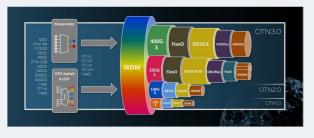


OTN 3.0 enabling beyond 100G optical transport


The Optical Transport Network (OTN) defined in ITU-T G.709 is the default protocol that underpins today's DWDM packet optical transport networks. Two generations of OTN have already been widely deployed: OTN1.0, which was based on 10G WDM transport; and OTN2.0, which enabled the transition to 100G metro OTN switched networks and is the de facto standard in net-

OTN Bandwidth Management

OTUk

Column (hytes

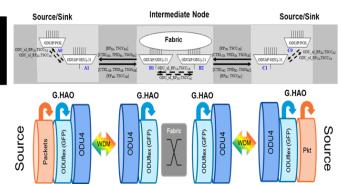
OTUk uses RS(255, 239, 8) for short reach and StairCase FEC for OTU4 metro reach

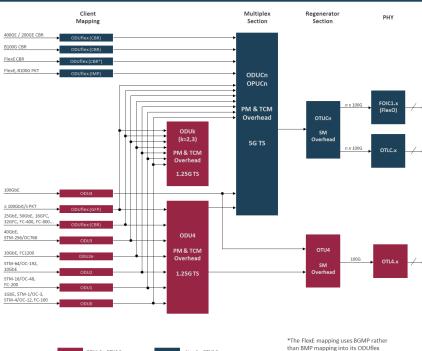
s, officially referred to as OTUCn, were defined as an n × 100G bit/s modular structure. Traditionally, sta

works today. OTN has proven to be extremely flexible for accommodating new client signals and line rates. However, the transition to next generation OTN transport has needed to account for greater network densification and flexibility. OTN3.0 responds to this by introducing flexible. "beyond 100G" (B100G) optical transport, coupled with support for new services like 25GE, 50GE, 200GE, 400GE, and Flexible Ethernet. With network traffic destined to undergo another wave of growth, optical transport networks will soon be transitioning to OTN3.0.

Optical Transport Module (OTM) Ethernet, SONET/SDH, IP/MPLS, etc. OTN Client For Client Service Mapping OPU Optical Payload Unit (OPUk) Payload ODU Optical Data Unit (ODUk) OH Payload OTU OH Optical Transpo yload FEC OTN1.0 / OTN2.0 New for OTN3.0

OTN Client Mapping & Multiplex Hierarchy


OTN encryption encrypts data contained within the existing CTN payload frame (OPUL). Existing reserved bytes within the overhead of the OTN frame carry the authentication tag. The algorithm and authentication modes used vary and are implementation specific; however, AES-256 is a common block cipher with support for both GCM and CTR modes. OTN encryption is similar to MACsec in terms of cost power and complexity to implement while offering power and complexity to implement while offering low latency at us-180nsc. A neither the payload nor the frame is padded to facilitate the encryption process, OTN encryption operates at wirespeed and does not come at the expense of wasted bandwidth, unlike IPsec (requiring up to 60% packet size expansion) and MACsec (adds up to 32 bytes/frame).


Microsemi's OTN processors integrate CrypOTN, an Microsemi SU IN processors integrate LVIPU IN, an AS-256 OTM spload encryption architecture with GMAC authentication solution which is complaint with the IPS 195 atandard. While all OTN encryption solutions perform bulk, High-order (HO), point-to-point network encryption, Microsemi's is the only on in the market that supports both HO and Low-order (LO) - enabling 100G+ metro OTN switching with end

- OTN offers optimal network utilization with the ability to right-size OIN ofters optimal network utilization with the ability to rgit-size the bandwidth of all services carried over the network • Clients are mapped into an OPUk or OPUflex by the appropriate mapping protocol such as BMP, GMP, GFP, or IMP • Overhead is added to the OPUk or OPUflex to create an ODUflex Overhead is addet to the UPUN or UPUHex to create an ODUTex The ODUTex on vary by increments of:

 1.25G, which are used for efficient mapping into ODUTex with payload rates :1000
 5G, which are used for mapping (ilents with payload rates >1000 into an ODUTex in order to simplify multiplexing the resulting ODUTex into ODUCe

 Providers can limit the bandwith of each client entering their
 - network per the SLA to the desired amount with 1.25G/5G

Sub-Rate OTUCn (OTUCn-M)

Evolution to OTUCn and FlexO

The 24000 stills of miles (a) which is the construction of the co

OTUCn

Column (bytes)

RS(5440, 5140, 10) for short reach

Flox

The distance over which a signal can be transmitted is a function of the signal rate. Power consumption is also a function of the signal clock rate. Consequently, there are applications where it is desirable to trans a 8100G signal dentifying a signal tant as the full set of UTCI/OULCO were and the signal clock rate. Consequently, there are applications where it is desirable to trans a 8100G signal dentifying a signal tant as the full set of UTCI/OULCO were addentifying a signal tant as the full set of UTCI/OULCO were addentifying a signal tant as the full set of UTCI/OULCO were addentifying a signal tant as the full set of UTCI/OULCO were addentifying a signal tant as the full set of UTCI/OULCO were addentifying a signal tant as the full set of UTCI/OULCO were addentifying a signal tant as the full set of UTCI/OULCO were addentifying a signal tant as the full set of UTCI/OULCO were addentifying a signal tant as the full set of UTCI/OULCO were addentifying a signal tant as the full set of UTCI/OULCO were addentifying a signal tant as the full set of UTCI/OULCO were addentifying a signal tant as the full set of UTCI/OULCO were addentifying a signal tant as the full set of UTCI/OULCO were addentifying a signal tant as the full set of UTCI/OULCO were addentifying a signal tant as the full set of UTCI/OULCO were addentifying a signal tant as the full set of UTCI/OULCO were addentifying a signal tant as the full set of UTCI/OULCO were addentifying a signal tant as the full set of UTCI/OULCO were addentifying a signal tant as the full set of UTCI addentifying a signal tant as the full set of UTCI/OULCO were addentifying a signal tant as the signal signal tant as the sinter asignal tant as the signal signal tant M rate can be calculated as follows

8 FEC words per FlexO frame

TeD as runiuws. OTUCn-M rate = (OTUCn rate)(OTUCn-M row size/OTUCn row size) = (OTUCn rate)[(16)(n + 11.9M)]/[(16n)(1 + (11.9)(20))] OTUCn-M rate = (OTUCn rate)[(n + 11.9M)]/(239n)

As an example, consider a scenario where an operator needs to transmit a signal over a given distance, but cannot support 400G over that distance. Whereas in a standard OTUCn case, that operator is forced to use 300G, with OTUCn-M, it is able to increment that wavelength to 530G, and as such increase its fiber efficiency by 17%. The availability of 150 an an OTUC-M interface are indicated in the OPUCn MSI fields. The specific values of M are a vendor-specific choice. Since OTUC-M is a single or endor interconcent application, the specific format of the transmitted signal (e.g., the manner in which the active IS are interface and into farme formation and in G.209. Network solutions that enable OTUC-M include next generation DSPs, working in conjunction with Microsemi's next generation DIGI-GS OTN processor, capable of right-sing the optical transmission channel to match the usable capacity of the OTN periods.

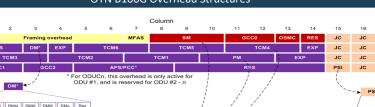
FEC increases system margin for a give Bit Error Rate (BER) and optical signal power and detects and corrects errors, thereby increasing the signal-to-noise ratio, enabling longer spans.

ITU G.709 defines an RS(255,239,8) code

(i.e., a Reed-Solomon using 8-bit symbols) as the base FEC integrated into OTUK frames. It provides 6 dB of coding

independent from the OTUCn frame so that it can be chosen to be optimized for interface type. G.709.1 defines the Flexible OTN (FlexO) short reach interface

Hexible UTN (HexO) short reach interface based on RS(5440,5140,010) FEC (i.e., an RS code using 10-bit symbols). It also provides 6dB of coding gain, but with less overhead than the RS2552,239,8). It is compatible with IEEE 802.3 "KP4" FEC.


For the OTUCn interface, the FEC is independent from the OTUCn fram

gair

OTU Bit Rate Capacity

ОТИ Туре	OTU Rate (Gbit/s)	OPU Payload Rate (Gbit/s)	Client Signals	OTU Type	OTU Rate (Gbit/s)	OPU Payload Rate (Gbit/s)	Client Signals
OTU1	2.6661	2.48832	STM-1/OC-3, STM-4-OC-12, STM-16/OC-48, 1GbE, FC-100/200	OTU3	43.018	40.150	40GbE, STM-256/OC-768, IB QDR
OTU2	10.709	9.9953	STM-64/OC-192, FC-400/800, 10GbE WAN, 10GbE LAN (GFP), IB SDR/DDR	OTU4	111.80997	104.35597	100GbE, FlexE
OTU2e	11.095	10.356	10GbE LAN (BMP with fixed stuff), FC-1200	OTUCn*	n × 105.258	n×104.8177	200GbE, 400GbE

Acronyms													
3R	Retiming, reshaping, & regeneration	FAS	Frame Alignment Signal	ITU	International Telecommunications Union	OPUCn	n×100Gbit/s Optical Channel Payload Unit	RS	Reed-Solomon (FEC)				
B100G	Beyond 100Gb/s OTN	FC	Fibre Channel	JC	Justification Control	OSC	Optical Supervisory Channel	SAPI	Source Access Point Identifier				
BEI	Backward Error Indication	FEC	Forward Error Correction	LAN	Local Area Network	OSMC	OTN Synchronization Message Channel	SAN	Storage Area Network				
BER	Bit Error Rate	FlexE	Flexible Ethernet (from OIF)	LO	Low order encryption	OTM	Optical Transport Module	SDH	Synchronous Digital Hierarchy				
BIAE	Backward Incoming Alignment Error	FlexO	Flexible OTN (G.709.1)	MFAS	Multi Frame Alignment Signal	OTS	Optical Transmission Section	SONET	Synchronous Optical Network				
BIP-8	8-bit Bit-Interleaved Parity	GCC	General Communication Channel	MPLS	Multi-Protocol Label Switching	OTSiG	Optical Tributary Signal Group	SM	Section Monitor				
BMP	Bit-synchronous Mapping Procedure	GFP	Generic Framing Procedure	OAM	Operations, admin & maintenance	OTU	Optical Channel Transport Unit	STAT	Status				
CBR	Constant Bit Rate	G.HAO	Hitless Adjustment of ODUflex	OC	Optical Carrier	OTUC	100Gbit/s element (slice) of an OTUCn	STM	Synchronous Transport Modul				
CM	Connection Monitor	GMP	Generic Mapping Procedure	OCh	Optical channel with full functionality	PKT	Packet Signal	TCM	Tandem Connection Monitoria				
CSF	Client Signal Fail	HO	High order encryption	ODU	Optical Channel Data Unit	PMON	Performance Monitoring	TS	Tributary Slots				
DAPI	Destination Access Point Identifier	IB	Infiniband	OH	Overhead	PT	Payload Type	TTI	Trail Trace Identifier				
DM	Delay Measurement	IMP	Idle Mapping Procedure	OMS	Optical Multiplex Section	RES	Reserved	UNI	User-Network Interface				
EXP	Experimental	IP	Internet Protocol	OPUC	100Gbit/s element (slice) of an OPUCn	ROADM	Reconfigurable Optical Add/Drop Multiplexer	WAN	Wide Area Network				

lew for OTN3.0

JC

PT

RES

For ODUCn

JC JC

BDI IAE RES BDI STAT BDI STAT

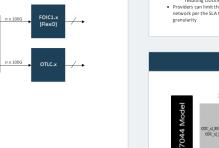
RES

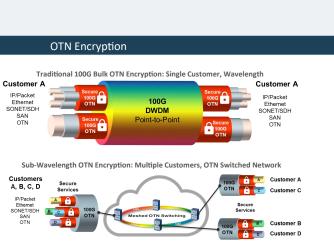
BEI/BIAE

BEI/BIAE

BEI/BIAE

RES


CMi #2 - #n


STM-16/OC-48, FC-200

1.0 + OTN2.0

OTN B100G Overhead Structures

Optical Bandwidth-on-Demand (BoD) with G.HAO

Hitless Adjustment of ODUflex (G.HAO), specified by the TU-TG.7044 standard, is a reising mechanism that allows for on-demand scaling of ODUflex client data rate without affecting the integrity of existing traffic across an end-to-end connection path in an OTN transport network. Source nodes are the demarcation point for the G.HAO service – these nodes GPF-F maplde-map packet traffic to and from ODUflex containers and initiate the bandwidth increase/decrease for the end-to-end connection. Intermediate nodes track changes in the ODUflex rate at any point downstream in the connection path.

With G.HAO, Service Providers can offer a targeted on-demand, 'pay-as-you-grow' service that delivers the same quality of service, regardless of bandwidth required. Microsemi's DIGI Family of OT Processors are the industry's only G.HAO solution, with three generations of carrier-qualified

The DIGI-G5 is Microsemi's 5th Gen OTN Processor. Built for the Cloud and 5G data transport era, the DIGI-G5 is the industry's first 16nm single-chip 600G Flexible Ethernet (FlexE) and Packet-Optimized OTN Processor.