TUO778
Tutorial

PolarFire FPGA: Building a Cortex-M1 Processor
Subsystem

& Microsemi

a A8\ MicrocHIP company

& Microsemi

a G\MICHOCHIP company

Microsemi Headquarters

One Enterprise, Aliso Viejo,

CA 92656 USA

Within the USA: +1 (800) 713-4113
Outside the USA: +1 (949) 380-6100
Sales: +1 (949) 380-6136

Fax: +1 (949) 215-4996

Email: sales.support@microsemi.com
www.microsemi.com

©2021 Microsemi, a wholly owned
subsidiary of Microchip Technology Inc. All
rights reserved. Microsemi and the
Microsemi logo are registered trademarks of
Microsemi Corporation. All other trademarks
and service marks are the property of their
respective owners.

Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of
its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the
application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have
been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any
performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all
performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not
rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer’s responsibility to
independently determine suitability of any products and to test and verify the same. The information provided by Microsemi
hereunder is provided “as is, where is” and with all faults, and the entire risk associated with such information is entirely
with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP
rights, whether with regard to such information itself or anything described by such information. Information provided in this
document is proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this
document or to any products and services at any time without notice.

About Microsemi

Microsemi, a wholly owned subsidiary of Microchip Technology Inc. (Nasdaq: MCHP), offers a comprehensive portfolio of
semiconductor and system solutions for aerospace & defense, communications, data center and industrial markets.
Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and
ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world's
standard for time; voice processing devices; RF solutions; discrete components; enterprise storage and communication
solutions, security technologies and scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs and
midspans; as well as custom design capabilities and services. Learn more at www.microsemi.com.

50200778. 7.0 1/21

mailto:sales.support@microsemi.com
http://www.microsemi.com

& Microsemi

a AS\MicrocHip company

Contents

1 Revision History e 1
1.1 ReVISION 7.0 . .o 1

1.2 ReVISION B.0 e e 1

1.3 ReVISION 5.0 . ..o 1

14 ReVISION 4.0 . ..o e 1

15 ReVISION 3.0 1

1.6 ReVISION 2.0 . .. e 1

1.7 ReVISION 1.0 . .. e 1

2 Building a Cortex-M1 Processor Subsystem 2
21 ReqUIrEMENtS . . . o 2

2.2 PrerEeqUISITES . . . oo 3

2.3 Creating a Cortex-M1 Processor Subsystem 3
2.3.1 Creating aLibero SoC Project 4

23.2 Creating a New SmartDesign Component it 7

2.3.3 Instantiating the IP Cores in SmartDesign 7

234 Connecting IP Blocks in SmartDesign 15

2.3.5 Generating SmartDesign Component e 17

2.3.6 Managing Timing Constraints e 18

2.3.7 Running Libero Design Flow 18

3 Creating User Application Using SoftConsole 29
3.1 Creating a Cortex-M1 Project 29

3.2 Downloading the Firmware Drivers e e 31

3.3 Importing the Firmware Drivers e 33

3.4 Creatingthe main.c File 34

3.5 Configuring the Cortex-M1 Project 35

3.6 Mapping Memory and Peripheral Addresses 40

3.7 Settingthe UART Baud Rate e 41

3.8 Building the User Applicationin Release Mode i 42

3.9 Building In Debug Mode and Debugging the User Application 44

4 Appendix 1: Runningthe TCL Script 51
5 Appendix 2: References 52

Microsemi Proprietary TUO778 Revision 7.0 iii

Figures

& Microsemi

a A8\ MicrocHiP company

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22
Figure 23
Figure 24
Figure 25
Figure 26
Figure 27
Figure 28
Figure 29
Figure 30
Figure 31
Figure 32
Figure 33
Figure 34
Figure 35
Figure 36
Figure 37
Figure 38
Figure 39
Figure 40
Figure 41
Figure 42
Figure 43
Figure 44
Figure 45
Figure 46
Figure 47
Figure 48
Figure 49
Figure 50
Figure 51
Figure 52
Figure 53
Figure 54

Add Core to Vault 3
BloCK Diagram o 4
New Project Details 5
Device SeleCtion 5
Device Settingso e 6
Add Constraints WIndoW 6
Create New SmartDesign 7
Instantiating PF_INIT_MONITOR e e e 8
PF_CCC Clock Optionsot e e e e 9
PF_CCC Output CIOCKSo e e e e e 9
CoreCORTEXM1 Configuratort e e e e 10
CoreAHBLIite Configurator e 11
PF_SRAM_AHBL_AXI Configurator i e e 12
CoreAPB3 Configurator 13
Core GPIO Configurator 14
CortexM1_Subsystem Without Connections 14
Connection Method 15
CortexM1_Subsystem With Connections 16
Modify Memory Map Dialog Box- APB3 17
Modify Memory Map Dialog Box- CoreAHBLite i, 17
Build Hierarchy option e 17
Generate ComMpPONENt e 18
Derived Constraintso 18
Synthesis Completion e 19
Manage Constraints 19
FO AHDULES . . . o 19
Place and Route Completion 20
Verify Timing Completion e 20
FPGA Array Data Generated 20
Design and Memory Initialization 21
Fabric RAMS Tab e 22
Edit Fabric RAM Initialization Client Dialog Box i 22
Fabric RAM Content Applied e 22
Generate Initialization Clients 23
Generate Design Initialization Data Status 23
sNVM Client Verification 24
Generate Bitstream Completion e 24
Board Setup e 25
COM Port Number 26
Select Serial as the Connection Typettt 26
PUTTY Configuration e 27
Run Program Action Completion 27
Hello World In Release Mode e 28
Workspace Launcher 29
Creating New C Project 29
New Project Window e 30
C ProjeCt Window 30
Empty Cortex-M1 Project o e 31
Firmware Catalog Window e 31
Generate OptioNS 32
CoreGPIO Files Reporto e e 32
CoreUARTapb Files Report e e e e 32
IMpPOrt OptiON .. . e e 33
IMport Windowo 33

Microsemi Proprietary TUO778 Revision 7.0 iv

Figure 55
Figure 56
Figure 57
Figure 58
Figure 59
Figure 60
Figure 61
Figure 62
Figure 63
Figure 64
Figure 65
Figure 66
Figure 67
Figure 68
Figure 69
Figure 70
Figure 71
Figure 72
Figure 73
Figure 74
Figure 75
Figure 76
Figure 77
Figure 78
Figure 79
Figure 80
Figure 81
Figure 82
Figure 83
Figure 84
Figure 85
Figure 86
Figure 87
Figure 88

& Microsemi

a A8\ MicrocHiP company

Import Window Continued 34
Creatingthe main.cFile e e e 34
The main.Cfile 35
All Configuration Setting 35
Target ProCESSOr . .o 36
Tool Settings OptioNs 36
Adding CoreGPIO Directory Path 37
Adding the CoreGPIO Folder e e 37
CoreGPIO Path Addedo 37
Adding CMSIS and startup_gccpaths 38
Adding HAL, CortexM1,and GNU Paths i 38
Miscellaneous Setting e 38
Mapping SUCCESSTUl e 39
Mapping Linker Script e 39
GNU ARM Cross Create Flash Image Settings 40
Updated Linker SCript e 40
Updated main.C File 41
Defining Baud Value e 41
Build Configuration e 42
Build Project 42
Build Finished 43
HEX File o 43
Build Configurations 44
Build Project 45
Debug Option 46
Debug Configurationst e 46
Program Selection 47
Settings inthe Debugger Tab 47
Debug Settings- Startup Tab 48
Confirm Perspective Switch Dialog Box 48
First Instruction in main.C e 49
Resume Application Execution 49
Hello World in Debug Mode 50
Cortex-M1 Register Values 50

Microsemi Proprietary TUO778 Revision 7.0 v

& Microsemi

a AS\MicrocHip company

Tables

Table 1 Tutorial Requirements e 2
Table 2 Jumper SettiNgso 25

Microsemi Proprietary TUO778 Revision 7.0 Vi

Revision History

& Microsemi

a @Mlcno:mn company

1 Revision History

The revision history describes the changes that were implemented in the document. The changes are
listed by revision, starting with the current publication.

1.1 Revision 7.0

Added Appendix 1: Running the TCL Script, page 51.

1.2 Revision 6.0

The following is a summary of the changes made in this revision.

* Updated the document for Libero SoC v12.2.
* Removed the references to Libero version numbers.

1.3 Revision 5.0

Updated the document for Libero® SoC v12.0.

1.4 Revision 4.0

Updated the document for Libero SoC PolarFire v2.2 release.

1.5 Revision 3.0

The following is a summary of the changes made in this revision.

* The document was updated for Libero SoC PolarFire v2.1.
* Replaced AND3 with CoreReset_PF throughout the document.
* Updated Connecting IP Blocks in SmartDesign, page 15.

1.6 Revision 2.0

The document was updated for Libero SoC PolarFire v2.0.

1.7 Revision 1.0

The first publication of this document.

Microsemi Proprietary TUO778 Revision 7.0 1

Building a Cortex-M1 Processor Subsystem

2

& Microsemi

a AS\MicrocHip company

Building a Cortex-M1 Processor Subsystem

2.1

Microsemi PolarFire® FPGAs support Cortex-M1 soft processors that can be used to run user
applications. This tutorial explains how to build a Cortex-M1 processor subsystem using the Libero® SoC
design suite. It lists the IP cores required to design a Cortex-M1 processor subsystem, describes how to
configure and connect them and walks you through the Libero design flow to complete building it.

This tutorial also shows how to run the user application in release and debug mode on a PolarFire
Evaluation Kit board. The application prints the string, Hel1o World! on the serial terminal, and blinks
the LEDs on the board.

Requirements

The following table lists the hardware and software requirements for building the Cortex-M1 processor
subsystem.

Table 1+ Tutorial Requirements

Hardware

Host PC Windows 7, 8.1, or 10
PolarFire Evaluation Kit (MPF300TS-EVAL-KIT) Rev D or later

—12V, 5 AAC power adapter and cord
— USB 2.0 A to Mini-B cable for UART and
programming

Software

Libero SoC design suite

Firmware Catalog1

Note: Refer to the readme.txt file provided in the
design files for the software versions used

SoftConsole with this reference design.

Serial Terminal Emulation Program Putty or HyperTerminal

www.putty.org

1. Firmware catalog is included in the installation package of Libero SoC.

Note:

Libero SmartDesign and configuration screen shots shown in this guide are for illustration purpose only.
Open the Libero design to see the latest updates.

Microsemi Proprietary TUO778 Revision 7.0 2

www.putty.org

Building a Cortex-M1 Processor Subsystem

2.2

Figure 1«

2.3

& Microsemi

a AS\MicrocHip company

Prerequisites

Before you begin building a Cortex-M1 subsystem, all of the required components must be downloaded
and installed as follows:

1. For demo design files download link:
http://soc.microsemi.com/download/rsc/?f=mpf_tu0778_df

2. Download and install SoftConsole (as indicated in the website for this design) on the host PC from
the following location:
https.://www.microsemi.com/products/fpga-soc/design-resources/design-software/softcon-
sole#tdownloads

3. Download and install Libero SoC (as indicated in the website for this design) on the host PC from the
following location:
https://www.microsemi.com/product-directory/design-resources/1750-libero-soc#downloads

4. Start the Libero design suite application and download the latest versions of the following IP cores
from Catalog:
+ CoreAHBtoAPB3: Bridge between the AHB and the APB domains.
* CoreUARTapb: Controller for UART communication between the device and the host PC.
*+ PF_SRAM_AHBL_AXI: Main memory of the Cortex-M1 soft processor.
+ CoreGPIO: Interface to enable the onboard LEDs.
+ CoreAHBLite: Bus interconnect for the AHB domain.
+ CoreAPB3: Bus to interface with the APB peripherals.
* PF_INIT_MONITOR: Initialization monitoring resource to assert the device’s initialization.
* PF_CCC: Clocking resource driving clocks to all the blocks in the design.
+ CORERESET_PF: Used to provide an asynchronous reset to all blocks in the design.
5. To download the licensed CORECORTEXM1 IP core:
» Fill the Cortex-M1 agreement form available on the hitps:/www.microsemi.com/form/91-coreip-
cortex-m1 webpage.
* Submit the form.

An email with the Cortex-M1 ZIP file is sent. Extract the ZIP file and import Cortex-M1.CPZ into the
vault using the Add Core to Vault option as shown in the following figure.

Add Core to Vault

= o x
':-r';' v [C] simulation Mode *] ':]
MName Version I Add Core to Vault I
> Bus Interfaces =
> Clock & Management «5i Reload Catalog
» DSP J Options...

You can now start building the Cortex-M1 processor subsystem in the Libero SoC.

Creating a Cortex-M1 Processor Subsystem

Creating a Cortex-M1 processor subsystem involves:

+ Creating a Libero SoC Project, page 4

* Creating a New SmartDesign Component, page 7

* Instantiating the IP Cores in SmartDesign, page 7

+ Connecting IP Blocks in SmartDesign, page 15

* Generating SmartDesign Component, page 17

* Managing Timing Constraints, page 18

* Running Libero Design Flow, page 18

The tutorial describes how to create an ARM Cortex-M1 subsystem for executing user applications. The
user application can be stored in the sNVM, uPROM or SPI Flash. In this tutorial, the user application is
stored in sNVM. At device power-up, the PolarFire System Controller initializes the designated LSRAMs
with the user application from sNVM and releases the system reset. The Cortex-M1 soft processor exits
the reset and starts executing the application. The user application prints the UART message “Hello
World!” and blinks LEDs.

Microsemi Proprietary TUO778 Revision 7.0 3

https://www.microsemi.com/product-directory/design-resources/1750-libero-soc#downloads
http://soc.microsemi.com/download/rsc/?f=mpf_tu0778_df
https://www.microsemi.com/form/91-coreip-cortex-m1
https://www.microsemi.com/form/91-coreip-cortex-m1
https://www.microsemi.com/products/fpga-soc/design-resources/design-software/softconsole#downloads

Building a Cortex-M1 Processor Subsystem

& Microsemi

a A8\ MicrocHiP company

During the Libero design flow, the required non-volatile memory (sNVM, uPROM, or SPI Flash) must be
specified for the fabric RAMs initialization. Then, the Fabric RAM initialization client must be created. The
created fabric RAMs initialization client is stored in the sNVM, uPROM, or SPI Flash according to the
user selection.

The following figure shows the top-level block diagram of the design.

Figure 2+ Block Diagram

PolarFire FPGA
'y e T T TR T T !
1 Fabric | SNVM or
| |
uPROM

1 YN !
|
; | :

| =
! PN ¢ Initialized System |G SPI
} <+—»| LSRAM at?ower—UD Controller@ "| Flash
i ARM Cortex-M1 Processor < }
; :

|
} <+—» UART ‘ » PuTTY
| |
! I
| 1
| <«—>» GPIO l » LEDs

|
! I
| |
! I
Ll I

This section describes how to perform all the procedures required to create a Cortex-M1 processor
subsystem in a new SmartDesign canvas.

2.31 Creating a Libero SoC Project
To create a Libero SoC project, perform the following steps:

1. From the Libero SoC Menu bar, click Project > New Project.
2. Enter the following New Project information as shown in the following figure and click Next.
* Project name: PolarFire CortexMl Subsystem
* Project location: Select an appropriate location (for example,
F:/Microsemi/CortexMl Project)
* Preferred HDL type: Verilog

Microsemi Proprietary TUO778 Revision 7.0 4

Building a Cortex-M1 Processor Subsystem C Mic em’

a AS\MicrocHip company

Figure 3+ New Project Details

Project details
Specify project details

Project Details

Project name: PolarFire_CortexM1_Subsystem
. . Praject location: F:/MicrosemifCortexM1_Project Browse...
Device Selection
Description:

Device Settings

Design Template Preferred HOL type:

Add HDL Sources

Add Constraints

Libefo)

System-on-Chip

3. Select the following values using the drop-down list for Device Selection as shown in the following
figure and click Next.
* Family: PolarFire
+ Die: MPF300T
+ Package: FCG1152
+ Speed: STD
*+ Range: EXT
+ Part Number: MPF300T-1FCG1152E

Figure 4+ Device Selection

Family: [PolarFire | Die: [MPF300T | Package: [Fca1152 |
Speed: |5 - Range: [BXT -

Reset filters

Search part:

Part Number DFF User/Os uSRAM LSRAM Math H-Chip Globals | PLL DLL
MPF300T-FCG1152E 299544 512 2772 952 974 48 8 8

Microsemi Proprietary TUO778 Revision 7.0 5

Building a Cortex-M1 Processor Subsystem

& Microsemi

a AS\MicrocHip company

4. To retain the default Core Voltage and I/O settings, click Next in the Device Settings window.
Figure 5+ Device Settings

Project Details ErElifEge:

1/0 settings
Default IjO technology: LYCMOS 1.8V - e Please use the IO Editor to change individual IO attributes.
Device Selection Reserve pins for probes

[] System controller suspended mode

. Device Settings

]

] Add HDL Sources

Add Constraints

Libefo)

System-on-Chip

[< Back][Next =][Finish][Cancel]

5. Inthe Add HDL Sources window, click Next to go to the next step because HDL files are unused.
6. Inthe Add constraints window, click Import file to import the I/O constraint file as shown in the
following figure.

Figure 6 = Add Constraints Window

Project Details Import file Link file:
File type File name File location

Device Selection

[

] Device Settings

[

] Add HDL Sources

. Add Constraints

Libefo)

System-on-Chip

7. Inthe Import files window, locate the user io.pdc file in the
DesignFiles directory\Source folder, and double-click it.
8. Click Finish.
The following message displayed in the Log pane:

The PolarFire CortexMl Subsystem project was created.

The Reports tab is highlighted and the project details are printed to the PolarFire CortexMl -
Subsystem. log file.

The Libero SoC project for PolarFire Cortex-M1 design is successfully created.

Microsemi Proprietary TUO778 Revision 7.0 6

Building a Cortex-M1 Processor Subsystem

& Microsemi

a AS\MicrocHip company

23.2 Creating a New SmartDesign Component
To create a new SmartDesign component, perform the following steps:

1. Select File > New > SmartDesign.

2. Inthe Create New SmartDesign dialog box, enter CortexM1_Subsystem as the name of the new
SmartDesign project, as shown in the following figure.

3. Click OK.

Figure 7+ Create New SmartDesign
. 1] Create New SmartDesign | PR X

MName:

CortexM1_Subsystem

o) [omm)

The CortexM1_Subsystem SmartDesign tab opens. The CortexM1_Subsystem SmartDesign component
is successfully created. Next, we need to instantiate, configure, and connect the IP Cores required to
build the processor subsystem.

2.3.3 Instantiating the IP Cores in SmartDesign

After an IP core is dragged into SmartDesign, Libero displays the Create Component window. A
component name for the IP core must be entered in this window. After naming the component, the
configurator of that IP core is displayed and after configuring the IP core, Libero generates the design
component of that IP core and instantiates it in SmartDesign. HDL files can be dragged into SmartDesign
and instantiated directly. For the recent version of IP Cores, refer Table 1, page 2.

2.3.3.1 Instantiating CORERESET_PF

Note: The version used in this design is 2.1.100.
To instantiate and configure COREREST_PF:

From the Catalog, find and drag CORERESET_PF IP into SmartDesign.

In the Create Component window, enter pf_reset as the component name.

In the CoreReset_PF configurator, retain the default configuration and click OK.
The CoreReset_PF IP is successfully instantiated in SmartDesign.

2.3.3.2 Instantiating PF_INIT_MONITOR
To instantiate PF_INIT_MONITOR, perform the following steps:

PO~

1. From the Catalog, find and drag the PolarFire Initialization Monitor IP core into SmartDesign.

2. Inthe Create Component window, enter PF_INIT_MONITOR_0 as the Component name and click
OK.

3. Inthe PF_INIT_MONITOR Configurator, Uncheck Enable Bank0, Enable Bank1, Enable Bank2,
and Enable Bank4 calibration status pins as shown in Figure 8, page 8 and click OK.

The PF_INIT_MONITOR IP component is successfully instantiated and generated.

Microsemi Proprietary TUO778 Revision 7.0 7

Building a Cortex-M1 Processor Subsystem

& Microsemi

a AS\MicrocHip company

Figure 8 « Instantiating PF_INIT_MONITOR

Bk Monitor] simulzton Ootans | =

O Calibration Honitor

Enabie Eanko clbraton status pn (SANK_0_Calls_sTatus) [

e PF_INIT _MONITOR_0

Enabie Eank2 clbration status pn (BANK_2_CallB_sTatus) [

FABRIC POR_N|-
PCIE_INIT_DONE}|-
Enabile Eanké calbration status pin (BANC_&_CALIE_STATUS] 7 USRAM_I N].T_DON El-
Enabie Gank? calbration stehus pn (SANK_7_CALTE_STATUS) 7 SRAM_INIT_DONE}-
DEVICE_INIT_DONE}-

XCVR_INIT_DONE}-

Enabie Eank4 clibration status pn (BAMK_4 CALIB_STATUS) [

Enabie Banks calbration status pin (BANK_§ CALIB_STATUS) |7

E vDDI monitor

Enabie Eankl VDL status pin (BAMS_0_VDDI_STATUS) |

Enabie Gank 1 VDL strtus cin (EAHK_1 VD01 STATUS) | USRAM_INIT_FROM_SNVM_DONE—
Enablc Bark2 VOCI status in {EANK._2 VDI STATUS) | USRAM INIT FROM UPROM DONE}-
Enabe Banlk VDI status cin (EAHK_1_VDD1_STATUS) |~ USRAM_INIT_FROM_SPI_DONER
Enebie BarkS VDI status pin (BANK_5_VDD1_STATUS) T~ SRAM_INIT_FROM_SNVM_DONE}-
Eralbic Bark6 VDT shtus pin {EANE_§_VT01_STATUS) T SRAM_INIT FROM_UPROM_DONE}-
Enabic Gank? VDD ststus pin (BANK_7_YDD1_STATLS) T SRAM_INIT_FROM_SPI_DONER

AUTOCALIB DONE}-

PF_INIT_MONITOR

4 | Mo\ symbal S

Help > oK | Canoel

2.3.3.3 Instantiating PF_CCC
To instantiate PF_CCC, perform the following steps:

1. From the Catalog, find and drag the PF_CCC IP core into SmartDesign.
2. Inthe Create Component window, enter PF_CCC_0 as the Component name and click OK.
3. Inthe PF_CCC Configurator:
* Retain the configuration to PLL-Single.
* Inthe Clock Options PLL tab (Figure 9, page 9), set the Input Frequency to 50 MHz and
Bandwidth to High.
+ Setthe Powerl/Jitter to Maximize VCO for Lowest Jitter.
+ Setthe Feedback Mode to Post-VCO.
* In the Output Clocks tab > Output Clock 0 pane (Figure 10, page 9), ensure that the Enabled
checkbox is selected.
+ Requested Frequency is set to 80 MHz. Ensure that the Global Clock checkbox is selected.
+ Click OK.

Microsemi Proprietary TUO778 Revision 7.0 8

Building a Cortex-M1 Processor Subsystem c M. '

a A\ MicrocHIR company

Figure 9+ PF_CCC Clock Options

Configuration IPLL-SingIe hd l

Clock OptionsPLL | QutputClocks |

Input Frequency

I Input Frequency ISO MHz I_ Backup Clock

Bandwidth |High x| =0.893MHz

Delay Line

I_ Enable Delay Line

& Reference Clock Delay - Feedback Clock Delay

Delay Steps: I i 3:

Power [Jitter

I * Maximize VCO for Lowest Jitter VCO = 4300 MHzI

" Minimize VCO for Lowest Power

Feedback Mode

Features

] ‘

Figure 10 = PF_CCC Output Clocks

Configuration IPLL-SingIe hd l

Clock Options PLL Output Clocks |

For best results, put the highest frequency first.

Output Clock 0
[¥" Enabled
|| Requested Frequency |s0 wiz | © Actuallower 80 MMz Actalbiher 80 MHz
Reguested Phase 1] Degrees o Actual Lower 0 Degrees « Actual Higher 0 Degrees
Dynamic Phase Shifting | Expose Enable Port [Enable Bypass [rer_prenty |
[¥" Global clock [Global Clock (Gated) [Hs1/0 clock [Dedicated Clock
Output Clock 1

[Enabled

Reguested Frequency |100 MHz - Actual Lower MHz & Actual Higher MHz

Reguested Phase I[J Degrees - Actual Lower Degrees & Actual Higher Degrees
I_ Dynamic Phase Shifting I_ Expose Enable Port I_ Enable Bypass IREF_PREDI\:I LI
¥~ Global clock [Global Clock (Gated) [~ Hs1jociox [~ Dedicated Clock

There is a possibility of a warning message to check the log window. Click OK to proceed further.

The PF_CCC IP component is successfully instantiated and generated.

Microsemi Proprietary TUO778 Revision 7.0 9

Building a Cortex-M1 Processor Subsystem

& Microsemi

a @Mlcno:mn company

23.3.4 Instantiating CoreCORTEXM1
To instantiate CoreCORTEXM1, perform the following steps:

1. From the Catalog, find and drag the CoreCORTEXM1 into SmartDesign.

2. In the Create Component dialog box, enter CoretxM1_0 as the component name and click OK.

3. Inthe CoreCORTEXM1 Configurator, set the Debug Interface to FlashPro and ensure that the
Include reset control logic check box is selected, as shown in the following figure.

4. Click OK.

Figure 11 « CoreCORTEXM1 Configurator

Configuration
Debug interface [FIashPro -
Indude reset control logic
Include BFM [}
License Encrypted
| |
.

The CoreCORTEXM1 IP component is successfully instantiated and generated.

Microsemi Proprietary TUO778 Revision 7.0 10

Building a Cortex-M1 Processor Subsystem

& Microsemi

a AS\MicrocHip company

2.3.3.5 Instantiating CoreAHBLite

To instantiate CoreAHBL.ite, perform the following steps:

1. From the Catalog, find and drag the CoreAHBLite IP core into SmartDesign.
2. In the Create Component window, enter coreabhlite_0 as the component name and click OK.
3. Inthe CoreAHBLite Configurator, do the following settings as shown in the following figure:
+ Setthe Memory space to 1 MB addressable space apportioned into 16 slave slots, each of
size 64 KB.
+ From the Enable Master Access pane select only the M0 can access slot 0 and M0 can
access slot 4.
+ Click OK.

Figure 12 » CoreAHBLite Configurator
Configuration -

Memory space

I Memory space: [1MB addressable space apportioned into 16 slave slots, each of size 64KB -] I

Address range seen by slave connected to huge (2GE) slot interface: 0x00C

000 - OXTFFFFFFF

00 - OXFFFFFFFF

Allocate memory space to combined region slave

m

Slot 0: slot 1@ O] slot2: O] Slot 30 [

Slot 4: Slot 5:

sloté: O] slot7: [

o
sota: [slota: O] slot 10: [7] Slot 11: [
slot 12: [] slot 13: [7] slot 14: [7] Slot 15 [-

Enable Master access

M1 can access slot 0: M2 can access slot 0 M3 can access slot 0:

=
e

I M0 can access slot 0

M0 can access slot 1t M1 can access slot 1t M2 can access slot 1: M3 can access slot 1t

M0 can access slot 2: M1 can access slot 2: M2 can access slot 2: M3 can access slot 2:

o oo

M0 can access slot 3: M1 can access slot 3: M2 can access slot 3: M3 can access slot 3:

I M0 can access slot 4:

=
S

M1 can access slot 4: M2 can access slot 4: M3 can access slot 4:

1 I i i I R i |
J OO0 O 0O O

]

M0 can access slot 5 M1 can access slot 5: M2 can access slot 5

M3 can access slot 5
4 3

The CoreAHBLite IP component is successfully instantiated and generated.

23.3.6 Instantiating PF_SRAM_AHBL_AXI
To instantiate PF_SRAM_AHBL_AXI, perform the following steps:

1. From the Catalog, find and drag the PF_SRAM_AHBL_AXI IP core into SmartDesign.
2. In the Create Component window, enter PF_SRAM as the component name and click OK.
3. Inthe PF_SRAM_AHBL_AXI Configurator, do the following settings as shown in Figure 13,
page 12:
+ Setthe SRAM type to LSRAM.
+ Setthe Memory Depth to 16384 to create 64 KB (16384 x 4 bytes) memory.
» Set the Fabric Interface type to AHBLite.
+ Click Finish.

Microsemi Proprietary TUO778 Revision 7.0 11

Building a Cortex-M1 Processor Subsystem

Figure 13

2.3.3.7

2.3.3.8

& Microsemi

a A8\ MicrocHiP company

PF_SRAM_AHBL_AXI Configurator

PF_SRAM_AHBL_AXI

F_SRAM_AHBL_AXIE:1.2.101

Port settings] Memory Initislization Settings

=]

SRAM type |LsRAM |

Memory Depth(in words) | 1024

I Use Native Interface

Read port |N0n-PipeIined(Address pipeline and Mo Data pipeline) j
=]
Fabric Interface type | AHBLite ¥
Data Width |32
32

The PF_SRAM_AHBL_AXI IP component is successfully instantiated and generated.

Instantiating CoreAHBtoAPB3
To instantiate CoreAHBtoAPB3, perform the following steps:

1. From the Catalog, find and drag the CoreAHBtoAPB3 IP core into SmartDesign.

2. In the Create Component window, enter core_ahb_to_apb3 as the component name and click
OK.

3. Inthe Configurator, retain the default configuration settings and click OK.

The COREAHBTOAPB3 IP component is successfully instantiated and generated.
Instantiating CoreAPB3

To instantiate CoreAPB3, perform the following steps:

1. From the Catalog, find and drag the CoreAPB3 IP core into SmartDesign.
2. In the Create Component window, enter CoreAPB3_0 as the component name and click OK.
3. Inthe CoreAPB3 Configurator:
» Select the Data Width Configuration pane.
. In the Data Width Configuration pane, retain the APB Master Data Bus Width value as
32-bit.
* Inthe Address Configuration pane, set Number of address bits driven by master to 16.
+ Set Position in slave address of upper 4 bits of master address to [27:24]
(This value is not entered if master address width >= 32 bits).
. In the Enabled APB Slave Slots pane, select Slot 0 and Slot 1. Clear all the other slots.
+ Click OK.

Microsemi Proprietary TUO778 Revision 7.0 12

Building a Cortex-M1 Processor Subsystem

& Microsemi

a @Mlcno:mn company

Figure 14 » CoreAPB3 Configurator
Configuration

Data Width Configuration
I APB Master Data Bus Width @ 32-bit I O bt O et
Address Configuration
Number of address bits driven by master: [16 - l
Position in slave address of upper 4 bits of master address: [[27:24] (Ignored if master address width >= 32 bits) - l
Indirect Addressing: [Not inuse - l
Allocate memory space to combined region slave
sloto: [T slet1: [stz [i |
Slot4: [0 St 5: [Soté: [C] Stz [0
Siots: [siotg: [Slot 10: [] Siot 11: [[]
Siot 12: [[] Sot 13; [Siot 14 [] Slot 15: [[]
Enabled APE Slave Slots
I Slot 0 Slot 1: I stz [sot3: [0
Sot4 [siot 5: [sote: [sot7: [0
Siots: [siotg: [Slot 10: [] Siot 11: [[]
Siot 12: [[] Sot 13; [Siot 14 [] Slot 15: [[]
Testhench:
License: () Obfuscated @ RTL

2.3.3.9 Instantiating CoreGPIO

To instantiate CoreGPIO, perform the following steps:

1. From the Catalog, find and drag the CoreGPIO IP core into SmartDesign.
2. In the Create Component window, enter CoreGPIO_0 as the component name and click OK.
3. Inthe CoreGPIO Configurator:
+ Select the Global Configuration pane.
* Inthe Global Configuration pane, set APB Data Width to 32 and Output enable to Internal.
+ Set Number of I/Os to 4.
« Set Single-bit interrupt port to Disabled.
* Inthe I/O bit 0, I/O bit 1, I/O bit 2, and 1/O bit 3 panes, select Fixed Config.
+ Setl/O Type to Output.
+ Set the Interrupt Type to Disabled.
+ Click OK.

Microsemi Proprietary TUO778 Revision 7.0 13

Building a Cortex-M1 Processor Subsystem

& Microsemi

a @MI:HGCHIP company

Figure 15« Core GPIO Configurator

Configuration i+
Global Configuration L
APB Data Width: Number of Ij0s:
Single-bit interrupt port: |Disabled Output enable:
10 bit0
Output on Reset: Fixed Config: 10 Type: Interrupt Type: |Disabled -
1/0 bit 1
Output on Reset: Fixed Config: IO Type: |Output + Interrupt Type: |Disabled -
/0 bit 2
Output on Reset: Fixed Config: 10 Type: Interrupt Type: |Disabled -
1/0 bit 3
Output on Reset: Fixed Config: IO Type: |Output + Interrupt Type: |Disabled -

The CoreGPIO IP component is successfully instantiated and generated.

2.3.3.10 Instantiating CoreUARTapb
To instantiate CoreUARTapb, perform the following steps:

1. From the Catalog, find and drag the CoreUARTapb IP core into SmartDesign.
2. Inthe Create Component window, enter CoreUARTapb_0 as the component name and click OK.
3. Inthe CoreUARTapb Configurator, retain the default configuration settings and click OK.

The CoreUARTapb IP component is successfully instantiated and generated.

The following figure shows the CortexM1_Subsystem in SmartDesign after instantiating and configuring
the IP blocks.

Figure 16 » CortexM1_Subsystem Without Connections

PF_CCC 0_0
ouTD_FaBax ol CoreUARTapb_0_0
- =y -
PF_CCC_O pf_reset
PE_INIT_MONITOR_0_0
CoretxM1_0
s CoreJARTapb_0

CoreGPIO_0_0
CEMICE _1MIT_Cone| core_ahb_to_apb3_0

CoreAFB3_0_0

CoreGPIO_0
core_ghb_to_apb3 CoreAPB3_0
PF_SRAM_0
PF_INIT_MONITOR_O coreahblite_0_0 -
=
=T smmerrtace
[PF_SRAM
[coreahblite_0
=
m

8 MasTER|

Microsemi Proprietary TUO778 Revision 7.0 14

Building a Cortex-M1 Processor Subsystem

2.3.4

Figure 17 »

& Microsemi

a A8\ MicrocHiP company

Connecting IP Blocks in SmartDesign

Connect IP blocks in CortexM1_Subsystem using any of the following connection methods:

Using the Connection Mode option: In this method, change the SmartDesign to Connection Mode
by clicking Connection Mode on the SmartDesign window, as shown in the following figure. The
cursor changes from the normal arrow shape to the connection mode icon shape. To make a
connection in this mode, click on the first pin and drag-drop to the second pin that you want to
connect.

Connection Method

@ ool M 2500 008" QA QA E ANDO

Connection Mode

The other method is by selecting the pins to be connected together and selecting Connect from the
context menu. To select multiple pins to be connected together, press down the Ctrl key while
selecting the pins. Right-click the input source signal and select Connect to connect all the signals
together. Similarly, select the input source signal, right-click it, and select Disconnect to disconnect
the already connected signals.

Using any of the preceding methods, make the following connections:

1.

Perform the following pin settings on PF_INIT_MONITOR_O:

+ Select FABRIC_POR_N, PCIE_INIT_DONE, USRAM_INIT_DONE, SRAM_INIT_DONE,
XCVR_INIT_DONE, USRAM_INIT_FROM_SNVM_DONE,
USRAM_INIT_FROM_UPROM_DONE, USRAM_INIT_FROM_SPI_DONE,
SRAM_INIT_FROM_SNVM_DONE, SRAM_INIT_FROM_UPROM_DONE,
SRAM_INIT_FROM_SPI_DONE, AUTOCALIB_DONE, and right-click all of these pins and
select Mark Unused.

+ Connect the DEVICE_INIT_DONE pin to pf_reset: INIT_DONE pin.

Perform the following pin settings on pf_reset:

* Right-click EXT_RST_N, select Promote to Top Level, and then rename it to RESETN.

* Connect FABRIC_RESET_N to CoretxM1_0: SYSRESETN, DBGRESETN, and NRESET pins.

* Right-click SS_BUSY and FF_US_RESTORE and select Tie Low.

Perform the following pin settings on PF_CCC_0:

Right-click the REF_CLK_0 pin and select Promote to Top Level.

Connect the PLL_LOCK 0 pin to pf_reset: PLL_LOCK.

Connect OUTO_FABCLK_0 pin to the following listed pins:

+ pf_reset: CLK

+ CoretxM1_0: HCLK

* PF_SRAM: HCLK

* core_ahb _to apb3: HCLK

» coreahblite_0: HCLK

* CoreUARTapb_0: PCLK

*+ CoreGPIO_0: PCLK

Perform the following pin settings on CoretxM1_0:

Right-click WDOGRES, NMI, EDBGRQ, DBGRESTART, IRQ0, and IRQ1 to 31 pins and select Tie

Low.

Select the SWCLKTCK, NTRST, SWDITMS, TDI, and TDO pins. Right-click and select Promote to

Top Level.

Connect the AHB_MASTER pin to coreahblite_0: AHBmmasterO (mirroredMaster).

Right-click the TDO pin and select Promote to Top Level.

Right-click WDOGRESN, LOCKUP, HALTED,SYSRESETREQ, JTAGTOP, JTAGNSW,

DBGRESTARTED and select Mark Unused.

Microsemi Proprietary TUO778 Revision 7.0 15

Building a Cortex-M1 Processor Subsystem

& Microsemi

a A8\ MicrocHiP company

+ Connect the HRESETN pin as shown in the following list:
» coreahblite_0: HRESETN
+ PF_SRAM: HRESETN
+ core_ahb_to_apb3: HRESETN
+ CoreUARTapb_0: PRESETN
+ CoreGPIO_0: PRESETN
Connect coreahblite_0: AHBmslaveO (mirroredSlave) to PF_SRAM: AHBSIavelnterface.
Connect coreahblite_0: AHBmslave4 (mirroredSlave) to core_ahb_to_apb3: AHBSIave.
Connect core_ahb_to_apb3: APBmaster to APB3_0: APB3master (mirroredMaster).
Right-click the REMAP_MO and select Tie Low.
Connect CoreAPB3_0: APBmslave0 to CoreGPIO_0: APB_bif and CoreAPB3_0: APBmslave1 to
CoreUARTapb_0: APB_bif
10. Perform the following pin settings on CoreUARTapb_0:
* Right-click the RX Pin and select Promote to Top Level.
+ Right-click TXRDY, RXRDY, PARITY_ERR, OVERFLOW, and FRAMING_ERR pins and select
Mark Unused.
* Right-click the TX pin and select Promote to Top Level.
11. Perform the following pin settings on CoreGPIO_0:
* Right-click the GPIO_IN [3:0] pin and select Tie Low.
* Right-click the INT [3:0] pin and select Mark Unused.
* Right-click the GPIO_OUT [3:0] pin and select Promote to Top Level.
12. Click File > Save CortexM1_Subsystem.

The IP blocks are successfully connected.

©oNO O

The following figure shows the CortexM1_Subsystem in SmartDesign after connecting all IP blocks.

Figure 18 « CortexM1_Subsystem With Connections

f reset 0 18

CoreUARTapb_0_0

o 8 =
PF_CCC_D pf_reset

CoretxM1_0
s CorelJARTapb_0
= CoreGPIO_0_0

y——facazs=
L heeer =

core_ahb_to_apb3_0 CoreAPB3 00

PF_INIT_MONITOR_0_0 L e 2 -

ax

e CoreGPIo_0
CoreAPB3_0

core_ahb_to_apb3

PF_SRAM_0
coreahblite_0_0 3
— Jﬂ%_ =

corezhblite_0

PF_INIT_MONITOR_O

e

CoretxM1

The Cortex-M1 processor subsystem is successfully designed in SmartDesign. The system address map
can be viewed by right-clicking the SmartDesign canvas and selecting the Modify Memory Map option.
The Modify Memory Map dialog box is shown in the following figure and Figure 20, page 17 for APB3
and AHBLite peripherals.

Microsemi Proprietary TUO778 Revision 7.0 16

Building a Cortex-M1 Processor Subsystem

& Microsemi

a @Mlcno:mn company

Figure 19 « Modify Memory Map Dialog Box- APB3
E3 Medify Memory Map ﬁ

Select Bus to View or

Assign Peripheral(s) Assign peripherals to addresses on bus:

4 AHBLite 0 Address Peripheral
APB3.0 000040000 GPIO_0:APB_bif
0:00041000 UARTapb_0:APB_bif

o) (o

Figure 20 » Modify Memory Map Dialog Box- CoreAHBL.ite
E3 Modify Memory Map @

Select Bus to View or

Assign Peripheral(s) Assign peripherals to addresses on bus:

4 |AHBELite 0 Address Peripheral
APE30
- 000000000 PF_SRAM_D:AHBSlavelnterface
000040000 AHBtoAPB3_0:AHBslave

o] (o)

Now generate the SmartDesign component and run the Libero design flow.

2.3.5 Generating SmartDesign Component
To generate the component, perform the following steps:

1. In Design Hierarchy, click the Build Hierarchy option as shown in the following figure.
Figure 21 « Build Hierarchy option

Design Hierarchy &
!\ Build Hierarchy Show: | Components + I%,
4 o@ work

>)3 CortexM1_Subsystem
fii} COREAHBLITE LB
4 [Components

AHBLite (CoreAHBLite_v5.3.101)
AHBtoAPB3 (COREAHBTOAPB3_v3.1.100)
APB3 (CoreAPB3_v4.1.100)
CCC (PF_CCC v1.0.112)
CORTEXM1 (CORECORTEXMI1_v3.0.100)
m CortexM1_Subsystem
GPIO (CoreGPIO_v3.2102)
INITIALIZATION_MONITOR (PF_INIT_MOMNITOR_v2.0.100)
PF_SRAM (PF_SRAM_AHBL_AXI v1.1.121)
UARTapb (CoreUARTapb_v5.6.102)

2. Save the project.
3. Click Generate Component button on the SmartDesign toolbar. The following figure shows the
Generate Component button.

Microsemi Proprietary TUO778 Revision 7.0 17

Building a Cortex-M1 Processor Subsystem

& Microsemi

a AS\MicrocHip company

Figure 22 » Generate Component

After successfully generating the Cortex-M1 component, the Message dialog box displays the following
message: “The CortexM1_Subsystem was generated successfully”.

2.3.6 Managing Timing Constraints

Before running the Libero design flow, derive timing constraints as explained in the following sections.

2.3.6.1 Deriving Constraints

Derive the timing constraints using the Derived Constraints option available in the Timing tab of the
Manage Constraints window.

To derive constraints, perform the following steps:

1. Double-click Manage Constraints in the Design Flow window.
2. Inthe Manage Constraints window, select the Timing tab, and click Derive Constraints.
« The design hierarchy is built again. In the Message alert box, click Yes to attach the derived
constraints SDC file to the Synthesis, Place and Route, and Timing Verification.
3. The CortexMl Subsystem derived contraints.sdc file is generated in the project folder.
Click Yes in the alert box to associate the derived constraint SDC file to the Synthesis, Place and
Route, and Timing Verification tools as shown in the following figure.

Figure 23 » Derived Constraints

| Reports & X | StartPage & X | Constraint Manager & X | CortexM1_Subsystem_derived_constraints.sdc & X | ECorhele_Subsyshem 5 X

Timing \/”Floor Planner \/” Netlist Attributes \

[Mew] [Import] [Link] [Editwiih Constraint Editor V] [Check V] [Derive Conshaims] [ConshaintCoverage V] [Help
Synthesis Place and Route Timing Verification
constraint\ CortexM1_Subsystem_derived_constraints....

The derived constraints SDC file is generated successfully. After including the timing constraint files,
the design flow described in the following sections must be executed to build Cortex-M1 processor
subsystem on the PolarFire device.

2.3.7 Running Libero Design Flow
The Libero design flow involves running the following processes:

« Synthesis, page 19

. Place and Route, page 19

* Verify Timing, page 20

* Generate FPGA Array Data, page 20

+ Configure Design Initialization Data and Memories, page 21
* Generate Bitstream, page 24

* Run Program Action, page 25

Microsemi Proprietary TUO778 Revision 7.0 18

Building a Cortex-M1 Processor Subsystem

& Microsemi

a AS\MicrocHip company

23.71 Synthesis

To synthesize the design, perform the following steps:

1. Double-click Synthesis from the Design Flow window to synthesize the design component.
A green tick mark is displayed after the successful completion of the synthesis process as shown in
the following figure.

Figure 24 « Synthesis Completion

4 p Create Design
E3 Create SmartDesign
Create HDL
A Create SmartDesign Testbench
Create HDL Testbench
4 p Verify Pre-Synthesized Design
. Simulate
4 p Constraints
|3 Manage Constraints
¥ 4 » Implement Design
B Netlist Viewer
v S Synthesize

2. On the Reports window, see the Synthesis report and log files.

2.3.7.2 Place and Route

The Place and Route process requires /0. The I/O constraints file user io.pdc was imported while
creating the libero project. The user io.pdc file must be mapped. This file is available in the design
files folder at DesignFiles Directory\Source folder.

To map the /O constraints, perform the following steps:

1. Double-click Manage Constraints from the Design Flow window as shown in the following figure.
Figure 25 « Manage Constraints

Tool

4 p Create Design
E3 Create SmartDesign
Create HDL
A Create SmartDesign Testbench
Create HDL Testbench
4 p Verify Pre-Synthesized Design
w’
4 p Constraints
_']) Manage Constraints

2. Inthe Manage Constraints window, select the I/O Attributes tab and select the check box next to
the user io.pdc file as shown in the following figure.

Figure 26 « 1/0 Attributes

1/0 Attributes /" Timing \/” Floor Planner \/” Netlist Attributes \

[vew [«][mport |[wnk || Edt || ched][hebp

Place and Route
constraint\ic\user_io.pdc

3. Save the project.
The 1/O constraint file is successfully mapped. Now, double-click Place and Route from the Design
Flow window.

A green tick mark is displayed after the successful completion of the Place and Route process, as shown
in the following figure.

Microsemi Proprietary TUO778 Revision 7.0 19

Building a Cortex-M1 Processor Subsystem

Figure 27 » Place and Route Completion

a

4

-

(" A

v
v

& Microsemi

a AS\MicrocHip company

Create Design
E3 Create SmartDesign
Create HDL
A Create SmartDesign Testbench
Create HDL Testbench
P Verify Pre-Synthesized Design
. Simulate
Constraints
_']) Manage Constraints
Implement Design
B Netlist Viewer
S Synthesize
9,3 Place and Route

23.73

Figure 28 »

2374

Figure 29 »

In the Reports window, see the Place and Route report and log files.

Verify Timing
To verify timing, perform the following steps:

1. On the Design Flow window, double-click Verify Timing.
A green tick mark is displayed after the successful completion of the verify timing process as shown
in the following figure.

Verify Timing Completion

Create Design

E3 Create SmartDesign

Create HDL

A Create SmartDesign Testbench

Create HDL Testbench

4 p Verify Pre-Synthesized Design
. Simulate

Constraints

_']) Manage Constraints

Implement Design

B Netlist Viewer

S Synthesize

9,3 Place and Route

4 p Verify Post Layout Implementation

v &, Verify Timing
2. On the Reports window, see the Verify Timing report and log files.

Generate FPGA Array Data

To generate FPGA array data, perform the following step:

[
-

<] <

On the Design Flow window, double-click Generate FPGA Array Data.

A green tick mark is displayed after the successful generation of the FPGA array data as shown in the
following figure.

FPGA Array Data Generated

4 p Create Design
EZ Create SmartDesign
Create HDL
E Create SmartDesign Testbench
Create HDL Testbench
4 b Verify Pre-Synthesized Design
B Simulate
4} Constraints
j) Manage Constraints
b Implement Design
E Metlist Viewer
S Synthesize
9,3 Place and Route
4 b Verify Post Layout Implementation
(!.b. Werify Timing
G’_l Open SmartTime
oY Verify Power
4 » Program and Debug Design
+L] Generate FPGA Array Data

v

Microsemi Proprietary TUO778 Revision 7.0 20

Building a Cortex-M1 Processor Subsystem

2.3.7.5

& Microsemi

a AS\MicrocHip company

Configure Design Initialization Data and Memories

This process requires the user application executable file (hex file) as input to initialize the LSRAM blocks
after device power-up. The hex file is provided along with the design files. For more information about
building the user application, see Creating User Application Using SoftConsole, page 29.

The hex file (m1 fpga-cortex-ml-blinky.hex) is available in the

DesignFiles Directory\Source folder. When the hex file is imported, a memory initialization client
is generated for LSRAM blocks. If the SoftConsole project is regenerated, ensure to delete the first line in
the .hex file. The type of .hex file used here is Release Mode Generated .hex file. The first line is deleted
in the .hex file provided with the design files.

Note:

To make the .hex file generated by SoftConsole compatible with the process of configuring design

initialization data and memories in Libero, delete the extended linear record present in the first line of the
.hex file. The .hex file available in the DesignFiles_Directory\Source folder is already modified to be

compatible.

To create the memory initialization client, perform the following steps:

1. On the Design Flow window, double-click Configure Design Initialization Data and Memories.
The Design and Memory Initialization window opens as shown in the following figure.

Figure 30

sign Flow

Top Modulefroot): CortexM1_Subsystem

Startpage @ X | £ Cortext1_Subsystem & X

‘TUD\
B b Create Design
B Create SmartDesign
Create HDL
Create SmartDesign Testbench
Create HDL Testbench
Zl b Verify Pre-Synthesized Design
B8 simulate
= » Constraints
® Mznage Constraints
¢ 2 » Implement Design
B Open Netlist Viewer
v S Synthesize
= b Verify Post-Synthesized Design
+{] Generate Simulation File
-~ B8 Simulate
v £ Place and Route
=} Verify Post Layout Implementation
v @, Verify Timing
@, Open SmanTime
[tx Verify Power
5 Open SSN Analyzer
Configure Hardware
Il Programming Connectivity and Interface
& Configure Programmer
& Select Programmer
Program Design

v o] Generate E9G, Dat
}£) Configure Design Initalization Data and Memories |
v — T i

J Configure |/0 States During JTAG Programming
4 Configure Programming Options
Configure Security
@ Configure Permanent Locks (OTP)
v & Generate Bitstream
1 Run PROGRAM Action
= b Program SPI Flash Image
& Generate SPI Flash Image
{3 Run PROGRAM_SPI_IMAGE Action
E- b Debug Design =

Design and Memory Initialization

Design and Memory Initialzation & X
Design Iniﬁa\izanun} GPROM | VM | 8P1 Flash | Fabric RaMs

Apoly \ Discard | Help ‘

In design initialization, user design blocks such as LSRAM, USRAM, transcelvers, and PCle can be initialized as 2n option using data stored in the non-volatile storage memory.
‘The initialization data can be stored in LPROM, sNVM, or an external SPI Flash.

Follow the below steps ta program the intialzation data:

1. Setup your fabric RAMs initiaization data, if any, using the Fabric RAMS' tab
2. Define the storage location of the initiaization data

3. Generate the inifiaization cients

4. Generate or export the bitstream

. Program the device

Design initiaization specification
First stage (sNVM)
In the first stage, the initialization sequence de-asserts FABRIC_POR_N.
Second stage (sNVM)

In the second stage, the initialization sequence initializes the PCIe and XCVR blocks present in the design.

Third stage (sNVM/UPROM/SPI-Flash)

In the third stage, the initialization sequence initializes the Fabric RAMs present in the design.
To save the initialization instructions in sNVM/UPROM/SPI-Flash, please use 'Fabric RAMS' tab to make your selection for each RAM dient.

Ox | 00000000

[V Startaddress for sNVM dients:
™ Startaddress for uPROM
-

=] sP1Clock divider value: [5

Time Out (8):

Custom configuration fle: [

Design Flow | _Design Hierarchy | Stimulus Hierarchy | _Catalog | _Fies

2. Select the Fabric RAMs tab and select the CortexM1_Subsystem/PF_SRAM client from the list
and click Edit as shown in the following figure.

Microsemi Proprietary TUO778 Revision 7.0 21

Building a Cortex-M1 Processor Subsystem O M. em’

a AS\MicrocHip company

Figure 31 + Fabric RAMs Tab

Design Inihahzatiunl LPROM | sNYM |SPI Flash Fabric RAMs*

Apply I Discard | Help |

[Usage statistics [Clients

LSRAM Memary

Load design configuration | Edit... | nitialize all dients from: IIniﬁa\ize all Clients from sMyM LI
I Filter Inferred RAMs

Available Memory({Bytes): 2437120

Used Memory(Bytes): 81920
Free Memory({Bytes) : 2355200 . PORTA PORTE
Logical Instance Name Depth * Width | Depth * Wicth Memory Content Storage Type | Memory Source
j Cortexh1_Subsystem/PF_SRAM | 16384x40 1638440 Mo content sNVM Configurator

Used space
Free space

3. Inthe Edit Fabric RAM Initialization Client dialog box, select the Content from file option, locate

the ml1fpga-cortex-ml-blinky.hex file from DesignFiles directory\Source folder
and Click OK as shown in the following figure.

Figure 32 « Edit Fabric RAM Initialization Client Dialog Box

(® Edit Fabric RAM Initialization Client ? *

Client name: I CortexM1_Subsystem/PF_SRAM

Physical Name: [AXI_0/PF_SRAM_PF_TPSRAM_AHE_AXI_0_PF_TPSRAM_R31CO/INST_RAMIKZ0_IP
RAM Initialization Options

I(:' Content from file: I _II

" Content filed with Os

{~ Mo content (dient is a placeholder and will not be programmed)

Optimize for: ¢ High Speed % Low power

Storage Type |sMVM -

Help | OK I Close

4. Click Apply as shown in the following figure.
Figure 33 + Fabric RAM Content Applied

Design Inmallzahonl UPROM | sMVM ISPI Flash FabrlcR.AMsl

Apply I Discard | Help |

Usage statistics —Clients
["LSRAM Memory Load design configuration Edit... Initislize all dients from: |Inih‘a|ize all Clients from shvM j
Available Memary (Bytes): 2437120 I Filter Inferred RAMS
Used Memory(Bytes): 81920
Fe=mmwine): & Logical Instance Name Depl:fluwﬂdlh DeplTBTWBillh Memory Content Storage Type | Memory Source
|| CortexM1_Subsystermn/PF_SRAM | 16384x40 16384x40 /hw_project/m1fpga-cortex-m1-blinky.hesx| sNVM I Configurator

| | Used space
] Free space

Microsemi Proprietary TUO778 Revision 7.0 22

Building a Cortex-M1 Processor Subsystem

& Microsemi

a AS\MicrocHip company

5. Select the Design Initialization tab and configure the following option, Memory type for third
stage initialization client: sNVM, as shown in following figure.

Figure 34 » Generate Initialization Clients
Design Inih’alizah’onl UPROM] SNVM]SPI Flash] Fabric RAMs]

Apply | Discard | Help |

In design initialization, user design blocks such as LSRAM, pSRAM, transceivers, and PCle can be initialized as an option using data stored in the non-volatile storage memory.
The initialization data can be stored in pPROM, sMVM, or an external SPI Flash.

Follow the below steps to program the initialization data:

1. Set up your fabric RAMs initialization data, if any, using the 'Fabric RAMs' tab
2, Define the storage location of the initialization data

3. Generate the initialization dients

4, Generate or export the bitstream

5. Program the device

Design initialization spedification
First stage (sMVM)
In the first stage, the initialization sequence de-asserts FABRIC_POR_N.
Second stage (sMNVM)

In the second stage, the initialization sequence initializes the PCle and XCVR blocks present in the design.

Start address for second stage initialization dient: 0x | 00000000

Third stage (sNVM/uPROM/SPI-Flash) Second stage initialization is not needed because transceivers are not pres

In the third stage, the initialization sequence initializes the Fabric RAMs present in the design.
To save the initiglization instructions in sMYM/UPROM/SPI-Flash, please use "Fabric RAMs' tab to make your selection for each RAM dient.
¥ Start address for sNVM dients: Ox |DDDDDDDD I

™ Startaddress for uPROM dlients:

[T Start address for SPI-Flash dients: 0x |00

SPI-Flash Binding: |SPI-FIash - Mo-binding Plaintext J SPI Clock divider value: |6

6. Double-click Generate Design Initialization Data option in the Libero design flow to generate the
initialization clients in SNVM memory.

7. When the initialization clients are generated, the status is displayed in the Log window as shown in
the following figure.

Figure 35 » Generate Design Initialization Data Status

Log

€3 Errors 4, Warnings i Info

The Execute Script command succeeded.
Info: Cleaning tool "Generate Design Initialization Data' has completed successfully.
OIn:'c:: 211 Initialization clients hawve been remowved.
Cleaning tool "Generate Design Initializaticn Data'...
Tl R 3 e B = - O 4T (1T A= W o B P b - R P A B A
Info: '"Generate design initialization data' has completed successfully.
Info: Stage 1 initialization client has been added to sNVM.

Info: Stage 2_3 initialization client has been added to sHVM.

Log Message

Microsemi Proprietary TUO778 Revision 7.0 23

Building a Cortex-M1 Processor Subsystem

8. Select the sNVM tab to verify that the SNVM client is generated as shown in Figure 36, page 24.

& Microsemi

a AS\MicrocHip company

The INIT_STAGE_2_3_SNVM_CLIENT indicates that the sSNVM client was successfully generated.

Figure 36 » sNVM Client Verification

Design Initialization l uPROM SNVM l SPI Flash l Fabric RAMs l
Apply | Discard | Help |
Usage statistics Clients

Available memory (in pages): 221

| Load design configuration

Add ... |""' Edit ... | Delete
Used memory (in pages): 51
TR 170 Client Name | Start Page | 36-bit words |
j INIT_STAGE_1_SNVM_CLIENT 202 4368
ﬂ INIT_STAGE_2_3_SNVM_CLIENT | 0 8256

The process of configuring design initialization data and memories is successfully completed.

23.7.6 Generate Bitstream
To generate bitstream, perform the following step:

On the Design Flow window, double-click Generate Bitstream.

A green tick mark is displayed after the successful generation of the bitstream as shown in the following

figure.

Figure 37 » Generate Bitstream Completion

Tool

4) Verify Pre-Synthesized Design
. Simulate
4 » Constraints
_'1) Manage Constraints
4 b Implement Design
B Netlist Viewer
S Synthesize
9,:; Place and Route
» Verify Post Layout Implementation
&, Verify Timing
(.'?_1 Open SmartTime
Ih Verify Power
Program and Debug Design
+L| Generate FPGA Array Data
+| Configure Design Initialization Data and Memories
+L] Generate Design Initialization Data
» Configure Hardware
L Programming Connectivity and Interface
& Configure Programmer
f5s Device I/O States During Programming - JTAG Mode Only

1Y

< S <

< =<

1Y

« Configure Programming Options
Configure Security

v 4 b Program Design

"4 % Generate Bitstream

m

On the Reports window, see the corresponding log files.

Microsemi Proprietary TUO778 Revision 7.0

24

Building a Cortex-M1 Processor Subsystem c M. em’

a A\ MicrocHIR company

2.3.7.7 Run Program Action

After generating the bitstream, set up the PolarFire Evaluation Kit board so that the device is ready to be
programmed. Also, set up the serial terminal emulation program (PuTTY) to observe the output of the
user application.

Figure 38 »+ Board Setup

2.3.7.7.1 Board Setup

To set up the board, perform the following steps:

1. Ensure that the jumper settings on the board are same as listed in the following table.

Table 2+ Jumper Settings

Jumper Description

J18, J19, J20, J21, and J22 Close pin 2 and 3 for programming the PolarFire FPGA through FTDI
J28 Close pin 1and 2 for programming through the on-board FlashPro5
J4 Close pin 1 and 2 for manual power switching using SW3

J12 Close pin 3 and 4 for 2.5V

2. Connect the power supply cable to the J9 connector on the board.
3. Connect the USB cable from the Host PC to the J5 (FTDI port) on the board.
4. Power on the board using the SW3 slide switch.

The board is successfully set up.

Microsemi Proprietary TUO778 Revision 7.0 25

Building a Cortex-M1 Processor Subsystem

2.3.7.7.2 Serial Terminal Emulation Program (PuTTY) Setup

The user application prints the string, “Hello World!” on the serial terminal through the UART

interface.

To setup the serial terminal program, perform the following steps:

1. Ensure that the USB cable is connected from the host PC to the J5 (USB) port on the PolarFire

Evaluation Kit board.
2. Startthe PuTTY program.

3. Start Device Manager, note the second highest COM Port number and use that in the PuTTY

& Microsemi

a @MI:HGCHIP company

configuration. For example, COM Port 93 is used in this instance as shown in the following figure.

COM Port numbers may vary.
Figure 39 «+ COM Port Number
4 ‘?

4. Select Serial as the Connection type as shown in the following figure.

Ports (COM & LPT)

Figure 40 » Select Serial as the Connection Type

=& PuTTY Configuratio

Category:

[=I- Session
¢ i Llogging
=) Teminal
i Keyboard

el

i G- Features

£l Window

Appearance

i - Behaviour

i b Translation

Selection

i w-Colours

=+ Connection
Data

- Provey

-~ Telnet
Rlogin

- S5H

- Serial

About

oo

=

Basic options for your PuTTY session
Specify the destination you want to connect to

Serial line Speed
ComM1 9600

Connection type:
©Raw (© Telnet © Rlogin -i-SSH

Load. save or delete a stored session
Saved Sessions

Default Settings
57600

Save

IIg
2

Delete

Close window on exit
) Mways () Mever @ Only on clean exit

Set the Serial line to connect to COM port number noted in Step 3.
Set the Speed (baud) to 115200 as shown in the following figure.
7. Setthe Flow control to None as shown in the following figure and click Open.

Microsemi Proprietary TUO778 Revision 7.0

26

Building a Cortex-M1 Processor Subsystem

Figure 41

PuTTY Configuration
ﬁ PuTTY Configuration

& Microsemi

a AS\MicrocHip company

eS|

Category:

- Session

I_:_I Teminal

- Keyboard
- Bell
- Features

= Window

- Appearance
- Behaviour
- Translation
- Selection

- Colours

=)~ Connection

Options controlling local senal lines

Select a seral line

Seral line to connect to I COomM53

Configure the serial line

Speed (baud) 115200

Data bits
Stop bits
Parity

Flow corntrol None

—| e
1

. Data

- Proxy
- Telnet
- Rlogin
G SoH

I - Serial

About [Cpen l Cancel]

PuTTY opens successfully, and this completes the serial terminal emulation program setup.

To program the PolarFire device, double-click Run PROGRAM Action from the Libero > Design Flow
tab. A green tick mark is displayed after the successful completion of the Run Program Action process as
shown in the following figure.

Figure 42 » Run Program Action Completion

Tool o
4 » Verify Pre-Synthesized Design
. Simulate
4 b Constraints
_'j) Manage Constraints -
Implement Design
?. Metlist Viewer
S Synthesize
:"’h Place and Route
» Verify Post Layout Implementation
c’_; Verify Timing
Ql Open SmartTime
El Verify Power
4 F Program and Debug Design
+[| Generate FPGA Array Data
+L Configure Design Initialization Data and Memories
+[Generate Design Initialization Data
» Configure Hardware
1 Programming Connectivity and Interface
& Configure Programmer
i3 Device [/0 States During Programming - JTAG Mode Only
% Configure Programming Options
@ Configure Security
4 » Program Design
."5 Generate Bitstream
@ Run PROGRAM Acticn
Program SFI Flash Image
[i@ Generate SPI Flash Image
[Run PROGRAM_SPLIMAGE Action
4 » Debug Design
€ SmartDebug Design
4} Configure Permanent Locks for Production
@ Configure OTP Security
4 F Handoff Design for Production
v 42 Export Bitstream

4

-

[N

S S <

< <

[N

&<

[N

When the device is successfully programmed, the device gets reset and performs the following sequence
of operations:

Microsemi Proprietary TUO778 Revision 7.0 27

Building a Cortex-M1 Processor Subsystem

& Microsemi

a AS\MicrocHip company

1. The PolarFire System Controller initializes the LSRAM with the user application code from sNVM
and releases the system reset.

2. The CORTEX-M1 processor completes the reset and executes the user application from LSRAM.
As aresult, LEDs 4, 5, 6, and 7 blink and the string, “Hel1lo World!” is printed on the PuUTTY as
shown in the following figure.

Figure 43 + Hello World In Release Mode
P COMS3 - PuTTY = | B ||

Hello World! -
Hello World!
Hello World!
Hello World!
Hello World!
Hello World!
Hello World!
Hello World!
Hello World!
Hello World!
Hello World!
Hello World!
Hello World!
Hello World!
Hello World!

The Cortex-M1 processor subsystem is successfully built and programmed on the board.

Microsemi Proprietary TUO778 Revision 7.0 28

Creating User Application Using SoftConsole O M. x
icrosemi

3

a AS\MicrocHip company

Creating User Application Using SoftConsole

3.1

This section describes how to create and debug the Cortex-M1 application using SoftConsole.

Creating the user application involves:

Creating a Cortex-M1 Project, page 29

Downloading the Firmware Drivers, page 31

Importing the Firmware Drivers, page 33

Creating the main.c File, page 34

Configuring the Cortex-M1 Project, page 35

Mapping Memory and Peripheral Addresses, page 40

Setting the UART Baud Rate, page 41

Building the User Application in Release Mode, page 42

Building In Debug Mode and Debugging the User Application, page 44

Creating a Cortex-M1 Project

To create a Cortex-M1 project, perform the following steps:

1.

2.

Create a SoftConsole workspace folder on the host PC for storing SoftConsole projects. For
example, F:\Tutorial\CortexMl.

Start SoftConsole. In the Workspace Launcher dialog box, paste F: \Tutorial\CortexM1 as the
workspace location and click OK as shown in the following figure.

Figure 44 » Workspace Launcher

Figure 45

3.

Workspace: \AMGIEIOLEE v | Browse..

"] Use this as the defautt and do not ask again

(oo |

When the workspace is successfully launched, the metadata and the RemoteSystemsTempFiles
folders are created in the workspace directory. The SoftConsole main window opens.

Select File > New > Project as shown in the following figure.

Creating New C Project

File | Edit Source Refactor Mavigate Search Project Run Window Help

New Alt+Shift=N » | [Makefile Project with Existing Code
Open File... [€] C/C++ Project
4 Open Projects from File System... I ™ Project... I
i 3
ezl Convert to a C/C++ Project (Adds C/C++ Nature)
Closze Ctrl+W | &% Source Folder

Microsemi Proprietary TUO778 Revision 7.0 29

Creating User Application Using SoftConsole C M. x
: icrosemi

a AS\MicrocHip company

4. Inthe New Project window, expand C/C++, select C Project, and then, select Next.
Figure 46 » New Project Window

SC New Project L S |
Select a wizard —_—

Create a new C project

Wizards:
type filter text

s (= General
8= CfC++
[C Project
[C/C++ Project
[64 C++ Project
[Makefile Project with Existing Code

@ < Back Next » Finish

5. Inthe Project type pane:
+ Enter a name for the project in the Project name field. For example, m1fpga-cortex-ml-
blinky.
+ Expand Executable and select Empty Project as shown in the following figure and then, click
Next.

Figure 47 » C Project Window

C Project p—
Create C project of selected type |

Project name: mlfpga-cortex-ml-blinky|

Use default location

F\Tutoriah CortexM1\mlfpga-cortex-ml-blinky Browse...
default
Project type: Toolchains:

= GNU Autotools Cross ARM GCC
T (= Cross GCC

& Empty Project Microsoft Visual C++

@ Hello World ARM C Project
> [= RISC-V Embedded Application
s [= RISC-V Embedded Static Library
> [= Shared Library
> [Static Library
= Makefile project

Show project types and toclchains only if they are supported on the platform

@) < Back Next » Finish

6. Inthe Select Configurations window, select Debug and Release, and then click Next.
7. Retain the default Toolchain name and Toolchain path, and then click Finish.

Microsemi Proprietary TUO778 Revision 7.0 30

Creating User Application Using SoftConsole

Figure 48 »

3.2

Figure 49 »

& Microsemi

a AS\MicrocHip company

An empty Cortex-M1 project (m1fpga-cortex-ml-blinky) is created in Debug and Release

mode as shown in the following figure.
Empty Cortex-M1 Project

File Edit Source Refactor Mavigate Search Project Run Window
Help
- By - l‘fs b AP v [y @&~
L] 53] o [Ef c (]
#-0-@-Q-®30 vV~ B x|
- - - - Quick Access it | Hg C/C++
[Project Explorer 532 = O = g 3
=8| e ~ ¢
+ |25 mlfpga-cortex-ml-blinky -
An
outline is
not
availahle.
[& P 52 = g
=

=% mifpga-cortex-m1l-blinky

The Cortex-M1 project is successfully created.

Downloading the Firmware Drivers

The empty Cortex-M1 project requires the hardware abstraction layer (HAL) files,
Cortex microcontroller software interface standard (CMSIS) files, and the following peripheral drivers:

+ CoreGPIO
* CoreUARTapb

Download the peripheral drivers using the Firmware Catalog application. This application is installed
during Libero installation. For more information on Firmware Catalog, refer Prerequisites, page 3.

To download the drivers, perform the following steps:

1. Create a folder named firmware in the CortexM1 project workspace.
2. Start Firmware Catalog. The following figure shows the Firmware Catalog window.

Firmware Catalog Window

=4 Firmware Catalog

3. If new cores are available, click Download them now!

File View Tools Help
View (51/165):
,& All f vault | W Web repositories | |-

W display only the latest version of a core

Mame |‘u‘ersi0n | Size (MB)
Corel0100_AHBAPE Driver 40102 4.28
Corel6550 Driver 24100 131
CoreAl Driver 3.0.101 043
CoreAhbMNvm Driver 21102 0.23
CoreGPIO Driver 33101 0.98
Corel2C Driver 33101 1.50
Corelnterrupt Driver 21.102 0.20
CorelPC Driver 21101 0.92
CoreMACFilter Driver 21100 3.80
CoreMMC Driver 2.0.100 0.62
CorePWM Driver 2.4.100 1.79
CoreSDLC Driver 21100 1.27
CoreSPI Driver 3.3.100 1.94
CoreSysServices_PF Driver 2.0.102 0.87
CoreTSE Driver 2.5.100 5.55
CoreTimer Driver 2.4.100 1.22
CorelJARTaphb Driver 33101 1.22
CoreWatchdog Driver 2.2.100 0.50
Cortex-M1 CMSIS Hardware Abstraction ... 2.0105 9.81
Hardware Abstraction Layer (HAL) 23102 0.22
PolarFire PCle Driver 21100 0.82
PolarFire User Crypto Driver 22102 3.05
RISC-V Hardware Abstraction Layer (HAL) 2.2103 1.23

Microsemi Proprietary TUO778 Revision 7.0

31

Creating User Application Using SoftConsole

& Microsemi

a AS\MicrocHip company

4. Inthe Firmware Catalog window, right-click the latest CoreGPIO Driver, and select Generate.
5. Inthe Generate Options window, locate the folder named firmware and click OK.

Figure 50 » Generate Options

=# Generate Options [2 |
Project folder: | F:/TutorialCortex_M1/firmware E]

Files will be generated into:
F:Vutorial\Cortex_M1\firmware\drivers\CoreGPIO

Show generation report

o J[ona]
When the files are generated, the Reports window lists the files generated as shown in the following

figure.
Figure 51 + CoreGPIO Files Report
'__g Report T S

[Save][éPrint]

Files generated in 'F:VTutorial\Cortex_M1\firmware; =

drivers\CoreGPIO \coregpio_regs.h =
drivers\CoreGPIO \core_gpio.c
drivers\CoreGPIO\core_gpio.h

In the Firmware Catalog window, right-click the latest CoreUARTapb Driver and select Generate.
7. Inthe Generate Options window, enter F: \Tutorial\CortexM1\firmware as the

Project folder, and click OK.

When the files are generated, the Reports window lists the files generated as shown in the following

o

figure.
Figure 52 « CoreUARTapb Files Report
& Report D | S
[Save] [éPrint]

Files generated in 'F: Tutorial\Cortex_M1\firmware";
drivers\CoreUARTapb\coreuartapb_regs.h

drivers\CorelARTapb'core_uart_apb.c
drivers\CoreUARTapb\core_uart_apb.h

8. Copy the following folders and files from DesignFiles Diretory\Source to
F:\Tutorial\CortexMl\firmware atthe Project folder.

- CMSIS
. hal
* blinky.ld

* hw_platform.h
This completes the copying of CMSIS and HALs files requirements.

HAL files and firmware drivers are downloaded.

Microsemi Proprietary TUO778 Revision 7.0 32

Creating User Application Using SoftConsole

& Microsemi

a @MI:HGCHIP company

3.3 Importing the Firmware Drivers

After downloading the drivers, CMSIS, and HAL files, import them into the empty Cortex-M1 project
created.

To import the drivers, perform the following steps:

1. In SoftConsole, right-click the m1 fpga-cortex-ml-blinky project, and select Import as shown
in the following figure.

Figure 53 « Import Option

[Project Explorer 3 == |
|2 mifpga-cortex-ml-blinky

New 3
Go Into
Open in Mew Window

[B Copy Ctrl+C
Paste Ctrl+V

¥ Delete Delete
Remove from Context Ctrl+Alt+Shift+ Down
Source »
Move...
Rename... F2

x Import..

[Export..

2. In the Import window, expand the General folder and double-click File System as shown in the
following figure.

Figure 54 + Import Window

s€ Import L= | B [
Select \“
Import resources from the local file system into an existing project. i E 5 I

Select an import source:

type filter text

4 (= General
JE Archive File
> B C_;C++

3. Inthe continued Import window, do the following steps (see Figure 55, page 34):
+ Click Browse and locate the F: \Tutorial\CortexMl\firmware folder
* Select the firmware folder and click OK.
* Expand the firmware folder and select all the checkbox as shown in the following figure.
* Click Finish.

Microsemi Proprietary TUO778 Revision 7.0 33

Creating User Application Using SoftConsole

& Microsemi

a AS\MicrocHip company

Figure 55 « Import Window Continued

File system —
Import resources from the local file system. L .-_"
-
From directory: F:\Tutorial\CortexM1'\firmware - Browse...
4 (= firmware =] blinky.ld
a [V] = CMSIS €] hw_platform.h
> [W] = startup_gec
a [V] (= drivers
> [¥] = CoreGPIO
> [¥] = CoreUARTaphb
a [V] (= hal
s [¥] = CortexM1
[Filter Types... | [SelectAll | [Deselect Al
Into folder: mlfpga-cortex-ml-blinky
Options

[] Overwrite existing resources without warning
[Create top-level folder

® Next > [Einish J Cancel]

The CMSIS, HAL files and peripheral drivers are successfully imported into the m1 fpga-cortex-ml-
blinky project.

3.4 Creating the main.c File

To update the main. c file, perform the following steps:

1. In the Menu bar, click File and select New > Source File.

2. Inthe New Source File dialog box, entermain. c in the Source file field and click Finish as shown
in the following figure.

Figure 56 « Creating the main.c File

SC New Source File = | B
Source File
Create a new source file. c
Source folder: mlfpga-cortex-ml-blinky
Source file: main.d
Template: [Default C source template '] [Configure...]
® [Finish J [Cancel]

The main.c file is created inside the project as shown in the following figure.

Microsemi Proprietary TUO778 Revision 7.0 34

Creating User Application Using SoftConsole O M. x
icrosemi

a AS\MicrocHip company

Figure 57 « The main.c file

File Edit Source Refactor Mavigate Search Project Run Window Help
- @|@v%vlnm@vﬁvgv@v#vevggv%v
=N = w | ESBe E @~ Fl- o

[Restart a process or debug target without terminating and re-launck

[(5 Project Explo... 32 = B | [§ main.c 2 = O bt

Bg|e v | ©7 - | %
4 (=5 mlfpga-cortex-m1l-blinky ran-©
> [at) Includes
s (= CMSIS
s (= drivers
s (= hal ! 7
> [B] hw_platform.h all il | ¥

3! ANC [#] Proble... &2 Tasks Console Prope = g
|Z| blinky.ld

=
* Created on: Jun 23, 2817 5
Author: veerubharadwaj.chama

IR SR TV]

Writable Smart Insert 1:1

3. Copy all of the content of the DesignFiles directory\Source\main.c file and paste it in the
main.c file of the SoftConsole project.
4. Save the SoftConsole main.c file.

This updates the main.c file.

3.5 Configuring the Cortex-M1 Project
At this stage, the location of CMSIS, drivers and HAL files are not mapped.
To map CMSIS, drivers and HAL files, perform the following steps:

1. Inthe project explorer, right-click the m1 fpga-cortex-ml1-blinky project and select Properties.
2. Expand C/C++ Build and select Settings.
3. Set the Configuration to All Configurations as shown in the following figure.

Figure 58 » All Configuration Setting

Settings (=14 A

Configuration: ’[All configurations] '] ’Manage Configurations...]

i Tool Settings |) Toolchains | 4 Build Steps Build Artifactl Binary Parsersl @ Error Parsers|

@ Target Processor Include paths (-I) &
(# Optimization
Warnings
(2 Debugging
a4 3 Cross ARM GNU Assembler
(22 Preprocessor

4. Inthe Tool Settings, expand Target Processor, and set the ARM family to cortex-m1.
5. Retain all the other default settings, as shown in the following figure:

Microsemi Proprietary TUO778 Revision 7.0 35

Creating User Application Using SoftConsole

& Microsemi

a AS\MicrocHip company

Figure 59 » Target Processor

type fifter text Settings S
Resource
Builders
v C/Cen Build Configuration: | Release [Active | | [Manage Configurations...
Build Variables
Environment
Logging & Tool Settings) Toolchains M Devices # Build Steps Build Artifact Binary Parsers @ Error Parsers
Settings.
Tool Chain Editor <E Target Processor | Y arm earmity e I >
C/Crr General = P T
eppehecipse (2 Wamings rehitecture olchain defaul
Mcy (3 Debugging Instructionset | Toolchain default v
8 GNU ARM Cross Assembl
project Natures ® o ose ssemaer I Thurmb intenvork (-mthumb- nterwork)
Project References (5 Preprocessor
Run/Debug Settings (2 Includes Endianness Toolchain default ~
52 Warnings.
(& Warning Toolchain default
(& Miscellaneous
1 GNU ARM Cross C Compiler Toolchain defaut
(& Preprocessor
= Unaligned access | Toolchain default
(22 Includes

¢ Optimization
I Wamnings
g M‘mufﬁm Toolchain defauft
v 8 GNU ARM Cross C Linker
(% General
& Libraries Toolchain default
(% Miscellancous
8 GNU ARM Cross Create Flash Image
(3 General Small (-mcmodel=small)
v 8 GNU ARM Cross Print Size
(3 General

Generic (-mcpu=generic)

Toalchain default

Enabled (+simd)

Strict align (-mstrict-align)

Other target flags |

6. Inthe Tool Settings tab, expand GNU ARM CROSS C Compiler and select Includes.
7. To add driver, HAL, and CMSIS directory paths, click Add as shown in the following figure.
Figure 60 « Tool Settings Options

Settings

& lool bethings | &3 Toelchains | # Build Steps | Build Artifact | |nw Binary Parsers | @ Error Parsers|

(2 Target Processor
(# Optimization
(2 Warnings
(#2 Debugging
3 Cross ARM GNU Assembler
(2 Preprocessor
(2 Includes
(# Wamings
(2 Miscellaneous
3 Cross ARM GNU C Compiler

Include paths (-1}

S

S

(# Wamings
(2 Miscellaneous

B E;QD“ARM GNUC Linker Include files (-include) &
2 General
(2 Libraries
(2 Miscellaneous

3 Cross ARM GNU Create Flash Image
(2 General

83 Cross ARM GNU Print Size
(# General

S

S

[N

[OK J [Cancel

Microsemi Proprietary TUO778 Revision 7.0 36

Creating User Application Using SoftConsole O - x
Microsemi
a AS\MicrocHip company

8. Inthe Add directory path dialog box, click Workspace as shown in the following figure.
Figure 61 « Adding CoreGPIO Directory Path

SC Add directory path [

Directory:

’ 0K ” Cancel [Workspace...]I’ File system...]
—

9. In the Folder Selection dialog box, expand mlfpga-cortex-ml-blinky project > drivers and

select the CoreGPIO and CoreUARTapb folders and click OK, as shown in the following figure.
Figure 62 » Adding the CoreGPIO Folder

SC Folder selection l &l &

Select one or more Workspace Folders

4 (=5 mlfpga-cortex-m1l-blinky
> [.settings
> = CMSIS
4 E—'b drivers
» |2 CoreGPIO
> == CoreUARTapb
= E|
. [= RemoteSystemsTempFiles

@ [ok][cance |

10. In the Add directory path dialog box, click OK.

The CoreGPIO and the CoreUARTapb folder paths are added as shown in the following figure.
Figure 63 » CoreGPIO Path Added

SC Properties for m1fpga-cortex-m1-blinky l 5
type filter text Settings fe=10 4 r v
> Resource -
Builders e
4 C/C++ Build Configuration: ’[All configurations]
Build Variables

v] ’ Manage Configurations...] ‘E ‘

Environment =

Legging & Taol Settings | %3 Toolchains | .ﬁ' Build Stepsl Build Artifactl Binary Parsersl @ Error Parsers|
Settings
Toel Chain Editer @ Target Processor Include paths (-I) &
| s L
> C,."C-zof::;:na::l g:\?v:t::;:loﬂ "${workspace_loc:/${ProjName}/drivers/CoreGPIO}"
Linux Tools Path (2 Debugging
Project References - a Y Cross ARM GNL Assembler &

) [

0K J ’ Cancel

Microsemi Proprietary TUO778 Revision 7.0 37

Creating User Application Using SoftConsole

& Microsemi

a AS\MicrocHip company

11. Similarly, add the other paths as shown in the following figures.
Figure 64 -« Adding CMSIS and startup_gcc paths

Select one or more Workspace Folders

4 (=5 mlfpga-cortex-mi-blinky
b [settings
4 |- CMSIS
> | startup_gec
T A
b (= hal
. [= RemoteSystemsTempFiles

@ [OK] l Cancel

Figure 65 « Adding HAL, CortexM1, and GNU Paths

Select one or more Workspace Folders

4 125 mifpga-cortex-mi-blinky
> [settings
> = CMSIS
L driver
4 |(= hal
4 (= CortexM1

> = GNU

@ [OK } [Cancel]

12. In GNU ARM CROSS C Compiler, select Miscellaneous and set the Other compiler flags to:
--specs=cmsis.specs (as shown in the following figure).

Figure 66 « Miscellaneous Setting

Settings v

Configurstion: Debug [Active] ~ [Manage Configurations..

) Tool Settings | i3 Toolchains | #* Build Steps | 7 Build Artifact | [Binary Parsers | @ Error Parsers|

(5% Target Processor [T] Generate assembler listing (-Wa,-adhins="S@.Ist")
(% Optimization [] Save temporary files (--save-temps Use with caution!)
(5 Warnings [T Verbose (-v)

1 Deb:
. g [;:f:;{”hi U Assermbler Other compiler flags _ --specs=cmsis specs | I

m

38 Preprocessor
(3 Includes
8 Warnings
(2 Miscellaneous
4 B Cross ARM GNU € Compiler
(28 Preprocessor
(2 Includes
(22 Optimization
(2 Warnings
(2 Miscellaneous
4 & Cross ARM GNU C Linker

13. Click OK.

Microsemi Proprietary TUO778 Revision 7.0 38

Creating User Application Using SoftConsole O - x
Microsemi
a AS\MicrocHip company

The CMSIS, drivers, and HAL directory paths are successfully mapped as shown in the following fig-
ure.

Figure 67 « Mapping Successful

i Tool Settings | %3 Toolchains | 4 Build Stepsl

Build Artifactl Binary Parsersl @ Error Parsers|

(£ Target Processor Include paths (-T) 88 85
(# Optimization - -
R "S{workspace_loc/${ProjMame}/drivers/CoreGPIO}"
@ Warnings !
% Debuagi "S{workspace_loc:/${ProjName}/CMSIS})"
(22 Debugging

"S{workspace_loc:/${ProjName}/hal}"
a4 3 Cross ARM GNU Assembler "S{workspace_loc:/${ProjName}/hal/CortexM1}"

(# Preprocessor "S{workspace_loc:/${ProjName}/hal/CortexM1/GNU}"
@ Includes "S{workspace_loc:/${ProjMame}/CMSIS/startup_gecc}”

Warnings
(2 Miscellaneous

a4 3 Cross ARM GNU C Compiler
(22 Preprocessor

14. From GNU ARM CROSS C Linker > General use the Add option to mapthe blinky.1d linker
script.
15. In the Add file path window, click Workspace, and expand the m1fpga-cortex-ml-blinky
project and select the blinky.1d file, as shown in the following figure.
Figure 68 « Mapping Linker Script

Select one or more Workspace Files

4 25 milfpga-cortex-ml-blinky
> (= .settings
> (= CMSIS
> (= drivers

> (= hal
.cproject

5| .project

|=| blinky.ld
L[hw_plattorm.h
[€ main.c

5 = RemoteSystemsTempFiles

® oK] [Cancel

16. Click OK.

Microsemi Proprietary TUO778 Revision 7.0 39

Creating User Application Using SoftConsole

Figure 69

3.6

Figure 70 *

& Microsemi

a @Mlcno:mn company

GNU ARM Cross Create Flash Image Settings

i Tool Settings | B3 Toolchains | :l: Devices | .ﬁ' Build Steps | Build Artifact | Binary Parsers | @ Error Parsers|

@ Target Processor Output file format (-0) ’Intel HEX v]
(# Optimization
Warnings
(2 Debugging
a BB GNU ARM Cross Assembler Other sections (-]) &
(22 Preprocessor
@ Includes
Warnings
@ Miscellaneocus
a4 B GNU ARM Cross C Compiler
(22 Preprocessor
@ Includes
(# Optimization
Warnings
@ Miscellaneocus
a4 B GNU ARM Cross C Linker
@ General
@ Libraries
@ Miscellaneocus
a4 B8y GNU ARM Cross Create Flash Image
@ General
a4 B8 GNU ARM Cross Print Size
@ General

[] Section: -j text
[section: -j .data

m

Other flags --changesection-lma *-0x80000000

’ Restore Defaults] ’ Apply -

The CMSIS, HAL, drivers and linker script are successfully mapped.

Mapping Memory and Peripheral Addresses

In the Libero design flow, the Cortex-M1 processor execution memory address is mapped to 0x00000000
and its size is set to 24 KB. This information must be provided in the linker script for building the
application.

To map the memory address, perform the following steps:

Open the linker script (b1inky. 1d) available in the m1 fpga-cortex-ml-blinky folder.
Ensure that the ram ORIGIN address is mapped to 0x00000000.

Change the LENGTH of the ram to 24 KB.

Ensure that the RAM_START_ADDRESS is mapped to 0x00000000.

Change the RAM_SIZE to 24 KB.

Change the STACK_SIZE to 4 KB.

Change the HEAP_SIZE to 4 KB.

Save the file.

PN RGN~

The following figure shows the linker script after these updates.

Updated Linker Script

53 RAM_START_ADDRESS = @x@eeeeeee; /* Must be the same value MEMORY region ram ORIGIN above. */

54 RAM_SIZE = 24k; /* Must be the same walue MEMORY region ram LENGTH above. */

55 MAIN_STACK_SIZE = 4k; /* Cortex main stack size. */

56 PROCESS_STACK_SIZE = 2k; /* Cortex process stack size (only available with 0S5 extensions).*/
57 MIN_SIZE_HEAP = 4k; | /* needs to be calculated for your application */

58

In the Libero design flow, the addresses of GPIO and UART peripherals are mapped to 0x00040000 and
0x00041000 respectively. This information needs to be provided in the main. c file provided in m1fpga-
cortex-ml-blinky project folder.

Microsemi Proprietary TUO778 Revision 7.0 40

Creating User Application Using SoftConsole

& Microsemi

a @Mlcno:mn company

To map the peripheral address, perform the following steps:

1. Openthe main.cfile.

2. Look forthe COREGPIO BASE ADDR macro and define it as 0x00040000UL.
3. Look for the UART BASE ADDRESS macro and define it as 0x00041000UL.
4. Save thefile.

The following figure shows the main.c after these updates.

Figure 71 « Updated main.c File

gpio_instance_t g_gpio;

AR T LA o s SR LY

#define COREGPIC_BASE ADDR 0x000400000UL
#define UART BASE ADDRESS 0x000410000L
e
#define BAUD VALUE 115200
B/ ")

The memory and peripheral addresses are successfully mapped.

3.7 Setting the UART Baud Rate

The value of the BAUD_VALUE macro in the main. c file must be defined according to the system clock
frequency to achieve the UART baud rate of 115200. The baud value is calculated by the UART init
function in the main. c file.

To define the baud value, perform the following steps:

1. Look forthe #define BAUD VALUE statementinthe main.c file.
2. Defineit as:
#define BAUD VALUE 115200 as shown in the following figure.

Figure 72 » Defining Baud Value

gpio_instance_t g_gpio;
URRT_instance t g_uart;
#define COREGPIC_BASE ADDR 0x000400000UL

Lfipe JnpT Bace ppnorac I nnqg'QQiUL
ine BAUD VALUE 115200
—

The UART baud rate is successfully set.

Microsemi Proprietary TUO778 Revision 7.0 41

Creating User Application Using SoftConsole

3.8

following figure.

Figure 73 » Build Configuration

Figure 74

& Microsemi

a AS\MicrocHip company

Building the User Application in Release Mode

To build the user application in the release mode, perform the following steps:

1.

o -
&O & E

{5 -

> |25 mifpga-cortex-mi-blink,

-

[Project Explorer 52 =5

® b
oo

- =g

[X]

[CT

File Edit Source Refactor Mavigate Search Project Run Window Help

SRR R |

F

5 mifpga-cortex-ml-blinky

EE

t!i?

New

Ge Into
Open in Mew Window

Copy
Paste

Delete

Remove from Context
Source

Move...

Rename...

Import...
Export...

Build Project

Clean Project

Refresh

Close Project

Close Unrelated Projects

I Build Configurations

Make Targets

Index

Show in Remote Systems view

Profiling Tools

Ctrl+C

Ctrl+V

Delete

Ctrl+Alt+5Shift+ Down
»

F2

F5

Quick Access

SR e TG0 G

% [+] 4 Debug

= 8

® m

2 [o o

Right-click the project and select Build Configurations > Set Active > Release as shown in the

»

Set Active

» 1 Debug

Manage...

Build All
Clean All
Build Selected...

v 2Release

2. Right-click the project and select Build Project as shown in the following figure.

Build Project

-
=l =R] v 5

[Project Explorer &3
> |5 mifpga-cortex-mi-blinky

%] milfpga-cortex-ml-blinky

-

w, O
LR SR

B&le =0

L}

&3

File Edit Source Refactor Mavigate Search Project Run Window Help

_|§\3'%'m5

S

EE

New

Go Into

Open in New Window

= Copy

Paste

K Delete

Remove from Context
Source
Move...

Rename...

Import...
Export...

Cirl+C

Ctrl+V

Delete

Ctrl+Alt+Shift+ Down
3

F2

Build Project

i

Clean Project

Refresh

Close Project

Close Unrelated Projects

F5

Quick Access

i | [T s s

= 8

CEE G 0BG

]

2k [o (G

Microsemi Proprietary TUO778 Revision 7.0

42

Creating User Application Using SoftConsole C - x
> Microsemi

a AS\MicrocHip company
3.

SoftConsole builds the project and displays “Build Finished”, message in the log window, as
shown in the following figure.

Figure 75 » Build Finished

& Consale &1
CDT Build Consele [mlfpga-cortex-ml-blinky]
text data bss dec hex filename
1496 8 23872 24576

6808 mlfpga-cortex-ml-blinky.elf
Finished building: mlfpga-cortex-ml-blinky.siz

12:22:28 Build Finished (took 5s5.9@ms)

4. The user application file (. hex) is generated in the Release folder as shown in the following figure.
Figure 76 « HEX File

File Edit 5Source Refactor Mavigate Search Pre
il ..|®'Q',ma 8,
f[\hproject Explorer 23 H <
4 [£5 mlfpga-cortex-ml-blinky
- 34 Binaries
[Includes
> (2= CMSIS
> [Debug
(= drivers
» = hal
4 (= Release
> (= CMSIS
s = drivers
> = hal
- %5 milfpga-cortex-ml-blinky.elf - [arm/le]
> | main.o - [arm/le]
mlfpga-cortex-ml-blinky.map
main.d

[T [

| @ makefile

| & objects.mk

L@ sources.mk

| @ subdirmk

hw_platform.h

main.c

blinky.ld

milfpga-cortex-ml-blinky Debug.launch

e &) =)

This file must be imported to Libero for generating the initialization client and for adding the client to
sNVM for initializing the SRAM block at device power-up.

Note: The .hex file generated here is used in Configure Design Initialization Data and Memories, page 21.

Microsemi Proprietary TUO778 Revision 7.0 43

Creating User Application Using SoftConsole O M. x
icrosemi

a AS\MicrocHip company

3.9 Building In Debug Mode and Debugging the User
Application

To build the application, perform the following steps:

1. Right-click the project and select Build Configurations > Set Active > Debug as shown in the
following figure.

Figure 77 « Build Configurations
File Edit Source Refactor Mavigate Search Project Run Window Help

| S~/ mE W EEH- B E-F-H 0SS S
?‘_‘,Project Explorer 2 = <f;>| ¢ T = 0| € manc 2 blinky.ld
v 5 mifpga-cortawml_hlink 31 gpio_instance t g_gpio:
:g-? Bina New > @ UART instance t g_uart;
il Inch Go Into 5 pdefine COREGPIO BASE ADDR oxt
= CMS i fdefine UART BASE RDDRESS Ox(‘]
= Deb Open in New Window ° #define BAUD VALUE 114
= drivi = ge /e 5
= hal g Copy CHEE i * main() function. ?
Paste Ctrl+V)
(= Rele .. .
8] 3 Delete Delete = int main()
[€) mail Remove from Context Ctrl+Alt+Shift+ Down _' {
= blinl Source * b * CMSIS function- sets firmware sy:
Move... / ;
Frenns B2 B! uinté_t temp =1;
g Import.. B SystemCoreClockUpdate () ;
&y Bxport.. UART init(&g_uart, UART BASE ADDRES
Build Project =
Clean Project
& Refresh 5L
Close Project 3 GPIC init(&g_gpio, CCOREGPIC BASE
Close Unrelated Projects - while (1)
A i -
Build Configurations 1] Set Active > . 1 Debug nart
Make Targets > Manage... 2 Release -
ndex , rercpaersg—gpEor—cPI0
Build All matput (&g_gpio, GPIC
Show in Remote Systems view Clean All ‘utput (&g_gplo, GPIC-
tput (& io, GPIO-
Profiling Tools > Build Selected... utput (&g_gpio, GFIOS
Profile As LY -
Debug As y 4 }
Run As > [
Compare With > L return 0;
Restore from Local History... <
Run C/C++ Code Analysis =
%{k 2 Problems | | Tasks | B Console i3 | [Properties
T
=am :onsoles to display at this time,
Properties Alt+Enter

2. On the Project Explorer, right-click the m1 fpga-cortex-ml1-blinky project and select Build
Project.

Microsemi Proprietary TUO778 Revision 7.0 44

Creating User Application Using SoftConsole

Figure 78 » Build Project

File Edit

i]

Source

..|®'€S',ma

Refactor Mavigate Search Project Run Window Help

WS e @

123 Project Explorer 3

v [mifp
5 Bi
[In
=t
= D¢

Bdru_

= he
= Re
B by

3.

b 4

EE

e

=]

<==’|_ = = 8 | [mainc §
New > 3

o

g'pit:
TART
33 #de:
34 fde:
3 #de:

Go Into

Open in New Window

Ctrl+C &
clsy 37 R
Delete e
Ctrl+Alt+Shift+Down

Copy
Paste

Delete

Remove from Context
Source > 41
Move...

Rename... F2

Import...
Export... 47]

Build Project
Clean Project

Refresh F5

Close Project
Close Unrelated Projects

Build Configurations ¥
Make Targets ¥

o

Index ¥

Show in Remote Systems view -
Profiling Tools ¥ |61
Profile As
Debug As ¥
Run As >

Compare With » |66
Restore from Local History...

Run C/C++ Code Analysis

Team » . Problem

3 consoles

Properties Alt+Enter

Ensure that no errors are displayed in the build result.

Before debugging, the board and the serial terminal must be set up.

& Microsemi

a AS\MicrocHip company

For more information about the board and serial terminal setup, see Board Setup, page 25 and Serial
Terminal Emulation Program (PuTTY) Setup, page 26.

To debug the application, perform the following steps:

1. On the Project Explorer, select the m1fpga-cortex-ml-blinky project.

2.

Select Run > Debug Configurations from the SoftConsole toolbar as shown in the following figure.

Microsemi Proprietary TUO778 Revision 7.0

45

Creating User Application Using SoftConsole

Figure 79 » Debug Option

& Microsemi

a @MI:HGCHIP company

File Edit Source Refactor Mavigate Search Project | Run| Window Help

= - | ® - |- @ - 8% - [v (@ Runlestlaunched Cirl+F11
*@ Debug Last Launched A1 |
[Project Explorer 32 - Profile Last Launched i
4|5 mlfpga-cortex-ml-blinky
5 *P Binaries Profile History 4
> [l Includes Profile As 4
> (2 CMSIS Profile Configuraticns...
> (= Debug
> = drivers Run History 3
> (& hal Run As v
> [hwjplatform.h Run Cenfigurations...
- [€ main.c
= blinky.ld Debug History »
Debug As »
Debug Configurations...
Toggle Breakpoint Ctrl+Shift+B
Tannls Ling Rreaknoint [

3. Inthe Debug Configurations dialog box, do the following steps (see the following figure):

+ To generate debug configuration for m1 fpga-cortex-ml-blinky project, double-click GDB
OpenOCD Debugging.
Select the generated m1 fpga-cortex-ml-blinky Debug configuration and select Search
Project, as shown in the following figure.

Figure 80 « Debug Configurations

Create, manage, and run configurations

s =
EIEEN Name: mifpga-cortex-ml-blinky Debug

type filter text

4 f GDE QpenQCh Debuaging
[] mlfpga-cortex-ml-blinky Debug

D Main #f%Debugger B+ Startup E_/ Source| [Comman

Project:

mifpga-cortex-m1-blinky

Browse...

C/C++ Application:

:

Build (if required) before launching

Build configuration: | Select Automatically -]

() Enable auto build

(@ Use workspace settings

Filter matched 2 of & items

() Disable aute build
Configure Workspace Settings...

Page Number

Microsemi Proprietary TUO778 Revision 7.0

46

Creating User Application Using SoftConsole

& Microsemi

a AS\MicrocHip company

4. In the Program Selection window, select the elf£ file as shown in the following figure, and click OK.

Figure 81 « Program Selection

SC Program Selection

RSREch x|

Choose a program to run:

Binaries:

D mlfpga-cortex-m1-blinky.elf

Qualifier:

%5 frmle - /m1fpga-cortex-ml-blinky/Debug/mifpga-col

4| [T

@ (

OK

J [Cancel

I

5. In the Debugger tab, replace the Config Options, Executable, and Commands entries with the
following entries as shown in the following figure.

Figure 82 » Settings in the Debugger Tab

Config Options: --file board/microsemi-cortex-ml.cfg
Executable: $ {cross prefix}gdb${cross suffix}
Commands: set mem inaccessible-by-default off

8C Debug Configurations

Create, manage. and run configurations

GEX B3~

Name: | m1fpga-cortex-m1-blinky Debug

type filter text

GDB OpenOCD Debugging
[] m1fpga-cortex-m1-blinky Debug

Main | %5 Debugger| 5 Startup| 5 Source| (] Common|

Open0CD Setup
Start OpenOCD locally

Brccuteble: | Sfopenocd_path}/${openocd_orecutable}

Browse...

GDB port:

Config options:

|--file board/microsemi-cortex-m1.cfg

Telnet port: 4444

Variables...

Allocate console for OpenOCD

o

Allocate console for the telnet connection

|

Bxccuteble: | ${cross_prefixigdbS{cross_suffix} 1 Browse... | Varigbles...

|
Other options:
I Commands: | set mem inaccessible-by-default ofﬁ I

Remote Target

Host name or IP address: | localhost
< > ‘ R
Filter matched 2 of & items ot =i

Close

6. In Debug Configurations -> Startup tab, clear the Pre-run/Restart reset check box to halt the
program at the main () function and clear the Enable ARM semihosting checkbox.

Microsemi Proprietary TUO778 Revision 7.0

47

Creating User Application Using SoftConsole

& Microsemi

a AS\MicrocHip company

Figure 83 » Debug Settings- Startup Tab

[] Main | %3 Debugger | = Startup E - Source | [C] Common | 2, SVD Path
Initialization Commands

[#]1nitial Reset. Type: init

Enable ARM semihosting

Load Symbols and Executable
[¥] Load symbols
@ Use project binary: mlfpga-cortex-ml-blinky.elf

() Use file: Workspace... File Systern...
Symbols offset (hex):

[¥] Load executable

@ Use project binany: mlfpga-cortex-ml-blinky.elf

() Use file: Workspace... File Systern...

Executable offset (hex):

Runtime Options
[[] Debug in RAM

Run/Restart Commands

Pre-run/Restart reset Type: halt (always executed at Restart)

[Set program counter at (hex):
[¥] Set breakpoint at: main
[¥] Centinue

Restore defaults

7. Click Debug.
8. The Confirm Perspective Switch dialog box opens as shown in the following figure.

Figure 84 « Confirm Perspective Switch Dialog Box

S§C Confirm Perspective Switch &J

This kind of launch is configured to open the Debug perspective when it suspends.

This Debug perspective is designed to support application debugging. It
incorporates views for displaying the debug stack, variables and breakpoint
management.

Do you want to open this perspective now?

7] Remember my decision

9. Click Yes.

The debugger copies the executable code to LSRAM and halts the execution at the first instruction in the
main.c file as shown in the following figure.The Cortex-M1 processor executes the code from LSRAM.

Microsemi Proprietary TUO778 Revision 7.0 48

Creating User Application Using SoftConsole O M. x
icrosemi

a AS\MicrocHip company

Figure 85 * First Instruction in main.c

File Edit Source Refactor Mavigate Search Project Run Window Help

i e mE W0 WM eSS HrO0-R-@E [
Quick Ac
%5 Debug &2 #lip T = 8 wev. ®

a [£] mlfpga-cortex-ml-blinky Debug [GDE OpenOCD Debugging]
4 ¥ mlfpga-cortex-ml-blinky.elf

MName
4 Thread #1 (Suspended : Breakpoint)
— . .)= temp
= main() at main.c:44 Oxfca
s openocd
s arm-none-eabi-gdb
“ 1
4
[W| cortexrml_cfg.h blinky.ld [hw_platform.h [£) main.c &2 = O
37 * main() function. -
3z */

9= int main()

CisIs ‘Funct_lc:n- Sets firmware system clock to Liberg definition

2

| uintd_t temp =1;

Y fLoreL LOCK 19
UART_init(&g_uart, UART_BASE_ADDRESS, SYS_M1_CLK_FREQ/((16 * BAUD_VALUE)-1), (DATA_8_ BITS

* Initialize the CoreGPIO driver with the base address of the CoreGPIO
* instance to use and the initial state of the outputs.

| 1] ¢

ecuy 5 Vemon, ' | =Y ':ﬁ |
D Debugging] arm-none-eabi-gdb

10. To resume the application execution, click Resume on the SoftConsole toolbar, as shown in the
following figure.

Figure 86 Resume Application Execution

File Edit Source Refactor Mavigate Search Project Run Window Help

s LTI Bren RS .E $-0-Q-&O V-

35@ o~ il w0 o - - Quick Access @l @ C/Ce+
45 Debug % Mli» T = 8 w=v® %E IR % =g
a [T] mlfpga-cortex-ml-blinky Debug [GDB OpenOCD Debugging] s % B | ® 5 ‘ it ~

a [mlfpga-cortex-ml-blinky.elf Name
4 Thread #1 (Suspended : Breakpoint) b
= main() at main.c:44 Ox8ca = temp
s openocd
s arm-none-eabi-gdb <] 2
-
4 T
inky. w_platform.l main.c L Proc.. 1 = Quthine
] blinky.Id hw_platferm.h = (gdb[1].p: ; = B8 | E= Outline &% = 0
37 :fmain() function. o PEEE Y o %
int main() =

W hw_platform.h

-
L ere unction- sets Firmare syeten clock to Ld deFinits U drivers/CoreGPIO/c| |
X IC.-.SIS unction- sets firmware system clock to Libero de lﬂl_l_ U drivers/CoreUARTa| =

uints_t temp =1; |E o /CMSIS/cortexml _y
W /CMSIS/system_co
SystemCoreClockUpdate(); # DIVISOR
UART_init(&g uart, UART_BASE_ADDRESS, SYS_ML_CLK_FREQ/((16 * BA @ g qpio: gpio_instar
- of delay(void) : void =
<] S L)

Microsemi Proprietary TUO778 Revision 7.0 49

Creating User Application Using SoftConsole

& Microsemi

a AS\MicrocHip company

11. The string, “Hello World!” is printed on the serial terminal as shown in the following figure. Also,
LEDs 4, 5, 6, and 7 blink on the PolarFire Evaluation Kit board.

Figure 87 » Hello World in Debug Mode

B COMO3 - PuTTY ESRECE X
Hello World! -

Hello World!
Hello World!
Hello World!
Hello World!
Hello World!
Hello World!
Hello World!
Hello World!
Hello World!
Hello World!
Hello World!
Hello World!
Hello World!
Hello World!

12. To suspend the application execution, select Run > Suspend in the SoftConsole Menu bar.
13. To view the values of the Cortex-M1 internal registers, click Registers, as shown in the following
figure.

Figure 88 « Cortex-M1 Register Values

()= Variables | ®p Breakpoints | {1} Registers 5 | ., Peripherals| i Modules ===
Name Value Description
v & General Registers General Purpose and FPU Register Group
i 0 Onf
il Onf
i 2 Onf
i 3 0x0
i rd Oxfly
il 13 (x42222028
il 6 0x40cd3bd6
i 7 w30
il 8 Ox47003fa2
i 9 0%758c240f
i o Ox602395
i 0%22061 cfly
i 2 0%45137dde
i sp i

tof Ir (%3435

14. To view the values of variables in the source code, click Variables.

15. On the SoftConsole toolbar, use the Step Over option to view the application execution line by line,
or use the Step Into option to execute the instructions inside a function. Use the Step Return option
to come out the function. You can also add breakpoints in the application source code.

16. To terminate the debugging of the application, click Terminate on the SoftConsole toolbar.

17. Close PuTTY and SoftConsole.

This concludes the debugging process of this tutorial.

Microsemi Proprietary TUO778 Revision 7.0 50

Appendix 1: Running the TCL Script

& Microsemi

a AS\MicrocHip company

4 Appendix 1: Running the TCL Script

TCL scripts are provided in the design files folder under directory TCL_Scripts. If required, the design
flow can be reproduced from Design Implementation till generation of job file.

To run the TCL, follow the steps below:

1. Launch the Libero software

2. Select Project > Execute Script....

3. Click Browse and select script.tcl from the downloaded TCL_Scripts directory.
4. Click Run.

After successful execution of TCL script, Libero project is created within TCL_Scripts directory.
For more information about TCL scripts, refer to mpf_tu0778_df/TCL_Scripts/readme.txt.

Refer to Libero® SoC TCL Command Reference Guide for more details on TCL commands. Contact
Technical Support for any queries encountered when running the TCL script.

Microsemi Proprietary TUO778 Revision 7.0 51

https://www.microsemi.com/document-portal/doc_download/1245481-libero-soc-v12-6-tcl-commands-reference-guide-for-smartfusion2-igloo2-and-rtg4

Appendix 2: References

5

& Microsemi

a @Mlcno:mn company

Appendix 2: References

This section lists the documents that provide more information about Cortex-M1 and other IP cores used
to build the Cortex-M1 subsystem.

For more information about the CORECORTEXM1 IP core, see CoreCortexM1_HB.pdf from
Libero->Catalog.

For more information about the CoreAHBtoAPB3 IP core, see CoreAHBtoAPB3 HB.pdf.

For more information about the CoreGPIO IP core, see CoreGPIO_HB.pdf.

For more information about the CoreUARTapb IP core, see CoreUARTapb_HB.pdf.

For more information about the CoreAHBLite IP core, see CoreAHBLite HB.pdf.

For more information about the CoreAPB3 IP core, see CoreAPB3_HB.pdf.

For more information about the PF_INIT_MONITOR IP core, see UG0725: PolarFire FPGA Device
Power-Up and Resets User Guide.

For more information about the PF_CCC IP core, see UG0684: PolarFire FPGA Clocking Resources
User Guide.

For more information about the PF_SRAM_AHBL_AXI IP core, see UG0680: PolarFire FPGA Fabric
User Guide.

For more information about Libero, ModelSim, and Synplify, see Microsemi Libero SoC webpage.

Microsemi Proprietary TUO778 Revision 7.0 52

https://www.microsemi.com/document-portal/doc_download/136522-ug0680-polarfire-fpga-fabric-user-guide
https://www.microsemi.com/document-portal/doc_download/136522-ug0680-polarfire-fpga-fabric-user-guide
http://soc.microsemi.com/ipdocs/CoreCortexM1_HB.pdf
https://www.microsemi.com/product-directory/design-resources/1750-libero-soc#documents
http://soc.microsemi.com/ipdocs/CoreGPIO_HB.pdf
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130958
http://soc.microsemi.com/ipdocs/CoreAHBLite_HB.pdf
http://soc.microsemi.com/ipdocs/CoreAPB3_HB.pdf
https://www.microsemi.com/document-portal/doc_download/136524-ug0684-polarfire-fpga-clocking-resources-user-guide
https://www.microsemi.com/document-portal/doc_download/136524-ug0684-polarfire-fpga-clocking-resources-user-guide
https://www.microsemi.com/document-portal/doc_download/136530-ug0725-polarfire-fpga-device-power-up-and-resets-user-guide
https://www.microsemi.com/document-portal/doc_download/136530-ug0725-polarfire-fpga-device-power-up-and-resets-user-guide
http://soc.microsemi.com/ipdocs/CoreAHBtoAPB3_HB.pdf

	1 Revision History
	1.1 Revision 7.0
	1.2 Revision 6.0
	1.3 Revision 5.0
	1.4 Revision 4.0
	1.5 Revision 3.0
	1.6 Revision 2.0
	1.7 Revision 1.0

	2 Building a Cortex-M1 Processor Subsystem
	2.1 Requirements
	2.2 Prerequisites
	2.3 Creating a Cortex-M1 Processor Subsystem
	2.3.1 Creating a Libero SoC Project
	2.3.2 Creating a New SmartDesign Component
	2.3.3 Instantiating the IP Cores in SmartDesign
	2.3.3.1 Instantiating CORERESET_PF
	2.3.3.2 Instantiating PF_INIT_MONITOR
	2.3.3.3 Instantiating PF_CCC
	2.3.3.4 Instantiating CoreCORTEXM1
	2.3.3.5 Instantiating CoreAHBLite
	2.3.3.6 Instantiating PF_SRAM_AHBL_AXI
	2.3.3.7 Instantiating CoreAHBtoAPB3
	2.3.3.8 Instantiating CoreAPB3
	2.3.3.9 Instantiating CoreGPIO
	2.3.3.10 Instantiating CoreUARTapb

	2.3.4 Connecting IP Blocks in SmartDesign
	2.3.5 Generating SmartDesign Component
	2.3.6 Managing Timing Constraints
	2.3.6.1 Deriving Constraints

	2.3.7 Running Libero Design Flow
	2.3.7.1 Synthesis
	2.3.7.2 Place and Route
	2.3.7.3 Verify Timing
	2.3.7.4 Generate FPGA Array Data
	2.3.7.5 Configure Design Initialization Data and Memories
	2.3.7.6 Generate Bitstream
	2.3.7.7 Run Program Action
	2.3.7.7.1 Board Setup
	2.3.7.7.2 Serial Terminal Emulation Program (PuTTY) Setup

	3 Creating User Application Using SoftConsole
	3.1 Creating a Cortex-M1 Project
	3.2 Downloading the Firmware Drivers
	3.3 Importing the Firmware Drivers
	3.4 Creating the main.c File
	3.5 Configuring the Cortex-M1 Project
	3.6 Mapping Memory and Peripheral Addresses
	3.7 Setting the UART Baud Rate
	3.8 Building the User Application in Release Mode
	3.9 Building In Debug Mode and Debugging the User Application

	4 Appendix 1: Running the TCL Script
	5 Appendix 2: References

