
Application Note AC372

SmartFusion cSoC: Basic Bootloader and Field
Upgrade eNVM Through IAP Interface

Table of Contents

Introduction
The SmartFusion® customizable system-on-chip (cSoC) FPGAs devices integrate FPGA technology with
hardened ARM® Cortex™-M3 processor based microcontroller subsystem (MSS) and programmable
high-performance analog blocks built on a low power flash semiconductor process. The MSS consists of
hardened blocks, such as a 100 MHz ARM Cortex-M3 processor, peripheral DMA (PDMA), embedded
nonvolatile memory (eNVM), embedded SRAM (eSRAM), embedded FlashROM (eFROM), external
memory controller (EMC), Watchdog Timer, Phillips Inter-Integrated circuit (I2C), SPI, 10/100 Ethernet
controller, real-time counter (RTC), general purpose input output (GPIO) block, fabric interface controller
(FIC), in-application programming (IAP), and system registers. The programmable analog block contains
the analog compute engine (ACE) and analog front-end (AFE) consisting of ADCs, DACs, active bipolar
prescalers (ABPS), comparators, current monitors, and temperature monitor circuitry.

The IAP block is the portion of the MSS that interfaces with the Cortex-M3 processor through the APB
bus. The IAP block provides the hardware capability to program the flash components of the
SmartFusion cSoC device within the programmed end users application. The flash components are: an
FPGA array, the MSS eNVM, and the FlashROM.

Re-programming the eNVM blocks (field upgrading the firmware/software) using the Cortex-M3
processor is achieved by executing the eNVM programming algorithm from eSRAM. Since individual
pages (132 bytes) of the eNVM can be write-protected, the programming algorithm software can be
protected from inadvertent erasure. When reprogramming the eNVM, both MSS I/Os and FPGA I/Os are
available as interfaces for sourcing the new eNVM image.

The executable image for Cortex-M3 processor can be partitioned across the following memories of the
SmartFusion cSoC device:

1. Internal Memories: eNVM, eSRAM, and fabric RAM

2. External memories: Connected through EMC interface (SRAM, PSRAM, SSRAM, and NOR
flash)

Based on the application’s requirement and various combinations of the above memories, the executable
application can be created. Linker script is used by the linker to create the required image. This
application introduces the usage of the linker script generator tool for the SmartFusion cSoC Cortex-M3
processor executable.

Introduction . 1
Introduction to Field Upgrade Using IAP . 2
Design Example Overview . 4
Design Description . 5
IAP Programming: eNVM Update in Release Mode Using the IAP Through UART 7
Running the Design . 13
Conclusion . 19
Appendix A . 19
Appendix B . 19

List of Changes . 26
January 2013 1

© 2013 Microsemi Corporation

SmartFusion cSoC: Basic Bootloader and Field Upgrade eNVM Through IAP Interface
This application note demonstrates the following using the SmartFusion cSoC:

1. A basic bootloader for the SmartFusion cSoC device has multiple images in the eNVM with
different memory maps. It boots the required image as per the need. The bootloader should be
designed and implemented as a black box. For this you need to parse the complete *.elf files that
are loaded or to be loaded in eNVM/EMC flash, which requires more memory and booting time.
The bootloader proposed in this application note is not a full-fledged bootloader, but is used as a
reference example to boot multiple images.

2. Making a complete release mode image to run from eSRAM. This image is stored in the eNVM
and the bootloader relocates this image if it is selected for execution. This is an example of using
the eSRAM as a complete executable memory and booting using the bootloader.

3. Performing the IAP programming to update the partial or complete eNVM in release mode. This
requirement is accomplished using the above two steps.

Introduction to Field Upgrade Using IAP
The IAP interface in the SmartFusion cSoC device is used by the Cortex-M3 processor to perform the
upgrade or programming of eNVM and/or FPGA fabric. Figure 1 shows a typical SmartFusion cSoC
device configuration customized for performing the IAP.

The IAP interface is a part of the digital subsystem which is an APB peripheral to the Cortex-M3
processor. This peripheral block is a combination of both hardware and firmware that provides low level
interface to program the flash component of the SmartFusion cSoC device through the control and status
registry.

Figure 1 • Block Diagram for the IAP Programming for eNVM and/or FPGA Fabric
2

Introduction to Field Upgrade Using IAP
This block performs the following:

• Mimic the JTAG signals through the existing test access ports

• Manage the data stream communication from the source to the IAP block

Figure 2 • IAP Data Flow Block Diagram

.DAT File Coretx-M3 Running
Direct C

IAP Interface

ProgControl

FPGA Fabric eNVM

Transferring image file
(.dat) from host PC to
Target using UART/
Ethernet interface

Programming FPGA
Fabric eNVM based

on the command
3

SmartFusion cSoC: Basic Bootloader and Field Upgrade eNVM Through IAP Interface
In release mode, while updating the eNVM content, the programming code (IAP Programmer) should not
reside on the eNVM as it cannot be reprogrammed and accessed simultaneously.

For this reason we need to design a multi-boot system with the eNVM partitioned into multiple regions as
follows:

• Bootloader/eNVM Region 1: It provides the option to select the IAP Programmer (eNVM Region
2) or application code (eNVM Region 3) and boot the selected executable image.

• IAP Programmer/eNVM Region 2: It contains the IAP executable image that is built to run
completely from the eSRAM in release mode. The bootloader copies this partition to eSRAM if
you have selected IAP programming.

• Application/eNVM Region 3: The IAP Programmer running from eSRAM programs this region
using the *.dat file provided by you. This program is launched by either the IAP Programmer after
programming the *.dat file into this region successfully, or by the bootloader if this has been
programmed earlier based on your selection. Figure 3 illustrates the partitioning of the eNVM for
mutually exclusive executable images.

The memory regions shown in Figure 3 are used in this application note as a example memory map.
There is no specific rule for the memory maps for the applications. The memory maps explained in this
application note are just for reference. As per the applications memory, these requirements can be
changed and the corresponding linker scripts can be generated.

The simple approach for understanding these memory requirements for these applications, you can use
the partitions explained in this application note as it is and generate the linker scripts. While compiling the
projects, the compiler notifies you if the memory regions are not sufficient, if so, adjust the partitions
accordingly. There are still possibilities that the compiler generates code that may have runtime errors
like heap and stack collisions etc. In such cases the data regions and stack sizes have to be adjusted as
per the applications run time memory requirements.

Design Example Overview
The design example consists of the following mutually exclusive executable images that reside on
eNVM.

1. Bootloader

2. IAP Programmer

3. Example application

Figure 3 • Example of Partitioning the eNVM for Mutually Exclusive Executable Images

 Application (128 KB) / eNVM Region 3

0x60000000

0x60010000

0x60020000

0x6003FFFF

 eNVM Region 2 (64 KB) / IAP Programmer

eNVM Region 1 (64 KB) / Basic Bootloader
4

Design Description
Both eNVM and eSRAM are partitioned into multiple regions to run this multi-boot system design. Each
design uses different linker scripts with different memory maps. A linker script generator tool is used to
generate different linker script files with different memory maps as listed below:

1. Bootloader

– 64 KB of eNVM for interrupt vector table, instructions, and constant data sections

– 4 KB of eSRAM for stack, heap, and data sections

2. IAP Programmer completely running from eSRAM

– 60 KB of eSRAM for all the sections of an executable image

3. Simple application image

– 128 KB of eNVM for interrupt vector table, instructions, and constant data sections

– 64 KB of eSRAM for stack, heap, and data sections

The reason for creating the second image that will run exclusively from the eSRAM is to run an
executable image independent of eNVM in a release mode or end product. This is required to use an IAP
interface to update partial or full eNVM in release mode. You cannot update the eNVM while the IAP
Programmer is running from eNVM.

Design Description

Bootloader
The bootloader performs the function of relocating or loading (copying the different sections of image to
their executable location from loaded location) and making other executable images to run or debug. The
bootloader needs the inputs related to the starting address of the executable image residing in the
system memory map.

As explained in the Figure 3 on page 4, we will be having two images in eNVM apart from the bootloader
from which you can provide the input about the application that has to be executed by the bootloader.
The Bootloader is also provided with the timeout feature in which if you do not select any input for booting
within the timeout period, the bootloader boots the default sample application image from Region 3. In
the design files provided for this application note, the boot time parameter is provided in the
boot_config.h file. Timeout can vary by changing this parameter as per the applications requirements.

When the image is selected, the bootloader initializes the Cortex-M3 processor stack pointer and PC to
the new image’s reset handler. Once the image or sections of the image have been loaded to appropriate
memories, the bootloader performs the steps explained in Figure 4 on page 6 to branch to the newly
loaded image execution.

In this basic bootloader implementation, the executable image runs from the eSRAM and the bootloader
copies the entire image of 60 KB size from eNVM Region 2 to the bottom of the eSRAM.

The executable images residing in eNVM Region 1 (bootloader) and eNVM Region 3 (sample
application) are created to be executed in place from the eNVM and hence no copying is required.

The reset handler of each image takes care of the executable image section replacements in all cases. If
all the images are created to be executed in place of eNVM, then there is no requirement for copying the
image from one location to other. In this particular example, we need to create an IAP Programmer
image to be executed completely from eSRAM and hence in the bootloader implementation, copying
logic to copy from eNVM Region 2 to eSRAM is implemented.
5

SmartFusion cSoC: Basic Bootloader and Field Upgrade eNVM Through IAP Interface
Figure 4 • Steps of the Bootloader to Jump to the New Image
6

IAP Programming: eNVM Update in Release Mode Using the IAP Through UART
Following is the flow chart of the example bootloader Implemented for this application note:

IAP Programming: eNVM Update in Release Mode Using the
IAP Through UART

In release mode, while programming eNVM using the IAP interface, the sections of the programming
code (IAP Programmer) should not reside on eNVM. This is because accessing eNVM simultaneously
using the Cortex-M3 processor and IAP (JTAG) signals is not possible. Hence, we need to run the
complete programming code from eSRAM or external memories in such a way that no part of the code or
data of IAP programming is accessed by the Cortex-M3 processor from eNVM.

This application note explains the complete procedure on how this requirement can be met by designing
and implementing using the multiple executable images. These executable images include the
bootloader and IAP Programmer. The linker scripts for these executable images are generated by using
the linker script generator tool for various memory map regions.

This application uses the host loader to get the programming file or *.dat file content from the host PC
using the UART as the host interface between Host PC and the SmartFusion cSoC device. Figure 6 on
page 8 displays the flow chart of the complete IAP programming for the eNVM by getting the *.dat file or
programming file from the host PC.

Figure 5 • Flow Chart of the Basic Bootloader Implemented

Start

1. Initialize the UART, disable Watch dog timer
2. Display the menu to user on Hyperterminal

3. Wait for the user input/timeout

1. Boot code initializes the stack
pointer with the content of the

0x60020000
2. Boot code branches the

execution to the reset handler of
the sample application, i.e. the

location 0x60020004
3. Sample application starts

running

1. Boot code copies the 60KB of
eNVM from 0x60010000 to

eSARM starting from 0x20000000
2. Boot code initializes the stack

pointer with the content of
0x20000000

3. Boot code branches the
execution to reset handler of the
IAP Programmer, i.e. the location

0x20000004
4. IAP Programmer starts

execution from eSRAM

User Input from Hyperterminal

12

Power Off Power Off

Process the User
Input:

1. If input is 1 then
do the IAP Image

booting
2. If input is 2 then
boot the sample

application

Stop

If timeout occurs, boot the default image
7

SmartFusion cSoC: Basic Bootloader and Field Upgrade eNVM Through IAP Interface
There are various possible methods for getting the *.dat file to the IAP Programmer, such as internet or
Ethernet, on board memories (SPI Flash) etc. All these methods of IAP programming are explained in
the SmartFusion cSoC: Programming FPGA Fabric and eNVM Using In-Application Programming
Interface application note.

Figure 6 • Flow Chart of IAP Programming Through UART
8

http://www.microsemi.com/soc/documents/A2F_AC362_AN.pdf
http://www.microsemi.com/soc/documents/A2F_AC362_AN.pdf

IAP Programming: eNVM Update in Release Mode Using the IAP Through UART
Using the Linker Script Generator Tool
The comprehensive user guide of the linker script generator is covered in "Appendix B" on page 19 of
this document. For creating the linker scripts for this design example, use the following settings in the
linker script generator as provided below:

1. The executable image of the basic bootloader uses the following memory space:

– 64 KB of eNVM for interrupt vector table, instructions, and constant data sections

– 4 KB of eSRAM for stack, heap, and data sections

Figure 7 shows the LDF Generator with options selected for the bootloader example.

The above selection generates the linker script with the memory map shown in Figure 8 on page 10 for
the bootloader image.

Figure 7 • LDF Generator with Options Selected for the Bootloader Example
9

SmartFusion cSoC: Basic Bootloader and Field Upgrade eNVM Through IAP Interface

2. The IAP Programmer completely running from eSRAM uses 60 KB of eSRAM for all the sections
of an executable image. Figure 9 shows the LDF Generator with settings for a production mode
image that completely runs from eSRAM.

Figure 8 • Memory Regions Used for the Bootloader Example

eNVM

 Space for Bootloader

 eSRAM

 0x60010000

 0x60000000 0x20000000

 0x20010000

 0x2000F000

 64 KB

Figure 9 • LDF Generator With Options Selected for Production Mode Image Only Running From eSRAM
10

IAP Programming: eNVM Update in Release Mode Using the IAP Through UART
3. The settings in the Figure 9 on page 10 generate the linker script with the memory map shown in
Figure 10 for a production mode image. In this application note, this linker script is used to build
the IAP Programmer algorithm implemented in software with eSRAM memory map.

4. For a simple sample application image the following memory space is used:

– 128 KB of eNVM for interrupt vector table, instructions, and constant data sections

– 64 KB of eSRAM for stack, heap, and data sections

Figure 10 • Memory Regions Used for the IAP Programmer

eSRAM0x20008000

32KB

0x20000000

0x2000F000

Space for IAP
Programmer Stack

and Heap28KB

Space for IAP
Programmer

Instructions and Const
data
11

SmartFusion cSoC: Basic Bootloader and Field Upgrade eNVM Through IAP Interface
 Figure 11 shows the LDF Generator with options selected for the sample application.

The above selection generates the linker script with the memory map shown in Figure 12 on page 13 for
the sample application. This sample application is implemented to display the text on both HyperTerminal
and OLED.

Figure 11 • LDF Generator with Options Selected for Sample Application
12

Running the Design

Board Settings
The design example works on the SmartFusion Development Kit Board with default board settings. Refer
to the following user’s guide for default board settings:

• SmartFusion Development Kit User’s Guide

Running the Design
Refer to "Appendix A" on page 19 for complete details and links to the design files.

Figure 13 shows the directory structure of the design.

Figure 12 • Memory Regions Used for the Sample Application Example

eNVM

eSRAM

0x60000000

0x60020000

128KB

0x20000000

0X20010000

Space for Sample Application

Space for Sample Application

128KB

0x6003FFFF

Figure 13 • Directory Structure of the Design Example
13

http://www.microsemi.com/soc/documents/A2F500_DEV_KIT_UG.PDF

SmartFusion cSoC: Basic Bootloader and Field Upgrade eNVM Through IAP Interface
1. The A2F500 folder contains the HW project for the A2F500 SmartFusion SoC.

2. The SoftConsole folder contains the following:

– IAP_UART: Contains the software for the IAP programming using the UART. The UART is the
communication channel for transferring the *.dat file (input file from HOST to A2F).

– Image1BootLoader: This folder contains the software for the basic bootloader to prompt you
about the available images in eNVM and boot the selected image by using your input.

– Image3 Application: This folder contains the reference application image to be loaded at the
third region of the eNVM by IAP.

Step 1: Procedure to create the eSRAM image in release mode.

This step is required if the IAP_UART project is going to be re-built for any reason, such as updates. If
the project IAP_UART is not going for an update or re-compilation then skip this step.

1. Launch the SoftConsole project, double-click Write Application Code under Develop Firmware
in the Libero® System-on-Chip (SoC) design flow window.

2. Clean and build the application using the ld file “production-execute-in-place-esram.ld”. This is
already configured as the default ld file for this project.

3. Once the image is build, open the folder:
\A2F_AC372_DF\A2F500\SoftConsole\MSS_IAP_MSS_CM3_0\IAP_UART\UART_HostPC\IAP_
UART_From_HostPC_ws\latest_IAP_Prj\Debug and open the *.hex (here IAP_SC.hex). It is
displayed as shown in Figure 14. Remove the first line (line 1) of this image by opening it in any
text editor in such a way that the second line becomes the first line and then save the file.

4. The above step is required to make this image suitable for the eNVM client. Because of the
header generated in the eSRAM image, this image is not interpreted correctly as the eNVM client
and it is not accepted as image or data file for the eNVM client in Libero SoC tool flow also.
Hence, we need to remove the above header information from the Figure 14 to make this the data
file for the eNVM client.

The edited *.hex file is displayed as shown in the Figure 15.

Figure 14 • Default Hex Image of the IAP Programmer

Figure 15 • Edited Hex Image of the IAP Programmer
14

Running the Design
Step 2: Program the provided STP file on the SmartFusion Development Kit Board.

You may need to re-import the *.hex file into eNVM data client in the MSS and save it if there are any
changes in the path of the *.hex files or any updates are made to the *.hex files and generate the new
STAPL file.

\A2F_AC372_DF\A2F500\designer\impl1\IAP_TOP_fp\IAP_TOP.stp
Step 3: Connect the mini USB cable (USB-RS232) between the USB connector on the
SmartFusion Development Kit Board and a USB port of your computer.

Start a HyperTerminal session with a 57600 baud rate, 8 data bits, 1 stop bit, no parity, and no flow
control. If your computer does not have the HyperTerminal program, use any free serial terminal
emulation program, such as PuTTY or Tera Term. Refer to the Configuring Serial Terminal Emulation
Programs tutorial for configuring HyperTerminal, Tera Term, or PuTTY.

Step 4: Power cycle the board and follow the help provided in the PuTTy.
Figure 16 shows the Menu of the demo design on the PuTTy.

If input is not provided by the user within 30 seconds then the application from Region 3 will be executed
automatically. Figure 17 shows the automatic booting of application image after timeout.

Figure 16 • Menu of the Demo Design on the PuTTy

Figure 17 • Booting the Application if User Input is Not Provided
15

http://www.microsemi.com/soc/documents/Configuring_Serial_Terminal_Emulation_Programs.pdf
http://www.microsemi.com/soc/documents/Configuring_Serial_Terminal_Emulation_Programs.pdf

SmartFusion cSoC: Basic Bootloader and Field Upgrade eNVM Through IAP Interface
Step 5: If option 1 is selected, the IAP Programmer will be launched by the bootloader.
The IAP Programmer loads or programs the application image into Region 3 or eNVM locations with
which the *.dat file is created. So, before selecting this option, create the *.dat file if you wish to change
the eNVM programming *.dat file.If you want to create a new *.dat file for FPGA fabric and eNVM, follow
the steps given below:

1. Create a Libero SoC project

2. Create eNVM data client in MSS

3. Create desired logic in FPGA, connect to the MSS if required

4. Go through the Synthesis, and designer flow

5. Open the FlashPro and export the programming file as a DirectC file (*.dat), using File > Export >
Export Single Programming File.

The *.dat file used for this application demo is located at:
\A2F_AC372_DF\A2F500\SoftConsole\MSS_IAP_MSS_CM3_0\IAP_UART\UART_HostPC\IAP_UART_
From_HostPC_ws\host_tool (file three_eNVM_Images_withOLED.dat at this location is the prebuilt
image for this design).

To create or update the application image with the same memory map of this application note, use the
*.ld file provided in the application project located at:

\A2F_AC372_DF\A2F500\SoftConsole\MSS_IAP_MSS_CM3_0\Image3Application\simple_app_prj\prod
uction-execute-in-place-envm-3rdRegion.ld

Once the dat file is created or updated for eNVM regions, follow the instructions on PuTTy (Figure 18).

Step 6: Open the host loader

As explained in step 5, disconnect the serial terminal and open the host loader located at
\A2F_AC372_DF\A2F500\SoftConsole\MSS_IAP_MSS_CM3_0\IAP_UART\UART_HostPC\IAP_UART_
From_HostPC_ws\host_tool\IAP_Direct_Uart.exe with the parameters as shown in the Figure 19. The
first parameter is the programming input file and the last parameter to the *.exe file is the COM port

Figure 18 • Menu After the IAP Programmer Selection
16

http://www.microsemi.com/soc/documents/SmartFusion_Release_Built_Tutorial.pdf

Running the Design
number. The COM port number may vary for each system. Check the COM port number to which the
USB2UART port is connected. Press ENTER to execute this command.

Step 7: There will be continuous debug statements on the command window of the host IAP
Programmer.
Here, the output of the provided design automatically boots the device and user can change the design
as per the application requirements. At the end of the IAP programming you can view the information
appearing on the command prompt as shown in Figure 20.

Figure 19 • Host Tool Usage For Sending the .dat File From Host to SmartFusion

Figure 20 • Menu of the Host Tool After Completion of the Programming
17

SmartFusion cSoC: Basic Bootloader and Field Upgrade eNVM Through IAP Interface
The above step performs the IAP programming and boots the third eNVM region image. To check this,
connect PuTTy once again. The output information is displayed as shown in Figure 21.

Note: When you regenerate the MSS component from Libero SoC project, ensure that the following lines
are commented out in softconsole project workspace .

MSS_IAP_MSS_CM3_0_hw_platform library module:

File name : DirectC/dpcom.c

Line number 125: // #error "Please add code here to get the programming data. Please
refer to the Required Source Code Modifications section of the DirectC user's guide."

File name : DirectC/dpuser.c

Line number 15 : //#include "main.h"
Line number 48 ://#error "Please modify this function to time delays. Please refer to
the Required Source Code Modifications section of the DirectC user's guide."

Release Mode
The release mode programming file (STAPL) is also provided. Refer to the Readme.txt file included in the
programming file for more information. Refer to SmartFusion cSoC: Building Executable Image in
Release Mode and Loading into eNVM tutorial for more information on building an application in release
mode.

Conclusion
This application note explains the design and implementation of the following solutions for the
SmartFusion cSoC:

1. A basic bootloader to create multiple executable images in a system and boot the input requested
image.

2. Creating a release mode image to run completely from eSRAM.

3. eNVM programming in release mode - programming the partial or full eNVM from IAP
Programmer running from the eSRAM.

Figure 21 • Message of the eNVM Image 3 Application on PuTTY
18

www.microsemi.com/soc/documents/SmartFusion_Release_Built_Tutorial.pdf
www.microsemi.com/soc/documents/SmartFusion_Release_Built_Tutorial.pdf

Appendix A
Appendix A

Design files
You can download the design files from the Microsemi SoC Products Group website:

www.microsemi.com/soc/download/rsc/?f=A2F_AC372_DF.

The design file consists of Libero SoC projects and SoftConsole software projects. Refer to the
ReadMe.txt file for directory structure, description, and software versions.

You can download the programming files (*.stp) in release mode from the Microsemi SoC Products
Group website: www.microsemi.com/soc/download/rsc/?f=A2F_AC372_PF.

The programming file consists of STAPL programming file (*.stp) for A2F500-DEV-KIT and a Readme.txt
file.

Appendix B

Linker Description File (LDF) Generator Utility
This section explains the use of LDF Generator utility for creating LDFs also called Linker Scripts for
SmartFusion cSoC systems. This version of LDF Generator supports only SoftConsole. This document
assumes that you already have a basic understanding of the role of Linker and LDF. Refer to Using ld,
the GNU linker document for more details on Linker and LDF.

A basic understanding of the SmartFusion design flow is assumed. Refer to Using UART with
SmartFusion cSoC - Libero SoC and SoftConsole Flow Tutorial to understand the SmartFusion design
flow.

LDF Generator Overview
The LDF Generator utility is a powerful graphical user interface (GUI) tool that provides you an easy and
convenient way to create LDFs. It reduces the complexity of writing linker scripts that involves complex
tasks such as memory map, code, data placement, stack or heap usage etc.
19

www.microsemi.com/soc/download/rsc/?f=A2F_AC372_DF
www.microsemi.com/soc/download/rsc/?f=A2F_AC372_PF
http://ftp.gnu.org/old-gnu/Manuals/ld-2.9.1/html_mono/ld.html
http://ftp.gnu.org/old-gnu/Manuals/ld-2.9.1/html_mono/ld.html
http://www.microsemi.com/soc/documents/SmartFusion_UART_HW_flow_LiberoSoftConsole_tutorial_UG.pdf
http://www.microsemi.com/soc/documents/SmartFusion_UART_HW_flow_LiberoSoftConsole_tutorial_UG.pdf

SmartFusion cSoC: Basic Bootloader and Field Upgrade eNVM Through IAP Interface
Figure 22 shows a screenshot of the LDF Generator utility.

The LDF Generator mainly consists of seven segments. You need to enter or select the following
parameters:

1. Linker Description Type

2. Memory Type

3. Stack

4. Save Location

5. Linker Description File Name

6. Sections

7. User Sections

Figure 22 • Linker Description File Generator
20

Appendix B
Linker Description Type
The LDF type can be selected as either Debug or Production. There are two radio buttons under the
Linker Description Type as shown in Figure 23 for selection the LDF type. The default value is Debug.

In the Debug mode, initialized global and static variables, and uninitialized global and static variables are
stored in Read-Write memories (eSRAM and EMC SRAM). The Debug mode supports debugging from
eSRAM/EMC SRAM and eNVM. If ‘ROM1’ is selected as memory location for sections or user section,
the LDF Generator creates LDF for debugging from eNVM. If ‘ROM1’ is not selected for sections or user
sections, the LDF Generator creates LDF for debugging from eSRAM/EMC SRAM.

In the Production mode, initialized global and static variables, and uninitialized global and static
variables are stored in Read only Memories (eNVM) and copied back into Read-Write memories at
startup.

Memory Type
The Memory Type section provides options to select two Read-Write memories and one Read-Only
memory. Based on the Sections (Init, Text, and Data) storage type (Read-Write/Read-only), the Memory
Type needs to be selected and the Starting Address and Size need to be provided.
The Starting Address should be in 8-digit Hexadecimal format and the Size can be in
Kilobytes/Megabytes (for example 64k or 2M). Figure 24 on page 21 illustrates an example Memory Type
selection.

Figure 23 • Linker Description File Type Selection

Figure 24 • Memory Type Selection
21

SmartFusion cSoC: Basic Bootloader and Field Upgrade eNVM Through IAP Interface
Stack
The stack frame provides you the option to select the stack Location and Size. The default stack location
is ‘ram1’. The stack location and data section location should be same (that is both stack location and
data section in ‘ram1’ or in ‘ram2’). The default stack size is 8k. You can change the stack size based on
the design requirements. Figure 25 illustrates an example stack memory location selection.

Save Location
The LDF Generator provides you the option to browse to the directory where the generated LDF needs to
be saved. The default location is the current working directory. Figure 26 shows the save location for the
generated LDF.

Linker Description File Name
The default name is either Debug or Production based on Linker Description File Type selection. You can
type the desired File Name in the text field under Linker Description File Name as shown in Figure 27.

Figure 25 • Stack Location and Size

Figure 26 • Save Location

Figure 27 • Changing the Linker Description File Name
22

Appendix B
Sections
The LDF Generator provides the options to select the following sections and its memory types:

1. Init (Cortex-M3 processor vector table)

2. Text

3. Data

Init, Text, and Data are default sections in the LDF and its memory type needs to be selected from the
drop-down menu based on design requirements.

Init
The vector table can be stored in the Read-Write memory or Read-only memory. The LDF Generator
provides you the option to select two Read-Write memories and one Read-only memory from the drop-
down menu. Figure 28 shows the Init section memory selection.

Text
The Text section represents the instruction in the program that can be stored in the Read-Write memory
or Read-Only memory. The LDF Generator provides you the option to select two Read-Write memories
and one Read-only memory from the drop-down menu. Figure 29 shows the Text section memory
selection.

Figure 28 • Init Section Memory Selection

Figure 29 • Text Section Memory Selection
23

SmartFusion cSoC: Basic Bootloader and Field Upgrade eNVM Through IAP Interface
Data
The Data section consists of initialized global and static variables that can be stored in the Read-Write
memory only. The LDF Generator provides you the option to select two Read-Write memories from the
drop-down menu. Figure 30 shows the Data section memory selection.

User Section
The LDF Generator provides you the option to select two user defined sections. The section type of each
user defined section can be either Text section or Data section. Figure 31 shows the User Section
selection. You can select either or both check buttons to enable user sections.

Figure 30 • Data Section Memory Selection

Figure 31 • User Section Selection
24

Appendix B
Once you select any one of the user sections, you need to append the source file with the following
attribute to the above functions and/or data declarations that need to be in the user sections.

 __attribute__((section (“name_of_user_section")));

For example,

void hyperterminal_task(void *para)__attribute__((section(".user_section1")));
void hyperterminal_task(void *para)
{
…
…
…
}

Once you select any one of the user sections, the LDF Generator pops up a warning message as shown
in Figure 32 before generating the linker scripts.

Figure 32 • Attribute Example for User Sections
25

SmartFusion cSoC: Basic Bootloader and Field Upgrade eNVM Through IAP Interface
List of Changes
The following table lists critical changes that were made in each revision of the document.

Revision* Changes Page

Revision 4
(January 2013)

Added "Board Settings" section under "IAP Programming: eNVM Update in
Release Mode Using the IAP Through UART" section (SAR 43469).

13

Revision 3
(April 2012)

Replaced Figure 13 (SAR 38335) 13

Modified Step 1 under "Running the Design" section (SAR 38335) 13

Modified Step 5 under "Running the Design" section (SAR 38335) 13

Replaced Figure 19 (SAR 38335) 17

Replaced Figure 20 (SAR 38335) 17

Revision 2
(February 2012)

Removed ".zip" extension in the Design files link (SAR 36763). 19

Modified Step 7 listed under "Running the Design" section (SAR 36683). 13

Revision 1
(January 2012)

Modified text in Step 1, Step 2, Step 5 and Step 6 listed under "Running the
Design" section (SAR 35871).

13 to 17

Added a section called "Release Mode " (SAR 35871). 18

Modified "Appendix A" section (SAR 35871). 19

Note: *The revision number is located in the part number after the hyphen. The part number is displayed at the bottom
of the last page of the document. The digits following the slash indicate the month and year of publication.
26

51900240-4/01.13

© 2013 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of
Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.

Microsemi Corporation (NASDAQ: MSCC) offers a comprehensive portfolio of semiconductor
solutions for: aerospace, defense and security; enterprise and communications; and industrial
and alternative energy markets. Products include high-performance, high-reliability analog and
RF devices, mixed signal and RF integrated circuits, customizable SoCs, FPGAs, and
complete subsystems. Microsemi is headquartered in Aliso Viejo, Calif. Learn more at
www.microsemi.com.

Microsemi Corporate Headquarters
One Enterprise, Aliso Viejo CA 92656 USA
Within the USA: +1 (949) 380-6100
Sales: +1 (949) 380-6136
Fax: +1 (949) 215-4996

http://www.microsemi.com

	Introduction
	Introduction to Field Upgrade Using IAP
	Design Example Overview
	Design Description
	Bootloader

	IAP Programming: eNVM Update in Release Mode Using the IAP Through UART
	Using the Linker Script Generator Tool
	Board Settings

	Running the Design
	Release Mode

	Conclusion
	Appendix A
	Design files

	Appendix B
	Linker Description File (LDF) Generator Utility
	LDF Generator Overview
	Linker Description Type
	Memory Type
	Stack
	Save Location
	Linker Description File Name
	Sections
	User Section

	List of Changes

