

Libero® SoC v2022.3

SmartFusion® 2 MSS DDR Controller Configuration User Guide

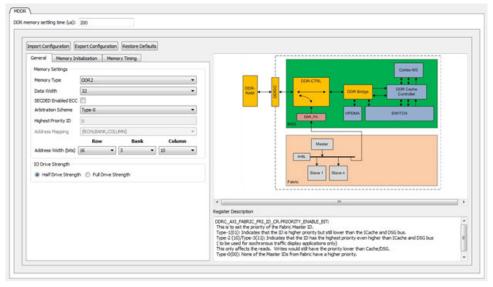
Introduction

The SmartFusion® 2 MSS has an embedded DDR controller. This DDR controller is intended to control an off-chip DDR memory. The MDDR controller can be accessed from the MSS as well as from the FPGA fabric. In addition, the DDR controller can also be bypassed, providing an additional interface to the FPGA fabric (Soft Controller Mode (SMC)).

To fully configure the MSS DDR controller, you must:

- Select the datapath using the MDDR Configurator.
- 2. Set the register values for the DDR controller registers.
- Select the DDR memory clock frequencies and FPGA fabric to MDDR clock ratio (if needed) using the MSS CCC Configurator.
- 4. Connect the controller's APB configuration interface as defined by the Peripheral Initialization solution.

You can also build your own initialization circuitry using standalone (not by System Builder) Peripheral Initialization. See SmartFusion2 DDR Controller and Serial High Speed Controller Standalone Initialization Methodology.


Table of Contents

Intr	oduct	ion	1
1.	MDE	DR Configurator	3
	1.1.	Memory Settings	3
	1.2.	Fabric Interface Settings	3
	1.3.	I/O Drive Strength (DDR2 and DDR3 only)	4
	1.4.	I/O Standard (LPDDR only)	4
	1.5.	I/O Calibration (LPDDR only)	4
2.	MDE	DR Controller Configuration	5
	2.1.	MSS DDR Control Registers	5
	2.2.	Importing DDR Configuration Files	9
	2.3.	Exporting DDR Configuration Files	10
	2.4.	Firmware	11
	2.5.	MSS DDR Configuration Path	12
3.	Port Description		13
	3.1.	DDR PHY Interface	13
	3.2.	Fabric Initiator AXI Bus Interface	14
	3.3.	Fabric Initiator AHB0 Bus Interface	15
	3.4.	Soft Memory Controller Mode AXI Bus Interface	17
	3.5.	Soft Memory Controller Mode AHB0 Bus Interface	19
4.	Revi	ision History	20
Mic	crochip	p FPGA Support	21
Mic	crochip	p Information	21
	The	Microchip Website	21
	Prod	duct Change Notification Service	21
	Cust	tomer Support	21
	Microchip Devices Code Protection Feature		21
	Lega	al Notice	22
	Trad	lemarks	22
	Qual	lity Management System	23
	Worl	Idwide Sales and Service	24

1. MDDR Configurator

The MDDR Configurator is used to configure the overall datapath and the external DDR Memory Parameters for the MSS DDR controller.

Figure 1-1. MDDR Configurator Overview

The **General** tab sets your **Memory and Fabric Interface** settings, as shown in the preceded figure.

1.1 Memory Settings

Enter the DDR Memory Settling Time. The DDR memory requires this time to initialize. The default value is 200 μ s. See the DDR Memory datasheet for the correct value to enter.

Use **Memory Settings** to configure your memory options in the MDDR.

- Memory Type: LPDDR, DDR2, or DDR3.
- Data Width: 32-bit, 16-bit, or 8-bit.
- · SECDED Enabled ECC ON or OFF.
- Arbitration Scheme: Type-0, Type -1, Type-2, or Type-3.
- Highest Priority ID: Valid values are from 0 through 15.
- Address Width (bits): See the DDR Memory datasheet for the number of row, bank, and column address bits
 for the LPDDR, DDR2, or DDR3 memory you use. select the pull-down menu to choose the correct value for
 rows/banks/columns as per the datasheet of the LPDDR, DDR2, or DDR3 memory.

Important: The number in the pull-down list refers to the number of address bits, not the absolute number of rows, banks, and columns. For example, if your DDR memory has 4 banks, select 2 ($2^2 = 4$) for banks. If your DDR memory has 8 banks, select 3 ($2^3 = 8$) for banks.

1.2 Fabric Interface Settings

By default, the hard Arm® Cortex®-M3 processor is setup to access the DDR Controller. You can also allow a fabric Initiator to access the DDR Controller by enabling the Fabric Interface Setting check box. In this case, you can choose one of the following options:

Use an AXI Interface: The fabric Initiator accesses the DDR Controller through a 64-bit AXI interface.

- Use a Single AHBLite Interface: The fabric Initiator accesses the DDR Controller through a single 32-bit AHB interface.
- · Use two AHBLite Interfaces: Two fabric Initiator access the DDR Controller using two 32-bit AHB interfaces.

The configuration view (Figure 1-1) updates according to your Fabric Interface selection.

1.3 I/O Drive Strength (DDR2 and DDR3 only)

Select one of the following drive strengths for your DDR I/Os:

- · Half Drive Strength
- · Full Drive Strength

Libero® SoC sets the DDR I/O Standard for your MDDR system based on your DDR Memory type and I/O Drive Strength as shown in the following table.

Table 1-1. I/O Drive Strength and DDR Memory Type

DDR Memory Type	Half Strength Drive	Full Strength Drive
DDR3	SSTL15I	SSTL15II
DDR2	SSTL18I	SSTL18II
LPDDR	LPDRI	LPDRII

1.4 I/O Standard (LPDDR only)

Select one of the following options:

- LVCMOS18 (Lowest Power) for LVCMOS 1.8V I/O standard. Used in typical LPDDR1 applications.
- LPDDRI

Important: Before you choose this standard, make sure that your board supports this standard. You must use this option when targeting the M2S-EVAL-KIT or the SF2-STARTER-KIT boards. LPDDRI I/O standards require that an IMP_CALIB resistor is installed on the board.

1.5 I/O Calibration (LPDDR only)

Choose one of the following options when using LVCMOS18 I/O standard:

- ON
- OFF (Typical)

Calibration ON and OFF optionally controls the use of an I/O calibration block that calibrates the I/O drivers to an external resistor. When OFF, the device uses a preset I/O driver adjustment.

When ON, this requires a 150 Ω IMP CALIB resistor to be installed on the PCB.

This is used to calibrate the I/O to the PCB characteristics. However, when set to ON, a resistor must be installed or the memory controller will not initialize.

For more information, see AC393: SmartFusion2 and IGLOO2 Board Design Guidelines Application Note and UG0446: SmartFusion2 and IGLOO2 FPGA High Speed DDR Interfaces User Guide.

MDDR Controller Configuration

2. MDDR Controller Configuration

When you use the MSS DDR Controller to access an external DDR Memory, the DDR Controller must be configured at runtime. This is done by writing configuration data to dedicated DDR controller configuration registers. This configuration data is dependent on the characteristics of the external DDR memory and your application. This section describes how to enter these configuration parameters in the MSS DDR controller configurator and how the configuration data is managed as part of the overall Peripheral Initialization solution.

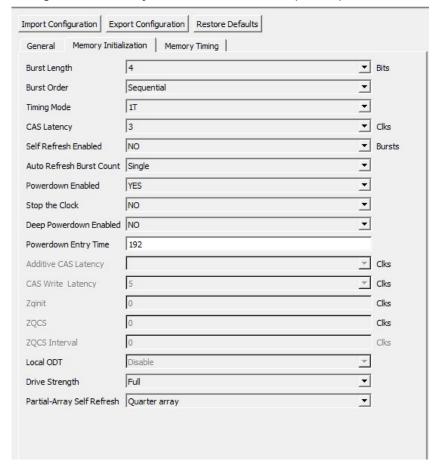
2.1 MSS DDR Control Registers

The MSS DDR Controller has a set of registers that need to be configured at runtime. The configuration values for these registers represent different parameters, such as DDR mode, PHY width, burst mode, and ECC. For complete details about the DDR controller configuration registers, see SmartFusion2 DDR Controller and Serial High Speed Controller Initialization Methodology.

2.1.1 MDDR Registers Configuration

Use the **Memory Initialization** (Figure 2-1, Figure 2-2, and Figure 2-3), and **Memory Timing** (Figure 2-4) tabs to enter parameters that correspond to your DDR Memory and application. Values you enter in these tabs are automatically translated to the appropriate register values. When you click a specific parameter, its corresponding register is described in the **Register Description** pane (lower portion in Figure 1-1).

2.1.2 Memory Initialization


The **Memory Initialization** tab allows you to configure the ways you want your LPDDR, DDR2, or DDR3 memories initialized. The menu and options available in the **Memory Initialization** tab vary with the type of DDR memory (LPDDR, DDR2, or DDR3) you use.

See the DDR memory datasheet when you configure the options.

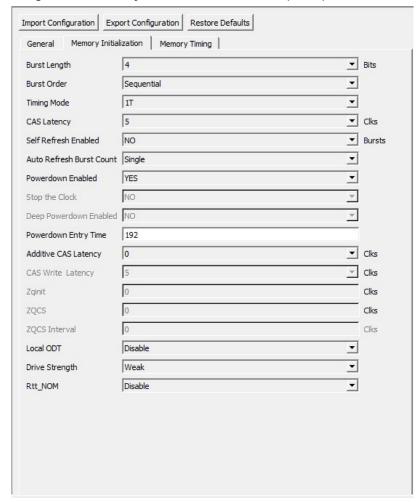
When you change or enter a value, the register description pane gives you the register name and register value that is updated. Invalid values are flagged as warnings.

Following figures show the **Initialization** tab for LPDDR, DDR2, and DDR3, respectively.

Figure 2-1. MDDR Configuration—Memory Initialization Parameters (LPDDR)

Timing Mode

Select 1T or 2T Timing mode. In 1T (the default mode), the DDR controller can issue a new command on every clock cycle. In 2T timing mode, the DDR controller holds the address and command bus valid for two clock cycles. This reduces the efficiency of the bus to one command per two clocks, but it doubles the amount of setup and hold time.

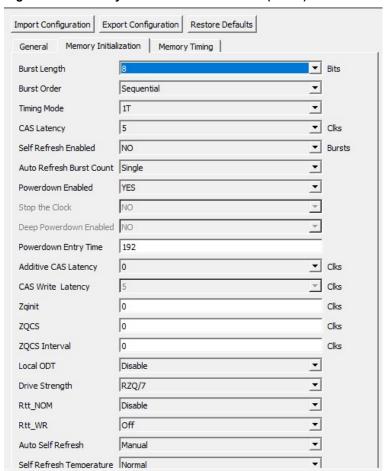

Partial-Array Self Refresh (LPDDR only)

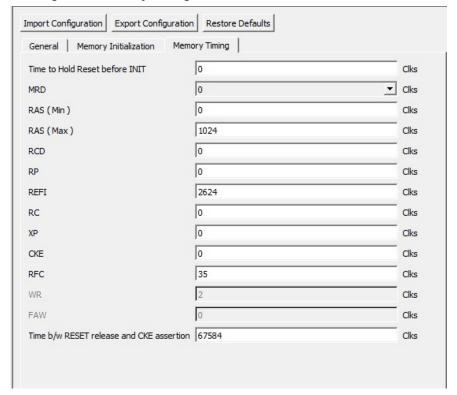
This feature is for power-saving for the LPDDR. Select one of the following for the controller to refresh the amount of memory during a self refresh:

- Full array: Banks 0, 1, 2, and 3.
- Half array: Banks 0 and 1.
- · Quarter array: Bank 0.
- One-eighth array: Bank 0 with row address MSB = 0.
- One-sixteenth array: Bank 0 with row address MSB and MSB-1 both equal to 0.

For all other options, refer to your DDR Memory datasheet when you configure the options.

Figure 2-2. MDDR Configuration—Memory Initialization Parameters (DDR2)




Figure 2-3. MDDR Configuration—Memory Initialization Parameters (DDR3)

2.1.3 Memory Timing

This tab allows you to configure the **Memory Timing** parameters. See the datasheet of your LPDDR, DDR2, or DDR3 memory when configuring the **Memory Timing** parameters.

When you change or enter a value, the register description pane gives you the register name and register value that is updated. Invalid values are flagged as warnings.

Figure 2-4. MDDR Configuration Memory Timing Tab

Important: The settling time must be added to the desired RESET release to CKE assertion time.

2.2 Importing DDR Configuration Files

In addition to entering DDR Memory parameters using the **Memory Initialization** and **Timing** tabs, you can import DDR register values from a file. To do so, click the **Import Configuration** button and navigate to the text file containing the DDR register names and values. The following figure shows the import configuration syntax.

Figure 2-5. DDR Register Configuration File Syntax

```
ddrc_dyn_soft_reset_CR
                                  0x00 ;
ddrc dyn refresh 1 CR
                                  0x27DE :
ddrc dyn refresh 2 CR
                                  0x030F
ddrc dyn_powerdown_CR
                                  0x02 ;
ddrc dyn debug CR
                                  0x00 ;
ddrc ecc data mask CR
                                  0x0000 ;
ddrc addr map col_1_CR
                                  0 \times 33333
ddrc addr map col 3 CR
                                  0x3300
ddrc init 1 CR
                                  0x0001
ddrc cke rstn cycles CR1
                                  0x0100 ;
ddrc cke rstn cycles CR2
                                  8000x0
ddrc init emr2 CR
                                  0x0000
ddrc init emr3 CR
                                  0x0000
ddrc dram bank act timing CR
                                  0x1947;
```


Important: If you choose to import register values rather than entering them using GUI, you must specify all necessary register values. See SmartFusion2 and IGLOO2 FPGA High Speed DDR Interfaces User Guide the for details.

2.3 Exporting DDR Configuration Files

You can also export the current register configuration data into a text file. This file will contain register values that you imported (if any) as well as those that were computed from GUI parameters you entered in this dialog.

If you want to undo changes you have made to the DDR register configuration, you can do so with Restore Default. **Note:** DDR configuration files deletes all register configuration data and you must either re-import or re-enter this data. The data is reset to the hardware reset values.

2.3.1 Generated Data

Click **OK** to generate the configuration. Based on your input in the **General**, **Memory Timing**, and **Memory Initialization** tabs, the MDDR Configurator computes values for all DDR configuration registers and exports these values into your firmware project and simulation files. The exported file syntax is shown in the following figure.

Figure 2-6. Exported DDR Register Configuration File Syntax

```
# Exported: 2013-Sep-02 05:07:16
# Libero DDR Configurator GUI Version = 2.0
# DDR Controller Type = DDR2
# Bus Width = 32-bits
# Memory Bandwidth = 200 Mbps
# Total Bandwidth = 6400 Mbps
# Validation Status:
# Target Device Manufacturer:
# Target Device:
# User Comments:
DDRC ADDR MAP BANK CR.REG DDRC ADDRMAP BANK B2
                                                                                      0 xa
DDRC_ADDR_MAP_BANK_CR.REG_DDRC_ADDRMAP_BANK_B1
                                                                                      0xa
DDRC_ADDR_MAP_BANK_CR.REG_DDRC_ADDRMAP_BANK_BO
                                                                                      0 xa
DDRC ADDR MAP COL 1 CR.REG DDRC ADDRMAP COL B7
                                                                                      0x3
DDRC_ADDR_MAP_COL_1_CR.REG_DDRC_ADDRMAP_COL_B4
                                                                                      0x3
DDRC_ADDR_MAP_COL_1_CR.REG_DDRC_ADDRMAP_COL_B3
                                                                                      0x3
DDRC ADDR MAP COL 1 CR.REG DDRC ADDRMAP COL B2
                                                                                      0x3
DDRC_ADDR_MAP_COL_2_CR.REG_DDRC_ADDRMAP_COL_B11
                                                                                      Oxf
DDRC_ADDR_MAP_COL_2_CR.REG_DDRC_ADDRMAP_COL_B10
                                                                                      0xf
DDRC ADDR MAP COL 2 CR.REG DDRC ADDRMAP COL B9
                                                                                      0xf
DDRC ADDR MAP COL 2 CR.REG DDRC ADDRMAP COL B8
                                                                                      0x3
DDRC_ADDR_MAP_COL_3_CR.REG_DDRC_ADDRMAP_COL_B6
                                                                                      0x3
DDRC ADDR MAP COL 3 CR.REG DDRC ADDRMAP COL B5
```

2.4 **Firmware**

When you generate the SmartDesign, the following files are generated in the cproject dir/firmware/ drivers config/sys config directory. These files are required for the CMSIS firmware core to compile properly and contain information regarding your current design including peripheral configuration data and clock configuration information for the MSS. Do not edit these files manually as they are re-created every time your root design is re-generated.

- sys_config.c
- · sys config.h
- sys config mddr define.h: MDDR configuration data.
- sys config fddr define.h: FDDR configuration data.
- sys config mss clocks.h: MSS clocks configuration

Simulation

When you generate the SmartDesign associated with your MSS, the following simulation files are generated in the project dir>/simulation directory:

test.bfm Top-level BFM file that is first "executed" during any simulation that exercises the SmartFusion 2 MSS' Cortex-M3 processor. It executes peripheral init.bfm and user.bfm, in that order.

peripheral init.bfm Contains the BFM procedure that emulates the CMSIS::SystemInit() function run on the Cortex-M3 before you enter the main() procedure. It essentially copies the configuration data for any peripheral used in the design to the correct peripheral configuration registers and then waits for all the peripherals to be ready before asserting that the user can use these peripherals.

MDDR init.bfm Contains BFM write commands that simulate writes of the MSS DDR Configuration register data you entered (using the Edit Registers dialog above) into the DDR Controller registers.

user.bfm Intended for user commands. You can simulate the datapath by adding your own BFM commands in this file. Commands in this file will be "executed" after peripheral init.bfm has completed.

Using the preceding files, the configuration path is simulated automatically. You only need to edit the user.bfm file to simulate the datapath. Do not edit the test.bfm, peripheral_init.bfm, or MDDR_init.bfm files as these files are re-created every time your root design is re-generated.

2.5 MSS DDR Configuration Path

The Peripheral Initialization solution requires that, in addition to specifying MSS DDR Configuration register values, you configure the APB configuration datapath in the MSS (FIC_2). The <code>SystemInit()</code> function writes the data to the MDDR configuration registers via the FIC_2 APB interface.

Tip: If you are using System Builder the configuration path is set and connected automatically.

MSS fabric Interface Controller (RC.2) Configurator

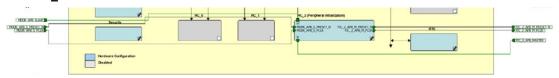
Configuration
Dissalara Perphasia Ulung
MSS DDR
Fabric DDR and/or SERDES Blods

DDR.
Fabric DDR Bridge
Cache Controller

Fabric DR and/or SERDES Blods

Consp. Fabric DR Bridge
Cache Controller

Fa


Figure 2-7. FIC_2 Configurator Overview

To configure the FIC 2 interface:

- 1. Open the FIC_2 configurator dialog (see, Figure 2-7) from the MSS configurator.
- 2. Select the Initialize peripherals using Cortex-M3 option.
- 3. Make sure that the MSS DDR is checked, as are the Fabric DDR/SERDES blocks if you are using them.
- 4. Click **OK** to save your settings. This will expose the FIC_2 configuration ports (Clock, Reset, and APB bus interfaces), as shown in Figure 2-8.
- 5. Generate the MSS. The FIC_2 ports (FIC_2_APB_MASTER, FIC_2_APB_M_PCLK, and FIC_2_APB_M_RESET_N) are now exposed at the MSS interface and can be connected to the CoreConfigP and CoreResetP as per the peripheral initialization solution specification.

For complete details on configuring and connecting the CoreConfigP and CoreResetP cores, see the SmartFusion2 DDR Controller and Serial High Speed Controller Initialization Methodology.

Figure 2-8. FIC 2 Ports

3. Port Description

The following section lists the ports details.

3.1 DDR PHY Interface

These ports are exposed at the top level of the System Builder generated block. For details, see UG0446: SmartFusion2 and IGLOO2 FPGA High Speed DDR Interfaces User Guide.

Table 3-1. DDR PHY Interface

Port Name	Direction	Description
MDDR_CAS_N	OUT	DRAM CASN
MDDR_CKE	OUT	DRAM CKE
MDDR_CLK	OUT	Clock, P side
MDDR_CLK_N	OUT	Clock, N side
MDDR_CS_N	OUT	DRAM CSN
MDDR_ODT	OUT	DRAM ODT
MDDR_RAS_N	OUT	DRAM RASN
MDDR_RESET_N	OUT	DRAM Reset for DDR3. Ignore this signal for LPDDR and DDR2 Interfaces. Mark it unused for LPDDR and DDR2 Interfaces.
MDDR_WE_N	OUT	DRAM WEN
MDDR_ADDR[15:0]	OUT	DRAM Address bits
MDDR_BA[2:0]	OUT	DRAM Bank Address
MDDR_DM_RDQS ([3:0]/[1:0]/[0])	INOUT	DRAM Data Mask
MDDR_DQS ([3:0]/[1:0]/[0])	INOUT	DRAM Data Strobe Input/Output-P Side
MDDR_DQS_N ([3:0]/[1:0]/[0])	INOUT	DRAM Data Strobe Input/Output-N Side
MDDR_DQ ([31:0]/[15:0]/[7:0])	INOUT	DRAM Data Input/Output
MDDR_DQS_TMATCH_0_IN	IN	FIFO in signal
MDDR_DQS_TMATCH_0_OUT	OUT	FIFO out signal
MDDR_DQS_TMATCH_1_IN	IN	FIFO in signal (32-bit only)
MDDR_DQS_TMATCH_1_OUT	OUT	FIFO out signal (32-bit only)
MDDR_DM_RDQS_ECC	INOUT	DRAM ECC Data Mask
MDDR_DQS_ECC	INOUT	DRAM ECC Data Strobe Input/ Output-P Side
MDDR_DQS_ECC_N	INOUT	DRAM ECC Data Strobe Input/ Output-N Side
MDDR_DQ_ECC ([3:0]/[1:0]/[0])	INOUT	DRAM ECC Data Input/Output
MDDR_DQS_TMATCH_ECC_IN	IN	ECC FIFO in signal

continued			
Port Name	Direction	Description	
MDDR_DQS_TMATCH_ECC_OUT	OUT	ECC FIFO out signal (32-bit only)	

Important: Port widths for some ports change depending on the selection of the PHY width. The notation "[a:0]/ [b:0]/[c:0]" is used to denote such ports, where "[a:0]" refers to the port width when a 32-bit PHY width is selected, "[b:0]" corresponds to a 16-bit PHY width, and "[c:0]" corresponds to an 8-bit PHY width.

3.2 Fabric Initiator AXI Bus Interface

The Fabric Initiator AXI Bus Interface ports signals are listed in the following table.

Table 3-2. Fabric Initiator AXI Bus Interface

Port Name	Direction	Description
DDR_AXI_S_AWREADY	OUT	Write address ready
DDR_AXI_S_WREADY	OUT	Write address ready
DDR_AXI_S_BID[3:0]	OUT	Response ID
DDR_AXI_S_BRESP[1:0]	OUT	Write response
DDR_AXI_S_BVALID	OUT	Write response valid
DDR_AXI_S_ARREADY	OUT	Read address ready
DDR_AXI_S_RID[3:0]	OUT	Read ID tag
DDR_AXI_S_RRESP[1:0]	OUT	Read response
DDR_AXI_S_RDATA[63:0]	OUT	Read data
DDR_AXI_S_RLAST	OUT	Read last This signal indicates the last transfer in a read burst.
DDR_AXI_S_RVALID	OUT	Read address valid
DDR_AXI_S_AWID[3:0]	IN	Write address ID
DDR_AXI_S_AWADDR[31:0]	IN	Write address
DDR_AXI_S_AWLEN[3:0]	IN	Burst length
DDR_AXI_S_AWSIZE[1:0]	IN	Burst size
DDR_AXI_S_AWBURST[1:0]	IN	Burst type
DDR_AXI_S_AWLOCK[1:0]	IN	Lock type This signal provides additional information about the atomic characteristics of the transfer.
DDR_AXI_S_AWVALID	IN	Write address valid
DDR_AXI_S_WID[3:0]	IN	Write data ID tag
DDR_AXI_S_WDATA[63:0]	IN	Write data
DDR_AXI_S_WSTRB[7:0]	IN	Write strobes

continued		
Port Name	Direction	Description
DDR_AXI_S_WLAST	IN	Write last
DDR_AXI_S_WVALID	IN	Write valid
DDR_AXI_S_BREADY	IN	Write ready
DDR_AXI_S_ARID[3:0]	IN	Read address ID
DDR_AXI_S_ARADDR[31:0]	IN	Read address
DDR_AXI_S_ARLEN[3:0]	IN	Burst length
DDR_AXI_S_ARSIZE[1:0]	IN	Burst size
DDR_AXI_S_ARBURST[1:0]	IN	Burst type
DDR_AXI_S_ARLOCK[1:0]	IN	Lock type
DDR_AXI_S_ARVALID	IN	Read address valid
DDR_AXI_S_RREADY	IN	Read address ready
DDR_AXI_S_CORE_RESET_N	IN	MDDR global reset
DDR_AXI_S_RMW	IN	Indicates whether all bytes of a 64-bit lane are valid for all beats of an AXI transfer. 0: Indicates that all bytes in all beats are valid in the burst and the controller must default to write commands 1: Indicates that some bytes are invalid and the controller must default to RMW commands This is classed as an AXI write address channel sideband signal and is valid with the AWVALID signal. Only used when ECC is enabled.

3.3 Fabric Initiator AHB0 Bus Interface

The Fabric Initiator AHB0 Bus Interface ports signals are listed in the following table.

Table 3-3. Fabric Initiator AHB0 Bus Interface

Port Name	Direction	Description
DDR_AHB0_SHREADYOUT	OUT	AHBL target ready When high for a write indicates that the MDDR is ready to accept data and when high for a read indicates that data is valid.

continued		
Port Name	Direction	Description
DDR_AHB0_SHRESP	OUT	AHBL response status When driven high at the end of a transaction indicates that the transaction has completed with errors. When driven low at the end of a transaction indicates that the transaction has completed successfully.
DDR_AHB0_SHRDATA[31:0]	OUT	AHBL read data Read data from the MDDR target to the fabric initiator.
DDR_AHB0_SHSEL	IN	AHBL target select When asserted, the MDDR is the currently selected AHBL target on the fabric AHB bus.
DDR_AHB0_SHADDR[31:0]	IN	AHBL address Byte address on the AHBL interface.
DDR_AHB0_SHBURST[2:0]	IN	AHBL burst length
DDR_AHB0_SHSIZE[1:0]	IN	AHBL transfer size Indicates the size of the current transfer (8, 16, or 32 byte transactions only).
DDR_AHB0_SHTRANS[1:0]	IN	AHBL transfer type Indicates the transfer type of the current transaction.
DDR_AHB0_SHMASTLOCK	IN	AHBL lock When asserted the current transfer is part of a locked transaction.
DDR_AHB0_SHWRITE	IN	AHBL write When high indicates that the current transaction is a write. When low indicates that the current transaction is a read.
DDR_AHB0_S_HREADY	IN	AHBL ready When high, indicates that the MDDR is ready to accept a new transaction.
DDR_AHB0_S_HWDATA[31:0]	IN	AHBL write data Write data from the fabric initiator to the MDDR.
DDR_AHB1_SHREADYOUT	OUT	AHBL target ready When high for a write indicates the MDDR is ready to accept data and when high for a read indicates that data is valid.

continued			
Port Name	Direction	Description	
DDR_AHB1_SHRESP	OUT	AHBL response status When driven high at the end of a transaction indicates that the transaction has completed with errors. When driven low at the end of a transaction indicates that the transaction has completed successfully.	
DDR_AHB1_SHRDATA[31:0]	OUT	AHBL read data Read data from the MDDR target to the fabric initiator.	
DDR_AHB1_SHSEL	IN	AHBL target select When asserted, the MDDR is the currently selected AHBL target on the fabric AHB bus.	
DDR_AHB1_SHADDR[31:0]	IN	AHBL address Byte address on the AHBL interface.	
DDR_AHB1_SHBURST[2:0]	IN	AHBL burst length	
DDR_AHB1_SHSIZE[1:0]	IN	AHBL transfer size Indicates the size of the current transfer (8, 16, or 32 byte transactions only).	
DDR_AHB1_SHTRANS[1:0]	IN	AHBL transfer type Indicates the transfer type of the current transaction.	
DDR_AHB1_SHMASTLOCK	IN	AHBL lock When asserted the current transfer is part of a locked transaction.	
DDR_AHB1_SHWRITE	IN	AHBL write When high indicates that the current transaction is a write. When low indicates that the current transaction is a read.	
DDR_AHB1_SHREADY	IN	AHBL ready When high, indicates that the MDDR is ready to accept a new transaction.	
DDR_AHB1_SHWDATA[31:0]	IN	AHBL write data Write data from the fabric initiator to the MDDR.	

3.4 Soft Memory Controller Mode AXI Bus Interface

The Soft Memory Controller Mode AXI Bus Interface ports signals are listed in the following table.

Table 3-4. Soft Memory Controller Mode AXI Bus Interface

Port Name	Direction	Description
SMC_AXI_M_WLAST	OUT	Write last
SMC_AXI_M_WVALID	OUT	Write valid
SMC_AXI_M_AWLEN[3:0]	OUT	Burst length
SMC_AXI_M_AWBURST[1:0]	OUT	Burst type
SMC_AXI_M_BREADY	OUT	Response ready
SMC_AXI_M_AWVALID	OUT	Write address valid
SMC_AXI_M_AWID[3:0]	OUT	Write address ID
SMC_AXI_M_WDATA[63:0]	OUT	Write data
SMC_AXI_M_ARVALID	OUT	Read address valid
SMC_AXI_M_WID[3:0]	OUT	Write data ID tag
SMC_AXI_M_WSTRB[7:0]	OUT	Write strobes
SMC_AXI_M_ARID[3:0]	OUT	Read address ID
SMC_AXI_M_ARADDR[31:0]	OUT	Read address
SMC_AXI_M_ARLEN[3:0]	OUT	Burst length
SMC_AXI_M_ARSIZE[1:0]	OUT	Burst size
SMC_AXI_M_ARBURST[1:0]	OUT	Burst type
SMC_AXI_M_AWADDR[31:0]	OUT	Write address
SMC_AXI_M_RREADY	OUT	Read address ready
SMC_AXI_M_AWSIZE[1:0]	OUT	Burst size
SMC_AXI_M_AWLOCK[1:0]	OUT	Lock type This signal provides additional information about the atomic characteristics of the transfer.
SMC_AXI_M_ARLOCK[1:0]	OUT	Lock type
SMC_AXI_M_BID[3:0]	IN	Response ID
SMC_AXI_M_RID[3:0]	IN	Read ID tag
SMC_AXI_M_RRESP[1:0]	IN	Read response
SMC_AXI_M_BRESP[1:0]	IN	Write response
SMC_AXI_M_AWREADY	IN	Write address ready
SMC_AXI_M_RDATA[63:0]	IN	Read data
SMC_AXI_M_WREADY	IN	Write ready
SMC_AXI_M_BVALID	IN	Write response valid
SMC_AXI_M_ARREADY	IN	Read address ready
SMC_AXI_M_RLAST	IN	Read last This signal indicates the last transfer in a read burst.

continued			
Port Name	Direction	Description	
SMC_AXI_M_RVALID	IN	Read valid	

3.5 Soft Memory Controller Mode AHB0 Bus Interface

The Soft Memory Controller Mode AHB0 Bus Interface ports signals are listed in the following table.

Table 3-5. Soft Memory Controller Mode AHB0 Bus Interface

Port Name	Direction	Description
SMC_AHB_M_HBURST[1:0]	OUT	AHBL burst length
SMC_AHB_M_HTRANS[1:0]	OUT	AHBL transfer type Indicates that the transfer type of the current transaction.
SMC_AHB_M_HMASTLOCK	ОUТ	AHBL lock When asserted, the current transfer is part of a locked transaction.
SMC_AHB_M_HWRITE	OUT	AHBL write When high indicates that the current transaction is a write. When low, indicates that the current transaction is a read.
SMC_AHB_M_HSIZE[1:0]	OUT	AHBL transfer size Indicates the size of the current transfer (8, 16, or 32 byte transactions only).
SMC_AHB_M_HWDATA[31:0]	OUT	AHBL write data Write data from the MSS initiator to the fabric Soft Memory Controller.
SMC_AHB_M_HADDR[31:0]	OUT	AHBL address Byte address on the AHBL interface.
SMC_AHB_M_HRESP	IN	AHBL response status When driven high at the end of a transaction indicates that the transaction has completed with errors. When driven low at the end of a transaction indicates that the transaction has completed successfully.
SMC_AHB_M_HRDATA[31:0]	IN	AHBL read data Read data from the fabric Soft Memory Controller to the MSS initiator.
SMC_AHB_M_HREADY	IN	AHBL ready High indicates that the AHBL bus is ready to accept a new transaction.

4. Revision History

The revision history describes the changes that were implemented in the document. The changes are listed by revision, starting with the most current publication.

Table 4-1. Revision History

Revision	Date	Description
A	12/2022	 The following is the list of changes in revision A of the document: The document was migrated to the Microchip template. The document number was updated to DS50003458 from 50200377. Updated the following screenshots: Figure 2-1, Figure 2-2, and Figure 2-3 in 2.1.2. Memory Initialization. Figure 2-4 in 2.1.3. Memory Timing. Added: Note in 2.1.3. Memory Timing.

Microchip FPGA Support

Microchip FPGA products group backs its products with various support services, including Customer Service, Customer Technical Support Center, a website, and worldwide sales offices. Customers are suggested to visit Microchip online resources prior to contacting support as it is very likely that their queries have been already answered.

Contact Technical Support Center through the website at www.microchip.com/support. Mention the FPGA Device Part number, select appropriate case category, and upload design files while creating a technical support case.

Contact Customer Service for non-technical product support, such as product pricing, product upgrades, update information, order status, and authorization.

- From North America, call 800.262.1060
- From the rest of the world, call 650.318.4460
- Fax, from anywhere in the world, 650.318.8044

Microchip Information

The Microchip Website

Microchip provides online support via our website at www.microchip.com/. This website is used to make files and information easily available to customers. Some of the content available includes:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's
 guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQs), technical support requests, online discussion groups, Microchip design partner program member listing
- **Business of Microchip** Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

Product Change Notification Service

Microchip's product change notification service helps keep customers current on Microchip products. Subscribers will receive email notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, go to www.microchip.com/pcn and follow the registration instructions.

Customer Support

Users of Microchip products can receive assistance through several channels:

- · Distributor or Representative
- · Local Sales Office
- Embedded Solutions Engineer (ESE)
- · Technical Support

Customers should contact their distributor, representative or ESE for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in this document.

Technical support is available through the website at: www.microchip.com/support

Microchip Devices Code Protection Feature

Note the following details of the code protection feature on Microchip products:

- · Microchip products meet the specifications contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is secure when used in the intended manner, within operating specifications, and under normal conditions.
- Microchip values and aggressively protects its intellectual property rights. Attempts to breach the code
 protection features of Microchip product is strictly prohibited and may violate the Digital Millennium Copyright
 Act.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code
 protection does not mean that we are guaranteeing the product is "unbreakable". Code protection is constantly
 evolving. Microchip is committed to continuously improving the code protection features of our products.

Legal Notice

This publication and the information herein may be used only with Microchip products, including to design, test, and integrate Microchip products with your application. Use of this information in any other manner violates these terms. Information regarding device applications is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. Contact your local Microchip sales office for additional support or, obtain additional support at www.microchip.com/en-us/support/design-help/client-support-services.

THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS". MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE, OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL, OR CONSEQUENTIAL LOSS, DAMAGE, COST, OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THE INFORMATION.

Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, CryptoMemory, CryptoRF, dsPIC, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AgileSwitch, APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, Flashtec, Hyper Speed Control, HyperLight Load, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet- Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider, TrueTime, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, Anyln, AnyOut, Augmented Switching, BlueSky, BodyCom, Clockstudio, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, Espresso T1S, EtherGREEN, GridTime, IdealBridge, In-Circuit Serial Programming, ICSP, INICnet, Intelligent Paralleling, IntelliMOS, Inter-Chip Connectivity, JitterBlocker, Knob-on-Display, KoD, maxCrypto, maxView, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, RTAX, RTG4, SAM-

ICE, Serial Quad I/O, simpleMAP, SimpliPHY, SmartBuffer, SmartHLS, SMART-I.S., storClad, SQI, SuperSwitcher, SuperSwitcher II, Switchtec, SynchroPHY, Total Endurance, Trusted Time, TSHARC, USBCheck, VariSense, VectorBlox, VeriPHY, ViewSpan, WiperLock, XpressConnect, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2022, Microchip Technology Incorporated and its subsidiaries. All Rights Reserved.

ISBN: 978-1-6683-1655-9

Quality Management System

For information regarding Microchip's Quality Management Systems, please visit www.microchip.com/quality.

Worldwide Sales and Service

AMERICAS	ASIA/PACIFIC	ASIA/PACIFIC	EUROPE
Corporate Office	Australia - Sydney	India - Bangalore	Austria - Wels
2355 West Chandler Blvd.	Tel: 61-2-9868-6733	Tel: 91-80-3090-4444	Tel: 43-7242-2244-39
Chandler, AZ 85224-6199	China - Beijing	India - New Delhi	Fax: 43-7242-2244-393
ГеІ: 480-792-7200	Tel: 86-10-8569-7000	Tel: 91-11-4160-8631	Denmark - Copenhagen
Fax: 480-792-7277	China - Chengdu	India - Pune	Tel: 45-4485-5910
echnical Support:	Tel: 86-28-8665-5511	Tel: 91-20-4121-0141	Fax: 45-4485-2829
www.microchip.com/support	China - Chongqing	Japan - Osaka	Finland - Espoo
Web Address:	Tel: 86-23-8980-9588	Tel: 81-6-6152-7160	Tel: 358-9-4520-820
www.microchip.com	China - Dongguan	Japan - Tokyo	France - Paris
Atlanta	Tel: 86-769-8702-9880	Tel: 81-3-6880- 3770	Tel: 33-1-69-53-63-20
Ouluth, GA	China - Guangzhou	Korea - Daegu	Fax: 33-1-69-30-90-79
el: 678-957-9614	Tel: 86-20-8755-8029	Tel: 82-53-744-4301	Germany - Garching
ax: 678-957-1455	China - Hangzhou	Korea - Seoul	Tel: 49-8931-9700
Austin, TX	Tel: 86-571-8792-8115	Tel: 82-2-554-7200	Germany - Haan
Tel: 512-257-3370	China - Hong Kong SAR	Malaysia - Kuala Lumpur	Tel: 49-2129-3766400
Boston	Tel: 852-2943-5100	Tel: 60-3-7651-7906	Germany - Heilbronn
Vestborough, MA	China - Nanjing	Malaysia - Penang	Tel: 49-7131-72400
Tel: 774-760-0087	Tel: 86-25-8473-2460	Tel: 60-4-227-8870	Germany - Karlsruhe
ax: 774-760-0088	China - Qingdao	Philippines - Manila	Tel: 49-721-625370
Chicago	Tel: 86-532-8502-7355	Tel: 63-2-634-9065	Germany - Munich
tasca, IL	China - Shanghai	Singapore	Tel: 49-89-627-144-0
el: 630-285-0071	Tel: 86-21-3326-8000	Tel: 65-6334-8870	Fax: 49-89-627-144-44
Fax: 630-285-0075	China - Shenyang	Taiwan - Hsin Chu	Germany - Rosenheim
)allas	Tel: 86-24-2334-2829	Tel: 886-3-577-8366	Tel: 49-8031-354-560
Addison, TX	China - Shenzhen	Taiwan - Kaohsiung	Israel - Ra'anana
el: 972-818-7423	Tel: 86-755-8864-2200	Tel: 886-7-213-7830	Tel: 972-9-744-7705
Fax: 972-818-2924	China - Suzhou	Taiwan - Taipei	Italy - Milan
Detroit	Tel: 86-186-6233-1526	Tel: 886-2-2508-8600	Tel: 39-0331-742611
lovi, MI	China - Wuhan	Thailand - Bangkok	Fax: 39-0331-466781
el: 248-848-4000	Tel: 86-27-5980-5300	Tel: 66-2-694-1351	Italy - Padova
louston, TX	China - Xian	Vietnam - Ho Chi Minh	Tel: 39-049-7625286
el: 281-894-5983	Tel: 86-29-8833-7252	Tel: 84-28-5448-2100	Netherlands - Drunen
ndianapolis	China - Xiamen	161. 64-26-6440-2100	Tel: 31-416-690399
loblesville, IN	Tel: 86-592-2388138		Fax: 31-416-690340
el: 317-773-8323	China - Zhuhai		Norway - Trondheim
Fax: 317-773-5453	Tel: 86-756-3210040		Tel: 47-72884388
el: 317-536-2380	101. 00-7 00-02 100-40		Poland - Warsaw
os Angeles			Tel: 48-22-3325737
Mission Viejo, CA			Romania - Bucharest
el: 949-462-9523			Tel: 40-21-407-87-50
Fax: 949-462-9608			Spain - Madrid
el: 951-273-7800			Tel: 34-91-708-08-90
Raleigh, NC			Fax: 34-91-708-08-91
el: 919-844-7510			Sweden - Gothenberg
			Tel: 46-31-704-60-40
lew York, NY			Sweden - Stockholm
ēl: 631-435-6000 San Jose, CA			Tel: 46-8-5090-4654
•			
el: 408-735-9110			UK - Wokingham
el: 408-436-4270			Tel: 44-118-921-5800
Canada - Toronto			Fax: 44-118-921-5820
Tel: 905-695-1980			
ax: 905-695-2078			