SYNOPSYS’

Silican to Softwara™

Inferring Microsemi SmartFusion2, IGLOOZ2 and
RTG4 MACC Blocks

Synopsys® Application Note, May 2016

The Synopsys® Synplify Pro® synthesis tool automatically infers and implements Microsemi®
SmartFusion2, IGLOO2, and RTG4 MACC blocks. The SmartFusion2, IGLOO2, and RTG4
architecture includes dedicated MACC block components, which are 18x18-bit signed multiply-
accumulate blocks. The blocks can perform DSP-related operations like multiplication followed
by addition, multiplication followed by subtraction, and multiplication with accumulate. This
application note provides a general description of the Microsemi SmartFusion2, IGLOO2, and
RTG4 MACC block component and shows you how to infer and implement it with the Synplify
Pro software.

The following topics describe the details:

The SmartFusion2, IGLOO2, and RTG4 MACC Blocks, on page 2
Inferring MACC Blocks for SmartFusion2, IGLOO2, and RTG4, on page 3
Controlling Inference with the syn_multstyle Attribute, on page 4
Coding Style Examples, on page 5

Inferring MACC Blocks for Wide Multipliers, on page 21

Wide Multiplier Coding Examples, on page 26

Inferring MACCs for Multi-Input MultAdds/MultSubs , on page 38
Inferring MACC Blocks for Multiplier-AddSub, on page 47
Inferring MACC Blocks for Multiplier-Accumulators, on page 51
Coding Examples for Timing and QoR Improvement, on page 56
Inferring MACC block in DOTP mode, on page 62

Limitations, on page 81

The SmartFusion2, IGLOO2, and RTG4 MACC
Blocks

The SmartFusion2, IGLOO2, and RTG4 device supports 18x18-bit signed multiply-accumulate
MACC blocks. The multiplier takes two 18-bit signed signals and multiplies them for a 36-bit
result. The result is then extended to 44 bits. In addition to multiplication followed by addition
or subtraction, the blocks can also accumulate the current multiplication product with a
previous result, a constant, a dynamic value, or a result from another MACC block. The
following figure shows the 18x18-bit MACC block.

MACC 0
LK [1:0] COOUT[43:0]
A[17:0] Pl<43:0]
A_BN[1:0] CWFL_CARRYOUT

™
o
(=]
=

TH oG G D0 MW
|

m

=550

=hns

o

Z =

—L F
=
=
=

P_ARST _MH[110]
“SRST_M[1:0]
FDRCSEL
FDBKSEL_EMN
FDRKSE AL R
FDBKSEL_SL_M
0L
CDEEL_EM
CDSEL_AL_M
CDSEL_SL M
AR SHET1F
ARSHET17_EM
ARSHFTIZ &L M
ARSHETLZ_SL T
SUE
SUB_EM
SUB_AL_M
SUDLSL_M
CARRNIM
SIMD
DOTP
PEL_CARRYOILIT_SEL
4 _BrPASS[1:0]
B B TRasS[1:0]
¢ _pymass[1i0]
P_BYPASS[1:0]
FDBSEL_EYPASS
FDBKSEL_aD
FDRKSF _SM_N
CDSEL_BYPAasSsS
L DSEL_AD
CDSEL_SD_M
ARSHET1Y _BYPASS
ARSHET17_2AD
AR IFT17_SD_M
SUB_BYPASS
SUB_&D
SUB_SD_HM
- OIM[43: 0]

All signals of the MACC block, except CDIN and CDOUT, have optional registers. All registers
must use the same clock. Each of the registers has enables and resets that can differ from each
other. For a complete list of all the block options and their configurations, refer to the
Microsemi documentation.

© 2016 Synopsys, Inc. All Rights Reserved. All rights reserved.

Inferring MACC Blocks for SmartFusion2, IGLOO?2,
and RTG4

Starting with the F-2011.09M-SP1 version of the Synplify Pro tool, you can now infer MACC
block components. You can write your RTL so that the synthesis tool recognizes the structures
and maps them to MACC components. The Synplify Pro tool extracts the following logic struc-
tures from the hardware description and maps them to MACC blocks: mults (Multiplier), multAdds
(multiplier followed by an adder), multSubs (multiplier followed by a subtractor), and multAccs
(multiplier-accumulator structures)

The Synplify Pro tool supports the inference of both signed and unsigned multipliers. There are
some design criteria that influence inference:

The Microsemi MACC blocks support multipliers up to a maximum of 18x18 bits for
signed multipliers and 17x17 bits for unsigned multipliers. The synthesis tool splits multi-
pliers that exceed these limits between multiple MACC blocks, as described in Inferring
MACC Blocks for Wide Multipliers, on page 21.

The Synplify Pro synthesis tool supports the inference of multiple MACC block
components across different hierarchies. The multipliers, input registers, output registers,
and subtractors/adders are packed into the same MACC block, even if they are in different
hierarchies.

The synthesis tool packs registers at the inputs and outputs of mults, multAdds, multSubs,
and multAccs into MACC blocks.

By default, the tool maps all multiplier inputs with a width of 3 or greater to MACC blocks.
If the input width is smaller, it is mapped to logic. You can change this default behavior
with the syn_multstyle attribute (see Controlling Inference with the syn_multstyle Attri-
bute, on page 4).

The tool packs registers at inputs and outputs of mults, multAdds, multSubs, and multAccs into
MACC blocks, as long as all the registers use the same clock.

— If the registers have different clocks, the clock that drives the output register gets
priority, and all registers driven by that clock are packed into the block.

— If the outputs are unregistered and the inputs are registered with different clocks, the
input registers with input that has a larger width get priority and are packed in the
MACC blocks.

The synthesis tool supports register packing across different hierarchies for multipliers up
to a maximum of 18x18 bits for signed multipliers and 17x17 bits for unsigned multi-
pliers. The synthesis tool pipelines registers for multipliers that exceed these limits into
multiple MACC blocks, as described in Inferring MACC Blocks for Wide Multipliers, on
page 21.

© 2016 Synopsys, Inc. All Rights Reserved. All rights reserved.

* The synthesis tool packs different kinds of flip-flops at the inputs/outputs of the mults,
multAdds, multSubs, and multAccs into MACC blocks:

— D type flip-flop

— D type flip-flop with asynchronous reset

— D type flip-flop with enable

— D type flip-flop with asynchronous reset and enable
— D type flip-flop with synchronous reset

— D type flip-flop with synchronous reset and enable

* The synthesis tool uses the MACC cascade feature with multi-input mult-adds and mult-
subs, up to a maximum of 18x18 bits for signed multipliers and 17x17 bits for unsigned
multipliers. The synthesis tool packs logic into MACC blocks efficiently using hard-wired
cascade paths to improve the quality of results (QoR) for the design, as described in Infer-
ring MACCs for Multi-Input MultAdds/MultSubs , on page 38.

¢ The synthesis tool uses the internal paths for adder feedback loops inside the MACC
instead of connecting it externally for multAccs up to a maximum of 18x18 bits for signed
multipliers and 17x17 bits for unsigned multipliers, as described in Inferring MACC
Blocks for Multiplier-Accumulators, on page S51.

* The synthesis tool infers MACC block in DOTP mode as described in Inferring MACC
block in DOTP mode, on page 62.

Controlling Inference with the syn multstyle Attribute

Use the syn_multstyle attribute to control the inference of multiple MACC blocks. The attribute is
briefly described here; for detailed information and more examples, refer to the FPGA
Synthesis Reference Manual.

Controlling Default Inference

By default, multipliers with input widths of 3 or greater are packed in the MACC block, while
smaller input widths are mapped to logic. If the multipliers are inferred as MACC blocks by
default, you can use the syn_multstyle attribute to map the structures to logic:

VHDL attribute syn multstyle : string ;
attribute syn multstyle of mult sig : signal is “logic";

Verilog wire [1:0] mult _sig /* synthesis syn multstyle = “logic” */;

© 2016 Synopsys, Inc. All Rights Reserved. All rights reserved.

If the multipliers are mapped to logic by default, you can use the syn_multstyle attribute to
override this and map the structures to MACC blocks, using the dsp value for the attribute:

VHDL attribute syn multstyle : string ;
attribute syn multstyle of mult sig : signal is “dsp“;

Verilog wire [1:0] mult sig /* synthesis syn multstyle = “dsp” */;

Specifying the Scope of the Attribute

You can apply the attribute globally or to individual modules, as the following sdc syntax
examples illustrate:

define global attribute syn multstyle {dsp|logic}

define attribute {object} syn multstyle {dsp|logic}

Coding Style Examples

There are many ways to code your DSP structures, but the synthesis tool does not map all of
them to MACC blocks. The following examples illustrate coding styles from which the synthesis
tool can infer and implement MACC blocks. It is important that you use a supported coding
structure so that the synthesis tool infers the MACC blocks.

Check the results of inference in the log file and the final netlist. The resource usage report in
the synthesis log file (srr) shows details like the number of blocks. It also reports if they are
configured as mult, multAdd, or multSub blocks. You should also check the final netlist to make
sure that the structures you want were implemented.

See the following examples of recommended coding styles:
e Example 1: 6x6-Bit Unsigned Multiplier
* Example 2: 11x9-Bit Signed Multiplier
e Example 3: 18x18-Bit Signed Multiplier with Registered 1/Os
e Example 4: 17x17-Bit Unsigned Multiplier with Different Resets
e Example 5: Unsigned Mult with Registered I/Os and Different Clocks
e Example 6: Multiplier-Adder
* Example 7: Multiplier-Subtractor

For other examples, see Wide Multiplier Coding Examples, on page 26.

© 2016 Synopsys, Inc. All Rights Reserved. All rights reserved.

Example 1: 6x6-Bit Unsigned Multiplier

The following design is a simple 6x6-bit unsigned multiplier, which the tool maps to MACC
block, as shown in the subsequent figure.

library IEEE;
use IEEE.std logic_1164.all;
use IEEE.std logic unsigned.all;

entity unsign mult is
port
inl : in std logic_vector (5 downto 0);
in2 : in std logic_vector (5 downto 0);
outl : out std logic_vector (11 downto 0)
)

end unsign mult;

architecture behav of unsign mult is begin
outl <= inl * in2;
end behav;

MACC

i

|

out_mulonty_0{11.0]

© 2016 Synopsys, Inc. All Rights Reserved. All rights reserved.

Resource Usage Report for Unsigned 6x6-Bit Multiplier

This section of the log file (srr) shows resource usage details. It shows that the multiplier code
was implemented in one MACC multiplier block.

Mapping to part:

Sequential Cells;
SLE O uses

DSP Blocks:1
MACC1 Mult

Total LUTs:0

Example 2: 11x9-Bit Signed Multiplier

This example is an 11x9-bit signed multiplier. It gets mapped into one MACC block, as shown in
the figure below.

library IEEE;
use 1iEEE.std logic 1164.all;
use iEEE.numeric std.all;

entity sign mult is
port
inl : in signed (10 downto 0);
in2 : in signed (8 downto 0);
outl : out signed (19 downto 0)
) ;

end sign mult;

architecture behav of sign mult is
begin

outl <=inl * in2 ;

end behav;

© 2016 Synopsys, Inc. All Rights Reserved. All rights reserved.

in1_ibuf[8]

INBUF

-

in1_ibuf[3]

INBUF

Y

in1_ibif[5)

INBUF

in1_ibu[5]

INBUF

j2]

in1_ibuf[4]

MACC

-

ut1_obuf[16]

QUTBUF

T

ut1_obuf[15]

QUTBUF

:

ut1_obuf[14]

QUTBUF

:

ut1_obuf[13]

QUTBUF

Y

ut1_obuf[12]

Resource Usage Report for 11x9-Bit Signed Multiplier
Mapping to part:

Sequential Cells;
SLEO uses

DSP Blocks:1
MACC Mult

Total LUTs:0

© 2016 Synopsys, Inc. All Rights Reserved. All rights reserved.

Example 3: 18x18-Bit Signed Multiplier with Registered 1/Os

This is code for an 18x18 signed multiplier. The inputs and outputs are registered, with a
synchronous active low reset signal. The synthesis tool fits all this logic into one MACC block,
as shown below.

module signl8x18 mult (inl, in2, clk, rst, outl);

input signed [17:0] inl, in2;

input clk;

input rst;

output signed [40:0] outl;

reg signed [40:0] outl;

reg signed [17:0] inl reg, in2 reg;

always @ (posedge clk)

begin
if (~rst)
begin
inl reg <= 18'b0;
in2 reg <= 18'b0;
outl <= 41'b0;
end
else
begin
inl reg <= inl;
in2 reg <= in2;
outl <= inl reg * in2 reg;
end
end
endmodule

© 2016 Synopsys, Inc. All Rights Reserved. All rights reserved.

10

[E e o
o) e . T
@:‘-‘-_1 - (17 .) — opEso] qEeg
in2_reg[17.0] uni_in2_reg[35:0]
out1_1[35:0]
T
| Ty e |l
L .
OUTBUF
INBLF
I MACT :
o ey w1 _cbute]
n2_buis) =
. OuThur
INBUF [
= it sttty
2 beE]
. OUTBUF
- INBUF o [
; ™ cmsen] _cbuts]
bt -
| I e S = OUTBUF
- _\) . UTBU
. .
. autl_sbufs)
o EUM.

Resource Usage Report for Signed I8xI8-Bit Multiplier with Registered I/Os
CFG11 use

Sequential Cells:
SLEQ uses

DSP Blocks 1
MACC 1 Mult

Global Clock Buffers: 1

Total LUTs: 1

© 2016 Synopsys, Inc. All Rights Reserved. All rights reserved.

11

Example 4: 17x17-Bit Unsigned Multiplier with Different Resets

This is a VHDL example of a 17x17-bit unsigned multiplier, which has input and output
registers with different asynchronous resets. The tool packs all the logic into one MACC block as
shown below.

library iEEE;

use
use

ent
inl
(16
rst
rst
out
)

iEEE.std logic 1164.all;
iEEE.std logic unsigned.all;

ity unsignl7x17 mult is port
in std logic vector (16 downto 0); in2 : in std logic vector
downto 0); clk : in std logic;
1 : in std logic;
2 : in std logic;
1 : out std logic vector (33 downto 0)

end unsignl7x17 mult;

architecture behav of unsignl7x17 mult is
signal inl reg, in2 reg : std logic_vector (16 downto 0);
begin

begin

process (clk, rstl)
if (rstl = '0') then
inl reg <= (others => '0');
in2 reg <= (others => '0');

elsif (rising edge(clk)) then
inl reg <= inl;
in2 reg <= in2;
end if;

end process;

process (clk, rst2)
begin

if (rst2 = '0') then
outl <= (others => '0');
elsif (rising edge(clk)) then
outl <= inl reg * in2 reg;
end if;

end process;
end behav;

© 2016 Synopsys, Inc. All Rights Reserved. All rights reserved.

12

[
L
S =gy d biBo] Qe - e \
" . | D150] GO0 (el 6]
E»—{ ~o] o1 (530 .
in1_reg16:0] -] —
uni_rstl out1[330]
ﬂ Lo
et unl_rst2
Ry e)
R
in2_reg|160]
a]_ =
Na— MACC i
] come Jout1_obur(]
b
.| OUTBUF
NBUF [
1] = o
- '
Jout1_obutg)
buf(4]
e 1 OUTBUF
hBUF
g o P
= ut1_obuf[10]
bt 5] H.
ol C AR OWmL_CAR YOS el
—— - OUTBUF
BUF oo g
s3] __WE;'_‘ i .-
h) "
-) .

out 1_obuf[11]

Resource Usage Report for Unsigned 17x17-Bit Multiplier
SLEO uses

DSP Blocks:1
MACC:1 Mult

Global Clock Buffers: 1

Total LUTs:0

© 2016 Synopsys, Inc. All Rights Reserved. All rights reserved.

13

Example 5: Unsigned Mult with Registered 1/0Os and Different Clocks

This example shows an unsigned multiplier whose inputs and outputs are registered with
different clocks, clkl and clk2, respectively. In this design, the synthesis tool only packs the
output registers and the multiplier into the MACC block. The input registers are implemented
as logic outside the MACC block.

module unsign mult (inl, in2, clkl, clk2, outl);
input [6:0] inl, in2;

input clkl,clk2;

output [13:0] outl;

reg [13:0] outl;

reg [6:0] inl reg, in2 reg;

always @ (posedge clkl)
begin

inl reg <= inl;

in2 reg <= in2;
end
always @ (posedge clk2)
begin

outl <= inl reg * in2 reg;
end

endmodule

© 2016 Synopsys, Inc. All Rights Reserved. All rights reserved.

14

clk1 >
[M1[6.0] _——epmpyeetadb D[5:0] Q[60] [
| [i Ul [13.0]_—=
in1_reg(6:0]
out1[13:0]
[clk2
=3
M— DIE0 QI50] gl
in2_reg[6:0]
ALK . VA SLE DHM G T
5
1N - o
4
Inl_reg[&]
H SLE - -
{O—
=

© 2016 Synopsys, Inc. All Rights Reserved. All rights reserved.

15

Resource Usage Report for Unsigned Multiplier with Different Clocks
The log file shows that all 14-input registers are implemented as logic, outside the MACC block.

Mapping to part:
Cell usage:

Sequential Cells;
SLE14 uses

DSP Blocks:1
MACC:1 Mult

Global Clock Buffers:2

Total LUTs:0

Example 6: Multiplier-Adder

This VHDL example shows a multiplier whose output is added with another input. The inputs
and outputs are registered, and have enables and synchronous resets. The following figure
shows how the design gets mapped into a MACC block.

library iEEE;
use 1iEEE.std logic 1164.all;
use 1EEE.std logic_unsigned.all;

entlty mult add is port (

inl in std logic vector (16 downto 0) ;
in2 in std logic_vector (16 downto 0);
in3 : in std logic vector (33 downto 0);
clk : in std logic;

rst : in std logic;

en: in std logic;

outl : out std logic_vector (34 downto 0)

)i

end mult add;

architecture behav of mult add is
signal inl reg, in2 reg :
signal mult out std logic_ vector

begin
process (clk)
begin
if (rising edge(clk)) then
if (rst = '0'") then
inl reg <= (others => '0');
in2 reg <= (others => '0');

outl <= (others => '0');
elsif (en = '1')then
inl reg <= inl;
in2 reg <= in2;
outl <= ('0' & mult out) +

std logic vector
(33 downto 0);

(16 downto 0);

('0" & in3);

© 2016 Synopsys, Inc. All Rights Reserved. All rights reserved.

16

end if;
end if;
end process;
mult out <= inl reg * in2 reg;
end behav;

=

1

osq opia Ty 4 14

o D 1 134 -

il _regs il _inQ2_reg 330 e —
n2_regl16:0] eati[34:0]

1 Bl
:

o9 e fpuy
-

in1_regl16:0]

i
IF

OUTBUF

-

jout1_obud[]

OUTBUF

Y

but1_obutfa]
QOUTBUF
L by - -
e “amad =tag
» S Ao o
125 = i et oo
- -

BLF QUTBUF

Y

© 2016 Synopsys, Inc. All Rights Reserved. All rights reserved.

17

Resource Usage Summary for Multiplier-Adder
CFG21 use

Sequential Cells:
SLEQ uses

DSP Blocks:1
MACC:1 MultAdd

Global Clock Buffers: 1

Total LUTs:

Example 7. Multiplier-Subtractor

There are two ways to implement multiplier and subtractor logic. The synthesis tool packs the
logic differently, depending on how it is implemented.

* Subtract the result of multiplier from an input value (P = Cin - mult). The synthesis tool
packs all logic into the MACC block.

* Subtract a value from the result of the multiplier (P = mult - Cin). The synthesis tool packs
only the multiplier in the MACC block. The subtractor is implemented in logic outside the
block.

See the following examples:
* Unsigned MultSub Verilog Example (P = Cin - Mult), on page 17
¢ Signed MultSub VHDL Example (P = Cin - Mult), on page 19
* Signed MultSub Verilog Example (P = Mult - Cin), on page 20
¢ Unsigned MultSub VHDL Example (P = Mult - Cin), on page 21

Unsigned MultSub Verilog Example (P = Cin - Mult)
The next figure shows how all logic for the example below is mapped into the MACC block.

module mult sub (inl, in2, in3, clk, rst, outl);
input [16:0] inl, in2;

input [36:0] in3;

input clk;

input rst;

output [39:0] outl;

reg [39:0] outl;

reg [16:0] inl reg, in2 reg;

always @ (posedge clk)
begin
if (~rst)
begin
inl reg <= 17'bO0;

© 2016 Synopsys, Inc. All Rights Reserved. All rights reserved.

18

in2_reg <= 17'b0;
outl <= 40'bO;

end
else
begin
inl reg <= inl;
in2 reg <= in2;
outl <= in3 - (inl reg * in2 regq);
end
end
endmodule

wil_rst in2_regl16:0] unt _in2_ragTibi_req_1(33.0] un2_ou1[39:0] outl[38:0]
L aets
M:H ofres] Gpes) fgul,
R
in _regl1 6:0)
MACC
INBUF - OUTBLF
B B . >_.

ir3_bu]26) [e but1_couff 1]

INGUF = OUTBWF

Ind_bul]27) [o Jut_obed] 12

INBUF :':"’ :_' QUTBUF

3 L> e " .>

in3_buf]22] o e Rpmmar = jut1_obuf] 13]

g
h?‘“:.
INBUE OUTBLE
i3 bu29] utt obuf]14]

© 2016 Synopsys, Inc. All Rights Reserved. All rights reserved.

19

Resource Usage Report for MultSub (P = Cin - Mult)
The log file resource usage report shows that everything is packed into one MACC block, and

one multSub is inferred.

Mapping to part:

Sequential Cells;
SLE O uses

DSP Blocks:1
MACC: MultSub

Global Clock Buffers: 1

Total LUTs: O

Signed MultSub VHDL Example (P = Cin - Mult)

library iEEE;
use 1EEE.std logic_1164.all;
use 1iEEE.numeric std.all;

entity mult sub is port (
inl : in signed (8 downto 0);
in2 : in signed (8 downto 0);
in3 : in signed (16 downto 0); outl : out signed (17 downto 0)

)
end mult sub;

architecture behav of mult sub is begin

outl <= in3 - (inl * in2);
end behav;

Resource Usage Report for MultSub (P = Cin - Mult)

The log file resource usage report shows that everything is packed into one MACC block, and
one multSub is inferred.

Mapping to part:

Sequential Cells;
SLEO uses

DSP Blocks:1
MACC:1 MultSub

Total LUTs:0

© 2016 Synopsys, Inc. All Rights Reserved. All rights reserved.

20

Signed MultSub Verilog Example (P = Mult - Cin)

module mult sub (inl, in2, in3, clk, rst, outl);
input signed [16:0] inl, in2;

input signed [36:0] in3;

input clk;

input rst;

output signed [39:0] outl;

reg signed [39:0] outl;

reg signed [16:0] inl reg, in2 reg;

always @ (posedge clk)

begin
if (~rst)
begin
inl reg <= 17'bO0;
in2 reg <= 17'b0;
outl <= 40'b0;
end
else
begin
inl reg <= inl;
in2 reg <= in2;
outl <= (inl reg * in2 reg) - in3;
end
end
endmodule

Resource Usage Report for MultSub (P = Mult - Cin)

In this case, the log file shows that only the multiplier and input registers are mapped into the
MACC block. The subtractor and output registers are mapped to logic.

Mapping to part:
Cell usage:

Carry primitives used for arithmetic functions:
ARI140 uses

Sequential Cells:
SLE40 uses

DSP Blocks:1
MACC: MultAdd

Global Clock Buffers:1

Total LUTs:0

© 2016 Synopsys, Inc. All Rights Reserved. All rights reserved.

21

Unsigned MultSub VHDL Example (P = Mult - Cin)

library iEEE;
use iEEE.std logic 1164.all;
use 1iEEE.std logic unsigned.all;

entity mult sub is port (
inl : in std logic_vector (8 downto 0);
in2 : in std logic_vector (8 downto 0);
in3 : in std logic_vector (16 downto 0);
outl : out std logic_vector (17 downto 0)
)i

end mult sub;

architecture behav of mult sub is
begin

outl <= (inl * in2) - 1in3;
end behav;

Resource Usage Report for MultSub (P = Mult - Cin)

In this case, the log file shows that only the multiplier is mapped into the MACC block. The
subtractor is mapped to logic.

Mapping to part:
Carry primitives used for arithmetic functions:
ARI118 uses

Sequential Cells:
SLEO uses

DSP Blocks:1
MACC:1 MultAdd

Total LUTs:0

Inferring MACC Blocks for Wide Multipliers

A wide multiplier is a multiplier where the width of any of its inputs is larger than 18 bits
(signed) or 17 bits (unsigned). The synthesis tool fractures wide multipliers and packs them into
multiple MACC blocks, using the cascade and shift functions of the MACC block. A wide
multiplier can be configured as either of the following:

¢ Just one input as wide

* Both inputs as wide

Wide multipliers are implemented by cascading multiple MACC blocks, using the CDOUT and
CDIN pins to propagate the cascade output of result P from one MACC block to the cascade
input for operand Cx to the next MACC block. The tool also performs the appropriate shifting.

© 2016 Synopsys, Inc. All Rights Reserved. All rights reserved.

22

There are some limits to cascade chains, shown in the following table. If the cascade chain
exceeds this limit then tool breaks the chain and creates a new cascade chain.

SmartFusion2 and IGLOO2 Maximum Cascaded Size
MACC Block

M2S060T/M2GLO60T 24 MACC blocks
M2S050T/M2GLOSOT 24 MACC blocks
M2S025T/M2GLO25T 17 MACC blocks
M2S010T and M2S005 11 MACC blocks
M2GLO10T and M2GLO0O5

M2S150T/M2GL150T 40 MACC blocks
M2S090T/M2GL0O90T 28 MACC Blocks

RTG4 MACC Block Maximum Cascaded Size
RT4G150 42 MACC blocks
RT4G150_ES 42 MACC blocks

See the following topics for more details about wide multipliers:

Fracturing Algorithm, on page 23

Mapping Fractured Multipliers, on page 23

Cascade Chain, on page 24

Log File Message, on page 24

Pipelined Registers with Wide Multipliers, on page 25

© 2016 Synopsys, Inc. All Rights Reserved. All rights reserved.

23

Fracturing Algorithm

To be a candidate for fracturing on both inputs, an m-bit x n-bit multiplier must first meet
these size requirements:

* For unsigned multipliers, either m or n or both must be greater than 17 bits.

* For signed multipliers, either m or n or both must be greater than 18 bits.

For an m-bit x n-bit multiplier that is a candidate for fracturing on both inputs, there are four
multiplications. The final output is computed with these multipliers after performing the
appropriate shifting.

Multl = 17-bit x 17-bit

Mult2 (m—17)—bit x 17 bit
Mult3 = 17-bit x (n—17)—bit
Mult4 (m—17)—bit x (n — 17)—bit

If the input widths of a fractured multiplier is more than 17 bits (unsigned) or 18 bits (signed),
that multiplier is fractured again as needed, until the fractured multiplier can be packed into a
single MACC block.

Mapping Fractured Multipliers

When an unsigned multiplier with an input width more than 17 bits or a signed multiplier with
an input width more than 18 bits is fractured into multiple multipliers, these multipliers are
always packed in multiple MACC blocks. During packing, the tool uses cascade and shift
functions without considering the input bit width of fractured multipliers. You can override this
default behavior with the syn_multstyle attribute, as described in Controlling Inference with the
syn_multstyle Attribute, on page 4.

The number of MACC blocks used for packing depends on whether one or both multiplier
inputs are configured as wide.

¢ One input wide

If only one input is a candidate for fracturing, just that input is fractured. For example, the
tool fractures a 20x4-bit unsigned multiplier as follows:

Multl= 17-bit x 4—bit multiplier
Mult2= 3—bit x 4—bit multiplier

Both these multipliers are packed into MACC blocks using cascade and shift functions.
See Example 8: Unsigned 20x17-Bit Multiplier (One Wide Input), on page 26 and
Example 9: 21x18-Bit Signed Multiplier (One Wide Input), on page 28 for examples.

© 2016 Synopsys, Inc. All Rights Reserved. All rights reserved.

24

* Both inputs wide

If both inputs are candidates for fracturing, they are fractured according to the fracturing
algorithm. A 51x26 wide multiplier is fractured as follows:

Multl= 17-bit x 17-bit
Mult2= 34-bit x 17-bit
Mult3= 17-bit x 9-Dbit
Mult4= 34-bit x 9-Dbit

Mult2 & Mult4 are further fractured:

Mult2 Mult4
Mult2_1 = 17—bit x 17—bit Mult4_1 = 17—bit x 9—bit
Mult2_2 = 17—bit x 17—bit Mult4_2 = 17—bit x 9—bit

Based on this fracturing, you get 6 multipliers that are packed into 6 MACC blocks using
cascade and shift functions. See Example 10: Unsigned 26x26-Bit Multiplier (Two Wide
Inputs), on page 28 and Example 11: 35x35-Bit Signed Multiplier (Two Wide Inputs), on
page 29 for examples.

Cascade Chain

SmartFusion2 M2S050T devices support a maximum of 24 MACC blocks being connected in a
cascade chain. After fracturing, if the number of mults, multAdds, or multSubs is more than 24, the
tool breaks the chain and starts a new cascade chain.

When a multiplier with inputs of 102x102 is synthesized, it is implemented using 36 MACC
blocks. A cascade chain is created and the tool breaks the chain after connecting 24 MACC
blocks in the cascade, and creates another chain for what is remaining.

If a wide multiplier is followed by an adder or subtractor, only the wide multiplier is packed into
the MACC blocks using the cascade and shift functions. The adder or subtractor is mapped to
logic.

Log File Message

For each wide multiplier that is implemented using the cascade and shift function, the tool
prints a note in the log file. The following is an example:

@N: : test.v(43) I Multiplier unl A[51:0] is implemented with multiple MACC
Blocks using cascade/shift feature.

© 2016 Synopsys, Inc. All Rights Reserved. All rights reserved.

25

Pipelined Registers with Wide Multipliers

The synthesis tool pipelines registers at the inputs and outputs of wide multipliers in different
hierarchies into multiple MACC blocks. The registers must meet the following requirements to
be pipelined into wide multiplier structures using cascade and shift functions:

¢ All the registers to be pipelined must use the same clock.

* Registers to be pipelined in wide multipliers can only be D type flip-flops or D type flip-
flop with asynchronous resets.

¢ All input and output registers to be pipelined should be of the same type.
¢ All registers must have the same control signals.

* The tool first considers output registers for pipelining. If those are not sufficient, the tool
considers input registers.

¢ The maximum number of pipeline stages (including input and output registers) that can
be accommodated in wide multiplier structure is <number of MACC blocks> + 1.

The following describe some details of wide multiplier implementations:

e [If the input and output registers have different clocks (both inputs have a common clock
and the output has a different clock), the output register gets priority and the tool
pipelines the output registers into multiple MACC blocks.

e If the output is unregistered and the inputs are registered with different clocks, the input
registers are not pipelined in the MACC block.

* For a wide multiplier with registers at inputs and outputs, and an adder/subtractor driven
by a wide multiplier, the tool only considers the input registers for pipelining into multiple
MACC blocks, as long as all the registers use the same clock. The adder/subtractor and
output register are mapped to logic.

* For a wide multiplier with registers at inputs and outputs, and an adder/subtractor driven
by a wide multiplier in a different hierarchy, the tool only considers the input registers for
pipelining into multiple MACC blocks, as long as all the registers use the same clock. The
adder/subtractor and output register are mapped to logic.

For an example, see Example 13: 35x35-Bit Signed Mult with 2 Pipelined Register Stages, on
page 32.

© 2016 Synopsys, Inc. All Rights Reserved. All rights reserved.

26

Wide Multiplier Coding Examples

The following examples show how to code wide multipliers so that they are inferred and mapped
to MACC blocks, according to the guidelines explained in Inferring MACC Blocks for Wide
Multipliers, on page 21.

¢ Example 8: Unsigned 20x17-Bit Multiplier (One Wide Input)

¢ Example 9: 21x18-Bit Signed Multiplier (One Wide Input)

¢ Example 10: Unsigned 26x26-Bit Multiplier (Two Wide Inputs)

¢ Example 11: 35x35-Bit Signed Multiplier (Two Wide Inputs)

¢ Example 12: 69x53-Bit Signed Multiplier

¢ Example 13: 35x35-Bit Signed Mult with 2 Pipelined Register Stages
* Example 14: FIR 4 Tap Filter

Example 8: Unsigned 20x17-Bit Multiplier (One Wide Input)

This multiplier is split and mapped to two MACC blocks.

library iEEE;
use 1iEEE.std logic 1164.all;
use 1iEEE.std logic unsigned.all;

entity unsign20x17 mult is port (
inl : in std logic_vector (19 downto 0);
in2 : in std logic vector (16 downto 0);
outl : out std logic vector (36 downto 0)
)i

end unsign20x17 mult;

architecture behav of unsign20x17 mult is
begin

outl <= inl * in2;
end behav;

© 2016 Synopsys, Inc. All Rights Reserved. All rights reserved.

W ACCIM ut_CIN_ COOUT_VERIF)

FTFTF’(F'}'F'}'F'}'F'V['VF_'M

Y

ﬁﬁ”m“““”m

Wekllut 0 0
s

M

PR

MACCIMuAc]_COIN_COOUT_VERIF)

Wissut_1_0

b1t

Resource Usage Report for Unsigned 20x17-Bit Multiplier

27

The report shows that the synthesis tool inferred 1 multAdd and 1 mult, as described in Mapping

Fractured Multipliers, on page 23.
Mapping:

Sequential Cells;
SLEO uses

DSP Blocks:2
MACC:1 Mult
MACC:1 MultAdd

Total LUTs:0

© 2016 Synopsys, Inc. All Rights Reserved. All rights reserved.

28

Example 9: 21x18-Bit Signed Multiplier (One Wide Input)

module sign21x18 mult (inl, in2, outl);

input signed [20:0] inl;
input signed [17:0] in2;
output signed [38:0] outl;
wire signed [38:0] outl;
assign outl = inl * in2;

endmodule

Resource Usage Report for Signed 21x18-Bit Multiplier

In accordance with the fracturing algorithm, the synthesis tool reports the inference of 1 mult
and 1 multAdd:

Mapping :
Sequential Cells:
SLEO uses

DSP Blocks:2
MACC:1 Mult
MACC:1 MultAdd

Total LUTs:0

Example 10: Unsigned 26x26-Bit Multiplier (Two Wide Inputs)

library iEEE;
use 1iEEE.std logic 1164.all;
use iEEE.std logic unsigned.all;

entity unsign26x26 mult is port (
inl : in std logic vector (25 downto 0);
in2 : in std logic vector (25 downto 0);
outl : out std logic vector (51 downto 0)
)i

© 2016 Synopsys, Inc. All Rights Reserved. All rights reserved.

29

end unsign26x26 mult;
architecture behav of unsign26x26 _mult is
begin

outl <= inl * in2;

end behav;

Resource Usage Report for Unsigned 26x26-Bit Multiplier

After synthesis, the log report shows that the synthesis tool split this multiplier and mapped it
to four MACC blocks. It infers 1 mult and 3 multAdd blocks.

Mapping to part:

Sequential Cells:
SLEO uses

DSP Blocks:4
MACC:1 Mult
MACC:3 MultAdd

Example 11: 35x35-Bit Signed Multiplier (Two Wide Inputs)

module sign35x35 mult (inl, in2, outl);
input signed [34:0] inl;

input signed [34:0] in2;

output signed [69:0] outl;

wire signed [69:0] outl;

assign outl = inl * in2;

endmodule

© 2016 Synopsys, Inc. All Rights Reserved. All rights reserved.

30

!
E
]
t

d 'IHIIIHIJHHT?I!'I‘I’I“TI T

L
IF TTRRTTTER T rEnT reny

= IHHIIIII-IIH!LI-!I

Y
i [[l ll . [l ! l “ Hl l".!1.-.-!',!!5}1rt;!f!:![}ggu;s-" |
l””““”“”“" U)

Resource Usage Report for Signed 35x35-Bit Multiplier
The synthesis tool infers 1 mult and 3 multAdd blocks.

Mapping :

Sequential Cells:
SLEO uses

DSP Blocks:4
MACC:1 Mult
MACC:3 MultAdds

Total LUTs:0

Example 12: 69x53-Bit Signed Multiplier

module signé9x53 mult (inl, in2, outl);
input signed [68:0] inl;

input signed [52:0] in2;

output signed [121:0] outl;

wire signed [121:0] outl;

assign outl = inl * in2;

endmodule

© 2016 Synopsys, Inc. All Rights Reserved. All rights reserved.

31

Y

Resource Usage Report for Signed 69x53-Bit Multiplier
The synthesis tool fractures the 69x53 multiplier into one mult and 15 multAdds.

Mapping :

Sequential Cells;
SLEO uses

DSP Blocks:16
MACC:1 Mult
MACC:15 MultAdds

Total LUTs:0

© 2016 Synopsys, Inc. All Rights Reserved. All rights reserved.

32

Example 13: 35x35-Bit Signed Mult with 2 Pipelined Register Stages

module sign35x35 mult (inl, in2, clk, rst, outl);
input signed [34:0] inl, in2;

input clk;

input rst;

output signed [69:0] outl;

reg signed [69:0] outl;

reg signed [34:0] inl reg, in2 reg;

always @ (posedge clk or negedge rst)

begin
if (~rst)
begin
inl reg <= 35'Db0;
in2 reg <= 35'Db0;
outl <= 41'b0;
end
else
begin
inl reg <= inl;
in2 reg <= in2;
outl <= inl reg * in2 reg;
end
end
endmodule

The register pipelining algorithm first pipelines registers at the output of the MACC block, and
controls pipeline latency by balancing the number of register stages. To balance the stages, the
tool adds registers at either the input or output of the MACC block as required.

This 35x35 signed multiplier requires four MACC blocks, so the tool can pipeline a maximum of
S register stages. The outputs of instances Widemult_0_0 and Widemult_2_0 are registered. The
tool packs the registers at the inputs of the MACC blocks and infers sequential primitives at the
output of the MACC blocks for register balancing.

The following figure shows part of the results; not all the registers are shown in the Technology
view.

© 2016 Synopsys, Inc. All Rights Reserved. All rights reserved.

33

T cui[ee)

" nz_rezjik 0]

Y

Resource Usage Report for Signed 35x35-Bit Multiplier
The synthesis tool infers 1 mult and 3 multAdd blocks.

Mapping :
Cell usage:

Sequential Cells;
SLE34 uses

DSP Blocks:4
MACC:1 Mult

© 2016 Synopsys, Inc. All Rights Reserved. All rights reserved.

MACC:3 MultAdds

Global Clock Buffers:1

Total LUTs:0

Example 14: FIR 4 Tap Filter

module flat directform top (CLK,
DATAI, COEFI, COEFI_VALID,
FIRO,
COEF _SEL) ;

parameter TAPS = 4;
parameter DATA WIDTH = 12;
parameter COEF WIDTH = 14;
parameter SYSTOLIC

// number of filter taps

localparam COEF ADDR WIDTH = ceil log2 (TAPS) ;

input CLK; /* synthesis syn maxfan = 10000 */

input COEFI VALID;
input [DATA WIDTH-1:0] DATAI;
input [COEF WIDTH-1:0] COEFI;
output [40:0] FIRO;

// Coefficient Write Block

reg [TAPS-1:0] coeff write select;

[
input [COEF_ADDR WIDTH-1:0] COEF SEL;
[

reg signed [COEF WIDTH-1:0] coeffreg [TAPS-1:0];

integer 1i;

always @ (COEFI_VALID, COEF_SEL)

begin
for (i=0;i < TAPS; i=i+1)
begin
if (i == COEF_SEL)
coeff write select[i]
else
coeff write select[i]
end //for
end // always

always @ (posedge CLK)
begin
for (i=0;i < TAPS; i=i+1)
begin

if (coeff write select[i])
// Coefficient Register

end //for
end // always

// Sample Data

COEFI VALID;

1'b0;

coeffreg[i] <= COEFI;
Should Pack Into Mathblock

© 2016 Synopsys, Inc. All Rights Reserved. All rights reserved.

34

= 1; // 0 = Direct Form 1 = Pipe-lined Systolic Form

35

reg signed [DATA WIDTH-1:0] sample data[TAPS-1:0];

always @ (posedge CLK)
begin

sample data[0] <= DATAI;

for (1 = 1; 1 < TAPS; i = 1 + 1) sample data[i] <= sample datal[i-1];
end // always

// Calculate Dot Product
reg signed[40:0] FIR DP;

always //@ (posedge CLK)

begin
FIR DP = 0;
for (i = 0; i < TAPS; i =i + 1)
begin

FIR DP = FIR DP + (sample datal[i] * coeffreglil);
// FIR DP = FIR DP + (sample datali] * coeffregl[i])
/* synthesis syn multstyle = "logic" */;

end //for

end // always
generate

if (SYSTOLIC == 1)
begin

reg signed[40:0] pipe regs[TAPS-1:0];
always @ (posedge CLK)
begin
pipe regs([0] <= FIR DP;
for (i = 1; i < TAPS; i = i + 1) pipe regs[i] <= pipe regs[i-1];
end // always

assign FIRO = pipe regs[TAPS-1];

end

else

begin
reg signed[40:0] pipe reg;
always @ (posedge CLK)
begin

pipe reg <= FIR DP;

end // always
assign FIRO = pipe reg;

end
endgenerate

[¥111777077
// Function to Calculate Address Width for Coefficients

[17177%/
function [31:0] ceil log2;
input integer x;

© 2016 Synopsys, Inc. All Rights Reserved. All rights reserved.

36

integer tmp, res;

begin
tmp = 1;
res = 0;
while (tmp < x) begin
tmp = tmp * 2;
res = res + 1;
end
ceil log2 = res;
end
endfunction
endmodule

FIR 4 Tap filter has four stages of pipelined registers at the output. As described in Example 13:
35x35-Bit Signed Mult with 2 Pipelined Register Stages, on page 32, the register pipelining
algorithm first pipelines registers at the output of the MACC block, and controls pipeline
latency by balancing the number of register stages. To balance the stages, the tool adds
registers at either the input or output of the MACC block, as required. Depending on the
number of pipeline stages, there are a number of levels for the input registers. The tool then
packs one level of registers at the input and output into the MACC block and implements the
remaining registers using SLE blocks.

The following formula calculates the number of registers implemented using SLE with coding
style for FIR 4 Tap filter:

n(n-1) / 2 x (a + bl)) + (b2 x (n-1))
n =4 (Tap size)
a = COEFI[13:0] = 14
bl = b2 = DATA[11:0] = 12.

There is a register chain at the sample data input and only one register at the COEFI input.
During synthesis, all output registers are pushed to the input side of the multipliers during
pipelining. A warning message in the log file informs you that the tool is removing sequential
instance *coeffreg* because it is equivalent to instance sample_data*. The synthesis tool optimizes the
register at the COEFI input and uses the output from the equivalent sample_data register.
Therefore, all registers being pushed for pipelining at input bl are optimized and the value of bl
becomes 0.

If you substitute values for n, a, b1, and b2 into the equation, you get this formula:
4(4-1) / 2 x (14 + 0)) + (12 x (4 -1) = (12/2 x 14 + (12 x 3) = 84 + 36=120

Use this formula for any FIR tap filter written with this coding style, to calculate the number of
registers implemented using SLE.

© 2016 Synopsys, Inc. All Rights Reserved. All rights reserved.

37

M- ot " + - " —_ v as —_— -
L=t .. e ot _ .a',;l;uw_{_ld!] o (aioe_en_ 1180 e poe_mn 3 L0 Rk 5 wan) 8081

o g n |emegm s |wese e g

e " e aa
Iaha I wmm_an 310
ot Wrie_bewn)
e
I v . .
e P v {pee e e .
R ez 2 pag n_eo 1)
[T g

LTTT)

R %

. m ma_st1?

foatey 130
ofe®_wrme_mhapy

uanananagg

LS | e e e -

LI

oor®_wrie_wewcil

(EEECELLLEL

:

ai#zi

!

5
;} 4

IT oy
¥
{

(1] g
%a i§7a §§75 §¢a

© 2016 Synopsys, Inc. All Rights Reserved. All rights reserved.

Resource Usage FIR 4 Tap Filter

Mapping :
Cell usage:
CFG34 uses

Sequential Cells:
SLE120 uses

DSP Blocks:4
MACC:4 MultAdds

Total LUTs:4

38

Inferring MACCs for Multi-Input MultAdds/MultSubs

The MACC block cascade feature supports multi-input multAdd and multSub implementations for
devices with MACC blocks. The tool packs logic into MACC blocks efficiently using hard-wired
cascade paths, and improves the quality of results (QoR) for the design.

To use the cascade feature, the design must meet these requirements:

Example 15: VHDL Test for 8 MultAdd

The input size for multipliers must not be greater than 18x18 bits (signed) and 17x17 bits

(unsigned).

Signed multipliers must have the proper sign-extension.

All multiplier output bits must feed the adder.

Multiplier inputs and outputs may be registered or unregistered.

library ieee;

use ieee.std logic 1164.all;

use ieee.std logic arith.all;

use ieee.std logic signed.all;

entity test is

generic (widtha :
widthb :
widthc :
widthd :
widthe :

widthf

widthg :
widthh :
widthi :

widthj

integer :
integer :
integer :
integer :
integer :
: integer :
integer :
integer :
integer :
: integer :
widthk :

integer :=

18;
18;
16;
17;
9;
9;
17;
17;
7;
15;
3;

© 2016 Synopsys, Inc. All Rights Reserved. All rights reserved.

39

widthl : integer := 3;
widthm : integer := 18;
widthn : integer := 18;
widtho : integer := 8;

widthp : integer := 12;
width out : integer := 41
)i

port (ina : in std logic vector (widtha-1 downto 0) ;
inb : in std logic_vector (widthb-1 downto O0) ;
inc : in std logic_vector (widthc-1 downto O0) ;
ind : in std logic vector (widthd-1 downto 0);
ine : in std logic vector (widthe-1 downto 0);
inf : in std logic_vector (widthf-1 downto 0);
ing : in std logic_ vector (widthg-1 downto O0) ;
inh : in std logic_vector (widthh-1 downto 0) ;
ini : in std logic_vector (widthi-1 downto 0) ;
inj : in std logic vector (widthj-1 downto 0);

ink : in std logic_vector (widthk-1 downto
inl : in std logic_vector (widthl-1 downto
inm : in std logic vector (widthm-1 downto
inn : in std logic_vector (widthn-1 downto
ino : in std logic_vector (widtho-1 downto ;

inp : in std logic vector (widthp-1 downto 0) ;
dout : out std logic vector (width out-1 downto 0)
)

end entity test;

7
7
I

’

O O O oo

architecture arc of test is
function sign ext (v_in : std logic_vector; new size : natural)
return std logic vector is
variable size in : natural;
variable result : std logic vector (new size - 1 downto 0);

begin
result := (others => v_in(v_in'left));
result (v_in'length - 1 downto 0) := v_in;

return result;
end sign ext;

widtha-1 downto
widthb-1 downto
widthec-1 downto
widthd-1 downto
widthe-1 downto
widthf-1 downto
widthg-1 downto
widthh-1 downto

signal ina sig : std logic vector 0
0
0
0
0
0
0
0
widthi-1 downto 0
0
0
0
0
0
0
0

signal inb sig : std logic vector
signal inc sig : std logic vector
signal ind sig : std logic vector
signal ine sig : std logic vector
signal inf sig : std logic vector
signal ing sig : std logic vector
signal inh sig : std logic vector
signal ini sig : std logic vector
signal inj sig : std logic vector
signal ink sig : std_logic_vector
signal inl sig : std logic vector
signal inm sig : std logic vector
signal inn sig : std logic vector
signal ino sig : std logic vector
signal inp sig : std logic vector

widthj-1 downto
widthk-1 downto
widthl-1 downto
widthm-1 downto
widthn-1 downto
widtho-1 downto
widthp-1 downto

N~ e~~~ e~~~ o~~~ o~~~ o~ —~

© 2016 Synopsys, Inc. All Rights Reserved. All rights reserved.

40

widtha+widthb-1 downto
widthc+widthd-1 downto
widthe+widthf-1 downto
widthg+widthh-1 downto
widthi+widthj-1 downto
widthk+widthl-1 downto
widthm+widthn-1 downto
widtho+widthp-1 downto

signal prodl : std logic vector
signal prod2 : std logic vector
signal prod3 : std logic vector
signal prod4 : std logic vector
signal prod5 : std logic_ vector
signal prodé : std logic_vector
signal prod7 : std logic_vector
signal prod8 : std logic vector

~e o~

oo~

~e ~o

~.

loNeoNoNolNolNolNolNo]

—~ o~~~ —~

~.

signal padprodl : signed(width out-widtha-widthb-1 downto 0) ;
signal padprod2 : signed(width out-widthc-widthd-1 downto 0) ;
signal padprod3 : signed(width out-widthe-widthf-1 downto 0);
signal padprod4 : signed(width out-widthg-widthh-1 downto 0) ;
signal padprod5 : signed(width out-widthi-widthj-1 downto 0) ;
signal padprodé : signed(width out-widthk-widthl-1 downto 0) ;
signal padprod7 : signed(width out-widthm-widthn-1 downto 0) ;
signal padprod8 : signed(width out-widtho-widthp-1 downto 0) ;
begin

ina sig <= sign ext (ina,widtha) ;

inb sig <= sign ext (inb,widthb) ;

inb sig <= sign ext (inb,widthc) ;

inb sig <= sign ext (inb,widthd);

inb sig <= sign ext (inb,widthe);

inb sig <= sign ext (inb,widthf);

inb sig <= sign ext (inb,widthg) ;

!

(
(
(
(
(
(
(
inb sig <= sign ext (inb,widthh
(
(
(
(
(
(
(

inb sig <= sign ext (inb,widthi) ;
inb sig <= sign ext (inb,widthj);
inb sig <= sign ext (inb,widthk);
inb sig <= sign ext (inb,widthl);
inb sig <= sign ext (inb,widthm) ;
inb sig <= sign ext (inb,widthn) ;
inb sig <= sign ext (inb,widtho) ;

N N N N N N N N N NI N N

1

inb sig <= sign ext (inb,widthp
prodl <= ina sig * inb sig;

prod2 <= inc sig * ind sig;
prod3 <= ine sig * inf sig;
prod4 <= ing sig * inh sig;
prod5 <= ini sig * inj_ sig;
prod5 <= ink sig * inl sig;
prod6 <= inm sig * inn sig;
prod7 <= ino sig * inp sig;

padprodl <= (others => prodl (widtha+widthb-1)) ;
padprod2 <= (others => prod2 (widthc+widthd-1)) ;
padprod3 <= (others => prod3 (widthe+widthf-1));
padprod4 <= (others => prod4 (widthg+widthh-1)) ;
padprod5 <= (others => prod5 (widthi+widthij-1));
padprodé <= (others => prodé (widthk+widthl-1));
padprod7 <= (others => prod7 (widthm+widthn-1)) ;
padprod8 <= (others => prod8 (widtho+widthp-1)) ;

dout <= ((padprodl & signed(prodl)) + (padprod2 & signed(prod2)) +

© 2016 Synopsys, Inc. All Rights Reserved. All rights reserved.

41

(padprod3 & signed(prod3)) + (padprod4d & signed (prod4))
(padprod5 & signed (prod5)) + (padprodé & signed (prodé))
(padprod?7 & signed(prod7)) + (padprod8 & signed (prod8))) ;

+
+

end arc;

YY[Y Y Y Y YYYYYYY VY

Resource Usage Report for 8 MultAdd
The synthesis tool infers 8 multAdd blocks.

Mapping to part:

Sequential Cells:
SLEO uses

DSP Blocks:8
MACC:8 MultAdds

Total LUTs:0

© 2016 Synopsys, Inc. All Rights Reserved. All rights reserved.

Example 16: Verilog Test for 3 MultSub

“timescale 1 ns/100 ps

“ifdef synthesis

module test (ina, inb, inc, ind, ine, inf, dout) ;
“else

module test rtl (ina, inb, inc, ind, ine, inf, dout);
“endif

parameter widtha = 18;
parameter widthb = 18;
parameter widthc = 16;
parameter widthd = 17;
parameter widthe = 9;
parameter widthf = 9;
parameter width out = 37;

input signed [widtha-1:0] ina;
input signed [widthb-1:0] inb;
input signed [widthc-1:0] inc;
input signed [widthd-1:0] ind;
input signed [widthe-1:0] ine;
input signed [widthf-1:0] inf;
output reg signed [width out-1:0] dout;

function signed [widtha+widthb-1:0] product ab;

input [widtha-1:0] DA;

input [widthb-1:0] DB;

reg [widtha-1:0] D A;

reg [widthb-1:0] D B;

integer DataAi;

integer DataBi;

reg signed [widtha+widthb-1:0] add sub;

&)
>
Il

B {widtha{1'b1}};
D B = {widthb{1'bl}};
if (DA [widtha-11)
DataAi = - (D_A-DA+l);
else
DataAi = DA;

if (DB [widthb-11)
DataBi = - (D_B—DB+1);

else
DataBi = DB;
add sub = (DataAi * DataBi) ;
product ab = add sub;

end

endfunction

function signed [widthc+widthd-1:0] product cd;

input [widthc-1:0] DC;
input [widthd-1:0] DD;

© 2016 Synopsys, Inc

42

. All Rights Reserved. All rights reserved.

reg [widthc-1:0] D C;

reg [widthd-1:0] D D;

integer DataCi;

integer DataDi;

reg signed [widthc+widthd-1:0] add sub;

begin
= {widthc{1'b1}};
{widthd{1'b1}};
DC [widthc-11)
DataCi = -(D_C-DC+1);
else

DataCi = DC;

D_
D_
if

~ 0N
I

if (DD [widthd-1]1)

DataDi = - (D_D—DD+1);
else

DataDi = DD;

add _sub = (DataCi * DataDi);
product cd = add sub;
end

endfunction

function signed [widthe+widthf-1:0] product_ef;

input [widthe-1:0] DE;

input [widthf-1:0] DF;

reg [widthe-1:0] D E;

reg [widthf-1:0] D F;

integer DataEi;

integer DataFi;

reg signed [widthe+widthf-1:0] add sub;

begin
D
D

{widthe{1'b1}};
{widthf{1'b1}};
DE [widthe-1])
DataEi = - (D_E—DE+1);
else

DataEi = DE;

if

—~ T ™
]

if (DF [widthf-1])

DataFi = -(D_F-DF+1);
else

DataFi = DF;

add sub = (DataEi * DataFi);
product ef = add sub;
end

endfunction

43

always @(
dout =

endmodule

*)

product ab(ina, inb)

- product cd(inc, ind) - product ef (ine, inf);

© 2016 Synopsys, Inc. All Rights Reserved. All rights reserved.

44

dout_1[36:0]

EEEEEECEEEEEEEEEEE]

MICCH ke _CN

o
s 00 Ml b _CORLERORT.
s M 00T s -

S - s

Resource Usage Report for 3 MultSub
The synthesis tool infers 1 multAdd and 2 multSub blocks.
Mapping :

Sequential Cells:
SLEQO uses

DSP Blocks: 3

MACC:1 MultAdd
MACC:2 MultSubs

© 2016 Synopsys, Inc. All Rights Reserved. All rights reserved.

Example 17: Complex Expression Example

module test(clk,a, b, c, d, e, p);

parameter M = 16;
parameter N = 16;

input clk;

input signed[M-1:0] a, b;
input signed[N-1:0] <, d;
input signed[N*2-1:0] e;
output signed[M+N-1:0] p;

reg [M+N-1:0] p;

always@ (posedge clk)

begin

p=e+ (c*xd + (a* b);
end

endmodule

Resource Usage Report for Test
The synthesis tool infers two multAdd blocks.

Mapping :
Cell usage:
CLKINT 1 use

Sequential Cells;
SLE 0 uses

DSP Blocks: 2
MACC: 2 MultAdds

© 2016 Synopsys, Inc. All Rights Reserved. All rights reserved.

45

46

L

DI1O] OE10] gep— T O] -

pl31:0]

uni_p[31:0] |

p_1[31:0]

ung_p[31:0]

MACC M uksss_CIOM_P__F) CUTBUF

WAL Ol ekiad © COOUT)
[ea—
.
et
e
[e——
———
wennr ey
-
gy
——
eyl
)
———
Ema s
=
P

Y! iy
|

_otw]

LT BLF

Y

I
L]
I T O TV e T T ey

s cmEm |-

L . T

o "'_Q; DUTBLF

camnrn Err e

T e O T rer e
]
&

Ay e

[

E?
2

-
-
-
"]
s
s ST BLF
il |
-— =
K
= m
ba - p_owld
=
s
Ao
h e
-1 A GUTELF
el e
- %
. Com e A
= T
[t e
o L]

g peleedd_B(31:0] p_sbulf]

g mulacid_0[30:0]

© 2016 Synopsys, Inc. All Rights Reserved. All rights reserved.

a7

Inferring MACC Blocks for Multiplier-AddSub

The MACC block supports dynamic additions and subtractions. It uses the sub input of the
MACC block to select the ADD or SUB operations. The design must conform to these prerequi-
sites:

¢ Input size for multipliers must not be greater than 18x18 bits (signed) and 17x17 bits
(unsigned). The tool does not infer multAdds and multSubs with wide multipliers.

* Signed multipliers must have the proper sign extension.

¢ The multiplier output used for addition or subtraction must be specified:

Prod=A*B
Sum = Sub ? (C - Prod) : (C + Prod)

e Multiplier inputs and outputs can be registered or unregistered.

Example 18: One MultAddSub (Verilog)

module test (ina, inb, inc, dout, sel);

parameter widtha 17;
parameter widthb = 17;
parameter widthc = 17;
parameter width out = 34;

input [widtha-1:0] ina;
input [widthb-1:0] inb;
input [widthc-1:0] inc;
input sel;

output [width out-1:0] dout;

assign dout = sel ? inc - (ina * inb) : inc + (ina * inb) ;
endmodule

Resource Usage Report for Test
The synthesis tool infers 1 MultAddSub block.
Mapping :

Sequential Cells;

SLE O uses

DSP Blocks: 1

MACC: 1 MultAddSub

© 2016 Synopsys, Inc. All Rights Reserved. All rights reserved.

48

- und_dout{33:0]
un5_dout[33:0]

0w otz

MACC CLUTBLF
INBLF
‘—|' T —— T
== 'D\\'
I_,.f/ doul_otuff 0]
sal_ibul
DUTBUF
dout_oka] 1]
CUTBLF
doul_atul] 2]
eI M an

LE1E ——?'::
e .--» DLUTBLF

R ————
i dous_ozen3]

IR QUTBLF

Mt ang
i doul_okel4]
LR LR bl
smesan
e
i CUTBLF
BB
LT el 2

-
]
ER
-
=
-
-
-
=
]
-
o]
)
-
=
ER
-
=
.
e
]
]
]
e
e I__ e
Vg
i
=
s
=
T
T
s B
—
'-
T
e
ey
T
e
T
=

IHNELF

i

ureS_doil_ertsda 0] 3300 dout_aeul] 5]

OO

i

OUTBLF

© 2016 Synopsys, Inc. All Rights Reserved. All rights reserved.

Example 19: One MultAddSub (VHDL

library ieee;

use ieee.std logic 1164.all;

use ieee.std logic arith.all;
use ieee.std logic unsigned.all;

entity test is

49

)

generic (a_width : integer := 17;

b width : integer := 17);

port (clk : in std logic;
reset n : in std logic;
sampC in : in std logic vector(a_width-1 downto 0) ;
sampD_in : in std logic_vector(a_width-1 downto 0); --imag
coeffA in : in std logic_vector (b_width-1 downto 0);
coeffB in : in std logic vector (b width-1 downto 0); --imag
toggle in std logic; -- 1=SUB; 0=ADD
re mult : out std logic vector(a width downto 0)

)i

end test;

architecture DEF_ARCH of test is

signal re prodl
signal mult out

begin
process (clk, reset n)
begin
if (reset n = '0') then

mult out <= (others =>

elsif rising edge(clk) then

'O')'

std logic vector(a_width+b width-1 downto 0);
std logic_vector(a_width+b width-1 downto 0);

-- 1=SUB; 0=ADD

7

re prodl <= sampC_in * coeffA in;

mult out <= re prodl + (sampD in * coeffB in);

if (toggle = '0') then
else
mult out <= re prodl -
end if;
end 1if;

end process;

(sampD_in * coeffB in);

re mult (a_width downto 0) <= mult out(a width+b width-1 downto b width-1);

end def arch;

Resource Usage Report for Test

The synthesis tool infers 1 MultAddSub block and 1 Mult block.

Mapping :

Cell usage:

CLKINT 1 use
Sequential Cells:

SLE 0 uses

DSP Blocks: 2

MACC: 1 MultAddSub
MACC: 1 Mult

© 2016 Synopsys, Inc. All Rights Reserved. All rights reserved.

50 §

=
w T 2
[A s —— " . ama mwrn o (el
[g —1 L]
e re_prod1_1[33.0] re_prod1[33:0] —1
[rul_out|3316]
unl_re_prodi[0:33]
[==r =~
w2 _mut_outfd 33] el _resa_n
v
MACCIM skidaSeb C_P__PC]
5{: ey
b ey
I_ e
S]
] com_
] mpero_yema
I e
[gy
P "
b "
e T
-] i
a MACCMUE_P_} 1: P
] men [ey
] g ‘c: ——rr_a
-
= == - e
] s e b
[b s
] B t ey
[e o,
= 8 ey
b i t T
i |l =
b e
i e e e |
S A LT L et
b ey T P - oo "
-
= T - N
b whan
i e ' B Rt
ued o po "o o
. &
- m&‘ = P
] onsan b EEUE
b == s CT
o o PRI W
o T PRI S o [
] compuiy =
= didind
]
U=
e Bt
s B
Tl e
T 2w
s
T
To wwi R
T S unl_mil_cof_mulsdd_S23:0]
"] #_mr s
L B TN
T mros
b BT
e Rt
o] s
N CETTE
V] s
fad nz
re_prod 1_1_maionly_ {230

© 2016 Synopsys, Inc. All Rights Reserved. All rights reserved.

51

Inferring MACC Blocks for Multiplier-Accumulators

The multiplier-accumulator structures use internal paths for adder feedback loops inside the
MACC block instead of connecting them externally. To implement these structures, the design
must meet these requirements:

The input size for multipliers must not be greater than 18x18 bits (signed) and 17x17 bits

(unsigned).

Signed multipliers must have the proper sign extension.
All multiplier output bits must feed the adder.

The output of the adder must be registered.

The registered output of the adder must feed back to the adder for accumulation.

Only multiplier-Accumulator structures with one multiplier can be packed inside the
MACC block, because the MACC block contains only one multiplier, .

The multiplier-accumulator structure also supports synchronous loadable registers. To infer
these structures the design must meet the requirements listed above, as well as the
requirements listed here:

For the loading multiplier-accumulator structure, new load data must be passed to input

C.

The loadEn signal must be registered.

Example 20: Verilog Test for 18X18 MultAcc with Load

“timescale 1 ns/100 ps

“ifdef synthesis

module test (clk, rst, 1d, ina, inb, inc, dout);
“else

module test rtl (clk, rst, 1ld, ina, inb, inc, dout);
“endif

parameter widtha = 18;
parameter widthb = 18;
parameter widthc = 41;

parameter width out = 41;

input clk, rst, 1d;

input signed [widtha-1:0] ina;

input signed [widthb-1:0] inb;

input signed [widthc-1:0] inc;

output reg signed [width out-1:0] dout;

wire signed [width out-1:0] multl;
reg signed [widtha-1:0] ina reg;

always@ (posedge clk or negedge rst)
if (~rst)
ina reg <= {widtha{1'bo}} ;

© 2016 Synopsys, Inc

. All Rights Reserved. All rights reserved.

52

else
ina reg <= ina ;

assign multl = ina reg * inb;

reg ld reg;
always@ (posedge clk or negedge rst)
if (~rst)
1d_reg <= {width out{1'bo}} ;
else

ld reg <= 1d ;

always@ (posedge clk or negedge rst)

if (~rst)
dout <= {width out{1'bo}} ;
else
if (1d _reg)
dout <= inc ;
else

dout <= multl + dout ;

endmodule

Resource Usage Report for 18x18 MultAcc with Load
The synthesis tool infers 1 multAcc block.
Mapping :
Cell usage:

CFG11 use
CFG241 uses

Sequential Cells:
SLE1 use

DSP Blocks:1
MACC: 1 MultAcc

Total LUTs: 42

© 2016 Synopsys, Inc. All Rights Reserved. All rights reserved.

=
oKl o)
R

Id_reg
d

_4[40:0]

53

R

-
D9 QED)

dout[40:0]

ina_regs

P
LR 0p170) Q70
R

I

ina_regl17.0]

5

uri3 _cout[40:0]

na_ibui8]

MACC

a_bui3]

H \ mamamnn

[INRRRRRNRENRNANNNRND L LLLL]

und_dout_rmulec 0[40:10)

© 2016 Synopsys, Inc. All Rights Reserved. All rights reserved.

54

Example 21: VHDL Test for 12X3 MultAcc Without Load

library ieee;

use ieee.std logic 1164.all;
use ieee.std logic arith.all;
use ieee.std logic signed.all;

entity test is

generic (widtha : integer := 12;
widthb : integer := 3;
width out : integer := 18

)i
port (clk : in std logic;
rst : in std logic;
ina : in std logic vector (widtha-1 downto 0) ;
inb : in std logic_vector (widthb-1 downto 0) ;
dout : out std logic_vector (width out-1 downto 0)
)i
end entity test;

architecture arc of test is
signal prodl : std logic vector (widtha+widthb-1 downto 0) ;
signal padprodl : signed(width out-widtha-widthb-1 downto 0) ;
signal dout t : std logic vector (width out-1 downto 0);
begin

prodl <= (signed(ina) * signed(inb)) ;
padprodl <= (others => prodl (widtha+widthb-1)) ;

process (clk, rst)
begin

if (rst='0")then

dout t <= (others => '0');
elsif (clk'event andclk='1')then
dout t <= conv_std logic vector ((padprodl & signed(prodl)),width out)
+ dout_t;

end if;

end process;

dout <= dout_t;

end arc;

© 2016 Synopsys, Inc. All Rights Reserved. All rights reserved.

55

1 4
Im:“—‘mm-u—j/ s —

—] :)_Wﬂ m 1
prad1[T4°0) e unB_dout_t[17:0]

[

)

utf1 -

out_t{17:0]

= >

unl_rst

I"/ [[« a
i_iiburff] :)
ot b 4]
MACC
INEUF =
| :: , g OUTELF
o_iibuf7] :
I~ Howt_obuf]5]
INEUF o ==
:| :. i _: : OUTBUF
u_iibud] o
= out_obufd
INBUF =
== OUTBUF
L ibufE] E - . > "
N . o= -'_qc_'i:ol.t_obl."[?:
T
INBUF
———
] _) CUTEUF
——— _ ~
_ibuf10] —
pr—— =
N phout_obuf[8]
p——
— -
] _) CUTEUF
——— -
_ibufi1]]
] p— pout_obuf 3
INBUF] =alls
|) u - OUTELF
- - H und_dourt t mudace O[17:0]
L ibufd]] :‘-" i

© 2016 Synopsys, Inc. All Rights Reserved. All rights reserved.

56

Resource Usage Report for 12x3 MultAcc Without Load
The synthesis tool infers 1 MultAcc block.

Mapping :

Sequential Cells;
SLEO uses

DSP Blocks:1
MACC:1 MultAcc

Total LUTs:0

Coding Examples for Timing and QoR Improvement

The following examples show coding styles that result in better timing and QoR.
¢ Example 22: MultAdd, on page 56
¢ Example 23: MultAdd with Pipelined Registers, on page 59

Example 22: MultAdd

This example is a normal multAdd structure which gives ~456MHz after place and route.

library ieee;

use ieee.std logic 1164.all;

use ieee.std logic arith.all;
use ieee.std logic unsigned.all;

entity test is

port (clk : in std logic;
reset n : in std logic;
Xn in : in signed (15 downto 0) ;
¥Yn out : out signed(15 downto 0)
)

end test;

architecture DEF ARCH of test is

constant b0 coeff : signed (15 downto 0) := X"7FFF";
constant bl coeff : signed (15 downto 0) := x"7FFF";
constant b2 coeff : signed (15 downto 0) := x"7FFF";
constant al coeff : signed (15 downto 0) := x"7FFF";
constant a2 coeff : signed (15 downto 0) := x"7FFF";
constant scale factor : signed (15 downto 0) := x"FF3F";

© 2016 Synopsys, Inc. All Rights Reserved. All rights reserved.

57

signal Xn regl : signed (15 downto 0) ;
signal Xn reg2 : signed (15 downto 0) ;
-- signal Xn reg3 : signed (15 downto 0) ;
-- signal Yn regl : signed (15 downto 0) ;
-- signal Yn reg2 : signed (15 downto 0) ;
signal b0 mult : signed (31 downto 0);
signal bl mult : signed (31 downto 0);
signal b2 mult : signed (31 downto 0);
signal al mult : signed (31 downto 0) ;
signal a2 mult : signed (31 downto 0) ;
signal pad b0 mult : signed (11 downto 0) ;
signal pad bl mult : signed (11l downto 0) ;
signal pad b2 mult : signed (11l downto 0) ;
signal pad al mult : signed (11 downto 0);
signal pad a2 mult : signed (11l downto 0) ;
-- signal scale reg : signed (31 downto 0) ;
signal scale regl : signed (15 downto 0) ;
signal scale reg2 : signed (15 downto O0);
signal sum out : signed (43 downto 0);
signal sum outl : signed (43 downto 0);
signal sum out2 : signed (43 downto 0) ;
signal sum out3 : signed (43 downto 0) ;
-- signal sum out4 : signed (43 downto 0);
begin
process (clk, reset n)
begin
if (reset n = '0') then
Xn regl <= (others => '0');
Xn reg2 <= (others => '0');
scale_regl <= (others => '0');
scale reg2 <= (others => '0');
sum_out <= (others => '0');
sum outl <= (others => '0');
sum_out2 <= (others => '0');
sum_out3 <= (others => '0');
-- sum_out4 <= (others => '0');
elsif rising edge(clk) then
Xn regl <= Xn in;
Xn reg2 <= Xn regl;
scale regl <= sum_out (31 downto 16);
scale_reg2 <= scale_regl;
sum_outl <= (pad b0 mult & (b0 _mult)) + (pad bl mult & (bl mult));
sum_out2 <= (pad b2 mult & (b2 mult)) + sum outl;
sum_out3 <= (pad al mult & (al mult)) + sum out2;
sum_out <= (pad a2 mult & (a2 mult)) + sum out3;
end if;

end process;

b0 mult <= Xn in * b0 coeff;
bl mult <= Xn regl * bl coeff;
b2 mult <= Xn reg2 * b2 coeff;
al mult <= scale regl * al coeff;
a2 mult <= scale reg2 * a2 coeff;

© 2016 Synopsys, Inc. All Rights Reserved. All rights reserved.

58

pad b0 mult <= (others => b0 mult(31));
pad bl mult <= (others => bl mult(31));
pad b2 mult <= (others => b2 mult(31));
pad al mult <= (others => al mult(31));
pad a2 mult <= (others => a2 mult(31));

Yn out <= sum out (31 downto 16) ;

end def arch;

Resource Usage Report
The synthesis tool infers five multAdd blocks with 32 SLE's.
Mapping :

Cell usage:
CLKINT 2 uses

Sequential Cells:
SLE 32 uses

DSP Blocks: 5
MACC: 5 MultAdds

© 2016 Synopsys, Inc. All Rights Reserved. All rights reserved.

59

Example 23: MultAdd with Pipelined Registers

This example has the same functionality as Example 22, but the coding style is changed to
pipelined registers. With pipeline registers, the synthesis tool does pipeline register retiming
and then inserts registers at the input side to improve timing. The timing performance is
improved to ~400MHz. The tool also infers five MACC blocks in the cascade chain.

library ieee;

use ieee.std logic_1164.all;
use ieee.std logic arith.all;

use ieee.std logic unsigned.all;

entity TinyIIR SF2 v6 is
port (clk
reset n

Xn in
Yn out

)

end TinyIIR SF2 v6;

in std logic;
in std logic;
in signed (15 downto 0);
: out signed (15 downto 0)

architecture DEF ARCH of TinyIIR SF2 v6 is

constant b0 _coeff
constant bl coeff
constant b2 coeff
constant al coeff
constant a2 coeff
constant scale factor
signal Xn regl

signal Xn reg2

-- signal Xn reg3
-- signal ¥Yn regl
-- signal Yn reg2

signal
signal
signal
signal
signal
signal
signal
signal
signal
signal

b0 mult
bl mult
b2 _mult
al mult
a2 mult
pad b0 mult
pad bl mult
pad b2 mult
pad al mult
pad_az_mult

-- signal scale reg

signal
signal
signal
signal
signal
signal
signal

begin

scale regl
scale reg2
sum_out
sum_out0
sum_outl
sum_ out2
sum out3

signed (15 downto 0) := x"7FFF";
signed (15 downto 0) := X"7FFF";
signed (15 downto 0) := X"7FFF";
signed (15 downto 0) := xX"7FFF";
signed (15 downto 0) := xX"7FFF";
signed (15 downto 0) := xX"FF3F";

signed (15 downto 0) ;

signed (15 downto 0) ;
signed (15 downto 0) ;
signed (15 downto 0);
signed (15 downto 0) ;

signed (31 downto

o

~.

)
signed (31 downto 0) ;
signed (31 downto 0) ;
signed (31 downto 0) ;
signed (31 downto 0) ;
signed (11 downto 0) ;
signed (11 downto 0) ;
signed (11 downto 0) ;
signed (11 downto 0) ;
signed (11 downto 0);
signed (31 downto 0) ;

51gned(15 downto 0) ;
signed (15 downto 0) ;

signed (43 downto 0) ;
signed (43 downto 0) ;
signed (43 downto 0) ;
signed (43 downto 0);
signed (43 downto 0)

12

© 2016 Synopsys, Inc. All Rights Reserved. All rights reserved.

process (clk, reset n)

begin
if (reset n = '0') then
Xn regl <= (others => '0');
Xn reg2 <= (others => '0');
. Xn reg3 <= (others => '0');
scale regl <= (others => '0');
scale reg2 <= (others => '0');
sum_out <= (others => '0');
sum_out0 <= (others => '0');
sum_outl <= (others => '0');
sum_out2 <= (others => '0');
sum_out3 <= (others => '0');
elsif rising edge(clk) then
Xn regl <= Xn in;
Xn reg2 <= Xn regl;
-- Xn reg3 <= Xn regz2;

scale regl
scale reg2

<

= scale regl;

IIR filter Summation adder

<= sum out (31 downto 16) ;

<= (pad b0 mult & b0 mult) +

sum out0
(pad bl mult & bl mult) +
(pad b2 mult & b2 mult) +
(pad_al mult & al mult) +
(pad_a2 mult & a2 mult);

-- Forces pipelining of summation adder
sum outl
sum out2
sum_out3
sum_out

end if;

end process;

<= sum outO;
<= sum outl;
<= sum out2;
<= sum out3;

--TIIR filter coefficient multiplies

b0 mult <= Xn in * b0 _coeff;

bl mult <= Xn regl * bl coeff;

b2 mult <= Xn reg2 * b2 coeff;

al mult <= scale regl * al coeff;

a2 mult <= scale reg2 * a2 coeff;
sign extension

pad b0 mult <= (others => b0 mult(31));

pad bl mult <= (others => bl mult(31));

pad b2 mult <= (others => b2 mult(31));

pad al mult <= (others => al mult(31));

pad a2 mult <= (others => a2 mult(31));
Yn out <= sum_out (31 downto 16);

end def arch;

60

© 2016 Synopsys, Inc. All Rights Reserved

. All rights reserved.

61

-- end of code

Resource Usage Report

Mapping :
Cell usage:
CLKINT 2 uses

Sequential Cells:
SLE 136 uses

DSP Blocks: 5
MACC: 5 MultAdds

Global Clock Buffers: 2

Total LUTs: O

© 2016 Synopsys, Inc. All Rights Reserved. All rights reserved.

Inferring MACC block in DOTP mode

62

The MACC block when configured in DOTP mode has two independent signed 9x9-bit or
unsigned 8x8-bit multipliers followed by addition of these two products. The sum of the dual
independent products is stored in the upper 35 bits of the 44-bit register.

Example 24: Unsigned MultAdd Computation

The RTL is for DOTP computation of sqr(a) + bc + d + cin. All the inputs and outputs are
registered with asynchronous active-low resets and active-high enable signals. The synthesis
tool infers a single MACC in DOTP mode with MultAdd configuration and packs the adder input

registers in SLEs.

module dotp add ioreg unsign srstn en (clk, srstn, en,
dout) ;

input clk, srstn, en;

input cin;

input [6:0] ina;

input [3:0] inb;
input [2:0] inc;
input [27 0] ind;

output reg [30:0] dout;

reg [6:0] ina reg;
reg [3:0] inb reg;
reg [2:0] inc_reg;
reg [27 : 0] ind reg;
reg cin reg;

wire [30:0] dout_ reg;

always@ (posedge clk) begin
if (!srstn) begin

ina reg <= {7{1'b0}};
inb reg <= {4{1'b0}};
inc reg <= {3{1'b0}};
ind reg <= {28{1'b0}};
cin reg <= 1'b0;
dout <= {31{1'b0}};
end else if (en) begin
ina reg <= ina;
inb reg <= inb;
inc reg <= inc;
ind reg <= ind;
cin reg <= cin;
dout <= dout_reg;
end else begin
ina reg <= ina reg;
inb reg <= inb reg;
inc reg <= inc_reg;
ind reg <= ind reg;
cin reg <= cin;

© 2016 Synopsys, Inc

ina, inb, inc, ind, cin,

. All Rights Reserved. All rights reserved.

63

dout <= dout;
end
end
assign dout reg = (ina reg * ina reg) + (inb reg * inc reg) + ind reg + cin;
endmodule

11
LUEL e e 0p cpe Py
A
L]
rio_reg|3:0]
Ty
=y e e
I
bt

LI"Il_II'ﬂ_'EmE- 0]

oaf2T)

dout_reg(27.0f

© 2016 Synopsys, Inc. All Rights Reserved. All rights reserved.

64

MALT:

T FT T

LT

urvl_ind_resq_muiadd 0 13:0]

[ENNENERRERRRNEENNRRRRARAA

Resource Usage Report

Mapping :
Cell usage:

CLKINT 1 use
CFG2 1 use

Sequential Cells:
SLE 28 uses

DSP Blocks: 1
MACC: 1 MultAdd

Global Clock Buffers: 1

Total LUTs: 1

© 2016 Synopsys, Inc. All Rights Reserved. All rights reserved.

65

Example 25: Direct-Form 8-tap Finite Impulse Filter

The RTL is for DOTP computation of (ab + bc) +/- d. All the inputs and outputs are registered
with asynchronous active-low resets and active-high enable signals.

module fir direct 8tap(inp,h0,hl,h2,h3,h4,h5,h6,h7,clk,rst,en,outp);

parameter inpwidth = 8;
parameter coefwidth = 8;
parameter multoutwidth = (inpwidth + coefwidth) ;
parameter outwidth = (inpwidth + coefwidth + 1);
parameter taplen = 8;
input [inpwidth-1 : 0] inp;
input [coefwidth-1 : 0] ho, hl, h2, h3, h4, h5, hé6, h7;
input clk, rst, en;
output [outwidth-1 : 0] outp;
reg [inpwidth-1 : 0] mem [0 taplen-2] ;
wire [multoutwidth-1 : 0] multout [0 taplen-1];
wire [outwidth-1 : 0] addout [0 taplen-2];
wire [coefwidth-1 : 0] coef [0 taplen-1];
integer i;
assign coef [0] = ho;
assign coef [1] = hi;
assign coef [2] = h2;
assign coef [3] = h3;
assign coef [4] = h4;
assign coef [5] = h5;
assign coef [6] = he;
assign coef [7] = h7;
always @(posedge clk) begin
if (rst) begin

for (i=0; i<=(taplen-2); i=i+1) begin

mem[i] <=0;

end

end

else if (en) begin

mem[0] <=inp;

for (i=1;i<=(taplen-2);i=i+1) begin

mem[i] <= mem[i-1];
end
end
end
assign multout [0] =coef [0] *inp;
generate
genvar 1i2;
for (i2=1;i2<=taplen-1;i2=12+1)
begin: mult
assign multout [i2] =
end
endgenerate

coef [12] * mem[i2-1];

assign addout [0] =multout [taplen-1]+multout [taplen-2];

generate
genvar 1i3;

for (i3=0;i3<=(taplen-3);i3=13+1)

© 2016 Synopsys, Inc. All Rights Reserved. All rights reserved.

66

begin: adding

assign addout [i3+1] = addout [i3]+ multout [(taplen-3)-i3];
end

endgenerate

assign outp=addout [taplen-2];// final addout

endmodule

Rl]

ECTihitE]

CETls Gt

Lol G]

== - P
Tl]

ey

ol RG]

ST e e e =

w—a R = LFR -—_iF9 CLENE] LN L] L XN] - LFe

1

RELANALETENLR

Resource Usage Report

Mapping :

Cell usage:
CLKINT 1 use
CFG1 1 use
CFG2 1 use

© 2016 Synopsys, Inc. All Rights Reserved. All rights reserved.

67

Sequential Cells:
SLE 48 uses

DSP Blocks: 4
MACC: 4 MultAdds

Global Clock Buffers: 1

Total LUTs: 2

Note: This example can be complied in P&R only for SmartFusion2 and IGLOO2 family. It
is not supported for RTG4 device, since the tool infers MACC block instead of
MACC_RT for RTG4 technology.

Example 26: DOTP with multiple clocks

The RTL is for DOTP computation of (ab + cd). The A and B inputs are registered with
asynchronous active-low resets and active-high enable signals, the C and D inputs are regis-
tered with synchronous active-low resets and synchronous active-high resets but with active-
high enable signals. The output is registered with asynchronous active-low reset and active-
high enable signals. The clocks are the same for A and C inputs. B and D inputs and the output
have their corresponding clocks.

library ieee;

use ieee.std logic 1164.all;
use ieee.std logic arith.all;
use ieee.std logic signed.all;

entity dotp ioreg multiple syn is

generic (widtha : integer 1= 5;
widthb : integer = 7;
widthc : integer = 4;
widthd : integer r= 8;
width out : integer 1= 12);
port (clkl : in std logic;
clk2 : in std logic;
clk3 : in std logic;
arstna : in std logic;
arstb : in std logic;
srstnc : in std logic;
srstd : in std logic;
arstnout : in std logic;
enable a : in std logic;
enable b : in std logic;
enable c : in std logic;
enable_d : in std logic;
enable out : in std logic;
ina : in std logic vector (widtha-1 downto 0);

© 2016 Synopsys, Inc. All Rights Reserved. All rights reserved.

68

inb : in std logic vector (widthb-1 downto 0) ;
inc : in std logic vector (widthc-1 downto 0);
ind : in std logic vector (widthd-1 downto 0) ;
dout : out std logic vector (width out-1 downto 0));

end dotp ioreg multiple syn;

architecture arch of dotp ioreg multiple syn is

signal ina reg : std logic vector(widtha-1 downto 0);
signal inb reg : std logic vector (widthb-1 downto 0);
signal inc reg : std logic vector (widthc-1 downto O0);
signal ind reg : std logic_ vector (widthd-1 downto 0);
signal dout reg : std logic vector (width out-1 downto 0);
begin
process (clkl, arstna) begin
if arstna = '0' then
ina reg <= (others => '0');
elsif (clkl'event and clkl = 'l') then
if enable a = 'l' then
ina reg <= ina;
end if;
end if;

end process;

process (clk3, arstb) begin
if arstb = '1' then
inb reg <= (others => '0');
elsif (clk3'event and clk3 = '1') then
if enable b = '1l' then
inb reg <= inb;
end if;
end if;

end process;

process (clkl) begin

if (clkl'event and clkl = '1') then
if srstnc = '0' then
inc reg <= (others => '0');

elsif enable ¢ = '1' then
inc_reg <= inc;

end if;

end if;

end process;

process (clk3) begin
if (clk3'event and clk3 = '1"') then

if srstd = '1l' then
ind reg <= (others => '0"');

elsif enable d = '1l' then
ind reg <= ind;

end if;

end if;

end process;

dout reg <= (ina reg * inb reg) + (inc _reg * ind reg);

© 2016 Synopsys, Inc. All Rights Reserved. All rights reserved.

process (clk2, arstnout)

if arstnout = '0' then

begin

dout <= (others => '0');

elsif (clk2'event and clk2 = '1') then

if enable out =

dout <=

end if;
end if;
end process;

end arch;

F e — R
:

'1' then
dout_reg;

69

[J
DG wa_rig{d 0]
U _Brgba
[T
==

|
B
:

T
wb_regl6 0]

T

_eradoued_deat_reg[i0] wm13_dow_segl10]

L. [
e T T o e A e
i

dou[110]

g g I |
BpR Gpa
E}——I}g '
]
wal_iring
ne_mg[30]

sfq ofq
"
]

md_reg[F 4]

Y

el _arwinou

ap_ il unE_dout_rag[11:0]

© 2016 Synopsys, Inc. All Rights Reserved. All rights reserved.

H

MarC

[v
COSH_A_N
T AL

B N
[

AT AL

.

DML TN

T

TR

e

e

o

e e

P CARRT_tL e

[

[

Rt o
L arm
L
4 e

L

LT

Pt]

e

[ERANRRRANANEN

s
f e ey
f o
f om0
p o g

I

L L]
L L
§ bt el
§ T Np S
LT
§ o imn g
b oot 8y
f o_sman s o
Lt]

Op_maulty unC_dout_neg mekaad_0{11:0)

Bl

=

Resource Usage Report

Mapping :

Cell usage:
CLKINT
CFG1
CFG2

3 uses
2 uses
2 uses

Sequential Cells:

SLE

24 uses

DSP Blocks: 1
1 MultAdd

MACC:

Global Clock Buffers: 3

Total LUTSs:

4

70

© 2016 Synopsys, Inc. All Rights Reserved. All rights reserved.

71

Example 27: DOTP with MultACC

The RTL below is for MultACC. After synthesis, MACC is inferred in DOTP mode.
module dotp acc unsign rtl (clk, ina, inb, inc, ind, dout);

parameter widtha = 3;
parameter widthb = 4;
parameter widthc = 5;
parameter widthd = 6;
parameter width out = 32;

~

input clk;

input [widtha-1 0] ina;
input [widthb-1 : 0] inb;

input [widthc-1 0] inc;

input [widthd-1 : 0] ind;

output reg [width out-1 : 0] dout;

reg [widtha-1 : 0] ina reg;
reg [widthb-1 : 0] inb reg;
reg [widthc-1 0] inc_reg;
reg [widthd-1 0] ind reg;

wire [width out-1 : 0] prod;

always @ (posedge clk) begin
ina reg <= ina;
inb reg <= inb;
inc reg <= inc;
ind reg <= ind;
dout <= prod + dout;
end
assign prod = (ina reg * ind reg) + (inb reg * inc reg);
endmodule

© 2016 Synopsys, Inc. All Rights Reserved. All rights reserved.

72

e _pe 5]

m‘.ﬂ_ﬁh w9l M =
uni_ind_reg&0] dout_1[31.0]

Wﬂ)l]

m:::.-“l_ﬂh toel Spi

nb_reg]30]

Yoyt iyt iyt iyt liy! iyt iyt Iy iy

Resource Usage Report

Mapping :
Cell usage:
CLKINT 1 use

Sequential Cells:
SLE O uses

© 2016 Synopsys, Inc. All Rights Reserved. All rights reserved.

DSP Blocks: 1
MACC: 1 MultAcc
I/O ports: 51

I/O primitives: 51
INBUF 19 uses
OUTBUF 32 uses

Global Clock Buffers: 1

Total LUTs: O

Example 28: MultAcc with C input

73

The RTL below is for MultAcc with C input. After synthesis, MACC is inferred with C input

packing.
“ifdef synthesis

module test (clk, rst, a, b, ¢, dout);
“else

module test rtl (clk, rst, a, b, c,
“endif

input clk, rst;

input signed [17:0] a, b;

input signed [43:0] c;

output signed [43:0] dout;

reg signed [17:0] ra, rb;

reg signed [43:0] dout reg, rc;

always @ (posedge clk)
begin
if (~rst) begin
dout_reg <= 44'b0;

dout) ;

ra <= 17'b0;
rb <= 17'b0;
rc <= 44'b0;
end
else begin
ra <= a;
rb <= b;
rc <= C;
dout reg <= dout reg + rc + ra * rb;
end
end

assign dout = dout reg;

endmodule

© 2016 Synopsys, Inc

. All Rights Reserved. All rights reserved.

B+ 30
]

a3

B
CIEET
. e F
(7] O[T O] — - T]
s ' : W : §ci)
unl_rst rh[17.0] re[43:0]
—t .
T LT . uri _rb[35:0]
ra(17:0]

© 2016 Synopsys, Inc. All Rights Reserved. All rights reserved.

o -‘_%J dout_rea(43.0]

74

75

MACCQMukAdd_C_P_PARC)

INBIUF

AV

L|1 B S E E R ARERRRRSRRREERARRARARRRRRRRRRSS

|

_I

unl _rb_muladd_0[35:0]

© 2016 Synopsys, Inc. All Rights Reserved. All rights reserved.

Resource Usage Report

Mapping:
Cell usage:
CLKINT 1use

Sequential Cells;
SLE 0 uses

DSP Blocks: 1

MACC: 1 MultAdd

Example 29: DOTP MultAcc with C input

The RTL below is for MultAcc with C input. After synthesis, MACC is inferred in DOTP mode

with C input packing.

module test (clk,
input clk, rst;

rst, a, b, ¢, d, e, dout);

input signed [8:0] a, b, d, e;

input signed [34:
output signed [34:

0] c;
0] dout;

reg signed [8:0] ra, rb, rd, re;

reg signed [34:0]

dout reg, rc;

always @(posedge clk)

<= 35'b0;
<= 9'b0;
9'b0;
35'b0;
9'b0;

<= 9'b0;
<= a;

b;

<= C;

<= d;

e;

<= dout_reg + rc + (ra * rb) + (rd

begin
if (~rst) begin
dout_reg
ra
rb <=
rc <=
rd <=
re
end
else begin
ra
rb <=
rc
rd
re <=
dout_reg
end
end

assign dout = dout reg;

endmodule

© 2016 Synopsys, Inc. All Rights Reserved. All rights reserved.

* re);

76

—t

| L=
= .
Ot G CPT N !/.:\‘- -
un _rst re(8:0] rcf34:0]
< 5 11
- ri2_dout_reg{34:0]
[T == [und_re(17:0]
"
red[5:0] -
t
o
—
=
b Ll
Locis mee=t bEC) GBDH @ . —
1.3 -
rb{8:0] il _r{47:0] j
=
[= ['l
[
—
ra(8:0] e

© 2016 Synopsys, Inc. All Rights Reserved. All rights reserved.

—

E el
R

o LI ELE =

dout_reg[34:0]

77

78

MACCHMutAce_C_P_ PabABC)

"

g
I_ lllTI’lllllll’w—I\l T ITIYIPYTQYIQROPLCRCTRIIRCIILONY

wnl_re_muadd_0[17 0]

Resource Usage Report

Mapping to part:
Cell usage:
CLKINT 1use

Sequential Cells:
SLE 0 uses

DSP Blocks: 1
MACC: 1 MultACC

© 2016 Synopsys, Inc. All Rights Reserved. All rights reserved.

79

Example 30: MultAdd with constant

This example shows the usage of syn_keep and syn_multstyle attributes to infer MACC block for
the equation p = inb + (ina * 1).

module test (ina, inb, dout);

parameter widtha = 17;

parameter widthb = 43;

parameter width out = 43;

input [widtha-1:0] ina;

input [widthb-1:0] inb;

output [width out-1:0] dout;

wire a /*synthesis syn keep=1%*/;

assign a = 1'bl;

wire [widthb-1:0] temp /* synthesis syn multstyle = dsp */;

assign temp = (a * ina) ;
assign dout = temp + inb;
endmodule

© 2016 Synopsys, Inc. All Rights Reserved. All rights reserved.

nb[az 0] =
aiou42.0] =
dout[42:0]
a
unl_a[17:0]
ina[16:0]
INBUF MACC{MdtAdd C_P) OUTBUF :
@::——_D__ l —_[>__
inb_ibuff33) o dout_obulfo]
—
INBUF . OUTBUF
inds_ibad]34) l dout_obul[l)
INBUF o OUTBUF
inb_ibuf]35] b e dout_obul[?]
= —r
— L
INBUF - — OUTBUF
inb_ibuf]36) - dout_obul[3]
(T A =~

80

Resource Usage Report for MultAdd

This section of the log file (srr) shows resource usage details. It shows that the MultAdd code was
implemented in one MACC multiplier block.

Mapping to part: M2S150T

Sequential Cells:
SLE Ouses

DSP Blocks:1
MACC1 Mult

Total LUTs:0

© 2016 Synopsys, Inc. All Rights Reserved. All rights reserved.

81

Limitations

For successful SmartFusion2, IGLOO2 and RTG4 MACC inference with the synthesis software,
it is important that you use a supported coding structure, because there are some limitations
to what the synthesis tool infers. See Coding Style Examples, on page S and Wide Multiplier
Coding Examples, on page 26 for examples of supported structures. Currently, the tool does

not support the following:
* Dynamic add/sub support in Dot Product mode
¢ Overflow and carry-out extraction

* Arithmetic right shift for operand C

When asserted, the tool performs a 17-bit arithmetic right shift on operand C that goes
into the accumulator.

= Synopsys, Inc.
S "']PS 690 East Middlefield Road
Mountain View, CA 94043 USA

solvnet.synopsys.com

Copyright 2016 Synopsys, Inc. All rights reserved. Specifications subject to change without notice. Synopsys, Synplify, Synplify Pro, Certify, Identify, HAPS, VCS, and SolvNet are registered trademarks of Syn-
opsys, Inc. Synopsys and certain Synopsys product names are trademarks of Synopsys, as set forth at:

http://www.synopsys.com/Company/Pages/ Trademarks.aspx
All other product or company names may be trademarks of their respective owners.

http://www.synopsys.com/Company/Pages/Trademarks.aspx

	Inferring Microsemi SmartFusion2, IGLOO2 and RTG4 MACC Blocks
	The SmartFusion2, IGLOO2, and RTG4 MACC Blocks
	Inferring MACC Blocks for SmartFusion2, IGLOO2, and RTG4
	Controlling Inference with the syn_multstyle Attribute
	Coding Style Examples
	Example 1: 6x6-Bit Unsigned Multiplier
	Example 2: 11x9-Bit Signed Multiplier
	Example 3: 18x18-Bit Signed Multiplier with Registered l/Os
	Example 4: 17x17-Bit Unsigned Multiplier with Different Resets
	Example 5: Unsigned Mult with Registered I/Os and Different Clocks
	Example 6: Multiplier-Adder
	Example 7: Multiplier-Subtractor

	Inferring MACC Blocks for Wide Multipliers
	Fracturing Algorithm
	Mapping Fractured Multipliers
	Cascade Chain
	Log File Message
	Pipelined Registers with Wide Multipliers

	Wide Multiplier Coding Examples
	Example 8: Unsigned 20x17-Bit Multiplier (One Wide Input)
	Example 9: 21x18-Bit Signed Multiplier (One Wide Input)
	Example 10: Unsigned 26x26-Bit Multiplier (Two Wide Inputs)
	Example 11: 35x35-Bit Signed Multiplier (Two Wide Inputs)
	Example 12: 69x53-Bit Signed Multiplier
	Example 13: 35x35-Bit Signed Mult with 2 Pipelined Register Stages
	Example 14: FIR 4 Tap Filter

	Inferring MACCs for Multi-Input MultAdds/MultSubs
	Example 15: VHDL Test for 8 MultAdd
	Example 16: Verilog Test for 3 MultSub
	Example 17: Complex Expression Example

	Inferring MACC Blocks for Multiplier-AddSub
	Example 18: One MultAddSub (Verilog)
	Example 19: One MultAddSub (VHDL)

	Inferring MACC Blocks for Multiplier-Accumulators
	Example 20: Verilog Test for 18X18 MultAcc with Load
	Example 21: VHDL Test for 12X3 MultAcc Without Load

	Coding Examples for Timing and QoR Improvement
	Example 22: MultAdd
	Example 23: MultAdd with Pipelined Registers

	Inferring MACC block in DOTP mode
	Example 24: Unsigned MultAdd Computation
	Example 25: Direct-Form 8-tap Finite Impulse Filter
	Example 26: DOTP with multiple clocks
	Example 27: DOTP with MultACC
	Example 28: MultAcc with C input
	Example 29: DOTP MultAcc with C input
	Example 30: MultAdd with constant

	Limitations

