A MICROSEMI COMPANY

The Infinite Power of InNovation

Power Factor Controller

Data Sheet

DESCRIPTION

This monolithic integrated circuit provides all the necessary functions for designing an active power factor correction circuit in conjunction with offline power converters. Although the IC is optimized for electronic ballast applications, it can also be used in switched mode AC-DC power converters. Included in the 8-pin DIP package are; an under voltage lockout with a micropower startup with a 2 V hysteresis, an internal temperature compensated bandgap reference, a unity gain stable error amplifier, one quadrant multiplier stage, a current sense comparator and a totem
pole output stage for directing driving of the power MOSFET. In addition to the above, an internal logic circuit detects the zero crossing of the inductor current and maintains discontinuous current mode of operation such that it allows no current gaps to appear. This type of operation provides a higher P.F. correction, as well as lower harmonic distortion over the fixed frequency discontinuous current mode. The SG3561A is characterized for operation over the ambient temperature range of $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

IMPORTANT: For the most current data, consult MICROSEMI's website: http://www.microsemi.com

KEY FEATURES

■ MICRO-POWER START-UP MODE ($250 \mu \mathrm{~A}$ typ.)

- LOW OPERATING CURRENT CONSUMPTION
- INTERNAL 1.5\% REFERENCE
- TOTEM POLE OUTPUT STAGE
- AUTOMATIC CURRENT LIMITING OF BOOST STAGE
- DISCONTINUOUS MODE OF OPERATION WITH NO CURRENT GAPS
- NO SLOPE COMPENSATION REQUIRED
- AVAILABLE IN 8 \& 14-PIN PLASTIC DIP AND 8-PIN SOIC PACKAGE
- SEE LX1562/1563 FOR NEW DESIGNS

PRODUCT HIGHLIGHT

Typical Application of the SG3561A in an 80W
Fluorescent Lamp Ballast with A ctive Power Factor Control

PACKAGE ORDER INFO			
$\mathrm{T}_{\mathrm{A}}\left({ }^{\circ} \mathrm{C}\right)$	$\text { M }{\underset{\text { 8-Pin }}{\text { Plastic DIP }} \text {, }}_{\text {8, }}$	$\mathrm{N} \quad \begin{aligned} & \text { Plastic DIP } \\ & 14 \text {-Pin } \end{aligned}$	DM ${ }_{8-\text { Pin }}^{\text {Plastic SOIC }}$
	RoHS Compliant / Pb-free Transition DC: 0503		RoHS Compliant / Pb-free Transition DC: 0440
-25 to 85	SG3561AM	SG3561AN	SG3561ADM

Note: Available in Tape \& Reel. Append the letters "TR" to the part number. (i.e. SG3561AM-TR)

Power factor Controller

Not Recommended For New Designs

Power Factor Controller

Not Recommended for New Designs

RECOMMENDED OPERATING CONDITIONS (Note 3)					
Parameter	Symbol	Recommended Operating Conditions			Units
		Min.	Typ.	Max.	
Supply Voltage Range	$\mathrm{V}_{\text {IN }}$	11		25	V
Peak Driver Output Current			± 300		mA
Operating Ambient Temperature Range:					
SG3561A	T_{A}	-25		85	${ }^{\circ} \mathrm{C}$

ELECTRICALCMARACTERISTICS						
(Unless otherwise specified, these specifications apply over the operating ambient temperatures for the SG3561A with $-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}$. Low duty cycle pulse testing techniques are used which maintains junction and case temperatures equal to the ambient temperature.)						
Parameter	Symbol	Test Conditions	SG3561A			Units
			Min.	Typ.	Max.	
Under-Voltage Lockout Section						
Start Threshold Voltage			9.2	10	10.8	V
UV Lockout Hysteresis			1.6	2.0	2.4	V
Supply Current Section						
Start-Up Supply Current		$\mathrm{V}_{\text {IN }}<\mathrm{V}_{\text {TH }}$		0.25	0.5	mA
Operating Supply Current		$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}$, Output Not Switchins		6	12	mA
Dynamic Operating Supply Current	AVE	$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, 50 \mathrm{KHz}, \mathrm{CGS}=1000 \mathrm{pF}$		10	15	mA
Reference Section (Note 4)						
Initial Accuracy		$\mathrm{I}_{\text {REF }}=0 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	2.463	2.50	2.538	V
Line Regulation		$12 \mathrm{~V}<\mathrm{V}_{\text {IN }}<25 \mathrm{~V}$		0.1	10	mV
Load Regulation		$0<\mathrm{I}_{\text {REF }}<2 \mathrm{~mA}$		0.1	10	mV
Temperature Stability				20		mV
Error Amplifier Section						
Input Offset Voltage (Note 4)			-15		15	mV
Input Bias Current			-2	-0.1		$\mu \mathrm{A}$
Large Sisnal Open Loop Voltage Gain		(Note 4)	60	86		dB
Slew Rate				0.6		$\mathrm{v} / \mathrm{\mu sec}$
Power Supply Rejection Ratio (Note 4)			60	86		dB
Output Source Current		$\mathrm{V}_{\mathrm{OH}}=3.5 \mathrm{~V}$	2			mA
Output Sink Current		$\mathrm{V}_{\mathrm{OL}}=2.0 \mathrm{~V}$	2			mA
Output Voltage Range (Note 6)		No Load on E.A. Output	1.2		4	V
Unity Gain Bandwidth				1.0		MHz
Phase Margin				57		-

(Electrical Characteristics continued next page.)

Power Factor Controller

Not Recommended For New Designs

ELECTRICAL CMARACTERISTICS (Cont'd.)						
Parameter	Symbol	Test Conditions		SG3561A		Units
			Min.	Typ.	Max.	
Multiplier Section						
M1 Input Voltage Range			0		2	V
M2 Input Voltage Range			$\mathrm{V}_{\text {REF }}$		$\mathrm{V}_{\text {REF }}+1$	V
Input Bias Current (M1)			-2		2	$\mu \mathrm{A}$
Multiplier Gain (Note 5), (Note 4)		$\mathrm{V}_{\text {M1 }}=1 \mathrm{~V}, \mathrm{~V}_{\text {EAO }}=3.5 \mathrm{~V}$	0.52	0.65	0.78	/V
		$\mathrm{V}_{\mathrm{M} 1}=2 \mathrm{~V}, \mathrm{~V}_{\text {EAO }}=3.5 \mathrm{~V}$		0.65		/V
Multiplier Gain Temperature Stability			-	-0.2		\%/ ${ }^{\circ} \mathrm{C}$
Maximum Multiplier Output Voltage		$\mathrm{V}_{\mathrm{M} 1}=1 \mathrm{~V}, \mathrm{~V}_{\text {EAO }}>4 \mathrm{~V}$,	0.9		V
		$\mathrm{V}_{\mathrm{M} 1}=2 \mathrm{~V}, \mathrm{~V}_{\mathrm{EA} 0}>4 \mathrm{~V}$		1.8		V
Current Sense Comparator Section						
Input Bias Current		$\mathrm{OV} \leq \mathrm{V}_{\text {cs }} \leq 1.7 \mathrm{~V}$	-5	1	5	$\mu \mathrm{A}$
Current Sense Delay to Output				200	500	ns
Detect Section						
Input Voltage Threshold			1	1.3	1.6	V
Hysteresis				175		mV
Input LO Clamp Voltage		$\mathrm{I}_{\text {DET }}=100 \mu \mathrm{~A}$			0.95	V
Input HI Clamp Voltage		$\mathrm{I}_{\text {DET }}=3 \mathrm{~mA}$	6.1	7.1		V
Input Current		$1 \mathrm{~V} \leq \mathrm{V}_{\text {DET }} \leq 6 \mathrm{~V}$	-10		10	$\mu \mathrm{A}$
Input HI/LO Clamp Diode Current		$\mathrm{V}_{\text {DET }}<0.9 \mathrm{~V}, \mathrm{~V}_{\text {DET }}>6 \mathrm{~V}$			± 3	mA
Output Driver Section						
Output High Voltage		$\mathrm{I}_{\mathrm{L}}=-10 \mathrm{~mA}, \mathrm{~V}_{\text {IN }}=12 \mathrm{~V}$	7	9		V
Output Low Voltase		$\mathrm{I}_{\mathrm{L}}=10 \mathrm{~mA}, \mathrm{~V}_{\text {IN }}=12 \mathrm{~V}$		0.8	1.5	V
Output Rise Time		$\mathrm{C}_{L}=1000 \mathrm{pF}$		100	200	ns
Output Fall Time		$\mathrm{C}_{\mathrm{L}}=1000 \mathrm{pF}$		90	200	ns

Notes: 4. Because the reference is not brought out externally, these specifications are tested at probe only, and cannot be tested on the packaged part. They are guaranteed by design, and shown for illustrative purposes only.
5. $\mathrm{K}=\frac{\mathrm{V}_{\mathrm{MO}}}{\left(\mathrm{V}_{\mathrm{M} 1}\right) \mathrm{x}\left(\mathrm{V}_{\mathrm{EAO}}-\mathrm{V}_{\mathrm{REF}}\right)}$
6. This parameter, although guaranteed, is not tested in production.

Power factor Controller

Not Recommended For New Designs

BLOCK DIAGRAM / PIN DESCRIPTIONS

FUNCTIONAL DESCRIPTION

Pin	\#	Description
V_{IN}	8	$\begin{array}{llll}\text { Input supply voltage. } & \mathrm{V}_{\mathrm{IN}} \leq 8 \mathrm{~V} & \mathrm{I}_{\mathrm{IN}} \leq 0.5 \mathrm{~mA} & \mathrm{~V}_{\mathrm{IN} \mathrm{MAX}}<25 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}} \geq 10 \mathrm{~V} & \mathrm{I}_{\mathrm{IN}} \leq 15 \mathrm{~mA} & \end{array}$
GND	6	Input supply voltage return. Must always be the lowest potential of all the pins.
INV	1	Inverting input of the Error Amplifier. The output of the Boost converter should be resistively divided to 2.5 V and connected to this pin.
COMP	2	The output of the Error Amplifier. A feedback compensation network is placed between this pin and the INV pin.
MULT	3	Input to the multiplier stage. The full-wave rectified AC is divided to less than 2 V and is connected to this pin.
C.S.	4	Input to the PWM comparator. Current is sensed in the Boost stage MOSFET by a resistor in the source lead, and is fed to this pin through a low-pass filter
$I_{\text {DET }}$	5	A current driven logic input with internal clamp. A second winding on the Boost inductor senses the flyback voltage associated with the zero crossing of the inductor current and feeds it to the $I_{\text {Det }}$ pin through a limiting resistor. The logic circuit processes this signal, such that the converter operates in a discontinuous conduction current mode, where there is no current gap between the switching cycles.
V_{0}	7	PWM output pin. A totem-pole output stage specially designed for direct driving the MOSFET.

Power Factor Controller

Not Recommended for New Designs

FIGURE INDEX	
Application Information	
FIGURE \#	
1.	GENERAL APPLICATION CIRCUIT
2.	START UP CIRCUITRY
3.	START UP VOLTAGE
4.	REFERENCE VOLTAGE vs. TEMPERATURE
5.	TYPICAL COMPENSATION CIRCUIT
6.	MULTIPLIER CIRCUIT
7.	CURRENT SENSE CIRCUIT
8.	DEEIEG INPUT CIRCUIT
9.	TYPICAL START UP CIRCUIT USING DIAC
10.	IDETECT LOGIC CIRCUIT
11.	TYPICAL APPLICATION WITH 12OV INPUT
12.	INDUCTOR CURRENT
13.	CURRENT DETECT EXAMPLE

Typical Applications

FIGURE \#

14. TYPICAL APPLICATION OF THE SG3561A IN AN 80W FLUORESCENT LAMP BALLAST WITH ACTIVE POWER FACTOR CONTROL - 120V
15. TYPICAL APPLICATION OF THE SG3561A IN AN 80W FLUORESCENT LAMP BALLAST WITH ACTIVE POWER FACTOR CONTROL - 220V
16. TYPICAL APPLICATION OF THE SG3561A IN AN 80W FLUORESCENT LAMP BALLAST WITH ACTIVE POWER FACTOR CONTROL - 277M
17. TYPICAL APPLICATION OF THE SG3561A IN AN 80W FLUORESCENT LAMP BALLAST WITH ACTIVE POWER FACTOR CONTROL - 277V (BUCK BOOST APPLICATION)

Power Factor Controller

Not Recommended for New Designs

APPLICATION INFORMATION

FUNCTIONAL DESCRIPTION

The operation of the circuit is best described by referring to the diagram in Figure 1.

The multiplier stage generates an output voltage $\left(\mathrm{V}_{\mathrm{m}}\right)$ from the rectified waveform of the AC input $\left(\mathrm{V}_{\mathrm{M} 1}\right)$ and the amplitude of the error amplifier output $\left(\mathrm{V}_{\mathrm{EA}}\right)$. This voltage controls the peak inductor current by turning the power MOSFET off at a threshold, where the current sense voltage $\left(\mathrm{V}_{\mathrm{C}}\right)$ reaches a given nominal value. This causes the power MOSFET to latch-off until the current in the inductor drops to zero. Once this happens, the secondary winding of the inductor changes its voltage polarity, and gets detected by an internal comparator stage. The polarity of the windings are chosen such that a low $\mathrm{I}_{\mathrm{DET}}$ voltage turns on the power MOSFET and maintains operation until the above process repeats itself. An external trigger voltage to the IDET is required to start-up the converter until the auxiliary winding of the inductor takes over the operation.

The purpose of the undervoltage lockout is to perform two functions: 1) to maintain a low quiescent current during power-up, 2) to guarantee that the IC is fully functional before the output stage is activated. To realize this, a micropower comparator with a start-up threshold of 10 V and a built-in hysteresis of 2 V is incorporated. This comparator acts as a switch for the pre-regulator stage, which supplies a stable bias to the internal circuitry of the IC. Figure 2 shows a simplified schematic of this section, as well as the external components required, inorder to generate bootstraping voltage from the secondary winding of inductor. The operation of the circuitry is as follows.

FIGURE 2 - START UP CIRCUITRY
Start-up capacitor C_{3} is first charged by the current through resistor R_{3}. Once this voltage exceeds 10 V , then the IC starts operating, requiring more supply current than R_{3} can provide. This causes the energy stored in the capacitor to supply the IC with the operating current until the bootstrap winding on L1 takes over the power to maintain operation.

FIGURE 3 - START UP VOLTAGE

$$
\mathrm{V}_{\mathrm{START}}=1.25\left[\frac{\mathrm{R}_{\mathrm{A}}}{\mathrm{R}_{\mathrm{B}} \| \mathrm{R}_{\mathrm{C}}}+1\right] \quad \mathrm{V}_{\mathrm{HYST}}=1.25 \frac{\mathrm{R}_{\mathrm{A}}}{\mathrm{R}_{\mathrm{C}}}
$$

Power Factor Controller

Not Recommended For New Designs

APPLICATION INFORMATION

VOLTAGE REFERENCE

The voltage reference is a low drift bandgap design which provides a stable +2.5 V output with $\pm 1.5 \%$ initial tolerance. This pin is internally connected to the non-inverting input of error amplifier and is only available in a 14 -pin package. It can provide up to 2 mA of current for powering any external circuitries and is not internally current limited.

figure 4 - REFERENCE VOLTAGE vs. TEMPERATURE

ERROR AMPLIFIER

The error amplifier is an internally compensated PNP input stage with access to the inverting input and output pin. The N.I. input is internally connected to the voltage reference and is available only in a 14 -pin package. The amplifier is designed for an open loop gain of 85 dB , along with a typical bandwidth of 1 MHz and 57 degrees of phase margin. The amplifier's input bias current ($2 \mu \mathrm{~A}$ max.) results in a DC error in output voltage. In order to minimize this effect, the current flow in resistor R_{9} must be much greater than the bias current; As an example, for a 1% error in output, the current must be at least $200 \mu \mathrm{~A}$. The error amp output is provided for an external compensation of the feedback loop. This compensation is typically just a capacitor connected between this pin and the inverting input pin. The compensation capacitor is designed to set the bandwidth such that it adequately rejects the low frequency ripple which is present at the output voltage.

FIGURE 5 - TYPICAL COMPENSATION CIRCUIT

MULTIPLIER

The SG3561A features a one quadrant multiplier stage having two inputs: one is internally driven by a DC voltage (this being the difference of E.A. output and $\mathrm{V}_{\text {REF }}$ (M2)), and the other (M1) is available for external connection. The output is internally tied to an input of the PWM comparator. The rectified AC input is typically divided down to less than 1 V and is connected to the "M1" input by a resistor divider. The output of the multiplier which is a function of both inputs, controls the inductor peak current during each cycle of operation.

The multiplier is mostly linear if the M1 input is limited to less than 1 V and the E.A. output is kept below 3.5 V (under all specified load and line conditions). The output clamps to a maximum value of 0.9 V typically if the E.A. output is higher than

FIGURE 6 - MULTIPLIER CIRCUIT

$$
\begin{array}{lll}
\mathrm{K}=\frac{\mathrm{V}_{\mathrm{M} 0}}{\mathrm{~V}_{\mathrm{M} 1}\left(\mathrm{~V}_{\mathrm{EA}}-\mathrm{V}_{\mathrm{REP}}\right)} & \text { where: } & \mathrm{K} \equiv \text { Gain } \\
& \mathrm{V}_{\mathrm{MO}} & \equiv \text { Mult. Output } \\
& \mathrm{V}_{\mathrm{M} 1} & \equiv \text { Mult. Input } \\
& \mathrm{V}_{\mathrm{EA}} & \equiv \text { E.A. Output }
\end{array}
$$

CURRENT SENSE COMPARATOR / PWM LATCH

Current Sense comparator is configured as a PNP input differential stage with one input internally tied to the multiplier output and the other available for current sensing. Current is converted to voltage using an external sense resistor in a series with the power MOSFET (Q1). When voltage across this resistor exceeds the threshold set by the multiplier output, the current sense comparator terminates the gate drive to Q1, as well as resetting the PWM latch. The latch ensures that the output remains in a low state once the switch current falls back to zero.

An offset is built into current sense input to ensure that the output remains in a low state when the load is removed from the output of the converter. This offset is guaranteed to be higher than the multiplier offset during the above condition.

Power Factor Controller

Not Recommended for New Designs

APPLICATION INFORMATION

CURRENT SENSE COMPARATOR / PWM LATCH (continued)

Sense resistor R_{8} is designed according to the following formula:
$\mathrm{R} 8 \leq \frac{\mathrm{V}_{\text {M } 0}}{\mathrm{I}_{\mathrm{L} \text { MAX }}}$
where: $\mathrm{K} \equiv$ Gain
$\mathrm{V}_{\mathrm{MO}} \equiv$ Mult. Output under min. line condition
$\mathrm{V}_{\mathrm{M} 1} \equiv$ Mult. Input
$\mathrm{V}_{\mathrm{EA}} \equiv$ E.A. Output

R7 and C5 form a low pass filter to eliminate the leading edge current spike.

FIGURE 7 - CURRENT SENSE CIRCUIT

PWM DRIVER STAGE

The SG3561A output driver is designed for direct driving of power MOSFETs. It is a totem pole stage with $\pm 0.5 \mathrm{~A}$ peak current capability. This typically results in a 100 nanosecond rise and fall times into a 1000 pF capacitive load. Additionally, the output is held low during the under voltage condition to ensure that the power MOSFET remains in the off state.

CURRENT DETECT LOGIC

The function of "current detect logic" is to sense the operating state of the boose inductor and to enable the output driver accordingly. To achieve this, the downward slope of the inductor current is detected by monitoring the voltage across a separate winding and is connected to the detector input ($\mathrm{I}_{\mathrm{DET}}$) pin. Once the inductor current drops to zero, the sensed voltage reverses, setting the $I_{\text {DET }}$ input to a low-level, thus enabling the output driver. Since this is a negative voltage, a level shifter as shown in Figure 8 is provided to prevent the $I_{\text {DET }}$ pin from going below the ground. The maximum current drawn from this pin must be limited to less than 3 mA .

A high level voltage occurs when the inductor discharges. Referring to Figure 9, once the C.S. comparator inhibits the output driver and resets the flip-flop, the inductor voltage reverses and sets the $I_{\text {DET }}$ pin to a high level. This ensures the reset instruction of the current sense comparator and reduces its noise susceptibility. An internal zener diode with maximum current capability of 3 mA limits the positive voltage swing to 7 volts typically.

FIGURE 8 - $\mathrm{I}_{\text {Detect }}$ INPUT CIRCUIT
Since the output driver is inhibited during the power-on cycle, an external trigger signal is required to start-up the converter before the $\mathrm{I}_{\text {DEI }}$ winding takes over the operation. The trigger signal can be derived either from the second stage of the converter (i.e the ballast voltage generator), or if stand alone operation is desired from a circuit as shown in Figure 9. Additionally, this signal should be low enough that the voltage from the detector winding is allowed to dominate during the normal operation.

The equations below describe the selection of R_{4} and R_{5} in Figure 10.

FIGURE 9 - TYPICAL START UP CIRCUIT USING DIAC

FIGURE 10 - $I_{\text {detict }}$ LOGIC CIRCUIT

Power Factor Controller

Not Recommended for New Designs

APPLICATION INFORMATION

TYPICAL APPLICATION

The application circuit shown in Figure 11 uses the SG3561A as the controller to implement a boost type power factor regulator. The IC controls the regulator, such that the inductor current is always operating in a discontinuous conduction mode with no current gaps. This mode of operation has several advantages over the fixed frequency discontinuous conduction mode: 1) The switching frequency adjusts itself to the AC line envelope, causing a sinusoidal current draw, 2) Since there is no current gap between the switching cycles, the inductor voltage does not oscillate, causing less radiated noise, 3) The lower peak inductor current causes less power dissipation in the power MOSFET.

A set of formulas have been derived specifically for this mode, and are used throughout the design procedure:

The following are specifications for the boost converter:

FIGURE 11 - TYPICAL APPLICATION WITH 120V INPUT

OUTPUT VOLTAGE REQUIREMENT

Since the converter is a boost type topology, it requires the output voltage to always be higher than the input voltage. It is recommended to choose this voltage at least 15% higher than the maximum input voltage.

$$
\mathrm{V}_{\mathrm{o}} \geq 1.15 * 130 \sqrt{2}=211 \text { Volts }
$$

INDUCTOR PEAK CURRENT

It can be shown by referring to Figure 12 that the inductor peak current is always twice the average input current.

FIGURE 12 - INDUCTOR CURRENT

Power factor Controller

Not Recommended For New Designs

APPLICATION INFORMATION

INDUCTOR PEAK CURRENT (continued)

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{IN}(\mathrm{t})}=\sum \mathrm{AVE}\left[\mathrm{I}_{\mathrm{L}}(\mathrm{t})\right] \\
& \mathrm{I}_{\mathrm{IN}}=\frac{1}{\mathrm{~T}}\left[\frac{\left(\mathrm{I}_{\mathrm{L}}\right)(\mathrm{T})}{2}\right] \frac{\mathrm{I}_{\mathrm{L}}}{2} \\
& \mathrm{I}_{\mathrm{INpeak}}=\mathrm{I}_{\mathrm{P}}=\frac{\mathrm{I}_{\mathrm{LP}}}{2} \\
& \mathrm{I}_{\mathrm{LP}}=\text { Inductor peak current at peak input voltage. }
\end{aligned}
$$

Maximum peak input current can be calculated by using:

$$
\mathrm{I}_{\mathrm{p}}=\frac{2 \mathrm{P}_{\mathrm{o}}}{\eta \mathrm{~V}_{\mathrm{P}}}
$$

where: $\quad \eta \equiv$ Converter efficiency

$$
\mathrm{V}_{\mathrm{P}} \equiv \text { Peak AC input voltage }
$$

assuming: $\eta=95 \%, \mathrm{P}_{\mathrm{O}}=80 \mathrm{~W}, \mathrm{~V}_{\mathrm{Pmin}}=100 \sqrt{2}=141$
$I_{P}=\frac{2 * 80}{(.95)(141)}=1.2 \mathrm{~A}$
$\mathrm{I}_{\mathrm{LP} / \min \mathrm{AC}}=2 * 1.2=2.4 \mathrm{~A}$

INDUCTOR DESIGN

The most important part of the circuit is to design the energy storage element. To do this, we use the following equation to calculate the inductance value:

$$
\begin{aligned}
& \mathrm{L}_{1}=\frac{\eta \frac{\mathrm{V}_{\mathrm{o}}-\mathrm{V}_{\mathrm{p}}}{\mathrm{~V}_{\mathrm{o}}} \mathrm{~T} \mathrm{~V}_{\mathrm{P}}^{2}}{4 \mathrm{P}_{\mathrm{O}}} \quad \text { where: } \eta \\
& \equiv \text { Efficiency } \\
& \mathrm{V}_{\mathrm{O}} \equiv \text { Output DC Voltage } \\
& \mathrm{V}_{\mathrm{p}} \equiv \text { Peak AC Input Voltage } \\
& \mathrm{T} \equiv \text { Switching period } \\
& \mathrm{P}_{\mathrm{O}} \equiv \text { Output Power }
\end{aligned}
$$

Once the inductance is calculated, we can either use the area product method (AP) or other K_{g} (based on copper losses method), for selecting proper core. In this example, we apply the K_{g} approach using the following steps:
Step 1: Calculate K_{g} using

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{g}}=\frac{\Omega}{\mathrm{P}_{\mathrm{CU}}}\left(\frac{\mathrm{~L}_{1} \mathrm{I}_{\mathrm{LP}}{ }^{2}}{\mathrm{~B}}\right)^{2} \\
& \text { where: } \quad \mathrm{L}_{1} \equiv \text { Required inductance } \\
& \Omega \equiv 1.724 * 10^{-8} \mathrm{~m} \\
& \mathrm{~B} \equiv \text { Maximum flux density } \\
& \mathrm{I}_{\mathrm{LP}} \equiv \text { Maximum peak inductor current } \\
& \mathrm{P}_{\mathrm{CU}} \equiv \text { Maximum copper dissipation }
\end{aligned}
$$

INDUCTOR DESIGN (continued)
Assume: $\mathrm{P}_{\mathrm{CU}}=1.6 \mathrm{~W}$ (2% of total output)

$$
\mathrm{K}_{\mathrm{g}}=\frac{1.724 * 10^{-8}}{1.6}\left[\frac{450 * 10^{-6} *(2.4)^{2}}{0.15}\right]^{2}=3.21 * 10^{-12} \mathrm{~m}^{5}
$$

Step 2: Choose a core with higher K_{g} than the one calculated in Step 1.
$\mathrm{K}_{\mathrm{g}} /$ core $=\mathrm{k} \frac{\mathrm{A}_{\mathrm{w}} \mathrm{A}_{\mathrm{E}}{ }^{2}}{\mathrm{I}_{\mathrm{W}}}$
where: $\mathrm{k} \equiv$ Winding coefficient (typ. $\mathrm{k}=0.4$)
$A_{w} \equiv$ Bobbin window area
$A_{E} \equiv$ Effective core area
$I_{w} \equiv$ Mean length per turn
K_{g} factor for TDK PQ2625:

$$
\mathrm{A}_{\mathrm{w}}=47.7 \mathrm{~mm}^{2}
$$

$$
\mathrm{A}_{\mathrm{E}}^{\mathrm{W}}=118 \mathrm{~mm}^{2}
$$

$$
\mathrm{I}_{\mathrm{W}}=56.2 \mathrm{~mm}
$$

$\mathrm{K}_{\mathrm{g}}=0.4 \frac{(47.7)(118)^{2}}{56.2}(\mathrm{~mm})^{5}=4.7 * 10^{-12} \mathrm{~m}^{5}$
Step 3: Determine number of turns.
$\mathrm{N}=\frac{\mathrm{L} \mathrm{I}_{\mathrm{LP}}}{\mathrm{B} \mathrm{A}_{\mathrm{E}}}$
$\mathrm{N}=\frac{450 * 10^{-6} * 2.4}{0.15 * 118 * 10^{-6}}=61$ turns
$\begin{aligned} \mathrm{A}_{\mathrm{WIRE}}=\mathrm{k} \frac{\mathrm{A}_{\mathrm{w}}}{\mathrm{N}}=0.4 \frac{47.7}{61} & =0.31 \mathrm{~mm}^{2} \\ & =480 \mathrm{mil}^{2}\end{aligned}$
choose \#22 AWG with $\mathrm{r}=0.0165 \Omega /$ feet resistance.
$\mathrm{R}_{\mathrm{w}}=\mathrm{N} * \mathrm{I}_{\mathrm{w}} * \mathrm{r}$
$\mathrm{R}_{\mathrm{w}}=0.185 \Omega$
Step 4: Calculate air gap.
$I_{g}=\frac{\mu_{\mathrm{O}} \mathrm{N}^{2} \mathrm{~A}_{\mathrm{E}}}{\mathrm{L}}$
$\mathrm{I}_{\mathrm{q}}=\frac{4 \pi * 10^{-7} *(61)^{2} * 118 * 10^{-6}}{450 * 10^{-6}}=0.122 \mathrm{~cm}=48 \mathrm{mil}$
Step 5: $\mathrm{N}_{\mathrm{S}} \approx \mathrm{N}_{\mathrm{P}} \frac{\mathrm{V}_{\mathrm{S}}}{\mathrm{V}_{\mathrm{O}}}$
$\mathrm{N}_{\mathrm{s}}=61 \frac{15}{230}=4 \mathrm{~T}$ where: $\mathrm{V}_{\mathrm{S}} \equiv$ secondary voltage
N_{s} may be adjusted to account for the drop in start-up capacitor.

Power Factor Controller

Not Recommended For New Designs

APPLICATION INFORMATION

POWER MOSFET SELECTION

The voltage rating of MOSFET and rectifier must be higher than the maximum value of the output voltage.

$$
\mathrm{V}_{\mathrm{DS}} \geq 1.2 \mathrm{~V}_{\mathrm{O} \text { MAX }} \quad \mathrm{V}_{\mathrm{DS}} \geq 282 \mathrm{~V}
$$

The RMS current can be approximated by multiplying the RMS current at the peak of the line by 0.7 .

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{RMS}}=0.7 \mathrm{I}_{\mathrm{LP}} \sqrt{\mathrm{D} / 3} \quad \mathrm{D} \equiv \text { On-time duty cycle } \\
& \mathrm{D}=0.39 \text { at } \mathrm{V}_{\mathrm{AC}}=100 \mathrm{~V} \\
& \mathrm{I}_{\mathrm{LPI}}=2.4 \mathrm{~A} \\
& \mathrm{I}_{\mathrm{RMS}}=(0.7)(2.4)(\sqrt{.39 / 3})=0.61 \mathrm{~A} \\
& \mathrm{R}_{\mathrm{DS}} \leq \frac{\mathrm{P}_{\mathrm{DC}}}{\mathrm{I}_{\mathrm{RMS}}{ }^{2}} \quad=1.6 \Omega \\
& \mathrm{P}_{\mathrm{DC}} \equiv \text { allowable power dissipation } \\
& \mathrm{R}_{\mathrm{DS}} \leq \frac{1}{0.61} \quad=1
\end{aligned}
$$

choose IRF730 with $\mathrm{R}_{\mathrm{DS}}=1 \Omega$ and $\mathrm{V}_{\mathrm{DS}}=400 \mathrm{~V}$.

CURRENT SENSE AND MULTIPLIER COMPONENT SELECTION

Resistors R_{1} and R_{2} are selected such that the peak voltage at M1 input (pin 3) is 1 V at the maximum line voltage.

$$
\begin{array}{ll}
\frac{\mathrm{R}_{1}}{\mathrm{R}_{2}}=\mathrm{V}_{\mathrm{AC} \mathrm{PEAK}}-1 \\
\frac{\mathrm{R}_{1}}{\mathrm{R}_{2}}=183 & \text { if } \mathbf{R}_{\mathbf{1}}=\mathbf{2 . 2} \mathbf{M}
\end{array} \quad \text { then } \mathrm{R}_{2}=12 \mathrm{~K}
$$

The value of R_{8} can be selected using the following equations:

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{M} 0}=\mathrm{k}_{\mathrm{M} 2} * \mathrm{~V}_{\mathrm{M} 1} \quad \mathrm{~V}_{\mathrm{M} 1}=\begin{array}{l}
\text { Maximum voltage at } \mathrm{M} 1 \text { input } \\
\text { under min. line condition }
\end{array} \\
& \mathrm{V}_{\mathrm{M} 0}=(0.75)(3.5-2.5)(0.77)=0.58 \\
& \mathrm{R}_{8}=\frac{\mathrm{V}_{\mathrm{MO}}}{\mathrm{I}_{\mathrm{L} \mathrm{P}}}=\frac{0.58}{2.4}=\frac{0.58}{2.4}=0.24 \Omega \quad \text { choose } \mathrm{R}_{8}=0.22 \Omega
\end{aligned}
$$

To eliminate the turn-on current spike, a low pass filter with a high corner frequency must be designed such that:
$\mathrm{R}_{7} \mathrm{C}_{4} \geq 1.6 \mathrm{~T}$
if $\mathrm{T}=100 \mathrm{nsec}$
$\mathrm{R}_{7} \mathrm{C}_{4} \geq 0.16 \mu \mathrm{sec}$
assuming $\mathrm{C}_{4}=1000 \mathrm{pF}$

The values of R_{7} and C_{4} may be optimized further based on each specific application. Additionally R_{13} can be used to adjust the overall loop gain in order to maintain regulation at the minimum input voltage.

ERROR AMPLIFIER COMPONENT SELECTION

The values of R_{9} and R_{10} are calculated based on the operating output voltage. The value of C_{5} is mainly selected to reject the 120 Hz ripple associated with the output voltage. Lack of adequate ripple rejection causes input current distortion; however, too much rejection will make a slow loop response and a high voltage overshoot during the turn-on.

$$
\begin{aligned}
& \frac{\mathrm{R}_{9}}{\mathrm{R}_{10}}=\frac{\mathrm{V}_{\mathrm{O}}}{\mathrm{~V}_{\mathrm{REF}}}-1 \\
& \frac{\mathrm{R}_{9}}{\mathrm{R}_{10}}=\frac{230}{2.5}-1=91 \\
& \text { assuming } \mathrm{R}_{9}=1 \mathrm{M} \Omega \quad \text { Then: } \mathrm{R}_{10}=11 \mathrm{~K}
\end{aligned}
$$

For output voltages higher than 250 V , safety regulations may require two $1 / 4 \mathrm{~W}$ resistors to be placed in series.

Assuming a 40 dB rejection at 120 Hz :

$$
\begin{array}{lc}
\text { Gain }=\frac{1}{2 \pi \mathrm{f} \mathrm{R}_{9} \mathrm{C}_{5}} & \text { Gain } / 120 \mathrm{~Hz} \leq 0.01 \\
\mathrm{C}_{5} \geq \frac{100}{2 \pi(120)\left(10^{6}\right)} & \text { choose } \mathrm{C}_{5}=0.22 \mu \mathrm{f} \\
\mathrm{C}_{5} \geq 0.133 \mu \mathrm{f} & \\
\text { BW }=\frac{1}{2 \pi \mathrm{R}_{9} \mathrm{C}_{5}}=\frac{1}{2 \pi\left(10^{6}\right)\left(.22 * 10^{-6}\right)}=0.72 \mathrm{~Hz}
\end{array}
$$

INPUT RECTIFIER AND CAPACITOR SELECTION

The current through each diode is a half-wave rectified sine wave. The maximum current happens at minimum line with a peak value of 1.2 A .

$$
\mathrm{I}_{\mathrm{AVE}}=\frac{\mathrm{I}_{\mathrm{PEAK}}}{\pi}=\frac{1.2}{\pi}=0.38 \mathrm{~A}
$$

choose 1N4004 with 1A rating.

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{DISS}}=\left(\mathrm{I}_{\mathrm{AVE}}\right)\left(\mathrm{V}_{\mathrm{F}}\right)=0.38 * 0.9=0.344 \mathrm{~W} \\
& \mathrm{~T}_{\mathrm{J}}=\mathrm{T}_{\mathrm{A}}+\mathrm{P}_{\mathrm{D}} \times \theta_{\mathrm{JA}} \quad \begin{array}{l}
\text { assuming } \theta_{\mathrm{JA}}=65^{\circ} \mathrm{C} / \mathrm{W} \text { for } 1 / 8^{\prime \prime} \\
\text { lead length. }
\end{array} \\
& \mathrm{T}_{\mathrm{J}}=80+(.344)(65)=102^{\circ} \mathrm{C}
\end{aligned}
$$

Power Factor Controller

Not Recommended for New Designs

APPLICATION INFORMATION

INPUT RECTIFIER AND CAPACITOR SELECTION (continued)

Assuming φ is the percentage of allowable input current ripple, C_{1} can be calculated using the following equations:

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{EFF}}=\frac{2 \mathrm{P}_{\mathrm{O}}}{\eta \mathrm{I}_{\mathrm{P}}^{2}} \\
& \mathrm{C}_{1} \geq \frac{1}{\varphi 2 \pi \mathrm{R}_{\mathrm{EFF}} \mathrm{f}_{\mathrm{SW}}}
\end{aligned}
$$

$\mathrm{f}_{\text {sw }} \equiv$ Switching frequency of inductor current at peak input voltage.
if $\varphi=3 \%$
$\mathrm{R}_{\mathrm{EFF}}=\frac{2 * 80}{(.95)(1.2)^{2}}=117 \Omega$
$C_{1} \geq \frac{1}{(.03)(2 \pi)(117)(50000)}=0.9 \mu \mathrm{~F}$
choose $\mathbf{1 \mu F}, \mathbf{2 5 0 V}$ capacitor.

BIAS SUPPLY COMPONENT SELECTION

A bleeding resistor $\left(\mathrm{R}_{3}\right)$ off of either output voltage or capacitor C_{1} can be selected such that it provides sufficient start-up current for the IC, as well as charging the start-up capacitor C_{3}.

The start-up capacitor must be chosen such that it supplies power to the IC until the voltage on the bootstrap winding exceeds the start threshold (this is typically around 10 volts). C_{3} must also be designed to have low ripple voltage at twice the line frequency.

$$
\begin{array}{ll}
\mathrm{C}_{3}\left(\Delta \mathrm{~V}_{\mathrm{R}} \geq \frac{\mathrm{I}}{2 \mathrm{f}_{\mathrm{LINE}} \Delta \mathrm{~V}_{\mathrm{R}}}\right. & \begin{array}{l}
\mathrm{I} \quad \equiv \text { Operating current } \\
\mathrm{f}_{\mathrm{LINE}} \equiv \text { Line frequency }
\end{array} \\
\mathrm{C}_{3}(\Delta \mathrm{~T}) \geq \frac{\mathrm{I} \Delta \mathrm{~T}}{\Delta \mathrm{~V}_{\mathrm{H}}} & \Delta \mathrm{~T} \equiv \text { Ripple voltage } \\
\Delta \text { Time allowed for b } \\
\text { winding to reach }
\end{array}
$$

$$
\mathrm{C}_{3}\left(\Delta \mathrm{~V}_{\mathrm{R}}\right) \geq \frac{15 * 10^{-3}}{2 * 60 * 2}=62 \mu \mathrm{~F}
$$

assuming $\Delta \mathrm{T}=2 \mathrm{~ms}$
$C_{3}(\Delta \mathrm{~T}) \geq \frac{15 * 10^{-3} * 2 * 10^{-3}}{1.8 \mathrm{~V}}=17 \mu \mathrm{f}$
choose $C_{3}=68 \mu \mathrm{~F}$.

OUTPUT CAPACITOR SELECTION

There are mainly two criterias for selecting the output capacitor: A large enough capacitance to maintain a low ripple voltage, and a low ESR value in order to prevent high power dissipation due to RMS currents

The output capacitance can be approximated from the following equation:

$$
I_{D C}=\frac{80}{230}=0.348 \mathrm{~A}
$$

assuming 5% peak to peak ripple,

$$
C_{6} \geq \frac{0.348}{2 \pi(60)(11.5)}=81 \mu \mathrm{~F}
$$

$$
\text { choose } \mathbf{C}_{6}=\mathbf{1 0 0} \boldsymbol{\mu} \mathbf{F}
$$

CURRENT DETECT COMPONENT SELECTION

The values of R_{4} and R_{5} can be calculated using the following equations:

$$
\begin{aligned}
& 400 \mathrm{~V}_{\mathrm{WP}} \geq \mathrm{R}_{4} \geq 2500 \mathrm{~V}_{\mathrm{wP}} \\
& \mathrm{R}_{5}=0.8 \mathrm{R}_{4}\left(\frac{\mathrm{~V}_{\mathrm{TR}}}{1.6}\right)
\end{aligned}
$$

where:

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{wP}} \equiv \text { Maximum detector winding voltage } \\
& \mathrm{V}_{\mathrm{TR}} \equiv \text { Trigger voltage }
\end{aligned}
$$

Power Factor Controller

Not Recommended For New Designs

APPLICATION INFORMATION

CURRENT DETECT COMPONENT SELECTION

(continued)
Assuming $\mathrm{V}_{\mathrm{WP}}=15 \mathrm{~V}$ and peak trigger voltage from the start-up circuitry is 7 V , the values R_{4} and R_{5} using above formulas are:

$$
\begin{array}{ll}
6 \mathrm{~K} \Omega \leq \mathrm{R}_{4} \leq 37.5 \mathrm{~K} \Omega & \text { choose } \mathrm{R}_{4}=22 \mathrm{~K} \\
\mathrm{R} 5=0.8(22)\left(\frac{7}{1.6}-1\right)=59.4 \mathrm{~K} \Omega & \text { choose } \mathrm{R}_{5}=51 \mathrm{~K}
\end{array}
$$

FIGURE 13 - CURRENT DETECT EXAMPLE

MICROELECTRONICS

Power factor Controller

Not Recommended For New Designs

FIGURE 14 - TYPICAL APPLICATION OF THE SG3561A IN AN 80W FLUORESCENT LAMP BALLAST WITH ACTIVE POWER FACTOR CONTROL.

Electrical
Specification
1 20VAC Input - $230 V D C / 80 W$ Output

Ref.	Component	Manuf.	Ref.	Component	Manuf.
IC L1 Q1 D1-D4 D5 D6 D7 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13	SG3561AM PQ2625/H7Cl Core IRF730, 400V 1N4004, Diode, IA 1N4935, Diode, 1A MR854, 3A, 400V HT32, DIAC $2.2 \mathrm{M} \Omega$ $12 \mathrm{~K} \Omega$ $110 \mathrm{~K}, 1 / 2 \mathrm{~W}$ 22K 51K 47Ω 330Ω $0.22 \Omega, 1 / 2 \mathrm{~W}$ - Carbon type $1 \mathrm{M} \Omega, 1 \%$ Res $11 \mathrm{~K} \Omega, 1 \%$ Res $560 \mathrm{~K} \Omega$ 300 Ω $2 \mathrm{~K} \Omega$	Linfinity TDK I.R. Motorola Motorola Motorola TECCOR	C1 C2 C3 C4 C5 C6 C7 C8	$1 \mu \mathrm{~F} / 250 \mathrm{~V}$ $0.01 \mu \mathrm{~F} / 50 \mathrm{~V}$ 68uF/25V $0.22 \mu \mathrm{~F} / 50 \mathrm{~V}$ $3300 \mathrm{pF} / 50 \mathrm{~V}$ 100 $\mu \mathrm{F} / 400 \mathrm{~V}$ $0.1 \mathrm{FF} / 50 \mathrm{~V}$ $0.1 \mu \mathrm{~F} / 50 \mathrm{~V}$	

Power Factor Controller

Not Recommended for New Designs

FIGURE 15 - TYPICAL APPLICATION OF THE SG3561A IN AN 80W FLUORESCENT LAMP BALLAST WITH ACTIVE POWER FACTOR CONTROL.

Electrical Specification		VDC /	N 0		
Ref.	Component	Manuf.	Ref.	Component	Manuf.
IC L1 Q1 D1-D4 D5 D6 D7 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13	SG3561A PQ262/H7C1 Core IRF830,500V 1N4004, Diode, 1A 1N4935, Diode, 1A MR856, 3A, 600V HT32, DIAC $2.2 \mathrm{M} \Omega$ $12 \mathrm{~K} \Omega$ 220K, 1/2W 22K 39K 47Ω 330Ω $1 \Omega, 1 / 2$ W - Carbon type $1 M \Omega, 1 \%$ Res $2.7 \mathrm{M} \Omega$ $560 \mathrm{~K} \Omega$ 300Ω $2 K \Omega$	Linfinity TDK I.R. Motorola Motorola Motorola Teccor	C1 C2 C3 C4 C5 C6 C7 C8	$\begin{aligned} & 0.22 \mu \mathrm{~F} / 600 \mathrm{~V} \\ & 0.01 \mu \mathrm{~F} / 50 \mathrm{~V} \\ & 68 \mu \mathrm{~F} / 25 \mathrm{~V} \\ & 0.22 \mu \mathrm{~F} / 50 \mathrm{~V} \\ & 3300 \mathrm{pF} / 50 \mathrm{~V} \\ & 47 \mu \mathrm{~F} / 450 \mathrm{~V} \\ & 0.1 \mu \mathrm{~F} / 50 \mathrm{~V} \\ & 0.1 \mu \mathrm{~F} / 50 \mathrm{~V} \end{aligned}$	

Power factor Controller

Not Recommended For New Designs

FIGURE 16 - TYPICAL APPLICATION OF THE SG3561A IN AN 80W
FLUORESCENT LAMP BALLAST WITH ACTIVE POWER FACTOR CONTROL.

Electrical Specification		5VDC	O		
Ref.	Component	Manuf.	Ref.	Component	Manuf.
IC L1 Q1 D1-D4 D5 D6 D7 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13	SG3561A PQ2620/H7Cl Core IRFBE42, 600V 1N4007, Diode, 1A 1N4935, Diode, 1A MR856, 3A, 600V HT32, DIAC $2.2 \mathrm{M} \Omega$ $5.1 \mathrm{~K} \Omega$ $260 K \Omega$, IW $22 K \Omega$ $22 \mathrm{~K} \Omega$ 47Ω 330Ω $0.51 \Omega, 1 / 2$ W - Carbon type $2.2 \mathrm{M} \Omega, 1 \%$ Res $11.3 \mathrm{~K} \Omega, 1 \%$ Res $1.5 \mathrm{~K} \Omega$ 300Ω	Linfinity TDK I.R. Motorola Motorola Motorola TECCOR	C1 C2 C3 C4 C5 C6, C9 C7 C8	$\begin{aligned} & 0.22 \mu \mathrm{~F} / 600 \mathrm{~V} \\ & 0.047 \mu \mathrm{~F} / 50 \mathrm{~V} \\ & 68 \mu \mathrm{~F} / 25 \mathrm{~V} \\ & 0.22 \mu \mathrm{~F} / 50 \mathrm{~V} \\ & 3300 \mathrm{pF} / 50 \mathrm{~V} \\ & 47 \mu \mathrm{~F} / 315 \mathrm{~V} \\ & 0.1 \mu \mathrm{~F} / 50 \mathrm{~V} \\ & 0.1 \mu \mathrm{~F} / 50 \mathrm{~V} \end{aligned}$	

Power Factor Controller

Not Recommended for New Designs

Power factor Controller

Not Recommended for New Designs

