## RF/Microwave semiconductor solutions

## solutions

- ? Mobile phones
- ? Base stations
- ? Land mobile radio
- ? HF communications
- ? Military/avionics
- ? Medical/MRI
- ? Radar/phase shifters
- ? RF induction heating
- ? Sonar/ultrasonic imaging
- ? Gamma ray/X-ray detection

## packaging

- ? MMSM™
- ? EPSM™
- ? Beam leads
- ? Powermite<sup>®</sup>
- ? Gigamite<sup>™</sup>
- ? Glass axial
- ? Chip diode
- ? Square MELF
- ? Plastic
- ? Chip scale packages

## products

- ? InGaP amplifiers for W-CDMA/CDMA
- ? InGaP gain block ICs
- ? PIN diodes
- ? Schottky diodes
- ? Mixer Diodes
- ? Tuning varactors
- ? Step recovery diodes
- ? RF bipolar power transistors
- ? Transient voltage protection

Solutions

## RF/Microwave Microsemi, loud and clear

Have you heard? Microsemi is one of the most innovative sources of RF/microwave semiconductor products to be found—*anywhere*.

Microsemi's move to center stage among RF/microwave semiconductor makers comes from recent strategic acquisitions, combined with our focus on cutting-edge packaging.

Today, we're armed with unique surface mount packaging capabilities, component design talent ranging from discrete semiconductors to mixed signal, microcircuit and InGaP integrated circuits, and a rock-solid commitment to base new products on specific application needs.

Check the typical RF design below. See how far Microsemi has come in offering key components, from RF power transistors and ESD protection of RFICs to InGaP gain blocks and power amplifiers. Also review the product selection guides found in this brochure. They outline our most popular wireless solutions.

No one else can provide the thermal and power density advantages of Microsemi's Powermite, Enhanced Performance Surface Mount (EPSM), and Monolithic Microwave Surface Mount (MMSM) packaging. So no one else can create breakthrough solutions like our surface mount Gigamite products. Keep up with our latest developments and product details on the Microsemi web site.



### **RF** integrated circuits

The MWS11-GB11 is a broadband RFIC general-purpose amplifier manufactured with an InGaP Heterojunction Bipolar Transistor (HBT) process (MOCVD). It is an easily cascadable, 50 Ohm gain block. The amplifier is self-contained with 50 Ohm input and output impedances. Gain blocks are used as RF and IF intermediate gain stages, in both the receive and transmit channels ao radio transceivers, as VCO buffer amplifiers, as power amplifier driver and pre-driver stages, and as amplifier gain stages in broadband test equipment up to 6 GHz.

Application Note AN#01 provides individual sections on these amplifier characterization issues: *Linear Transducer Gain, Gain Flatness over the Passband, Gain Block Noise Figure, Distortion Issues, and S-Parameter Characterization of the MWS11-GB11*.

The MWS11GB11 broadband, InGaP HBT gain block cascadable amplifier is available in small quantities in the SOT-89 package. In the near future, it will be available in Microsemi's exclusive new Gigamite<sup>™</sup> package that offers superb thermal impedance performance and a package cut-off frequency in the 10 GHz range.

#### NEW! MWS11-GB11 Microsemi InGaP HBT Gain Block

#### Features

- ? Low cost, broadband RFIC
- ? DC to 6 GHz
- ? Single +5V Supply
- ? Small Signal Gain = 16dB
- ? P1dB = 19dBm (5V), f = 1GHz
- ? SOT-89 Gigamite Packages

#### Applications

- ? Broadband Gain Blocks
- ? IF or RF Buffer Amplifiers
- ? Driver Stage for Power Amps
- ? Final Power Amp for Low-to-Medium Power Applications
- ? Broadband Test Equipment
- ? Base Stations

# 

#### InGaP HBT Power Amplifier for 3G Phones

The MWS W-CDMA is a high-efficiency linear amplifier targeting 3V mobile handheld systems. The device is manufactured in an advanced InGaP/GaAs Heterojunction Bipolar Transistor (HBT) RF integrated circuit fab process. It is designed for use as a final RF amplifier in 3V W-CDMA and CDMA2000,

spread spectrum systems, and other linear applications in the 1800MHz to 2000MHz band. There are two 16-pin package versions for this power amplifier. One is a 3mm x 3mm chip scale package (CSP) with external input/output match and the other is an internally I/O matched module.



#### Features

- ? Single 3V Supply
- ? 27dBm Linear Output Power
- ? 28dB Linear Gain
- ? 40% Linear Efficiency
- ? 70mA Idle Current

#### Applications

- ? 3V 1920-1980 W-CDMA Handsets
- ? 3V 1850-1910 CMDA2000 Handsets
- ? Spread Spectrum Systems
- ? Other Linear Wireless Applications





#### **High Frequency PIN Diodes**

|       |       |               | Small Signa  | l         | Large S                     | Large Signal Low Distortion |         |  |  |
|-------|-------|---------------|--------------|-----------|-----------------------------|-----------------------------|---------|--|--|
|       |       | High          | Speed Swit   | ching     | Switch                      | ning or Atte                | nuating |  |  |
| Freq  | Cj,PT | 70V           | 100V         | 250V      | 100V                        | 300V                        | 750V    |  |  |
| (GHz) | (pF)  |               |              |           |                             |                             |         |  |  |
| 24    | 0.06  | GC4270        | GC4120       | GC4220    |                             |                             |         |  |  |
| 18    | 0.1   | GC4271        | GC4211       | GC4221    | GC4410                      | GC4430                      | GC4490  |  |  |
| 12    | 0.2   | GC4272        | GC4212       | GC4222    |                             |                             |         |  |  |
| 9     | 0.3   | GC4273        | GC4213       | GC4223    | GC4411                      | GC4431                      | GC4491  |  |  |
| 7     | 0.4   | GC4274        | GC4214       | GC4224    |                             |                             |         |  |  |
| 5     | 0.5   | GC4275        | GC4215       | GC4225    | GC4412                      | GC4432                      | GC4492  |  |  |
| 4     | 0.75  |               |              |           | GC4413                      | GC4433                      | GC4493  |  |  |
| 3     | 1.3   |               |              |           |                             |                             | GC4494  |  |  |
| 2     | 2.5   |               |              |           |                             |                             | GC4495  |  |  |
| 1     | 3     |               |              |           |                             |                             |         |  |  |
|       |       | NIP Vers      | sions Also A | vailable  | NIP Versions Also Available |                             |         |  |  |
|       |       | GC4300 SERIES |              | GC4500 SI | ERIES (up to                | o 300 Volts                 |         |  |  |

#### Applications

- ? TAGS
- ? WANS
- ? PCS
- ? AMPS
- ? DECT
- ? High frequency wireless

#### MMSM/EPSM the "package-less" technology

Microsemi's Monolithic Microwave Surface Mount (MMSM) and Enhanced Performance Surface Mount (EPSM) are high frequency packaging solutions for 3rd Generation, Wireless LAN, and Aerospace Communication applications. Developed for high frequency (> 2 GHz) applications these two unique packages are the result of extensive product development to create the optimum PIN diode, varactor diode, RF Schottky, or RF transistor - without needing a bulky plastic package. The patented "package-less" technology is ideal for antenna switching and voltage control oscillator (VCO) applications where junction capacitance of less than 0.5pF is required.

#### **MMSM Surface Mount Devices**

The MPP Series of PIN diodes and MPV Series of varactor diodes utilize Microsemi's exclusive MMSM packaging technology. The technology is a package/ device integration accomplished at the wafer fabrication level. Since the cathode and anode interconnections utilize precision photolithographic techniques rather than wire bonds, parasitic package inductance is tightly controlled. The package parasitics are optimized for PCS bands but devices can be used through X band.

#### **EPSM Products (Varactors/PIN Diodes)**

Our EPSM packaged devices are designed for the most demanding commercial and military requirements where the inconsistency of performance inherent in plastic surface mount packages cannot be tolerated. These package styles extend the surface mount construction format to 6 GHz for high performance wireless applications including VCOs, limiters, pin switches and pin attenuators. Select varactors from three families of C/V curves, PIN diodes for switching, attenuation or limiting through 6 GHz. They are available in multiple chip configuration as well as outlines which directly replace SOT-23 and SOD-323 devices.



| Part       | Power   | TAU        | RS     | VR      | fT    | Ct Ct |
|------------|---------|------------|--------|---------|-------|-------|
| Number     | (Watts) | (microSec) | (Ohms) | (Volts) | (MHz) | (pF)  |
| UM9301     | 1.0     | 4.0        | 3.0    | 75      | 900   | 0.8   |
| UM9301SM   | 1.0     | 4.0        | 3.0    | 75      | 900   | 0.8   |
| UM9415     | 1.0     | 5.0        | 1.0    | 50      | 1500  | 4.0   |
| UM7201     | 2.0     | 1.5        | 0.3    | 100     | 900   | 2.2   |
| LIM7201SM  | 2.0     | 1.5        | 0.3    | 100     | 900   | 2.2   |
| UM7202     | 2.0     | 1.5        | 0.3    | 200     | 900   | 2.2   |
| UM7202SM   | 2.0     | 1.5        | 0.3    | 200     | 900   | 2.2   |
| LIM7204    | 2.0     | 1.5        | 0.3    | 400     | 900   | 2.2   |
| UM7204SM   | 2.0     | 1.5        | 3.0    | 400     | 900   | 2.2   |
| UM6001     | 2.5     | 1.0        | 1.7    | 100     | 1100  | 0.5   |
| UM6002     | 2.5     | 1.0        | 1.7    | 200     | 1100  | 0.5   |
| UM6006     | 2.5     | 1.0        | 1.7    | 600     | 1100  | 0.5   |
| UM6010     | 2.5     | 1.0        | 1.7    | 1000    | 1100  | 0.5   |
| UM6201     | 2.5     | 0.6        | 0.4    | 1000    | 1100  | 1 1   |
| UM6202     | 2.5     | 0.6        | 0.4    | 200     | 1100  | 1.1   |
| UM6204     | 2.5     | 0.6        | 0.4    | 400     | 1100  | 1.1   |
| UM6601     | 2.5     | 1.0        | 2.5    | 100     | 1100  | 0.4   |
| UM6601SM   | 2.5     | 1.0        | 2.5    | 100     | 1100  | 0.4   |
| UM6602     | 2.5     | 1.0        | 2.5    | 200     | 1100  | 0.4   |
| UM6602SM   | 2.5     | 1.0        | 2.5    | 200     | 1100  | 0.4   |
| UM6606     | 2.5     | 1.0        | 2.5    | 600     | 1100  | 0.4   |
| UM6606SM   | 2.5     | 1.0        | 2.5    | 600     | 1100  | 0.4   |
| UM6610     | 2.5     | 1.0        | 2.5    | 1000    | 1100  | 0.4   |
| UM6610SM   | 2.5     | 1.0        | 2.5    | 1000    | 1100  | 0.4   |
| 11149441   | 2.5     |            | 2.0    | 100     | 1.42  | 12    |
| 11149701   | 2.5     | 1.5        | 0.8    | 100     | 1500  | 1.4   |
| UPP1001    | 2.5     | 2.0        | 0.5    | 100     | 1500  | 1.0   |
| UPP1002    | 2.5     | 2.0        | 0.5    | 200     | 1500  | 1.6   |
| UPP1004    | 2.5     | 2.0        | 0.5    | 400     | 1500  | 1.6   |
| UPP9401    | 2.5     | 2.0        | 1.0    | 50      | 1800  | 1.0   |
| UM7501     | 5.5     | 2.5        | 1.0    | 100     | 1100  | 1.0   |
| UM7502     | 5.5     | 2.5        | 1.0    | 200     | 1100  | 1.0   |
| UM7504     | 5.5     | 2.5        | 1.0    | 400     | 1100  | 1.0   |
| UM7506     | 5.5     | 2.5        | 1.0    | 600     | 1100  | 1.0   |
| UM7508     | 5.5     | 2.5        | 1.0    | 800     | 1100  | 1.0   |
| UM7510     | 5.5     | 2.5        | 1.0    | 1000    | 1100  | 1.0   |
| UM7512     | 5.5     | 2.5        | 1.0    | 1200    | 1100  | 1.0   |
| UM7514     | 5.5     | 2.5        | 1.0    | 1400    | 1100  | 1.0   |
| UM9401     | 5.5     | 1.0        | 1.0    | 50      | 1500  | 1.5   |
| UM9401F    | 5.5     | 1.0        | 1.0    | 50      | 1500  | 1.5   |
| UM9401SM   | 5.5     | 1.0        | 1.0    | 50      | 1500  | 1.5   |
| UM7301     | 7.5     | 4.0        | 3.0    | 100     | 1800  | 0.7   |
| UM7301SM   | 7.5     | 4.0        | 3.0    | 100     | 1800  | 0.7   |
| UM7302     | 7.5     | 4.0        | 3.0    | 200     | 1800  | 0.7   |
| UM7302SM   | 7.5     | 4.0        | 3.0    | 200     | 1800  | 0.7   |
| UM7306     | 7.5     | 4.0        | 3.0    | 600     | 1800  | 0.7   |
| UM7306SM   | 7.5     | 4.0        | 3.0    | 600     | 1800  | 0.7   |
| UM7310     | 7.5     | 4.0        | 3.0    | 1000    | 1800  | 0.7   |
| UM7310SM   | 7.5     | 4.0        | 3.0    | 1000    | 1800  | 0.7   |
| UM9601     | 7.5     | 2.0        | 0.6    | 100     | 4000  | 1.2   |
| UM9602     | 7.5     | 2.0        | 0.6    | 400     | 4000  | 1.2   |
| UM9603     | 7.5     | 2.0        | 0.6    | 100     | 4000  | 1.2   |
| UM9604     | 7.5     | 2.0        | 0.6    | 400     | 4000  | 1.2   |
| UM9605     | 7.5     | 1.0        | 1.7    | 100     | 4000  | 1.7   |
| UM9606     | 7.5     | 1.0        | 1.7    | 400     | 4000  | 0.5   |
| UM9607     | 7.5     | 1.0        | 1.7    | 100     | 4000  | 0.5   |
| UM9608     | 7.5     | 1.0        | 1.7    | 400     | 4000  | 0.5   |
| UM4301     | 10.0    | 6.0        | 1.5    | 100     | 1500  | 2.2   |
| 1014004014 | 40.0    | <u> </u>   | 1 5    | 100     | 1500  | 22    |

| Part      | Power   | TAU        | RS     | VR      | fT    | Ct   |
|-----------|---------|------------|--------|---------|-------|------|
| Number    | (Watts) | (microSec) | (Ohms) | (Volts) | (MHz) | (pF) |
| UM4302    | 10.0    | 6.0        | 1.5    | 200     | 1500  | 2.2  |
| UM4302SM  | 10.0    | 6.0        | 1.5    | 200     | 1500  | 2.2  |
| UM4306    | 10.0    | 6.0        | 1.5    | 600     | 1500  | 2.2  |
| UM4306SM  | 10.0    | 6.0        | 1.5    | 600     | 1500  | 2.2  |
| UM4310    | 10.0    | 6.0        | 1.5    | 1000    | 1500  | 2.2  |
| UM4310SM  | 10.0    | 6.0        | 1.5    | 1000    | 1500  | 2.2  |
| UM4901    | 10.0    | 5.0        | 0.5    | 100     | 1500  | 3.0  |
| UM4901SM  | 10.0    | 5.0        | 0.5    | 100     | 1500  | 3.0  |
| UM4902    | 10.0    | 5.0        | 0.5    | 200     | 1500  | 3.0  |
| UM4902SM  | 10.0    | 5.0        | 0.5    | 200     | 1500  | 3.0  |
| UM4906    | 10.0    | 5.0        | 0.5    | 600     | 1500  | 3.0  |
| UM7001    | 10.0    | 2.5        | 1.0    | 100     | 900   | 0.9  |
| UM7001SM  | 10.0    | 2.5        | 1.0    | 100     | 900   | 0.9  |
| UM7002    | 10.0    | 2.5        | 1.0    | 200     | 900   | 0.9  |
| UM7002SM  | 10.0    | 2.5        | 1.0    | 200     | 900   | 0.9  |
| UM7006    | 10.0    | 2.5        | 1.0    | 600     | 900   | 0.9  |
| UM7006SM  | 10.0    | 2.5        | 1.0    | 600     | 900   | 0.9  |
| UM7010    | 10.0    | 2.5        | 1.0    | 1000    | 000   | 0.0  |
|           | 10.0    | 2.0        | 1.0    | 1000    | 900   | 0.9  |
| LIM7101   | 10.0    | 2.0        | 1.0    | 1000    | 900   | 1.9  |
|           | 10.0    | 2.0        | 0.0    | 100     | 900   | 1.2  |
| UM71015M  | 10.0    | 2.0        | 0.6    | 100     | 900   | 1.2  |
| UN7102    | 10.0    | 2.0        | 0.0    | 200     | 900   | 1.2  |
| UN171025M | 10.0    | 2.0        | 0.6    | 200     | 900   | 1.2  |
| UM7104    | 10.0    | 2.0        | 0.6    | 400     | 900   | 1.2  |
| UM7104SM  | 10.0    | 2.0        | 0.6    | 400     | 900   | 1.2  |
| UM7108    | 10.0    | 2.0        | 0.6    | 800     | 900   | 1.2  |
| UM7108SM  | 10.0    | 2.0        | 0.6    | 800     | 900   | 1.2  |
| UM9402    | 10.0    | 1.0        | 1.0    | 50      | 1500  | 1.5  |
| UM4001    | 12.0    | 5.0        | 0.5    | 100     | 1500  | 3.0  |
| UM4001SM  | 12.0    | 5.0        | 0.5    | 100     | 1500  | 3.0  |
| UM4002    | 12.0    | 5.0        | 0.5    | 200     | 1500  | 3.0  |
| UM4002SM  | 12.0    | 5.0        | 0.5    | 200     | 1500  | 3.0  |
| UM4006    | 12.0    | 5.0        | 0.5    | 600     | 1500  | 3.0  |
| UM4006SM  | 12.0    | 5.0        | 0.5    | 600     | 1500  | 3.0  |
| UM4010    | 12.0    | 5.0        | 0.5    | 1000    | 1500  | 3.0  |
| UM4010SM  | 12.0    | 5.0        | 0.5    | 1000    | 1500  | 3.0  |
| UM4906SM  | 12.0    | 5.0        | 0.5    | 600     | 1500  | 3.0  |
| HUM2010   | 13.0    | 10.0       | 0.2    | 1000    | 250   | 4.0  |
| HUM2015   | 13.0    | 10.0       | 0.2    | 1500    | 250   | 4.0  |
| HUM2020   | 13.0    | 10.0       | 0.2    | 2000    | 250   | 4.0  |
| UM2101    | 25.0    | 60.0       | 2.0    | 100     | 30    | 2.5  |
| UM2102    | 25.0    | 60.0       | 2.0    | 200     | 30    | 2.5  |
| UM2104    | 25.0    | 60.0       | 2.0    | 400     | 30    | 2.5  |
| UM2106    | 25.0    | 60.0       | 2.0    | 600     | 30    | 2.5  |
| UM2108    | 25.0    | 60.0       | 2.0    | 800     | 30    | 2.5  |
| UM2110    | 25.0    | 60.0       | 2.0    | 1000    | 30    | 2.5  |
| UM2301    | 1000.0  | 80.0       | 0.4    | 100     | 20    | 20.0 |
| UM2301S   | 1000.0  | 80.0       | 0.4    | 100     | 20    | 20.0 |
| UM2302    | 1000.0  | 80.0       | 0.4    | 200     | 20    | 20.0 |
| UM2302S   | 1000.0  | 80.0       | 0.4    | 200     | 20    | 20.0 |
| UM2304    | 1000.0  | 80.0       | 0.4    | 400     | 20    | 20.0 |
| UM2304S   | 1000.0  | 80.0       | 0.4    | 400     | 20    | 20.0 |
| UM2306    | 1000.0  | 80.0       | 0.4    | 600     | 20    | 20.0 |
| UM2306S   | 1000.0  | 80.0       | 0.4    | 600     | 20    | 20.0 |
| LIM2308   | 1000.0  | 80.0       | 0.4    | 800     | 20    | 20.0 |
| UM23089   | 1000.0  | 80.0       | 0.4    | 800     | 20    | 20.0 |
| 11123003  | 1000.0  | 80.0       | 0.4    | 1000    | 20    | 20.0 |
| UM2310    | 1000.0  | 80.0       | 0.4    | 1000    | 20    | 20.0 |
| 01023105  | 1000.0  | 80.0       | 0.4    | 1000    | 20    | 20.0 |



**PIN** Diodes

## tuning

| Frequency  | Super      | High "S"   | Low "S"    | Hyper      | Abrupt  | Abrupt | Abrupt | Abrupt |
|------------|------------|------------|------------|------------|---------|--------|--------|--------|
| Band       | Hyper      | Linear     | Linear     |            |         |        |        |        |
|            | Vb=12V     | Vb=22V     | Vb=22 V    | Vb=22 V    | Vb=30V  | Vb=30V | Vb=30V | Vb=20V |
|            | P/N Series | P/N Series | P/N Series | P/N Series | Chip    |        |        |        |
|            |            |            |            |            | Ceramic | EPSM   | SOT-23 | Glass  |
|            |            |            |            |            | Glass*  |        |        |        |
| Microwave  | KV199x     | GC15006    | GC15001    | KV211x     | GC1500A | GC1300 | GC1202 |        |
| to 18 GHz  | KV198x     | GC15007    | GC15002    | KV212x     | GC1500B | GC1301 | GC1203 |        |
|            | KV197x     | GC15008    | GC15003    | KV213x     | GC1500  | GC1302 | GC1204 |        |
|            | KV196x     | GC15009    | GC15004    | KV214x     | GC1501  | GC1303 | GC1205 |        |
|            | KV194x     | GC15010    | GC15005    | KV215x     | GC1502  | GC1304 | GC1206 |        |
|            | KV193x     |            |            | KV216x     | GC1503  | GC1305 | GC1207 | N/A    |
|            |            |            |            |            | GC1504  | GC1306 |        |        |
|            |            |            |            |            | GC1505  | GC1307 |        |        |
|            |            |            |            |            | GC1506  | GC1308 |        |        |
|            |            |            |            |            | GC1507  | GC1309 |        |        |
|            |            |            |            |            |         | GC1310 |        |        |
| UHF        | KV192x     | GC15011    | GC15014    | KV2101     | GC1508  |        | GC1208 | KV620  |
| to 1.0 GHz | KV195x     | GC15012    | GC15015    | KV3201     | GC1509  |        | GC1209 | KV621  |
|            | KV191x     | GC15013    | GC15016    | KV3901     | GC1510  |        | GC1210 | KV622  |
|            |            |            |            | KV2801     | GC1511  | N/A    | GC1211 | KV623  |
|            |            |            |            |            | GC1512  |        | GC1212 | KV624  |
|            |            |            |            |            | GC1513  |        | GC1213 | KV625  |
|            |            |            |            |            |         |        | GC1214 | KV626  |
| VHF        | KV1401     |            |            | KV2001     | 1N5441  |        | GC1215 | KV627  |
| to 250 MHz | KV1501     | N/A        | N/A        | KV2201     | thru    | N/A    | GC1216 | Thru   |
|            |            |            |            | KV2301     | 1N5476  |        | GC1217 | KV650  |
| HF         | KV1601     |            |            | KV2401     |         |        |        |        |
| 1 – 50 MHz | KV1701     | N/A        | N/A        | KV2501     | N/A     | NI/A   | N/A    | NI/A   |
|            | KV1801     | N/A        | 19/74      | KV2601     | 11/A    | IN/A   | IN/A   | IN/A   |
|            |            |            |            | KV2701     |         |        |        |        |

Extensive application note assistance can be found in the Microsemi web site's RF/ Microwave section on variable capacitance diodes (tuning varactors). Fundamentals are covered in a chapter on *FrequencyLinear Tuning Varactors* which provides an introduction to hyperabrupt tuning diodes. Additional chapters cover *Low Distortion FM Generation & Detection Using Hyperabrupt Tuning Diodes*, and designing *HF-VHF-UHF Voltage Controlled Oscillators (VCOs) Using Hyperabrupt Tuning Diodes*. For direct access link: http://www.microsemi.com/datasheets/5000040.pdf.

## Schottky Jiodes

| Frequency<br>Range | Part<br>Number | Barrier   | Vb<br>min<br>(V) | Cj<br>max<br>(pF) | VF<br>max<br>(mV) | Rd<br>max<br>(Ohms) | NFssp<br>Typ (dB) | Zif<br>typ<br>(Ohms) |
|--------------------|----------------|-----------|------------------|-------------------|-------------------|---------------------|-------------------|----------------------|
| Ku-Ka              | GC9901         |           |                  | 0.09              | 310               | 18                  | 6.5               |                      |
| Х                  | GC9902         | ULTRA-    |                  | 0.15              | 280               | 14                  | 6                 |                      |
| С                  | GC9903         | LOW       | 2                | 0.3               | 270               | 12                  | 5.5               | 140                  |
| S                  | GC9904         |           |                  | 0.5               | 250               | 10                  | 5.5               |                      |
| Ku-Ka              | GC9911         |           |                  | 0.09              | 360               | 18                  | 6.5               |                      |
| х                  | GC9912         | 1.014     | 0                | 0.15              | 350               | 14                  | 6                 | 470                  |
| С                  | GC9913         | LOW       | 2                | 0.3               | 340               | 12                  | 5.5               | 170                  |
| S                  | GC9914         |           |                  | 0.5               | 330               | 10                  | 5.5               |                      |
| Ku-Ka              | GC9921         |           | 2                | 0.15              | 440               | 18                  | 6.5               | 200                  |
| Х                  | GC9922         |           |                  | 0.15              | 430               | 14                  | 6                 |                      |
| С                  | GC9923         | LOW-IVIED |                  | 0.3               | 410               | 12                  | 5.5               |                      |
| S                  | GC9924         |           |                  | 0.5               | 390               | 10                  | 5.5               |                      |
| Ku-Ka              | GC9931         |           |                  | 0.3               | 540               | 18                  | 6.75              |                      |
| х                  | GC9932         |           | 2                | 0.15              | 530               | 14                  | 6.25              | 250                  |
| С                  | GC9933         | MEDIUM    | з                | 0.3               | 520               | 12                  | 5.75              | 250                  |
| S                  | GC9934         |           |                  | 0.5               | 500               | 10                  | 5.5               |                      |
| Ku-Ka              | GC9941         |           |                  | 0.5               | 650               | 20                  | 7                 |                      |
| х                  | GC9942         |           |                  | 0.15              | 630               | 16                  | 6.25              | 300                  |
| С                  | GC9943         | HIGH      | 4                | 0.3               | 620               | 12                  | 5.75              |                      |
| S                  | GC9944         |           |                  | 0.5               | 600               | 10                  | 5.75              |                      |

For more information regarding Microsemi's Schottky diodes in microwave applications, refer to our web site link: http://www.microsemi.com/datasheets/5000003.pdf. You will find details on: *High Power and General Purpose Schottky Diodes, Monolithic Schottky Devices for Mixers to 26.5 GHz, Ultra High Drive Monolithic Schottky Devices, Detector Applications Notes,* and *Detector Diode Selection Guide.*  

#### **HF** Transistors

| PART NO. | FREQ. | Pout           | Pin  | GAIN        | BIAS |             | ?jc           | IMD   | PKG   |
|----------|-------|----------------|------|-------------|------|-------------|---------------|-------|-------|
|          | (MHz) | Min<br>(W PEP) | (W)  | Min<br>(dB) | Vce  | lcq<br>(mA) | Max<br>??C/W) | (dBC) | STYLE |
| MS1226   | 30    | 30             | 0.48 | 18          | 28   | 25          | 2.2           | -28   | M113  |
| MS1001   | 30    | 75             | 3.8  | 13          | 12.5 | 100         | 0.65          | -32   | M174  |
| MS1007   | 30    | 150            | 6    | 14          | 50   | 100         | 2             | -30   | M174  |
| MS1004   | 30    | 250            | 10   | 13.5        | 50   | 150         | 0.4           | -30   | M177  |

#### High Band FM/UHF TV Bands

| PART NO. | FREQ. | Pout<br>Min | Pin   | GAIN<br>Min | ?с<br>Min | Vcc  | ?jc<br>Max | PKG<br>STYLE |
|----------|-------|-------------|-------|-------------|-----------|------|------------|--------------|
|          | (MHz) | (W)         | (W)   | (dB)        | (%)       | (V)  | ??C/W)     |              |
| MRF4427  | 175   | 1           | 0.15  | 18          | 60        | 12.5 | 80         | M254         |
| MRF553   | 175   | 1.5         | 0.105 | 11.5        | 50        | 12.5 | 25         | M234         |
| SD1012   | 175   | 4           | 0.25  | 12          | 50        | 12.5 | -          | M135         |
| SD1143   | 175   | 10          | 1     | 10          | -         | 12.5 | 8.75       | M135         |
| SD1272   | 175   | 25          | 3     | 9.2         | -         | 12.5 | 3.5        | M135         |
| SD1224   | 175   | 40          | 7     | 7.6         | 60        | 28   | 2.9        | M135         |
| MS1003   | 175   | 100         | 25    | 6           | -         | 12.5 | 0.65       | M111         |

#### LNA General Purpose

| PART NO. | fT    | Gu          | G <sub>NF</sub> | N          | Noise Figure |            |             | Cob         | PACKAGE |
|----------|-------|-------------|-----------------|------------|--------------|------------|-------------|-------------|---------|
|          | (MHz) | MAX<br>(dB) | (dB)            | f<br>(MHz) | Vce<br>(V)   | lc<br>(mA) | MIN<br>(dB) | Max<br>(pF) |         |
| BFR96    | 500   | 14.5        | -               | 500        | 10           | 10         | 2           | 3.2         | M236    |
| MRF5943  | 1300  | 15          | -               | -          | -            | -          | -           | 3           | M254    |
| BFY90    | 1300  | 19          | -               | 500        | 5            | 2          | 2.5         | 2           | M244    |
| MRF586   | 3000  | 12.5        | -               | -          | -            | -          | -           | 3           | M246    |
| MRF517   | 4000  | 9           | -               | 300        | 15           | 50         | 7.5         | 4.5         | M246    |
| MRF581   | 5000  | 15          | 14              | 500        | 10           | 50         | 2           | 3           | M238    |
| MRF581A  | 5000  | 15          | 14              | 500        | 10           | 50         | 2           | 2           | M238    |
| BFR91    | 5000  | 16.5        | 11              | 500        | 5            | 2          | 1.9         | 1           | M236    |
| MFR5812  | 5000  | 17.8        | 15.5            | 500        | 10           | 50         | 2.5         | 2           | M254    |
| BFR90    | 5000  | 18          | 15              | 500        | 10           | 2          | 2.4         | 1           | M236    |
| MRF951   | 8000  | -           | 14              | 1000       | 6            | 5          | 1.3         | 0.45        | M238    |

#### **UHF TV Bands**

| PART NO. | FREQ. | Pout | Pin  | GAIN | BIAS |        | IMD   | ?jc    | COB  | PACKAGE |
|----------|-------|------|------|------|------|--------|-------|--------|------|---------|
|          |       | Min  |      | Min  | Vce  | lcq    |       | Max    | Max  |         |
|          | (MHz) | (W)  | (W)  | (dB) | (V)  | (mA)   | (dBC) | ??C/W) | (pF) |         |
| MS1512   | 860   | 1    | 0.1  | 10   | 20   | 440    | -58   | 9      | 7    | M122    |
| MS1581   | 860   | 4    | 0.8  | 7    | 25   | 850    | -60   | 5.5    | 20   | M122    |
| MS1579   | 860   | 14   | 1.2  | 8.5  | 25   | 2x850  | -45   | 2.5    | 17.5 | M156    |
| MS1582   | 860   | 25   | 4    | 8    | 25   | 2x1600 | -45   | 1.3    | 80   | M173    |
| MS1584   | 860   | 50   | 10.5 | 6.8  | 28   | 2x250  | -30   | 1      | 70   | M173    |
| MS1576   | 860   | 150  | 21   | 8.5  | 28   | 2x200  | -30   | 0.6    | 70   | M208    |

## **RF** transient voltage suppression

#### LoCAP<sup>™</sup> Silicon TVS Devices

| Device series | Surge Power | Waveform  | Capacitance | Package      | Voltage Range |
|---------------|-------------|-----------|-------------|--------------|---------------|
| LC6.5         | 1.5KW       | 10/1000µs | 50pf        | DO-13        | 6.6V - 170V   |
| LCE6.5        | 1.5KW       |           | 50pf        | Axial lead   | 6.5V - 170V   |
| SAC5          | 500W        |           | 25pf        | Axial lead   | 5.0V - 50V    |
| SMCJLCE5.0    | 1.5KW       |           | 50pf        | SMT/DO-214AB | 5.0V - 50V    |
| SMBJSAC5.0    | 500W        |           | 25pf        | SMT/DO-214AA | 5.0V - 50V    |
| SMP6LC6.5     | 600W        |           | 30pf        | SO-16        | 6.5V - 170V   |
| SM8LC03       | 300W        | 8/20µs    | 25pf        | SO-8         | 3.0V - 24V    |
| SM16LC03      | 300W        |           | 25pf        | SO-16        | 3.0V - 24V    |
| USB0403C      | 300W        |           | 5pf         | SO-4         | 3.0V - 24V    |
| USB0803C      | 300W        |           | 5pf         | SO-8         | 3.0V - 24V    |

#### **TVS Devices for Common Applications**

| Upper Limits |     | Primary Thre   | eats      | Recommended TVS | Surge |
|--------------|-----|----------------|-----------|-----------------|-------|
| bits         | ESD | Load Switch    | Lightning | Family          | Power |
| 250kb        | *   | *              | *         | LC6.5           | 1.5kW |
| 250kb        | *   | *              | *         | LCE6.5          | 1.5kW |
| 250kb        | *   | *              | *         | SMJLC5.0        | 1.5kW |
| 1.5Mb        | *   | *              | *         | SAC5.0          | 600W  |
| 1.5Mb        | *   | *              | *         | SMBLSAC5.0      | 600W  |
| 1.5Mb        | *   | *              | *         | SMP6LC6.5       | 600W  |
| 5Mb          | *   |                |           | SM8LC03         | 300W  |
| 5Mb          | *   |                |           | SM16LC03C       | 300W  |
| 12.5Mb       | *   |                |           | USB0403C        | 300W  |
| 12.5Mb       | *   |                |           | USB0803C        | 300W  |
| 125Mb        | *   | 10.0           | LA BAL    | USB0403C        | 300W  |
| 125Mb        | *   | LA CAL         |           | USB0403C        | 300W  |
| 1Gb          | *   | A Party of the | 1000      | USB0803C (1)    | 300W  |

(1) only when both elements of the TVS are in series for reduced capacitance.



# MRF

Microsemi's MRF transistor line includes a broad selection of bipolar semiconductor devices originally developed by Motorola and SGS-Thomson, acquired by Microsemi for continued customer supply and on-going enhancements.



Microsemi's die geometries can produce commercial and military products covering applications ranging from 2 MHz to 4 GHz. From this portfolio, and Microsemi's packaging capabilities, we are able to offer devices that meet or exceed a wide range of customer specifications.

Among applications for our MRF transistors are VHF, UHF and general purpose RF amplifiers, pre-driver and output stages, oscillator and frequency-multipliers; low noise broadband amplifiers; high frequency and medium and high resolution color video display monitors; and other devices requiring high breakdown characteristics.



#### **MRF** Transistors

| Part No   | Description                                                                                                                                                                                                                                                                      | www.microsemi.com/datasheets |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| MRF1001A  | Silicon Bipolar RF NPN transistor, designed for VHF and UHF<br>equipment. Applications include amplifier; pre-driver, driver, and<br>output stages. Also suitable for oscillator and frequency-multiplier<br>functions.                                                          | MSC1311.PDF                  |
| MRF3866   | Silicon Bipolar RF NPN transistor, designed for general-purpose<br>RF amplifier applications, such as; pre-drivers, Oscillators, etc.<br>Maximum Available Gain = 17 dB @ 300 MHz                                                                                                | MSC1312.PDF                  |
| MRF3866R1 | Silicon Bipolar RF NPN transistor, designed for general-purpose<br>RF amplifier applications, such as; pre-drivers, Oscillators, etc.<br>Maximum Available Gain = 17 dB @ 300 MHz                                                                                                | MSC1312.PDF                  |
| MRF3866R2 | Silicon Bipolar RF NPN transistor, designed for general-purpose<br>RF amplifier applications, such as; pre-drivers, Oscillators, etc.<br>Maximum Available Gain = 17 dB @ 300 MHz                                                                                                | MSC1312.PDF                  |
| MRF4427   | Silicon Bipolar RF NPN transistor, designed for general-purpose<br>RF amplifier applications, such as; pre-drivers, Oscillators, etc.<br>Maximum Available Gain – 20dB(typ) @ 200MHz                                                                                             | MSC1313.PDF                  |
| MRF4427R1 | Silicon Bipolar RF NPN transistor, designed for general-purpose<br>RF amplifier applications, such as; pre-drivers, Oscillators, etc.<br>Maximum Available Gain – 20dB(typ) @ 200MHz                                                                                             | MSC1313.PDF                  |
| MRF4427R2 | Silicon Bipolar RF NPN transistor, designed for general-purpose<br>RF amplifier applications, such as; pre-drivers, Oscillators, etc.<br>Maximum Available Gain – 20dB(typ) @ 200MHz                                                                                             | MSC1313.PDF                  |
| MRF517    | Silicon Bipolar RF NPN transistor, designed for VHF and UHF<br>equipment. Applications include low noise broadband amplifier;<br>pre-driver, driver, and output stages. 3 GHz Current-Gain<br>Bandwidth Product (min) @ 60mA, Broadband Noise Figure = 7.5<br>dB @ 50mA 30 MHz   | MSC1302.PDF                  |
| MRF544    | Silicon Bipolar RF NPN transistor, designed primarily for use in<br>high frequency and medium and high resolution color video display<br>monitors as well as other applications requiring high breakdown<br>characteristics. Maximum Unilateral Gain = 13.5 dB (typ) @<br>200MHz | MSC1314.PDF                  |
| MRF545    | Silicon Bipolar RF NPN transistor, designed primarily for use in<br>high frequency and medium and high resolution color video display<br>monitors as well as other applications requiring high breakdown<br>characteristics. Maximum Unilateral Gain = 14 dB (typ) @<br>200MHz   | MSC1315.PDF                  |
| MRF553    | Silicon Bipolar RF NPN Transistor designed primarily for wideband<br>large signal stages in the VHF frequency range.                                                                                                                                                             | MSC1316.PDF                  |
| MRF559    | Silicon Bipolar RF NPN Transistor, designed primarily for<br>wideband large signal stages in the UHF frequency range.                                                                                                                                                            | MSC1317.PDF                  |
| MRF581    | Silicon Bipolar RF NPN Transistor, designed for high current, low<br>power, low noise, amplifiers up to 1.0 GHz.                                                                                                                                                                 | MSC1318.PDF                  |
| MRF5812   | Silicon Bipolar RF NPN Transistor designed for high current, low<br>power, low noise, amplifiers up to 1.0 GHz.                                                                                                                                                                  | MSC1319.PDF                  |
| MRF581A   | Silicon Bipolar RF NPN Transistor, designed for high current, low<br>power, low noise, amplifiers up to 1.0 GHz.                                                                                                                                                                 | MSC1318.PDF                  |
| MRF586    | Silicon Bipolar RF NPN transistor, designed for VHF and UHF<br>equipment. Applications include amplifier; pre-driver, driver, and<br>output stages. Also suitable for oscillator and frequency-multiplier<br>functions. Ftau = 3.0 Ghz (typ) @ 300MHz, 14v, 90mA,                | MSC1320.PDF                  |
| MRF5943   | Silicon Bipolar RF NPN transistor, designed for general-purpose<br>RF amplifier applications, such as pre-drivers, drivers, Oscillators,<br>etc. Maximum Available Gain = 17dB @ 300MHz                                                                                          | MSC1321.PDF                  |

-

# mphone & radio applications

Innovative packaging capabilities that save precious board space make Microsemi a significant supplier of RF/microwave semiconductors for mobile phone applications.

By packaging a PIN diode antenna switch using Microsemi's patented flip-chip MicroMiniature Surface Mount (MMSM) technology we can reduce this device to a mere 0.020 x 0.040 x 0.015 inches (0.508 x 1.016 x 0.381 mm). This high performance series provides low capacitance performance up to 12GHz.

From Microsemi's Micro WaveSys Design Center come high speed compound semiconductor RFICs for mobile communications applications. Designed to be highly efficient with speeds from 800MHz to 20GHz, these ASIC designs can be fabricated within the Microsemi Network, or by one of our external merchant market wafer fabs.

**EDS Protection:** Microsemi's TVS protection devices and TVSarrays® lead the industry by providing ESD protection with the lowest capacitance specifications to be found anywhere, plus exclusive Microsemi advanced packages.

*LNA/Gainblock:* Microsemi offers LNA/ Gainblock solutions in both silicon and GaAs technologies to meet the size and performance specifications required for a wide range of mobile phone designs. Our new general purpose InGaP/GaAs HBT wide band gain block amplifiers are of 3V/5V, DC-3GHz and DC-6GHz (50 Ohm cascadable) with 12-17dB gain and P1dB up to 19dBm (5V) in advanced Microsemi packages.



**VCO:** Microsemi's Microwave Products Division has more than three decades experience in providing varactor devices for VCO applications. Our selection of varactors and PIN diodes covers a range from 2-10 GHz.

#### FM Land Mobile Radio RF Transistors

| PART NO.  | FREQ. | Pout<br>Min | Pin | GAIN<br>Min | Vcc  | ?jc<br>Max | PKG<br>STYLE |
|-----------|-------|-------------|-----|-------------|------|------------|--------------|
|           | (MHz) | (W)         | (W) | (dB)        | (V)  | ?(C/W)     |              |
| MRF555    | 470   | 1.5         |     | 11          | 12.5 | 25         | M234         |
| MS1402    | 470   | 2           | 0.2 | 10          | 12.5 | 35         | M122         |
| MS1404    | 470   | 5           | 0.7 | 8.5         | 12.5 | 11.6       | M122         |
| MS1426    | 470   | 10          | 2   | 7           | 12.5 | 3          | M122         |
| SD1429-03 | 470   | 15          | 2.5 | 7.8         | 12.5 | 4.6        | M111         |
| SD1422    | 470   | 25          | 6   | 6.2         | 12.5 | 2.5        | M111         |
| MS1480    | 470   | 45          | 14  | 5           | 12.5 | 1          | M111         |

#### LNA General Purpose RF Transistors

| PART NO. | f⊤    | Gu   | G <sub>NF</sub> | Noise Figure |     |      | NF   | Cob  | PACKAGE |
|----------|-------|------|-----------------|--------------|-----|------|------|------|---------|
|          |       | MAX  |                 | f            | Vce | lc   | MIN  | Max  |         |
|          | (MHz) | (dB) | (dB)            | (MHz)        | (V) | (mA) | (dB) | (pF) |         |
| BFR96    | 500   | 14.5 | -               | 500          | 10  | 10   | 2    | 3.2  | M236    |
| MRF5943  | 1300  | 15   | -               | -            | -   | -    | -    | 3    | M254    |
| BFY90    | 1300  | 19   | -               | 500          | 5   | 2    | 2.5  | 2    | M244    |
| MRF586   | 3000  | 12.5 | -               | -            | -   | -    | -    | 3    | M246    |
| MRF517   | 4000  | 9    | -               | 300          | 15  | 50   | 7.5  | 4.5  | M246    |
| MRF581   | 5000  | 15   | 14              | 500          | 10  | 50   | 2    | 3    | M238    |
| MRF581A  | 5000  | 15   | 14              | 500          | 10  | 50   | 2    | 2    | M238    |
| BFR91    | 5000  | 16.5 | 11              | 500          | 5   | 2    | 1.9  | 1    | M236    |
| MFR5812  | 5000  | 17.8 | 15.5            | 500          | 10  | 50   | 2.5  | 2    | M254    |
| BFR90    | 5000  | 18   | 15              | 500          | 10  | 2    | 2.4  | 1    | M236    |
| MRF951   | 8000  | -    | 14              | 1000         | 6   | 5    | 1.3  | 0.45 | M238    |



*RF Power Amplifier:* Microsemi's Micro WaveSys operation has designed a new line of low noise InGaP/GaAs HBT wide band amplifiers of 3V/5V DC-3GHz and DC-6GHz (NF<2dB) with 20dB gain and Pout up to 0dBm in advanced Microsemi packages. In development are PCS/ WCDMA and CDMA/GSM power amplifiers with a choice of unmatched or matched module options.

Antenna Switch: Microsemi's PIN diodes for antenna switch applications feature exclusive PowerMite®, EPSM and MMSM surface mount packaging options, combined with an unmatched level of experience in diode design, manufacture and application.

# base stations

Microsemi provides a broad selection of power bipolar RF transistors, varactor tuning diodes, PIN diodes and RF integrated circuits for use in base station applications.

- ? Our power transistor lineup covers cellular GSM base station bands from 860 MHz to 960 MHz, all designed specifically for Class AB common emitter operation, for optimum linearity performance. Broadband performance is achieved by using internal input and output matching. All Microsemi RF transistors use gold metalization for maximum reliability.
- ? Microsemi's new line of RF integrated circuits includes general purpose InGap HBT Gain Block amplifiers in surface mount SOT-89 and Gigamite packages.
- ? Microsemi's tuning varactors cover frequency bands from 1MHz to 18,000 MHz, including the UHF range used in base station applications. Designers can select from Super Hyper, High "S" Linear, Low "S" Linear, Hyper and Abrupt Junction devices.
- ? Microsemi long has been a leading supplier of PIN diodes used in control circuits of wireless communications systems, ranging from 2 MHz to 2.4 GHz. Typical applications are in antenna transmit/receive and duplexing switching.



#### **GSM Base Station Recomended Line-up**

#### ו וא שמפר טנמנוטוו טטטואוווב - פטטואוווב ולו דומוופופנטופ

| Part Number | Frequency<br>(MHz) | Pout<br>(W) min | Pin<br>(W) | gain<br>(dB)min | nc<br>(%) min | Vcc<br>(V) | Ojc<br>(C/W) max | Pkg<br>Style |
|-------------|--------------------|-----------------|------------|-----------------|---------------|------------|------------------|--------------|
| MS1455      | 836                | 45              | 15         | 4.7             | -             | 12.5       | 1.2              | M142         |
| MRF559      | 870                | 0.5             |            | 8               | 70            | 7.5        |                  | M238         |
| MRF8372     | 870                | 0.75            |            | 8               | 55            | 12.5       |                  | M254         |
| MRF557      | 870                | 1.5             |            | 8               | 55            | 12.5       |                  | M234         |
| SD1400-02   | 900                | 14              | 1.5        | 9.7             | 55            | 24         | 3                | M118         |
| SD1496      | 900                | 60              | 10.6       | 7.5             | 50            | 24         | 0.9              | M142         |
| SD1495-03   | 960                | 30              | 6          | 7               | 50            | 24         | 1.5              | M142         |

Configuration: Common Base, Operated Class C

#### Cellular Base Station 860MHz - 960MHz RF Transistors

| PartNumber | Frequency<br>(MHz) | Pout<br>(W) min | Pin<br>(W) | gain<br>(dB)min | bias<br>Vce (V) | bias<br>Icq (mA) | Ojc<br>(C/W) max | COB<br>(pF) max | Pkg<br>Style |
|------------|--------------------|-----------------|------------|-----------------|-----------------|------------------|------------------|-----------------|--------------|
| MS1578     | 860-900            | 150             | 24         | 8               | 26              | 2x150            | 0.6              | 75              | M208         |
| SD1420-01  | 860-900            | 0.9             | 0.1        | 9.5             | 24              | 125              | 20               | 5               | M123         |
| MS1530     | 860-900            | 60              | 10.5       | 7.5             | 26              | 200              | 1.2              | -               | M173         |

Configuration: Common Emitter, Operated Class AB

#### **PIN Diodes**

| Part Number | VB      | Ct @ VR max | Rs @ IF max      | TL typ  | Application |
|-------------|---------|-------------|------------------|---------|-------------|
| LSP1000     | 35 min  | 0.28 @ 5V   | 2.5 Ohms @ 5mA   | 80 nS   | Switch      |
| LSP1002     | 100 min | 0.32 @ 50V  | 4.0 Ohms @ 100mA | 1500 nS | Attenuator  |
| LSP1004     | 35 min  | 0.75 @ 20V  | 0.6 Ohms @ 10mA  | 150 nS  | Switch      |
| LSP1011     | 200 min | 0.35 @ 50V  | 2.0 Ohms @ 100mA | 2000 nS | Attenuator  |
| LSP1012     | 20 min  | 0.35 @ 10V  | 1.8 Ohms @ 10mA  | 5 nS    | Limiter     |

#### Super Hyperabrupt Varactors, High Sensitivity VCOs

| Part Number | CT1 (min) | CT2.5        | CT4 (max) | CT8 (max) | Q (4V/50MHz)<br>min |
|-------------|-----------|--------------|-----------|-----------|---------------------|
| K\/1013A    | 36 nE     | 18 - 27 nF   | 12.0 nE   | 6.20 pE   | 400                 |
| KV1953A     | 26 pF     | 13 - 20 pF   | 9.0 pF    | 4.70 pF   | 500                 |
| KV1923A     | 17 pF     | 8.5 - 13 pF  | 6.0 pF    | 3.20 pF   | 600                 |
| KV1933A     | 13 pF     | 6.5 - 10 pF  | 4.5 pF    | 2.70 pF   | 750                 |
| KV1943A     | 9 pF      | 4.5 - 6.5 pF | 3.0 pF    | 1.70 pF   | 900                 |
| KV1963A     | 4 pF      | 2.0 - 3.0 pF | 1.5 pF    | 1.00 pF   | 1200                |
| KV1973A     | 1.8 pF    | 1.1 - 1.5 pF | 0.8 pF    | 0.55 pF   | 1400                |
| KV1983A     | 1.2 pF    | 0.8 - 1.1 pF | 0.6 pF    | 0.45 pF   | 1600                |
| KV1993A     | 0.6 pF    | 0.5 - 0.8 pF | 0.4 pF    | 0.35 pF   | 1800                |

#### Microwave Hyperabrupt Varactors, Wide Bandwidth VCOs

| Part Number | CT0 typical | CT4             | CT20 max | Q (4V/50MHz)<br>min |
|-------------|-------------|-----------------|----------|---------------------|
| KV2163      | 26 pF       | 8.75 - 10.80 pF | 2.50 pF  | 400                 |
| KV2153      | 13.5 pF     | 4.45 - 5.50 pF  | 1.30 pF  | 600                 |
| KV2143      | 7 pF        | 2.65 - 3.30 pF  | 0.90 pF  | 700                 |
| KV2133      | 5 pF        | 1.75 - 2.20 pF  | 0.70 pF  | 850                 |
| KV2123      | 3 pF        | 1.30 - 1.65 pF  | 0.55 pF  | 1000                |
| KV2113      | 2 pF        | 0.85 - 1.10 pF  | 0.45 pF  | 1200                |

#### Microwave Abrupt Varactors, Moderate Bandwidth Low Noise VCOs

| Part Number | CT0/CT4 (min) | CT4 +/- 10% | CT4/CT30 (min) | Q (4V/50MHz)<br>min |
|-------------|---------------|-------------|----------------|---------------------|
| GC1300      | 1.5           | 0.8 pF      | 1.45           | 3900                |
| GC1301      | 1.6           | 1.0 pF      | 1.55           | 3800                |
| GC1302      | 1.7           | 1.2 pF      | 1.60           | 3700                |
| GC1303      | 1.8           | 1.5 pF      | 1.65           | 3600                |
| GC1304      | 1.9           | 1.8 pF      | 1.70           | 3500                |
| GC1305      | 2.0           | 2.2 pF      | 1.75           | 3400                |
| GC1306      | 2.0           | 2.7 pF      | 1.80           | 3300                |
| GC1307      | 2.1           | 3.3 pF      | 1.85           | 3100                |
| GC1308      | 2.1           | 3.9 pF      | 1.85           | 2700                |
| GC1309      | 2.1           | 4.7 pF      | 1.85           | 2600                |
| GC1310      | 2.1           | 5.6 pF      | 1.85           | 2500                |

# RF products

Microsemi's experience in providing discrete semiconductor solutions for military/aerospace applications extends to its founding days, four decades ago. Today, its RF/microwave devices for military avionics includes an extensive portfolio of PIN diodes, Schottky diodes, and varactors.

In addition to PIN diode antenna and duplexing switch applications, Microsemi offers PIN diode devices for RF attenuator circuits, RF modulators, and RF phase shifters. Detailed descriptions of all these circuit designs can be found in Microsemi's PIN Diode Handbook, version 2.



#### **PIN Nuclear Radiation Detectors**

#### **Features**

- ? High Reliability
- ? Fast Rise Time
- ? Wide Dynamic Range
- ? Low Operating Voltage
- ? High Photocurrent Sensitivity
- ? Hardness to Neutron Bombardment

Microsemi's UM9441 Series provides silicon PIN devices for effective detection of nuclear and electromagnetic radiation, including gamma radiation, electrons and x-rays. These devices can be used across a temperature range of  $-55^{\circ}$  C to  $+175^{\circ}$ C.

#### Absolute Maximum Ratings

Operating Temperature: -55℃ to +175℃ Storage Temperature: -55℃ to +200℃ Photocurrent: 3Adc, 3A<sup>2</sup>s pulsed Reverse Voltage: 100V



#### **RF** Transistors for Avionics Applications

| PART NO.  | FREQ.     | Pout | Pin  | GAIN | ?c  | Vcc | ?jc    | PULSE   | DUTY  | PKG   |
|-----------|-----------|------|------|------|-----|-----|--------|---------|-------|-------|
|           |           | Min  |      | Min  | Min |     | Max    | WIDTH   | CYCLE | STYLE |
|           | (MHz)     | (W)  | (W)  | (dB) | (%) | (V) | ??C/W) | (? SEC) | (%)   |       |
| MS2229    | 1090      | 55   | 7.4  | 8.7  | 45  | 50  | 1.1    | 32      | 2     | M214  |
| MS2228    | 1090      | 75   | 10   | 8.7  | 45  | 50  | 0.86   | 32      | 2     | M214  |
| MS2207    | 1090      | 400  | 63   | 8    | 45  | 50  | 0.17   | 32      | 2     | M216  |
| MS2208    | 1090      | 500  | 70   | 8.5  | 40  | 50  | 0.11   | 32      | 2     | M198  |
| MS2475    | 1090      | 720  | 150  | 6.8  | 35  | 50  | 0.09   | 10      | 1     | M216  |
| MS2203    | 1025-1150 | 0.6  | 0.05 | 10.8 |     | 18  | 35     | CW      | CW    | M220  |
| SD1526-01 | 1025-1150 | 5    | 0.55 | 9.5  | -   | 28  | 8      | 10      | 1     | M115  |
| MSC1015M  | 1025-1150 | 15   | 1.5  | 10   | 35  | 50  | 2      | 10      | 1     | M220  |
| MS2553    | 1025-1150 | 35   | 3    | 10.6 | 43  | 50  | 1      | 10      | 1     | M220  |
| SD1536-03 | 1025-1150 | 90   | 13   | 8.4  | 35  | 50  | 0.6    | 10      | 1     | M220  |
| MSC1400M  | 1025-1150 | 400  | 90   | 6.5  | 40  | 50  | 0.12   | 10      | 1     | M216  |
| MS2211    | 960-1215  | 6    | 0.7  | 9.3  | 45  | 28  | 7      | BU      | RST   | M222  |
| MS2213    | 960-1215  | 30   | 5    | 7.8  | 40  | 35  | 2.2    | BU      | RST   | M214  |
| MS2209    | 960-1215  | 90   | 13   | 8.4  | 38  | 50  | 0.8    | 10      | 10    | M218  |
| MS2215    | 960-1215  | 150  | 26.7 | 7.5  | 45  | 35  | 0.57   | BU      | RST   | M216  |
| MS2267    | 960-1215  | 250  | 40   | 8    | 38  | 50  | 0.28   | 20      | 5     | M214  |
| MS2272    | 960-1215  | 350  | 60   | 7.6  | 38  | 50  | 0.16   | 10      | 10    | M216  |

BURST: 254 Pulse Burst; 6.4 uS on, 6.6 uS off Overall Duty Cycle = 20.8%



#### IFF Transponder Recomended Line-up





#### Manufacturers of magnetic resonance imaging systems (MRI) use a substantial number of very sophisticated microwave components in the RF and signal processing parts of their systems.

#### Background

For medical diagnosis, the basic MRI system consists of a large, powerful magnet (0.1 to 10 Telsa) surrounding a chamber large enough for a patient to lie down inside it *(Figure 1).* It also employs a high power, frequency-tunable, RF source that can be switched on and off rapidly, producing a large RF field perpendicular to the magnetic field. This RF field is focused by the body coil. The RF source and both coils must be tunable in both frequency and impedance to "match the impedance" of the patient's body.

State-of-the-art systems use four or more special-purpose coils with separate receivers to optimize the signal-to-noise ratio (SNR) from a given region of the body. This method is often referred to as a "phased array system," although the signals are not added such that the signal phase information is included.

Normally, the RF signal is in the range of 10-100 MHz. During a typical set of clinical image measurements, the entire frequency spectrum of interest is of the order 10 KHz, an extremely narrow band, considering that the center frequency is about 100 MHz. This allows the use of single-frequency matching techniques for coils because their inherent bandwidth always exceeds the image bandwidth. This is an extremely important consideration when specifying PIN diodes for coil switching elements.

Image quality depends on the signal-to-noise ration of the acquired signal from the patient. SNR is of the utmost importance in obtaining clear MRI images of the interior of the human body.

#### PIN Switching Diodes in RF-Coil Designs

*Figure 2* illustrates a basic circular loop with a single capacitive gap. The gap is shunted by a series combination of an RF coil (Ls) and a PIN diode. Individual reactance of Ls and  $C_{\rm G}$  are about 50 Ohms at the operating frequency. For simplicity, the bias circuitry and the 50 Ohm RF output line across the PIN diode are not shown. The value of Ls is chosen such that the inductive reactance of the coil (Ls) and the capacitive reactance of the gap are in parallel (phase) resonance when the PIN diode is forward biased. This parallel resonance causes a large impedance (or zero conductance) to appear across

the gap, causing the RF loop current to decrease to zero d(open circuit or OFF state). Multiple PIN diode switch configurations are used in MRI system designs.



Figure 2 Simple Circular Loop With One Switched Gap



Figure 1 Typical MRI System

A practical MRI coil would have two or more gaps. A second gap is needed to apply an REF synchronization pulse of frequency distribution  $\{[\sin x\} / x\}$  to time the initial test pulse and the image response pulse. The capacitive gaps permit the flow of RF current through the MRI loop. The PIN diode bias network inhibits the flow of RF current through the PIN diode, although the diode must withstand the RF line voltage when it is back biased.

#### Key Features of PIN Switching Diodes for MRI Designs

- ? No Magnetic Materials: In the die, the die attach metalization system, or the RF package assembly.
- ? Signal-To-Noise Ratio: When MRI coil switches are OFF (reverse biased), the receivers are listening to the image return pulse. The receivers' SNR is degraded by the OFF impedance of the RF switch. This effect is specified by the reverse bias leakage current (I<sub>R</sub>) at the PIN diode's reverse bias resistance (Rp) of the reverse biased PIN diode. Gradual increase of SNR due to the increase of reverse bias leakage current results from poor passivation of the PIN diode's I-region. Microsemi PIN diodes are passivated with a unique proprietary glass passivation process to avoid this problem.
- **? Impedance matching:** Common RF frequencies used in commercial MRI system designs are 21 MHz and 64 MHz. Image search and tune bandwidths are 4, 8, and 16 KHz. Absolute values of PIN diode parasitic impedances is less important than their potential variation from lot to lot. For such narrow band applications, parasitic impedances can be compensated for in the initial switch design.

⋚

# application

Microsemi's web site provides a wealth of information relating to RF/Microwave applications in documents we call *MicroNotes*<sup>™</sup> and articles published in our technical magazine, *MicroCurrents*. Among them you can find coverage on the following subjects:

#### **MicroNotes**

**MicroNote # 122:** *Transient Voltage Protection across High Data Rate and RF Lines.* Provides basic information on application of Microsemi's LoCap TVS devices to protect high data rate and RF lines.

**MicroNote #701:** *PIN Diode Fundamentals.* Derived from Microsemi's definitive PIN Diode handbook, this article provides basic terms and formulas used in the selection and application of PIN diodes.

**MicroNote #704:** *Potential Use of RF PIN Diodes in Hand Held Transceivers.* Provides a thought-provoking discussion of how RF PIN diodes can become a viable alternative in hand held transceiver applications.

**MicroNote #705:** *RF Frequency Linear Tuning Varactors*. Describes the use of variable capacitance diodes (varactors) as tuning capacitors in high frequency circuits.

**MicroNote #706:** Low Distortion RF FM Generation and Detection Using Hyper-Abrupt *Tuning Diodes.* Discusses how the excellent frequency vs. voltage linearity of LC tuned circuits makes hyper-abrupt tuning diodes a good choice for FM generation and detection.

**MicroNote #707:** *RF HF-VHF-UHF Voltage Controlled Oscillators using Hyper-Abrupt Tuning Diodes.* Assists VCO designers in achieving superior performance from hyper-abrupt tuning diodes.

#### **MicroCurrents**

*RF Transistors for Avionics Applications:* An introduction of Microsemi RF discrete semiconductor capabilities for avionics applications.

*RF Transistors for Base Stations and Satellite Communications:* An introduction of Microsemi RF discrete semiconductor capabilities for base station and satellite communications applications.

**RF Channel Characteristics of Wireless Nomadic Systems:** Discusses the distinction of RF channel characteristics between wireline and wireless communications.







#### **Transient Suppression**

- ? ESD Protection
- ? Lightning Suppression
- ? Low Cap High Speed
- ? ModularSolutions

#### Applications

- ? Mobile Phones
- ? USB Port Protection
- ? Gigabit Ethernet
- ? Cable Modems
- ? Fiber Optic Repeaters
- ? Implantable Medical

#### **RF/Microwave/Opto**

- ? InGaP Power Amplifiers
- ? Broadband Diodes
- ? RF Power Transistors

#### Applications

- ? Mobile Phones/Radios
- ? Base Stations
- ? Cable Modems
- ? Wireless LAN

#### **Power Management**

- ? LCD Backlight Drivers
- ? Class D Audio
- ? Pentium Switchers
- ? Low Dropout Regulators
- ? SCSI Terminators

#### Applications

- ? Handheld Computers
- ? Notebooks/Desktops
- ? Hearing Aids
- ? Implantable Medical

#### **Power Conditioning**

- ? Diodes and Rectifiers
- ? Zeners and Regulators
- ? Reference Diodes
- ? CurrentLimiters
- ? Transistors and SCRs
- ? MOSFETs and IGBTs

#### Applications

- ? Mobile Phones
- ? Battery Chargers
- ? Power Supplies
- ? Fiber Optic Repeaters
- ? Satellites
- ? Implantable Medical



a network of semiconductor technolog

Microsemi Corporation 11861 Western Avenue 3arden Grove, CA 92841