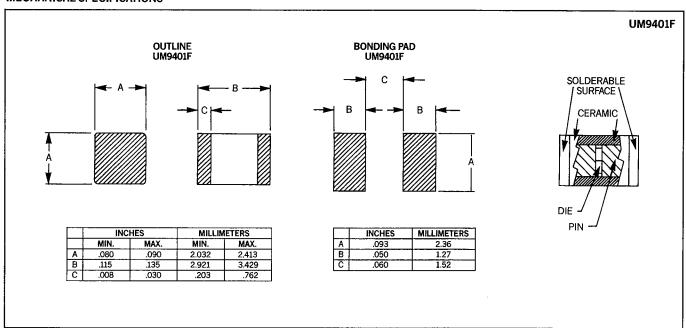
SURFACE MOUNT PIN DIODE

Ceramic Package Commercial Two-Way Radio Antenna Switch Diode

FEATURES

- High Power Surface Mount Package
- Specified Low Distortion, Low Loss
- Low Bias Current Requirements
- High Zero Bias Impedance
- Compatible with Automatic Insertion Equipment
- Very Low Inductance and Capacitance
- Passivated PIN Diode Chip
- Hermetically Sealed
- Non-Magnetic Package

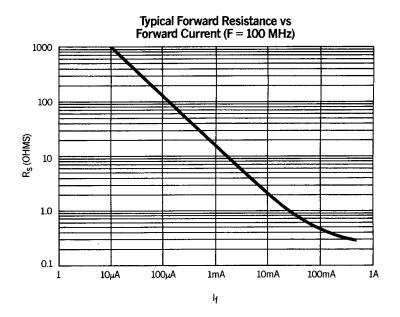
DESCRIPTION

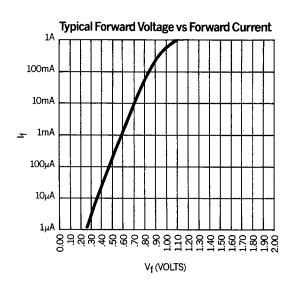

With high isolation, low loss, and low distortion characteristics, this Microsemi ceramic package PIN diode is perfect for two-way radio antenna switch applications where size and power handling capability are critical.

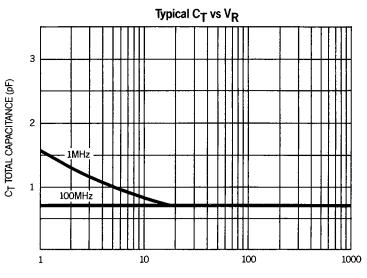
Its advantages also include the low forward bias resistance and high zero bias impedance that are essential for low loss, high isolation and wide bandwidth antenna switch performance. Its square design makes this device ideal for use with automatic insertion equipment.

ABSOLUTE MAXIMUM RATINGS

Maximum Reverse Voltage	O١
Average Power Dissipation Contact Surfaces @ 25°C 4.0	
Thermal Resistance	
Free Air	5٧
25°C Contacts	///
Operating and Storage Temperature	°C


MECHANICAL SPECIFICATIONS





ELECTRICAL CHARACTERISTICS (T_A = 25°C unless noted)

TEST	CONDITIONS	MIN	TYP	MAX
Series Resistance R _S , Ohms	F = 100MHz I _F = 50mA		0.5	.75
Capacitance C _T , pF	F = 1MHz V _R = 50V		0.75	.9
Parallel Resistance R _P , Ohms	F = 100MHz V = 0V	5K	10K	
Carrier Lifetime τ, μS	I _F = 10mA	2.0	4.0	
Transmit Harmonic Distortion, -dB	Pin = 50W F = 50MHz I _F = 50mA	80		
Receive 3rd Order Harmonic Distortion, —dB	$F = 100 \text{ MHz}$ $V = 0V$ $F_A = 50 \text{MHz}$ $F_B = 51 \text{MHz}$	60		
Voltage Rating V _R , Volts	$l_{R} = 1\muA$	50		
Forward Voltage V _F , Volts	I _F = 50mA		.80	1.0

