TUO0775
Tutorial
PolarFire FPGA: Building a Mi-V Processor Subsystem

& Microsemi

a A%\ MicrocHIP company

& Microsemi

a A8\ MicracHIP company

Microsemi Headquarters

One Enterprise, Aliso Viejo,

CA 92656 USA

Within the USA: +1 (800) 713-4113
Outside the USA: +1 (949) 380-6100
Sales: +1 (949) 380-6136

Fax: +1 (949) 215-4996

Email: sales.support@microsemi.com
www.microsemi.com

©2021 Microsemi, a wholly owned
subsidiary of Microchip Technology Inc. All
rights reserved. Microsemi and the
Microsemi logo are registered trademarks of
Microsemi Corporation. All other trademarks
and service marks are the property of their
respective owners.

Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of
its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the
application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have
been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any
performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all
performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not
rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer’s responsibility to
independently determine suitability of any products and to test and verify the same. The information provided by Microsemi
hereunder is provided “as is, where is” and with all faults, and the entire risk associated with such information is entirely
with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP
rights, whether with regard to such information itself or anything described by such information. Information provided in this
document is proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this
document or to any products and services at any time without notice.

About Microsemi

Microsemi, a wholly owned subsidiary of Microchip Technology Inc. (Nasdaq: MCHP), offers a comprehensive portfolio of
semiconductor and system solutions for aerospace & defense, communications, data center and industrial markets.
Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and
ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world's
standard for time; voice processing devices; RF solutions; discrete components; enterprise storage and communication
solutions, security technologies and scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs and
midspans; as well as custom design capabilities and services. Learn more at www.microsemi.com.

50200775. 9.0 8/21

mailto:sales.support@microsemi.com
http://www.microsemi.com

& Microsemi

a AX\MicracHp company

Contents

1 Revision History 1
1.1 RevVISION 9.0 1

1.2 ReVISION 8.0 1

1.3 ReVISION 7.0 . . . 1

14 ReVISION B.0 1

15 ReVISION 5.0 1

1.6 ReVISION 4.0 e 1

1.7 ReVISION 3.0 1

1.8 ReVISION 2.0 . . . 2

1.9 ReVISION 1.0 . .. 2

2 Building a Mi-V Processor Subsystem 3
2.1 ReqUIrEmMENtS e 3

2.2 PrereqUISItESo 4

23 Design DescCription 4
2.31 Fabric RAMs Initialization 5

24 Creating a Mi-V Processor Subsystem e 5
241 Creating a Libero Project 5

242 Creating a New SmartDesign Component 6

24.3 Instantiating IP Cores in SmartDesign 6

244 Connecting IP Instances in SmartDesign 18

245 Generating SmartDesign Component 22

246 Managing Timing Constraints e 22

247 Running the Libero Design Flow 23

3 Building the User Application Using SoftConsole 33
3.1 Creating a Mi-V SoftConsole Project 33

3.2 Downloading the Firmware Drivers 36

3.3 Importing the Firmware Drivers 37

3.4 Creating themain.C File 39

3.5 Mapping Firmware Drivers and the Linker Script 40

3.6 Mapping Memory and Peripheral Addresses e 46

3.7 Settingthe UART Baud Rate e e e 48

3.8 Building the Mi-V Project 49

3.9 Debugging the User Application Using SoftConsole i 50
3.10 Debugging the User Application from DDR3 Memory i 56

4 Appendix 1: Programming the Device Using FlashPro Express 57
5 Appendix2-References 60
6 Appendix 3-DDR3 Configuration 61

Microsemi Proprietary TUO775 Tutorial Revision 9.0 iii

Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22
Figure 23
Figure 24
Figure 25
Figure 26
Figure 27
Figure 28
Figure 29
Figure 30
Figure 31
Figure 32
Figure 33
Figure 34
Figure 35
Figure 36
Figure 37
Figure 38
Figure 39
Figure 40
Figure 41
Figure 42
Figure 43
Figure 44
Figure 45
Figure 46
Figure 47
Figure 48
Figure 49
Figure 50
Figure 51
Figure 52
Figure 53
Figure 54

& Microsemi

a AX\MicracHp company

Download New Cores Option i e e e e 4
Block Diagram e e 4
New Project Details 5
Device Selection 6
Create New SmartDesigno 6
Mi-V Configuration 7
TCM and DDR3 Memory Mapot e e e e e e e 8
CoreAXl4Interconnect Configurator — Bus Configuration Section 9
CoreAXl4Interconnect - Master0 Configuration 9
CoreAXl4Interconnect Configurator — SlaveO Configuration 10
Crossbar Configuration and Enabling Master Write Access Settings 10
Apply Option for MPF300T e e e 11
DDRS3 General Configurationt 11
DDR3 Controller Configuration e 12
CoreAPB3 Configuration 13
CoreGPIO Configuration 14
CoreSPI Configuration 15
CCC Configurator Clock Options PLL Tab e 16
CCC Configurator Output Clocks Tab e 16
INIT_MONITOR Configuration e e 17
Top SmartDesign with All Components Instantiated 18
Connection Method 18
Mi-V Subsystem Connected 19
Edit Slices WINdoWo 21
Generate Component ICoN 22
Derive Constraints Button 22
Derived CONStraints 22
O AttriDUES . . . o 24
Edit with I/O Editor Option 24
POt VW . 24
I/O Editor Design View —DDR3 Selection i 24
Memory View [active] Tab with DDR3 Subsystem Placement 24
DDR3_0 Placed 25
Fabric RAMS Tab 26
Edit Fabric RAM Initialization Client Dialog Box 26
Import Memory File Dialog BOX 27
Fabric RAMs Tab - Apply Button 27
Design Initialization Data e 28
SPIFlash Tab 28
COM Port NUMbEr . .. e e 30
Connection Type Selection 30
PUTTY Configuration e e 31
Hello World Stringo o e 32
Hello World String After the Boardis Power Cycled, 32
Workspace LaunCher e 33
New C Project Creation 33
C Project Dialog BoOXot 34
Select Configurations Dialog BoOX 34
GNU RISC-V Cross Toolchain e e 35
EmMpty Mi-V Project e e 35
Firmware Catalog Window e 36
RISCV HAL Files Report e e e 36
CoreUARTapb Files Report 36
CoreGPIO Files Report e e e 37

Microsemi Proprietary TUO775 Tutorial Revision 9.0 iv

Figure 55
Figure 56
Figure 57
Figure 58
Figure 59
Figure 60
Figure 61
Figure 62
Figure 63
Figure 64
Figure 65
Figure 66
Figure 67
Figure 68
Figure 69
Figure 70
Figure 71
Figure 72
Figure 73
Figure 74
Figure 75
Figure 76
Figure 77
Figure 78
Figure 79
Figure 80
Figure 81
Figure 82
Figure 83
Figure 84
Figure 85
Figure 86
Figure 87
Figure 88
Figure 89
Figure 90
Figure 91
Figure 92
Figure 93
Figure 94
Figure 95
Figure 96
Figure 97
Figure 98

& Microsemi

a AX\MicracHp company

CoreSPI Driver Files Report 37
Import Option 37
Import Dialog BoXo e 38
Import Dialog BoX - Page 2 e e 38
main.c File Creation 39
The main.cfile 39
The hw_platform.h File 40
Unresolved Header Files 40
C/C++ Build Settings 40
Target Processor Tool Settings i 41
GNU RISC-V Cross C Compiler Tool Settingst 41
Add Directory Path Dialog BOXo 42
CoreGPIO Folder Selection e 42
Tool Settings Tab with CoreGPIO Path Added 42
Tool Settings Tab After Successful Mappingc. i 43
Selecting the Linker Script 44
Linker Script Default Mappingt 45
RISC-V Flash Image Settings 46
LinKer SCript . .o 47
Updated hw_platform.h File 47
System Clock Frequency Definition 48
HeX File . . 49
DEebUg ICON . .o 50
Create, manage, and run configurations Window—MainTab 50
MiV_uart_blinky.elf Selection 51
Create, manage, and run configurations Window — Debugger Tab 52
Debug Settings- Startup Tab 53
Confirm Perspective Switch Dialog Box 53
First Instructioninthe main.cFile 54
Resume Application Execution 54
Hello World in Debug Mode 54
Mi-V Register Values 55
Variable Values 55
RAM Start Address Parameters i 56
Debugging from DDR3 56
FlashPro Express Job Project 57
New Job Project from FlashPro Express Job 58
Programming the Device 58
FlashPro Express—RUN PASSED i e e e i 59
General Tab 61
Memory Initialization 62
Memory TimMiNgot 63
CoNtroller . . 64
o 64

Microsemi Proprietary TUO775 Tutorial Revision 9.0 v

Tables

& Microsemi

a AX\MicracHp company

Table 1
Table 2
Table 3
Table 4
Table 5
Table 6

Tutorial Requirements e 3
CCC 0 OPINCONNECHONSttt e e e e e e e 20
DEBUG_TARGET Pin CONNECLIONS oottt e e e e 20
AXI4_Interconnect_0 Pin Connections 21
APB3_0 Pin CoNNECiONS e e 21
JUmper Settings 29

Microsemi Proprietary TUO775 Tutorial Revision 9.0 vi

Revision History © Microsemi

a AX\MicracHp company

1 Revision History

The revision history describes the changes that were implemented in the document. The changes are
listed by revision, starting with the current publication.

1.1 Revision 9.0

The following is a summary of the changes made in this revision.

*+ LSRAM was renamed to TCM throughout the document.

* Added Figure 6, page 7.

» Updated the reason for using the CoreAXl4Interconnect IP in Instantiating AXI Interconnect Bus IP,
page 8.

* Updated the start and end addresses of AXI4 Slave0 port in Instantiating AXI Interconnect Bus IP,
page 8.

* Updated Figure 10, page 10.

* Updated the SYS_CLK_FREQ macro definition from 111111000UL to 83333000UL, see Mapping
Memory and Peripheral Addresses, page 46.

1.2 Revision 8.0

The following is a summary of the changes made in this revision.

» Updated for Libero SoC v2021.1.
* Updated Table 1, page 3.
* Added Appendix 3 - DDR3 Configuration, page 61.

1.3 Revision 7.0

The following is a summary of the changes made in this revision.

* Updated Figure 2, page 4.

* Replaced Figure 6, page 7, and Figure 23, page 19.

* Removed sections Instantiating On-chip SRAM, page 10, Instantiating the AXI3 to AHB-Lite Bridge,
page 14, Instantiating the AHB-Lite Bus, page 14, and Instantiating the AHB-Lite to APB3 Bridge,
page 14.

* Updated section Connecting IP Instances in SmartDesign, page 18.

14 Revision 6.0

Updated for Libero SoC v12.5.

1.5 Revision 5.0

The following is a summary of the changes made in this revision.

* Updated for Libero SoC v12.2.

» Updated the design for AXl-based Mi-V Soft Processor for an enhanced performance with DDR
memories.

* Removed Libero SoC and SoftConsole version numbers.

1.6 Revision 4.0

The following is a summary of the changes made in this revision.

* Added Fabric RAMs Initialization, page 5.
* The document was updated for Libero SoC v12.0.

1.7 Revision 3.0

The following is a summary of the changes made in this revision.

Microsemi Proprietary TUO775 Tutorial Revision 9.0 1

Revision History © Microsemi

a AX\MicracHp company

* Added Design Description, page 4.
* The document was updated for Libero SoC PolarFire v2.1.

1.8 Revision 2.0

The following is a summary of the changes made in this revision.

* The document was updated for the Mi-V processor upgrade.

* The document was updated for Libero SoC PolarFire v2.0 and SoftConsole v5.2. For more
information, see Building the User Application Using SoftConsole, page 33.

. Information about TCM initialization from external SPI flash was added. For more information, see
Configure Design Initialization Data and Memories, page 25.

1.9 Revision 1.0

The first publication of this document.

Microsemi Proprietary TUO775 Tutorial Revision 9.0 2

Building a Mi-V Processor Subsystem © Microsemi

a AX\MicracHp company

2 Building a Mi-V Processor Subsystem

Microchip offers the Mi-V processor IP and software toolchain free of cost to develop RISC-V processor-
based designs. RISC-V, a standard open instruction set architecture (ISA) under the governance of the
RISC-V foundation, offers numerous benefits, which include enabling the open source community to test
and improve cores at a faster pace than closed ISAs.

PolarFire® FPGAs support Mi-V soft processors to run user applications. The objective of the tutorial is to
build a Mi-V processor subsystem that can execute an application from the designated fabric RAMs
initialized from the sNVM/SPI Flash. The tutorial also describes how to build a RISC-V application using
SoftConsole and run it on a PolarFire Evaluation Board.

21 Requirements

The following table lists the tutorial requirements for building a Mi-V processor subsystem.

Table 1« Tutorial Requirements

Requirement Version

Hardware

Host PC Windows 7, 8.1, or 10
POLARFIRE-EVAL-KIT (MPF300TS-FCG1152l) Rev D or Rev E'

— 12 V/5 AAC power adapter and cord
— USB 2.0 A to mini-B cable

Software

Libero SoC Design Suite See the readme . txt file provided in the
design files for all software versions
needed to create this reference design.

Firmware Catalog?

SoftConsole See the readme. txt file provided in the
design files for all software versions
needed to create this reference design.

PuUTTY (serial terminal emulation program)

1. Rev E Kit has a different on-board DDR part. For more information, refer to PolarFire Evaluation Kit Quick Start

Guide.
2. Firmware catalog is included in the installation package of Libero SoC.

Microsemi Proprietary TUO775 Tutorial Revision 9.0 3

https://www.microsemi.com/document-portal/doc_download/1243932-polarfire-fpga-evaluation-kit-quickstart-guide-production
https://www.microsemi.com/document-portal/doc_download/1243932-polarfire-fpga-evaluation-kit-quickstart-guide-production

Building a Mi-V Processor Subsystem @ Microsemi

2.2

Figure 1

2.3

a AX\MicracHp company

Prerequisites

1. Download the design files from:
http://soc.microsemi.com/download/rsc/?f=mpf tu0775_df

The design files folder contains the following folders:

* Programming_Job: Two programming files (.job) one each for Rev D (top_RevD.job) and
Rev E (top_ReVE.job) Kit are provided.
+ Solution: Contains the final Libero and SoftConsole projects for reference
* Source: Contains the source files required to complete this tutorial
2. Download and install Libero SoC from:
https://www.microsemi.com/product-directory/design-resources/1750-libero-soc#downloads

3. Download and install SoftConsole from:
https://www.microsemi.com/products/fpga-soc/design-resources/design-software/softcon-
sole#downloads

4. From the Libero Catalog, download the latest versions of the IP cores from the warning pop-up as
shown in the following figure.

Download New Cores Option

]
i flew cores are available: Download them now!

Design Description

The tutorial describes how to create a Mi-V subsystem for executing user applications. The user
application can be stored in yPROM, sNVM, or an external SPI flash. At device power-up, the PolarFire
System Controller initializes the designated TCM with the user application and releases the system
reset. If the user application is stored in SPI Flash, the System Controller uses the SC_SPI interface for
reading the user application from SPI Flash. The given user application prints the UART message “Hello
World!” and blinks user LEDs on the board.

The following figure shows the top-level block diagram of the design.

Figure 2+ Block Diagram
PolarFire FPGA

U oo
} Fabric } HPROM
| |
| |
| /\ | i
| |
} < Initialized } System 5‘ PN SPI
| ' MEM at power-up | Controller | ¢ Flash
| Mi-V P !
| Soft Processor |
| |
| |

|
| ;
: :
| y |
| |
! DDR I >
! < > “Plcontrolled ! > DDR3
| 4 4 |
| |
| v }
| A, A, |
| |
| |

PuTTY [« ? UART GPIO CoreSPI }

|
} A |
e e |

4 A 4
LEDs ’SPI Flash

Microsemi Proprietary TUO775 Tutorial Revision 9.0 4

https://www.microsemi.com/products/fpga-soc/design-resources/design-software/softconsole#downloads
https://www.microsemi.com/products/fpga-soc/design-resources/design-software/softconsole#downloads
http://soc.microsemi.com/download/rsc/?f=mpf_tu0775_df
https://www.microsemi.com/product-directory/design-resources/1750-libero-soc#downloads

Building a Mi-V Processor Subsystem © Microsemi

2.3.1

Note:

24

a AX\MicracHp company

Fabric RAMs Initialization

Each logical RAM instance in the design can be initialized from a different source— sSNVM, yPROM, or
SPI-Flash. The initialization client storage location is configurable. Generate the initialization data to add
the initialization clients to the chosen non-volatile memories and program the device. Program SPI-Flash,
if chosen as storage location for initialization data. For more information, see Configure Design
Initialization Data and Memories.

Libero SmartDesign and configuration screen shots shown in this tutorial are for illustration purpose only.
Open the Libero project to see the latest updates and IP versions.

Creating a Mi-V Processor Subsystem

Creating a Mi-V processor subsystem involves:

* Creating a Libero Project

+ Creating a New SmartDesign Component

* Instantiating IP Cores in SmartDesign

+ Connecting IP Instances in SmartDesign

* Generating SmartDesign Component

* Managing Timing Constraints

* Running the Libero Design Flow

This section describes all of the steps required to create a Mi-V processor subsystem on a new
SmartDesign canvas.

241 Creating a Libero Project
Follow these steps to create a Libero project:
1. On the Libero Menu bar, click Project > New Project.
2. Enter the following details, and click Next.
* Project name: PF_Mi_V_Tut
* Project location: For example, F: /Libero Projects
+ Preferred HDL type: Verilog
Figure 3+ New Project Details
G‘ Mew project = | B)
Project details
Specify project details
Project Details
Project name: PF_Mi_V_Tut
Project location: F:/Libero_Projects| Browse...

Device Selection
Device Settings
Design Template Preferred HOL type:
Add HDL Sources
Add Constraints

.
Libefo

Systemron-Chip

Description:

[Enable block creation

Microsemi Proprietary TUO775 Tutorial Revision 9.0 5

Building a Mi-V Processor Subsystem © Microsemi

a AX\MicracHp company

3. To choose the PolarFire device present on the PolarFire Evaluation Board, select the following
settings in the Device Selection window, and click Next.
* Family: PolarFire
+ Die: MPF300TS
* Package: FCG1152
* Speed: 1
*+ Range: IND
+ Part Number: MPF300TS-1FCG1152]

Figure 4+ Device Selection
Currently selected device is MPF300TS-1FCG11521
Part filter
Family: [PolarFire | Die: |MPF300TS ~| Package: |FCgi152 =]
Speed: |-1 =] Range: |IEHENE -
Reset filters |
Search part: |
Part Number DFF User 1/0s uSRAM LSRAM Math H-Chip Globals | PLL DLL
209544 512 2772 [924 48 3 3
4. Inthe Device Settings window, click Next to retain the default core voltage and 1/O settings.
5. Inthe Add HDL Sources window, click Next to retain the default settings.
6. Inthe Add constraints window, click Import file to import the I/O constraint file.
7. In the Import files window, locate the io_constraints.pdc file in the
DesignFiles directory\Source\io folder, and double-click it.
8. Click Finish.
The Log pane displays a message indicating that the PF_Mi_V_Tut project was created.
24.2 Creating a New SmartDesign Component
To create a new SmartDesign component:
1. In Libero, select File > New > SmartDesign.
2. Inthe Create New SmartDesign dialog box, enter top as the name of the new SmartDesign project,
as shown in the following figure.
Figure 5+ Create New SmartDesign

243

El Create New SmartDesign |i|éj
MName:
top|
oK] [Cancel

3. Click OK.
The top SmartDesign component is created.

Instantiating IP Cores in SmartDesign

When an IP core is dragged from the Catalog to SmartDesign, Libero prompts you to name the
component, and if applicable, to configure the IP core. After the core is configured, Libero generates the
component for that core and instantiates it in SmartDesign.

Microsemi Proprietary TUO775 Tutorial Revision 9.0 6

Building a Mi-V Processor Subsystem © Microsemi

a AX\MicracHp company

2431 Instantiating Mi-V Processor IP
1. From the Catalog, drag the MIV_RV32 to SmartDesign.
2. In the Create Component dialog box, enter MiV_RV32_C0 as the component name, and click OK.
3. Inthe Configurator, set the following configuration:
+ Set Reset Vector Address -> Upper 16 bits (Hex) to 0x8000 and retain the default setting for
Lower 16 Bits (Hex) as shown in Figure 6, page 7. This is the address the processor will start
executing from after a reset.
Figure 7, page 8 shows the memory map of TCM and DDR3 memory.

Figure 6 » Mi-V Configuration

8 Configuration | Memory Map | -
Extension Options
RISC-V Extensions: [T | @ Multipler: [Fzoric [i]

Intertzce Options

AHB Master: [Mone +| AHB Mimorcd IJF: [60
APB Master: [APB3 =] APBMirored JF: [@
AxlMaster: [AX14 ¢ AMI Mirored UF: [6D
Reset Vector Address
Upper 16bits (Hex): [0xB000 Lower 16bits (Hex): [0 6@

BootROM Cptions
BootROM: [¥ Reconfigure BootROM: [~ @

Tightly Coupled Memery (TCM) Options

TCM: F @ TCM APB Sleve (TAS): [@
Tnkterrupt Cptions

External System IRCs: |O =

(i]
Vectored Interrupts: | (i}

System Timer Cptions
Internal MTIME: [6 MTIME Prescaler: |100 Li] e

Internal MTIME TRQ: [€

Other Options -

Help E UK Cancel

Microsemi Proprietary TUO775 Tutorial Revision 9.0 7

Building a Mi-V Processor Subsystem

& Microsemi

a AX\MicracHp company

Figure 7+ TCM and DDR3 Memory Map
o Configuration Memory Map l
AHB Master Address
Start Address: Upper 16bits (Hex): |0x8000 Lower 16bits (Hex): [0x0
End Address: Upper 16bits (Hex): |0x8fff Lower 16bits (Hex): |0xffff
APB Master Address
Start Address: Upper 16bits (Hex): |0x6000 Lower 16bits (Hex): |0x0
End Address: Upper 16bits (Hex): |0x6fff Lower 16bits (Hex): |Oxffff
AXI Master Address
Start Address: Upper 16bits (Hex): |0x8001 Lower 16bits (Hex): |0x0
End Address: Upper 16bits (Hex): |0x8fff Lower 16bits (Hex): |Oxffff
TCM Address
Start Address: Upper 16bits (Hex): |0x8000 Lower 16bits (Hex): |0x0
End Address: Upper 16bits (Hex): |0x8000 Lower 16bits (Hex): |Oxffff
TCM APB Slave Address
Start Address: Upper 16bits (Hex): |0x4000 Lower 16bits (Hex): [0x0
End Address: Upper 16bits (Hex): |0x4000 Lower 16bits (Hex): |0x3fff
BootROM Address
Source Start Address: Upper 16bits (Hex): |0x8000 Lower 16bits (Hex): [0x0
Source End Address: Upper 16bits (Hex): |0x8000 Lower 16bits (Hex): |0x3fff
Destination Address: Upper 16bits (Hex): |0x4000 Lower 16bits (Hex): [0x0
24.3.2 Instantiating AXI Interconnect Bus IP

The AXI interconnect bus must be configured to connect the Mi-V core with memory. Also, the
AXl4Interconnect is needed for converting the Mi-V processor’'s AXI4 32-bit data to the DDR3 AXI4 64-
bit data, and also for bridging the Mi-V processor’'s AXI4 clock rate of 83.3 MHz to the DDR3 AXI4 clock
rate of 166.66 MHz.

1. From the Catalog, drag the CoreAXl4Interconnect IP core to SmartDesign.

2. Inthe Create Component dialog box, enter AXI4_Interconnect as the component name, and click
OK.
The Configurator opens.

3. Inthe Bus Configuration section, configure the AXI4_Interconnect IP to have one slave with an ID
width of 1, as shown in the following figure. Leave the rest as defaults.

Microsemi Proprietary TUO775 Tutorial Revision 9.0 8

Building a Mi-V Processor Subsystem

& Microsemi

a AX\MicracHp company

Figure 8 »

© Configuration ‘

=

=

=

Figure 9 »
@ Configuration

B Master0 Configuration

CoreAXl4Interconnect Configurator — Bus Configuration Section

Master Configuration \ Slave Configuration l Crossbar Configuration l

Bus Configuration

Number of Masters: |1 - Number of Slaves: |1 -

ID Width: 1 =l |0 Address Width: |32

—

OPTIMIZATION Configuration

User Width:

Optimization: © Performance © Area “ User

OPTIMIZATION Configuration

i
R
DWC Address FIFO Depth Ceiling [10
[sasD - @

4. In the Master Configuration section, retain the following MasterO default settings:
* MO Type: AXI4
* MO Data Width: 32 bits
MO DWC Data FIFO Depth: 16
* MO Register Slice: Selected
The following figure shows the Master0O configuration.

Max Outstanding Transactions: |2 ~
4

Read Arbitration Enable: il

Number of Threads:

Slave FIFO Address Depth: Slave FIFO Data Depth:

Crossbar Mode:

CoreAXl4interconnect - Master0 Configuration

Master Configuration ‘ Slave Configuration 1 Crossbar Configuration 1 -~

MO Type: AXI4 © MO Data Width: 32 =
MO DWC Data FIFO Depth: |16 = MO Register Slice: il

MO Clock Domain Crossing: [MO Read Interleaving: [

5. Inthe Slave Configuration section, configure the Slave0 port as follows:
» SO0 SLAVE Start Address (Lower 32 bits): 0x80010000
* SO0 SLAVE End Address (Lower 32 bits): 0x8FFFFFFF
* S0 Clock Domain Crossing: Enabled
+ Leave the rest as defaults

Microsemi Proprietary TUO775 Tutorial Revision 9.0

COREAXI4INTERCONNECT_0

Building a Mi-V Processor Subsystem © Microsemi

Figure 10

a AX\MicracHp company

CoreAXl4Interconnect Configurator — Slave0 Configuration

o Configuration l Master Configuration Slave Configuration Crossbar Configuration l

E slave0 Configuration

6.

S0 Type: AX14 - S0 Data Width: 64 -
S0 DWC Data FIFO Depth: 16 - S0 Register Slice: i
SO SLAVE Start Address (Upper 32 Bits): [0x0 SO SLAVE Start Address (Lower 32 Bits): [0x80010000
SO SLAVE End Address (Upper 32 Bits): [0x0 SO SLAVE End Address (Lower 32 Bits): |0x8ffffff
S0 Clock Domain Crossing: i S0 Read Interleaving: [

In the Crossbar Configuration section, ensure that the following options are set:

Under Enable Master Write Access, enable MO access SOUnder Enable Master Read Access,
enable MO access SO,

Leave the rest as defaults.

Figure 11 « Crossbar Configuration and Enabling Master Write Access Settings

@ Configuration I Master Configuration I Slave Configuration Crossbar Configuration \ 2]
Data Width Configuration
Crossbar Data Width: ,64—;|
5 Enable Master Write Access
MO access SO: [
2 Enable Master Read Access

MO access S0: [£

2433

COREAXI4INTERCONNECT_0

Instantiating DDR3 Memory Controller

This tutorial demonstrates how to build and debug an application from DDR3 memory. Executing an
application from DDR3 memory in the release mode requires a bootloader. The bootloader use case is
not in the scope of this tutorial.

If you are using the Rev D Kit, configure DDR IP as shown below. (If you are using Rev E Kit, see
Appendix 3 - DDR3 Configuration.)

1.
2.
3.

From the Catalog, drag the PolarFire DDR3 IP core to SmartDesign.

In the Create Component dialog box, enter DDR3_0 as the component name, and click OK.

In the left pane of the Configurator, expand Microsemi PolarFire Evaluation Kits > PolarFire
Evaluation Kit > MPF300T.

Left-click MT41K1G8SN-125, and click Apply, as shown in the following figure.

This configures the DDR3 controller with the initialization and timing parameters of the DDR3 mem-
ory (MT41K1G8SN-125) present on the PolarFire Evaluation Kit.

Microsemi Proprietary TUO775 Tutorial Revision 9.0 10

Building a Mi-V Processor Subsystem © Microsemi

a AX\MicracHp company

Figure 12 « Apply Option for MPF300T

Figure 13 «

I 4
PF_DDR3_Ul_default_configuration
- JEDEC
=l Microsemi PolarFire Evaluation Kits
= PolarFire Evaluation Kit
= MPF300T

MT41K1G85N-125

5. On the General tab, set the CCC PLL Clock Multiplier to 8, and the DQ Width to 16, as shown in

Figure 13, page 11.

The clock multiplier value of 8 sets the CCC PLL reference clock frequency to 83.333 MHz. A refer-
ence clock of this frequency is required for the PLL present inside the DDR3 subsystem. The PLL
generates a 666.666 MHz DDR3 memory clock frequency and a 166.666 MHz DDR3 AXI clock fre-
quency.

The DQ width is set to 16 to match the width of the DDR3 memory present on the board.

DDR3 General Configuration

General l Memaory Initialization l Memory Timing l Controller l Misc. l

E Top

Protocol DDR3 -

Generate PHY only |

B Clock
Memory Clock Frequency (MHz) W
CCC PLL Clock Multiplier s -]
CCC PLL Reference Clock Frequency (MHz) |83.333
User Logic Clock Rate QUAD -
User Clock Frequency W
B Topology
Memory Format ’W
DQ Width 16 =
SDRAM Number of Ranks ’ﬁ
Enable address mirroring on odd ranks [
DQ/DQS group size m
Row Address width ’167
Column Address Width ’117
Bank Address Width ’37
Enable DM DM hd
Enable Parity/Alert I

Microsemi Proprietary TUO775 Tutorial Revision 9.0 11

Building a Mi-V Processor Subsystem © Microsemi

6.

a AX\MicracHp company

On the Controller tab, ensure that the settings are as follows:
. Instance Number: 0

. Fabric Interface: AXI4

* AXIID Width: 4

* Enable Rank0 - ODTO check box: Selected

Figure 14+ DDR3 Controller Configuration

7.

General] Memory Initislization] Memory Timing Controller l Misc,

E Instance Select

|Instance Mumber |0 ¥ |

B user Interface

I Fabric Interface ’h I
AXI Width 64 -

| AXIID Width |4 |

B Efficiency

Enable Activate/Precharge look-shead |

Command queue depth 'ﬁ

Enable User Refresh Controls I

Address Ordering 'm
B Misc

Enable RE-INIT Controls [

E ODT Activation Settings on Write

Enable Ranko - 00T0 ¥ Enable Ranko - o0T1 [

Enable Rank1 - ooTo [Enable Rank1 - o0T1 ¥
E ODT Activation Settings on Read

Enable Ranko - 00T [Enable Ranko -0DT1 [

Enable Rank1 - ooTo [Enable Rank1-00T1 [

Retain the default settings for others tabs and click OK.

24.3.4 Instantiating APB3 Bus

1.
2.
3.

From the Catalog, drag the CoreAPB3 IP core to SmartDesign.

In the Create Component dialog box, enter APB3 as the component name, and click OK.

In the CoreAPB3 Configurator, select the following data width and address configuration settings, as

shown in the following figure:

* APB Master Data Bus Width: 32-bit

* Number of address bits driven by master: 16

» Position in slave address of upper 4 bits of master address: [27:24] (Ignored if master address
width >= 32 bits)

. Enabled ABP Slave Slots: Slot 0, Slot 1, and Slot 2.

This configuration sets the slave address map as follows:

« Slot0: 0x0000 - OxOFFF
* Slot1: 0x1000 - Ox1FFF
* Slot2: 0x2000 - Ox2FFF

Microsemi Proprietary TUO775 Tutorial Revision 9.0 12

Building a Mi-V Processor Subsystem © Microsemi

a AX\MicracHp company

Figure 15+ CoreAPB3 Configuration

4.

Data Width Configuration

APE Master Data Bus Width @ 32-bit ©) 16-bit ©) &-hit 3

Address Configuration

Mumber of address bits driven by master: [16 -]
Position in slave address of upper 4 bits of master address: [[2?:24] (Ignored if master address width == 32 bits) -]
Indirect Addressing: [Not in use -]

Allocate memory space to combined region slave

sloto: [Slot 12 [C] slet2: [Slot3: [
Sot4: [Slot 5[] Slota: [set7: [
Slota: [Slotg: [Slot 10: 7] Slot 11: [T] L
Slot 12:] Slot 13: O] Slot 14 [T] Slot 15: 7]

Enabled APE Slave Slots

| Slot 0 Slot 1: Slot 2: | Slot3: [
Sot4: [Slot 5[] Slota: [set7: [
Slota: [Slotg: [Slot 10: 7] Slot 11: [T]
Slot 12:] Slot 13: O] Slot 14 [T] Slot 15: 7]

Testbench:

License: (0) Obfuscated @ RTL |
4 1 | +
o] [
Click OK.

243.5 Instantiating UART Controller

1.
2.
3.

From the Catalog, drag the CoreUARTapb IP core to SmartDesign.
In the Create Component dialog box, enter UART_apb as the component name, and click OK.
In the CoreUARTapb Configurator, retain the default configuration, and click OK.

243.6 Instantlatlng the GPIO Controller

2.
3.

From the Catalog, drag the CoreGPIO IP core to SmartDesign.

In the Create Component dialog box, enter CoreGPIO_0 as the component name, and click OK.
In the CoreGPIO Configurator, select the following Global Configuration settings, as shown in the
following figure:

+ APB Data Width: 32

* Number of I/Os: 4

» Single-bit interrupt port: Disabled

* Output enable: Internal

Under I/0 bit 0, I/O bit 1, I/O bit 2, and /O bit 3, do the following, as shown in the following figure:
» Select Fixed Config.

+ Set the I/O type as Output.

+ Select the interrupt type as Disabled.

Four GPIO outputs are configured.

Microsemi Proprietary TUO775 Tutorial Revision 9.0 13

Building a Mi-V Processor Subsystem © Microsemi

a AX\MicracHp company

Figure 16 » CoreGPIO Configuration

Configuration l

Global Configuration

APB Data Width: 32 - Mumber of Ij0s: |4 -
Single-bit interrupt port: |Disabled Qutput enable: |Internal -

OG0

Qutput on Reset: |0 Fixed Config: v IfO Type: |Output - Interrupt Type: |Disabled -
1/0 bit 1

Qutput on Reset: |0 Fixed Config: v IfO Type: |Output - Interrupt Type: |Disabled -
1/0 bit 2

Qutput on Reset: |0 Fixed Config: v IfO Type: |Output - Interrupt Type: |Disabled -
1/0 bit 3

Qutput on Reset: |0 Fixed Config: v IfO Type: |Output - Interrupt Type: |Disabled -

5. Click OK to close the CoreGPIO Configurator.
24.3.7 Instantiating CoreSPI

The PolarFire Evaluation board contains two SPI Flash memories. One SPI Flash is connected to the
System Controller SPI interface (SC_SPI) for design initialization. The CoreSPI IP is used to interface
with the other SPI Flash, which is connected to the fabric I/Os. To instantiate CoreSPI:

1. From the Catalog, drag the CoreSPI IP core to SmartDesign.
2. In the Create Component dialog box, enter SPI_Controller as the component name, and click OK.
3. In the CoreSPI Configurator, do the following:
+ Set the APB Data Width to 32
. In the SPI Configuration section, set the mode to Motorola, frame size to 8, FIFO depth to 32,
and clock rate to 16.
* Inthe Motorola Configuration section, set the mode to Mode 0, and select the Keep SSEL
active check box.

Microsemi Proprietary TUO775 Tutorial Revision 9.0 14

Building a Mi-V Processor Subsystem

Figure 17 « CoreSPI Configuration

Configuration l

APB Data Width: © 8 ™ 18 + 32

SPI Configuration

Mode: {* Motorola Mode " TIMode " NSC Mode

Frame Size (4-32): |8

FIFO Depth (1-32): |32

Clock Rate (0-255): |16
Motorola Configuration

Mode: * Mode 0 " Mode 1 " Mode 2 " Mode 3

Keep SSEL active [+

TIMSC Configuration

Transfer Mode: + Normal " Custom

Free running dock r

Jumbo frames r

NSC Specific Configuration |S:a-*:a-': J

Testbench: |User ¥

License: RTL

4. Click OK.

& Microsemi

a AX\MicracHp company

24.3.8 Instantiating PolarFire Clock Conditioning Circuitry (CCC)

The PolarFire Clock Conditioning Circuitry (CCC) block generates a 83.333 MHz clock to the processor
subsystem, which is used as a reference clock to the DDR3_0_0 PLL. To instantiate the CCC block:

In the Configurator, set the configuration to PLL-Single.

In the Clock Options PLL tab, do the following:

» Set the input frequency to 50 MHz.

* Under Powerl/Jitter, select Maximize VCO for Lowest Jitter.
+ Set the feedback mode to Post-VCO.

+ Set the Bandwidth to High.

PO~

Microsemi Proprietary TUO775 Tutorial Revision 9.0

From the Catalog, drag the Clock Conditioning Circuitry (CCC) core to SmartDesign.
In the Create Component dialog box, enter CCC_0 as the component name, and click OK.

15

Building a Mi-V Processor Subsystem 0 Micmsemi

a AX\MicracHp company

Figure 18 «+ CCC Configurator Clock Options PLL Tab

Configuration IPLL-SingIe LI | :I

Clock Options PLL | Qutput Clacks |

I Input Frequency |50 MHzll_ Backup Clock
| Bandwidth |High ;| =0.099 MHz

Delay Line

[~ Enable Delay Line

& Reference Clock Delay ¢ Feedback Clock Delay

Delay Steps: I 1 3:

Power [Jitter

I(:' Maximize VCO for Lowest Jitter IVCO = 4888.88 MHz

 Minimize VCO for Lowest Power

Feedback Mode
IPost—\c‘CO 4 l

Features

[™ Integer Mode
I” 550G Modulation
[~ Enable Dynamic Reconfiguration Interface (DRI)

I 174 Expose PowerDown Port I -
| | LI—I y

5. In the Output Clocks tab, under the Output Clock 0 section, do the following:
» Select the Enabled check box to enable PLL output 0.
» Set the requested frequency to 83.333 MHz.
+ Select the Global Clock check box.

Figure 19 » CCC Configurator Output Clocks Tab

Configuration IPLL—SingIe 'l

Clock Options PLL Output Clocks |

For best results, put the highest frequency first.

E Output Clock 0
¥ Enabled
|Requested Frequency |83.333 MHzl Actual Lower 83.333 MHz & Actual Higher 83.333 MHz
Requested Phase |0 Degrees { Actual Lower 0 Degrees * Actual Higher 0 Degrees

i ifting - Expose Enable Port
" Global Clock [Global Clock (Gated) [” HS Y0 Clock [Dedicated Clock

6. Click OK and acknowledge the pop-up.

Microsemi Proprietary TUO775 Tutorial Revision 9.0 16

Building a Mi-V Processor Subsystem @ Microsemi

2439

Figure 20 «

24310

24311

a AX\MicracHp company

Instantiating PolarFire Initialization Monitor

The PolarFire Initialization Monitor is used to get the status of device initialization including the TCM
initialization. To instantiate the PolarFire Initialization Monitor:

1. From the Catalog, drag the PolarFire Initialization Monitor core to SmartDesign.

2. Inthe Create Component dialog box, enter INIT_Monitor as the component name, and click OK.

3. Inthe INIT_MONITOR Configurator > Bank Monitor tab, clear all the check boxes under
Calibration Monitor except for BANK1_CALIB_STATUS, and click OK.

4. Inthe INIT_MONITOR Configurator >VDDI Monitor tab, clear all the check boxes under VDDI
Monitor except for BANK_6_VDDI_STATUS, and click OK.

INIT_MONITOR Configuration

Bank Monitor ‘ Simulation Options I

& Calibration Monitor P F_I N IT_M o N ITO R_O

Enable BankO calibration status pin (BANK_0_CALIB_STATUS) |

|»

FABRIC_POR_Nf—
PCIE_INIT_DONE}-
USRAM_INIT_DONE|—
SRAM_INIT_DONE|-
DEVICE_INIT_DONE-
BANK_1_CALIB_STATUS}-
BANK_6_VDDI_STATUS
XCVR_INIT_DONE

[Core: E INIT MONITOR 201051~V - DONE
0 V N ROV

PROM_DONE

Enable Bank1 calibration status pin (BANK_1_CALIB_STATUS) [*

Enable Bank? calibration status pin (BANK_2_CALIB_STATUS) |
Enable Bank4 calibration status pin (BANK_4_CALIB_STATUS) |
Enable Bank5 calibration status pin (BANK_5_CALIB_STATUS) [
Enable Banké calibration status pin (BANK_6_CALIB_STATUS) |

Enable Bank7 calibration status pin (BANK_7_CALIB_STATUS) [

5 VDDI monitor

Enable Bank VDDI status pin (BANK_0_VDDI_STATUS) |

Enable Bank1 VDDI status pin (BANK_1_VDDI_STATUS) [

Enable Bank2 VDDI status pin (BANK_2_VDDI_STATUS) [USl;AM IT\IIT FROM SPI DONEl-
Enable Bank4 VDDI status pin (BANK_4_VDDI_STATUS) [SRAM INIT FROM SNVM DONE}-
Enable Bank5 VDDI status pin (BANK_5_VDDI_STATUS) [= SRAM INIT FROM UPROM DONE|—
Enable Banké VDDI status pin (BANK_6_VDDI_STATUS) [SRiAM IT\IIT FF;OM Sp:[iDONE .
Enable Bank? VDDI status pin (BANK_7_VDDI_STATUS) [) I_\UTOCRLIB_DONE -

PF_INIT_MONITOR

-
‘l ‘ » \ Symbol /

Instantiating CORERESET_PF

Two instances of the CORERESET_PF IP are required in this design.

1. From the Catalog, drag the CORERESET_PF IP.

2. In the Component Name dialog box, enter reset_syn_0 as the name of this component, and click
OK.

3. Retain the default configuration for this IP and click OK.
4. Similarly, instantiate another instance with reset_syn_1 as its name.

Instantiating CoreJTAGDebug

The CoreJTAGDebug IP connects the Mi-V soft processor to the JTAG header for debugging. To
instantiate CoreJTAGDebug:

1. From the Catalog, drag the CoreJTAGDebug IP core to SmartDesign.

2. In the Create Component window, enter COREJTAGDebug_0 as the component name, and click
OK.

3. Inthe Configurator, retain the default configuration, and click OK.

The following figure shows the top in SmartDesign after all the components are instantiated.

Microsemi Proprietary TUO775 Tutorial Revision 9.0 17

Building a Mi-V Processor Subsystem @ Microsemi

a AX\MicracHp company

Figure 21« Top SmartDesign with All Components Instantiated

DDR3_0_0

o
=
-
=
=
e
=
-
resst_myn_1 — :
] — =
- (=
INIT_Monitar_0 b -
=— =
1 =
- =
1 =
- =
[™
DTRE_D
OCC_0_h
resst_=myn_0 = N
o :‘:l: (COREANT4INTERCONMECT_CO_0 HART =pb D
== - —
—] —
THIT_Monkor — -
o COREANTAINTEACONNECT_CL
—=H
il MIV_RY32_C0.0
APEID COREGFIO_D_D
—a —]
- — —
- —]
=
T
TOREGFID_D
MIV_Av3zZ_00 SPI_Controfier_0
—
—]
—]
- -
"

SF1_Carfrolier

244 Connecting IP Instances in SmartDesign
Connect the IP blocks in SmartDesign using any of the following methods:

» Using the Connection Mode icon: You can initiate the connection mode in SmartDesign by clicking
the Connection Mode icon in the SmartDesign toolbar, as shown in the following figure. The cursor
changes from a normal arrow to the shape of the connection mode icon. To make a connection in
this mode, click the first pin and drag it to the second pin that you want to connect.

Figure 22 « Connection Method

@ ool M 2500 008" QA QA E ANDO

Connection Mode

+ Using the Connect option in the Context menu: You can also connect pins by selecting the pins,
and then selecting Connect from the context menu. To connect multiple pins, hold down the Ctrl key
while selecting the pins. Right-click the input source signal, and select Connect. To disconnect
signals, right-click the input source signal, and select Disconnect.

* Right-clicking on a pin provides a list of options like Mark Unused, Edit Slice, Tie Low, Promote to
Top-Level, and Tie High. Use these options for individual pins settings.

Figure 23, page 19 shows the Mi-V subsystem in SmartDesign with all IP blocks connected and top-level
1/Os.

Microsemi Proprietary TUO775 Tutorial Revision 9.0 18

Building a Mi-V Processor Subsystem @ Microsemi

a AX\MicracHp company

Figure 23 « Mi-V Subsystem Connected

OOR3_0_0

resst_syn_1
INIT_Monitar_0 Iy -
§ =
[T il -
cocoo
ressl_syn_0 :
s 1 B coreaszammerconnzcr_cn_o UART_ap D
—] |, I] I
[zl | | —
TNIT_Hanker B M1
poreT) ‘ COREAXT4INTERCONMNECT_C1 1
] =
-
i s I MIV_RY32_C0_0
I I
30 COREGPIO_0_D
= 1
« =
. -y
- COREEFID_0
| I_Carttrolies_0 -

"
SPL_Carkroliar

Note: Grayed out pins are marked unused, green pins are tied Low, and red pins are tied High. Ensure that
unused, tied-low, and tied-high pins are strictly set as per Figure 23, page 19.

Follow these steps to connect the IP blocks as per Figure 23, page 19:

1. Set the pins as follows on INIT_MONITOR_O:

+ Select PCIE_INIT_DONE, USRAM_INIT_DONE, SRAM_INIT_DONE, XCVR_INIT_DONE,
USRAM_INIT_FROM_SNVM_DONE, USRAM_INIT_FROM_UPROM_DONE,
USRAM_INIT_FROM_SPI_DONE, SRAM_INIT_FROM_SNVM_DONE,
SRAM_INIT_FROM_UPROM_DONE, SRAM_INIT_FROM_SPI_DONE, and
AUTOCALIB_DONE pins.

* Right-click the pins, and select Mark Unused.

+ Connect the FABRIC_POR_N pin to FPGA_POR _N pin of reset_syn_0 and reset_syn_1.

» Connect the DEVICE_INIT_DONE pin to reset_syn_0:INIT_DONE.

* Connect the BANK_1_CALIB_STATUS pin to reset_syn_1:INIT_DONE.

* Connect the BANK_6_VDDI_STATUS pin to reset_syn_0:BANK x_VDDI_STATUS,
reset_syn_0:BANK_y VDDI_STATUS, reset_syn_1:BANK_x_VDDI_STATUS, and
reset_syn_1:BANK_y_VDDI_STATUS.

2. Set the pins as follows on CCC_0_0:
* Right-click the REF_CLK_0 pin, and select Promote to Top Level.
» Connect the other pins as specified in the following table:

Microsemi Proprietary TUO775 Tutorial Revision 9.0 19

Building a Mi-V Processor Subsystem @ Microsemi

a AX\MicracHp company

Table 2 « CCC_0_0 Pin Connections

Connect From Connect To

reset_syn_0:PLL_LOCK and
reset_syn_1:PLL_LOCK

reset_syn_0:CLK and
reset_syn_1:.CLK

MIV_RV32:CLK
DDR3_0_0:PLL_REF_CLK
SPI_Controller_0:PCLK
UART_apb_0:PCLK

COREGPIO_0:PCLK
AXIl4_Interconnect_0:ACLK

PLL_POWERDOWN_N_0 reset_syn_0:PLL_POWERDOWN_B

PLL_LOCK_0

OUTO_FABCLK_0

3. Set the pins of reset_syn_0 as follows:
* Connect EXT_RST_N pin to DDR3_0_0:CTRLR_READY.
* Right-click SS_BUSY and FF_US_RESTORE pins and tie them low.
4. Connect the reset_syn_0:FABRIC_RESET_N to the following pins:
* MIV_RV32_CO: RESETN
* AXl4_Interconnect_0:ARESETN
+ UART_apb_0:PRESETN
+ COREGPIO_0:PRESETN
* SPI_Controller_0:PRESETN
Note: As DDR3_0_0:CTRL_READY pin is connected to reset_syn_0:EXT_RST_N, the Mi-V processor is held
in reset until the DDR3 controller is ready. The rest of the system is out of reset as soon as device
initialization is done.

5. Set the pins of reset_syn_1 as follows:
* Right-click SS_BUSY and FF_US_RESTORE pins and tie them low using the Tie Low option.
+ Select the EXT_RST_N pin and promote it to top level and rename it to resetn.
* Connect the FABRIC_RESET_N pin to DDR3_0_0:SYS_RESET_N.
* Right-click the PLL_POWERDOWN_B pin and mark it unused.
6. Set the pins as follows on COREJTAGDebug_0_0:
* Expand JTAG HEADER.
. Right-click the TDI, TCK, TMS, and TRSTB pins, and select Promote to Top Level.
+ Expand JTAG HEADER.
* Right-click the TDO pin, and select Promote to Top Level.
+ Connect the other pins as specified in the following table.

Table 3 « DEBUG_TARGET Pin Connections

Connect From Connect to
CoreJTAGDebug_0_0:TGT_TCK_0 MIV_RV32_CO0:JTAG_TCK
CoreJTAGDebug_0_0:TGT_TRSTB_0 MIV_RV32_CO0:JTAG_TRSTN
CoreJTAGDebug 0 _0:TGT_TMS_0 MIV_RV32_CO0:JTAG_TMS
CoreJTAGDebug_0_0:TGT_TDI_0 MIV_RV32_CO0:JTAG_TDI
CoreJTAGDebug_0_0:TGT_TDO_0 MIV_RV32_C0:JTAG_TDO

7. Set the pins as follows on MIV_RV32_CO:

Microsemi Proprietary TUO775 Tutorial Revision 9.0 20

Building a Mi-V Processor Subsystem

Note:

Figure 24 «

& Microsemi

a AX\MicracHp company

* Right-click the JTAG_TDO_DR pin, and select Mark Unused.
* Right-click the EXT_RESETN pin, and select Mark Unused.
* Connect APB_MSTR to APB3_0:APB3mmaster.
* Connect AXl4_MSTR to AXI4_Interconnect_0:AXl4mmasterO.
8. Connect the AXI4_Interconnect_0 pins as specified in the following table.

Table 4 « AXI4_Interconnect_0 Pin Connections

AXl4_Interconnect_0 Pin Name Connect To
S_CLKO DDR3_0_0:SYS_CLK
AXl4mslave0 DDR3_0_0:AXl4slave0

9. Connect the APB3_0 pins as specified in the following table.

Table 5 « APB3_0 Pin Connections

Connect From Connect To
APB3_0:APBmslave0 UARTapb_0:APB_bif
APB3_0:APBmslave1 COREGPIO_0:APB_bif
APB3_0:APBmslave2 SPI_Controller_0:APB_bif

10. Set the pins as follows on DDR3 0 O:
* Right-click the PLL_LOCK output pin, and select Mark Unused.
* Right-click the CTRLR_READY pin, and select Promote to Top Level for debug purpose. The
CTRLR_READY signal is used to monitor the status of the DDR controller.
« Ensure that the other pins are promoted to top level.
11. Set the pins as follows on SPI_Controller_0:
* Right-click the SPISSI pin, and select Tie High.
* Right-click the SPICLKI pin, and select Tie Low.
* Right-click the SPIINT, SPIRXAVAIL, SPITXRFM, SPIOEN, and SPIMODE pins, and select
Mark Unused.
. Right-click the SPISDI, SPISCLKO and SPISDO pins, and select Promote to Top Level.
12. Right-click the SPISS[7:0] pin, select Edit Slices, and edit the slices shown in the following figure.
In this tutorial, a single SPI Flash is used. Hence, while settings the pins of the SPI_Controller_0 block,
we need only Oth bit of the SPISS. Bits 1:7 need to be sliced and marked as unused.

Edit Slices Window
B Edit Slices - SPISS[7:0] ? X
create] ~| slices of width |1~ Add Slices
+| x|

spiss[7:0] @ Left | Right

1 0 0
2 7 1

Help OK Cancel

Microsemi Proprietary TUO775 Tutorial Revision 9.0 21

Building a Mi-V Processor Subsystem @ Microsemi

245

Figure 25 «

2.4.6

2.4.61

Figure 26 »

Figure 27 »

a AX\MicracHp company

* Right-click the SPISS[7:1] pin, and select Mark Unused.

* Right-click the SPISS[0] pin, and select Promote to Top Level.
13. Set the pins as follows on UARTapb_0:

* Right-click the RX and TX pins, and select Promote to Top Level.

* Right-click the TXRDY, RXRDY, PARITY_ERR, OVERFLOW, FRAMING_ERR pins, and select

Mark Unused.

14. Set the pins as follows on GPIO_0:

* Right-click the GPIO_IN[3:0] pin, and select Tie Low.

* Right-click the INT[3:0] pin, and select Mark Unused.

* Right-click the GPIO_OUT[3:0] pin, and select Promote to Top Level.
15. Right-click the top SmartDesign canvas, and select Auto Arrange Layout.
16. Click File > Save top.

The IP blocks are successfully connected. Figure 23, page 19 shows all the IP blocks of the Mi-
subsystem connected.

Generating SmartDesign Component
To generate the SmartDesign component:

1. In Design Hierarchy, right-click top, and select Set As Root.
2. Save the project.
3. Click the Generate Component icon (shown in the following figure) on the SmartDesign toolbar.

®

When the Mi-V component is generated, the Message window displays the message, “The top was
generated successfully.”

Generate Component Icon

4. Select the Build Hierarchy option and save the project.

Managing Timing Constraints

Before running the Libero design flow, you must derive the timing constraints and import the JTAG and
asynchronous clocking constraints.

Deriving Constraints

To derive constraints:

1. Double-click Manage Constraints on the Design Flow tab.
2. Inthe Manage Constraints window, select the Timing tab, and click Derive Constraints, as shown
in the following figure.

Derive Constraints Button

1/0 Attributes Timing l Floor Planner] Netlist At‘tributesl

New | Import | Link | Edit |v Check |" A Derive Cunstra'mts' Constraint Coverage |v Help |

| | Synthesis | Place and Route |T\mmg Verification

The design hierarchy is built, and the top derived contraints.sdc file is generated in the
project folder.

In the dialog box that appears, click Yes to associate the SDC file to the Synthesis, Place and Route, and
Timing Verification tools, as shown in the following figure.

Derived Constraints

1/O Attributes Timing I Floor Planner l Netlist At‘tributesl

New | Import | Link | Edit |v Check |" Derive Constraints | Constraint Coverage |* Help
| Synthesis | Place and Route |Timing Verification
constraint\top_derived_constraints.sdc vl W] vl

3. Save the project.

Microsemi Proprietary TUO775 Tutorial Revision 9.0 22

Building a Mi-V Processor Subsystem @ Microsemi

2.4.6.2

2.4.7

Note:

2471

24.7.2

a AX\MicracHp company

Importing Other Constraint Files

The JTAG clock constraint and the asynchronous clocks constraint must be imported. These constraints
(.sdc) files are available in the DesignFiles directory\Source folder.

To import and map the constraint files:

1. On the Timing tab, click Import.

2. Navigate to the DesignFiles directory\Source folder, and select the
timing user constraints.sdc file.

3. Select the Synthesis, Place and Route, and Timing Verification check boxes next to the
timing user constraints.sdc file.
This constraint file defines that the CCC_0_0 output clock and DDR3_0_0 AXI clock are asynchro-
nous clocks.

4. Save the project.

Running the Libero Design Flow
This section describes the Libero design flow, which involves the following steps:

* Synthesis

+ Place and Route

« Verify Timing

* Generate FPGA Array Data

+ Configure Design Initialization Data and Memories
* Generate Design Initialization Data

* Generate Bitstream

* Run PROGRAM Action

* Generate SPI Flash Image

* Run PROGRAM_SPI_IMAGE Action

After each step is completed, a green tick mark appears next to the step on the Design Flow tab.
To initialize the TCM in PolarFire using the system controller, a local parameter I_cfg_hard_tcm0_en, in

themiv_rv32 opsrv_cfg pkg.v file should be changed to 1°’b1 prior to synthesis. See the 2.7 TCM
section in the MIV_RV32 Handbook.

Synthesis

To synthesize the design:

1. Right-click Synthesis, select Configure Options and disable the Enable automatic compile point
checkbox.

2. Double-click Synthesis on the Design Flow tab.
When the synthesis is complete, a green tick mark appears next to Synthesize.

3. Right-click Synthesize and select View Report to view the synthesis report in the Reports tab.

Place and Route
The place and route process requires the following steps to be completed:
» Selecting the already imported io constraints.pdc file

* Placing the DDR3_0_0 block using_the I/O Editor
* Ensuring all the I/Os are locked

To complete these steps and to place and route the design:
1. Double-click Manage Constraints on the Design Flow tab.
2. Onthe I/O Attributes tab, select the check box nextto the io constraints.pdc file, as shown in

the following figure. The io_constraints.pdc file contains the 1/0 assignment for reference
clock, UART, GPIO, and SPI interfaces, and other top-level |/Os.

Microsemi Proprietary TUO775 Tutorial Revision 9.0 23

https://www.microsemi.com/document-portal/doc_download/1244850-mi-vrv32imc

Building a Mi-V Processor Subsystem © Microsemi

a AX\MicracHp company

Figure 28 » 1/O Attributes

1/0 Attributes] Timing | Floor Planner | Netlist Attributes |

Mew |v Import | Link | Edit |v View Check Help

| Place and Route
constraint\ic\io_constraints.pdc

3. From the Edit drop-down list, select Edit with I/O Editor, as shown in the following figure.
Figure 29 « Edit with 1/O Editor Option

1/0 Attributes l Timing l Floor Planner l Netlist Attributesl

New Import | Link | View Check Help Save
| Edit with I/O Editor | Place and Route

4. Inthe I/O Editor, click the Port View [active] tab, and lock the CTRLR_READY port to pin C27, as
shown in the following figure. This ensures that the CTRLR_READY port is assigned to pin C27,
which is connected to an user LED for debug purposes.

Figure 30 »+ Port View

Port View [active] & Pnview & | Memoryview & | IODView & XCVR View & Package View &
Port Mame T Direction | ¥ I/0 Standard |» Pin Murmber | » Locked | ¥
1 CTRLR_READY LVCMOS18

5. To place the DDR3 I/O lanes, In the I/O Editor Design View, click the Port tab in the left pane, and
select DDR3, as shown in the following figure.

Figure 31« 1/O Editor Design View — DDR3 Selection

! Q=
ports EIFTIE
+ B /O Ports
- 3 1}|DDR3

% AT DDR3_0_0(width=16, rate=1333.33)
+ & @] Lanel-ADDR/CMD
+ & (@] Lane2-ADDR/CMD
+ (% (@] Lane3-ADDR/CMD
& <e] cxo
& @] cKo_N
+- {3} Lane-DQ[7:0]
+ B} Lane-DOQ[15:8]
g SHIELDO
& (@] SHIELD1
B Dedicated Ports

6. Drag and place the DDR3 subsystem on the NORTH_NE side, as shown in the following figure. The
DDR3 memory on the board is connected to DDR 1/Os present on the north-east side.

Figure 32+ Memory View [active] Tab with DDR3 Subsystem Placement

Main Object Browser B X potview @ | PnView 8 | ¥CVRVien @ MemoryView factve] & | 100View & |
@l ~.
| JJ Memary Type: |DDR3 ¥
Ports 8@ L=
© B8 /0 Ports [PortFunction [t Port Name >| PinNumber [¥ Fu
i D%}RSDRSOD(idith=16, rate=1333.33) Il > nMORTHNE Unassig DDR3_0_Ofwidth=16, rate=1333.33)
- (width=16, rate=1333. : ;
- MORTH_NW u Legal Memory Interface location
i (@] Lanel-ADDR/CMD = > = e
+ (] Lane2-ADDR/CMD Bl b soutHsE Assigned
(@] Lanes-ADDR/CMD B8 P soutHsw Unassigned
g cKo B > wesTw Unassigned
CKO_N :
+ {3 Lane-DO7:0] - ’ WEST_SW Unassigned
F Lane-DO[15:8]
{g] SHIELDD
(o] ISHIELD1
&3 8 Dedicated Ports

The DDR3 subsystem is placed on the NORTH_NE side, as shown in the following figure.

Microsemi Proprietary TUO775 Tutorial Revision 9.0 24

Building a Mi-V Processor Subsystem © Microsemi

a AX\MicracHp company

Figure 33+ DDR3_0 Placed
Port View &] PFin View &] XCVR View & Memoary View [active] & l

Memory Type: |DDR3 ™

Port Function 1 Port Name ¥ | Pinl
1 P NORTHNE |DDR3.0_O(width=16. rate=133333)| |
146 P NORTH_NW Unassigned
(201 | P SOUTH.SE e
(364 | P SOUTHSW s
(258 | P WEST_NW U
(500 | B WEST sw Unassigned

7. From |/O Editor Port View tab, check if there are any unlocked I/Os, and lock them as mapped in the
io constraints.pdc file available in the Design Files Directory\Source\io folder.
Click Save.
9. Close the I/O Editor.
A user.pdc file is created for DDR3_0_0 block in the Constraint Manager > I/O Attributes and
Floor Planner tabs.

®

Note: DDR3_0_0 can also be placed using the fp_constraints.pdc. Importthe fp constraints.pdc
from Constraint Manager > Floor Planner tab and select the place and route option after synthesis.
This constraint file is available in the Design Files Directory\Source\fp folder.

10. Double-click Place and Route from the Design Flow tab.
When place and route is successful, a green tick mark appears next to Place and Route.

24.7.3 \Verify Timing
1. Double-click Verify Timing on the Design Flow tab.
When the design successfully meets the timing requirements, a green tick mark appears next to Ver-
ify Timing.
2. Right-click Verify Timing and select View Report to view the verify timing report in the Reports tab.

24.74 Generate FPGA Array Data
Double-click Generate FPGA Array Data on the Design Flow tab.

When the FPGA array data is generated, a green tick mark appears next to Generate FPGA Array Data.

24.7.5 Configure Design Initialization Data and Memories

The Configure Design Initialization Data and Memories step in the Libero design flow is used to
configure the TCM initialization data and storage location. User can use yPROM, sNVM, or SPI Flash as
storage location based on the size of the initialization data and design requirements. In this tutorial, the
SPI Flash memory is used to store the TCM initialization data.

This process requires the user application executable file (HEX file) as input to initialize the TCM blocks
after device power-up. The hex file is provided with the design files. For more information about building
the user application, see Building the User Application Using SoftConsole.

Note: The HEX file available in the DesignFiles Directory\Source folder is already modified to be
compatible.

To generate an TCM initialization client and add it to an external SPI flash device:

1. Double-click Configure Design Initialization Data and Memories on the Design Flow tab.

2. On the Fabric RAMs tab, select
top/MIV_RV32_C0_0/MIV_RV32_CO0_0/u_opsrv_0/gen_tcm0.u_opsrv_TCM_0/tcm_ram_macro
.u_ram_0 from the list of logical instances, and click Edit, as shown in the following figure. The
top/MIV_RV32_CO0_0/MIV_RV32_CO0_0/u_opsrv_0/gen_tcm0.u_opsrv_TCM_0/tcm_ram_macro.u_r
am_0 instance is the MIV_RV32 processor's main memory. The System Controller initializes this
instance with the imported client at power-up.

Microsemi Proprietary TUO775 Tutorial Revision 9.0 25

Building a Mi-V Processor Subsystem

Figure 34 + Fabric RAMs Tab

i

& Microsemi

a AX\MicracHp company

I

I Fiter aut Infemed RAMs

Logical Instance Name De;ff:;m De;ffxm Memory Contant
15 | DDR3_0_0/DDRPHY_BLK_0/I0D_TRAINING._0/COREDDR_TIP_INT_U/LANE_ ALIGNMENT/genbiki[11FIFO_BLK/ram_simple_dp/memi63:0] x84 x84 No conten
16 | DDR3_0_O/DDRPHY_BLK_0/I0D_TRAINING_O/COREDDR_TIP_INT_U/TIR_CTRL BLK/TRN_CLK/cmd_addr. trainer/indly[7-0] B B Ne conten
17 | DDR3_0_O/DDRPHY_BLK_0/I0D_TRAINING_0/COREDDR_TIP_JNT_U/TIR_CTRL BLK/TRN_CLK/cmd_addr_trainer/cutdly{T:0] B B Ne conten:
18 | DDR3_0_0/MSC__O/MSC_I_1/MSC_LBMSC I12/MSC_I_15/MSC_L135/memi34:0] 1635 1835 N conten
19| DDR3_0_O/MSC_O/MSC_IL1/MSC_LB/MSCIL12/MSC I13/MSC_LA4/meml128:0] 10244128 10244128 No conten
20| DDR3_0_0/MSC__O/MSC_I_1/MSC_LBMSC I12/MSC_i137/MSC_L14D/memi5:0] 182 162 Ne conten
21| DDR3_0_0/MSC__O/MSC_I1/MSC_LB/MSC I_12/MSC_LAS/MSC_i_T6/memI45:0] 1024245 1024245 Ne conten:
22| DDR3_0_0/MSC_J_O/MSC_I1/MSC_LB/MSC I_12/MSC_LTT/MSC_i_80/memITE0] 256673 256k73 N conten
23| DDR3_0_0/MSC__O/MSC_I1/MSC_LB/MSC I_12/MSC_LE1/MSC_i_84/memI68:0] 512670 512470 No conten
24| DDR3_0_0/MSC_J_0/MSC_I_1/MSC_LB/MSC I_12/MSC_i_BS/MSC_I_T14/mem[144:0] 5126145 5126145 Ne conten
25| DDR3_00/MSC__O/MSC_I_1/MSC_LB/MSC I_187wrtq b sizelé0] 2] &8 Ne conten:
26| DDR3_0_0/MSC__0/MSC_I_1/MSC_LB/MSC i_217/MSC_L218/MSC_IL219/gen,fifo_regsl0] nonresenable.fifol63:0] 314 314 N conten
27| DDR3_0_0/MSC_J_O/MSC_I1/MSC_LB/MSC I_217/MSC_L221/MSCIL222/MSC1_225/mem(E3:0] 3284 3284 No conten
28| MIV_RV32_C0_0/MIV_RV32.CO_0/u_opsrv_0/gen tem0.u_opsn_TCM_0/scm_ram_macro.u_ram_0 65536432 65536432 C:/PF_task jan_2021/4esuTUOTTS/MIV_uare_blinky/Miv_uar:biinky.he
28| MIV_RV32_C0_0/MIV_RV32_(CO_0/u_opsrv_0/u_core. 0/u_sxpipe_0/gen_gpr_ram.u_gpr_0/gen_gpr.u gpr_armsy_0/memi31:0] 3232 3232 Ne conten:
30| MIV_RV32_CD_0/MIV_RV32.(CO_0/u_opsrv_0/u_core. 0/u_sxpipe 0/gen_gpr_ram.u_gpr_0/gen_gpr.u gpr_arrsy_0/mem_1531:0] 3232 3232 N conten
31| 5¥1_Controller_0/SP|_Contraller 0/USP/URKF/fifo_mem_gle] 2@ 328 Inieialized
32| 5¥1_Controller0/SP|_Controller 0/USPU/UTXF fifo_mem,_q[a] 2@ 328 Inisialized

| »

Figure 35 «

3. Inthe Edit Fabric RAM Initialization Client dialog box, set Storage type to SPI-Flash and click the
Import button next to Content from file, as shown in the following figure.

Edit Fabric RAM Initialization Client Dialog Box

@ Edit Fabric RAM Initialization Client

Clientname: [LSRAM_D

Physical Name: [HB_AXI_0/LSRAM_PF_TPSRAM_AHB_AXI_D_PF TPSRAM_RSCO/INST_RAMIK20_IP

— RAM Initiglization Options

€ Initizlized Content from Synthesis

& Content from file: II

" Content filed with 0s

' No content (dient is a placeholder and will not be programmed)

Optimize for: ¢ High Speed € Low power

Storage Type ISNVM =~ l

sNVM

Help

[o |

Close

r

4. Inthe Import Memory File dialog box, locate the MiV_uart blinky.hex file from

DesignFiles directory\Source folder. Select the “Use relative path from project directory”

option.

Microsemi Proprietary TUO775 Tutorial Revision 9.0

26

Building a Mi-V Processor Subsystem © Microsemi

a AX\MicracHp company

Figure 36 + Import Memory File Dialog Box

(® Import Memary File ? *
Look in: | D:\ympf_tud775_liberosoc_df\Source j @] 0 Eﬁ @ E]
] My Computer Name |Size |Type |Dahe Modified |
2 13087 fp Fil.der 9/23/2..:

io Fil..der 9/23
B Miv_uart_blinky.hex . 9KB hexFile 9/20/2..:26FM

Files of type: |Intel-Hex(=hex =.ihx) | Cancel

" Use absolute path (file will not be copied if you move the design)

I {+ Use relative path from project directory I

File name: |Mi\u'_uart_blinky.hex

" Copy memory file to project directory |
5. In the Edit Fabric RAM Initialization Client window, click OK.
6. On the Fabric RAMs tab, click Apply, as shown in the following figure.
Figure 37 »+ Fabric RAMs Tab - Apply Button

Desiqn Initisization | uPROM | sNVM | SPIFlash Fabric RAMS‘]

| Apply || Discard | Help |

Usage statistics Clients

LSRAM Memory Load design configuration Edit... | Initialize all dients from: |User Selection ﬂ

Available Memory(Bytes): 2437120
Used Memary(Bytes): 184320
Free Memory(Bytes) : 2252300

I Filter Inferred RAMs

PORTA
Depth * Width

7. In the Design Initialization tab, under Third stage (UPROM/sNVM/SPI-Flash), select the SPI-Flash
- No-binding Plaintext option is selected and ensure that the SPI Clock divider value is set to 6, as
shown in the following figure. This means that the imported user application will be written to SPI-
Flash without encryption and authentication.
Note: The SPI Clock divider value specifies the required SPI SCK frequency to read the initialization data from
SPI Flash. The SPI Clock divider value must be selected based on the external SPI Flash operating
frequency range.

8. Click Apply.

. PORTB
Logical Instance Name Depth * Width Memory Content | Storage Type | Memory Source

Microsemi Proprietary TUO775 Tutorial Revision 9.0 27

Building a Mi-V Processor Subsystem

& Microsemi

a AX\MicracHp company

Figure 38 »+ Design Initialization Data

Desian Imﬁa\izaﬁun*} uPROM | shM | SPIFlash | FabricRams|

I Apply |I Discard | Help |

In design initislization, user design blocks such as LSRAM, pSRAM, transceivers, and PCIe can be initialized as an option using data stored in the non-volatile storage memory.
The initialization data can be stored in pPROM, sNYM, or an external SPI Flash.

Follow the below steps to program the initialization data:

1. Set up your fabric RAMs initislization data, if any, using the 'Fabric RAMs' tab
2. Define the storage location of the initialization data

3. Generate the initislization dients

4. Generate or export the bitstream

5. Program the device

Design initialization specification
First stage (sMVM)
In the first stage, the initialization sequence de-asserts FABRIC_POR_N.
Second stage (sNVM)

In the second stage, the initialization sequence initializes the PCle and XCVR blocks present in the design.

Start address for second stage initialization dient: Ox |OC

Third stage (sNVM/uPROM/SPI-Flash)

In the third stage, the initialization sequence initializes the Fabric RAMs present in the design.
To save the initialization instructions in sNVM/uPROM/SPI-Flash, please use 'Fabric RAMs' tab to make your selection for each RAM dient.

¥ start address for sNVM dients: 0x | 00000000 sMVM start page: 0

I™ start address for LPROM dients: 0x |

I ¥ Start address for SP1Flash dients: 0x |00000400 I

SPI-Flash Binding: SPI-Flash - No-binding Plaintext | @b SPIClock divider value: |6(13.33 MHz) x| @ I

W Broadcast instructions to initialize RAM's to zero's

This concludes the configuring of the storage type and application file for the fabric RAMs initialization.

24.7.6 Generate Design Initialization Data
1. Double-click Generate Design Initialization Data on the Design Flow tab.

When the design initialization data is generated successfully, a green tick mark appears next to

Generate Design Initialization Data in the Libero Design flow, and the following messages appear
in the Log window:

Info: 'Generate design initialization data' has completed successfully.
Info: Stage 1 initialization client has been added to sNVM.

Info: Stage 2 3 initialization client has been added to sNVM

Info: Stage 3 initialization client has been added to SPI.

2. Click the SPI Flash tab to verify that the bin file has been added, as shown in Figure 39, page 28.
Note: In order to streamline the SPI-Flash Programming support with FlashPro6, effective from Libero SoC
v12.4, the vendor information is replaced with the density of the target memory.

Figure 39 « SPI Flash Tab

Design Initialization I UuPROM] SNVM SPI Flash

Fabric RAMs I

o | |

I™ Enable Auto Update

| SPI Flash memory size: |123 LI MB I

Usage statistics SPI Flash Clients
Available memory (KB): 131071 Add... |v Edit Delete
Used memory (KB): 17
Fi KB) : 131054
e P N T Ind Content Fil ot £ad
rogram ame ype ndex ontent File noes || s
| v INIT_STAGE_3_SPI_CLIENT Design Initialization

designer\top\top_uic.bin 0x400 Oxdac3

Note: For more information about design initialization, see UG0725: PolarFire FPGA Device Power-Up and
Resets User Guide.

Microsemi Proprietary TUO775 Tutorial Revision 9.0 28

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=136530
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=136530

Building a Mi-V Processor Subsystem

& Microsemi

a AX\MicracHp company

2.4.7.7 Generate Bitstream

To generate the programming bitstream:

* Double-click Generate Bitstream on the Design Flow tab.
When the bitstream is generated, a green tick mark appears next to Generate Bitstream.

2478 Run PROGRAM Action

After generating the bitstream, the PolarFire Evaluation Board must be set up so the device is ready to
be programmed. Also, the serial terminal emulation program (PuTTY) must be set up to view the output
of the user application. This step involves the following:

1. Board Setup
2. Serial Terminal Emulation Program (PuTTY) Setup
3. Programming the PolarFire Device

24.7.81 Board Setup
To set up the board:

1. Ensure that the jumper settings on the board are as listed in the following table.

Table 6+ Jumper Settings

Jumper Description

J18, J19, J20, Short pins 2 and 3 for programming the PolarFire FPGA through FTDI.
J21, J22

J28 Short pins 1 and 2 for programming through the on-board FlashPro5.
J26 Short pins 1 and 2 for programming through the FTDI SPI.

J27 Short pins 1 and 2 for programming through the FTDI SPI.

J23 Open pins 1 and 2 for programming SP!I flash.

J4 Short pins 1 and 2 for manual power switching using SW3

J12 Short pins 3 and 4 for 2.5 V.

Note: For more information about the Jumper locations on the board, see the silkscreen provided in UG0747:
PolarFire FPGA Evaluation Kit User Guide.

2. Connect the power supply cable to the J9 connector on the board.
3. Connect the host PC to the J5 (USB) port on the PolarFire Evaluation Board using the USB cable.
4. Power on the board using the SW3 slide switch.

2.4.7.8.2 Serial Terminal Emulation Program (PuTTY) Setup

The user application (MiV_uart blinky.hex file) prints the string Hello World! on the serial terminal
through the UART interface.
Follow these steps to set up the serial terminal:

1. Start the PUTTY program.

2. Start Device Manager, note the second-highest COM port number, and use that in the PuTTY
configuration. For example, in the list of ports shown in the following figure, COM93 is the port with
the second highest number assigned to it.

Microsemi Proprietary TUO775 Tutorial Revision 9.0 29

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=136765
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=136765

Building a Mi-V Processor Subsystem

Figure 40

Figure 41 »

COM Port Number

3.
Connection Type Selection

4.
5.

4. ;" Ports (COM & LPT)
- L.YZ' ECP Printer Port (LPT1)
? FlashPro5 Port (COM91)

& Microsemi

a AX\MicracHp company

ﬁ PuTTY Configuration

Select Serial as the Connection type, as shown in the following figure.

G

Rlogin) SSH IG Serial

Speed
9600

Load

(@ Only on clean exit

Category:
=8 Sgssion Basic options for your PuTTY session
P Logaing Specify the destination you wart to connect to
(=)~ Teminal Serial
. Keyboard enal line
. Bell Comi
- Features Connection type:
=- Window ") Raw () Telnet ()
EEE::ETE Load, save or delete a stored session
.. Translation Saved Sessions
- Selection
- Colours Default Settings
=)~ Connection R7600
- Data com8_115200
- Proogy
- Telnet
- Rlogin
- 55H
- Sl Close window on exit:
) Mways () Never
About [Cpen

J [Cancel l

Set the serial line to connect to the COM port number noted in Step 3.
Set the Speed (baud) to 115200 and Flow Control to None, as shown in the following figure.

Microsemi Proprietary TUO775 Tutorial Revision 9.0

30

Building a Mi-V Processor Subsystem © Microsemi

Figure 42 »

24.78.3

24.79

a AX\MicracHp company

PuTTY Configuration
@ PuTTY Configuraticn @
Cateqany:

E]- Session Options controlling local seral lines

L I..ogging Select a serial line

[=- Terminal
- Keyboard Serial line to connect to I Coms3
- Bell
- Features Configure the seral line

= Window Speed (baud) 115200
ﬁppea@nce Data bits]
- Behaviour
- Tranglation Stop bits 1
- Selection Pt
- Colours any

[l Connection Flow control

. Data

- Prosgy
- Telnet

- Rlogin

E ..
- Senal I

About I [Open I[Cancel]

6. Click Open.

PuTTY opens successfully, and the serial terminal emulation program is set up.
Programming the PolarFire Device

To program the PolarFire device:

* Double-click Run PROGRAM Action on the Design Flow tab.
When the device is programmed, a green tick mark appears next to Run PROGRAM action.

Generate SPI Flash Image
To generate the SPI flash image:

* Double-click Generate SPI Flash Image on the Design Flow tab.
When the SPI file image is successfully generated, a green tick mark appears next to Generate SPI
Flash Image.

Microsemi Proprietary TUO775 Tutorial Revision 9.0 31

Building a Mi-V Processor Subsystem © Microsemi

a AX\MicracHp company

24.710 Run PROGRAM_SPI_IMAGE Action
To program the SPI image:

1. Double-click Run PROGRAM_SPI_IMAGE on the Design Flow tab.
2. In the dialog box that appears, click Yes.
When the SPI image is successfully programmed on to the device, a green tick mark appears next to
Run PROGRAM_SPI_IMAGE.
After SPI flash programming is completed, the device needs to be reset to execute the application. The
following sequence of operations occurs after device reset or power-cycling the board:

1. The PolarFire System Controller initializes the TCM with the user application code from the external
SPI flash and releases the system reset.

2. The Mi-V processor exits reset after DDR3 controller is ready and executes the user application from
the TCM. As a result, LEDs 4, 5, 6, and 7 blink, and the string Hello World! is printed on the serial
terminal, as shown in the following figure.

Figure 43 « Hello World String
- B 22—l

Hello World!

3. When the board is power cycled, the device performs the same sequence of operations. As a result,
LEDs 4, 5, 6, and 7 blink, and Hello World! is printed again on the serial terminal, as shown in the
following figure.

Figure 44 « Hello World String After the Board is Power Cycled

Hello World!

Hello World!

Microsemi Proprietary TUO775 Tutorial Revision 9.0 32

Building the User Application Using SoftConsole © M. .
Iicrosemi

3

3.1

Figure 45

Figure 46 «

File

2 Open Projects from File System...
5.

a AX\MicracHp company

Building the User Application Using
SoftConsole

This section describes how to build a RISC-V user application executable (.hex) file and debug it using
SoftConsole.

Building the user application involves the following steps:

Creating a Mi-V SoftConsole Project, page 33
Downloading the Firmware Drivers, page 36

Importing the Firmware Drivers, page 37

Creating the main.c File, page 39

Mapping Firmware Drivers and the Linker Script, page 40
Mapping Memory and Peripheral Addresses, page 46
Setting the UART Baud Rate, page 48

Building the Mi-V Project, page 49

Creating a Mi-V SoftConsole Project

To create a Mi-V SoftConsole project:

1.

2.
3.

Create a SoftConsole workspace folder on the host PC for storing SoftConsole projects. For
example, D: \Tutorial\MiV_Workspace.

Start SoftConsole.

In the Workspace Launcher dialog box, paste D: \Tutorial\MiV_Workspace as the workspace
location, and click Launch, as shown in the following figure.

Workspace Launcher

4.

AL T D\ Tutorial\MiV_Workspac | Browse...

Use this as the default and do not ask again
+ Recent Workspaces

When the workspace is successfully created, the SoftConsole main window opens.
Select File > New > Project, as shown in the following figure.

New C Project Creation

Edit Source Refactor Navigate Search Project Run Window UltraDevelop Help

New

Alt+Shift+N > E1 Makefile Project with Existing Code

Open File... [C/C++ Project

=

™ Project...

Expand C/C++ and select C Project in the New Project dialog box.

Microsemi Proprietary TUO775 Tutorial Revision 9.0 33

Building the User Application Using SoftConsole © M. .
: Iicrosemi

a AX\MicracHp company

6. Inthe C Project dialog box, do the following:

» Enter a name for the project in the Project name field. For example, MiV_uart_blinky.
* Inthe Project type pane, expand Executable, and select Empty Project and the Toolchain as

RISC-V Cross GCC, as shown in the following figure. Then, click Next.
Figure 47 « C Project Dialog Box

SC C Project O Pt

C Project

Create C project of selected type

Project name: | MiV_uart_blinky |

Use default location

D:\Tutoria\MiV_Workspace\MiV_uart_blinky Browse...
Project type: Toolchains:
& GNU Autotools ARM Cross GCC
~ (= Executable | Cross GCC

RISC-V Cross GCC
@ Hello World ARM C Project
@ Hello World RISC-V C Project
@ Hello World ANSI C Project

= Shared Library

(= Static Library

= Makefile project

Show project types and toolchains only if they are supported on the platform

@ < Back Finish Cancel

7. After selecting the platforms and configurations you want to deploy, click Next.
Figure 48 « Select Configurations Dialog Box

SC C Project m} X

Select Configurations

Select platforms and configurations you wish to deploy on L —

Project type: Executable
Toolchains: RISC-V Cross GCC

Configurations:

& Debug Select all

& Release
Deselect all

Advanced settings...

Use "Advanced settings” button to edit project's properties.

Additional configurations can be added after project creation.
Use "Manage configurations” buttons either on toolbar or on property pages.

@' < Back Finish Cancel

8. Ensure that the Toolchain name and Toolchain path are as shown in Figure 49.

Microsemi Proprietary TUO775 Tutorial Revision 9.0

34

Building the User Application Using SoftConsole

& Microsemi

a AX\MicracHp company

Figure 49 » GNU RISC-V Cross Toolchain
SC C Project O X
GNU RISC-V Cross Toolchain =
Select the toolchain and configure path o
Toolchain name: ‘ RISC-V GCC/Newlib (riscv64-unknown-elf-gec) M ‘
Toolchain path: ‘ ${eclipse_home}/../riscv-unknown-elf-gcc/bin | Browse...
9. Click Finish in the GNU RISC-V Cross Toolchain wizard.
An empty Mi-V project (MiV_uart_blinky) is created, as shown in the following figure.
Figure 50 - Empty Mi-V Project
File Edit Source Refactor Mavigate Search Project Run Window Help
milhd [B~ ~RiE~6 (G HF -0 - Q-i®E &~ @viBiw|S
YA (e 18
25 Project Explorer = =0 Zox ™ = 8
&g < ~ I
5 MiV_uart_blinky An outline is not available,
[22 Problems 52 & Tasks Console T Properties P|le v=1
0 items
Description - Resource Path Location
< >

=5 MiV_uart_blinky

Microsemi Proprietary TUO775 Tutorial Revision 9.0

35

Building the User Application Using SoftConsole @ M. .
Iicrosemi

a AX\MicracHp company

3.2 Downloading the Firmware Drivers

The empty Mi-V project requires the MIV_RV32 Hardware Abstraction Layer (HAL) files and the following
peripheral drivers:

« CoreGPIO
+ CoreUARTapb
. CoreSPI Driver

Download the MIV_RV32 HAL files and drivers using the Firmware Catalog application.
To download the drivers:

1. Create a folder named firmware in the Mi-V project workspace.
2. Open Firmware Catalog. The following figure shows the Firmware Catalog window.

Figure 51 « Firmware Catalog Window
¥ Firmware Catalog

File View Tools Help

View (170/170):
‘ W% Al 3 Vault @] Web repositories

[display only the latest version of a core

Name Version Size (MB) Status
MIV_RV32 Hardware Abstraction Layer (HAL) 3.0.109 1.70
MIV_RV32 Hardware Abstraction Layer (HAL) 3.0.107 1.59 3.0.109 is in the vault

3. If new cores are available, click Download them now!

4. Right-click MIV_RV32 Hardware Abstraction Layer (HAL), and select Generate.

5. In the Generate Options window, enter D:\Tutorial\MiV_Workspace\firmware as the project
folder, and click OK.
When the files are generated, the Reports window lists the files generated, as shown in the following
figure.

Figure 52 « RISCV HAL Files Report

Files generated in 'D: {Tutorial\Miv_Workspace\firmware':

hal\cpu_types.h

halthal.h

halthal_assert.h

halthal_irg.c

halthw_macros.h
halthw_reg_access.h
halthw_reg_access.5
riscv_hallencoding.h
riscy_hallentry.S

riscv_halljnit.c
riscv_halmicrosemi-riscv-igloo2.1d
riscv_halmicrosemi-riscv-ram.|d
riscv_halYriscv_hal.c
riscv_halYriscv_hal.h
riscv_halYriscv_hal_stubs.c
riscy_halYriscv_plic.h
riscv_hal\sample_hw_platform.h
riscv_hallsyscall.c

6. Right-click CoreUARTapb Driver, and select Generate.
7. In the Generate Options window, enter D:\Tutorial\MiV_Workspace\firmware as the project
folder, and click OK.
When the files are generated, the Reports window lists the files, as shown in the following figure.
Figure 53 « CoreUARTapb Files Report
Files generated in 'D: {Tutorial\Miv_Workspace\firmware':
drivers\CoreUARTapb'\coreuartapb_regs.h

drivers\CoreUARTapb'core_uart_apb.c
drivers\CoreUARTapb'core_uart_apb.h

8. Right-click CoreGPIO Driver, and select Generate.
9. In the Generate Options dialog box, enter D:\Tutorial\MiV_Workspace\firmware as the project
folder, and click OK.

Microsemi Proprietary TUO775 Tutorial Revision 9.0 36

Building the User Application Using SoftConsole

& Microsemi

a AX\MicracHp company

When the files are generated, the Reports window lists the files, as shown in the following figure.
Figure 54 « CoreGPIO Files Report
Files generated in 'D: \Tutorial\Miv_Workspace\firmware':
drivers\CoreGPIO\coregpio_regs.h

drivers\CoreGPIO\core_gpio.c
drivers\CoreGPIO\core_gpio.h

10. Right-click CoreSPI Driver, and select Generate.

11. Inthe Generate Options window, enter D:\tutorial\MiV_Workspace\firmware as the project folder,
and click OK.
When the files are generated, the Reports window lists the files, as shown in the following figure.

Figure 55« CoreSPI Driver Files Report
Files generated in 'D: {Tutorial\Miv_Workspace\firmware':

drivers\CoreSPI\corespi_regs.h
drivers\CoreSPI\core_spi.c
drivers\CoreSPI\core_spi.h

The RISC-V HAL and firmware drivers are generated.
3.3 Importing the Firmware Drivers

After the driver files are downloaded, they must be imported into the empty project.

To import the drivers:
1. In SoftConsole, right-click the MiV_uart_blinky project, and select Import, as shown in the following
figure.
Figure 56 + Import Option

New >

Go Into

Open in New Window

Show In Alt+Shift+W >
Show in Local Terminal >
— @& Copy Ctrl+C
SC MiV_Workspace - Paste Ctrl+V = | X
File Edit Source Re % Delete Delete aDevelop Help
o v il o0 Source b T T @«
HEvOve~-Q Move... a |
& Project Explorer & Rename... =) son ™ =g
5 E = _*‘ Import. There is no active
= MiV_uart blinky Export... editor that provides

& Robot Framework

Build Project
Clean Project
Refresh

Close Project

E5)

an outline.

Microsemi Proprietary TUO775 Tutorial Revision 9.0

37

Building the User Application Using SoftConsole © M. .
: Iicrosemi

a AX\MicracHp company

2. Inthe Import dialog box, expand the General folder, and double-click File System, as shown in the
following figure.

Figure 57 + Import Dialog Box

SC |mport O X
Select \
Import resources from the local file system into an existing project. E o E |

Select an import wizard:

type filter text

w [= General
JE Archive File
=% Existing Projects into Workspace
[T] Preferences
(=} Projects from Folder or Archive
(= C/C++
(= Git
= Install
(= Run/Debug
= Team

3. On the next page of the Import dialog box, do the following (see Figure 58):
+ Click Browse, and locate the D: \Tutorial\MiV Workspace\firmware folder.
« Select the firmware folder, and click OK.
. Expand the firmware folder, and select the drivers, hal, and riscv_hal folders.
* Click Finish.

Figure 58 « Import Dialog Box - Page 2

SC |mport [m] b

File system e
Import resources from the local file system. e L
From directory: | DA\ TutoriahMiV_Workspace\firmware v| Browse...

v [(= firmware

w [7] (= drivers
[= CoreGPIO
= CoreSP|

[= CoreUARTapb
A & filelist
M = hal
(A = riscv_hal

Filter Types... Select All Deselect All
Into folder: | MiV_uart_blinky Browse...
Options

[] Overwrite existing resources without warning

[Create top-level folder

Advanced >

The miv_rv32_hal, hal, and driver files are imported into the MiV_uart_blinky project.

Microsemi Proprietary TUO775 Tutorial Revision 9.0 38

Building the User Application Using SoftConsole © M. .
: Iicrosemi

a AX\MicracHp company

3.4 Creating the main.c File

To update the main.c file:

1. On the SoftConsole menu, click File > New > Source File.
2. Inthe New Source File dialog box, enter main.c in the Source file field, and click Finish, as shown
in the following figure.

Figure 59 » main.c File Creation

SC Mew Source File O *
Source File
Create a new source file, L
Source folder: | MiV_uart_blinky | Browse...
Template: Default C source template ~ Configure...

@' | Finish | Cancel

The main.c file is created inside the project, as shown in the following figure.

Figure 60 « The main.c file

File Edit Source Refactor Navigate Search Project Run Window Ultral
wilh g [® v & v @it v:iB: TRl w|Siwitinigy &

. & g =
& Project Explorer S Y & = O

v & MiV_uart_blinky

Binaries e

& Includes *

= Debug * %

& drivers G

& hal G

= miv_rv32_hal g

= Release

g main.c J**
"
¥

3. Copy all of the content of the DesignFiles directory\Source\main.c file, and paste it in the
main.c file of the SoftConsole project.

4. Save the SoftConsole main. c file.

5. Similarly, create another file named hw_platform.h.

6. Copy all of the content of the DesignFiles directory\Source\hw platform.h file, and
paste it in the newly created hw_platform.h file.

Note: The hw platform.h file includes the system clock frequency, baud rate, and base addresses of
peripherals. The hw _platform.h file appears as shown in Figure 61.

Microsemi Proprietary TUO775 Tutorial Revision 9.0 39

Building the User Application Using SoftConsole © M. .
: Iicrosemi

a AX\MicracHp company

Figure 61+ The hw platform.h File

File Edit Source Refactor Navigate Search Project
H~-ig! B w|&iny > |®>&| -
I Project Explorer 2 BESY 8 =
~ & MiV_uart_blinky

Binaries

& Includes

= Debug

= drivers

= filelist

= hal

(= riscv_hal

[hw_platform.h

[9 main.c

3.5 Mapping Firmware Drivers and the Linker Script

At this stage, the drivers and the MIV_RV32 HAL files are not mapped. Therefore, the corresponding
header files in the main.c file are unresolved, as shown in the following figure.

Figure 62 + Unresolved Header Files

[Project Explorer 532 = 8 | [€ *mainc & =
2% ¥ g°/

© 52 MIV_uart_blinky § (c) Copyright 2016-2017 Microsemi SoC Products Group. All rights r
[t Includes 4 * This simple example demonstrates how to use the CoreUARTapb driver
(== drivers 5 ¥ CoreGPIO driver. This example application prints Hello World! on ¢
(= filelist 6 * Terminal program and blinks LEDs on PolarFire Evaluation Kit.
= hal ‘i

-] 7

= rlsc.\.r_hal 9 #include "riscv _hal.h”
Ll main.c 18 #include "core uart_apb.h”

#include "core _gpic.h”
12 #include “"sample hw platform.h”

13 #include "hw_reg access.h”

80 |[oD |[oD |[oD |[ond
=
=

To map the drivers and HAL files:

1. Right-click the MiV_uart_blinky project, and select Properties.

2. Expand C/C++ Build, and select Settings.

3. Set the configuration to All Configurations, as shown in the following figure. This setting applies the
upcoming tool settings to both release and debug modes.

Figure 63 + C/C++ Build Settings

Settings oo

Configuration: [All configurations] v Manage Configurations...

4. Inthe Tool Settings tab, expand Target Processor, and select the following settings:
» Architecture: RV32I(-march=rv32i*)
* Integer ABI: ILP32(-mabi=il32*)
* Multiply extension: Enabled

Microsemi Proprietary TUO775 Tutorial Revision 9.0 40

Building the User Application Using SoftConsole

& Microsemi

a AX\MicracHp company

Figure 64 » Target Processor Tool Settings

SC Properties for MiV_uart_blinky m] B
: type filter text] Settings h vk
> Resource ~
Builders . . . = =
v C/Ch+ Build Configuration: [All configurations | ¥ Manage Configurations...
Build Variables
f:“i“_'-":‘"‘e“‘ ® Tool Settings % Toolchains B Devices ~ Build Steps = Build Artifact i Binary Parsers @ Error Parsers
i
s.:t?ng? 2 Target Processor Architecture RV321 (-march=rv32i*) v
Tool Chain Edi & Optimization [+] Multiply extension (RVM)
> C/fC++ General : Wﬂ;ni"gs [] Atomic extension (RVA)
3 i & Debuggi
» ::gljh e v B GNU g;cr:‘gv Cross Assembler Floating paint (100 -
Project Natures 2 Preprocessor [] Compressed extension (RVC)
Project Reference: & Inchudes Integer ABI ILP32 (-mabi=ilp32*) i
Run/Debug Setti & Womings Floating point ABI None ~
& Miscellaneous
v ® GNU RISC-V Cross € Compiler Tuning Tookchain default -
& Preprocessor Code model Toolchain default i
 Includes Small data imit | 8
& Optimization
2 Warnings Align Toolchain default (-mitune) v
& Miscellaneous [] Small prologue/epilogue (-msave-restare)
¥ 8 GNU RISC-V Cross C Linker Force string operations to call Fbrary functions (-mmemcpy
& General Other target flags
& Libraries
& Miscellaneous
¥ ® GNU RISC-V Cross Create Flash Image
& General
¥ ® GNU RISC-V Cross Print Size
& General
< > &
2 Cancel

5. Expand GNU RISC-V Cross C Compiler, and select Includes.
6. Click Add to add the driver and MIV_RV32 HAL directories, as shown in the following figure.

Figure 65+ GNU RISC-V Cross C Compiler Tool Settings

i Tool Settings %3 Toolchains ;!; Devices .ﬁ' Build Steps Build Artifact Binary Parsers | 4 | %

@ Target Processor Include paths (-1)
(# Optimization
(# Warnings
(2 Debugging
~ 3 GNU RISC-V Cross Assembler
(22 Preprocessor
2 Includes
(# Warnings
(2 Miscellaneous
~ 3 GNU RISC-V Cross C Compiler
(22 Preprocessor
(2 Includes
(# Optimization
(# Warnings
(2 Miscellaneous
~ 3 GNU RISC-V Cross C Linker
General
2 Libraries
(2 Miscellaneous
~ 3 GNU RISC-V Cross Create Flash Image
it}
v @%Nfle;l:rca{‘u’ Cross Print Size Include files (-include] a0 85

@ General

Include system paths (-isystem) [E AR R

Note: This application does not require including system paths and other files.

7. Inthe Add directory path dialog box, click Workspace, as shown in the following figure.

Microsemi Proprietary TUO775 Tutorial Revision 9.0 41

Building the User Application Using SoftConsole O M. .
: Iicrosemi

a AX\MicracHp company

Figure 66 + Add Directory Path Dialog Box
SC Add directory path [

Directory:

’ 0K ” Cancel [Workspace...]I’ File system...]
—

8. Inthe Folder Selection dialog box, expand MiV_uart_blinky project > drivers, select the
CoreGPIO folder, and click OK, as shown in the following figure.

Figure 67 « CoreGPIO Folder Selection

SC Folder selection O X

Select one or more Workspace Folders

v 25 MiV_uart_blinky
= settings
= Debug

~ [= drivers
(= CoreSPI
= CoreUARTapb
= hal
(= Release
= riscv_hal
= RemoteSystemsTempFiles

9. In the Add directory path dialog box, click OK.
The CoreGPIO folder path is added, as shown in the following figure.

Figure 68 « Tool Settings Tab with CoreGPIO Path Added

SC Properties for riscv_uart_blinky l G | S
type filter text Settings - r v
> Resource -
Builders -
4 C/C++ Build Configuration: ’DEbUQ [Active] '] ’Manage Configurations...] |E|

Build Variables
Environment

m

Logging) Tool Settings | 4 Build Steps | Build Artifact | Binary Parsers | @ Error Parsers|
Settings m
Tool Chain Editor (2 Target Processor Include paths (1) £ g o
. C/C++ General (¥ Debugging - = E—
Linux Tools Path R (# Additional Tools . -
® [oK] ’ Cancel]

10. Repeat the preceding steps to add the CoreUARTapb, CoreSPI, hal, MIV_RV32_HAL, and
MiV_uart_blinky (ProjName) folder paths.
The drivers and MIV_RV32_HAL files are successfully mapped, as shown in Figure 69.

Microsemi Proprietary TUO775 Tutorial Revision 9.0

42

Building the User Application Using SoftConsole

& Microsemi

a AX\MicracHp company

Figure 69 » Tool Settings Tab After Successful Mapping

S Fropeties for M yart by

Settings
Ressurce]
Bulders =
v B Conbiuratin: Debug | Acthve | Manage Configurations._.
Bl Vables
Endionent 5 ot sutigs 8 Tookhaes W Devkes o Seps. Buld Atlct By s O o s
Legging
Seatings {® Taget Processor hud paths) e
ToolChinkd | & Optmzsion i
O+ Geneal & Viamings
™ b [Profiame)drivers/CoreSPl
qpedpsz Debuggng Rt oA il)
MU B GMURISCY Crogs Assembler :::::::::;_i&::::::\-;-fﬂs'fwuﬂeph
Projec Nakees il “Swortspace oc/SProfamslsor el
Projec Refesence: # lcioes
Refacuing Histo & Wamings
ForyDebug et & Micelanecus
8 GNURISC- Cross C Compler
i I ystem it st}
£ Includes
& Optimization
B Viarings
Miscelanecus
18 GNU RISC-Y Cross C Linker
& General
Libraries:
& Wiscelanecus
* © GHURSC Cross Create Fash 1008 e s | ko)
General
18 GNU RISC- Cross Print Sere
General

< »

%

| Appy and Close Cancel

11. Select the GNU RISC-V Cross C Linker > General to map the linker script.

12. Click Add as shown in Figure 65, and in the Add file path dialog, click Workspace as shown in
Figure 66.

13. In the File Selection dialog box, expand MiV_uart_blinky and select the linker script as shown in the
following figure.

Microsemi Proprietary TUO775 Tutorial Revision 9.0 43

Building the User Application Using SoftConsole O M. .
. icrosemi.

a AX\MicracHp company

Figure 70 » Selecting the Linker Script

SC File selection O K

Select one or more Workspace Files

= settings ~

= Debug

= drivers

= hal

v = miv_rv32_hal

g hw_platform.h
18 miv_rv32_entry.S
[miv_rv32_hal.c
[miv_rv32_halh
[¢ miv_rv32_init.c
g miv_rv32_plich
[g miv_rv32_regs.h
[¢ miv_rv32_stubs.c
[g miv_rv32_syscall.c
E miv-rv32-envm.Id
E miv-rv32-ram.ld

= Release v

@ OK Cancel

14. The linker script is mapped as shown in Figure 71.

Microsemi Proprietary TUO775 Tutorial Revision 9.0 44

Building the User Application Using SoftConsole O M. .
icrosemi.

a AX\MicracHp company

Figure 71 » Linker Script Default Mapping

Settings b Sl
(£ Target Processor Script files (-T) eagssl »
Optimization "${workspace_loc:/${ProjName}/miv_rv32_hal/miv-rv32-ram.Id}"

2 Warnings
Debugging
v @ GNU RISC-V Cross Assembler
(% Preprocessor
& Indudes
(2 Warnings
(% Miscellaneous
v & GNU RISC-V Cross C Compiler
(# Preprocessor
Includes
(2 Optimization
(# Warnings
Miscellaneous
Cross C Linker

2 General

2 Libraries
& Miscellaneous
v & GNU RISC-V Cross Create Flash Image
 General
v & GNU RISC-V Cross Print Size
& General

Do not use standard start files (-nostartfiles)
|| Do not use default libraries (-nodefaultlibs)
[INo startup or default libs {-nostdlib)
Remove unused sections (-Xlinker --gc-sections)

[] Print removed sections (-Xlinker --print-gc-sections)

[l Omit all symbol information (-s)

Apply and Close Cancel

15. Select the Do not use standard start files (-nostartfiles) option as shown in Figure 71.

16. Select the GNU RISC-V Cross Create Flash Image > General and set Other Flags to “~--change-
section-1lma *-0x80000000” as shown in Figure 72. This excludes the extended linear record in
the first line of the hex file.

Microsemi Proprietary TUO775 Tutorial Revision 9.0 45

Building the User Application Using SoftConsole © M. .
: Iicrosemi

a AX\MicracHp company

Figure 72 »+ RISC-V Flash Image Settings

| S€ Properties for MiV_uart_blinky =] %
type filter text Settings T
RSt = T T T e T T e A T =
Builders # Target Processor Output file format (-0} Intel HEX b
Visl b & Optimization [section: 5 test

Build Variables e
K | Section: -j .data

Logging Other sections ()

 GNU RISC-V Cross Assembler
Settings & Preprocessor
Tool Chain Edi & Includes
CfC++ General & Wamnings
» cppchedipse # Miscellaneous

MCU ~ ® GNU RISC-V Cross C Compiler

Project Natures & Preprocessor

Project Reference: & Inchades

Run/Debug Settir & Optimization
& Wamnings

& Miscellaneous
® GNU RISC-V Cross C Linker
H General
5 Libraries
& Miscellaneous
~ B GNU RISC-V Cross Create Flash Image

~ 8 GNU RISC-V Cross Print Size
& General
< » Other flags --change-section-lma --nxamrmod | w
1y Apply and Close Cancel

17. Click Apply and when prompted to rebuild, choose Yes.
18. Then click Apply and Close.

The firmware drivers and linker script are successfully mapped. Notice that the header files are now
resolved in the main. c file.

3.6 Mapping Memory and Peripheral Addresses

In the Libero design flow, the Mi-V processor execution memory address is mapped to 0x80000000, and
its size is set to 64 KB. This information must be checked in the linker script before building the
application.

To map the memory address:

Open the linker script (miv-rv32-ram. 1d) available in the MIV_RV32_HAL folder.

Ensure that the ram ORIGIN address is mapped to 0x80000000.

Ensure that the LENGTH of the ram is 64 KB.

Ensure that the RAM_START_ADDRESS is mapped to 0x80000000.

Ensure that the RAM_SIZE is 64 KB.

Ensure that the STACK_SIZE is 2 KB.

Ensure that the HEAP_SIZE is 2 KB.

. Save the file.

Note: The MTVEC_OFFSET macro places trap vectors appropriately. This macro is already defined in the
miv-rv32-ram.1ld file.

N RWN =

Microsemi Proprietary TUO775 Tutorial Revision 9.0 46

Building the User Application Using SoftConsole © M. .
: Iicrosemi

a AX\MicracHp company

The following figure shows the linker script.

Figure 73 » Linker Script

16 * SVYN $Revision: 12759 $

17 * SVN $Date: 2020-85-14 19:43:19 +8530 (Thu, 14 May 2020) $
18 */

19

200UTPUT_ARCH("riscv™)

21 ENTRY(_start)

22

23 MEMORY

24{

| ram (rwx) : ORIGIN = ©x80006008, LENGTH = 64k

26}

27

28 RAM_START_ADDRESS
EEIMTVEC_OFFSET]
38RAM_SIZE

31 STACK_SIZE
32HEAP_SIZE

-

34 SECTIONS

354

36 .entry : ALIGN(®x18)

37 {

38 KEEP (*(SORT_NONE(.entry)))
39 . = MTVEC_OFFSET;

40 . = ALIGN(@x18);

41} > ram

0x80000000; /* Must be the same value MEMORY region ram ORIGI
ex16ee;
64k; /* Must be the same value MEMORY region ram LENGT
2k; /* needs to be calculated for your application */
2k; /* needs to be calculated for your application */

In the Libero design flow, the UART, GPIO, and SPI peripheral addresses are mapped to 0x60000000,
0x60001000, and 0x60002000 respectively. This information needs to be provided in the
hw_platform.h file.

To map the peripheral address:

Open the hardware platform header file (hw_platform.h).

Ensure that the SYS_CLK_FREQ macro is defined as 83333000UL.

Ensure that the COREUARTAPBO_BASE_ADDR macro is defined as 0x60000000UL.
Ensure that the COREGPIO_OUT_BASE_ADDR macro is defined as 0x60001000UL.
Ensure that the FLASH_CORE_SPI_BASE macro is defined as 0x60002000UL.
Save the file.

ook wh=

The following figure shows the hw _platform.h after these updates.

Figure 74 « Updated hw_platform.h File

/

wow

* Format of define is:

88
9 * Non-memory Peripheral base addresses
40
41 * <corenamer <instance>_ BASE_ADDR

*
43' #define COREUARTAPB@ BAGE ADDR BxeaeaepaaUL |

44 #define COREGPIO_IN_BASE_ADDR ax7eba2eaeUL
45 #deF:lne CORETIMER@ BASE ADDR 8)(?8&838'8'8UL

#deFlne CORElESSG BASE_ADDR Gx?m?mUL

The memory and peripheral addresses are successfully mapped.

Microsemi Proprietary TUO775 Tutorial Revision 9.0 47

Building the User Application Using SoftConsole © M. .
: Iicrosemi

a AX\MicracHp company

3.7 Setting the UART Baud Rate

The value of the BAUD_VALUE 115200 macro in the hw_platform.h file must be defined according
to the system clock frequency to achieve the UART baud rate of 115200. The baud value is calculated
using the following formula.

BAUD_VALUE = (CLOCK/ (16 * BAUD_RATE)) - 1
To define the system clock frequency:

1. Lookfor #define SYS CLK FREQ statement inthe hw platform.h file.
2. Define it as:
#define SYS CLK _FREQ 83333000UL

The SYS_CLK_FREQ value must be same as that of the clock generated in the design.
The following figure shows the system clock frequency definition.

Figure 75 + System Clock Frequency Definition

33

34 #ifndef HW_PLATFORM_H

35 #define HW_PLATFORM_H

36

B el e T T
38 * Soft-processor clock definition

39 * This is the only clock brought over from the Mi-V Libero design.
40 */

41 #ifndef SYS (1K FREQ

42 ﬁdefine SYS_CLK_FREQ 83333000UL

43 #endif

A

Microsemi Proprietary TUO775 Tutorial Revision 9.0 48

Building the User Application Using SoftConsole

3.8

Figure 76

Building the Mi-V Project

& Microsemi

a AX\MicracHp company

To build the Mi-V project, right-click the MiV_uart_blinky project in SoftConsole, and select Build

Project.

The project is built successfully, and the hex file is generated in the Debug folder, as shown in the

following figure.

Hex File

5 Project Explorer & =
v & MiV_uart_blinky
Binaries
& Includes
v = Debug
& drivers
& hal
= miv_rv32_hal
= riscv_hal
main.o - [none/le]
% MiV_uart_blinky.elf - [none/le]
E main.d
L& makefile
E MiV_uart_blinky.hex
E MiV_uart_blinky.map
L& objects.mk
L& sources.mk
L& subdir.mk
& drivers
& hal
= miv_rv32_hal
= Release
[g main.c

The HEX file can be used for Design and Memory Initialization. For more information, see Configure

Design Initialization Data and Memories, page 25.

Microsemi Proprietary TUO775 Tutorial Revision 9.0

49

Building the User Application Using SoftConsole © M. .
: Iicrosemi

3.9

Figure 77 «

Figure 78 «

a AX\MicracHp company

Debugging the User Application Using SoftConsole

Before debugging, the board and the serial terminal must be set up. For more information about the
board and serial terminal setup, see Board Setup, page 29 and Serial Terminal Emulation Program
(PuUTTY) Setup, page 29.

To debug the application:

1. From the Project Explorer, select the MiV_uart_blinky project, and then click the Debug icon from
the SoftConsole toolbar, as shown in the following figure.

Debug Icon
File Edit Source Refactor Mavigate Search Project Run Window Help
o - |®-K-@iBin|si@-&-g-0{HF-j0-9-%-®s-[d0E N -
i Project Explorer &3 EE =0 [£] main.c 52
v 125 MiV_uart_blinky 1=
%_? Binaries 2 * (c) Copyright 2816-2817 Migresemi SoC Produc
- 3 :
G Includes 4 * This simple example demonstrates how to use
(= Debug 5 * CoreGPIO driver. This example application pr
(&= drivers 6 * Terminal program and blinks LEDs on PolarFir
(= hal 70"
(Z= Release LI
= riscv_hal 9 #include "riscv_hal.h”
— 12 #include "core_uart_apb.h”
le] main.c 11 #include "core_gpio.h”
12 #include "sample_hw_platform.h"
13 #include "hw_reg_access.h"
15 #if @

2. In the Create, manage and run configurations window, double-click GDB OpenOCD Debugging
to generate the debug configuration for the MiV_uart_blinky project.

3. Select the generated MiV_uart_blinky Debug configuration, and click Search Project (if by default
not available), as shown in the following figure.

Create, manage, and run configurations Window — Main Tab

SC Debug Configurations X
Create, manage, and run configurations @
= x‘ B v Name |Mi\/7uartiblmky Debug |

type filter text

~ [£] GDB OpenOCD Debugging
[©] MiV_uart_blinky Debug

[Main| % Debugger ¥ Startup| % Source| & Common

Project:

| MiV_uart_blinky ‘ Browse...

C/C++ Application:

Variables... | Search Project... | Browse...
Build (if required) before launching
Build Configuration: | Select Automatically £
O Enable auto build O Disable auto build
(@) Use workspace settings Configure Workspace Settings...
Filter matched 2 of 9 items Beverl Apply

Microsemi Proprietary TUO775 Tutorial Revision 9.0 50

Building the User Application Using SoftConsole

& Microsemi

a AX\MicracHp company

4. Select the MiV_uart_blinky.elf binary, and click OK, as shown in the following figure.
Figure 79 « MiV_uart_blinky.elf Selection

SC Program Selection [m] X

Choose a program to run:

Binaries:

O MiV_uart_blinky.elf

Qualifier:

%5 nonele - /MiV_uart_blinky/Debug/MiV_uart_blinky.elf

5. Go to the Debugger tab, and replace the Config Options, Executable, and Commands as follows:
+ Config Options: --file board/microsemi-riscv.cfg

. Executable: ${cross prefix}gdb${cross suffix}
*+ Commands:

set mem inaccessible-by-default off
set arch riscv:rv32
set Starget riscv =1

set remotetimeout 7

Microsemi Proprietary TUO775 Tutorial Revision 9.0 51

Building the User Application Using SoftConsole

& Microsemi

a AX\MicracHp company

Figure 80 » Create, manage, and run configurations Window — Debugger Tab

type filter text

Main | 35 Debugger] =4 Startup| Ep Source| =] Common| &, SVD Path|
w E GDB OpenOCD Debugging OpenOCD Setup
[©] MiV_uart_blinky Debug
R Launch Group
@ R Executable path: | S{openccd_path}/${openocd_executable}
obot
@ Robot Remote

Start OpenOCD locally

Browse... | | Variables...

Actual executable: | C\Microsemit\SoftConsole_v6.1\eclipse\/../openocd/bin/openocd.exe |

(to change it use the global or workspace preferences pages or the project properties page)

GDB port:

Telnet port:

Tcl port:

Config options: --file board/microsemi-riscv.cfg

Allocate console for OpenOCD Allocate console for the telnet connection

GDB Client Setup
Start GDB session

Executable name: |S{cross_prefix}gdbS{cross_suffix} Browse... | Variables...

Actual executable: | riscvBd-unknown-elf-gdb |

Other options: |
Commands: set mem inaccessible-by-default off
set arch riscwirv32
set Starget_riscv = 1
set remotetimeout 7
Remote Target

Host name or IP address: |ocalhost

Port number: 3333
[JForce thread list update on suspend

Restore defaults

Revert Appl
Filter matched 5 of 11 items s EEY

)

Microsemi Proprietary TUO775 Tutorial Revision 9.0 52

Building the User Application Using SoftConsole © M. .
Iicrosemi

a AX\MicracHp company

6. In Debug Configurations -> Startup tab, clear the Pre-run/Restart reset check box to halt the
program at the main () function and clear the Enable ARM semihosting check box.

Figure 81+ Debug Settings- Startup Tab

Mame: MiV_uart_blinky Debug
[£] Main | %% Debugger = Startup %+ Source|] Commen| 2, SVD Path

Initialization Commands

[#] Initial Reset, Type: init

|| Enable ARM semihosting

Load Symbols and Executable
Load symbaels
(@ Use project binary: - MiV_uart_blinky.elf

(@) Use file: Norkspace... File System...
Symbols offset (hex):
Load executable
(@ Use project binary: - MiV_uart_blinky.elf
(0) Use file: Workspace... File System...

Executable offset (hex):

Runtime Options
|| Debug in RAM

Run/Restart Commands

Type: | halt

7. Click Apply, and then click Debug, as shown in the preceding figure.
The Confirm Perspective Switch dialog opens, as shown in Figure 82.

Figure 82 « Confirm Perspective Switch Dialog Box
S§C Confirm Perspective Switch [&J

. This kind of launch is configured to open the Debug perspective when it suspends.

This Debug perspective is designed to support application debugging. It
incorporates views for displaying the debug stack, variables and breakpoint
management.

Do you want to open this perspective now?

7] Remember my decision

| Yes | ’ No]
8. Click Yes.
The debugger halts the execution at the first instruction in the main. c file, as shown in the following
figure.

Microsemi Proprietary TUO775 Tutorial Revision 9.0 53

Building the User Application Using SoftConsole © M. .
: Iicrosemi

a AX\MicracHp company

Figure 83 » First Instruction in the main.c File

File Edit Source Refactor Navigate Search Project Run Window Help

0 |Bi@®viBin|vn®N=o. el | Sitsv O~ R vidE &~ Y vhlvomyDy = B
45 Debug [i» ¥ = O | &-Variables 52 ° Breakpoints ! Registers dules %, Peripherals He|rie v =
~ (€] MiV_uart_blinky Debug [GDB OpenOCD Debugging] Name Type Value

~ i MiV_uart_blinky.elf - delay_count volatile int32_t -2147477820

~ & Thread #1 (Suspended : Breakpoint)
= main() at main.c:86 0x80001500

» openocd.exe

4 riscv64-unknown-elf-gdb

@ mainc 2 [8 sample_hw_platf semi-riscv-ram.d 800015 = O & Outline BV o k| v =
g1 /% ~ o sample_hw_platformh
82 * main o hw_reg_accessh
83 */ p
84° int main()
85 {
86 volatile int32_t delay_count = 0;
87
83 #if 1 b
898 ¥ e(uint8_t 3_t¥, uint16_t) : uint8_t
% * Initialize the CoreGPIO driver with the base address of the CoreGPIO &5 verify write(Uint8.t uint8.t uint16.0) - uintgt
91 * instance to use and the initial state of the outputs. 4 DELAY LOAD.VALUE
92 / i
s X » .
93 GPIO_init(8&g_gpio_out, COREGPIO_OUT_BASE_ADDR, GPIO_APB_32 BITS_BUS); 2 testmsg N
on g_uart: UA
958 ® g_gpio_out: gpio_instance_t
% * Configure the GPIOs. v i mainQ :int

9. On the SoftConsole toolbar, click Resume to resume the application execution, as shown in the
following figure.

Figure 84 » Resume Application Execution

File Edit Source Refactor Mavigate Search Project Run Window Help

ﬁ' u:|,mE [T AT I 4 e @b
tp vebs 53

a [E] riscv_uart_blinky Debug [GDB OpenOCD Debugging]
a [riscv_uart_blinky.elf
4 Thread #1 (Suspended : Breakpoint)
= main() at main.c:37 0:x8000140
s openocd
s riscvBd-unknown-elf-gdb

10. The string Hello World! is printed on the serial terminal, as shown in the following figure. Also, LEDs
4,5, 6, 7 on the PolarFire Evaluation Board blink.

Figure 85+ Hello World in Debug Mode

I

Hello World![]

11. On the SoftConsole menu, click Run > Suspend to suspend the execution of the application.
12. Click the Registers tab to view the values of the Mi-V internal registers, as shown in the following
figure.

Microsemi Proprietary TUO775 Tutorial Revision 9.0 54

Building the User Application Using SoftConsole © M. .
Iicrosemi

a AX\MicracHp company

Figure 86 + Mi-V Register Values

© Console "I Registers

Name Value Description
~ ¥ General Registers General Purpose and FPU Regi...
zero]
ra 0x800117{8
sp 080012890
gp 080012090
tp 00
0 (80010100
1 0
t (e
fp 0x800128b0
s1 0w
all (600010a0
al 0x5
a2 03k
a3 060000000
ad 02
a5 (x76%ee
ab 0
ai Cheld
52 Ol

13. Click the Variables tab to view the values of variables in the source code, as shown in the following
figure.

Figure 87 « Variable Values

= Variables # % Breakpoi.. % Expressi.. = Modules % Peripher.. °
5B |05 3
Name Type Value
®= gpio_pattern uint32_t 5
¢ delay_count volatile int32_t 485870

14. From the SoftConsole toolbar, use the Step Over option to view the application execution line by
line, or use the Step Into option to execute the instructions inside a function. Use the Step Return
option to come out the function. You can also add breakpoints in the application source code.

15. On the SoftConsole toolbar, click Terminate to terminate the debugging of the application.

16. Close PuTTY and SoftConsole.

Microsemi Proprietary TUO775 Tutorial Revision 9.0 55

Building the User Application Using SoftConsole © M. .
: Iicrosemi

a AX\MicracHp company

3.10 Debugging the User Application from DDR3 Memory

The SoftConsole debugger loads the application to the memory-mapped RAM based on the RAM start
address specified in the miv-rv32-ram. 1d linker file. The following figure shows the RAM Start
Address parameters in the linker file.

Figure 88 « RAM Start Address Parameters

= microsemi-riscv-ram.Id =

18 * This linker script assumes that the RAM is connected at on the Mi-V soft
11 * processor memory space. The start address and size of the memory space must
12 * be correct as per the Libero design.

13 *

14 * Support RV32IMA and IMC cores.

15 *

16 * SVYN $Revision: 12759 §

17 * SVN $Date: 2820-85-14 19:43:19 +853@ (Thu, 14 May 2020) $

18 */

19

20 0UTPUT_ARCH("riscv")
21 ENTRY(_start)

22

23 MEMORY

244

25 | ram (rwx) : ORIGIN = ©x8000eeee, LENGTH = 64k

26}

27

ZEIRAM START_ADDRESS = Bx80000000; | /* Must be the same value MEMORY region ram ORIGII
29MTVEC_OFFSET = exlee;

30 RAM_SIZE = 64k; /* Must be the same value MEMORY region ram LENGTI
31STACK_SIZE = 2k; /* needs to be calculated for your application */
32HEAP_SIZE = 2k; /* needs to be calculated for your application */

33

The SoftConsole reference project specifies the TCM start address, which is 0x80000000 (highlighted in
Figure 88). To perform application debugging from DDR3 memory, modify this value to the DDR3
memory starting address, 0x80010000. After modifying the value, clean and build the project.

When the application is debugged from DDR3, the stack pointer and locations in the disassembly must
point to DDR3 address, as shown in the following figure.

Figure 89 + Debugging from DDR3

File Edit Source Refactor Navigate Search Project Run Window Help

g~ | & @~iBin|mn ® 2@ 0 | Lits~O- QU ido &~iFariF~flroora-
A5 Debug 12 li+ v =8 114 Registers 2
4[] MiV_uart_blinky Debug [GDE OpenOCD Debugging] Name Value

a {8 MIV_uert_blinky.elf
4 P Thread #1 (Suspended : Breakpoint)

00
= main() at main.c:88 0:80011534 0@0010204
TE0126a0_]
080011 ecd
Oxcb341701
080010034
08008923
0463812123
038001260
fwannnn
<
Name : pc
Hex: BxB0011534
Decimal:2147554612
Octal: 020068212464
Binary: 10000000000000016001010160119100
Default: 2147554612
«
= 0 2= Disassembly &2
80011522:| unimp
H main:
80011524: | addi sp,sp,-32
80011528: | sw ra,28(sp)
8Be1152¢c: | sw s8,24(sp)
volatile int32 t delay count = @;| | spe1153e:| addi 50,5p,32
® 28 volatile int32 t delay count = @;
//uint32 t 1sram addr® = ©x66800100UL; b soe11534: | [sw zero, -24(s8)
uint32 t lsram addrl = @x80910000UL; 118 GPIO_init(3g_gpio_out, COREGPIO_IN BASE_ADDR, GPIO_APB_32_BITS_
uint32_t read vale = 8; 80011538: | 1i a2,2
uint32_t read vall = 8; goe1153c: | lui a1,0x60061
80011540: | addi 20,gp,-796
uint32 t data = Gx12345678UL; 8ee11544: | jal ra,@x80818e34 <GPIO_init>
uint32 t i; 123 GPIO_config(&g_gpio_out, GPIO_@, GPIO_OUTPUT_MODE);
86011548: | 11 a2,5
5 for (i=B; ica; i+r) 8e@1154c:| 1i 21,0

Microsemi Proprietary TUO775 Tutorial Revision 9.0 56

Appendix 1: Programming the Device Using FlashPro Express

4

& Microsemi

a AX\MicracHp company

Appendix 1: Programming the Device Using
FlashPro Express

Note:

This chapter describes how to program the PolarFire device with the Job programming file using a
FlashPro programmer. The default location of the .job file is: mpf tu0775 df\Programming Job

To program the PolarFire device using FlashPro Express, perform the following steps:

1.

Ensure that the jumper settings on the board are the same as listed in Table 6, page 29.

The power supply switch must be switched off while making the jumper connections.

o0k wnN

Connect the power supply cable to the J9 connector on the board.

Connect the USB cable from the Host PC to the J5 (FTDI port) on the board.

Power on the board using the SW3 slide switch.

On the host PC, launch the FlashPro Express software.

Click New or select New Job Project from FlashPro Express Job from Project menu to create a new
job project, as shown in the following figure.

Figure 90

FlashPro Express Job Project

E FlashPro Express

Project Edit View Programmer Help

New...
Open...

Recent Projects

Job Projects

@ FlashPro Express

Project | Edit View Programmer Help

Bl Mew Job Project from FlashPro Express Job Ctrl+N < h

r“ Open Job Project
X Close Job Project
I Savelob Project

Ctrl+Shift+A

or Set Log File
Export Log File
Preferences...

Execute Script Ctrl+U
Export Script File...

Recent Projects L4

Exit Ctrl+Q

Enter the following in the New Job Project from FlashPro Express Job dialog box:

Programming job file: Click Browse, and navigate to the location where the .job file is located and
select the file. The default location is: <download_folder>\mpf_tu0775_dA\Programming_Job.

« mpf_tu0775_df\Programming_Job\top_RevD

« mpf_tu0775_df\Programming_Job\top_RevE

FlashPro Express job project location: Click Browse and navigate to the location where you want to
save the project.

Microsemi Proprietary DG0843 Revision 4.0 57

Appendix 1: Programming the Device Using FlashPro Express

Figure 91+ New Job Project from FlashPro Express Job

& Microsemi

a AX\MicracHp company

@ Mew Job Project from FlashPro Express Job

Programming job file:

| D:\mpf_dg0843_df\Programming_Job\CPRI _Line_Rate_5.job
FlashPro Express job project name:

© CPRILine Rate 5

FlashPro Express job project location:

Browse...

| D:\mpf_dg0843_df

Help

OK

| Cancel |

© x

Click OK. The required programming file is selected and ready to be programmed in the device.
The FlashPro Express window appears as shown in the following figure. Confirm that a programmer

number appears in the Programmer field. If it does not, confirm the board connections and click

Refresh/Rescan Programmers.
Figure 92 « Programming the Device

E FlashPro Express D:\mpf_dg0243_df\CPRI_Line_Rate_5\CPRI_Line_Rate_3.pro - JTAG Programming Interface

Project Edit View Programmer Help

Refresh/Rescan Programmers

® weraots @

@ TBO ™S

Programmer

j @ ¥ [e2003c000 IDLE IDLE

PROGRAM L]

RUN IDLE

Log

[E] Messages @ Errors i Warnings @ Info

Exported log file D:\mpf dg0843 df\CPRI_Line Rate S\CPRI_Line Rate_5.log.
Software Version: 12.600.0.14

PPD file 'D:\mpf_dg0843_df\CPRI_Line_Rate_S\top.ppd' has been loaded successfully.
DESIGN : top; CHECKSUM : 03A8; PDB_VERSION : 1.0

Embedded FlashProS programmer detected.

programmer 'E2003GSCVO' : FlashProS

opened 'D:\mpf_dg0843_df\CPRI_Line_Rate 5\CPRI_Line_Rate_5.pro’

Ll

Microsemi Proprietary DG0843 Revision 4.0

58

Appendix 1: Programming the Device Using FlashPro Express

& Microsemi

a AX\MicracHp company
10. Click RUN. When the device is programmed successfully, a RUN PASSED status is displayed as
shown in the following figure.
Figure 93 » FlashPro Express—RUN PASSED

FlashPro Express D:\mpf_dg0843_df\CPRI_Line_Rate_S\CPRI_Line_Rate_3.pro - JTAG Programming Interface

Project Edit View Programmer Help

Refresh/Rescan Programmers

Programmer

O v @

@100 ™ 2

2| 07 e —— ——

PROGRAM vI
an o IPROGRAMMERG)PASSED

Log LE]
[E] Messages @ Errors i Warnings @ Info
programmer 'E2003G%CVO' : device 'MPF300T3' : EXPORT EOB component bitstream digest[256] = ﬂ
fa93e4€608£80£7dda7754€6be0b47a25£07b02823ab3447£305%ca5aa4874b3e95
programmer ‘'E2003G%CV0' : device 'MPF300T3"' :
programmer 'E2003G9CVO’ : device "MPF300TS' : EXPORT DSN[128] = €B2d36eldclacs24a494d63flbede8d3
programmer 'E2003G5CVO* : device 'MPF300TS' :
programmer 'E2003GYCVO" : device 'MPF300T8' : Finished: Tue Oct 22 13:46:41 2019 (Elapsed time 00:01:45)
programmer 'E2003G5CV0" : device "MPF300TS' : Executing action FROGRAM PASSED.
programmer 'E2003G%CVO' : Chain programming PASSED,
Chain Programming Finished: Tue Oct 22 13:46:41 2015 (Elapsed time 00:01:45)
e-o-o-o0o=-o0-o
-

11. Close FlashPro Express or in the Project tab, click Exit.

Microsemi Proprietary DG0843 Revision 4.0

59

Appendix 2 - References © Microsemi

5

a AX\MicracHp company

Appendix 2 - References

This section lists documents that provide more information about RISC-V and other IP cores used to
build the RISC-V subsystem.

» For more information about MIV_RV32, see MIV_RV32 Handbook from the Libero SoC Catalog.
* For more information about CoreJTAGDebug, see CoreJTAGDebug_HB.pdf.
« For more information about CoreAHBtoAPB3, see CoreAHBtoAPB3_HB.pdf.
» For more information about CoreAXITOAHBL, see CoreAXItoAHBL_HB.pdf.
» For more information about CoreGPIO, see CoreGPIO_HB.pdf.
» For more information about CoreUARTapb, see CoreUARTapb_HB.pdf.
* For more information about CoreAHBLite, see CoreAHBLite_HB.pdf.
* For more information about CoreAPB3, see CoreAPB3_HB.pdf.
+ See the following documents on PolarFire FPGAs Documentation web page:
. For more information about PolarFire Initialization Monitor, see PolarFire FPGA and PolarFire
SoC FPGA Device Power-Up and Resets User Guide.
» For more information about PolarFire Clock Conditioning Circuitry (CCC), see PolarFire FPGA
and PolarFire SoC FPGA Clocking Resources User Guide.
+ For more information about PolarFire SRAM, see PolarFire FPGA and PolarFire SoC FPGA
Fabric User Guide.
. For more information about Libero, ModelSim, and Synplify, see the
Libero SoC PolarFire webpage.
» For more information about SoftConsole, see the SoftConsole webpage.
+ For more information about loading a Job file using FlashPro Express, see the User Guide from
FlashPro Express - > Help -> User Guide.

Microsemi Proprietary TUO775 Tutorial Revision 9.0 60

http://soc.microsemi.com/ipdocs/CoreJTAGDebug_HB.pdf
https://www.microsemi.com/products/fpga-soc/design-resources/design-software/softconsole#documents
https://www.microsemi.com/document-portal/doc_download/1244850-mi-vrv32imc
https://www.microsemi.com/product-directory/fpgas/3854-polarfire-fpgas#documentation
http://soc.microsemi.com/ipdocs/CoreGPIO_HB.pdf
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130958
http://soc.microsemi.com/ipdocs/CoreAHBLite_HB.pdf
http://soc.microsemi.com/ipdocs/CoreAPB3_HB.pdf
https://www.microsemi.com/product-directory/design-resources/1750-libero-soc#documents
http://soc.microsemi.com/ipdocs/CoreAXItoAHBL_HB.pdf
http://soc.microsemi.com/ipdocs/CoreAHBtoAPB3_HB.pdf

Appendix 3 - DDR3 Configuration

6

Figure 94

& Microsemi

a AX\MicracHp company

Appendix 3 - DDR3 Configuration

If you are using Rev E kit the following are the configurations for DDR3 controller with the initialization
and timing parameters for MT41K512M8DA-107: P part present on the Rev E PolarFire Evaluation Kit.

1.
General Tab
General l Memaory Initialization l Memory Timing
E Top
Protocol DDR3 ~
Generate PHY only |
B Clock
Memory Clock Frequency (MHz) 666.666
CCC PLL Clock Multiplier 8 -

CCC PLL Reference Clock Frequency (MHz) |83.333

User Logic Clock Rate QUAD -
User Clock Frequency 166.6665

B Topology

COMPOMENT ~

Memory Format

l

DQ Width 16 =
SDRAM Number of Ranks ’ﬁ
Enable address mirroring on odd ranks [

DQ/DQS group size m
Row Address width ’167
Column Address Width ’107
Bank Address Width ’37
Enable DM DM hd
Enable Parity/Alert I

Controller

l

On General tab, set CCC PLL Clock Multiplier to 8, and DQ Width as 16, as shown in below
figure. The clock multiplier value of 8 sets the CCC PLL reference clock frequency to 83.333 MHz.
A reference clock of this frequency is required for the PLL present inside the DDR3 subsystem. The
PLL generates a 666.666 MHz DDR3 memory clock frequency and a 166.666 MHz DDR3 AXI clock
frequency. The DQ width is set to 16 to match the width of the DDR3 memory present on the board.

Misc. l

Microsemi Proprietary TUO775 Tutorial Revision 9.0 61

Appendix 3 - DDR3 Configuration

& Microsemi

a AX\MicracHp company

2. The following figure shows initialization configuration settings for the DDR3 memory.

Figure 95 + Memory Initialization

General Memory Initialization I‘ Memory Timing | Contrc®
2 Mode Register 0

Read Burst Type |Sequential |

Burst Length [Fixed BLS =

Memory CAS Latency |9

2 Mode Register 1

| ODT Rit Nominal Value |RZQ/6 EI
Memory Additive CAS Latency |Disabled =l
Output Drive Strength [RzQy7 |
B Mode Register 2
Self Refresh Temperature [Normal -]
Memory Write CAS Latency [7—
Partial Array Self Refresh [Full 7]

Dynamic ODT (Rtt_WR) |Dynamic ODT off

Microsemi Proprietary TUO775 Tutorial Revision 9.0 62

Appendix 3 - DDR3 Configuration 0 Micmsemi

a AX\MicracHp company

3. The following figure shows timing configuration settings for the DDR3 memory.

Figure 96 « Memory Timing

General | Memory Initialization Memory Timing Contrc—lle_“_'

B Timing parameters dependent on speed bin

tRAS (ns) |36

tRCD (ns) [13.91

tRP (ns) [13.91

tRC (ns) [49.5

tWR (ns) |15

tFAW (ns) |30

B Timing parameters dependent on speed bin and clock frequency

tWTR (cycles) |5

tRRD (ns) |6

tRTP (ns) |7.5

2 Timing parameters dependent on operating condition

tREFI (us) |7.8

2 Timing parameters dependent on speed bin and page size L

| tRFC (ns) [260 |

2 Other Timing parameters

tZQinit (cycles) [512

ZQ Calibration Type [short |

Microsemi Proprietary TUO775 Tutorial Revision 9.0 63

Appendix 3 - DDR3 Configuration

& Microsemi

a AX\MicracHp company

4. The following figure shows controller configuration settings for the DDR3 memory.

Figure 97 »+ Controller

seneral] Memory Initialization Memory Timing Controller LLL

2 Instance Select
Instance Number |0 ~

2 User Interface

Fabric Interface |AXI4 ~|

AXI Width [64 |

AXI ID Width |4

B Efficiency

Enable Activate/Precharge look-ahead [

Command queue depth I3 |

Enable User Refresh Controls I

Address Ordering |Chip-Row-Bank-Col ~|
B Misc

Enable RE-INIT Controls [
B ODT Activation Settings on Write
Enable Rank0 - ODTO ¥ Enable Rank0 - ODT1 ™ o
Enable Rank1 - ODTO ™ Enable Rank1 - ODT1
B 0ODT Activation Settings on Read
Enable Rank0 - ODTO [Enable Rank0 - ODT1 ™

Enable Rankl - ODTO I Enable Rank1 - ODT1 ™ -
5. The following figure shows miscellaneous configuration settings for the DDR3 memory.
Figure 98 « Misc

General | Memory Initialization Memory Timing | Controller]

B Simulation Options

Simulation Mode]Fast (skip training and settling time) L]
2 Throughput Options
Pipe Lining [

Note: Return to section Instantiating APB3 Bus, page 12 for completing the design implementation.

Microsemi Proprietary TUO775 Tutorial Revision 9.0 64

	1 Revision History
	1.1 Revision 9.0
	1.2 Revision 8.0
	1.3 Revision 7.0
	1.4 Revision 6.0
	1.5 Revision 5.0
	1.6 Revision 4.0
	1.7 Revision 3.0
	1.8 Revision 2.0
	1.9 Revision 1.0

	2 Building a Mi-V Processor Subsystem
	2.1 Requirements
	2.2 Prerequisites
	2.3 Design Description
	2.3.1 Fabric RAMs Initialization

	2.4 Creating a Mi-V Processor Subsystem
	2.4.1 Creating a Libero Project
	2.4.2 Creating a New SmartDesign Component
	2.4.3 Instantiating IP Cores in SmartDesign
	2.4.3.1 Instantiating Mi-V Processor IP
	2.4.3.2 Instantiating AXI Interconnect Bus IP
	2.4.3.3 Instantiating DDR3 Memory Controller
	2.4.3.4 Instantiating APB3 Bus
	2.4.3.5 Instantiating UART Controller
	2.4.3.6 Instantiating the GPIO Controller
	2.4.3.7 Instantiating CoreSPI
	2.4.3.8 Instantiating PolarFire Clock Conditioning Circuitry (CCC)
	2.4.3.9 Instantiating PolarFire Initialization Monitor
	2.4.3.10 Instantiating CORERESET_PF
	2.4.3.11 Instantiating CoreJTAGDebug

	2.4.4 Connecting IP Instances in SmartDesign
	2.4.5 Generating SmartDesign Component
	2.4.6 Managing Timing Constraints
	2.4.6.1 Deriving Constraints
	2.4.6.2 Importing Other Constraint Files

	2.4.7 Running the Libero Design Flow
	2.4.7.1 Synthesis
	2.4.7.2 Place and Route
	2.4.7.3 Verify Timing
	2.4.7.4 Generate FPGA Array Data
	2.4.7.5 Configure Design Initialization Data and Memories
	2.4.7.6 Generate Design Initialization Data
	2.4.7.7 Generate Bitstream
	2.4.7.8 Run PROGRAM Action
	2.4.7.9 Generate SPI Flash Image
	2.4.7.10 Run PROGRAM_SPI_IMAGE Action

	3 Building the User Application Using SoftConsole
	3.1 Creating a Mi-V SoftConsole Project
	3.2 Downloading the Firmware Drivers
	3.3 Importing the Firmware Drivers
	3.4 Creating the main.c File
	3.5 Mapping Firmware Drivers and the Linker Script
	3.6 Mapping Memory and Peripheral Addresses
	3.7 Setting the UART Baud Rate
	3.8 Building the Mi-V Project
	3.9 Debugging the User Application Using SoftConsole
	3.10 Debugging the User Application from DDR3 Memory

	4 Appendix 1: Programming the Device Using FlashPro Express
	5 Appendix 2 - References
	6 Appendix 3 - DDR3 Configuration

