32
Authentication Error 32
Erasing SPI Flash 33
Command Prompt Status 34
Auto Update e 34
Successful Bitstream Authentication 34
Successful IAP Image Authentication 35
Notifying ERASE ACHON 35
Successful Auto Programmingo 35
Successful IAP at Index 2 e 36
Successful IAP by Address 36
Configure Design Initialization Data and Memories Option 37
SPIFlash Tab 37
SPI Flash Programming 37

Microsemi Proprietary and Confidential AC471 Application Note Revision 2.0 iv

Tables

Table 1
Table 2
Table 3
Table 4
Table 5
Table 6
Table 7

& Microsemi

a AX\MicracHp company

System Services DesCriptor e 3
Design Requirements 5
O SIgNalsS ..o 8
Resource Utilization 23
Jumper Settings for PolarFire Device Programming i 27
Jumper Settings for PolarFire Device Programming 29
Programming Images e 33

Microsemi Proprietary and Confidential AC471 Application Note Revision 2.0 1

Revision History

1

& Microsemi

a AX\MicracHp company

Revision History

1.1

1.2

The revision history describes the changes that were implemented in the document. The changes are
listed by revision, starting with the current publication.

Revision 2.0

The document was updated for Libero SoC PolarFire v2.2 release.

Revision 1.0

The first publication of this document.

Microsemi Proprietary and Confidential AC471 Application Note Revision 2.0 1

PolarFire FPGA Auto Update and In-Application Programming using Splash Kit @ M. .
Iicrosemi

2

a AX\MicracHp company

PolarFire FPGA Auto Update and
In-Application Programming using Splash Kit

PolarFire® FPGAs support the SPI master programming mode for auto update and in-application
programming (IAP). In this programming mode, the programming images are stored in an external SPI
flash memory.

Auto update—on power-up, if the version of the update image is found to be different from the current
programmed version, the System Controller reads the update image bitstream from the external SPI
flash memory and programs the device.

IAP—the user application initiates the program action and the System Controller reads the bitstream
from the external SPI flash memory to program the device.

The System Controller supports fetching programming images from SPI Flash device based on the Index
value or direct addressing. The SPI directory contains the start addresses of the programming images.

The following components of PolarFire devices are programmable:

* FPGA fabric
» Secure non-volatile memory (sNVM)
» User security settings (keys, passcodes, and locks)

This document explains how to use the accompanying design to demonstrate the auto update and IAP
features on the PolarFire Splash kit.

The on-board 1 GB Micron SPI flash device is connected to System Controller SPI and can be
programmed using the fabric logic or Libero® SoC PolarFire software. For more information about
programming the on-board SPI flash using Libero, see Appendix: Programming On-board SPI Flash
Using Libero, page 37.

This application note includes the Mi-V soft processor, which initiates the system service requests for the
device programming and enables the CoreSysService_PF IP core to access the System Controller. For
more information about the design implementation, and the necessary blocks and IP cores instantiated in
Libero SoC PolarFire, see Demo Design, page 6.

This design can be programmed using any of the following options:

+ Using the pre-generated . stp file: To program the device using the . stp file provided along with
the design, see Programming the Device Using FlashPro Software, page 29.

+ Using Libero SoC PolarFire: To program the device using Libero SoC PolarFire, see Libero Design
Flow, page 22.

This design can be used as a reference to build a fabric design with programming features.

Microsemi Proprietary and Confidential AC471 Application Note Revision 2.0 2

PolarFire FPGA Auto Update and In-Application Programming using Splash Kit @ M. .
Iicrosemi

2.1

Figure 1

a AX\MicracHp company

CoreSysService PF IP Overview

System Controller actions are initiated by the fabric logic through the system service interface (SSI) of
the System Controller. The fabric logic requires the CoreSysService_PF IP for initiating the system
services. A service request interrupt to the System Controller is triggered when the fabric user logic
writes a 16-bit system service descriptor to the SSI. The lower seven bits of the descriptor specify the
service to be performed. The upper nine bits specify the address offset (0-511) in the 2 KB mailbox RAM.
The mailbox address specifies the service-specific data structure used for any additional inputs or
outputs for the service. The fabric logic must write additional parameters to the mailbox before requesting
a system service. The following table lists the system service descriptor bits.

Table 1« System Services Descriptor

Descriptor Bit Value
15:7 MBOXADDR
6:0 SERVICEID

SSI consists of an asynchronous command-response interface that transfers a system service command
from the fabric master to the System Controller and the status from the System Controller to the fabric
master. The following figure shows how the CoreSysService_PF IP Interfaces with the fabric logic.

Core System Services IP Interfacing with Fabric User Logic

PolarFire FPGA

System Controller

Mailbox

Interface SsI

A
Core System Services IP

APB Slave

APB Interface

k.

APB Master

User Logic (Fabric Master)

Fabric

The system services driver and the sample SoftConsole project are generated from Firmware Catalog as
shown Figure 2, page 4.

Microsemi Proprietary and Confidential AC471 Application Note Revision 2.0 3

PolarFire FPGA Auto Update and In-Application Programming using Splash Kit

Figure 2 »

& Microsemi

a AX\MicracHp company

In this design, the sample SoftConsole project is migrated to SoftConsole v5.2. The Mi-V soft processor
is compatible with only SoftConsole v5.2 or later. The application files main.c and hw platform.h

are modified to provide the programming use
addresses.

Firmware catalog

r options, system clock frequency, and APB peripheral

<P Firmware Catalog

File View Tools Help

View (52/160):

% All I ‘i Vault HJ Web repositories |

Search by all fields (52/52):

| o~
¥ display only the latest version of a core
Name / I Version IL
Core10100_AHBAPE Driver 4.0.102
Core16530 Driver 2.3.100
Corehl Driver 3.010
CorelhbMNvm Driver 2.1.102
CoreDDRTip_PF Driver 1.0.100
CoreGPIO Driver 3.2.10
Corel2C Driver 3210
Corelnterrupt Driver 2.1.102
CorelPC Driver 2.1.10
CoreMACFilter Driver 21,100 fe
CoreMMC Driver 2.0.100
CorePWM Driver 2.3.10
CoreSDLC Driver 2.1.100
CoreSP| Driver 3.2.101
CoreTSE Driver [2f] Generate... 2.3.100
CoreTimer Driver 2310
CoreUARTapb Driver L el 3.2.101
CoreWatchdog Driver . 2.2.100
Hardware Abstraction Layer (Hal ‘& Show details... 2.3.102
PolarFire PCle Driver Open documentation * 1.0.100 (*)

PolarFire Serdes Driver
PolarFire User Crypto Driver

Documentation:
CoreSysServices PE Driver UG.pdf
CoreSysServices PE Driver RN.pdf

Description: Bare metal software driver for CoreSysServices_PF Soft IR
Supports all the services supported by CoreSysServices_PF Soft IP

Device and design information services
Design services

I, Mew cores are available for download — Download them now! |

i 3 - = = -
Genelate sample project ety o SoftConsole v3.1 ¥ PolarFire System Services

[~

|ﬁ| Generate

Microsemi Proprietary and Confidential AC471 Application Note Revision 2.0 4

PolarFire FPGA Auto Update and In-Application Programming using Splash Kit

2.2

Design Requirements

The following table lists the resources required to run the design.

Table 2 » Design Requirements

& Microsemi

a AX\MicracHp company

Requirement

Version

Operating System

Windows 7, 8.1, or 10

Hardware

PolarFire Splash Kit (MPF300TS-1FCG484EES)

— PolarFire Splash board

—-12V, 5 A AC power adapter and cord

— USB 2.0 A to mini-B cable for universal
asynchronous receiver-transmitter (UART) and
programming

Rev 2 or later

Host PC

Software

FlashPro 12.200.30.10
Libero SoC PolarFire Design Suite 2.2

Serial Terminal Emulation Program

PuTTY or HyperTerminal
www.putty.org

IP

PF_INIT_MONITOR 2.0.103
PF_CCC 1.0.113
CoreJTAGDEBUG 2.0.100
CORESET_PF 2.1.100
Mi-V soft processor (MIV_RV32IMA_L1_AHB) 2.0.100
COREAHBLite 5.3.101
COREAHBTOAPB3 3.1.100
CoreAPB3 4.1.100
CoreUARTapb 5.6.102
CoreGPIO 3.2.102
CoreSysService_PF 2.3.116
CORESPI 5.1.104
PF_SRAM_AHBL_AXI 1.1.125
PF_SPI macro

CLKINT 1.0

Note: Any serial terminal emulation program can be used. PuTTY is used in this application note.

Microsemi Proprietary and Confidential AC471 Application Note Revision 2.0 5

PolarFire FPGA Auto Update and In-Application Programming using Splash Kit @ M. .
Iicrosemi

a AX\MicracHp company

2.3 Prerequisites

Before you start:

1. Download the design files from the following location:
http://soc.microsemi.com/download/rsc/?f=mpf_ac471_liberosocpolarfirev2p2_df

2. Download and install Libero SoC PolarFire v2.2 on the host PC from the following location.
https://www.microsemi.com/products/fpga-soc/design-resources/design-software/libero-soc-
polarfire#tdownloads
The latest versions of ModelSim and Synplify Pro are included in the Libero SoC PolarFire
installation package.

24 Demo Design

The following steps describe the data flow in the design:

1. The host PC sends the system service requests to CoreUARTapb block through the UART Interface.

2. The Mi-V soft processor initializes the System Controller using the CoreSysService_PF IP and
sends the requested system service command to the System Controller.

3. The System Controller executes the system service command by reading the bitstream images from
the external SPI flash and sends the relevant response to the CoreSysService_PF IP over the
mailbox interface.

4. The Mi-V processor receives the service response and forwards the data to the UART interface.

The following figure shows the block diagram of the PolarFire programming design.

Figure 3+ PolarFire Programming Design Block Diagram

SPI Flash Memory PolarFire FPGA

System

» SPI Controller
SPI Directory

A A

Programming

Mailbox
Images Interface ssl
v
On-board LEDs |« CoreGPIO CoreSysServices_PF
Y
APB slave
APB slave
CoreAPB3 AHB slave
CoreAHBtoAPB |« PF_SRAM_AHBL_
APB slave CoreAHBLite AXI
'} 3
AHB_MST_MEM AHB_MST_MMIO
h 4 A
Host PC
PuTTY/SPI Loader | "| CoreUARTapb Mi-V <+—>» CorelTAGDEBUG
Soft Processor

Microsemi Proprietary and Confidential AC471 Application Note Revision 2.0 6

http://soc.microsemi.com/download/rsc/?f=mpf_ac471_liberosocpolarfirev2p2_df
https://www.microsemi.com/products/fpga-soc/design-resources/design-software/libero-soc-polarfire#downloads
https://www.microsemi.com/products/fpga-soc/design-resources/design-software/libero-soc-polarfire#downloads

PolarFire FPGA Auto Update and In-Application Programming using Splash Kit @ M. .
Iicrosemi

Figure 4 »

Figure 5 »

a AX\MicracHp company

To initiate auto update or IAP system service request, the on-board SPI flash must be programmed with
programming images. The fabric logic interfaces to the on-board SPI flash using SPI controller and
PF_SPI macro. When the System Controller’s SPI is enabled and configured as master, the System
Controller hands over the control of the SPI to the fabric on device power-up. The fabric logic programs
the on-board SPI flash with flash directory and programming images using UART interface. The
programming images are transfered from the host PC using SPI flash loader (spi_loader.exe).

The on-board SPI flash can be programmed using fabric logic as shown in the following figure.

Accessing On-board SPI Flash Using Fabric

PolarFire FPGA

SPI Flash Memory

g J—

|
|
SPI Directory }
T
Programming | 1
Images ;
|
|
|
|
T

|
Host PC | 1
SPI Loader ~ [~ T T oo oottt T
. ART: «—> v
(Programming CoreUARTapb APB Soft Processor
Images) Slave

---- Loading programming files into SPI Flash memory from host PC

The following figure shows the SPI flash memory with directory and programming images.

SPI Flash Memory

0x00000000
0x00000400 (golden_image_v0.spi, Index 0)
0x00000004
0x00A00000 (update_image_v2.spi, Index 1)
0x00000008
0x01400000 (iap_image_v5.spi, Index 2)
1 KB SPI Flash
Directory
0x00000400
golden_image_vO0.spi
A
0x00A00000 c
update_image_v2.spi
v
0x01400000 X
iap_image_v5.spi
A4

Microsemi Proprietary and Confidential AC471 Application Note Revision 2.0 7

PolarFire FPGA Auto Update and In-Application Programming using Splash Kit

& Microsemi

a AX\MicracHp company

When System Controller receives programming or authentication system service from fabric user logic,
the System Controller fetches the programming images from the on-board SPI flash to execute the
service request. In this application note, the following system services are initiated on user request.

. Bitstream authentication
* |AP image authentication
* Auto update

« |AP

For more information about the preceding services, see the UG0714: PolarFire FPGA Programming
User Guide.

241 Design Implementation

The following figure shows the top-level Libero design of the PolarFire system services design.
Figure 6« Top Level Libero Design

Core_SPLO =3

Core_SpT

coreatBLte 1 0 L

MI_V_SoftProcessor_0

PF_SRAM_0

CoreUARTapb_0

PF_INIT_MONITOR_0

The following table lists the important 1/O signals of the design.

Table 3 » 1/0 Signals

Signal Description

REF_CLK_O Input 50 MHz clock from the on-board 50 MHz oscillator
resetn On-board reset push-button for the PolarFire device

RX Input signals received from the serial UART terminal

X Output signals transmitted to the serial UART terminal
GPIO_OUTI[3:0] On-board LED outputs

GPIO_IN[3:0] To interface on-board DIP switches.

Microsemi Proprietary and Confidential AC471 Application Note Revision 2.0 8

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=136523
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=136523

PolarFire FPGA Auto Update and In-Application Programming using Splash Kit © M. .
Iicrosemi

2.4.2

2421

Figure 7

i PolarFire Initialization Monitor Configurator
Microsemi:SgCore:PF_INIT_MONITOR:2.0.103
| Bank Monitor

E Simulation Options

; FABRIC_POR._M assertion delay (ns) 1 PF_I N IT_M O N ITO R_O
PCIE_INIT_DONE assertion delay (ns) 4 i FABRIC POR l;
USRAM_INIT_DOME assertion delay (ns) |5 PCIE_INIT_DOMNE}

USRAM_INIT_DONE|—
SRAM_INIT_DONE assertion delay (ns) |6 SRAM INIT DONEL
| DEVICE_INIT_DONE assertion delay (ns) [7 DEVICE_INIT_DONE[—
XCVR_INIT_DONE|—
8 & ey USRAM_INIT_FROM_SNVM_DONE[—
|

) USRAM_INIT_FROM_UPROM_DONE—

BAMK_0_CALIB_STATUS assertion delay {ns) |1

| USRAM_INIT_FROM_SPL_DONE[—

BANK_1_CALIB_STATUS assertion delay {ns) |1 1 SRAM_INIT_FROM_SNVM_DOMNE|—
SRAM_INIT_FROM_UPROM_DONE}—-
BAMNK_2_CALIB_STATUS assertion delay {ns) |1 LT SR S GOh e
BANK_4_CALIE_STATUS assertion delay (ns) |1 AUTOCALIB_DONE}|—
\ v
BANK_5_CALIB_STATUS assertion delay {ns) [1 PF I N IT M 0 N ITO R

BAMK_6_CALIB_STATUS assertion delay {ns) |1
BAMK_7_CALIB_STATUS assertion delay {ns) |1

Help =
|

2422

a AX\MicracHp company

IP Configuration

The following sections describe the IP cores used in the design and their configurations. The other IP
cores retain the default configuration.

PF_INIT_MONITOR

The PolarFire Initialization Monitor gets the status of device initialization including the LSRAM
initialization. The following figure shows PF_INIT_MONITOR configuration.

PF_INIT_MONITOR Configuration

Simulation Options l =

j'\. Symbal

oK | Cancel

Instantiating CLKINT

From the Catalog, drag the CLKINT macro to SmartDesign. This macro is required as a 50 MHz clock
oscillator with an accuracy of +/-50 ppm is available on the board. This clock oscillator is connected to
the FPGA fabric to provide a system reference clock. The pin number of the 50 MHz oscillator is H7, and
the pin name is GPIO239PB5/CLKIN_W_2/CCC_SW_CLKIN_W_2/CCC_SW_PLL0_OUTO0. When the
pin is not hardwired to the PLL reference clock input, use CLKINT macro to promote it to global clock
network.

Microsemi Proprietary and Confidential AC471 Application Note Revision 2.0 9

PolarFire FPGA Auto Update and In-Application Programming using Splash Kit

2423

Figure 8 »

Figure 9 »

PF_CCC_0 Configuration

& Microsemi

a AX\MicracHp company

The PolarFire Clock Conditioning Circuitry (CCC) block takes an input clock of 50 MHz from the on-board
oscillator passed through CLKINT and generates a 100 MHz fabric clock to the Mi-V processor
subsystem and other peripherals. The following figures show the input and output clock configurations.

PF_CCC_0 Input Clock Configuration

@3 Configurator

Clock Conditioning Circuitry (CCC)
Microsemi:SgCore:PF_CCC:1.0.113

Configuration [PLL-Single -

Clock Options PLL | Output Clocks |

|»

Input Frequency |50 MHz I~ Backup Clock
Bandwidth High -

i
i

I™ Enable Delay Line

" Feedback Clock Delay Delay Steps: |1 3:
& Backup Clock Delay

PF_CCC_0

Power [Jitter

& Minimize Jitter
" Minimize VCO*

" Minimize Power

Feedback Mode

PostvcO v

I Integer Mode

I™ 5506 Modulation

™ Enable Dynamic Reconfiguration Interface (DRI}
™ Export PowerDown Port

™ wait For PLL Lock Before Exiting Flash*Freeze

4

Log

[E)Messages @ Errors 4, Warnings i Info

| ;ILI \ symbol /

OUTO_FABCLK 0|
PLL_LOCK_0f

PF_CCC

REF_CLK_0

Help -

PF_CCC_0 Output Clock Configuration

[Configurator - [l X
Clock Conditioning Circuitry (CCC)
MicrosemiSgCore:PF_CCC:1.0.113
Configuration |PLL-Single hd
Clock Options PLL~ Output Clocks |
For best results, put the highest frequency first.
Output Clock 0
PF CCC O
¥ Enabled her o CUTFABAK
PLL LOCK
PF_CCC
Requested Frequency | 100 MHz © ActualLower 100 MHz & Actual Higher 100 MHz
Requested Phase [Degrees ActualLower 0 Degrees {* Actual Higher 0 Degrees
I” Dynamic Phase Shifting I™ Expose Enable Port I” Enable Bypass REF_PREDIV -
[¥ Fabric Clock I™ Fabric Clock (Gated) ™ Hs 10 Clock I™ Dedicated Clock
4 | » Symbol
Log
[E]Messages €3 Erors i Warnings i Info |

Microsemi Proprietary and Confidential AC471 Application Note Revision 2.0

PolarFire FPGA Auto Update and In-Application Programming using Splash Kit © M. .
Iicrosemi

2424

Figure 10 »

a AX\MicracHp company

Mi-V Soft Processor Configuration

The Mi-V soft processor Reset Vector Address is set to 0x8000_0000 from default value 0x6000_0000.
After device reset, the processor executes the application from LSRAM, which is mapped to
0x80000000, Hence, the Reset Vector Address is set to 0x80000000 as shown in the following figure.

In the Mi-V processor memory map, the 0x8000_0000 to Ox8FFF_FFFC range is defined for AHB
memory interface and the 0x6000_0000 to Ox7FFF_FFFF range is defined for AHB I/O interface.

Mi-V Configuration

B Configurater - O *

Mi-V RV32IMA_ L1_ AHB Configurator

Microsemi:MiV:MIV_RV32IMA_L1_AHB:2.0.100

Configuration l

Reset Vector Address: [0x3000 0x0 (3]

Help = OK | Cancel

Microsemi Proprietary and Confidential AC471 Application Note Revision 2.0 11

PolarFire FPGA Auto Update and In-Application Programming using Splash Kit

2425

Figure 11

2426

CoreUARTapb

& Microsemi

a AX\MicracHp company

The CoreUARTapb IP is connected to Mi-V soft processor as an APB slave. It interfaces with the host PC
for UART communication. The default configuration settings of the CoreUARTapb IP are shown in the

following figure:

* TXFIFO: Disabled by default.

The UART transmit state machine immediately begins to transmit data and continues transmission
until the data buffer is empty in normal mode. If TX FIFO is enabled, it continues to transmit until TX

FIFO is empty. In this design, normal mode (without FIFO) is selected.

* RXFIFO: Disabled by default.

The UART receive state machine stores the data in receive data buffer if FIFO is not enabled.

+ Configuration: Set to Programmable by default.
UART Configuration

B Configurator

CoreUARTapb Configurator

Microsemi:DirectCore:CoreUARTaph:5.6.102

Configuration l

Core Configuration

TX FIFO: [Disable TXFIFO |
RX FIFO: [Disable RXFIFO |
Configuration: ’W
Baud value: ’_7
Character Size: ’ﬁ
Parity:

Disabled -
FIFO Implementation: ’ﬁ

Baud Value Predision

RX Legacy Mode:

Enable Extra Precision: r

Fractional Part of Baud Value: |+0.0

Testbench: |User =

License: { Obfuscated + RTL

Help =

o |

Cancel |

The SoftConsole application programs the baud rate, character size, and the parity configuration using
the UART driver. If the Fixed option is selected, the user application can not overwrite these parameters.

CoreJTAGDEBUG

The CoreJTAGDebug IP connects the Mi-V soft processor to the JTAG header for debugging.

Microsemi Proprietary and Confidential AC471 Application Note Revision 2.0 12

PolarFire FPGA Auto Update and In-Application Programming using Splash Kit @ M. .
Iicrosemi

a AX\MicracHp company

24.27 PF_SRAM_AHBL_AXI Configuration

The PF_SRAM_AHBL_AXI IP is the main memory of the Mi-V processor, and it gets initialized with the
user application from yPROM. It is connected to Mi-V soft processor as an AHB slave. LSRAM is
configured for the following settings:

+ Optimize for: By default, Low power is selected. It optimizes the LSRAM macro for low power. If
design demands high speed memory access, High Speed can be selected.

« Fabric Interface type: By default, AHBLite is selected. The Mi-V soft processor is AHB based, so
the SRAM is interfaced to the processor using AHB bus for code execution.

* Memory depth: This field is set to 65536 words to accommodate an application of up to 256 KB into
LSRAM. The present application is below 50 KB so this can fit into either SNVM or yPROM. In this
design, JPROM is selected as data storage client. The following figure shows the
PF_SRAM_AHBL_AXI (LSRAM_0) IP configuration.

Figure 12+ PF_SRAM_AHBL_AXI Configuration

PF_SRAM_AHBL_AXI

Microsemi:SystemBuilder:PF_SRAM_AHBL_AXIT:1.1.125

Port settings 1 Memory Initialization Settings

=]

Optimize for " High Speed {* Low power
SRAM type SRAM -
Memory Depth(in words) |65536

SRAM_AHB_AXI_UI_0

=

Fabric Interface type m
Datawidth [32 -] hE
HRESETN
%2 AHBSlavelnterface
e

SRAM_AHB_AXI_UI

_Symbel /

Microsemi Proprietary and Confidential AC471 Application Note Revision 2.0 13

PolarFire FPGA Auto Update and In-Application Programming using Splash Kit © M. .
Iicrosemi

a AX\MicracHp company

2428 CoreGPIO_0 Configuration

The CoreGPIO IP controls the on-board LEDs using GPIOs. It is connected to Mi-V soft processor as an
APB slave. The configuration settings of the COREGPIO_0 IP are as follows:

In the Global Configurations pane:

+ APB Data width is set to 32
The design uses 32-bit data width for APB read and write data.
* Number of I/Os is set to 4
The design controls 2 on-board LEDs for output and 2 DIP Switches for input.
» /O Bit: The following list shows the sub-options under I/O Bit option.
* Output on reset: Set to 0.
+ Fixed Config: Yes
+ 1/O type: As shown in the following figure, first two 1/Os are configured as output and the last
two 1/Os are configured as input.
Note: The first two I/Os configured as output are used by the design and last two I/Os are not used.
The 1/Os are interfaced to on-board LEDS and DIP switches.

* Interrupt Type: Disabled
When I/O states change, no interrupt is required for the application.

The following figure shows the CoreGPIO_0 configuration.

Figure 13+ CoreGPIO_0 Configuration

B Configurater - O *

CoreGPIO Configurator

Microsemi:DirectCore:CoreGPI0:3.2.102

Configuration l

Global Configuration

APB Data Width: 32 - Mumber of Ij0s: |4 -
Single-bit interrupt port: |Disabled Qutput enable: |Internal -

el
Qutput on Reset: ’E‘ Fixed Config: v 10 Type: ’m Interrupt Type: ’m‘

1/0 bit 1
Qutput on Reset: ’E‘ Fixed Config: v 10 Type: ’m Interrupt Type: ’m‘

1/0 bit 2
Qutput on Reset: ’i‘ Fixed Config: v 10 Type: ’m Interrupt Type: ’m‘

1/0 bit 3

Qutput on Reset: |0 Fixed Config: v IfO Type: |Input = Interrupt Type: |Disabled -

A
Help = OK | Cancel |

Microsemi Proprietary and Confidential AC471 Application Note Revision 2.0 14

PolarFire FPGA Auto Update and In-Application Programming using Splash Kit

2429

Figure 14

CoreSPI Configuration

& Microsemi

a AX\MicracHp company

The CoreSPI is used to program the external SPI flash using Mi-V processor. PF_SPI macro interfaces
the fabric logic to the external SPI flash, which is connected to System Controller.

+ APB Data Width: select 32 as APB data width in the design is 32-bit. The default value is 8.
* Mode: select Motorola Mode (default) as the target SPI slave (VSC Phy) supports Motorola mode.

. Frame Size: enter 8. The default value is 4.

* FIFO Depth: enter 32 to store maximum frames (Tx and Rx) in FIFO. The default value is 4.

* Clock Rate: enter 16. The default value is 8.
The SPI clock becomes system clock/ 2*(16+1).

+ Keep SSEL active: enabled to keep the slave peripheral active between back to back data

transfers.

The following figure shows the CoreSPI configurator.

CoreSPI Configuration

B Configurator

CoreSPI Configurator

Microsemi:DirectCore:CORESPL:5.1.104
Configuration l

APEB Data Width: 8 16 v 32

SPI Configuration

Testbench: |User =

License: RTL

Mode: {+ Motorola Mode " TIMode " NSC Mode
Frame Size (4-32): |8
FIFO Depth (1-32): |32
Clock Rate (0-255): |15
Motorola Configuration
Mode: " Mode 0 " Mode 1 " Mode 2 + Mode 3
Keep SSEL active [v
TIMSC Configuration
Transfer Mode: {+ Normal " Custol
Free running dock r
Jumbo frames r
NSC Specific Configuration |S:a-*:a-': J

Help =

o |

Cancel

Microsemi Proprietary and Confidential AC471 Application Note Revision 2.0 15

PolarFire FPGA Auto Update and In-Application Programming using Splash Kit

24210

Figure 15 ¢

& Microsemi

a AX\MicracHp company

CoreSysService_PF Configuration

CoreSysServices IP provides access to the System Controller. It is connected to Mi-V soft processor as
an APB slave. By default, all the service check boxes are selected. The application can initiate these
selected services. CoreSysServices IP is configured as shown in the following figure.

CoreSysService_PF Configuration

B Configurater - O *

CoreSysServices_PF Configurator
Microsemi:DirectCore:CORESYSSERVICES _PF:2.3.116
Configuration l

Device and Design Information Services

Serial Number Service: v UserCode Service: v
Design Version Service: v Device Certificate Service: v
Read Digest Service: v Query Security Service: v
Read Debug Info Service: v

Design Services
Bitstream Authentication Service: v IAP Image Authentication Service: v

Data Security Services

Digital Signature Service: 2 Secure NVM Write Service: 2
Secure NVM Read Service: v PUF Emulation Service: v
Nonce Service: v
FlashFreeze Services
Flash Freeze Service: v FlashFreeze Timeout Value ’W
FlashFreeze Mailbox Address W Enable 2MHZ Osc (during Flash Freeze) [

Fabric Services
Digest Check Service: v IAP Service: v

IAP Auto Update Service: v

Testbench: |User =

License: RTL

Help -

Cancel

Microsemi Proprietary and Confidential AC471 Application Note Revision 2.0 16

PolarFire FPGA Auto Update and In-Application Programming using Splash Kit

24211

Figure 16 ¢

Design Memory Map

The Mi-V processor bus interface memory map is shown in the following figure.

Memory Map

a Madify Memory Map

Select Bus to View or
Assign Peripheral(s)

X

Assign peripherals to addresses on bus:

E| Cg

Peripheral

J0x60000000 CoreUARTapb_0:APE_bif

h(ﬁﬂ]]ﬂl]] CoreGPIO_OUT:APE_bif

h(ﬂ]]]Zﬂ]] core_sys_services_:APBSlave

SPI_Controller_1:APB_bif

Help |

|

a Modify Memory Map

Select Bus to View or
Assign Peripheral{s)

X

Assign peripherals to addresses on bus:

= CoreAHBLIE 0 | Address
" CoreAPB3 0

Peripheral

& CoreAHBLite_1.0 |
1

pf_lsram_0:AHBSlavelnterface I

Help |

|

& Microsemi

a AX\MicracHp company

Microsemi Proprietary and Confidential AC471 Application Note Revision 2.0 17

PolarFire FPGA Auto Update and In-Application Programming using Splash Kit © M. .
: Iicrosemi

2421141

Figure 17

a AX\MicracHp company

CoreAHBLite Configuration

Two instances of CoreAHBLite are used in this design. The following figures show the configurations of
CoreAHBLite_0 and CoreAHBLite_1 IP cores.The CoreAHBLite_0 interfaces with the APB peripherals to
the Mi-V processor at 0x6000_0000.

CoreAHBLite_0 Configuration

B Configurator - m] X
CoreAHBLite Configurator
Microsemi:DirectCore:Core AHBLIte:5.3.101
Configuration 1 =l
Memory space
Memory space: | |4GE addressable space apportioned into 16 slave slots, each of size 256MB ﬂl
Address range seen by slave connected to huge (2GB) slotinterface: & Ox I FFFFFFFE f* O OxFFFFFFFF
Allocate memary space to combined region slave
Soto: [~ Slot1: [~ Slot2: [Sot3: [
Sot4: [~ Slot5: [Slote: [~ Sot7: [
Sots: [Slotg: [~ Slot 10: [~ Slot 11: [~
Slot 12: [~ Slot 13: [~ Slot 14: [~ Slot 15: [~
Enable Master access
MO can access slot 0: r M1 can access slot 0: r M2 can access slot 0: [M3 can access slot 0: r
MO can access slot 1; r M1 can access slot 1: r M2 can access shot 1: [M3 can access slot 1; r
MO can access slot 2: r M1 can access slot 2: r M2 can access slot 2: [M3 can access slot 2: r
MO can access slot 3: r M1 can access slot 3: r M2 can access slot 3: [M3 can access slot 3: r
MO can access slot 4 r M1 can access slot 4 r M2 can access slot 4 [M3 can access slot 4 r
MO can access slot 5: r M1 can access slot 5: r M2 can access shot 5: [M3 can access slot 5: r
I MO can access slot 6: W I M1 can access slot 6: r M2 can access shot 6: [M3 can access slot 6: r
MO can access slot 7: r M1 can access slot 7: r M2 can access slot 7: [M3 can access slot 7: r
MO can access slot 8: r M1 can access slot 8: r M2 can access slot 8: [M3 can access slot 8: r B
MO can access slot 9: r M1 can access slot 9: r M2 can access slot 9: [M3 can access slot 9: r
MO can access slot 10: r M1 can access slot 10: r M2 can access slot 10: [M3 can access slot 10: r
MO can access slot 11: r M1 can access slot 11: r M2 can access slot 11: [M3 can access slot 11: r
MO can access slot 12: r M1 can access slot 12: r M2 can access slot 12: [M3 can access slot 12: r j
Help = Cancel

Microsemi Proprietary and Confidential AC471 Application Note Revision 2.0 18

Figure 18 »

PolarFire FPGA Auto Update and In-Application Programming using Splash Kit

& Microsemi

a AX\MicracHp company

The CoreAHBLite_1 interfaces PF_SRAM with Mi-V soft processor for accessing the LSRAM at memory
address 0x8000_0000. This configuration is required as the Mi-V processor executes the code from
0x8000_0000.

CoreAHBLite_1 Configuration

B Configurator

CoreAHBLite Configurator

Microsemi:DirectCore:CoreAHBLite:5.3.101

Memory space:

Address range seen by slave connected to huge (2GB) slot interface: (" 0x00000000 - 0x7FFFFFFF

Allocate memory space to combined region slave

Slot: T Slot1: T
Sot4: [Slot5: I
Slotd: [Slote: ™
Slot 12: [~ Slot 13: ™

Enable Master access

MO can access slot 0:

MO can access slot 10

MO can access slot 20

MO can access slot 3:

MO can access slot 4:

MO can access slot 5:

MO can access slot 6:

MO can access slot 7:

MO can access slot 8:

MO can access slot 9:

MO can access slot 10:

MO can access slot 11:

MO can access slot 12:

MO can access slot 13:

MO can access slot 14

MO can access slot 15:

Sot2: [T

Slot6: [~

Slot 10: [

Slot 14 [~

-

-

I MO can access slot 16 (combined/huge): |7|

Help @

- O X
I | 16 64KE slots, plus reserved space, plus 1 huge (2GE) slot beginning at address 0x80000000 ﬂl ﬂ
Sot3: [
Sot7:
Slot 11: [~
Slot 15: [~
M1 can access slot 0: r M2 can access slot 0: [M3 can access slot 0: r
M1 can access slot 1: r M2 can access shot 1: [M3 can access slot 1: r
M1 can access slot 2: r M2 can access slot 2: [M3 can access slot 2: r
M1 can access slot 3: r M2 can access shot 3: [M3 can access slot 3: r
M1 can access slot 4: r M2 can access slot 4: [M3 can access slot 4 r
M1 can access slot 5: r M2 can access shot 5: [M3 can access slot 5: r
M1 can access slot 6: r M2 can access shot 6: [M3 can access slot 6: r
M1 can access slot 7: r M2 can access slot 7: [M3 can access slot 7: r
M1 can access slot 8: r M2 can access slot 8: [M3 can access slot 8: r
M1 can access slot 9: r M2 can access slot 9: [M3 can access slot 9: r
M1 can access slot 10: r M2 can access slot 10: [M3 can access slot 10: r
M1 can access slot 11: r M2 can access slot 11: [M3 can access slot 11: r
M1 can access slot 12: r M2 can access slot 12: [M3 can access slot 12: r
M1 can access slot 13: r M2 can access slot 13: [M3 can access slot 13: r
M1 can access slot 14: r M2 can access slot 14: [M3 can access slot 14: r
M1 can access slot 15: r M2 can access slot 15: [M3 can access slot 15: r
M1 can access slot 16 {combined/huge): [~ M2 can access slot 16 (combined/huge): [~ M3 can access slot 16 (combined/huge): [j

Microsemi Proprietary and Confidential AC471 Application Note Revision 2.0

19

PolarFire FPGA Auto Update and In-Application Programming using Splash Kit © M. .
: Iicrosemi

a AX\MicracHp company

24.211.2 COREAHBTOAPB3

The CoreAHBtoAPB3 works as a bridge in between the AHB and the APB domains. CoreAHBtoAPB3
interfaces with CoreAHBLIite through its AHB interface and with CoreAPB3 through its APB interface.

2.4.2.11.3 CoreAPB3 Configuration

The CoreAPB3 IP connects the peripherals, CoreSysService_PF, CoreSPI, CoreGPIO, and
CoreUARTapb as slaves.The configuration settings of COREAPB3 are as follows:

e APB Master Data bus width: 32-bit
The design uses 32-bit data width for APB read and write data.

* Number of address bits driven by master: 16
The Mi-V processor accesses the slaves using the 16-bit. The final addresses for these slaves are
translated into 0x6000_0000, 0x6000_1000, 0x6000_2000 and 0x6000_3000.

. Enabled APB slave slots: Slot 0 for CoreUARTapb, Slot 1 for CoreGPIO, Slot 2 for
CoreSysService_PF, and Slot 3 for CoreSPI.

The following figure shows the CoreAPB3 configuration.

Figure 19 « CoreAPB3_0 Configuration

CoreAPB3 Configurator

Microsemi:DirectCore:CoreAPB3:4.1.100

Configuration i

Data Width Configuration
APE Master Data Bus Width @ 32-bit) 16-bit) 8bit
Address Configuration
Mumber of address bits driven by master: [16 -]
Position in slave address of upper 4 bits of master address: [[2?:24] (Ignored if master address width == 32 bits) -]
Indirect Addressing: [Not in use -]
Allocate memory space to combined region slave
sloto: [Slot 12 [C] slet2: [Slot3: [
Sot4: [Slot 5[] Slota: [set7: [
Slota: [Slotg: [Slot 10: 7] Slot 11: [T] i
Slot 12:] Slot 13: O] Slot 14 [T] Slot 15: 7]
Enabled APE Slave Slots
Slot 0 Slot 1: Slot 2: Slot 3:
Sot4: [Slot 5[] Slota: [set7: [
Slota: [Slotg: [Slot 10: 7] Slot 11: [T]
Slot 12:] Slot 13: O] Slot 14 [T] Slot 15: 7]
Testbench:
License: () Obfuscated @ RTL
oK] [Cancel

Microsemi Proprietary and Confidential AC471 Application Note Revision 2.0 20

PolarFire FPGA Auto Update and In-Application Programming using Splash Kit © M. .
: Iicrosemi

a AX\MicracHp company

2.5 Clocking Structure

The following figure shows the clocking structure of this design. The Mi-V processor supports up to
120 MHz and this design uses 100 MHz system clock.

Figure 20 «+ Clocking Structure

Clock Domain

Onboard 50 MHz Oscillator

|
|
|
|
|
|
|
|
|
50 MHz |
|
|
|
|
|
|
|
|
|

| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| h 4 |
| |
|

. PF_CCC_0 :
| |
| |
L | ______ 1 |
| |
| 100 MHz | & |
| a |
| | |
| = |
| @ |
I o I
| Ix |
| Mi-V =) o | o |
| sram |
| softprocessor CLK HCLK |
| |
| |
| |
| PCLK PCLK |
| CoreGPIO CoreUARTapb |
| |
| |
| |
| CoreSysServices_ CLK PCLK |
| PF CoreSPI |
| |
| |

Microsemi Proprietary and Confidential AC471 Application Note Revision 2.0 21

Libero Design Flow 0 Micmsemi

3

a AX\MicracHp company

Libero Design Flow

Figure 21 »

The Libero design flow involves running the following processes in the Libero SoC PolarFire:

* Synthesize, page 23

+ Place and Route, page 23

+ Verify Timing, page 23

* Generate FPGA Array Data, page 23

» Configure Design Initialization Data and Memories, page 24
» Configure Programming Options, page 26

* Generate Bitstream, page 27

* Run PROGRAM Action, page 27

The following figure shows these options in the Design Flow tab.

Libero Design Flow Options
Design Flow n
@

Top Module(root): PROC_SUBSYSTEM B Q

B3 Create SmartDesign
Create HDL
i Create SmartDesign Testbench
Create HDL Testbench
= b Verify Pre-Synthesized Design
. Simulate
Constraints
‘4 Manage Constraints
= b Implement Design
B Netlist Viewer
‘S Synthesize
9,3 Place and Route
= b Verify Post Layout Implementation
@ Verify Timing
(.'?_1 Open SmartTime
[o} Verify Power
Program and Debug Design
+[| Generate FPGA Array Data
+] Configure Design Initialization Data and Memories
+[] Generate Design Initialization Data
= b Configure Hardware
Il Programming Connectivity and Interface
& Configure Programmer
i Device /0 States During Programming - JTAG M...
» Configure Programming Options
@ Configure Security
=~ » Program Design
'% Generate Bitstream
43 Run PROGRAM Action
= » Program 5Pl Flash Image
3 Generate 5P| Flash Image
‘3 Run PROGRAM_SPI_IMAGE Action
= # Debug Design
=03, Identify Debug Design
SmartDebug Design
Configure Permanent Locks for Production
@ Configure OTP Security
Handoff Design for Production
v 4 Export Bitstream
4 Export FlashPro Express Job
4 Export SPI Flash Image
+| Export Pin Report
+] Export BSDL
=t » Handoff Design for Debugging j

L S U

]
-

<<

A4 4

T
-

T
-

Microsemi Proprietary and Confidential AC471 Application Note Revision 2.0 22

Libero Design Flow

3.1

Note:

3.2

Note:

3.21

3.3

3.4

& Microsemi

a AX\MicracHp company

Synthesize

To synthesize the design:

1. Double-click Synthesize from the Design Flow tab.
When the synthesis is successful, a green tick mark appears as shown in Figure 21, page 22.
2. Right-click Synthesize and select View Report to view the synthesis report and log files in the
Reports tab.
PROC_SUBSYSTEM.srr andthe PROC_SUBSYSTEM compile netlist.log files are recommended
to be viewed for debugging synthesis and compile errors.

Place and Route

The Place and Route process requires the 1/0O, timing, and floor planner constraints. This design includes
following constraint files in the Constraint Manager window:

* Theio.pdc and the user.pdc file for the 1/O assignments

+ The PROC_SUBSYSTEM_derived_constaints.sdc file for timing constraints

+ JTAG_constraint.sdc file for creating the JTAG clock with 30 MHz frequency.

* The Async_Clock_groups.sdc file defines that the CCC_0 output clock and the JTAG clock as
asynchronous clocks.

To Place and Route, double-click Place and Route from the Design Flow window.
When place and route is successful, a green tick mark appears next to Place and Route.

The file, PROC_SUBSYSTEM place and route constraint coverage.xml is recommended to
be viewed for place and route constraint coverage.

Resource Utilization

The resource utilization report is written to the PROC_SUBSYSTEM layout log.log file in the
Reports tab -> PROC_SUBSYSTEM reports -> Place and Route. |t lists the resource
utilization of the design after place and route. These values may vary slightly for different Libero runs,
settings, and seed values.

Table 4 Resource Utilization

Type Used Total Percentage
4LUT 17822 299544 5.95
DFF 10918 299544 3.64
I/O Register 0 242 0.00
Logic Element 18529 299544 6.19

Verify Timing
To verify timing:

1. Double-click Verify Timing from the Design Flow tab.
When the design successfully meets the timing requirements, a green tick mark appears as shown
in Figure 21, page 22.

2. Right-click Verify Timing and select View Report, to view the verify timing report and log files in the
Reports tab.

Generate FPGA Array Data

To generate the FPGA array data:

1. Double-click Generate FPGA Array Data from the Design Flow window.
2. A green tick mark is displayed after the successful generation of the FPGA array data as shown in
Figure 21, page 22.

Microsemi Proprietary and Confidential AC471 Application Note Revision 2.0 23

Libero Design Flow

& Microsemi

a AX\MicracHp company

3.5 Configure Design Initialization Data and Memories

The Configure Design Initialization Data and Memories step generates the LSRAM initialization client
and adds it to sNVM, yPROM, or an external SPI flash, based on the type of non-volatile memory
selected. In this design, the LSRAM initialization client is stored in the sSNVM.

This process requires the user application executable file (hex file) to initialize the LSRAM blocks on
device power-up. The hex file (application.hex) is available in the

DesignFiles Directory\Libero Project\hw project folder. When the hex file is imported, a
memory initialization client is generated for LSRAM blocks.

Follow these steps:

1. Double-click Configure Design Initialization Data and Memories from the Design Flow window.
The Design and Memory Initialization window opens as shown in the following figure.

Figure 22 » Design and Memory Initialization

Design Iniﬁalizaﬁon} WPROM | sNVM | SPTFiash | Fabric RAMS|

Apply ‘ Discard | Help |

In design initialization, user design blocks such as LSRAM, pSRAM, transceivers, and PCIe can be initialized as an option using data stored in the non-volatile storage memory.
The initialization data can be stored in pPROM, sNVM, or an external SPI Flash.

Fallow the below steps to program the initialization data:

1. Set up your fabric RAMs initislization data, if any, using the 'Fabric RAMs' tab
2, Define the storage location of the initialization data

3. Generate the initialization dients

4. Generate or export the bitstream

5. Program the device

Design initialization spedification
First stage (sNvM)
In the first stage, the initialization sequence de-asserts FABRIC_POR_N.
Second stage (sMVM)

In the second stage, the initialization sequence initializes the PCIe and XCVR blocks present in the design.

Start address for second stage initislization dient: 0x | 000

Third stage (sNVM/uPROM/SPI-Flash)

In the third stage, the initialization sequence initializes the Fabric RAMs present in the design.
To save the initislization instructions in sNYM/UPROM/SPIFlash, please use "Fabric RAMs' tab to make your selection for each RAM dient.
I [V Startaddress for sNVM dients: Ox |DDDDDDDD

[T Startaddress for WPROM dients: 0x 000

[T Startaddress for SPI-Flash dients: Ox |

SPI-Flash Binding: SPI-Flash - Mo-binding Plaintext J SPI Clock divider value: |5
Time Out {s): 128 3:

Custom configuration file: | =

Microsemi Proprietary and Confidential AC471 Application Note Revision 2.0 24

Libero Design Flow

Figure 23

& Microsemi

a AX\MicracHp company

2. Select the Fabric RAMs tab and select the pf_lsram client from the list and click Edit as shown in
the following figure.

Fabric RAMs Tab

Project File Edit View Design Tools Help

IR A1)

||

Design Flow Reports @ X Design and Memory Initialization & X I iopdc & X | pll_placement.pdc ¢
Top Module(root): PROC_SUBSYSTEM { Design Initalizaton \/ UPROM \/” sNVM \/ 5P Flash ‘
[Tool [ooy | oeerd | mep |
30 Manage Constraints Usage statistics —Clients
¥ = b Implement Design
- Netlist Viewer [e Load design configuration | Edit...
s S Is’{a'c“helsldm:l Available Memory(By 174063616
€ al oute
Verify Post Layout Implementation] 3H70 e
Ql Verify Timing Free Memory(Bytes) 1737188396
05 Open SmartTime 1 |PROC_SUBSYSTEM/Mi_Y_SoftProcessor_0/Mi_V_SoftPrc
oY Werify Power .
i © b Program and Debug Design 2 | PROC_SUBSYSTEM/MI_V_SoftProcessor_0/Mi_V_SaftPr
14 “+] Generate FPGA Array Data . 3 |PROC_SUBSYSTEM/Mi_V_SoftProcessor_0/Mi_V_SoftPrc
~+] Configure Design Initialization Data and Memories
v +C] Generate Design Initialization Data 4 |PROC_SUBSYSTEM/Mi_V_SoftProcessor_0/Mi_V_SoftPrc
[+ Configure Hardware
-Ibll Programring Connectivity and Interface 5 |PROC_SUBSYSTEM/Mi_V_SoftProcessor_0/Mi_V_SoftPrc
Configure Programmer
g 9
i Device I/0 States During Pregramming - JTAG Mode Only [| Used space 6 |PROC_SUBSYSTEM/Mi_V_SoftProcessor_0/Mi_V_SoftPr
5 N - -] Free space
- = Configure Programming Options
@ Configure Security 7 |PROC_SUBSYSTEM/Mi_V_SoftProcessor_0/Mi_V_SoftPrc
» Program Design —
i BL Generate itstream USRAM Memory 2 | PROC_SUBSYSTEM/Mi_V_SoftPracessor_D/Mi_V_SoftPrc
& Run PROGRAM Action Available Memory(Byte: 8515584
A Program SP1 Flash Image Used Memory(Bytes): 328 9 |PROC_SUBSYSTEM/Mi_V_SoftProcessor_0/Mi_V_SoftPrc
Generate 5P| Flash Image Free Memory(Bytes) : 8515256
i & Run ERASE 5P| FLASH Action 10 | PROC_SUBSYSTEM/SPI_Contraller_1/5P|_ Controller /L
=+ » Debug Design
: 11 | PROC_SUBSYSTEM/SPI_Controller_1/5P]_Controller_0/1
£y Identify Debug Design . I/SPI_Controller_1/5P|_Controller_0/1
@ SmartDebug Design 12 PROC_SUBSYSTEM/pf_lsram I
= » Configure Permanent Locks for Production
@ Configure OTP Security
= » Handoff Design for Production
"4] Export Bitstream
; 4 Export FlashPro Express Job
- | Export SPI Flash Image u [srem
3. Inthe Edit Fabric RAM Initialization Client dialog box, select the Content from file option, and
locate the application.hex file from
DesignFiles directory\Libero Project\hw project folder and Click OK as shown in
the following figure.
Figure 24 « Edit Fabric RAM Initialization Client

(W7 Edit Fabric RAM Initialization Client ? X

Client name: | PROC_SUBSYSTEM/pf_lsram

Physical Name: lF'F_T PSRAM_AHB_AXI_0_PF_TPSRAM_R17C3/INST_RAMI1K20_IP

— Fabric RAMs

' Content from file: |app|icati0n.hex |
ﬂ Imported Memory file location : application.hex

 Content filled with 0s

" No content (client is a placeholder and will not be programmed)

Optimize for: © High Speed ¥ Low power

Help | OK | Close

Microsemi Proprietary and Confidential AC471 Application Note Revision 2.0

25

Libero Design Flow

4. Click Apply as shown in the following figure.

Figure 25« Apply Fabric RAM Content

/ Design Initialization \/” uPROM \/_sNVM \/ SPIFlash \/" Fabric RAMs '\

[—

& Microsemi

a AX\MicracHp company

Discard | Help |
Usage statistics Clients
LSRAM Memory Load design configuration Edit...
Available Mer 174063616
PORTA PORTB
Used Memary 344720
ryl Logical Instance Name Depth * Width | Depth * Wit
Free Memory(173718896
1 |PROC_SUBSYSTEM/Core_SPI_0/Core_SPI_0/USPI/URXF/fifo_mem_g\[0\] 32x9 3219
2 |PROC_SUBSYSTEM/Core_SPI_0/Core_SPI_0/USPI/UTXF/fifo_mem_g\[0\] 32x9 32x9
3 |PROC_SUBSYSTEM/Mi_V_SoftProcessor_0/Mi_V_SoftProcessor_0/ChiselTop0/tile/rocket/core/_T_1189 32x32 32x32
4 |PROC_SUBSYSTEM/Mi_V_SoftProcessor_0/Mi_V_SoftProcessor_0/ChiselTop0/tile/rocket/core/ T_1189[31:0] 32x32 32x32
n e 5 |PROC_SUBSYSTEM/Mi_V_SoftProcessor_0/Mi_V_SoftProcessor_0/ChiselTop0/tile/rocket/dcache/data/data_arrays_0_0[7:0] 2048x8 2048x8
| Free space 6 |PROC_SUBSYSTEM/Mi_V_SoftProcessor_0/Mi_V_SoftProcessor_0/ChiselTop0ftile/rocket/dcache/data/data_arrays_0_1[7:0] 2048x8 2048x8
USRAM Memary 7 |PROC_SUBSYSTEM/Mi_V_SoftProcessor_0/Mi_V_SoftProcessor_0/ChiselTop0/tile/rocket/dcache/data/data_arrays_0_2[7:0] 2048x8 2048x8
Available Memor 8515584 8 |PROC_SUBSYSTEM/Mi_V_SoftProcessor_0/Mi_V_SoftProcessor_0/ChiselTop0/tile/rocket/dcache/data/data_arrays_0_3[7:0] 2048x8 2048x8
Used Memory(B 328 1
e 9 |PROC_SUBSYSTEM/Mi_V_SoftProcessor_0/Mi_V_SoftProcessor_0/ChiselTop0/tile/rocket/dcache/tag_array_0[20:0] 128x%21 128x%21
Free Memory(By 8515256 (—
10 |PROC_SUBSYSTEM/Mi_V_SoftProcessor_0/Mi_V_SoftProcessor_0/ChiselTop0/tile/rocket/frontend/icache/data_arrays_0_0[31:0] | 2048x32 2048x32
11 |PROC_SUBSYSTEM/Mi_V_SoftProcessor_0/Mi_V_SoftProcessor_0/ChiselTop0/tile/rocket/frontend/icache/tag_array_0[19:0] 128x20 128x20
12 |PROC_SUBSYSTEM/PF_SRAM 65536x40 65536x40
n ed space
B Free space |

5. Click Apply in the Design Initialization tab.
6. From Libero Design Flow, click Generate Initialization Data to generate design initialization data.

After successful generation of the Initialization data, a green tick mark appears next to Generate
Initialization Data option as shown in the Figure 21, page 22.

3.6

Configure Programming Options

The Design version and user code (Silicon signature) are configured in this step. Double click Design
flow->Program and Debug Design->Configure Programming Options to give values as

shown in the following figure.

Figure 26

2 Open SmartTime
[o} Verify Power
= » Program and Debug Design
("4 +[| Generate FPGA Array Data
+| Configure Design Initialization Data and Memao
("4 +[] Generate Design Initialization Data
= b Configure Hardware
Il Programming Connectivity and Interface
& Configure Programmer
= e I -

mming - JT,
» Configure Programming Options
Configure Security

Configure Programming Options

o

Configure Programming Options *

Design name: PROC_SUBSYSTEM

Design version {number between 0 and 65535): | 1

Silicon signature (max length is 8 HEX chars): 0x | 12345678

Cancel

Microsemi Proprietary and Confidential AC471 Application Note Revision 2.0

26

Libero Design Flow

& Microsemi

a AX\MicracHp company

3.7 Generate Bitstream

To generate the bitstream:

1. Right-click Generate Bitstream and select Configure Options... to select the bitstream
components—Custom security, Fabric, and sSNVM.

Figure 27 » Generate Bitstream—Configure Bitstream Options

B Configure Bitstream *

Program

I™ Custom security

¥ Fabric

Help OK | Cancel |

2. Double-click Generate Bitstream from the Design Flow tab. When the bitstream is successfully
generated, a green tick mark appears as shown in Figure 21, page 22

3. Right-click Generate Bitstream and select View Report to view the corresponding log file in the
Reports tab.

3.8 Run PROGRAM Action

After generating the bitstream, the PolarFire device must be programmed with the Auto Update and IAP
design.

Follow these steps to program the PolarFire device:

1. Ensure that the following jumper settings are set on the board.

Table 5 « Jumper Settings for PolarFire Device Programming

Jumper Description
J5, J6, J7, J8, J9 Close pin 2 and 3 for programming the PolarFire FPGA through FTDI
J11 Close pin 1 and 2 for programming through FTDI chip
J10 Close pin 1 and 2 for programming through FTDI SPI
J4 Close pin 1 and 2 for manual power switching using SW1
J3 Open pin 1 and 2 for 1.0 V
2. Connect the power supply cable to the J2 connector on the board.
3. Connect the USB cable from the host PC to the J1 (FTDI port) on the board.
4. Power on the board using the SW1 slide switch.

Microsemi Proprietary and Confidential AC471 Application Note Revision 2.0 27

Libero Design Flow O Micmsemi

a AX\MicracHp company

The following figure shows the board setup after these connections are made.

Figure 28 « Board Setup

5. Double-click Run PROGRAM Action from the Libero Design Flow.

The device is successfully programmed and the on-board LEDs glow. A green tick mark appears next to
Run PROGRAM Action as shown in Figure 21, page 22.

Microsemi Proprietary and Confidential AC471 Application Note Revision 2.0 28

Programming the Device Using FlashPro Software © Mic Semi

a AX\MicracHp company

4 Programming the Device Using FlashPro
Software

This section describes how to program the PolarFire device with the .stp programming file using
FlashPro. The .stp file is available at the following design files folder location:

mpf ac471 liberosocpolarfirev2p2 df\Programming File
To program the PolarFire device using FlashPro, complete the following steps:

1. Ensure that the jumper settings on the board are the same as those listed in the following table.
Note: The power supply switch must be switched off while making the jumper connections.

Table 6« Jumper Settings for PolarFire Device Programming

Jumper Description
J5, J6, J7, J8, J9 Close pin 2 and 3 for programming the PolarFire FPGA through FTDI
J11 Close pin 1 and 2 for programming through FTDI chip
J10 Close pin 1 and 2 for programming through FTDI SPI
J4 Close pin 1 and 2 for manual power switching using SW1
J3 Open pin 1 and 2 for 1.0V
2. Connect the power supply cable to the J2 connector on the board.
3. Connect the USB cable from the host PC to the J1 (FTDI port) on the board.
4. Power on the board using the SW1 slide switch.
5. On the host PC, launch the FlashPro software.
6. Click New Project to create a new project.

In the New Project window, enter a project name.

Click Browse and navigate to the location where you want to save the project.
Select Single device as the programming mode and click OK to save the project.
Click Configure Device.
0. Click Browse, and select the progamming_appnote_v1.stp file from the following folder:
<$design file directory>\mpf_ac471_liberosocpolarfirev2p2_df\Programming_File
11. Click Open. The required programming file is selected and ready to be programmed in the device.
12. Click PROGRAM to program the device.

When the device is programmed successfully, a Run PASSED status is displayed.

= © >N

Microsemi Proprietary and Confidential AC471 Application Note Revision 2.0 29

Serial Terminal Emulation Program Setup

& Microsemi

a AX\MicracHp company

5 Serial Terminal Emulation Program Setup

The user application receives programming commands on the serial terminal through the UART
interface. This chapter describes how to set up the serial terminal program.

To setup PuTTY, perform the following steps:

Connect the USB cable from the host PC to the J1 (USB) port on the board.

Connect the power supply cable to the J2 connector on the board.

Power on the board using the SW1 slide switch.

From the host PC, click Start and open Device Manager to note the second highest COM Port
number and use that in the PuUTTY configuration. In this example, COM Port 9 (COM9) is selected
as shown in the following figure. COM Port-numbers may vary.

Figure 29 « COM Port Number

PON~

v I Ports (COM & LPT)
ﬁ ECP Printer Port (LPT1)
& FlashPro5 Port (COM10)
ﬁ FlashPro5 Port (COMT)

FlashPro5 Port (COME)
5. From the host PC, click Start, and then find and select the PuTTY program.
6. Select Serial as the Connection type as shown in the following figure.
Figure 30 « Select Serial as the Connection Type

#8 PuTTY Configuration *
Category:
=3 Sgssion Basic options for your PuTTY session
i +~Logging Specify the destination you want to connect to
[=)- Terminal Seral Sneed
... Keyboard erial line pee
Bl Jcoms | 115200 |
- Features Connection type:
- Window ORaw (O Telnet O Rlogin O SSH
Appea!ance Load, save or delete a stored session
- Behaviour
... Translation Saved Sessions
- Selection |05 |
- Colours
[=I- Connection Load
... Data Save
. Proxy
. Telnet Delete
- Rlogin
(- S5H
 Serial Close window on exit:
O AMways O MNever (@ Only on clean exit
About Open Cancel

7. Set the Serial line to connect to COM port number noted in Step 3.

8. Set the Speed (baud) to 115200 as shown in the following figure.

Microsemi Proprietary and Confidential AC471 Application Note Revision 2.0

30

Serial Terminal Emulation Program Setup

Figure 31 ¢

& Microsemi

a AX\MicracHp company

9. Set the Flow control to None as shown in the following figure and click Open.

PuTTY Configuration

@ PuTTY Cenfiguration

Category:

[=I- Session

. Logging
(- Terminal

- Keyboard
- Bell

- Features
- Window

- Appearance
- Behaviour
- Translation
- Selection
- Colours
[=I- Connection

. Proxy

- Telnet

- Rlogin

(- S5H

Options controlling local seral lines
Select a senal line

Serial line to connect to

[
Configure the serial line
Speed baud) [115200)]
Data bits
Stop bits
Parity

Flow control

Open Cancel

PuTTY opens successfully, and this completes the serial terminal emulation program setup. See

Running the Demo, page 32.

Microsemi Proprietary and Confidential AC471 Application Note Revision 2.0 31

Running the Demo

6 Running the Demo

& Microsemi

a AX\MicracHp company

This section describes how to run the authentication, auto update and IAP. The following procedure
assumes that the serial terminal is setup, for more information about setting up the serial terminal, see

Serial Terminal Emulation Program Setup, page 30.

The on-board 1 GB Micron SPI flash device is connected to System Controller SPI and can be
programmed using the fabric logic or Libero SoC PolarFire software. For more information about
programming the on-board SPI flash using Libero, see Appendix: Programming On-board SPI Flash

Using Libero, page 37.

Before you start:

Ensure that on-board SW8 DIP 1 is set to Off.

aoroob=

6.1

Power-up the board using the SW1 slide switch.

Programmlng the SPI Flash Using Fabric Logic

Ensure that the device is programmed with the programming appnote vl.stp file.
Connect the power supply cable to the J2 connector on the board.
Connect the USB cable from the host PC to J1 (FTDI port) on the board.

After power-up, PUTTY displays the options as shown in the following figure. Observe the design

version 01 in the device.

Figure 32 « Authentication and Programming Options

EP COMS - PuTTY

Design Version (MSB firstc): 00 01
#%%% PplarFire Programming Example ##**%%

Select option:

LOTHENTICATICON

1. Bit-stream authentication

2. IAP image authentication
#**DEVICE PROGRAMMING**

3. Auto programming

4, IAP Program by Index

5. IAP Program by address

6. Initiate Auto-Update

32bit USERCODE/Silicon Signature (MSE first):

12345678

At this point, the on-board SPI Flash device is empty. Hence, selecting Option 1 or 2 returns
unsuccessful status codes as shown in the following figure.

Figure 33 » Authentication Error

EP COMS - PuTTY

fluthentication =status: 0B

Eitstream authentication for image at address 0x1400000 i=s in progress...

====% PoplarFire Programming Example ==*%=
Select option:
LOTHENTICATICON
1. Bit-stream authentication
2. IAP image authentication
#**DEVICE PROGRAMMING**
3. Auto programming
4, IAP Program by Index
5. IAP Program by address
6. Initiate Auto-Update

v

Selecting option 4, 5, or 6 does not initiate any program operation as the on-board SPI flash is empty.
Power cycle the board. Observe the design version 01 in the device. This indicates auto update is not

initiated and the device is not updated.

Microsemi Proprietary and Confidential AC471 Application Note Revision 2.0 32

Running the Demo

& Microsemi

a AX\MicracHp company

To program the SPI flash:

1. Power off the board using the SW1 slide switch. Close the PUTTY and set the on-board SW8 DIP 1
to On.

2. Disconnect and connect the USB cable from the host PC to J1 (FTDI port) on the board. This
ensures clearing off UART buffers.

3. Power on the board using the SW1 slide switch.

4. Locate the load spi flash.bat batch file from the
$DesignFiles Folder\host pc_ tool pf folder.

5. Right-click load spi_ flash.bat batch file and edit it as follows to match the COM port number.
For example, COM Port 9 in this instance.

spi loader.exe 54 golden image v0.spi update image v2.spi iap image v5.spi

6. Double-click the 1oad spi flash.bat file to load the programming images—Ilisted in the
following table—into external SPI flash.The application firmware writes the flash directory contents
into the external SPI flash along with programming images.

Table 7 « Programming Images

Silicon Signature/ Image Index in SPI Image Address in SPI
Image Name Version User Code Flash Directory Flash Memory
golden image vO0.spi 0 0x01234567 0 0x00000400
update image v2.spi 2 0x23456789 1 0x00A00000
iap image v5.spi 5 0x56789ABC 2 0x01400000

The command window prompts to press enter to erase and program the SPI Flash with programming
images.

The LED 4 blinks to indicate that the SPI Flash Erase operation is in progress. The command prompt
displays the status as shown in the following figure.

Figure 34 » Erasing SPI Flash
B CAWINDOWS\system32\cmd.exe — O b

Ll
D:\mpf_ac471_liberosocpolarfirev2pl_df\host_pc_tool_pf»spi_loader.exe 54 golden_image_v@.spi update_image_v2.spi iap_ima
ge_v5.spi
serial port \\.\COM54 successfully reconfigured.

Ensure the PolarfFire Kit is running .
Press 'Enter' to Program the External SPI flash ..
If you want to run programming options, change the DIP switch-1 position to OFF and power cycle the board.

The External SPI flash is erasing...
Handshaking with PolarFire kit is in progress...

Microsemi Proprietary and Confidential AC471 Application Note Revision 2.0 33

Running the Demo

& Microsemi

a AX\MicracHp company

7. The SPI Flash programming operation starts and takes 20-30 minutes to complete. LED 5 blinks to

indicate that the SPI Flash programming operation is in progress.
When the SPI Flash programming operation completes successfully, LED 5 starts to glow.
The Command prompt shows the status and the time taken as shown in the following figure.

Figure 35+ Command Prompt Status

============Begin transaction Ack ‘b’ is received from the target
Requested address from the target =9527296
Requested returnbytes from the target =1296

bytes read from the file=1296
Remaining bytes =8

Sending the data to the target. ...l st e it e e
End of one transaction:fAck 'a' received from target for the data from the host

start time 22:54:23

end time 23:24:28

DONE press ctrl+c to terminate the application.

8. Close the application.

This concludes programming the on-board SPI flash memory.

6.2 Running Auto Update

To run auto update:

1. Set the on-board SW8 DIP 1 to Off.

2. Start the PUTTY and power-cycle the board. The auto update is initiated and update image
(update_image_v2.spi) gets programmed into the device.

Observe the design version 02 as shown in the following figure.

Figure 36 « Auto Update

EP COMS - PuTTY

Select option:
LOTHENTICATICON

1. Bit-stream authentication
2. IAP image authentication
#**DEVICE PROGRAMMING**

3. Auto programming

4, IAP Program by Index

5. IAP Program by address

6. Initiate Auto-Update

Design Version (MSB first):
32bit USERCODE/Silicon Signature (MSE first):
#%%% PplarFire Programming Example ##**%%

6.3 Running Authentication

To run bitstream authentication:

1. Press 1 to initiate the bitstream authentication.
After successful authentication, PuTTY displays the status code as shown in the following figure.

Figure 37 » Successful Bitstream Authentication

EP COMS - PuTTY

Authentication status: SUCCESS

Select option:
LOTHENTICATICON
1. Bit-stream authentication

2. IAP image authentication

#%%% PplarFire Programming Example ##**%%

O

Bitstream authentication for image at address 0x1400000 i=s in progress...

*

Microsemi Proprietary and Confidential AC471 Application Note Revision 2.0

34

Running the Demo

2. Press 2 to initiate the IAP image authentication.

& Microsemi

a AX\MicracHp company

After successful authentication, PUTTY displays the status code, as shown in the following figure.

Figure 38 + Successful IAP Image Authentication

EP COMS - PuTTY

Authentication status: SUCCESS
#%%% PplarFire Programming Example ##**%%
Select option:
LOTHENTICATICON
1. Bit-stream authentication

IAP image authentication for image at index 2 is in progress...

This concludes the bitstream and IAP image authentication.

6.4 Running Auto Programming

To run Auto programming:

1. Press 3in PuTTY. The PuTTY notifies to erase the device using FlashPro and power-cycle the

board as shown in the following figure.
Figure 39 « Notifying ERASE Action

EP COMS - PuTTY

#%%% PplarFire Programming Example ##**%%
Select option:
LOTHENTICATICON
1. Bit-stream authentication
2. IAP image authentication
#**DEVICE PROGRAMMING**
3. Auto programming
4, IAP Program by Index
5. IAP Program by address
6. Initiate Auto-Update

Erase the PolarFire device using the FlashPro ERASE action.
Next Power cycle the board to initiate AutoProgramming on Blank device.

2. Using FlashPro, erase the device and power-cycle the board.

All the LEDs stop glowing for few seconds, which indicates that the auto programming is in progress.
The highest programming image version is selected from first two available images in external SPI
Flash for auto programming. In this case, it is version 2 (update_image_v2.spi).

PuUTTY displays the updated design version, as shown in the following figure.

Figure 40 + Successful Auto Programming

EP COMS - PuTTY

Design Version (MSB first):

#%%% PplarFire Programming Example ##**%%
Select option:
LOTHENTICATICON
1. Bit-stream authentication
2. IAP image authentication
#**DEVICE PROGRAMMING**
3. Auto programming
4, IAP Program by Index
5. IAP Program by address
6. Initiate Auto-Update

32bit USERCODE/Silicon Signature (MSB first): 23456789

This concludes running the Auto programming feature.

Microsemi Proprietary and Confidential AC471 Application Note Revision 2.0 35

Running the Demo © Microsemi

a AX\MicracHp company

6.5 Running IAP
To run IAP:

1. Press 4, IAP program by Index. After around 28 seconds, the IAP with image at index 2 is executed
successfully and the design version 05 is displayed as shown in the following figure.

Figure 41+ Successful IAP at Index 2

EP COMS - PuTTY - | X

IAP PROGEAM for image at index 2 is in progress...

It takes approximately 28 secondsE

Design Version (M5B first):

32pbit USERCODE/Silicon Signature (MSB first): 56789ABC
#%%% PplarFire Programming Example ##**%%

Select option:

LOTHENTICATICON

1. Bit-stream authentication

2. IAP image authentication

#**DEVICE PROGRAMMING**

3. Auto programming

4, IAP Program by Index

5. IAP Program by address w

2. Press 5, IAP program by address. After around 28 seconds, the IAP with image at address
0x1400000 is executed successfully and the design version 05 is displayed as shown in the
following figure.

Figure 42 « Successful IAP by Address

EP COMS - PuTTY - | X

IAP PROGEAM for image at address 0x1400000 is in progress...
It takes approximately 28 5econd5§
Design Version (MSB first):
32pbit USERCODE/Silicon Signature (MSB first): 56789ABC
#%%% PplarFire Programming Example ##**%%
Select option:
LOTHENTICATICON
1. Bit-stream authentication
2. IAP image authentication
#**DEVICE PROGRAMMING**
3. Auto programming
4, IAP Program by Index w

This concludes running the |AP feature.

Microsemi Proprietary and Confidential AC471 Application Note Revision 2.0 36

Appendix: Programming On-board SPI Flash Using Libero © M. .
Iicrosemi

a AX\MicracHp company

7 Appendix: Programming On-board SPI Flash
Using Libero

Libero SoC PolarFire Design Suite supports the on-board SPI Flash programming using JTAG. For more
information about the SPI Flash programming modes, see UG0714: PolarFire FPGA Programming User
Guide.

To program the SPI flash using JTAG:

1. Ensure that the jumper settings on the board are the same as those listed in Table 5, page 27.
2. In the Design Flow window, select Program and Debug Design and then double-click Configure
Design Initialization Data and Memories.

Figure 43 »+ Configure Design Initialization Data and Memories Option
= » Program and Debug Design

v Iiﬂm:ﬁ 2
+] Configure Design Initialization Data and Memories I
v * enerate Design Infialization Data

3. Inthe Design and Memory Initialization page, select the SPI Flash tab, as shown in Figure 44,
page 37.

4. In SPI Flash Clients pane, add the required programming images (.spi images), and click Apply.
These images are provided at
mpf_ac471_liberosocpolarfirev2p2_df\Libero_Project\hw_project\designenPROC_SUBSYSTEM\ex

port.
Figure 44 » SPI Flash Tab

Design Flow B X | reports ®x | EJrroc_stestsTEM & x | ConstrantMansger & X | Startpage & X Design and Memory Intiaization® & X s
Top Modle({oot): PROC_SUBSYSTEM =2 0 @F | /oo taRzaton \/ PRGN\ /ST Y/ PP | FabreAve \
= 5] sorly oscad | veb |
5 ¥ Verify Post Layout Implementation
% v Er Auto Update:
v & ng P
% i Wanufacturer: [FMICRON] Parto: MT250L0 GaBBBESF I
S b Progn Usage satsts SP1Fash Cients
v Ger
& Remeriiy v add. o e
v Ger
s rogram lame e Index ontent File gm el =g
8 F | goden_image 0 SPlBtsteam for Recovery/Golden 0 desgner PROC_SUBSYSTEM\exp.. 0x400 | 0x91630F |0
2 Device /0 States During Programmint 9~ ITAG M.
e et 1 St s, e ez]
@ D:
&b
¥ |iap_image_vs SP1itstream for AP 2 Yeutyamfinalyipfacdgs_iberos...|X19000.. 0x1d1650F |5
> Conf
B
> Hando
v #) Bxpor
#] Expor
#] Bxpor
7] Export Pin Report
21 Eport BSDL H e SPIBistream for Recovery Golden
» Handoff Design for Debugging [SPIBistream for Auto Update]
© Export SmartDebug Data =

Connect the power supply cable to the J2 connector on the board.

Connect the USB cable from the host PC to J1 (FTDI port) on the board.

Double-click Generate SPI Flash Image and double-click Run PROGRAM_SPI_IMAGE Action to
get the SPI flash programmed with the programming images as shown in the following figure.

Figure 45« SPI Flash Programming

No o

v = # Program 5P Flash Image
v G Generate SPI Flash Image
v & Run PROGRAM_SPI_IMAGE Action

8. Power-cycle the board once you program the device.

Note: If you program the external SPI flash using Libero, set the on-board SW8 DIP 1 to On because the fabric
design is not required to program the SPI flash. Libero takes approximately 30 minutes to program the
three programming files into SPI Flash.

This concludes the on-board SPI Flash Programming.

Microsemi Proprietary and Confidential AC471 Application Note Revision 2.0 37

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=136523
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=136523

Appendix: References © Microsemi

8

a AX\MicracHp company

Appendix: References

This section lists documents that provide more information about programming and other IP cores used.

For more information about PolarFire FPGA programming, see the UG0714: PolarFire FPGA
Programming User Guide.

For more information about the CoreJTAGDEBUG IP core, see CoreJTAGDebug_HB.pdf from
Libero->Catalog.

For more information about the CoreAHBtoAPB3 IP core, see CoreAHBtoAPB3 HB.pdf.

For more information about the CoreUARTapb IP core, see CoreUARTapb_HB.pdf.

For more information about the CoreAHBLite IP core, see CoreAHBLite_HB.pdf.

For more information about the CoreAPB3 IP core, see CoreAPB3_HB.pdf.

For more information about the CoreGPIO IP core, see CoreGPIO_HB.pdf.

For more information about the PolarFire initialization monitor, see UG0725: PolarFire FPGA Device
Power-Up and Resets User Guide.

For more information about how to build a Mi-V processor subsystem for PolarFire devices, see
TUOQ775: PolarFire FPGA: Building a Mi-V Processor Subsystem Tutorial.

For more information about the PF_CCC IP core, see UG0684: PolarFire FPGA Clocking Resources
User Guide.

For more information about migration of SoftConsole v5.1 project to SoftConsole v5.2, see

AC465: Migrating a SoftConsole v5.1 Project to SoftConsole v5.2 Application Note.

For more information about the SRAM buffer, see UG0680: PolarFire FPGA Fabric User Guide.
For more information about Libero, ModelSim, and Synplify, see the Microsemi Libero SoC PolarFire
web page.

Microsemi Proprietary and Confidential AC471 Application Note Revision 2.0 38

https://www.microsemi.com/products/fpga-soc/design-resources/design-software/libero-soc-polarfire#documents
https://www.microsemi.com/products/fpga-soc/design-resources/design-software/libero-soc-polarfire#documents
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=136522
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=136524
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=136524
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=136523
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=136523
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=136530
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=136530
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130958
http://soc.microsemi.com/ipdocs/CoreAHBLite_HB.pdf
http://soc.microsemi.com/ipdocs/CoreAPB3_HB.pdf
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=137669
http://soc.microsemi.com/ipdocs/CoreGPIO_HB.pdf
http://soc.microsemi.com/ipdocs/CoreAHBtoAPB3_HB.pdf
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=136945

	1 Revision History
	1.1 Revision 2.0
	1.2 Revision 1.0

	2 PolarFire FPGA Auto Update and In-Application Programming using Splash Kit
	2.1 CoreSysService_PF IP Overview
	2.2 Design Requirements
	2.3 Prerequisites
	2.4 Demo Design
	2.4.1 Design Implementation
	2.4.2 IP Configuration

	2.5 Clocking Structure

	3 Libero Design Flow
	3.1 Synthesize
	3.2 Place and Route
	3.2.1 Resource Utilization

	3.3 Verify Timing
	3.4 Generate FPGA Array Data
	3.5 Configure Design Initialization Data and Memories
	3.6 Configure Programming Options
	3.7 Generate Bitstream
	3.8 Run PROGRAM Action

	4 Programming the Device Using FlashPro Software
	5 Serial Terminal Emulation Program Setup
	6 Running the Demo
	6.1 Programming the SPI Flash Using Fabric Logic
	6.2 Running Auto Update
	6.3 Running Authentication
	6.4 Running Auto Programming
	6.5 Running IAP

	7 Appendix: Programming On-board SPI Flash Using Libero
	8 Appendix: References

