
UG0444
User Guide

SmartFusion2 SoC and IGLOO2 FPGA Low-Power
Design

50200444. 6.0. 10/21

Microsemi Headquarters
One Enterprise, Aliso Viejo,
CA 92656 USA
Within the USA: +1 (800) 713-4113
Outside the USA: +1 (949) 380-6100
Sales: +1 (949) 380-6136
Fax: +1 (949) 215-4996
Email: sales.support@microsemi.com
www.microsemi.com

©2021 Microsemi, a wholly owned
subsidiary of Microchip Technology Inc. All
rights reserved. Microsemi and the
Microsemi logo are registered trademarks of
Microsemi Corporation. All other trademarks
and service marks are the property of their
respective owners.

Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of
its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the
application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have
been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any
performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all
performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not
rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer’s responsibility to
independently determine suitability of any products and to test and verify the same. The information provided by Microsemi
hereunder is provided “as is, where is” and with all faults, and the entire risk associated with such information is entirely
with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP
rights, whether with regard to such information itself or anything described by such information. Information provided in this
document is proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this
document or to any products and services at any time without notice.

About Microsemi
Microsemi, a wholly owned subsidiary of Microchip Technology Inc. (Nasdaq: MCHP), offers a comprehensive portfolio of
semiconductor and system solutions for aerospace & defense, communications, data center and industrial markets.
Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and
ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world's
standard for time; voice processing devices; RF solutions; discrete components; enterprise storage and communication
solutions, security technologies and scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs and
midspans; as well as custom design capabilities and services. Learn more at www.microsemi.com.

mailto:sales.support@microsemi.com
http://www.microsemi.com

UG0444 User Guide Revision 6.0 iii

Contents

1 Revision History . 1
1.1 Revision 6.0 . 1
1.2 Revision 5.0 . 1
1.3 Revision 4.0 . 1
1.4 Revision 3.0 . 1
1.5 Revision 2.0 . 1
1.6 Revision 1.0 . 1

2 Flash*Freeze . 2
2.1 Features . 2
2.2 Functional Description . 2

2.2.1 Flash*Freeze Entry Phase . 2
2.2.2 During Flash*Freeze Phase . 5
2.2.3 Flash*Freeze Exit Phase . 7

2.3 Using Flash*Freeze in SmartFusion2 . 10
2.3.1 Design Flow . 11
2.3.2 Flash*Freeze Use Model . 13

2.4 Using Flash*Freeze in IGLOO2 . 14
2.4.1 Enabling Flash*Freeze . 15
2.4.2 HPMS Subsystem . 16
2.4.3 Entering and Exiting Flash*Freeze Mode . 17

2.5 Flash*Freeze Design . 19
2.5.1 Clocks . 19
2.5.2 I/Os . 21
2.5.3 FLASH_FREEZE Macro . 21
2.5.4 Flash*Freeze Guidelines . 21

2.6 SYSREG Control Registers for Flash*Freeze . 26
2.7 Acronyms . 27
2.8 Terminology . 27

UG0444 User Guide Revision 6.0 iv

Figures

Figure 1 Flash*Freeze Entry . 4
Figure 2 Flash*Freeze Modes . 5
Figure 3 Bus Keeper Configuration in I/O Editor . 6
Figure 4 Resistor Pull Configuration . 6
Figure 5 I/O Activity Configuration . 7
Figure 6 I/O Signature Configuration . 7
Figure 7 Fabric Master initiated Flash*Freeze Exit . 9
Figure 8 MSS_CCC and RTC Options for Flash*Freeze . 11
Figure 9 RTC Configurator . 12
Figure 10 Flash*Freeze Example Projects . 12
Figure 11 Opening SmartFusion2 MSS System Services Driver User Guide . 13
Figure 12 System Builder - Device Features Window . 14
Figure 13 System Builder - Device Features Tab . 15
Figure 14 System Builder - Memory Map Tab . 16
Figure 15 HPMS Subsystem . 16
Figure 16 CoreSysServices Configuration . 17
Figure 17 HPMS Subsystem Connections with the CoreSysServices AHB Bus Master 18
Figure 18 Configure Flash*Freeze in Design Flow Tab . 18
Figure 19 Flash*Freeze Hardware Settings . 18
Figure 20 Wake_on_Change Configuration . 19
Figure 21 Global Gated Clock Macros . 19
Figure 22 Gated External Clocks Using Single GCLKBUF Macro . 20
Figure 23 Gated External Clock Using Multiple GCLKBUF Macros . 20
Figure 24 FLASH_FREEZE Macro . 21

UG0444 User Guide Revision 6.0 v

Tables

Table 1 Flash*Freeze Service Message Request Command . 3
Table 2 System Service API for Flash*Freeze . 13
Table 3 Gating AMBA-related Signals from Fabric to MSSDDR . 22
Table 4 Gating AMBA-related Signals from Fabric to FDDR . 22
Table 5 Gating of AMBA-related Signals from Fabric to SERDESIF . 23
Table 6 Gating MSS Interrupt Signal . 23
Table 7 Gating MSS Non-Interrupt Signals . 23
Table 8 Gating Fabric PLL Lock Signals . 23
Table 9 Gating MSS Peripheral Signals . 24
Table 10 Gating System Controller Response Signals . 26
Table 11 SYSREG Control Register . 26

Revision History

UG0444 User Guide Revision 6.0 1

1 Revision History

The revision history describes the changes that were implemented in the document. The changes are
listed by revision, starting with the most current publication.

1.1 Revision 6.0
A note about RTC timeout was added. For more information, see RTC Timeout, page 8.

1.2 Revision 5.0
A note about Cortex-M3 processor sleep modes was added to the introduction. For more information,
see Flash*Freeze, page 2.

1.3 Revision 4.0
The following is a summary of the changes in revision 4.0 of this document.

• The document was updated for Libero v11.7 SP1 software updates.
• Information about flash freeze guidelines was added. For more information, see Flash*Freeze

Guidelines, page 21.

1.4 Revision 3.0
The following is a summary of the changes in revision 3.0 of this document.

• Merged SmartFusion2 and IGLOO2 user guides.
• Updated SARs: 54450, 55852, 55855, 55856, 56532, 57027, 57140, 59868, 64019, 65635, 68477,

and 69512.

1.5 Revision 2.0
The following is a summary of the changes in revision 2.0 of this document.

• Updated I/O Activity, page 7 (SAR 50532).
• Added Using Flash*Freeze in IGLOO2, page 14 (SAR 50362).
• Updated Flash*Freeze Entry Phase, page 2 and Flash*Freeze Exit Phase, page 7 (SAR 50581,

50582, 50585).
• Updated Flash*Freeze Entry, page 3 and Fabric Master Initiated Flash*Freeze Exit (SAR 50583,

50584).
• Updated Flash*Freeze Entry Phase section (SAR 54986)
• Updated Flash*Freeze Entry Time section (SAR 54986)
• Updated Fabric State During Flash*Freeze Mode section (SAR 54986)
• Updated Enabling Flash*Freeze Mode section (SAR 54986)

1.6 Revision 1.0
Restructured the user guide (SAR 41389, 44796).

Flash*Freeze

UG0444 User Guide Revision 6.0 2

2 Flash*Freeze

SmartFusion®2 SoC FPGAs and IGLOO®2 FPGAs offer the Flash*Freeze technology for implementing
low-power solutions. Flash*Freeze mode is an ultra-low power static mode with lowest standby power of
1.92 mW. Flash*Freeze technology allows easy entry and exit from ultra-low power static mode while
retaining SRAM content, I/O state, and register data, thereby dramatically reducing power. Flash*Freeze
mode can be used in a wide variety of applications, such as patient monitoring systems, industrial
applications, automotive applications, mobile applications, power distribution systems, and applications
that require the lowest possible static power to function.

Note: SmartFusion2 devices also support Cortex-M3 processor sleep modes, which reduce power
consumption through clock gating. For more information about the sleep modes, see the Power
Management section in UG0331: SmartFusion2 Microcontroller Subsystem User Guide.

2.1 Features
Flash*Freeze has the following features:

• User configurable Flash*Freeze entry mechanism through:
• Cortex-M3 processor firmware
• AHB-Lite/APB fabric master (if Cortex-M3 processor is not enabled)

• User configurable Flash*Freeze exit mechanism through:
• I/O activity
• I/O signature match
• RTC wakeup interrupt

• External clock sources are not needed
• MSS or HPMS stays powered-up to retain the SRAM data
• The state information for fabric registers, fabric SRAM content, and I/O is retained, enabling fast

recovery to active mode
Notes:

• Ethernet MAC is not supported during Flash*Freeze mode.
• No new tamper events are registered during Flash*Freeze mode. However, any active events before

Flash*Freeze entry are still active after the Flash*Freeze exit.

2.2 Functional Description
Flash*Freeze implementation consists of three phases:

• Flash*Freeze entry phase
• During Flash*Freeze phase
• Flash*Freeze exit phase

2.2.1 Flash*Freeze Entry Phase
SmartFusion2 and IGLOO2 FPGA devices are designed and optimized to enter Flash*Freeze mode only
when the power supply is stable.

Flash*Freeze entry can be initiated by ARM Cortex-M3 processor firmware or AHB-Lite/APB Fabric
master (if ARM Cortex-M3 processor is not enabled). On initiation, the system master (the ARM Cortex-
M3 processor or the fabric master) must check for the high-speed peripherals (FDDR, MDDR, and
SerDes) to power them down if required and also halt the existing user defined fabric logic. The system
master has to send a Flash*Freeze service request command as shown in Table 1, page 3 to enter into
Flash*Freeze. This service request command is sent to the system controller over the COMM_BLK
interface. When Flash*Freeze service request commands are sent from the system master to the system
controller, the device is put into Flash*Freeze.

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130918

Flash*Freeze

UG0444 User Guide Revision 6.0 3

For more information about Flash*Freeze command, see the Flash*Freeze Services section of UG0450:
SmartFusion 2 and IGLOO2 System Controller User Guide.

2.2.1.1 Flash*Freeze Entry
The user fabric logic must follow the sequence of steps for Flash*Freeze entry phase as shown in
Figure 1, page 4. The user fabric logic must be interfaced with the CoreSysServices IP, which is an AHB
bus master that puts the device to the lowest possible power state. The steps can be customized to skip
the power saving steps, if not required.

For more information, see the Flash*Freeze Services section in Table 1 in the CoreSysServices v3.1
Handbook.

Table 1 • Flash*Freeze Service Message Request Command

Bit Number Command Description
[7:0] 0x02 Flash*Freeze service request message command

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132038
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132038
soc.microsemi.com/ipdocs/CoreSysServices_HB.pdf
soc.microsemi.com/ipdocs/CoreSysServices_HB.pdf

Flash*Freeze

UG0444 User Guide Revision 6.0 4

Figure 1 • Flash*Freeze Entry

Is the
status of

CoreSysServices
IP successful

 or not?

Yes

No

End

Start
Flash*Freeze
Entry Event

. DDRC_DYN_REFRESH_1_CR[5] = 1

. DDRC_DYN_REFRESH_1_CR[5] = 1

. PLL_CONFIG_HIGH[15] = 1

. FDDR_SOFT_RESET[0] = 1

. FDDR_FACC_CLK_EN[0] = ‘0’

. SER_PLL_CONFIG_HIGH[16] = 0
 XS Control_1[11] = 0
. FDDR_FACC_CLK_EN[0] = 0
. PHY_POWER_OVERRIDE[0] = 1
. PHY_RESET_OVERRIDE[5:4] = 11
. SER_SOFT_RESET register = 0x3F

FDDR Configurations:
1. Enable Self Refresh mode
2. Power down Fabric PLL
3. Put the block in Soft reset
4. Disable the clk_ddr source

MDDR Configurations:
1. Enable Self Refresh mode
2. Disable the clk_ddr source

SERDESIF Configurations:
1. Put PHYs in Low power mode 2. Put PMAs in Low power mode
3. Power down all the PLLs
4. Assert Soft resets

Configure the following
Flash*Freeze hardware settings
using Libero SoC:
 . MSS or HPMS Clock source
 during Flash*Freeze
 . uSRAM/LSRAM state during
 Flash*Freeze

Halt the fabric to put the FSM's in
idle state, which holds the states
before Flash*Freeze entry and
resumes when Flash*Freeze exits.
Stop the access to and from the I/Os

 Switch to execute from eSRAM,
 if eNVM, MPLL are powered down

Flash*Freeze Command = 2. To configure
the commands. Use system services
drivers if ARM Cortex-M3 processor is
used as master or CoreSysServices IP
if fabric master is used.

Send Flash*Freeze Entry Request

Register Settings

. MDDR_FACC1_CR[8] = 0

Flash*Freeze Service request
Command [2:0] = 111. To configure the
commands. Use system services drivers
if ARM Cortex-M3 processor is used as
master or CoreSysServices IP if
fabric master is used.

Continue driving remaining active MSS
peripherals. Otherwise, the
ARM Cortex-M3 processor may be put
into Sleep mode.

Use WFI instruction

Configure any wakeup mechanism:
1. RTC timeout (enable interrupt
using Libero SoC and RTC time
value has to be programmed
using RTC registers)
2. I/O activity (configure I/O using
I/O attribute editor in Libero SoC)
3. I/O signature (configure I/O using
I/O attribute editor in Libero SoC)

Flash*Freeze

UG0444 User Guide Revision 6.0 5

2.2.1.1.1 Flash*Freeze Entry Time
After receiving the Flash*Freeze system service commands through the COMM_BLK, the system
controller disables the PLL output clocks if they are used in the design. The clock is disabled by asserting
the PLL power down (MPLLPD) bit in the FFOPTIONS register. For more information, see the
FFOPTIONS table in the UG0450: SmartFusion 2 and IGLOO2 System Controller User Guide. The time
taken from the initiation of Flash*Freeze trigger to the disabling of the clock is known as Flash*Freeze
entry time.

2.2.1.2 PLL/CCC
If a fabric or embedded PLL/CCC is used, entering Flash*Freeze mode automatically powers down the
PLL/CCC. The PLL/CCC configuration retains its state during Flash*Freeze operation and recovers the
previous state, that is, when Flash*Freeze exits PLL/CCC returns to the normal operation.

2.2.1.3 I/Os and Globals
While entering Flash*Freeze mode, inputs, globals, and PLL/CCC enter the Flash*Freeze state
asynchronously to each other. As a result, clock, data glitches, and narrow pulses can be generated
while entering.

Figure 2 • Flash*Freeze Modes

I/O banks are not deactivated simultaneously while entering Flash*Freeze mode. This can cause clocks
and inputs to become disabled at different times, resulting in unexpected data being captured.

The clocks must be gated properly to prevent glitches. For more information about handling clock gating,
see Flash*Freeze Design, page 19.

2.2.2 During Flash*Freeze Phase
The operational behavior of the MSS or HPMS, FPGA fabric, FDDR, high-speed serial blocks,
PLLs/CCCs, and I/Os after entering into Flash*Freeze mode are discussed in subsequent sections.

2.2.2.1 MSS or HPMS Operation in Flash*Freeze Mode
During Flash*Freeze mode:

• The MSS or HPMS is always powered.
• The MSS or HPMS is clocked by the 50 MHz RC oscillator, the 1 MHz RC oscillator.
• You can specify which I/Os remain active during Flash*Freeze mode in I/O attribute editor.
• The MDDR is not active. The MDDR must be put into self-refresh mode before entering

Flash*Freeze mode.

2.2.2.2 Fabric State During Flash*Freeze Mode
During Flash*Freeze mode:

• The FPGA fabric is fully powered down, but the register contents are held in the suspend latches.
The suspend latches remain powered up, and upon exit from the Flash*Freeze mode, they restore
the register with the contents present before Flash*Freeze entry.

• The fabric SRAMs can be configured in Libero® to enter into suspend mode or sleep mode during
Flash*Freeze. This applies to both the large SRAM (LSRAM) instances of RAM1xK18 and the micro
SRAM (µSRAM) instances of RAM64x18. These SRAM instances can independently be setup to
enter into one of the two modes defined below:
• Suspend mode: LSRAM and µSRAM contents are retained.
• Sleep mode: LSRAM and µSRAM contents are not retained.

External Clock

Internal Clock

Enters Flash*Freeze Mode Exits Flash*Freeze Mode

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132038

Flash*Freeze

UG0444 User Guide Revision 6.0 6

• CCCs are turned off during Flash*Freeze mode. The CCC configuration retains its state during
Flash*Freeze operation and recovers the previous state upon Flash*Freeze exit.

• Mathblocks are not operational. Mathblocks are turned off during Flash*Freeze mode. The
mathblock configuration retains its state during the Flash*Freeze operation and recovers the
previous state upon Flash*Freeze exit. If the Flash*Freeze is configured in Sleep mode, the
mathblock configuration is lost.

2.2.2.3 FDDR Operation in Flash*Freeze Mode
The FDDR controller is not operational during Flash*Freeze mode.

2.2.2.4 High-Speed Serial Block Operation in Flash*Freeze Mode
The high-speed serial block is not operational (powered down) during Flash*Freeze mode.

2.2.2.5 I/O State in Flash*Freeze Mode
The I/O pads are placed in a low power mode, except for MSS or HPMS related I/Os, which are not
affected by Flash*Freeze mode. The I/Os can be individually configured using the following options:

• Hold the previous state: This feature holds the last valid state of the input or output pad before the
device enters into the Flash*Freeze mode. Weak pull up or weak pull down of I/O pads can be
configured along with the hold feature without affecting the hold state. The I/O pad can be configured
to hold the previous state in the I/O Editor of Libero. The following figure shows the I/O Editor with
the I/O state in Flash*Freeze mode column and options highlighted. There are two options available:
• TRISTATE: Tristates the I/O.
• LAST_VALUE: Holds the previous state of the I/O.

Note: Setting this option will activate a feature called Bus Keeper, which is only available in Flash*Freeze mode
(not during normal operation).

Figure 3 • Bus Keeper Configuration in I/O Editor

• Set I/O pad to weak pull up or weak pull down: If this feature is used without the output hold feature,
the input and output pads maintain the configured weak pull up or pull down status during the
Flash*Freeze mode and performs normal operation. The I/O pad can be configured to weak pull up
or pull down in the I/O Editor of Libero. The following figure shows the I/O Editor with the Reset Pull
column and options highlighted. There are three options available:
• None: No weak pull up or pull down
• Down: Weak pull down
• Up: Weak pull up

Figure 4 • Resistor Pull Configuration

The I/Os that do not use the hold state or I/O pad weak pull-up or pull-down features are tristated during
Flash*Freeze mode.

2.2.2.6 Fabric PLL/CCC
The PLL/CCC is powered down during Flash*Freeze mode while retaining the configuration state.

Note: The input pads and input clocks to the FPGA fabric can toggle without any impact on the static power
consumption if weak pull up or pull down is not selected. The input pads must never be allowed to float
near the mid-rail, as it can cause totem-pole current in the input buffer.

Flash*Freeze

UG0444 User Guide Revision 6.0 7

2.2.3 Flash*Freeze Exit Phase
Flash*Freeze exit wakes up the device from Flash*Freeze mode and returns the device or design to
normal operation. Exit from the Flash*Freeze state can be initiated by any one of the following:

• I/O activity
• I/O signature
• RTC timeout

2.2.3.1 I/O Activity
In I/O activity, an I/O can be selected to be part of the Flash*Freeze exit trigger. The value at the pin of
the selected I/O is latched before going to low-power mode. When a change takes place on the
configured I/O, the device wakes up from Flash*Freeze mode.

The fabric I/Os, MSS, or HPMS peripheral I/Os are available to select the Flash*Freeze wake-up pin.
The following figure shows the I/O configuration in the I/O attribute editor.

Figure 5 • I/O Activity Configuration

2.2.3.2 I/O Signature
Any I/O can be selected to be part of a signature match value while in Flash*Freeze mode. All other I/Os
are tristated or held to the previous state before entering Flash*Freeze mode or weakly pulled up/pulled
down. The selected I/Os need to match a static predetermined value at the same time.

If the configured signature values match the values at the pins, then the device exits low-power mode.
The following options are available in Libero:

• Low power signature look for 0 (Wake_on_0)
• Low power signature look for 1 (Wake_on_1)
Flash*Freeze exit is executed in a sequence by the system controller after triggering any of the
configured events (I/O activity, I/O signature, or RTC timeout). Exit from Flash*Freeze mode can be
achieved by the following:

• ARM Cortex-M3 firmware
• Fabric master (if ARM Cortex-M3 processor is not enabled)
The following figure shows the I/O signature configuration in the I/O attribute editor.

Figure 6 • I/O Signature Configuration

Flash*Freeze

UG0444 User Guide Revision 6.0 8

2.2.3.3 RTC Timeout
Prior to entering Flash*Freeze mode, user logic must configure the RTC module. The timeout value must
be set appropriately for the application needs. One of the on-chip clock resources must be driving the
RTC.

Exit from Flash*Freeze mode can also be achieved via the Cortex-M3 processor. Setting the
WAKEUP_SET bit in the RTC control register results in assertion of the RTC wakeup interrupt. The RTC
wakeup interrupt is routed to the system controller, fabric, and the Cortex-M3 processor nested vectored
interrupt controller (NVIC). RTC_WAKEUP_CONGFIG in the SYSREG block provides masking for the
RTC_WAKEUP interrupt to the fabric, Cortex-M3 processor, and the system controller. For accessing the
RTC_WAKEUP_CONFIG register, see Table 1, page 3.

Note: RTC timeout is not available for the IGLOO2 devices.

Flash*Freeze exit is executed in a sequence by the system controller after triggering any of the
configured events (I/O activity, I/O signature, or RTC timeout). Exit from Flash*Freeze mode can be
achieved by the following:

• Cortex-M3 firmware
• Fabric master (if Cortex-M3 processor is not enabled).

2.2.3.4 Flash*Freeze Exit
To resume normal operation, the ARM Cortex-M3 firmware or user fabric logic has to follow the
sequence of steps listed in the following flow chart based on the master used for triggering Flash*Freeze
exit. If fabric master is used, then user fabric logic needs to interface with the AHB bus master
CoreSysServices IP on initiating the Flash*Freeze exit, as shown in Figure 7, page 9. For more
information, see the CoreSysServices v3.1 Handbook.

soc.microsemi.com/ipdocs/CoreSysServices_HB.pdf

Flash*Freeze

UG0444 User Guide Revision 6.0 9

Figure 7 • Fabric Master initiated Flash*Freeze Exit

2.2.3.4.1 Flash*Freeze Exit Time
The system controller wakes the device from Flash*Freeze mode on Flash*Freeze exit trigger. The time
taken from the initiation of the Flash*Freeze exit trigger to the enabling of the clock is known as
Flash*Freeze exit time. If MPLL is used, the MPLL clock is enabled, or if a fabric PLL is used, the fabric
PLL clock and MPLL clock are enabled.

If the MSS_CLK_BASE is being generated from the fabric PLL, then there would be a sequence of fabric
PLL lock first and then MSS PLL lock.

For more information about PLL lock feature, see the PLLs Lock Monitoring section under MSS Clock
Conditioning Circuitry chapter in UG0449: SmartFusion2 and IGLOO2 Clocking Resources User Guide.

Start
I/O Activity/I/O Signature/
RTC time out

FDDR Configuration:
1. Enable FDDR clock
2. Bring FDDR out of Self refresh mode

Pulse wakeup request to SERDESIF
(if PCIe endpoint triggered L2 Exit)

Disable the SERDESIF Soft resets and
Enable PMA PLLs

PHY_RESET_OVERRIDE[5:4] = ‘00’
SER_SOFT_RESET register = 0x0

Indicate to user fabric logic that
Flash*Freeze is complete and can
resume the normal operation

Register Settings

No

Yes

Configure the MDDR to Disable Self
Refresh mode

FDDR_FACC_CLK_EN[0] =’1’
DDRC_DYN_REFRESH_1_CR[5] = ‘0’

DDRC_DYN_REFRESH_1_CR[5] = ‘0’

Check if Flash*Freeze exit status is
 successful using system services

drivers in case of ARM Cortex-M3 master
 and CoreSysServices IP in case

of Fabric master

End

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132012

Flash*Freeze

UG0444 User Guide Revision 6.0 10

2.2.3.5 I/Os and Globals
The following describes how the I/O and globals behave during Flash*Freeze exit:

• While exiting Flash*Freeze mode, the inputs and globals exit their Flash*Freeze state
asynchronously to each other. The order in which individual I/Os and globals exit the Flash*Freeze
state is a function of routing and logic delays in the I/O ring. Clock, data glitches, and narrow pulses
can be generated while exiting Flash*Freeze mode, unless clock gating schemes are used. For
more information about how to handle the clock gating, see Flash*Freeze Design, page 19.

• All I/O banks are not activated simultaneously when exiting the Flash*Freeze mode. This can cause
the clocks and inputs to enable themselves at different times, resulting in unexpected data being
captured.

• The output hold state is asynchronously controlled by the signal driving the output buffer (output
signal). This ensures a clean, glitch-free transition from the hold state to output drive. However, any
glitches on the output signal during exit from Flash*Freeze mode can result in glitches on the output
pad.

• The preceding situations can cause glitches or invalid data to be clocked into and preserved in the
device.

2.2.3.6 PLL/CCC
If the embedded PLL/CCC is used, the design must allow maximum acquisition time (per device
datasheet) for the PLL/CCC to acquire the lock signal. The lock signal can be used to gate the clock
coming out of a PLL/CCC.

2.3 Using Flash*Freeze in SmartFusion2
The following sub sections describe how to use Flash*Freeze in an application:

• Design flow
• Flash*Freeze use models
• Flash*Freeze design

Flash*Freeze

UG0444 User Guide Revision 6.0 11

2.3.1 Design Flow
The following steps describe the Libero configuration settings for using Flash*Freeze in an application:

1. Configure the highlighted blocks (MSS_CCC and RTC) as shown in the following figure; these
blocks are enabled by default.

Figure 8 • MSS_CCC and RTC Options for Flash*Freeze

Flash*Freeze

UG0444 User Guide Revision 6.0 12

2. If RTC timeout interrupt is used for triggering Flash*Freeze exit, configure the Clock Source and
WakeUp Interrupt as shown in the following figure. See Help for options available on RTC
configurator.

Figure 9 • RTC Configurator

3. To generate the component, click Generate Component or select SmartDesign > Generate
Component. For more information about component generation, see the Libero SoC User’s Guide.
The firmware driver folder and Soft Console workspace is created in the project.

4. Click Configure firmware as shown in the following figure to find the system service drivers for
Flash*Freeze.

Figure 10 • Flash*Freeze Example Projects

5. Click Generate Programming Data to complete *.fdb file generation. Double-click Write
Application Code under the Libero design flow window to invoke the Soft Console IDE. The Soft
Console folder contains the mss_system_services drivers. The firmware driver,
mss_system_services (mss_sys_services.c and mss_sys_services.h) provides functions for
Flash*Freeze.

http://www.microsemi.com/soc/documents/libero_ug.pdf

Flash*Freeze

UG0444 User Guide Revision 6.0 13

The following table lists the APIs for Flash*Freeze.

For more information on the APIs, see the SmartFusion2 MSS System Services Driver User Guide by
following the path shown in the following figure.

Figure 11 • Opening SmartFusion2 MSS System Services Driver User Guide

For more information about MSS system services support for Flash*Freeze usage, a sample project is
available, which can be generated as shown in Figure 10, page 12.

2.3.2 Flash*Freeze Use Model
For Cortex-M3 firmware Flash*Freeze entry on GPIO input and Flash*Freeze exit on RTC timeout
condition (20 µs), use the following steps for Flash*Freeze entry and exit:

1. Select the standby source clock using Libero.
2. Initialize the communication with system controller using MSS_SYS_init().
3. If RTC is used for Flash*Freeze exit trigger, initialize the RTC using RTC_init().
4. Initialize the peripheral GPIOs using MSS_GPIO_init().
5. Wait for Flash*Freeze entry trigger when there is a transition on GPIO input.
6. Reset the RTC counter using MSS_RTC_reset_counter().
7. Set the RTC timeout value to 20 µs and single shot alarm to exit Flash*Freeze using

MSS_RTC_set_binary_count_alarm().
8. Enable the RTC wakeup interrupt using MSS_RTC_enable_irq() or configure using Libero.
9. Start the RTC counter using MSS_RTC_start().
10. Request Flash*Freeze shutdown using MSS_SYS_flash_freeze().
11. Check the status of the command by reading the return value of the MSS_SYS_flash_freeze().
12. Check for Flash*Freeze entry with system services event handler opcode.
13. After the timeout, RTC interrupt is generated. Check for Flash*Freeze exit with system services

event handler opcode.
14. Clear the RTC interrupt using MSS_RTC_clear_irq().
15. The device comes out of Flash*Freeze mode.

Table 2 • System Service API for Flash*Freeze

Category API Description and Usage
Initialization MSS_SYS_init() Initializes the system services communication with system controller.

Control and status MSS_SYS_flash_freeze() Requests the FPGA to enter Flash*Freeze mode. The function
returns following status codes:
- Success
- Memory access error
- Unexpected error

Flash*Freeze

UG0444 User Guide Revision 6.0 14

2.4 Using Flash*Freeze in IGLOO2
This section describes how to use Flash*Freeze mode in IGLOO2 devices. To configure the IGLOO2
device features and then build a complete system, use the System Builder graphical design wizard in
Libero.

The following figure shows the initial System Builder window where the desired device features can be
selected. For information about using the System Builder wizard, see the IGLOO2 System Builder User
Guide.

Figure 12 • System Builder - Device Features Window

http://coredocs.s3.amazonaws.com/Libero/Tool/SysBuilder/igl2_system_builder_ug_1.pdf
http://coredocs.s3.amazonaws.com/Libero/Tool/SysBuilder/igl2_system_builder_ug_1.pdf

Flash*Freeze

UG0444 User Guide Revision 6.0 15

2.4.1 Enabling Flash*Freeze
The following steps describe how to enable Flash*Freeze mode in IGLOO2 devices:

1. Select HPMS System Services under the Device Features tab to enable Flash*Freeze. This
establishes a path for connecting the CoreSysServices soft IP to the COMM_BLK through the FIC_0
interface. This is indicated by a change of color in the CoreSysServices block in the System Builder.
If the CoreSysServices IP is connected as an AHB master, the other interfaces (eNVM, eSRAM,
HPDMA, and PDMA) cannot be used to access the COMM_BLK through the FIC_0 interface. The
following figure shows the CoreSysServices block in the System Builder wizard.

Figure 13 • System Builder - Device Features Tab

Note: The System Builder does not invoke the CoreSysServices soft IP, but allows you to connect it with the
FIC_0 master interface port.

Flash*Freeze

UG0444 User Guide Revision 6.0 16

2. Go to the Memory Map tab, as the remaining System Builder tabs need not be configured. The
following figure shows the System Builder - Memory Map tab.

Figure 14 • System Builder - Memory Map Tab

3. Click Finish to proceed with creating the HPMS System.

2.4.2 HPMS Subsystem
The following figure shows an example HPMS subsystem that can be used to connect the
CoreSysServices fabric master to place the device in Flash*Freeze.

Figure 15 • HPMS Subsystem

Flash*Freeze

UG0444 User Guide Revision 6.0 17

2.4.3 Entering and Exiting Flash*Freeze Mode
This section describes how to enter the Flash*Freeze entry phase using the CoreSysServices IP fabric
master and go to the Flash*Freeze exit phase using the Wake_On_Change input option.

Flash*Freeze Entry Phase

1. Enable Flash*Freeze mode in Libero using the System Builder wizard as described in Enabling
Flash*Freeze, page 15.

2. Select the CoreSysServices IP from the Libero Catalog and instantiate in the SmartDesign canvas.
3. Select Flash*Freeze Service. Enter the other parameters required and click OK to configure the

CoreSystemServcies IP and enable Flash*Freeze service.
Figure 16 • CoreSysServices Configuration

Flash*Freeze

UG0444 User Guide Revision 6.0 18

4. Connect CoreSysServices IP to the HPMS subsystem, as shown in the following figure.
Figure 17 • HPMS Subsystem Connections with the CoreSysServices AHB Bus Master

5. After generating the component in the DesignFlow tab under Compile, right-click Configure
Flash*Freeze and select Open Interactively.

Figure 18 • Configure Flash*Freeze in Design Flow Tab

6. In the Flash Freeze Hardware Settings dialog box, select the required configuration for
uRAM/LSRAM State and HPMS Clock Source during Flash*Freeze mode.

Figure 19 • Flash*Freeze Hardware Settings

Flash*Freeze

UG0444 User Guide Revision 6.0 19

Flash*Freeze Exit Phase

7. Configure an I/O pad as a Wake_On_Change input in the I/O Attribute Editor.
8. Connect the I/O pad to an external switch or any other source of trigger.

Figure 20 • Wake_on_Change Configuration

9. Write the user logic RTL and add a trigger switch to send the Flash*Freeze command—
SERV_CMDBYTE_REQ = 0x00 (fabric power down) with a SERV_ENABLE_REQ pulse. The
device enters into the Flash*Freeze mode.
For more information on Flash*Freeze commands, see the CoreSysServices v3.1 Handbook and
the Flash*Freeze Service section available in the UG0450: SmartFusion2 and IGLOO2 FPGA
System Controller User Guide.

10. To come out of Flash*Freeze phase, trigger the Wake_On_Change input signal externally.

2.5 Flash*Freeze Design
This section describes how reliable designs that use ultra-low power Flash*Freeze mode optimally can
be created. It also gives specific recommendations on how to design and configure clocks.

2.5.1 Clocks
Microsemi recommends using a completely synchronous design, cleanly gating all the internal and
external clocks. This prevents narrow pulses upon entry to and exit from Flash*Freeze mode.

SmartFusion2 and IGLOO2 devices include sophisticated clock gating for all or portions of a global clock
network. All library macros referencing global clock drivers include an enable input to gate the clock
when required. The following figure shows global clock macros with the clock gating feature. The clock is
passed when the enable pin (EN) is asserted high and held low when the EN pin is disabled.

To prevent glitches, the EN signal must be checked for basic setup and hold timing violations similar to a
flip-flop. To clock gate a portion of a clock network, the RGCLKINT macro must be used.

Figure 21 • Global Gated Clock Macros

EN Y

PAD

GCLKBUF

EN ENY Y

A A

GCLKINT RGCLKINT

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132038
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132038
soc.microsemi.com/ipdocs/CoreSysServices_HB.pdf

Flash*Freeze

UG0444 User Guide Revision 6.0 20

The following figures show example designs of using single and dual global gated clock buffer macros to
control the fabric user logic.

Figure 22 • Gated External Clocks Using Single GCLKBUF Macro

Figure 23 • Gated External Clock Using Multiple GCLKBUF Macros

Clocks can continue to drive the FPGA pins while the device is in Flash*Freeze mode, with virtually no
power consumption. Upon exiting Flash*Freeze mode, the design must allow maximum acquisition time
for the PLL to acquire the lock signal, and for a PLL clock to become active.

External Clock

 SmartFusion2/IGLOO2 Device

User Design

PAD Y

GCLKBUF

EN

Clock Enable

User Logic

House Keeping
Logic (Optional)

CLKA

 SmartFusion2/IGLOO2 Device

User Design

PAD Y

GCLKBUF

EN

CLKA Enable

User Logic

House Keeping
Logic (Optional)

CLKB

PAD Y

GCLKBUF

EN

CLKB Enable

Flash*Freeze

UG0444 User Guide Revision 6.0 21

2.5.2 I/Os
The floating inputs can cause totem-pole currents on the input I/O circuitry when the device is in active
mode. Microsemi recommends releasing the inputs only after the device enters Flash*Freeze mode.

2.5.3 FLASH_FREEZE Macro
The user service interface (USI) is an interface between the FPGA fabric and the system controller. USI
provides two active high output signals: FF_TO_START and FF_DONE to the FPGA fabric, which are
made available by instantiating the FLASH_FREEZE macro from the Libero IP catalog or by instantiating
it directly inside an HDL file. The following figure shows the FLASH_FREEZE macro, which exposes the
FF_TO_START and FF_DONE signals.

Figure 24 • FLASH_FREEZE Macro

FF_TO_START is asserted by the system controller to indicate that the FLASH*FREEZE request is
about to start. 10 µs are provided for housekeeping before the core is powered down. Microsemi
recommends using this signal for clock gating the logic, and thereby ensuring that no glitches are
transmitted to the sequential element in the design while entering Flash*Freeze.

FF_DONE is asserted by the system controller to indicate that the Flash*Freeze is completed. The same
signal must be used to connect the CCC reset input with an inversion so that the CCC is reset after
Flash*Freeze exit.

2.5.4 Flash*Freeze Guidelines
Follow these specific guidelines for reliable Flash*Freeze entry and exit:

• All asynchronous resets and presets including reset inputs to ASIC blocks (MDDR, FDDR, and
SerDes) must be gated with the FF_DONE signal to ensure that no spurious resets are propagated
from the fabric during Flash*Freeze exit.

• All fabric CCC resets must be connected to the FF_DONE signal with inversion to reset CCC during
Flash*Freeze exit.

• When using CoreSysServicesIP, entry request (SERV_ENABLE_REQ) must not be held longer than
one CoreSysServices clock cycle.

• A completely synchronous design must be used. If asynchronous clocks are involved, a simple
resynchronization circuit (double flip-flop) can be added.

Signals from the FPGA fabric to the ASIC blocks in Smartfusion2/IGLOO2 (system controller, MSSDDR,
FDDR, and SERDESIF) can go to an invalid state during recovery from suspend mode at the end of
Flash*Freeze. These signals can be classified into the following groups:

• Resets
• Clocks
• AMBA bus interfaces (APB, AHB-Lite, AXI)
• MSS signals
• Generic signals
In some cases, it may be necessary to gate signals from the fabric with FF_DONE to ensure that they are
in inactive state (which may be high or low depending on the signal) during recovery from suspend mode.

This section specifies how the preceding group of signals must be handled to avoid issues arising from a
potentially invalid state during recovery from suspend mode.

Flash*Freeze

UG0444 User Guide Revision 6.0 22

2.5.4.1 Resets
Resets must be forced inactive during recovery from suspend mode. This is done by gating all resets
generated from CoreResetP.

2.5.4.2 Clocks
The clocks from the fabric to the ASIC blocks do not need any additional gating, as they are shut off
during Flash*Freeze mode.

2.5.4.3 AMBA Bus Interfaces
Each of the ASIC blocks has one or more AMBA bus interfaces (APB/AHB-Lite/AXI) connected to it. For
any such fabric interface, which is being controlled in the fabric, the control signal that initiates
transactions (PSEL for APB, HTRANS for AHB-Lite, and VALID signals for AXI) must be gated off with
FF_DONE. However, as some of the bus interfaces are overlaid onto shared signals, gating is dependent
on the configuration of the bus interface. The following tables specify the required gating of AMBA-
related signals from the fabric to each ASIC block. Gating can be accomplished by incorporating the
function internally within the various AMBA soft-IP cores. If a particular bus interface is held in reset (soft
or hard) during Flash*Freeze, then gating need not be done. This is desirable if there are timing concerns
at the fabric interface.

2.5.4.3.1 Fabric to MDDR
The following table specifies the gating of AMBA-related signals from the fabric to the MSSDDR. In each
case, the signal is to be forced to logic 0.

2.5.4.3.2 Fabric to FDDR
The following table specifies the gating of AMBA-related signals from the fabric to the FDDR. In each
case, the signal is to be forced to logic 0.

Table 3 • Gating AMBA-related Signals from Fabric to MSSDDR

Function Libero MSS Name
HTRANS (FIC_0 AHBL) FIC_0_AHB_S_HTRANS[1]

HTRANS (FIC_1 AHBL) FIC_1_AHB_S_HTRANS[1]

HTRANS (FIC64 AHBL0) MDDR_DDR_AHB0_S_HTRANS

AWVALID (FIC64 AXI) MDDR_DDR_AXI_S_AWVALID

WVALID (FIC64 AXI) MDDR_DDR_AXI_S_WVALID

HTRANS (FIC64 AHBL1) MDDR_DDR_AHB1_S_HTRANS

ARVALID (FIC64 AXI) MDDR_DDR_AXI_S_ARVALID

Table 4 • Gating AMBA-related Signals from Fabric to FDDR

Function Libero FDDR Name
PSEL APB_S_PSEL

HTRANS (AHBL0) AHB0_S_HTRANS[1]

HTRANS (AHBL1) AHB1_S_HTRANS[1]

AWVALID (AXI) AXI_S_AWVALID

ARVALID (AXI) AXI_S_ARVALID

WVALID (AXI) AXI_S_WVALID

Flash*Freeze

UG0444 User Guide Revision 6.0 23

2.5.4.3.3 Fabric to SERDESIF
The following table specifies the gating of AMBA-related signals from the fabric to the SERDESIF. In
each case, the signal is to be forced to logic 0.

2.5.4.4 MSS Signals
The section describes how to gate MSS-related signals with FF_DONE.

2.5.4.4.1 Interrupts
If the MSS needs to be kept operational during Flash*Freeze, the following interrupt signal must be gated
off with FF_DONE. If not, the NVIC must be configured before requesting Flash*Freeze entry to mask off
interrupts.

2.5.4.4.2 Non-Interrupt Signals
It is recommended that the following signals be gated to the level shown in the following table, using
FF_DONE.

2.5.4.5 Generic Signals
These are signals that are not categorized in any of the preceding groups.

2.5.4.5.1 Fabric PLL Lock
It is recommended that the fabric PLL lock signal to MSSDDR be gated to the level shown in the
following table, using FF_DONE.

Table 5 • Gating of AMBA-related Signals from Fabric to SERDESIF

Function Libero SerDes Name
HTRANS (AHBL) AHB_M_HTRANS[1]

AWVALID (AXI) AXI_M_AWVALID

WVALID (AXI) AXI_M_WVALID

ARVALID (AXI) AXI_M_ARVALID

PSEL APB_S_PSEL

Table 6 • Gating MSS Interrupt Signal

Required Gating Level if
FF_DONE is Asserted Libero MSS Name
16’b0 MSS_INT_F2M[15:0]

Table 7 • Gating MSS Non-Interrupt Signals

Required Gating Level if
FF_DONE is Asserted Libero MSS Name
1‘b1 M3_SLEEPHOLDREQ

1’b0 M3_RXEV

Table 8 • Gating Fabric PLL Lock Signals

Required Gating Level if
FF_DONE is Asserted Libero MSS Name
1‘b1 MCCC_CLK_BASE_PLL_LOCK

Flash*Freeze

UG0444 User Guide Revision 6.0 24

2.5.4.5.2 Signals to MSS Peripherals
The following signals can be gated or not depending on whether the MSS peripheral associated with it is
being used.

Table 9 • Gating MSS Peripheral Signals

Required Gating Level if
FF_DONE is Asserted Libero MSS Name
8’b0 USB_UTMI_VSTATUS

2’b0 DMA_DMAREADY_FIC_0

2’b0 DMA_DMAREADY_FIC_1

1’b0 MAC_MII_CRS (MII/GMII)

1’b0 MAC_MII_COL (MII/GMII)

1’b0 MAC_MII_MDI (MII/TBI/GMII)

1’b0 MAC_MII_RX_DV (MII/GMII)

8’b0 MAC_MII_RXD (MII/GMII)

1’b0 MAC_MII_RX_ER (MII/GMII)

10’b0 MAC_TBI_RCGF

1’b0 I2C_0_SMBALERT_NI

1’b0 I2C_0_SMBSUS_NI

1’b0 I2C_1_SMBALERT_NI

1’b0 I2C_1_SMBSUS_NI

2’b0 USB_UTMI_LINE_STATE

1’b0 USB_UTMI_RX_ACTIVE

1’b0 USB_UTMI_RX_VALID

1’b0 USB_UTMI_RX_ERROR

8’b0 USB_UTMI_RX_DATA

1’b0 USB_UTMI_TX_READY

1’b0 USB_UTMI_VBUS_VALID

1’b0 USB_UTMI_AVALID

1’b0 USB_UTMI_SESSION_END

1’b0 USB_UTMI_ID_DIG

1’b0 USB_UTMI_HOST_DISCONNECT

1’b0 GPIO_0_F2M (FABRIC_A)

1’b0 I2C_1_SDA_F2M

1’b0 GPIO_1_F2M (FABRIC_A)

1’b0 I2C_1_SCL_F2M

1’b0 GPIO_2_F2M (FABRIC_A)

1’b0 GPIO_3_F2M (FABRIC_A)

1’b0 CAN_RX_F2M

1’b0 GPIO_4_F2M (FABRIC_A)

1’b0 GPIO_5_F2M (FABRIC_A)

Flash*Freeze

UG0444 User Guide Revision 6.0 25

1’b0 SPI_0_DI_F2M

1’b0 GPIO_6_F2M (FABRIC_A)

1’b0 GPIO_7_F2M (FABRIC_A)

1’b0 SPI_0_SS0_F2M

1’b0 GPIO_8_F2M (FABRIC_A)

1’b0 GPIO_9_F2M (FABRIC_A)

1’b0 GPIO_10_F2M (FABRIC_A)

1’b0 GPIO_11_F2M (FABRIC_A)

1’b0 SPI_1_DI_F2M

1’b0 GPIO_12_F2M (FABRIC_A)

1’b0 GPIO_13_F2M (FABRIC_A)

1’b0 SPI_1_SS0_F2M

1’b0 GPIO_14_F2M (FABRIC_A)

1’b0 GPIO_15_F2M (FABRIC_A)

1’b0 GPIO_16_F2M (FABRIC_A)

1’b0 GPIO_11_F2M (FABRIC_B)

1’b0 MMUART_1_CTS_F2M

1’b0 MMUART_1_DSR_F2M

1’b0 MMUART_1_RI_F2M

1’b0 MMUART_1_DCD_F2M

1’b0 GPIO_24_F2M (FABRIC_B)

1’b0 MMUART_1_TXD_RXD_F2M
MMUART_1_TXD_F2M

1’b0 GPIO_25_F2M (FABRIC_B)

1’b0 MMUART_1_TXD_RXD_F2M
MMUART_1_RXD_F2M

1’b0 GPIO_26_F2M (FABRIC_B)

1’b0 MMUART_1_CLK_F2M

1’b0 GPIO_17_F2M (FABRIC_B)

1’b0 GPIO_18_F2M (FABRIC_B)

1’b0 GPIO_19_F2M (FABRIC_B)

1’b0 MMUART_0_CTS_F2M

1’b0 GPIO_20_F2M (FABRIC_B)

1’b0 MMUART_0_DSR_F2M

1’b0 GPIO_21_F2M (FABRIC_B)

1’b0 MMUART_0_RI_F2M

1’b0 GPIO_22_F2M (FABRIC_B)

1’b0 MMUART_0_DCD_F2M

Table 9 • Gating MSS Peripheral Signals (continued)

Required Gating Level if
FF_DONE is Asserted Libero MSS Name

Flash*Freeze

UG0444 User Guide Revision 6.0 26

2.5.4.5.3 Signals to System Controller
It is recommended that the following response signals to the system controller be gated to the level
shown in the following table, using FF_DONE.

2.6 SYSREG Control Registers for Flash*Freeze
The following table lists the registers for Flash*Freeze. For more information, see the System Register
Block chapter of the UG0448: IGLOO2 High Performance Memory Subsystem User Guide.

1’b0 GPIO_27_F2M (FABRIC_B)

1’b0 MMUART_0_TXD_RXD_F2M
MMUART_0_TXD_F2M

1’b0 GPIO_28_F2M (FABRIC_B)

1’b0 MMUART_0_TXD_RXD_F2M
MMUART_0_RXD_F2M

1’b0 GPIO_29_F2M (FABRIC_B)

1’b0 MMUART_0_CLK_F2M

1’b0 GPIO_30_F2M (FABRIC_B)

1’b0 I2C_0_SDA_F2M

1’b0 GPIO_31_F2M (FABRIC_B)

1’b0 GPIO_0_F2M (FABRIC_A)

Table 10 • Gating System Controller Response Signals

Required Gating Level if
FF_DONE is Asserted Libero Name on TAMPER Macro
3’b111 LOCKDOWN_ALL_N

DISABLE_ALL_IOS_N
RESET_N

Table 11 • SYSREG Control Register

Register Name Register Type
Flash Write
Protect Reset Source Description

DEVICE_SR RO-P Register SYSRESET_N Device Status register

RTC_WAKEUP_CONFIG RW-P Register SYSRESET_N Masks RTC_WAKEUP interrupt to
fabric, the Cortex-M3 processor, and
the system controller.

Table 9 • Gating MSS Peripheral Signals (continued)

Required Gating Level if
FF_DONE is Asserted Libero MSS Name

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132009

Flash*Freeze

UG0444 User Guide Revision 6.0 27

2.7 Acronyms
AHB-Lite

AMBA High Performance Bus Lite

APB

AMBA peripheral bus

CCC

Clock conditioning circuit

COMBLK

COM block

ENVM

Embedded nonvolatile memory

LSRAM

Large SRAM

MDDR

Memory subsystem DDR

MSS

Microcontroller Subsystem

µSRAM

Micro SRAM

HPMS

High Performance Memory Subsystem

PDC

Physical Design Constraints

PLL

Phased-locked loop

SYSREG

System registers

2.8 Terminology
Flash*Freeze

Flash*Freeze technology provides an ultra-low power static mode for the SmartFusion2 and IGLOO2
devices.

Flash*Freeze Entry

Entry into ultra-low power static mode by the fabric master for the SmartFusion2 and IGLOO2 devices.

Flash*Freeze Exit

The exit sequence is performed by the system controller for Flash*Freeze mode exit.

Wakeup Mechanism

Exit from Flash*Freeze mode is initiated by the internal timed events or the external I/O events.

	1 Revision History
	1.1 Revision 6.0
	1.2 Revision 5.0
	1.3 Revision 4.0
	1.4 Revision 3.0
	1.5 Revision 2.0
	1.6 Revision 1.0

	2 Flash*Freeze
	2.1 Features
	2.2 Functional Description
	2.2.1 Flash*Freeze Entry Phase
	2.2.2 During Flash*Freeze Phase
	2.2.3 Flash*Freeze Exit Phase

	2.3 Using Flash*Freeze in SmartFusion2
	2.3.1 Design Flow
	2.3.2 Flash*Freeze Use Model

	2.4 Using Flash*Freeze in IGLOO2
	2.4.1 Enabling Flash*Freeze
	2.4.2 HPMS Subsystem
	2.4.3 Entering and Exiting Flash*Freeze Mode

	2.5 Flash*Freeze Design
	2.5.1 Clocks
	2.5.2 I/Os
	2.5.3 FLASH_FREEZE Macro
	2.5.4 Flash*Freeze Guidelines

	2.6 SYSREG Control Registers for Flash*Freeze
	2.7 Acronyms
	2.8 Terminology

