# UG0715 User Guide PolarFire FPGA PDC Commands







# **Table of Contents**

| Int | roduction                                        | 3    |
|-----|--------------------------------------------------|------|
|     | Supported Families                               | 3    |
| 2   | I/O PDC commands                                 | . 4  |
|     | set iobank                                       |      |
|     | reserve                                          |      |
|     | set io                                           |      |
|     | set location                                     |      |
|     | _                                                |      |
| 3   | Netlist Attributes PDC Commands                  |      |
|     | set_preserve                                     | . 19 |
| 4   | Floorplanning PDC Commands                       | . 20 |
|     | assign_region                                    | . 20 |
|     | assign_net_macros                                |      |
|     | define region                                    |      |
|     | move_region                                      |      |
| 5   | Packages/Memory Types                            | 25   |
| J   | - ackages/weinory Types.                         |      |
|     |                                                  |      |
| Α   | Product Support                                  | . 35 |
|     | Customer Service                                 | . 35 |
|     | Customer Technical Support Center                | . 35 |
|     | Technical Support                                |      |
|     | Website                                          |      |
|     | Contacting the Customer Technical Support Center |      |
|     | ITAR Technical Support                           | . 36 |



# Introduction

In the FPGA design world, constraint files are as important as design source files. Physical design constraints (PDC) are used to constrain the I/Os attributes, placement, and routing during the physical layout phase.

You can enter PDC commands manually using the Libero SoC Text Editor. PDC commands can also be generated by the Libero SoC interactive tools. The I/O Attribute Editor is the interactive tool for making I/O attributes changes and the Chip Planner is the interactive tool for making floorplanning changes. When changes are made in the I/O Attribute Editor or the Chip Planner, the PDC file(s) are updated to reflect the changes. These PDC commands can be used as part of a script file to constrain the Place and Route step of your design.

# **Supported Families**

This User Guide covers the PDC commands applicable to PolarFire devices.



# 1 – I/O PDC commands

I/O PDC commands are used to set and reset I/O standards, voltages values, and attributes.

For detailed information about I/Os and I/O standards, refer to UG0686: PolarFire FPGA User I/O User Guide.

# set\_iobank

PDC command; sets the input/output supply voltage (vcci) and the input reference voltage (vref) for the specified I/O bank.

All banks have a dedicated vref pin and you do not need to set any pin on these banks.

There are two types of I/O banks: General-Purpose IO (GPIO) and High-Speed IO (HSIO).

Each bank type supports a different set of I/O standards as listed in the Table below.

| I/O Types | Supported I/O Standards                                                                                                                                                                                                                                                                                                                                             |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| HSIO      | LVCMOS12, LVCMOS15, LVCMOS18, SSTL18I, SSTL18II, HSUL18I, HSUL18II, SSTL15I, SSTL15II, HSTL15II, HSTL15II, SSTL135II, SSTL135II, HSTL135I, HSTL135II, HSTL12II, HSUL12I, SLVSE15, POD12I, POD12II, LVSTL11II, LVSTL11II, SLVS18, HCSL18, LVDS18, RSDS18, MINILVDS18, SUBLVDS18, PPDS18                                                                              |
| GPIO      | LVTTL, LVCMOS33, PCI, LVCMOS12, LVCMOS15, LVCMOS18, LVCMOS25, SSTL25I, SSTL25II, SSTL18II, SSTL18II, HSUL18II, HSUL18II, SSTL15I, SSTL15II, HSTL15II, HSTL15II, SLVS33, HCSL33, HCSL25, MIPI25, MIPIE25, LVPECL33, LVPECL25, LVPECLE33, LVDS25, LVDS33, RSDS25, RSDS33, MINILVDS25, MINILVDS33, SUBLVDS25, SUBLVDS33, PPDS25, PPDS33, SLVSE15, MLVDSE25, BUSLVDSE25 |

```
set_iobank -bank_name <bank_name>\
[-vcci <vcci_voltage>]\
[-vref <vref_voltage>]\
[-fixed <value>]\
[-update_iostd <value>]\
[-auto_calib <value>]\
[-auto_calib_ramp_time <value>]
```

# **Arguments**

# -bank\_name <bank\_name>

Specifies the name of the bank. I/O banks are numbered 0 through N (bank0, bank1,...bankN). The number of I/O banks varies with the device. Refer to the datasheet for your device to determine how many banks it has.

#### -vcci <vcci voltage>

Sets the input/output supply voltage. You can enter one of the following values:

| Vcci Voltage | Compatible Standards                                                                                                                |  |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------|--|
| 3.3 V        | LVTTL, LVCMOS33, PCI, LVDS33, LVPECL33, LVPECLE33, SLVS33, HCSL33, RSDS33, MINILVDS33, SUBLVDS33                                    |  |
| 2.5 V        | LVCMOS25, SSTL25I,SSTL25II, LVPECL25, PPDS25, SLVS25, HCSL25, MLVDSE25, MINILVDS25, RSDS25, SUBLVDS25, LVDS25, MLVDSE25, BUSLVDSE25 |  |



| 1.8 V  | LVCMOS18, SSTL18I, SSTL18II, HSUL18I, HSUL18II, SLVS18, HCSL18, LVDS18, RSDS18, MINILVDS18, SUBLVDS18, PPDS18 |
|--------|---------------------------------------------------------------------------------------------------------------|
| 1.5 V  | LVCMOS15, SSTL15I, SSTL15II, HSTL15I, HSTL15II, SLVSE15                                                       |
| 1.35 V | HSTL135I, HSTL135II, SSTL135I, SSTL135II                                                                      |
| 1.2 V  | LVCMOS12, HSUL12I, HSTL12I, POD12I, MIPI12                                                                    |
| 1.1V   | LVSTL11I, LVSTL11II                                                                                           |

#### -vref <vref\_voltage>

Sets the input reference voltage. You can enter one of the following values:

| Vref Voltage | Compatible Standards                       |
|--------------|--------------------------------------------|
| 1.25 V       | SSTL25I                                    |
| 1.0 V        | SSTL18I,HSUL18I                            |
| 0.75 V       | POD12I, HSTL15I, SSTL15I, HSUL12I, HSTL12I |
| 0.67 V       | SSTL135I, HSTL135I                         |

#### -fixed <value>

Specifies if the I/O technologies (vcci and vccr voltage) assigned to the bank are locked. You can enter one of the following values:

| Value | Description                      |
|-------|----------------------------------|
| true  | The technologies are locked.     |
| false | The technologies are not locked. |

## -update\_iostd <value>

Specifies if the I/O technologies (vcci and vccr voltage) assigned to the bank are locked. You can enter one of the following values:

| Value | Description                                                                                                                                                                                   |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| true  | If there are I/O's placed on the bank, we keep the placement and change the host to one which is compatible with this bank setting. Check the I/O Attributes to see the one used by the tool. |
| false | If there are I/O's placed and locked on the bank, the command will fail. If they are placed I/Os they will be unplaced.                                                                       |

## -auto\_calib <value>

Specifies whether the I/O bank is auto-calibrated at power up. Values are true/false, and the default value is true.

Note: Not supported for MPF300TS\_ES, MPF300T\_ES, and MPF300XT devices.

## -auto\_calib\_ramp\_time <value>

Specifies the I/O bank VDDI supply ramp time (in ms) if the I/O bank is auto-calibrated. Values can be 1–50, and the default value is 50.

Note: Not supported for MPF300TS\_ES, MPF300T\_ES, and MPF300XT devices.

# **Exceptions**

Any pins assigned to the specified I/O bank that are incompatible with the default technology are unassigned.



# **Examples**

The following example assigns 3.3 V to the input/output supply voltage (vcci) for I/O bank 0.

```
set_iobank -bank_name bank0 -vcci 3.3
```

#### reserve

PDC command; reserves the named pins in the current device package.

```
reserve -pin_name "list of package pins"
```

# **Arguments**

# -pin\_name "list of package pins"

Specifies the package pin name(s) to reserve. You can reserve one or more pins.

# **Exceptions**

None

# **Examples**

```
reserve -pin_name "F2"
reserve -pin_name "F2 B4 B3"
reserve -pin_name "124 17"
```

# set\_io

PDC command; You can use the set\_io command to assign an I/O technology, place, or lock the I/O at a given pin location. There are two I/O types available for PolarFire: GPIO and HSIO. Each I/O type supports different I/O standards.

| I/O Types | Supported I/O Standards                                                                                                                                                                                                                                                                                                                                                                                                        |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| HSIO      | LLVCMOS12, LVCMOS15, LVCMOS18, SSTL18I, SSTL18II, HSUL18I, HSUL18II, SSTL15II, SSTL15II, HSTL15I, HSTL15II, SSTL135I, SSTL135II, HSTL135I, HSTL135II, HSTL135II, HSTL135II, HSTL135II, HSTL12II, HSUL12I, SLVSE15, POD12I, POD12II, LVSTL11II, LVSTL11II, SLVS18, HCSL18, LVDS18, RSDS18, MINILVDS18, SUBLVDS18, PPDS18, SHIELD18, SHIELD15, SHIELD135, SHIELD12                                                               |
| GPIO      | LVTTL, LVCMOS33, PCI, LVCMOS12, LVCMOS15, LVCMOS18, LVCMOS25, SSTL25I, SSTL25II, SSTL18II, SSTL18II, HSUL18II, HSUL18II, SSTL15II, SSTL15II, HSTL15II, HSTL15II, SLVS33, HCSL33, HCSL25, MIPI25, MIPIE25, LVPECL33, LVPECL25, LVPECLE33, LVDS25, LVDS33, RSDS25, RSDS33, MINILVDS25, MINILVDS33, SUBLVDS25, SUBLVDS33, PPDS25, PPDS33, SLVSE15, MLVDSE25, BUSLVDSE25, LCMDS33, LCMDS25, SHIELD33, SHIELD15, SHIELD15, SHIELD12 |

```
set_io
   -port_name <port_name>\
[-pin_name <package_pin>] \
[-fixed <true|false>] \
[-io_std <io_std_values>] \
[-OUT_LOAD <value>] \
[-RES_PULL <value>] \
[-LOCK_DOWN <value>] \
[-CLAMP_DIODE <value>] \
[-SCHMITT_TRIGGER <value>] \
```



```
[-SLEW <value>] \
[-VICM_RANGE <value>] \
[-ODT <value>] \
[-ODT_VALUE] \
[-OUT_DRIVE <value>] \
[-IMPEDANCE <value>] \
[-SOURCE_TERM <value>] \
[-IN_DELAY <value>] \
[-OUT_DELAY <value>]
```

# **Arguments**

## -port\_name <port\_name>

Specifies the portname of the I/O macro.

## -pin\_name <package\_pin>

Specifies the package pin name(s) on which to place the I/O.

## -io\_std <value>

Sets the I/O standard for this macro. If the voltage standard used with the I/O is not compatible with other I/Os in the I/O bank, assigning an I/O standard to a port will invalidate its location and automatically unassign the I/O.

The following table shows a list of supported I/O standards.

Some I/O standards support only single I/O or differential I/Os while others support both Single and Differential I/Os. The table below lists the different I/O standards and the type of I/O they support.

| IO_STD Value | Single | Differential |
|--------------|--------|--------------|
| LVTTL        | YES    | NO           |
| LVSTL11I     | YES    | YES          |
| LVSTL11II    | YES    | YES          |
| LVCMOS33     | YES    | NO           |
| LVCMOS25     | YES    | NO           |
| LVCMOS18     | YES    | NO           |
| LVCMOS15     | YES    | NO           |
| LVCMOS12     | YES    | NO           |
| PCI          | YES    | NO           |
| POD12I       | YES    | YES          |
| POD12II      | YES    | YES          |
| PPDS33       | NO     | YES          |
| PPDS25       | NO     | YES          |
| PPDS18       | NO     | YES          |
| SLVS33       | NO     | YES          |
| SLVS25       | NO     | YES          |
| SLVS18       | NO     | YES          |
| HCSL33       | NO     | YES          |
| HCSL25       | NO     | YES          |



| HCSL18                   | NO  | YES |
|--------------------------|-----|-----|
| SLVSE                    | NO  | YES |
| SLVSE15                  | NO  | YES |
| BUSLVDSE                 | NO  | YES |
| BUSLVDSE25               | NO  | YES |
| MLVDSE                   | NO  | YES |
| MLVDSE25                 | NO  | YES |
| LVDS                     | NO  | YES |
| LVDS33                   | NO  | YES |
| LVDS25                   | NO  | YES |
| LVDS18                   | NO  | YES |
| BUSLVDS                  | NO  | YES |
| MLVDS                    | NO  | YES |
| MIPI12                   | NO  | YES |
| MIPIE33                  | NO  | YES |
| MINILVDS                 | NO  | YES |
| MINILVDS33               | NO  | YES |
| MINILVDS25               | NO  | YES |
| MINILVDS18               | NO  | YES |
| RSDS                     | NO  | YES |
| RSDS33                   | NO  | YES |
| RSDS25                   | NO  | YES |
| RSDS18                   | NO  | YES |
| LVPECL (only for inputs) | NO  | YES |
| LVPECL33                 | NO  | YES |
| LVPECL25                 | NO  | YES |
| LVPECLE33                | NO  | YES |
| HSTL15I                  | YES | YES |
| HSTL15II                 | YES | YES |
| HSTL135I                 | YES | YES |
| HSTL135II                | YES | YES |
| HSTLI2I                  | YES | YES |
| HSTL12II                 | YES | YES |
| SSTL18I                  | YES | YES |
| SSTL18II                 | YES | NO  |
| SSTL15I                  | YES | YES |
| SSTL15II                 | YES | NO  |
| SSTL135I                 | YES | YES |



| SSTL135II | YES | YES |
|-----------|-----|-----|
| SSTL25I   | YES | YES |
| SSTL25II  | YES | YES |
| HSUL18I   | YES | YES |
| HSUL18II  | YES | YES |
| HSUL12I   | YES | YES |
| HSUL12II  | YES | YES |
| SUBLVDS33 | NO  | YES |
| SUBLVDS25 | NO  | YES |
| SUBLVDS18 | NO  | YES |
| LCMDS25   | NO  | YES |
| LCMDS33   | NO  | YES |

#### -fixed <value>

Specifies if the location of this port is fixed (i.e., locked). Locked ports are not moved during layout. The default value is true. You can enter one of the following values:

| Value | Description                            |
|-------|----------------------------------------|
| true  | The location of this port is locked.   |
| false | The location of this port is unlocked. |

# **Examples**

```
set_io -port_name IO_in\[2\]
-io_std LVCMOS25 \
-fixed true\
```

# I/O Directions Not Supported

The following table lists I/O directions that are **not** supported for the I/O standards shown in the table.

| I/O Direction | IO_STD Value                                                                                                                                                                                                                                                                                                    |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Input         | SLVSE15, MLVDSE25, BUSLVDSE25, MIPIE33, LVPECLE33, SHIELD33, SHIELD25, SHIELD18, SHIELD15, SHIELD135, SHIELD12                                                                                                                                                                                                  |
| Output        | SLVS33, HCSL33, HCSL25, LVPECL33, LVPECL25, MIPI25, LVDS18, RSDS18, MINILVDS18, SUBLVDS18, PPDS18, SLVS18, HCSL18                                                                                                                                                                                               |
| Tribuff       | SLVS33, HCSL33, HCSL25, LVPECL33, LVPECL25, MIPI25, LVDS18, RSDS18, MINILVDS18, SUBLVDS18, PPDS18, SLVS18, HCSL18, LVDS25, LVDS33, RSDS25, RSDS33, MINILVDS25, MINILVDS33, SUBLVDS25, SUBLVDS33, PPDS25, PPDS33, LCMDS25, LCMDS33                                                                               |
| Inout         | LVDS33, LVDS18, LVDS25, RSDS18, RSDS33, RSDS25, MINILVDS18, MINILVDS33, MINILVDS25, SUBLVDS18, SUBLVDS33, SUBLVDS25, PPDS18, PPDS33, PPDS25, SLVS33, SLVS25, HCSL33, HCSL25, LVPECL33, LVPECL25, MIPI25, MIPIE25, SLVS18, HCSL18, SHIELD33, SHIELD25, SHIELD18, SHIELD15, SHIELD135, SHIELD12, LCMDS25, LCMDS33 |

# -OUT\_LOAD <value>

Sets the output load (in pF) of output signals.



The default is 5. **Direction:** Output

## -RES\_PULL <value>

Allows you to include a weak resistor for either pull-up or pull-down of the input buffer. Not all I/O standards have a selectable resistor pull option.

The following table shows the acceptable values for the -RES\_PULL attribute:

| I/O Standard                                                       | Value | Description                                                |
|--------------------------------------------------------------------|-------|------------------------------------------------------------|
| LVCMOS25, LVCMOS33,<br>LVTTL, PCI, LVCMOS18,<br>LVCMOS15, LVCMOS12 | Up    | Includes a weak resistor for pull-up of the input buffer   |
|                                                                    | Down  | Includes a weak resistor for pull-down of the input buffer |
|                                                                    | Hold  | Holds the last value                                       |
|                                                                    | None  | Does not include a weak resistor                           |

For the I/O standards listed in the table above, the default is Up.

For all other I/O standards, the value is None.

The default is None.

**Direction:** Inout

## -LOCK\_DOWN <value>

Security feature that locks down the I/Os if tampering is detected.

Values are ON, OFF. The default is OFF.

**Direction:** Inout

## -CLAMP DIODE <value>

Specifies whether to add a power clamp diode to the I/O buffer. This attribute option is available to all I/O buffers with I/O technology set to LVTTL. A clamp diode provides circuit protection from voltage spikes, surges, electrostatic discharge, and other over-voltage conditions.

Values are OFF, ON.

The following table lists the values for GPIO standards. For HSIO standards, the value is always ON.

| I/O Standard                                                                                                                                                                                                        | Values                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| LVCMOS12, LVCMOS15, LVCMOS18, SSTL18I, SSTL18II, SSTL15I, SSTL15II, HSTL15II, HSTL15II, LVTTL, LVCMOS33, LVCMOS25, SSTL25I, SSTL25II,                                                                               | OFF, ON. The default is ON. |
| MIPI25                                                                                                                                                                                                              | OFF                         |
| HSUL18I, HSUL18II, SLVSE15, MIPI12, PCI, SLVS33, HCSL33, MIPIE33, LVPECL33, LVPECL25, LVPECLE33, LVDS25, LVDS33, RSDS25, RSDS33, MINILVDS25, MINILVDS33, SUBLVDS25, SUBLVDS33, PPDS25, PPDS33, MLVDSE25, BUSLVDSE25 | ON                          |

**Direction:** Inout



# -SCHMITT\_TRIGGER <value>

Specifies whether this I/O has an input schmitt trigger. The schmitt trigger introduces hysteresis on the I/O input. This allows very slow moving or noisy input signals to be used with the part without false or multiple I/O transitions taking place in the I/O.

For the following I/O standards, the values are OFF, ON. The default is OFF.

| I/O Standard                   | Values  |
|--------------------------------|---------|
| GPIO                           |         |
| LVCMOS25, LVCMOS33, LVTTL, PCI | OFF, ON |
| HSIO                           |         |
| LVCMOS18, LVCMOS15             | OFF, ON |

For all other I/O standards, the value is OFF.

Direction: Input

## -SLEW <value>

Sets the output slew rate. Slew control affects only the falling edges for some families. Slew control affects both rising and falling edges. Not all I/O standards have a selectable slew. Whether you can use the slew attribute depends on which I/O standard you have specified for this command.

The following I/O standards have values OFF, ON. The default is OFF.

| I/O Standard                   | Values  |
|--------------------------------|---------|
| LVCMOS25, LVCMOS33, LVTTL, PCI | OFF, ON |

For all other I/O standards, the value is OFF.

**Direction:** Output

## -VICM RANGE <value>

Sets the VCM input range.

The following table lists the supported values and I/O standards.

| I/O Standard                                                                                                                                                                                                         | Values                        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| GPIO                                                                                                                                                                                                                 |                               |
| HSTL15I, HSTL15II, HSUL18I, HSUL18II, SSTL15I, SSTL15II, SSTL18II, SSTL25I, SSTL25II                                                                                                                                 | MID                           |
| HCSL331, HCSL25, LVDS33, LVDS25,<br>LVPECL33, LVPECL25, LVPECLE33,<br>MINILVDS33, MINILVDS25, MIPI25,<br>MIPIE25, PPDS33, PPDS25, RSDS33,<br>RSDS25, SLVS33, SLVS25, SLVSE15,<br>BUSLVDSE25, SUBLVDS33,<br>SUBLVDS25 | MID, LOW. The default is MID. |
| LCMDS33, LCMDS25                                                                                                                                                                                                     | LOW                           |
| HSIO                                                                                                                                                                                                                 |                               |



| HSTL12I, HSTL12II, HSTL135I,<br>HSTL135II, HSTL15I, HSTL15II,<br>HSUL12I, HSUL18I, HSUL18II,<br>LVSTL11I, LVSTL11II, POD12I, POD12II,<br>SSTL135I, SSTL135II, SSTL15I,<br>SSTL15II, SSTL18I, SSTL18II | MID                           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| SLVSE15, LVDS18, HCSL18,<br>MINILVDS18, PPDS18, RSDS18,<br>SLVS18, SUBLVDS18                                                                                                                          | MID, LOW. The default is MID. |
| LCMDS18                                                                                                                                                                                               | LOW                           |

**Direction:** Input

# -ODT <value>

On-die termination (ODT) is the technology where the termination resistor for impedance matching in transmission lines is located inside a semiconductor chip instead of on a printed circuit board.

Values are OFF, ON.

The following table lists acceptable values.

| I/O Standard                                                                                                                                                                                                                                                                  | Values                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| LVCMOS12, LVCMOS15, LVCMOS18,<br>LVCMOS25, HSUL18I, HSUL18II                                                                                                                                                                                                                  | OFF, ON. The default is OFF. |
| SSTL15I, SSTL15II, SSTL18I, SSTL18II, HSUL12I, LVSTL11I, LVSTL11II, POD12I, POD12II, SSTL135I, SSTL135II, HSTL15I, HSTL15II, LVDS33, LVDS25, LVPECL33, LVPECL25, MINILVDS33, MINILVDS25, RSDS33, RSDS25, SUBLVDS33, SUBLVDS25, HSTL12I, HSTL135I, HSTL135II, LCMDS33, LCMDS25 | OFF, ON. The default is ON.  |

**Direction:** Input

# -ODT\_VALUE

Sets the ODT value (in Ohms) for On Die Termination.

Values vary depending on the I/O standard. The following table lists acceptable values.

| I/O Standard                                 | Values                                  |
|----------------------------------------------|-----------------------------------------|
| LVCMOS12<br>LVCMOS15<br>LVCMOS18<br>LVCMOS25 | 120, 240. The default is 120.           |
| HSUL12I                                      | 60, 120, 240. The default is 120.       |
| SSTL15I<br>SSTL15II                          | 20, 30, 40, 60, 120. The default is 30. |



| SSTL135I<br>SSTL135II                                                                                                                               | 20, 30, 40, 60, 120. The default is 40.              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| SSTL18I<br>SSTL18II                                                                                                                                 | 50, 75, 150. The default is 50.                      |
| LVSTL11I<br>LVSTL11II                                                                                                                               | 30, 34, 40, 48, 60, 80, 120, 240. The default is 60. |
| POD12I<br>POD12II                                                                                                                                   | 34, 40, 48, 60, 80, 120, 240. The default is 40.     |
| LVDS33<br>LVDS25<br>LVPECL33<br>LVPECL25<br>MINILVDS33<br>MINILVDS25<br>RSDS33<br>RSDS25<br>SLVSE15<br>SUBLVDS33<br>SUBLVDS25<br>LCMDS33<br>LCMDS25 | 100                                                  |
| HSTL15I<br>HSTL15II<br>HSUL18I<br>HSUL18II<br>HSTL12I<br>HSTL12II<br>HSTL135I<br>HSTL135II                                                          | 50                                                   |

**Direction:** Inout

# -OUT\_DRIVE <value>

Sets the strength of the output buffer to 1.5, 2, 3.5, 4, 6, 8, 10, 12, 16, or 20 in mA, weakest to strongest. The list of I/O standards for which you can change the output drive and the list of values you can assign for each I/O standard is family-specific. Not all I/O standards have a selectable output drive strength. Also, each I/O standard has a different range of legal output drive strength values. The values you can choose from depend on which I/O standard you have specified for this command. The table below lists acceptable values.

| I/O Standard       | Values                                 |
|--------------------|----------------------------------------|
| LVCMOS12           | 2, 4, 6, 8. The default is 8.          |
| LVCMOS15           | 2, 4, 6, 8, 10. The default is 8.      |
| LVCMOS18           | 2, 4, 6, 8, 10, 12. The default is 8.  |
| LVCMOS25           | 2, 4, 6, 8, 12, 16. The default is 8.  |
| LVCMOS33,<br>LVTTL | 2, 4, 8, 12, 16, 20. The default is 8. |



| LVDS25,<br>LVDS33,<br>MINILVDS25,<br>MINILVDS33,<br>LCMDS33,<br>LCMDS25 | 3, 3.5, 4, 6. The default is 6. |
|-------------------------------------------------------------------------|---------------------------------|
| PPDS25,<br>PPDS33,<br>RSDS25,<br>RSDS33                                 | 1.5, 2, 3. The default is 3.    |
| SUBLVDS25,<br>SUBLVDS33                                                 | 1, 1.5, 2. The default is 2.    |
| BUSLVDSE25,<br>MLVDSE25,<br>LVPECLE33                                   | 16                              |
| MIPIE25,<br>SLVSE15                                                     | 8                               |
| PCI                                                                     | 20                              |

**Direction:** Output

# -IMPEDANCE

Sets the Impedance value (in Ohms).

Values vary depending on the I/O standard. The table below lists acceptable values.

| I/O Standard                         | Values                                               |
|--------------------------------------|------------------------------------------------------|
| HSTL12I                              | 50                                                   |
| HSTL12II                             | 25                                                   |
| HSTL135I,<br>HSTL15I                 | 34, 40, 50, 60. The default is 50.                   |
| HSTL135II,<br>HSTL15II,<br>HSUL18II, | 22, 25, 27, 30. The default is 25.                   |
| HSUL12I                              | 34, 40, 48, 60, 80, 120. The default is 40.          |
| HSUL18I                              | 34, 40, 55, 60. The default is 55.                   |
| POD12I                               | 40, 48, 60. The default is 48.                       |
| LVSTL11I,<br>LVSTL11II               | 30, 34, 40, 48, 60, 80, 120, 240. The default is 40. |
| POD12II,<br>SSTL135II,<br>SSTL15II   | 27, 30, 34. The default is 34.                       |
| SSTL135I,<br>SSTL15I                 | 40, 48. The default is 40.                           |
| SSTL18I                              | 40, 48, 60, 80. The default is 60.                   |
| SSTL18II                             | 30, 34, 40, 48. The default is 40.                   |



| SSTL25I  | 48, 60, 80, 120. The default is 80. |
|----------|-------------------------------------|
| SSTL25II | 34, 40, 48, 60. The default is 48.  |

**Direction:** Output

# -SOURCE\_TERM

Near End termination for a differential output I/O.

The default is OFF. **Direction:** Output

# -IN\_DELAY

Sets the Input Delay.

Input Delay applies to all I/O standards. The values are OFF, and 1–254. The default value is OFF.

**Direction:** Input

Note: This attribute will not appear in the I/O attributes and cannot be used in the PDC for some I/Os with dynamic delays, such as DDR I/Os.

# -OUT\_DELAY

Sets the Output Delay.

Output Delay applies to all I/O standards. The values are OFF, and 1-127. The default value is OFF.

**Direction:** Output

Note: This attribute will not appear in the I/O attributes and cannot be used in the PDC for some I/Os with dynamic delays, such as DDR I/Os.



# set\_location

PDC command; assigns the specified macro to a particular location on the chip.

set\_location -inst\_name <macro\_inst\_name> -fixed <true | false> -x <integer> -y <integer>

# **Arguments**

#### -inst name

Specifies the instance name of the macro in the netlist to assign to a particular location on the chip.

#### -fixed <true | false>

Sets whether the location of this instance is fixed (that is, locked). Locked instances are not moved during layout. The default is yes. The following table shows the acceptable values for this argument.

| Value | Description                                |  |
|-------|--------------------------------------------|--|
| true  | The location of this instance is locked.   |  |
| false | The location of this instance is unlocked. |  |

#### -x -y

The x and y coordinates specify where to place the macro on the chip. Use the Chip Planner tool to determine the x and y coordinates of the location.

# **Exceptions**

None

# **Example**

This example assigns and locks the macro with the name "mem\_data\_in\[57\]" at the location x=7, y=2:  $set_location - inst_name mem_data_in\[57\] - fixed true -x 7 -y 2$ 

# **DDR3 Memory Placement**

DDR3 memory needs to be placed in specific locations on the PolarFire chip to meet timing requirements. For DDR3 memory placement, the set\_location command has the following syntax:

set\_location -inst\_name <hierarchical path to DDR instance> -location <edge>\_<anchor>

#### -inst\_name <hierarchical path to DDR instance>

Specifies the hierarchical path to the DDR instance.

#### -location <edge> <anchor>

Specifies the edge\_anchor location.

# **Example**

```
set_location -inst_name {DDR3_TOP/DDR3_0}\ -location {NORTH_NE}
```

The maximum DDR width varies with the die/package combinations and the location they are placed in. Check the following table for the correct location to place the DDR3 memory. The numbers in the table refer to the maximum DDR3 width.



|                 | Location (Edge_Anchor} Edge={NORTH/SOUTH/WEST}, Anchor={NE/NW/SE/SW} |          |             |          |             |         |
|-----------------|----------------------------------------------------------------------|----------|-------------|----------|-------------|---------|
| Die/Package     | NORTH_NE                                                             | NORTH_NW | SOUTH_SE    | SOUTH_SW | WEST_NW     | WEST_SW |
| MPF200/FULLPKGE | 16                                                                   | 16       | Invalid Loc | 40       | 64          | 40      |
| MPF300/FCG1152  | 64                                                                   | 72       | 16          | 40       | 72          | 64      |
| MPF300/FCG484   | 8                                                                    | 8        | Invalid Loc | 32       | Invalid Loc | 16      |
| MPF300/FCVG484  | 16                                                                   | 16       | Invalid Loc | 40       | 16          | 16      |

## **PLL Placement**

For PLL placement, the set\_location command has the following syntax:

set\_location -inst\_name <hierarchical inst name> -location <PLL location>

#### -inst\_name <hierarchical inst name>

Specifies the hierarchical instance name.

#### -location <PLL location>

Specifies the PLL location. Location can be one of the following:

PLL0\_NW

PLL1\_NW

PLL0 NE

PLL1 NE

PLL0\_SW

PLL1 SW

PLL0\_SE

PLL1\_SE

# **DLL Placement**

For DLL placement, the set\_location command has the following syntax:

set\_location -inst\_name <hierarchical inst name> -location <DLL location>

## -inst\_name <hierarchical inst name>

Specifies the hierarchical instance name.

# -location <DLL location>

Specifies the DLL location. Location can be one of the following:

DLL0 NW

DLL1\_NW

DLL0\_NE

DLL1 NE

DLL0\_SW

DLL1\_SW

DLL0 SE

DLL1\_SE



# **TxPLL Placement**

For TxPLL placement, the set location command has the following syntax:

set\_location -inst\_name <hierarchical inst name> -location <TxPLL location>

# -inst\_name <hierarchical inst name>

Specifies the hierarchical instance name.

# -location <TxPLL location>

Specifies the TxPLL location. Location can be one of the following:

Q2 TXPLL0

Q2\_TXPLL\_SSC

Q2\_TXPLL1

Q0 TXPLL0

Q0\_TXPLL\_SSC

Q0\_TXPLL1

Q1\_TXPLL0

Q1\_TXPLL\_SSC

Q1\_TXPLL1

Q3\_TXPLL\_SSC

Q3\_TXPLL1



# 2 - Netlist Attributes PDC Commands

Netlist Attributes PDC Commands are used to set netlist-specific constraints. These commands are placed in a Compile Netlist Constraint (\*.ndc) file and used by the Libero SoC Compile engine to optimize the post-synthesis netlist.

# set\_preserve

This command sets a preserve property on instances before compile, so compile will preserve these instances and not combine them.

set\_preserve -inst\_name <instance\_name>

# **Arguments**

#### -inst\_name

Specifies the full hierarchical name of the macro in the netlist to preserve.

# **Exceptions**

You must put this command in a PDC constraint file and associate it with Place and Route.

# **Example**

set\_preserve -inst\_name "test1/AND2\_0"



# 3 - Floorplanning PDC Commands

Floorplanning PDC commands are used to create and edit user regions and to assign/unassign logic to these regions.

# assign\_region

PDC command; constrains a set of macros to a specified region.

assign\_region -region\_name <region\_name> -inst\_name <macro\_name>+

# **Arguments**

#### -region\_name

Specifies the region to which the macros are assigned. The macros are constrained to this region. Because the define\_region command returns a region object, you can write a simpler command such as assign\_region [define\_region]+ [macro\_name]+

#### -inst name

Specifies the macro(s) to assign to the region. You must specify at least one macro name. You can use the following wild card characters in macro names:

| Wild Card | What it does                                             |
|-----------|----------------------------------------------------------|
| 1         | Interprets the next character as a non-special character |
| ?         | Matches any single character                             |
| *         | Matches any string                                       |

#### Note:

- The region must be created before you can assign macros to it. If the region creation PDC command and the macro assignment command are in different PDC files, the order of the PDC files is important.
- You can assign only hard macros or their instances to a region. You cannot assign a group name.
   A hard macro is a logic cell consisting of one or more silicon modules with locked relative placement.
- The macro name must be a name with full hierarchical path.

# **Examples**

In the following example, two macros are assigned to a region:

```
assign_region -region_name UserRegion1 -inst_name "test_0/AND2_0 test_0/AND2_1"
```

In the following example, all macros whose names have the prefix des01/Counter\_1 (or all macros whose names match the expression des01/Counter\_1/\*) are assigned to a region:

 $assign\_region - region\_name \ User\_region2 - inst\_name \ des 01/Counter\_1/*$ 

#### See Also

""



# assign\_net\_macros

PDC command; assigns to a user-defined region all the macros that are connected to a net.

assign\_net\_macros -region\_name <region\_name> -net\_name <net\_name> -include\_driver
<true|false>

# **Arguments**

#### -region\_name

Specifies the name of the region to which you are assigning macros. The region must exist before you use this command. See define\_region (rectangular) or define\_region (rectilinear). Because the define\_region command returns a region object, you can write a simple command such as assign\_net\_macros [define\_region]+ [net]+

#### -net\_name

You must specify at least one net name. Net names are AFL-level (flattened netlist) names. These names match your netlist names most of the time. When they do not, you must export AFL and use the AFL names. Net names are case insensitive. Hierarchical net names from ADL are not allowed. You can use the following wild card characters in net names:

| Wild Card | What it does                                             |
|-----------|----------------------------------------------------------|
| 1         | Interprets the next character as a non-special character |
| ?         | Matches any single character                             |
| *         | Matches any string                                       |

#### -include driver

Specifies whether to add the driver of the net(s) to the region. You can enter one of the following values:

| Value | Descriptions                                                               |
|-------|----------------------------------------------------------------------------|
| true  | Include the driver in the list of macros assigned to the region (default). |
| false | Do not assign the driver to the region.                                    |

#### Note:

- Placed macros (not connected to the net) that are inside the area occupied by the net region are automatically unplaced.
- Net region constraints are internally converted into constraints on macros. PDC export results as a series of assign region <region name> macro1 statements for all the connected macros.
- If the region does not have enough space for all of the macros, or if the region constraint is impossible, the constraint is rejected and a warning message appears in the Log window.
- · For overlapping regions, the intersection must be at least as big as the overlapping macro count.
- If a macro on the net cannot legally be placed in the region, it is not placed and a warning
  message appears in the Log window.
- Net region constraints may result in a single macro being assigned to multiple regions. These net region constraints result in constraining the macro to the intersection of all the regions affected by the constraint.

# **Examples**

assign\_net\_macros -region\_name UserRegion1 -net\_name Y -include\_driver false



# define\_region

PDC command; defines either a rectangular region or a rectilinear region.

define\_region -region\_name <region\_name> -type <inclusive|exclusive|empty> -x1
<integer> -y1 <integer> -x2 <integer> -y2 <integer> [-color <integer>] [-route
<true|false>]

Note: The -color and -route parameters are optional.

# **Arguments**

# -region\_name <region\_name>

Specifies the region name. The name must be unique. Do not use reserved names such as "bank0" and "bank<N>" for region names. If the region cannot be created, the name is empty. A default name is generated if a name is not specified in this argument.

# -type <inclusive | exclusive | empty>

Specifies the region type. The following table shows the acceptable values for this argument:

| Region Type | Description                                                   |  |
|-------------|---------------------------------------------------------------|--|
| Empty       | Empty regions cannot contain macros                           |  |
| Exclusive   | Only contains macros assigned to the region                   |  |
| Inclusive   | Can contain macros both assigned and unassigned to the region |  |

## -x1 -y1 -x2 -y2

Specifies the series of coordinate pairs that constitute the region. These rectangles may or may not overlap. They are given as x1 y1 x2 y2 (where x1, y1 is the lower left and x2 y2 is the upper right corner in row/column coordinates). You must specify at least one set of coordinates.

#### -color <value>

Specifies the color of the region. The following table shows the recommended values for this argument:

| Color | Decimal Value |
|-------|---------------|
|       | 16776960      |
|       | 65280         |
|       | 16711680      |
|       | 16760960      |
|       | 255           |
|       | 16711935      |
|       | 65535         |
|       | 33023         |
|       | 8421631       |
|       | 9568200       |
|       | 8323199       |
|       | 12632256      |



#### -route <value>

Specifies whether to direct the routing of all nets internal to a region to be constrained within that region. A net is internal to a region if its source and destination pins are assigned to the region. You can enter one of the following values:

| Constrain Routing Value | Description                                                                                                      |  |
|-------------------------|------------------------------------------------------------------------------------------------------------------|--|
| true                    | Constrain the routing of nets within the region as well as the placement.                                        |  |
| false                   | Do not constrain the routing of nets within the region. Only constrain the placement. This is the default value. |  |

Note: Local clocks and global clocks are excluded from the -route option. Also, interface nets are excluded from the -route option because they cross region boundaries.

An empty routing region is an empty placement region. If -route is "true", then no routing is allowed inside the empty region. However, local clocks and globals can cross empty regions.

An exclusive routing region is an exclusive placement region (rectilinear area with assigned macros) along with the following additional constraints:

- For all nets internal to the region (the source and all destinations belong to the region), routing
  must be inside the region (that is, such nets cannot be assigned any routing resource which is
  outside the region or crosses the region boundaries).
- Nets without pins inside the region cannot be assigned any routing resource which is inside the region or crosses any region boundaries.

An inclusive routing region is an inclusive placement region (rectilinear area with assigned macros) along with the following additional constraints:

- For all nets internal to the region (the source and all destinations belong to the region), routing
  must be inside the region (that is, such nets cannot be assigned any routing resource which is
  outside the region or crosses the region boundaries).
- Nets not internal to the region can be assigned routing resources within the region.

# Description

Unlocked macros in empty or exclusive regions are unassigned from that region. You cannot create empty regions in areas that contain locked macros.

Use inclusive or exclusive region constraints if you intend to assign logic to a region. An inclusive region constraint with no macros assigned to it has no effect. An exclusive region constraint with no macros assigned to it is equivalent to an empty region.

Note: If macros assigned to a region exceed the area's capacity, the region's Properties Window displays the overbooked resources (over 100 percent resource utilization) in red.

# **Examples**

The following example defines an empty rectangular region called UserRegion1 with lower-left coordinates (100,46) and upper-right co-ordinates (102,50).

```
define_region -region_name UserRegion1 -type empty -x1 100 -y1 46 -x2 102 -y2 50 The following example defines an inclusive rectilinear region with the name UserRegion2. This region contains two rectangular areas, one with lower-left co-ordinates (12,39) and upper-right co-ordinates (23,41) and another rectangle with lower-left co-ordinates (12,33) and upper-right co-ordinates (23,35).
```

```
define_region -region_name UserRegion2 -type exclusive -x1 12 -y1 39 -x2 23 -y2 41 -x1
12 -y1 33\
   -x2 23 -y2 35
```

The following examples define three regions with three different colors:

```
define_region -region_name UserRegion0 -color 128 -x1 50 -y1 19 -x2 60 -y2 25 define_region -region_name UserRegion1 -color 16711935 -x1 11 -y1 2 -x2 55 -y2 29 define_region -region_name UserRegion2 -color 8388736 -x1 61 -y1 6 -x2 69 -y2 19
```



## See Also

"assign\_region"

# move\_region

PDC command; moves the named region to the coordinates specified.

 $\label{local_move_region_name} $$\operatorname{region_name} -x1 < \operatorname{integer} -y1 < \operatorname{integer} -x2 < \operatorname{integer} -y2 < \operatorname{integer} > -y2 < \operatorname$ 

# **Arguments**

## -region\_name

Specifies the name of the region to move. This name must be unique.

# -x1 -y1 -x2 -y2

Specifies the series of coordinate pairs representing the location in which to move the named region. These rectangles can overlap. They are given as x1, y1, x2, y2, where x1, y1 represents the lower-left corner of the rectangle and x2 y2 represents the upper-right corner. You must specify at least one set of coordinates.

# **Example**

This example moves the region named UserRegion1 to a new region with lower-left co-ordinates (0,40) and upper-right co-ordinates (3,42):

```
move_region -region_name UserRegion1 -x1 0 -y1 40 -x2 3 -y2 42 \bf See\ Also
```

"define\_region"



# A - Packages/Memory Types

This appendix provides device, package, slot, and memory type information.

| DEVICE  | PACKAGE | SLOT     | MEMORY TYPE |
|---------|---------|----------|-------------|
| PA5M100 | FCG484  | NORTH_NE | DDR3        |
| PA5M100 | FCG484  | NORTH_NE | DDR4        |
| PA5M100 | FCG484  | NORTH_NE | QDR II+ x18 |
| PA5M100 | FCG484  | NORTH_NE | QDR II+ x8  |
| PA5M100 | FCG484  | NORTH_NE | QDR II+ x9  |
| PA5M100 | FCG484  | NORTH_NW | DDR3        |
| PA5M100 | FCG484  | NORTH_NW | DDR4        |
| PA5M100 | FCG484  | NORTH_NW | QDR II+ x18 |
| PA5M100 | FCG484  | NORTH_NW | QDR II+ x8  |
| PA5M100 | FCG484  | NORTH_NW | QDR II+ x9  |
| PA5M100 | FCG484  | SOUTH_SW | DDR3        |
| PA5M100 | FCG484  | SOUTH_SW | QDR II+ x18 |
| PA5M100 | FCG484  | SOUTH_SW | QDR II+ x8  |
| PA5M100 | FCG484  | SOUTH_SW | QDR II+ x9  |
| PA5M100 | FCSG325 | NORTH_NE | DDR3        |
| PA5M100 | FCSG325 | NORTH_NE | DDR4        |
| PA5M100 | FCSG325 | NORTH_NE | QDR II+ x18 |
| PA5M100 | FCSG325 | NORTH_NE | QDR II+ x8  |
| PA5M100 | FCSG325 | NORTH_NE | QDR II+ x9  |
| PA5M100 | FCSG325 | NORTH_NW | DDR3        |
| PA5M100 | FCSG325 | NORTH_NW | DDR4        |
| PA5M100 | FCSG325 | NORTH_NW | QDR II+ x18 |
| PA5M100 | FCSG325 | NORTH_NW | QDR II+ x8  |
| PA5M100 | FCSG325 | NORTH_NW | QDR II+ x9  |
| PA5M100 | FCSG325 | SOUTH_SW | DDR3        |
| PA5M100 | FCSG536 | NORTH_NE | DDR3        |
| PA5M100 | FCSG536 | NORTH_NE | DDR4        |
| PA5M100 | FCSG536 | NORTH_NE | QDR II+ x18 |
| PA5M100 | FCSG536 | NORTH_NE | QDR II+ x8  |
| PA5M100 | FCSG536 | NORTH_NE | QDR II+ x9  |
| PA5M100 | FCSG536 | NORTH_NW | DDR3        |
| PA5M100 | FCSG536 | NORTH_NW | DDR4        |
| PA5M100 | FCSG536 | NORTH_NW | QDR II+ x18 |
| PA5M100 | FCSG536 | NORTH_NW | QDR II+ x8  |
| PA5M100 | FCSG536 | NORTH_NW | QDR II+ x9  |
| PA5M100 | FCSG536 | SOUTH_SW | DDR3        |
| PA5M100 | FCSG536 | SOUTH_SW | QDR II+ x18 |
| PA5M100 | FCSG536 | SOUTH_SW | QDR II+ x8  |



| PA5M100 | FCSG536 | SOUTH SW | QDR II+ x9  |
|---------|---------|----------|-------------|
| PA5M100 | FCSG536 | WEST_NW  | DDR3        |
| PA5M100 | FCSG536 | WEST_NW  | QDR II+ x8  |
| PA5M100 | FCSG536 | WEST NW  | QDR II+ x9  |
| PA5M100 | FCVG484 | NORTH NE | DDR3        |
| PA5M100 | FCVG484 | NORTH_NE | DDR4        |
| PA5M100 | FCVG484 | NORTH_NE | QDR II+ x18 |
| PA5M100 | FCVG484 | NORTH_NE | QDR II+ x8  |
| PA5M100 | FCVG484 | NORTH_NE | QDR II+ x9  |
| PA5M100 | FCVG484 | NORTH_NW | DDR3        |
| PA5M100 | FCVG484 | NORTH_NW | DDR4        |
| PA5M100 | FCVG484 | NORTH_NW | QDR II+ x18 |
| PA5M100 | FCVG484 | NORTH_NW | QDR II+ x8  |
| PA5M100 | FCVG484 | NORTH_NW | QDR II+ x9  |
| PA5M100 | FCVG484 | SOUTH_SW | DDR3        |
| PA5M100 | FCVG484 | SOUTH_SW | QDR II+ x18 |
| PA5M100 | FCVG484 | SOUTH_SW | QDR II+ x8  |
| PA5M100 | FCVG484 | SOUTH_SW | QDR II+ x9  |
| PA5M100 | FCVG484 | WEST_NW  | DDR3        |
| PA5M100 | FCVG484 | WEST_NW  | QDR II+ x8  |
| PA5M100 | FCVG484 | WEST_NW  | QDR II+ x9  |
| PA5M100 | FULLPKG | NORTH_NE | DDR3        |
| PA5M100 | FULLPKG | NORTH_NE | DDR4        |
| PA5M100 | FULLPKG | NORTH_NE | QDR II+ x18 |
| PA5M100 | FULLPKG | NORTH_NE | QDR II+ x8  |
| PA5M100 | FULLPKG | NORTH_NE | QDR II+ x9  |
| PA5M100 | FULLPKG | NORTH_NW | DDR3        |
| PA5M100 | FULLPKG | NORTH_NW | DDR4        |
| PA5M100 | FULLPKG | NORTH_NW | QDR II+ x18 |
| PA5M100 | FULLPKG | NORTH_NW | QDR II+ x8  |
| PA5M100 | FULLPKG | NORTH_NW | QDR II+ x9  |
| PA5M100 | FULLPKG | SOUTH_SW | DDR3        |
| PA5M100 | FULLPKG | SOUTH_SW | QDR II+ x18 |
| PA5M100 | FULLPKG | SOUTH_SW | QDR II+ x8  |
| PA5M100 | FULLPKG | SOUTH_SW | QDR II+ x9  |
| PA5M100 | FULLPKG | WEST_NW  | DDR3        |
| PA5M100 | FULLPKG | WEST_NW  | QDR II+ x8  |
| PA5M100 | FULLPKG | WEST_NW  | QDR II+ x9  |
| PA5M200 | FCG484  | NORTH_NE | DDR3        |
| PA5M200 | FCG484  | NORTH_NE | DDR4        |
| PA5M200 | FCG484  | NORTH_NE | QDR II+ x18 |
| PA5M200 | FCG484  | NORTH_NE | QDR II+ x8  |
| PA5M200 | FCG484  | NORTH_NE | QDR II+ x9  |
| PA5M200 | FCG484  | NORTH_NW | DDR3        |
| PA5M200 | FCG484  | NORTH_NW | DDR4        |



| PA5M200 | FCG484  | NORTH NW | QDR II+ x18 |
|---------|---------|----------|-------------|
| PA5M200 | FCG484  | NORTH NW | QDR II+ x8  |
| PA5M200 | FCG484  | NORTH NW | QDR II+ x9  |
| PA5M200 | FCG484  | SOUTH SW | DDR3        |
| PA5M200 | FCG484  | SOUTH SW | QDR II+ x18 |
| PA5M200 | FCG484  | SOUTH SW | QDR II+ x8  |
| PA5M200 | FCG484  | SOUTH SW | QDR II+ x9  |
| PA5M200 | FCG484  | WEST SW  | DDR3        |
| PA5M200 | FCG484  | WEST SW  | QDR II+ x8  |
| PA5M200 | FCG484  | WEST SW  | QDR II+ x9  |
| PA5M200 | FCG784  | NORTH NE | DDR3        |
| PA5M200 | FCG784  | NORTH NE | DDR4        |
| PA5M200 | FCG784  | NORTH NE | QDR II+ x18 |
| PA5M200 | FCG784  | NORTH NE | QDR II+ x36 |
| PA5M200 | FCG784  | NORTH NE | QDR II+ x8  |
| PA5M200 | FCG784  | NORTH NE | QDR II+ x9  |
| PA5M200 | FCG784  | NORTH NW | DDR3        |
| PA5M200 | FCG784  | NORTH NW | DDR4        |
| PA5M200 | FCG784  | NORTH NW | QDR II+ x18 |
| PA5M200 | FCG784  | NORTH NW | QDR II+ x36 |
| PA5M200 | FCG784  | NORTH NW | QDR II+ x8  |
| PA5M200 | FCG784  | NORTH NW | QDR II+ x9  |
| PA5M200 | FCG784  | SOUTH_SW | DDR3        |
| PA5M200 | FCG784  | SOUTH_SW | QDR II+ x18 |
| PA5M200 | FCG784  | SOUTH_SW | QDR II+ x8  |
| PA5M200 | FCG784  | SOUTH_SW | QDR II+ x9  |
| PA5M200 | FCG784  | WEST_NW  | DDR3        |
| PA5M200 | FCG784  | WEST_NW  | QDR II+ x18 |
| PA5M200 | FCG784  | WEST_NW  | QDR II+ x36 |
| PA5M200 | FCG784  | WEST_NW  | QDR II+ x8  |
| PA5M200 | FCG784  | WEST_NW  | QDR II+ x9  |
| PA5M200 | FCG784  | WEST_SW  | DDR3        |
| PA5M200 | FCG784  | WEST_SW  | QDR II+ x18 |
| PA5M200 | FCG784  | WEST_SW  | QDR II+ x8  |
| PA5M200 | FCG784  | WEST_SW  | QDR II+ x9  |
| PA5M200 | FCSG325 | NORTH_NE | DDR3        |
| PA5M200 | FCSG325 | NORTH_NE | DDR4        |
| PA5M200 | FCSG325 | NORTH_NE | QDR II+ x18 |
| PA5M200 | FCSG325 | NORTH_NE | QDR II+ x8  |
| PA5M200 | FCSG325 | NORTH_NE | QDR II+ x9  |
| PA5M200 | FCSG325 | NORTH_NW | DDR3        |
| PA5M200 | FCSG325 | NORTH_NW | DDR4        |
| PA5M200 | FCSG325 | NORTH_NW | QDR II+ x18 |
| PA5M200 | FCSG325 | NORTH_NW | QDR II+ x8  |
| PA5M200 | FCSG325 | NORTH_NW | QDR II+ x9  |



| PA5M200 | FCSG325 | SOUTH SW | DDR3        |
|---------|---------|----------|-------------|
| PA5M200 | FCSG536 | NORTH NE | DDR3        |
| PA5M200 | FCSG536 | NORTH NE | DDR4        |
| PA5M200 | FCSG536 | NORTH NE | QDR II+ x18 |
| PA5M200 | FCSG536 | NORTH NE | QDR II+ x8  |
| PA5M200 | FCSG536 | NORTH NE | QDR II+ x9  |
| PA5M200 | FCSG536 | NORTH NW | DDR3        |
| PA5M200 | FCSG536 | NORTH NW | DDR4        |
| PA5M200 | FCSG536 | NORTH NW | QDR II+ x18 |
| PA5M200 | FCSG536 | NORTH NW | QDR II+ x8  |
| PA5M200 | FCSG536 | NORTH NW | QDR II+ x9  |
| PA5M200 | FCSG536 | SOUTH SW | DDR3        |
| PA5M200 | FCSG536 | SOUTH SW | QDR II+ x18 |
| PA5M200 | FCSG536 | SOUTH SW | QDR II+ x8  |
| PA5M200 | FCSG536 | SOUTH SW | QDR II+ x9  |
| PA5M200 | FCSG536 | WEST NW  | DDR3        |
| PA5M200 | FCSG536 | WEST NW  | QDR II+ x18 |
| PA5M200 | FCSG536 | WEST NW  | QDR II+ x8  |
| PA5M200 | FCSG536 | WEST NW  | QDR II+ x9  |
| PA5M200 | FCSG536 | WEST SW  | DDR3        |
| PA5M200 | FCSG536 | WEST_SW  | QDR II+ x8  |
| PA5M200 | FCSG536 | WEST_SW  | QDR II+ x9  |
| PA5M200 | FCVG484 | NORTH_NE | DDR3        |
| PA5M200 | FCVG484 | NORTH_NE | DDR4        |
| PA5M200 | FCVG484 | NORTH_NE | QDR II+ x18 |
| PA5M200 | FCVG484 | NORTH_NE | QDR II+ x8  |
| PA5M200 | FCVG484 | NORTH_NE | QDR II+ x9  |
| PA5M200 | FCVG484 | NORTH_NW | DDR3        |
| PA5M200 | FCVG484 | NORTH_NW | DDR4        |
| PA5M200 | FCVG484 | NORTH_NW | QDR II+ x18 |
| PA5M200 | FCVG484 | NORTH_NW | QDR II+ x8  |
| PA5M200 | FCVG484 | NORTH_NW | QDR II+ x9  |
| PA5M200 | FCVG484 | SOUTH_SW | DDR3        |
| PA5M200 | FCVG484 | SOUTH_SW | QDR II+ x18 |
| PA5M200 | FCVG484 | SOUTH_SW | QDR II+ x8  |
| PA5M200 | FCVG484 | SOUTH_SW | QDR II+ x9  |
| PA5M200 | FCVG484 | WEST_NW  | DDR3        |
| PA5M200 | FCVG484 | WEST_NW  | QDR II+ x8  |
| PA5M200 | FCVG484 | WEST_NW  | QDR II+ x9  |
| PA5M200 | FCVG484 | WEST_SW  | DDR3        |
| PA5M200 | FCVG484 | WEST_SW  | QDR II+ x8  |
| PA5M200 | FCVG484 | WEST_SW  | QDR II+ x9  |
| PA5M200 | FULLPKG | NORTH_NE | DDR3        |
| PA5M200 | FULLPKG | NORTH_NE | DDR4        |
| PA5M200 | FULLPKG | NORTH_NE | QDR II+ x18 |



| PA5M200 | FULLPKG | NORTH_NE | QDR II+ x36 |
|---------|---------|----------|-------------|
| PA5M200 | FULLPKG | NORTH_NE | QDR II+ x8  |
| PA5M200 | FULLPKG | NORTH_NE | QDR II+ x9  |
| PA5M200 | FULLPKG | NORTH_NW | DDR3        |
| PA5M200 | FULLPKG | NORTH_NW | DDR4        |
| PA5M200 | FULLPKG | NORTH_NW | QDR II+ x18 |
| PA5M200 | FULLPKG | NORTH_NW | QDR II+ x36 |
| PA5M200 | FULLPKG | NORTH_NW | QDR II+ x8  |
| PA5M200 | FULLPKG | NORTH_NW | QDR II+ x9  |
| PA5M200 | FULLPKG | SOUTH_SW | DDR3        |
| PA5M200 | FULLPKG | SOUTH_SW | QDR II+ x18 |
| PA5M200 | FULLPKG | SOUTH_SW | QDR II+ x8  |
| PA5M200 | FULLPKG | SOUTH_SW | QDR II+ x9  |
| PA5M200 | FULLPKG | WEST_NW  | DDR3        |
| PA5M200 | FULLPKG | WEST_NW  | QDR II+ x18 |
| PA5M200 | FULLPKG | WEST_NW  | QDR II+ x36 |
| PA5M200 | FULLPKG | WEST_NW  | QDR II+ x8  |
| PA5M200 | FULLPKG | WEST_NW  | QDR II+ x9  |
| PA5M200 | FULLPKG | WEST_SW  | DDR3        |
| PA5M200 | FULLPKG | WEST_SW  | QDR II+ x18 |
| PA5M200 | FULLPKG | WEST_SW  | QDR II+ x8  |
| PA5M200 | FULLPKG | WEST_SW  | QDR II+ x9  |
| PA5M300 | FCG1152 | NORTH_NE | DDR3        |
| PA5M300 | FCG1152 | NORTH_NE | DDR4        |
| PA5M300 | FCG1152 | NORTH_NE | QDR II+ x18 |
| PA5M300 | FCG1152 | NORTH_NE | QDR II+ x36 |
| PA5M300 | FCG1152 | NORTH_NE | QDR II+ x8  |
| PA5M300 | FCG1152 | NORTH_NE | QDR II+ x9  |
| PA5M300 | FCG1152 | NORTH_NW | DDR3        |
| PA5M300 | FCG1152 | NORTH_NW | DDR4        |
| PA5M300 | FCG1152 | NORTH_NW | QDR II+ x18 |
| PA5M300 | FCG1152 | NORTH_NW | QDR II+ x36 |
| PA5M300 | FCG1152 | NORTH_NW | QDR II+ x8  |
| PA5M300 | FCG1152 | NORTH_NW | QDR II+ x9  |
| PA5M300 | FCG1152 | SOUTH_SE | DDR3        |
| PA5M300 | FCG1152 | SOUTH_SE | DDR4        |
| PA5M300 | FCG1152 | SOUTH_SE | QDR II+ x8  |
| PA5M300 | FCG1152 | SOUTH_SE | QDR II+ x9  |
| PA5M300 | FCG1152 | SOUTH_SW | DDR3        |
| PA5M300 | FCG1152 | SOUTH_SW | QDR II+ x18 |
| PA5M300 | FCG1152 | SOUTH_SW | QDR II+ x8  |
| PA5M300 | FCG1152 | SOUTH_SW | QDR II+ x9  |
| PA5M300 | FCG1152 | WEST_NW  | DDR3        |
| PA5M300 | FCG1152 | WEST_NW  | QDR II+ x18 |
| PA5M300 | FCG1152 | WEST_NW  | QDR II+ x36 |



| PA5M300 | FCG1152 | WEST NW  | QDR II+ x8  |
|---------|---------|----------|-------------|
| PA5M300 | FCG1152 | WEST NW  | QDR II+ x9  |
| PA5M300 | FCG1152 | WEST_SW  | DDR3        |
| PA5M300 | FCG1152 | WEST SW  | QDR II+ x18 |
| PA5M300 | FCG1152 | WEST SW  | QDR II+ x36 |
| PA5M300 | FCG1152 | WEST SW  | QDR II+ x8  |
| PA5M300 | FCG1152 | WEST SW  | QDR II+ x9  |
| PA5M300 | FCG484  | NORTH NE | DDR3        |
| PA5M300 | FCG484  | NORTH NE | DDR4        |
| PA5M300 | FCG484  | NORTH NE | QDR II+ x18 |
| PA5M300 | FCG484  | NORTH NE | QDR II+ x8  |
| PA5M300 | FCG484  | NORTH NE | QDR II+ x9  |
| PA5M300 | FCG484  | NORTH NW | DDR3        |
| PA5M300 | FCG484  | NORTH NW | DDR4        |
| PA5M300 | FCG484  | NORTH NW | QDR II+ x18 |
| PA5M300 | FCG484  | NORTH NW | QDR II+ x8  |
| PA5M300 | FCG484  | NORTH NW | QDR II+ x9  |
| PA5M300 | FCG484  | SOUTH SW | DDR3        |
| PA5M300 | FCG484  | SOUTH SW | QDR II+ x18 |
| PA5M300 | FCG484  | SOUTH SW | QDR II+ x8  |
| PA5M300 | FCG484  | SOUTH SW | QDR II+ x9  |
| PA5M300 | FCG484  | WEST SW  | DDR3        |
| PA5M300 | FCG484  | WEST SW  | QDR II+ x8  |
| PA5M300 | FCG484  | WEST SW  | QDR II+ x9  |
| PA5M300 | FCG784  | NORTH_NE | DDR3        |
| PA5M300 | FCG784  | NORTH NE | DDR4        |
| PA5M300 | FCG784  | NORTH_NE | QDR II+ x18 |
| PA5M300 | FCG784  | NORTH_NE | QDR II+ x36 |
| PA5M300 | FCG784  | NORTH_NE | QDR II+ x8  |
| PA5M300 | FCG784  | NORTH_NE | QDR II+ x9  |
| PA5M300 | FCG784  | NORTH_NW | DDR3        |
| PA5M300 | FCG784  | NORTH_NW | DDR4        |
| PA5M300 | FCG784  | NORTH_NW | QDR II+ x18 |
| PA5M300 | FCG784  | NORTH_NW | QDR II+ x36 |
| PA5M300 | FCG784  | NORTH_NW | QDR II+ x8  |
| PA5M300 | FCG784  | NORTH_NW | QDR II+ x9  |
| PA5M300 | FCG784  | SOUTH_SW | DDR3        |
| PA5M300 | FCG784  | SOUTH_SW | QDR II+ x18 |
| PA5M300 | FCG784  | SOUTH_SW | QDR II+ x8  |
| PA5M300 | FCG784  | SOUTH_SW | QDR II+ x9  |
| PA5M300 | FCG784  | WEST_NW  | DDR3        |
| PA5M300 | FCG784  | WEST_NW  | QDR II+ x18 |
| PA5M300 | FCG784  | WEST_NW  | QDR II+ x36 |
| PA5M300 | FCG784  | WEST_NW  | QDR II+ x8  |
| PA5M300 | FCG784  | WEST_NW  | QDR II+ x9  |



| PA5M300 | FCG784  | WEST SW  | DDR3        |
|---------|---------|----------|-------------|
| PA5M300 | FCG784  | WEST SW  | QDR II+ x18 |
| PA5M300 | FCG784  | WEST SW  | QDR II+ x36 |
| PA5M300 | FCG784  | WEST SW  | QDR II+ x8  |
| PA5M300 | FCG784  | WEST SW  | QDR II+ x9  |
| PA5M300 | FCSG536 | NORTH NE | DDR3        |
| PA5M300 | FCSG536 | NORTH NE | DDR4        |
| PA5M300 | FCSG536 | NORTH NE | QDR II+ x18 |
| PA5M300 | FCSG536 | NORTH NE | QDR II+ x8  |
| PA5M300 | FCSG536 | NORTH NE | QDR II+ x9  |
| PA5M300 | FCSG536 | NORTH NW | DDR3        |
| PA5M300 | FCSG536 | NORTH_NW | DDR4        |
| PA5M300 | FCSG536 | NORTH NW | QDR II+ x18 |
| PA5M300 | FCSG536 | NORTH NW | QDR II+ x8  |
| PA5M300 | FCSG536 | NORTH NW | QDR II+ x9  |
| PA5M300 | FCSG536 | SOUTH SW | DDR3        |
| PA5M300 | FCSG536 | SOUTH_SW | QDR II+ x18 |
| PA5M300 | FCSG536 | SOUTH_SW | QDR II+ x8  |
| PA5M300 | FCSG536 | SOUTH SW | QDR II+ x9  |
| PA5M300 | FCSG536 | WEST_NW  | DDR3        |
| PA5M300 | FCSG536 | WEST_NW  | QDR II+ x18 |
| PA5M300 | FCSG536 | WEST_NW  | QDR II+ x8  |
| PA5M300 | FCSG536 | WEST_NW  | QDR II+ x9  |
| PA5M300 | FCSG536 | WEST_SW  | DDR3        |
| PA5M300 | FCSG536 | WEST_SW  | QDR II+ x8  |
| PA5M300 | FCSG536 | WEST_SW  | QDR II+ x9  |
| PA5M300 | FCVG484 | NORTH_NE | DDR3        |
| PA5M300 | FCVG484 | NORTH_NE | DDR4        |
| PA5M300 | FCVG484 | NORTH_NE | QDR II+ x18 |
| PA5M300 | FCVG484 | NORTH_NE | QDR II+ x8  |
| PA5M300 | FCVG484 | NORTH_NE | QDR II+ x9  |
| PA5M300 | FCVG484 | NORTH_NW | DDR3        |
| PA5M300 | FCVG484 | NORTH_NW | DDR4        |
| PA5M300 | FCVG484 | NORTH_NW | QDR II+ x18 |
| PA5M300 | FCVG484 | NORTH_NW | QDR II+ x8  |
| PA5M300 | FCVG484 | NORTH_NW | QDR II+ x9  |
| PA5M300 | FCVG484 | SOUTH_SW | DDR3        |
| PA5M300 | FCVG484 | SOUTH_SW | QDR II+ x18 |
| PA5M300 | FCVG484 | SOUTH_SW | QDR II+ x8  |
| PA5M300 | FCVG484 | SOUTH_SW | QDR II+ x9  |
| PA5M300 | FCVG484 | WEST_NW  | DDR3        |
| PA5M300 | FCVG484 | WEST_NW  | QDR II+ x8  |
| PA5M300 | FCVG484 | WEST_NW  | QDR II+ x9  |
| PA5M300 | FCVG484 | WEST_SW  | DDR3        |
| PA5M300 | FCVG484 | WEST_SW  | QDR II+ x8  |



| PA5M300 | FCVG484 | WEST SW  | QDR II+ x9  |
|---------|---------|----------|-------------|
| PA5M300 | FULLPKG | NORTH NE | DDR3        |
| PA5M300 | FULLPKG | NORTH NE | DDR4        |
| PA5M300 | FULLPKG | NORTH NE | QDR II+ x18 |
| PA5M300 | FULLPKG | NORTH NE | QDR II+ x36 |
| PA5M300 | FULLPKG | NORTH NE | QDR II+ x8  |
| PA5M300 | FULLPKG | NORTH NE | QDR II+ x9  |
| PA5M300 | FULLPKG | NORTH NW | DDR3        |
| PA5M300 | FULLPKG | NORTH NW | DDR4        |
| PA5M300 | FULLPKG | NORTH_NW | QDR II+ x18 |
| PA5M300 | FULLPKG | NORTH_NW | QDR II+ x36 |
| PA5M300 | FULLPKG | NORTH_NW | QDR II+ x8  |
| PA5M300 | FULLPKG | NORTH_NW | QDR II+ x9  |
| PA5M300 | FULLPKG | SOUTH_SE | DDR3        |
| PA5M300 | FULLPKG | SOUTH_SE | DDR4        |
| PA5M300 | FULLPKG | SOUTH_SE | QDR II+ x8  |
| PA5M300 | FULLPKG | SOUTH_SE | QDR II+ x9  |
| PA5M300 | FULLPKG | SOUTH_SW | DDR3        |
| PA5M300 | FULLPKG | SOUTH_SW | QDR II+ x18 |
| PA5M300 | FULLPKG | SOUTH_SW | QDR II+ x8  |
| PA5M300 | FULLPKG | SOUTH_SW | QDR II+ x9  |
| PA5M300 | FULLPKG | WEST_NW  | DDR3        |
| PA5M300 | FULLPKG | WEST_NW  | QDR II+ x18 |
| PA5M300 | FULLPKG | WEST_NW  | QDR II+ x36 |
| PA5M300 | FULLPKG | WEST_NW  | QDR II+ x8  |
| PA5M300 | FULLPKG | WEST_NW  | QDR II+ x9  |
| PA5M300 | FULLPKG | WEST_SW  | DDR3        |
| PA5M300 | FULLPKG | WEST_SW  | QDR II+ x18 |
| PA5M300 | FULLPKG | WEST_SW  | QDR II+ x36 |
| PA5M300 | FULLPKG | WEST_SW  | QDR II+ x8  |
| PA5M300 | FULLPKG | WEST_SW  | QDR II+ x9  |
| PA5M500 | FCG1152 | NORTH_NE | DDR3        |
| PA5M500 | FCG1152 | NORTH_NE | DDR4        |
| PA5M500 | FCG1152 | NORTH_NE | QDR II+ x18 |
| PA5M500 | FCG1152 | NORTH_NE | QDR II+ x36 |
| PA5M500 | FCG1152 | NORTH_NE | QDR II+ x8  |
| PA5M500 | FCG1152 | NORTH_NE | QDR II+ x9  |
| PA5M500 | FCG1152 | NORTH_NW | DDR3        |
| PA5M500 | FCG1152 | NORTH_NW | DDR4        |
| PA5M500 | FCG1152 | NORTH_NW | QDR II+ x18 |
| PA5M500 | FCG1152 | NORTH_NW | QDR II+ x36 |
| PA5M500 | FCG1152 | NORTH_NW | QDR II+ x8  |
| PA5M500 | FCG1152 | NORTH_NW | QDR II+ x9  |
| PA5M500 | FCG1152 | SOUTH_SE | DDR3        |
| PA5M500 | FCG1152 | SOUTH_SE | DDR4        |



|         | ,       |          |             |
|---------|---------|----------|-------------|
| PA5M500 | FCG1152 | SOUTH_SE | QDR II+ x18 |
| PA5M500 | FCG1152 | SOUTH_SE | QDR II+ x8  |
| PA5M500 | FCG1152 | SOUTH_SE | QDR II+ x9  |
| PA5M500 | FCG1152 | SOUTH_SW | DDR3        |
| PA5M500 | FCG1152 | SOUTH_SW | QDR II+ x18 |
| PA5M500 | FCG1152 | SOUTH_SW | QDR II+ x8  |
| PA5M500 | FCG1152 | SOUTH_SW | QDR II+ x9  |
| PA5M500 | FCG1152 | WEST_NW  | DDR3        |
| PA5M500 | FCG1152 | WEST_NW  | QDR II+ x18 |
| PA5M500 | FCG1152 | WEST_NW  | QDR II+ x36 |
| PA5M500 | FCG1152 | WEST_NW  | QDR II+ x8  |
| PA5M500 | FCG1152 | WEST_NW  | QDR II+ x9  |
| PA5M500 | FCG1152 | WEST_SW  | DDR3        |
| PA5M500 | FCG1152 | WEST_SW  | QDR II+ x18 |
| PA5M500 | FCG1152 | WEST_SW  | QDR II+ x36 |
| PA5M500 | FCG1152 | WEST_SW  | QDR II+ x8  |
| PA5M500 | FCG1152 | WEST_SW  | QDR II+ x9  |
| PA5M500 | FCG784  | NORTH_NE | DDR3        |
| PA5M500 | FCG784  | NORTH_NE | DDR4        |
| PA5M500 | FCG784  | NORTH_NE | QDR II+ x18 |
| PA5M500 | FCG784  | NORTH_NE | QDR II+ x36 |
| PA5M500 | FCG784  | NORTH_NE | QDR II+ x8  |
| PA5M500 | FCG784  | NORTH_NE | QDR II+ x9  |
| PA5M500 | FCG784  | NORTH_NW | DDR3        |
| PA5M500 | FCG784  | NORTH_NW | DDR4        |
| PA5M500 | FCG784  | NORTH_NW | QDR II+ x18 |
| PA5M500 | FCG784  | NORTH_NW | QDR II+ x36 |
| PA5M500 | FCG784  | NORTH_NW | QDR II+ x8  |
| PA5M500 | FCG784  | NORTH_NW | QDR II+ x9  |
| PA5M500 | FCG784  | SOUTH_SW | DDR3        |
| PA5M500 | FCG784  | SOUTH_SW | QDR II+ x18 |
| PA5M500 | FCG784  | SOUTH_SW | QDR II+ x8  |
| PA5M500 | FCG784  | SOUTH SW | QDR II+ x9  |
| PA5M500 | FCG784  | WEST NW  | DDR3        |
| PA5M500 | FCG784  | WEST NW  | QDR II+ x18 |
| PA5M500 | FCG784  | WEST NW  | QDR II+ x36 |
| PA5M500 | FCG784  | WEST NW  | QDR II+ x8  |
| PA5M500 | FCG784  | WEST NW  | QDR II+ x9  |
| PA5M500 | FCG784  | WEST_SW  | DDR3        |
| PA5M500 | FCG784  | WEST_SW  | QDR II+ x18 |
| PA5M500 | FCG784  | WEST_SW  | QDR II+ x36 |
| PA5M500 | FCG784  | WEST SW  | QDR II+ x8  |
| PA5M500 | FCG784  | WEST SW  | QDR II+ x9  |
| PA5M500 | FULLPKG | NORTH NE | DDR3        |
| PA5M500 | FULLPKG | NORTH NE | DDR4        |



| PA5M500 | FULLPKG | NORTH_NE | QDR II+ x18 |
|---------|---------|----------|-------------|
| PA5M500 | FULLPKG | NORTH_NE | QDR II+ x36 |
| PA5M500 | FULLPKG | NORTH_NE | QDR II+ x8  |
| PA5M500 | FULLPKG | NORTH_NE | QDR II+ x9  |
| PA5M500 | FULLPKG | NORTH_NW | DDR3        |
| PA5M500 | FULLPKG | NORTH_NW | DDR4        |
| PA5M500 | FULLPKG | NORTH_NW | QDR II+ x18 |
| PA5M500 | FULLPKG | NORTH_NW | QDR II+ x36 |
| PA5M500 | FULLPKG | NORTH_NW | QDR II+ x8  |
| PA5M500 | FULLPKG | NORTH_NW | QDR II+ x9  |
| PA5M500 | FULLPKG | SOUTH_SE | DDR3        |
| PA5M500 | FULLPKG | SOUTH_SE | DDR4        |
| PA5M500 | FULLPKG | SOUTH_SE | QDR II+ x18 |
| PA5M500 | FULLPKG | SOUTH_SE | QDR II+ x8  |
| PA5M500 | FULLPKG | SOUTH_SE | QDR II+ x9  |
| PA5M500 | FULLPKG | SOUTH_SW | DDR3        |
| PA5M500 | FULLPKG | SOUTH_SW | QDR II+ x18 |
| PA5M500 | FULLPKG | SOUTH_SW | QDR II+ x8  |
| PA5M500 | FULLPKG | SOUTH_SW | QDR II+ x9  |
| PA5M500 | FULLPKG | WEST_NW  | DDR3        |
| PA5M500 | FULLPKG | WEST_NW  | QDR II+ x18 |
| PA5M500 | FULLPKG | WEST_NW  | QDR II+ x36 |
| PA5M500 | FULLPKG | WEST_NW  | QDR II+ x8  |
| PA5M500 | FULLPKG | WEST_NW  | QDR II+ x9  |
| PA5M500 | FULLPKG | WEST_NW  | RLDRAM II   |
| PA5M500 | FULLPKG | WEST_SW  | DDR3        |
| PA5M500 | FULLPKG | WEST_SW  | QDR II+ x18 |
| PA5M500 | FULLPKG | WEST_SW  | QDR II+ x36 |
| PA5M500 | FULLPKG | WEST_SW  | QDR II+ x8  |
| PA5M500 | FULLPKG | WEST_SW  | QDR II+ x9  |
|         |         |          |             |



# **B** – Product Support

Microsemi SoC Products Group backs its products with various support services, including Customer Service, Customer Technical Support Center, a website, electronic mail, and worldwide sales offices. This appendix contains information about contacting Microsemi SoC Products Group and using these support services.

# **Customer Service**

Contact Customer Service for non-technical product support, such as product pricing, product upgrades, update information, order status, and authorization.

From North America, call **800.262.1060**From the rest of the world, call **650.318.4460**Fax, from anywhere in the world, **650.318.8044** 

# **Customer Technical Support Center**

Microsemi SoC Products Group staffs its Customer Technical Support Center with highly skilled engineers who can help answer your hardware, software, and design questions about Microsemi SoC Products. The Customer Technical Support Center spends a great deal of time creating application notes, answers to common design cycle questions, documentation of known issues, and various FAQs. So, before you contact us, please visit our online resources. It is very likely we have already answered your questions.

# **Technical Support**

For Microsemi SoC Products Support, visit http://www.microsemi.com/products/fpga-soc/design-support/fpga-soc-support.

## Website

You can browse a variety of technical and non-technical information on the Microsemi SoC Products Group home page, at www.microsemi.com/soc.

# **Contacting the Customer Technical Support Center**

Highly skilled engineers staff the Technical Support Center. The Technical Support Center can be contacted by email or through the Microsemi SoC Products Group website.

#### **Email**

You can communicate your technical questions to our email address and receive answers back by email, fax, or phone. Also, if you have design problems, you can email your design files to receive assistance. We constantly monitor the email account throughout the day. When sending your request to us, please be sure to include your full name, company name, and your contact information for efficient processing of your request.

The technical support email address is soc tech@microsemi.com.

# My Cases

Microsemi SoC Products Group customers may submit and track technical cases online by going to My Cases.

#### Outside the U.S.

Customers needing assistance outside the US time zones can either contact technical support via email (soc\_tech@microsemi.com) or contact a local sales office.

Visit About Us for sales office listings and corporate contacts.

Sales office listings can be found at www.microsemi.com/soc/company/contact/default.aspx.

# **ITAR Technical Support**

For technical support on RH and RT FPGAs that are regulated by International Traffic in Arms Regulations (ITAR), contact us via soc\_tech\_itar@microsemi.com. Alternatively, within My Cases, select **Yes** in the ITAR drop-down list. For a complete list of ITAR-regulated Microsemi FPGAs, visit the ITAR web page.



Microsemi Corporate Headquarters One Enterprise, Aliso Viejo, CA 92656 USA

Within the USA: +1 (800) 713-4113 Outside the USA: +1 (949) 380-6100 Sales: +1 (949) 380-6136 Fax: +1 (949) 215-4996

E-mail: sales.support@microsemi.com

©2018 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.

#### **About Microsemi**

Microsemi Corporation (Nasdaq: MSCC) offers a comprehensive portfolio of semiconductor and system solutions for communications, defense & security, aerospace, and industrial markets. Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs, and ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world's standard for time; voice processing devices; RF solutions; discrete components; Enterprise Storage and Communication solutions, security technologies and scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs and midspans; as well as custom design capabilities and services. Microsemi is headquartered in Aliso Viejo, Calif. and has approximately 4,800 employees globally. Learn more at www.microsemi.com.

Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer's responsibility to independently determine suitability of any products and to test and verify the same. The information provided by Microsemi hereunder is provided "as is, where is" and with all faults, and the entire risk associated with such information is entirely with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP rights, whether with regard to such information itself or anything described by such information. Information provided in this document is proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this document or to any products and services at any time without notice.