
Measuring Software Based
IEEE 1588/PTP Slave Accuracy

WHITE PAPER



1

The Problem With Measuring Computer Clock Time Accuracy
Generally speaking, accurately measuring the time inside a server or workstation is like trying
to measure the accuracy of a clock someone sets every day based on the noon church bell.
The daily adjustments to the local clock may be very well known. But how long it took for the
sound to travel from the bell to the ears of the one setting the clock is usually unknown.
Thus, the local clock may be relatively correct (precise), but accuracy (offset in time) from the
church bell is unknown due to the propagation delay of the sound waves.

What is needed to determine accuracy is a parallel path of measurement. In the case of the
church bell, by measuring the distance from the bell and by knowing the speed of sound, one
can compute a clock offset correction. To correctly measure the accuracy of a computer
clock, a measurement clock is needed that is placed very close to the computer clock and
that is far more accurate than the computer clock. It also cannot be subject to the same
errors as the computer clock.

Offset and Path Delay
The difference between the times on two clocks is known as the offset. In timekeeping we
strive to keep the offset below a particular value so that we can assign an accuracy value to
one of the clocks. Generally in synchronization schemes one clock is more accurate than the
other so the offset is relative to the more accurate clock.

The process of setting one clock to another is a matter of computing the offset, say, between
a PTP slave clock and a grandmaster clock. Low accuracy applications, like the church bell,
simply broadcast out the time from the master and the slaves set their clocks when they
receive it. The time the sound takes to travel from the master clock to the slave is called
delay, or path delay.

Symmetric and Asymmetric Delay
There are two main sources of error in transferring time from one clock to another: time
transfer delay and the errors associated with eliminating it. In PTP packet based networks,
timing packets are exchanged between the grandmaster and the slave for the purpose of
computing the time offset. If the packet exchanges were instantaneous then there would be
no delay and the offset could be computed perfectly. Also, if the packet exchange delay on the
master-to-slave path and slave-to-master paths were identical, the offset could again be
easily and precisely computed since the delays would cancel each other mathematically. The
case where path delay is the same both ways between master and slave is called symmetric
delay and time transfer over packet networks most often assumes symmetric delay.

Unfortunately, however, path delay is different between master-to-slave and slave-to-master
and this case is called asymmetric delay. Furthermore, not only is delay different along the
two paths, but the difference also varies. See Figure 1.

Measuring Software Based IEEE 1588/PTP Slave Accuracy

Network
delay

Time offset between clocks

Master Slave

Sync messages

sent on time

Sync messages

arrive with
variable delays

FIG 1 Timing messages sent from the master to the slave (and vice versa) experience variable delays
caused by the switches in the network and application delays leading to timing errors at the slave clock.

Abstract
This paper describes how to enable
a computer to accurately measure the
performance of a local clock steered by
an IEEE 1588 PTP software slave or NTP
client. It reviews the synchronization problem
and presents procedures for test setup,
calibration and clock measurement. The
results show that clock accuracy may not be
as good as one might think, due to factors
related to asymmetric path delays and
scheduling. Methods to improve clock
accuracy using a PTP slave are also
discussed.



2

In a simplified model, asymmetric delay adds a time offset correction error equal to one half
the difference in delay times. For example, if it took one second for the timing packet to go
from the slave to the master and three seconds on the reverse path, the offset computed by
the slave would be off by one second. Fast forward to computer hardware that is time
stamping packets that are being exchanged exactly every second between a master and a
slave with the master having 50 nanosecond timestamp accuracy. These timing packets
transit a LAN containing switches (or worse, routers) that may add asymmetric path delay in
the 10s to 100s of microseconds, which result in similar size time offset computation errors.

The Crux of The Timing Problem
PTP software slaves time stamp PTP event packets at the application layer of the server or
workstation operating system. The local clock offset is computed and the clock corrected. If
millisecond time accuracy is all that is desired, the work is likely done. Unfortunately, in high-
speed low latency networks, microseconds matter. And there are two key problems impeding
microsecond-level synchronization: 1) the asymmetric path delays contributed by the inter-
vening network between the PTP grandmaster and the PTP slave; and 2) the operating
system, network and application delays inside the computer.

A software based PTP slave program computes an offset and adjusts the local clock. Often the size of the
clock adjustment is mistaken for the clock accuracy, i.e., how far off the clock was before it was corrected
back to “perfect.” In fact, nothing could be further from the truth. The unknown asymmetric path delays
add uncertainty in the time offset calculations. This is especially true if there is a constant delay present
on one path that is not present on the other.

Measuring a Computer Clock
There are, however, clever ways to measure a local computer clock that mitigate both asym-
metric network delays and inside-the-computer delays. “Measure” in this case means
gauging the PTP software slave’s ability to correct the local clock.

Suppose, for example, there is a single PTP grandmaster source of time. The PTP slave
synchronizes the local computer clock to the grandmaster over the network. To create the
“parallel path” as mentioned above, a second very accurate hardware based clock card is
installed inside the computer and will also be synchronized to the grandmaster. This second
more accurate clock card will be used to measure the PTP steered local clock. In this appli-
cation the grandmaster can also measure the accuracy of the clock card installed inside the
computer. By doing this the clock card becomes a known, accurate measurement platform
from which to measure the PTP steered local clock.

The Test Setup
Figure 2 shows the test setup. A GPS referenced SyncServer S350 clock is the grandmaster.
This clock is accurate to 50 nanoseconds to UTC. The PTP software slave synchronizes over
the network to the grandmaster and steers the local computer clock (blue path). In parallel
(green path) is a high accuracy Symmetricom bc635PCIe clock card inserted into a PCIe slot
in the computer and also synchronized to the grandmaster.

In this case, the bc635PCIe card is connected via coaxial cables and synchronizes to a time
code signal output by the S350. A very small program is run on the computer that interfaces
to the bc635PCIe clock card, measures the local clock and saves the results. This local clock
measurement is made once per second over a long period of time to obtain a good character-
ization of the PTP software slave’s ability to steer the local clock.

Clock
check

software

PTP
software

steers
system
clock

Save
results

Computer under test,
measure once/second

PCIe clock card

Network

IEEE 1588 / PTP / LAN2
Synchronization
signal to clock card

Clock card 1PPS to Master
to check card accuracy

High Accuracy Testing of PTP or NTP Software Based Clock Clients
using PTP Grandmaster and Clock Card

FIG 2 The Test Setup



Verifying Measurement Accuracy
Most modern, high accuracy clocks output a once per second pulse called a 1PPS. This pulse
is created when the fractional seconds of the time in the clock are all zeros, otherwise known
as the “top of the second.” To compare two clocks you compare their respective 1PPS signals.
A counter, oscilloscope or in this case a time interval measurement built into the S350
SyncServer is used to measure the accuracy of the PCIe clock card. The simple setup involves
the 1PPS output of the bc635PCIe card connected to the 1PPS input of the S350 via coaxial
cable. In this demonstration the bc635PCIe clock card synchronized to the master to less than
380 nanoseconds, with an average offset of 149 nanoseconds. See Chart 1 below.

CHART 1 Clock Card Time Offset from Grandmaster Histogram

Measuring the Local Computer Clock
Figure 3 shows a simplified view of part of computer architecture between the clock card and
the CPU (green path), showing the Northbridge and Southbridge interconnects. The
bc635PCIe card connects to the PCIe bus in the Southbridge. The Southbridge connects to the
CPU via the Northbridge. The PTP slave software and the simple clock check software (CCS)1

run in the CPU. (The fastest, most modern server architectures configure these components
differently, but the fundamentals are the same).

Once per second, at the top of the second, the bc635PCIe card places an interrupt on the PCIe
bus to the CPU. In response to the interrupt the CCS program reads the local clock. Next, the
CCS reads the time from the bc635PCIe card. The two values are then saved to be compared
later and the measurement repeats at the top of the next second. Ideally, if the local clock is
perfectly synchronized to the S350 (or at least to within 380 nanoseconds), the local clock
time value read by the CCS program will be before the bc635PCIe clock time value based on
the order of the measurements (interrupt→ local clock read→ clock card read).

PTP Slave Clock Steering Test Results
Charts 2 and 3 show the effectiveness of the PTP software slave steering the local clock rela-
tive to the S350 grandmaster. These results are not meant to show how well the software PTP
slave can steer a local clock, but rather to show with some degree of certainty the accuracy of
the local clock relative to the grandmaster over time.

3

FIG 3 Location of the PCIe card/bus relative to
the CPU running software applications

CPU

Northbridge

Southbridge
PCIe SATA

IDEUSB

0

100

200

300

400

500

600

700

-1
80

-1
60

-1
40

-1
20

-1
00 -8
0

-6
0

-4
0

-2
0 0 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

32
0

34
0

36
0

38
0

N
um

be
r

of
M

ea
su

re
m

en
ts

Clock Card Time Offset From Grandmaster, nanoseconds

Clock Card to Grandmaster Accuracy Histogram
(7200 measurements)

1 Source code listing in the appendix



CHART 2 Local Clock Offset from Grandmaster

CHART 3 Local Clock Time Offset Histogram

The PTP software slave in this example is steering the local clock to better than 200
microseconds. Most of the time it is within 40 microseconds. Clearly the clock is moving
around a mean and there is likely some application preemption that is occasionally delaying
the reading of the time by the clock check software. This is explored further in the next
section.

4

Lo
ca

lC
lo

ck
O

ff
se

t,
m

ic
ro

se
co

nd
s

(32,000 samples)
Local Clock Offset Measurements

250

200

150

100

50

0

-50

-100
1

61
4

12
27

18
40

24
53

30
66

36
79

42
92

49
05

55
18

61
31

67
44

73
57

79
70

85
83

91
96

98
09

10
42

2
11

03
5

11
64

8
12

26
1

12
87

4
13

48
7

14
10

0
14

71
3

15
32

6
15

93
9

16
55

2
17

16
5

17
77

8
18

39
1

19
00

4
19

61
7

20
23

0
20

84
3

21
45

6
22

06
9

22
68

2
23

29
5

23
09

8
24

52
1

25
13

4
25

74
7

26
36

0
26

97
3

27
58

6
28

19
9

28
81

2
29

42
5

Samples, 1 second interval

-1
00 -9

0
-8

0
-7

0
-6

0
-5

0
-4

0
-3

0
-2

0
-1

0 0 10 20 30 40 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

21
0

22
0

10000

9000

8000

7000

6000

5000

4000

3000

2000

1000

0

N
um

be
r

of
M

ea
su

re
m

en
ts

Local Clock Offset Histogram
(32,000 samples)

Local Clock Offset, Microseconds

50

Measurement Set Statistics Microseconds

Maximum Offset 218

Minimum Offset -69

Average Offset 7

Standard Deviation 33

TABLE 1 Clock Offset Measurement Set Statistics



Measurement Error
Consider the order of the Clock Check Software program loop in Figure 4 (actual source code is
listed in the appendix).

FIG 4 Clock Check Software Loop

The interrupt is initiated on average within about 149 nanoseconds of the same exact time on
the S350 grandmaster. (The same clock the PTP slave is synchronizing to). The CCS program
responds to the interrupt, reads the local PTP slave steered clock and then reads the time
on the bc635PCIe clock card. Ideally if the local clock time is accurate the time read in step 2
(reading the local clock) should be before the time is read from the bc635PCIe card in step 3.

Since the interrupt is at the top of the second, the time read from the bc635PCIe card is the
duration of the entire clock check process. The value of this duration represents the worst-
case measurement error of the local clock being steered by the PTP slave. Charts 4 and 5
show the measurement duration for the data set.

CHART 4 Elapsed Measurement Duration, microseconds

5

bc635PCIe Clock Card

149 nanosecond accurate
interrupt at every
hh:mm:ss:000000000

Clock Check Software

1. On Interrupt...
2. Read local clock time
3. Read clock card time
4. Save data
5. Go to 1

PCIe bus

Interrupt

350

300

250

200

150

100

50

0

0 5000 10000 15000 20000 25000 30000 35000

El
ap

se
d

M
ea

su
re

m
en

tT
im

e,
m

ic
ro

se
co

nd
s

Samples, 1 second interval

Elapsed Measurement Time
(32,000 samples)



CHART 5 Measurement Duration Interval Histogram, microseconds.

Since it is not known exactly where in the measurement interval that the CCS program read
the local clock, there is uncertainty up to the duration of the whole measurement process.

Table 2 shows the duration statistics of the clock measurement process.

Generally speaking, two-thirds of all measurements were made in less than 112 microsec-
onds. This value is added to the offset from the bc635PCIe card to the master. Thus, the
measurement interval would generally be between 0.149 and 112 microseconds from the
SyncServer grandmaster. From other tests performed retrieving time from the bc635PCIe
clock card and reading time from the system clock, it is known that the time read of the local
clock likely happens in the first 30 microseconds of the measurement interval.2

This test case intentionally represents a very basic clock check example. Preemption and
scheduling are two very apparent sources of error in the measurements. Consider, however,
the outliers in Charts 4 and 5 as well as the apparent uniformity in delay intervals of the
elapsed measurement times. Clearly there are processes at work that are adding uniform
delays as well as spurious delays. These factors are beyond the scope of this paper.

Improving PTP Software Slave Clock Steering Results
Improving synchronization accuracy focuses on one primary area, reduction of asymmetric
path delays. The closer the path delays match, the more accurately the clocks can be
synchronized. The first step is the reduction in the number of elements that introduce delay.
These would be switches and routers. The fewer the hops and the faster the switches, the
smaller the path delay asymmetries will be.

Another solution is to use a faster computer running the PTP slave software. This reduces
preemptive delay duration and shortens the overall delay of many of the internal processes.
Additional techniques like processor affinity for the PTP software slave can also improve
local clock steering accuracy. Adjusting the PTP software slave priority may also be worth
exploring.

PTP Sync and Delay_Request rates can also be adjusted upwards in combination with
specialized algorithms to filter out packets that arrive over the network with excessive delay.
This involves a good deal of expertise in packet filtering and clock modeling, something that
Symmetricom does particularly well in its PTP slave implementations.

6

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Time Sample Duration Interval
(32,000 samples)

N
um

be
r

of
M

ea
su

re
m

en
ts

Measurement Time Interval, Microseconds

20 26 32 38 44 50 56 62 68 74 80 86 92 98 10
4

11
6

12
2

12
8

13
4

14
0

14
6

15
2

15
8

16
4

17
0

17
6

18
2

18
8

19
4

20
0

20
6

21
2

21
8

22
4

23
0

23
6

24
2

24
8

25
4

26
0

26
6

27
2

28
4

29
0

2 Using the time stamp counter (TSC) as a relative timescale, reading the local clock is about 3x speed of reading
the time over the 32 bit bus to the clock card.

Measurement Duration
Statistics Microseconds

Maximum Duration 287

Minimum Duration 27

Average Duration 78

Standard Deviation 34

TABLE 2 Measurement Duration Statistics



Conclusion
The objective of this test was to demonstrate a technique of how to measure a local clock being
steered by a PTP software slave. This same test technique is also applicable to a clock steered
by NTP. The test results reveal not only the general sync effectiveness range of the PTP slave
software, but also issues surrounding the transfer of precise time. Time transfer asymmetries,
process preemption and scheduling are all apparent factors that result in time synchronization
errors. All this of course is relative to the desired clock accuracy at the slave computer. After
conducting a test like this one might find the accuracy is perfectly fine, or not. The beauty of
such a test is that it forms the basis for further testing and refinements in improving clock
synchronization accuracy.

Appendix: Test Setup
1. PTP Grandmaster: Symmetricom SyncServer S350 referenced to GPS; IEEE 1588 Option
enabled; configured for the IEEE-1588 Annex J, Default Profile; Sync rate 4 Sync messages per
second. 1PPS from bc635PCIe card measured against 1PPS of master using Time Interval
Measurement function in the S350 (part of the PTP Option for the S350).

2. Network: Netgear DS108 hub.

3. Slave Computer: CPU Intel i7 @ 2.8 GHz, Quad-core, 4 GB Ram

4. Slave Software: Sourceforge PTPd IEEE 1588 v2 daemon, configured for 4 delay_requests per
second.

5. Bus Card: Symmetricom b635PCIe PCI Express Time & Frequency Processor; synchronized
via IEEE 1344 DCLS time code via coaxial cable. Symmetricom freeware SDK/driver for Linux for
bc635PCIe.

6. Clock check software: custom written, see below for source code.

7



Appendix: Computer Clock Check Program

// Filename: ppsTime.c

#include "bcuser.h"
#include <stdio.h>
#include <sys/time.h>
#include <signal.h>

struct timeval timeP;
BC_PCI_HANDLE hBC_PCI;
DWORD major;
DWORD minor;
WORD nano;
BYTE stat2;
FILE * outFile;

void intHandler(int sig){
signal(sig, SIG_IGN);
printf("Stopping\n");
fclose(outFile);
bcStopPci(hBC_PCI);
exit(0);

}

void bcIntHandlerRoutine(BC_PCI_HANDLE hBC_PCI, DWORD dwSource){
gettimeofday(&timeP, NULL);
bcReadBinTimeEx(hBC_PCI, &major, &minor, &nano, &stat2);
fprintf(outFile,"%lu,.%06u,.%06u%03u\n", timeP.tv_sec, timeP.tv_usec,

minor, nano);
fflush(outFile);

}

int main(int argc, char* argv[]){
if (argc < 2){
printf("Usage: %s fileName [runtime(seconds)]\n", argv[0]);
return 1;

}
char * filename = argv[1];
int runTime = 0;
if (argc > 2)
runTime = atoi(argv[2]);

hBC_PCI = bcStartPci();
if (!hBC_PCI){
printf("Error Opening Device Driver\n");
return 1;

}
printf("Device Open\n");
signal(SIGINT, intHandler);

gettimeofday(&timeP, NULL);
bcReadBinTimeEx(hBC_PCI, &major, &minor, &nano, &stat2);

printf("Setting input to timecode 1344 DCLS\n");
bcSetMode(hBC_PCI, MODE_IRIG);
bcSetTcInEx(hBC_PCI, TCODE_IEEE, TCODE_IRIG_SUBTYPE_NONE);

printf("Opening output file: %s\n", filename);
if (!(outFile = fopen(filename, "w"))){
printf("Unable to open output file\n");
return 1;

}
fprintf(outFile, "Sys Major,Sys Minor,IRIG Minor\n");

bcStartIntEx(hBC_PCI, bcIntHandlerRoutine, INTERRUPT_1PPS);

bcSetInt(hBC_PCI, INTERRUPT_1PPS);
if (argc >2){
printf("Running for %d seconds\n", runTime);
sleep(runTime);

} 8



©2010 Symmetricom. Symmetricom and the Symmetricom logo are registered trademarks of Symmetricom, Inc. All specifications subject to
change without notice. WP/Measuring Software Based IEEE 1588/PTP Slave Accuracy/12170/PDF

SYMMETRICOM, INC.

2300 Orchard Parkway
San Jose, California
95131-1017
tel: 408.433.0910
fax: 408.428.7896
info@symmetricom.com
www.symmetricom.com

else{
printf("Running until Ctrl-C\n");
while (1);

}

fclose(outFile);
bcStopPci(hBC_PCI);
return 0;

}

End Notes
Time Interval is the elapsed time between two events. In time and frequency metrology, time
interval is usually measured in small fractions of a second, such as milliseconds, microsec-
onds, or nanoseconds.[1]. A time interval measurement is a measurement of the elapsed
time between some designated START phenomena and a later STOP phenomena. [2]

In this application, the Symmetricom SyncServer S350 is able to perform a time interval
measurement. The START time is the on-time internal 1PPS of the S350 referenced to GPS
and was accurate to 50 nanoseconds to UTC. The STOP phenomenon was the 1PPS received
from the PCIe slave. The 1PPS from each clock is at the “top of the second” (no fractional
seconds) and is considered the on-time marker for the clock and useful for time offset
calculations. Since the slave is referenced to the master, the time interval measurement is
an indication of how accurately the slave can be synchronized to the master over the
network. These measurements are made every second with a statistical analysis performed
on a collected data set.

[1] Time & Frequency Division website (tf.nist.gov)

[2] Fundamentals of Time Interval Measurements, Application Note 200-3, Hewlett Packard


