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Ensuring that new networked
products, such as routers, gateways
or DSLAMs (digital-subscriber-line-

access multiplexers) meet stringent tim-
ing specifications usually requires a spe-
cialized jitter/wander generator. As a
substitute, you can use a standard
function generator equipped with PM
(phase modulation) or FM (frequency
modulation) to measure jitter and wan-
der tolerance. This Design Idea describes
how to convert PM and FM parameters
(phase deviation, frequency deviation,
and modulating frequency) into jitter/
wander parameters—amplitude in UIs
(unit intervals) and frequency.

Network-communications engineers
use the terms “jitter” and “wander” to
describe phase noise in digital signals.
“Wander” refers to phase noise at fre-
quencies below 10 Hz, and “jitter”refers to
phase noise at frequencies at or above 10
Hz. Defining phase noise requires specify-
ing both its amplitude and its frequency.

As Figure 1 shows, if you observe a
clock with phase noise on an oscilloscope
triggered by a clock of the same frequen-
cy but without phase noise, the rising and
falling edges of the noisy clock appear
blurred—that is, not clearly defined in
time. If the clock has low frequency-
phase noise (wander), the rising and

falling edges move back and forth at a
rate equal to the wander frequency. The
range of this movement defines the jit-
ter/wander amplitude.

Figure 2 illustrates an instance of sine-
wave-shaped FM of jitter or wander. You
can express jitter or wander amplitude in
UIs; one UI is equal to the clock period.
For example, the amplitude of the jit-
ter/wander in Figure 2 is 0.25 UI p-p.

You can use a signal generator to gen-
erate waveform jitter and wander by con-
necting a low-frequency signal source to
the signal generator’s PM or FM input.
Equation 1 applies to both FM and PM
and describes the general form of an an-

gle-modulating signal:
s(t)�Acos[2�f

C
t��(t)].

Although in digital communications,
s(t) usually approximates a square-wave
function, using a square wave instead of
a sine wave complicates the math but
doesn’t affect the process of angle mod-
ulation. For simplicity, this Design Idea
uses a sine-wave function for s(t).

For PM, the phase �(t) in Equation 1
is proportional to the modulation signal:

�(t)�D
PM

cos(2�f
m

t),
where D

PM
is the phase deviation (peak

variation of the phase), and f
m

represents
the modulating frequency, which is also
the jitter/wander frequency. The rela-

Use an off-the-shelf signal source 
as a jitter/wander generator 
Slobodan Milijevic, Zarlink Semiconductor

The effects of jitter or wander appear as position modulation of a pulse’s leading
and trailing edges.
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Applying an external signal source to a signal generator’s phase- or frequency-modulation input
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tionship between phase deviation and jit-
ter/wander amplitude is straightforward,
and you can obtain it from:

JITTER/WANDER[UI p-p]��
D

PM
/180��, (3)

where D
PM

has units of radians in com-
munications theory, but, for convenience,
most signal generators specify units of
degrees instead.

For FM, the phase �(t) in Equation 1 is
proportional to the integral of modulating
signal.

where D
FM

is the frequency deviation
(peak variation of the frequency) and f

m

is the modulating frequency. The FM
modulating frequency is the same as the
jitter/wander frequency. Equation 5 yields
the jitter/wander amplitude:

which derives from Equation 6:

Therefore, the peak-to-peak deviation
of �(t) is:

in which the factor of 2 originates from
the peak-to-peak amplitude of a sine-
wave function. To get jitter/wander in
peak-to-peak unit intervals, divide Equa-
tion 7 by the period of the sine-wave
function, 2�. Thus, you get Equation 6,
which is valid only when the modulating
signal comprises a sine wave because the
integral of a sine wave is also a sine-wave
function shifted in phase. Fortunately,
most jitter/wander-tolerance tests almost

exclusively use sine-wave modulation.
Some signal generators specify modu-

lation in phase and frequency span in-
stead of phase and frequency deviation.
For PM, the span is the peak-to-peak
variation of the phase, and, for FM, the
span is the peak-to-peak variation of the
frequency. That is, the span equals twice
the deviation for both PM and FM. In
this case, the jitter/wander amplitude for
PM is:

and it is:

for FM.�

Given the high cost of electrical
power, replacing a conventional
on/off temperature control with a

proportional controller can often save
energy and money. Figure 1 shows a low-
cost, high-efficiency, time-proportional
temperature controller for a residential
water heater. An Analog Devices ADT14,

IC
1
, serves multiple functions as a tem-

perature sensor, quad-setpoint, pro-
grammable analog temperature monitor
and controller. Resistors R

1
, R

2
, R

3
, R

4,
and

R
5
adjust desired temperature at setpoints

SETP1, SETP2, SETP3, and SETP4,
which IC

1
compares with the actual tem-

perature from its internal sensor. The

ADT14’s active-low open-collector out-
puts drive Input Port A of IC

2
, an 8-bit

Motorola/Freescale 68HC908QT4 mi-
crocontroller that provides 4 kbytes of
flash memory, 128 bytes of RAM, and an
on-chip clock oscillator.

Available at EDN’s online version of
this Design Idea at www.edn.com, List-
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Temperature controller saves energy
Tito Smailagich, ENIC, Belgrade, Yugoslavia

This proportional temperature controller features a minimal parts count.F igure  1
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ing 1 contains commented assembly-lan-
guage software. When you load it into the
microcontroller’s flash memory, the soft-
ware provides the time-proportional
control algorithm. When IC

1
’s OUT1,

OUT2, OUT3, and OUT4 outputs are in-
active, IC

2 
switches its output PTA4 to a

totally on-state, 100% duty cycle for max-
imum heating. Listing 2 at the Web ver-
sion of this Design Idea contains an as-
sembled version of the software, and
Listing 3 presents the hex code for pro-
gramming IC

2
.

When IC
1
’s OUT1 output is active, IC

2

produces a 75%-duty-cycle output on
PTA

4
. In similar fashion, when IC

1
’s

OUT2 output goes active, IC
2

produces
a 50%-duty-cycle output on PTA4

,
, and

when IC
1
’s OUT3 output goes active, IC

2

produces a 25%-duty-cycle output on

PTA
4
. When IC

1
’s OUT4 output goes ac-

tive, IC
1

disables the output on PTA4 to
produce a totally off state (0% duty cy-
cle). Table 1 summarizes the relationship
of IC

2
’s inputs and output duty cycle.

To minimize component count, IC
2
’s

internal oscillator generates a 12.8-MHz
clock that divides to produce a sample
pulse whose basic width is 0.1 sec for each
1% of output on-time. One cycle of out-
put comprises 100 samples for a total du-
ration of 10 sec. Thus, for a 25% duty cy-

cle, IC
2
’s output PTA4 generates a 2.5-sec

on interval followed by a 7.5-sec off in-
terval. One section of an open-collector
hex inverter, IC

3A
, a 74LS06, drives opto-

coupler IC
4
, an MOC3043, which fea-

tures an internal zero-crossing circuit and
pilot triac. Power triac Q

1
, a TIC263M

rated for 600V and 25A, controls appli-
cation of power to the water heater’s 2-
kW resistive heating element. For best re-
sults, place IC

1
in close thermal contact

with the water heater’s inner tank.�

Calculator program finds 
closest standard-resistor values
Francesc Casanellas, Aiguafreda, Spain

Although it may not appear obvious
to newcomers to the electronics-de-
sign profession, components’ values

follow one of several progressions that di-
vide a decadewide span into equally
spaced increments on a logarithmic scale.
For example, when you plot the values of
1, 2.2, and 4.7 on a logarithmic scale, they
divide the range 1 to 10 into three rough-
ly equal increments (1... 2... 5). To meet re-
quirements for greater precision, resistor
manufacturers offer parts in several addi-
tional series. The most precise series di-
vide a decade into 24, 48, or 96 increments
by computing 10n/m ,where n�1... (m�1),

and m�24, 48, or 96, and then rounding
the values to two or three digits. The re-
sults are the R

24
, R

48
, and R

96
series and re-

spectively contain 24, 48, or 96 values per
decade.

You can use a Hewlett-Packard HP-48
or HP-49 calculator and one of the fol-
lowing programs written in RPN (Re-
verse-Polish Notation) to compute the
nearest standard value that’s closest to a
required value.You enter a required resis-
tor value, and the program returns the
closest higher or lower value in the select-
ed series. Table 1 lists a few examples.

Each program acts as an operator by
processing the first line of
the calculator’s stack and re-
turning the new value in the
same line of the stack. The
R

48
and R

96
series are math-

ematically exact, and their
programs consist of only a
single line of code. The List-

ings at the Web version of this Design Idea
at www.edn.com show the code. The val-
ues of the older R

24
series are not as strict-

ly rounded,and the program is thus some-
what more complex.

Note that the values of other compo-
nents, such as capacitors, inductors, and
zener diodes, also follow preferred-value
series, making these programs universal-
ly applicable. You can view an earlier ver-
sion of a standard-value calculator for
IBM-compatible PCs at EDN’s online ver-
sion of Design Ideas. David Kirkby of the
Department of Medical Physics, Univer-
sity College London, UK, wrote the pro-
gram in C. EDN first presented it, “Resis-
tance calculator yields precise values,”
in the Aug 3, 1995, issue.You can read the
instructions at www.edn.com/archives/
1995/080395/16di5.htm. Note that cer-
tain portions of the software may require
rewriting for better operation on today’s
PCs.�

TABLE 1—INPUT VALUE IN SELECTED 
SERIES RETURNS A CLOSEST VALUE OF:
47.8 R24 47
490 R24 510
12.2 R96 12.1
12.3 R96 12.4

TABLE 1—IC2’S LOGIC STATES VERSUS OUTPUT DURATIONS
PTA3 PTA2 PTA1 On (%) Off (%) On (sec) Off (sec)

1 1 1 100 0 10 0
1 1 1 75 25 7.5 2.5
1 1 0 50 50 5 5
1 0 0 25 75 2.5 7.5
0 0 0 0 100 100 10
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Reducing low-frequency (1/f)
noise generated by an IC voltage
reference can prove difficult. In the-

ory, adding a lowpass filter to a refer-
ence’s output reduces noise. In practice,
a lowpass RC filter for suppression of
noise frequencies below 10 Hz requires
large values of series resistance and shunt
capacitance. Unfortunately, a high-value
series resistor introduces resistance errors
and thermal noise, and a shunt capaci-
tor’s leakage resistance forms an unpre-
dictable and unstable shunt path. To-
gether, the two components form a noisy
and temperature-dependent voltage di-
vider that directly affects the reference’s
accuracy and long-term stability. In ad-
dition, pc-board surface contaminants
can add yet another possible leakage path
and error source.

You can stack multiple voltage refer-
ences in series to reduce their 1/f noise.
The references’ dc outputs add linearly,
and their uncorrelated internal noise
sources add geometrically. For example,
consider a stack of four voltage refer-
ences, each comprising a dc reference
source, V

REF
, in series with a random-

noise generator, V
NOISE

. Adding four ref-
erence sources produces the following
outputs: V

REFTOTAL
�4�V

REF
, and V

NOISE-

TOTAL
��4�(V

NOISE
)2�2�V

NOISE
. The

original ratio of noise voltage to dc ref-
erence voltage thus divides in half.

Figure 1 illustrates a method of adding
multiple references to produce a single,
less noisy reference voltage. The resistors
are parts of a highly stable metal-film
network, and buffer amplifier IC

5
offers

low noise, low input-offset voltage, and
low offset-temperature coefficients.

Tables 1 and 2 present the noise volt-
ages that result from stacking four each
of two types of 2.5V references. Each
table shows the 0.1- to 10-Hz noise volt-
age for each of the four references,
IC

1
through IC

4
, and for the com-

bination. Note that the dispersion in the
ratios of rms to peak-to-peak values re-
lates to subjectivity in the method of
measuring the values. In addition to low-
er 0.1- to 10-Hz noise, the circuit also re-
duces long-term drift of the reference
voltage.�

Four 2.5V references, IC1 through IC4, produce 10V. Resistors R1 and R2 form a voltage divider that
reduces the 10V output to 2.5V and lowers the output-noise voltage by half. Buffer amplifier IC5

isolates the reference circuit from the load.
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Reduce voltage-reference output noise by half
Alfredo H Saab and Steve Logan, Maxim Integrated Products Inc, Sunnyvale, CA

TABLE 1—NOISE VOLTAGES MEASURED IN FIGURE 1 
USING FOUR 2.5V MAX6037 VOLTAGE REFERENCES

Measurement points Noise Noise
(		V rms) (		V p-p)

Reduced noise output 1 10
(op amp’s output to V��)
Across Reference A (IC1) 1.9 20
(OUT to GND)
Across Reference B (IC2) 1.6 19
(OUT to GND)
Across Reference C (IC3) 1.7 20
(OUT to GND)
Across Reference D (IC4) 2.7 30
(OUT to GND)

TABLE 2—NOISE VOLTAGES MEASURED IN FIGURE 1 
USING FOUR 2.5V MAX6143 VOLTAGE REFERENCES

Measurement points Noise Noise
(		V rms) (		V p-p)

Reduced noise output 0.27 2.2
(op amp’s output to V��)
Across Reference A (IC1) 0.52 4.7
(OUT to GND)
Across Reference B (IC2) 0.6 4.8
(OUT to GND)
Across Reference C (IC3) 0.5 4.3
(OUT to GND)
Across Reference D (IC4) 0.55 4.7
(OUT to GND)
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Common designs for touch switch-
es detect a decrease in resistance
when a user’s fingertip either con-

nects a contact to the circuit’s common
ground or supplies an injection of 60-Hz
ac voltage, resulting from immersion in
the electrostatic field that nearby power
lines radiate. But what if no nearby pow-
er lines exist and the equipment operates
from a battery source, such as in an au-
tomotive application, or if a galvanic con-
tact to circuit common is unavailable? 

The circuit shown in Figure 1 operates
by sensing an increase in capacitance that
results from touching a contact. Al-
though a straightforward design might
require a complex circuit, the design

shown offers a low-cost approach that
uses few components.

In Figure 1, IC
1A

operates as a square-
wave oscillator at approximately 150 kHz.
The oscillator’s output gets ac-coupled to
potentiometer R

2
that sets the drive level

and, hence, the sensitivity for the touch
pad. Applying negative excursions of sev-
eral volts of square-wave signal to its gate
repetitively drive N-channel JFET Q

1

from conduction into cutoff. An approx-
imation of the square wave swinging
from 0 to 12V appears at Q

1
’s drain. A

peak detector circuit formed by D
1
, R

7

and C
4

provides sufficient dc voltage to
force IC

1B
’s output to a logic low.

However, if someone touches the

touch pad, any added capacitance to
ground or circuit common reduces the ac
drive at the FET’s gate, and Q

1
continu-

ously conducts. The square-wave voltage
applied to D

1
decreases. The voltage on

C
4

drops below the logic threshold, and
IC

1B
’s output goes high.You can adjust R

2

to set sensitivity and compensate for de-
vice-to-device variations in the FET’s
pinch-off voltage. For novelty or nostal-
gia’s sake, you can use one-half of a
12AX7 dual triode as an oscillator and the
remaining half in place of Q

1
. Selecting

plate resistors allows operation with a
12V plate power supply.�
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Touch switch needs no dc return path
Brad Albing, Philips Medical Systems Inc, Cleveland, OH

A low-cost touch-switch interface uses three Schmitt trigger hex inverters and a single JFET per channel.




