

SPICE MODEL DATA

Circuit simulators such as SPICE are widely used by microwave and RF design engineers for more rapid time to market circuit designs. A number of papers have been published on various aspects of PIN diode behavior of the last approximately 15 years. Based on these previous efforts, a number of PIN diode models suitable for use in circuit simulators such as SPICE have been developed and predict a number of PIN diode forward and reverse bias characteristics. For designers using Microsemi PIN diodes, a SPICE PIN diode model of Microsemi's products line will allow Microsemi and their customers to readily incorporate these models & devices in their circuit designs.

The overall SPICE PIN diode model developed for the UMX5601 exhibits the equivalent circuit shown below where:

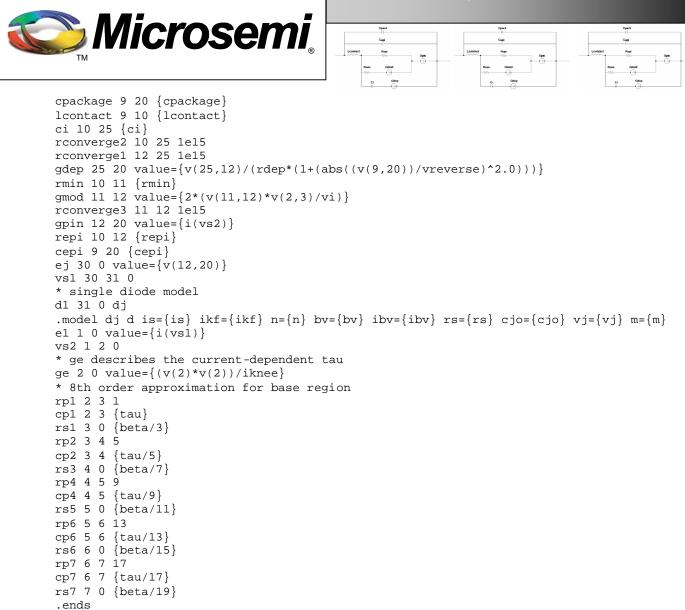

- CPACK is the package capacitance
- L_{CONTACT} is the contact inductance
- C_I is the punch through I-region capacitance
- R_{EPI} is a resistance describing the zero bias impedance
- R_{MIN} is the minimum I-region resistance
- G_{DEP} and C_{DEP} model the reverse bias characteristics (G_{DEP} requires fit parameters R_{DEP} and V_{REVERSE})
- G_{MOD} is a controlled current source representing the I-region stored charge current relationship versus frequency
- G_{PIN} is a controlled current source representing the PN junction portion of the PIN diode

Figure 1. RF equivalent circuit of the PIN diode. The definitions for the controlled current sources (G_{MOD} , G_{PIN} , G_{DEP}) are shown in the SPICE netlist file below.

```
* subcircuit for UMX5601 PIN diode
.subckt pin 9 20 params:
+ is= 2.00E-8 n = 1.94 m=0.5 ikf=0.10
+ rs = 18m rmin = 18m
+ rdep=15k repi= 22k
+ bv = 3000 ibv = 10E-06 vreverse=6
+ vj = 0.6 phi=0.6
+ W = 175u tau=26u iknee=0.018
+ cepi = 0.6pf ci=2pf
+ lcontact = 900ph cpackage=1.70pf cjo=2.0pf
.param to={125*w*w}
.param vi={11.8*w*w/tau}
.param beta={to/tau}
```

Spice Model Data for UMX5601 PIN Diode

This model was developed as a cooperative effort between Microsemi and Villanova University Department of Electrical and Computer Engineering.