Identify Debugger
User Guide

March 2015

https://solvnet.synopsys.com

SYNOPSYS

https://solvnet.synopsys.com

Preface

Copyright Notice and Proprietary Information

© 2015 Synopsys, Inc. All rights reserved. This software and documentation
contain confidential and proprietary information that is the property of
Synopsys, Inc. The software and documentation are furnished under a
license agreement and may be used or copied only in accordance with the
terms of the license agreement. No part of the software and documentation
may be reproduced, transmitted, or translated, in any form or by any means,
electronic, mechanical, manual, optical, or otherwise, without prior written
permission of Synopsys, Inc., or as expressly provided by the license
agreement.

Right to Copy Documentation

The license agreement with Synopsys permits licensee to make copies of the
documentation for its internal use only.

Each copy shall include all copyrights, trademarks, service marks, and
proprietary rights notices, if any. Licensee must assign sequential numbers
to all copies. These copies shall contain the following legend on the cover
page:

“This document is duplicated with the permission of Synopsys, Inc., for the
exclusive use of and its
employees. This is copy number e

Destination Control Statement

All technical data contained in this publication is subject to the export
control laws of the United States of America. Disclosure to nationals of other
countries contrary to United States law is prohibited. It is the reader’s
responsibility to determine the applicable regulations and to comply with
them.

© 2015 Synopsys, Inc. Identify Debugger User Guide
2 March 2015

Preface

Disclaimer

SYNOPSYS, INC., AND ITS LICENSORS MAKE NO WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE.

Registered Trademarks (®)

Synopsys, AEON, AMPS, Astro, Behavior Extracting Synthesis Technology,
Cadabra, CATS, Certify, CHIPit, COMET, CODE V, Design Compiler,
DesignWare, EMBED-IT!, Formality, Galaxy Custom Designer, Global
Synthesis, HAPS, HapsTrak, HDL Analyst, HSIM, HSPICE, Identify, Leda,
LightTools, MAST, METeor, ModelTools, NanoSim, NOVeA, OpenVera, ORA,
PathMill, Physical Compiler, PrimeTime, SCOPE, Simply Better Results, SiVL,
SNUG, SolvNet, Sonic Focus, STAR Memory System, Syndicated, Synplicity,
the Synplicity logo, Synplify, Synplify Pro, Synthesis Constraints Optimization
Environment, TetraMAX, UMRBus, VCS, Vera, and YIELDirector are regis-
tered trademarks of Synopsys, Inc.

Trademarks (™)

AFGen, Apollo, ARC, ASAP, Astro-Rail, Astro-Xtalk, Aurora, AvanWaves,
BEST, Columbia, Columbia-CE, Cosmos, CosmosLE, CosmosScope, CRITIC,
CustomExplorer, CustomSim, DC Expert, DC Professional, DC Ultra, Design
Analyzer, Design Vision, DesignerHDL, DesignPower, DFTMAX, Direct Silicon
Access, Discovery, Eclypse, Encore, EPIC, Galaxy, HANEX, HDL Compiler,
Hercules, Hierarchical Optimization Technology, High-performance ASIC
Prototyping System, HSIMplus, i-Virtual Stepper, IICE, in-Sync, iN-Tandem,
Intelli, Jupiter, Jupiter-DP, JupiterXT, JupiterXT-ASIC, Liberty,
Libra-Passport, Library Compiler, Macro-PLUS, Magellan, Mars, Mars-Rail,
Mars-Xtalk, Milkyway, ModelSource, Module Compiler, MultiPoint, ORAengi-
neering, Physical Analyst, Planet, Planet-PL, Polaris, Power Compiler,
Raphael, RippledMixer, Saturn, Scirocco, Scirocco-i, SiWare, Star-RCXT,
Star-SimXT, StarRC, System Compiler, System Designer, Taurus, Total-
Recall, TSUPREM-4, VCSi, VHDL Compiler, VMC, and Worksheet Buffer are
trademarks of Synopsys, Inc.

Identify Debugger User Guide © 2015 Synopsys, Inc.
March 2015 3

Preface

Service Marks (sm)

MAP-in, SVP Café, and TAP-in are service marks of Synopsys, Inc.

SystemC is a trademark of the Open SystemC Initiative and is used under
license.

ARM and AMBA are registered trademarks of ARM Limited.

Saber is a registered trademark of SabreMark Limited Partnership and is
used under license.

All other product or company names may be trademarks of their respective
owners.

Printed in the U.S.A
March 2015

© 2015 Synopsys, Inc. Identify Debugger User Guide
4 March 2015

Contents

Chapter 1: Using the Debugger

Configuring and Invoking the Debugger 10
Reviewing the Instrumentation Settings 10
Changing the Communication Settings 10
Reviewing the JTAG Chain Settings 11
Saving the Debugged Design 12
Invoking the Debugger 12

Debugger Windows 13
[ICE Instrumentation Window 14
Console WINdow 16
Project Window 17

Commands and Procedurest 18
Opening and Saving Projects 18
Executinga Script File 19
Activating/Deactivating an Instrumentation 19
Selecting Multiplexed Instrumentation Sets 23
Activating/Deactivating Folded Instrumentation 24
RunCommand e 26
Sampled Data Compression 28
Sample Buffer Trigger Position 29
Sampled Data Display Controls i 31
Saving and Loading Activations 35
Cross Trggering oot 36
Listing Watchpointsand Signals 38

HAPS Deep Trace Debug i e 40
Running Deep Trace Debug with DDR3 Memory 40
Viewing Captured Deep Trace Debug Samples 41
Hardware Configuration Verification 42

Debugging on a Different Machine 44

Simultaneous Debugging 45

Identify Debugger User Guide © 2015 Synopsys, Inc.

March 2015 5

Contents

Debugger-Analyst Integration 46
Waveform Display 51
Generating the Fast Signal Database 53
Logic Analyzer Interface Parameters i, 54
Logic AnalyzerScanTab 54
Logic Analyzer Properties Tab i 56
Logic Analyzer Submit Tab 56
IICE Assignments Report Tab 57

Chapter 2: Board Bring-up

Board QUErY 60

Board Bring-Up 63
Setting Initial Values e 63
ConfPro GUI 64
Board Configuration Tests, 66
Utility Commands 70

Chapter 3: Incremental Flow
Requirements e 75
Setting up the Original Design i 77
Creating the Incremental Instrumentation 77
Redefining the Instrumented Signals 78
Generatingthe BitFile 78
Incremental Implementation Support
with Distributed Instrumentation 79
Debugging the Incremental Version 79
Incremental Flow Limitations 79

Chapter 4: IICE Hardware Description

JTAG Communication Block 81
Breakpoint and Watchpoint Blocks 82
Breakpoints 82
Watchpoints e 83
Multiple Activated Breakpoints and Watchpoints 83
Sampling BIoCK 84
Complex Counter e 85
Creatinga Complex Counter i 85
Debugging with the Complex Counter oo, 85
Disablingthe Counter e 87
© 2015 Synopsys, Inc. Identify Debugger User Guide

6 March 2015

Contents

State Machine Triggering i 88
Simple or Advanced Triggeringttt 88
Advanced Triggering Mode 89
State-Machine Editor 99
State-Machine Examples 103

Chapter 5: Connecting to the Target System

Basic Communication Connection i 112
Debugger Communications Settings, 112
Debugger Configuration e 118

JTAG Communication 124

JTAG Hardware in Instrumented Designs, 126
Using the Built-in JTAG Port 126
Using the Synopsys Debug Port 128
Boards Without Direct Built-in JTAG Connections 130

Settingthe JTAG Chain 132

JTAG Communication Debugging 134
Basic Communication Test 134
On-chip ldentification Register 135
JTAG Chain Tests e 135

UMRBus Communications Interface 136

Identify Debugger User Guide © 2015 Synopsys, Inc.

March 2015 7

Contents

© 2015 Synopsys, Inc. Identify Debugger User Guide
8 March 2015

SYNOPSYS

CHAPTER 1

Using the Debugger

Before a design can be debugged, the instrumentor is first used to define the
specific signals to be monitored and then to generate an instrumentation
design constraints (idc) file containing the instrumented signals and break
points. The design is synthesized and the device is programmed with the
debuggable design. The debugger is then launched to analyze the design
while it is running in the target system

The debugger enables HDL designs to be analyzed by interacting with the
instrumented HDL design implemented in the target hardware system. You
can activate breakpoints and watchpoints to cause trigger events within the
IICE™ on the target device. These triggers cause signal data to be captured in
the IICE. The data is then transferred to the debugger through a communica-
tions port where it can be displayed in a variety of formats. This chapter
describes:

* Configuring and Invoking the Debugger, on page 10
e Debugger Windows, on page 13

e Commands and Procedures, on page 18

* HAPS Deep Trace Debug, on page 40

* Debugging on a Different Machine, on page 44

e Simultaneous Debugging, on page 45

¢ Debugger-Analyst Integration, on page 46

* Waveform Display, on page 51

* Logic Analyzer Interface Parameters, on page 54

Identify Debugger User Guide © 2015 Synopsys, Inc.
March 2015 9

Chapter 1: Using the Debugger Configuring and Invoking the Debugger

Configuring and Invoking the Debugger

To configure a design for debugging, click the project tab to reopen the project
window (reopening the project window shows the instrumentation and
communication settings). Configuring and invoking the debugger is described
in the following sections:

¢ Reviewing the Instrumentation Settings, on page 10
¢ Changing the Communication Settings, on page 10
¢ Reviewing the JTAG Chain Settings, on page 11

* Saving the Debugged Design, on page 12

* Invoking the Debugger, on page 12

Reviewing the Instrumentation Settings

The instrumentation settings are displayed in the Instrumentation settings
section of the project window. Because these configuration settings are inher-
ited from the instrumentor and used to construct the IICE, you cannot
change these settings in the debugger.

Changing the Communication Settings

The cable type and port specification communication settings can be set or
changed from the project window.

There is a list of possible vendor cable-type settings available from the Cable
type drop-down menu. A umrbus setting is also available to setup UMRBus
communications between the host and the HAPS® board system (see
UMRBus Communications Interface, on page 136). Set Cable type value
according to the type of cable you are using to connect to the programmable
device.

Adjust the port setting based on the port where the communication cable is
connected. Most often, Ipt1 is the correct setting for parallel ports.

© 2015 Synopsys, Inc. Identify Debugger User Guide
10 March 2015

Configuring and Invoking the Debugger Chapter 1: Using the Debugger

3 Sample Mode: m Cross trigger mode: IW‘ @

Communication settings

Cable type: Iumlbus | 'l

¥ IICE Fort zettings ... | Show chain .. |

Conm check. ..

Reviewing the JTAG Chain Settings

The JTAG chain settings are viewed by clicking the Show chain button in the
Communication settings section of the project window. Normally, the JTAG chain
settings for the devices are automatically extracted from the design. When the
chain settings cannot be determined, they must be created and/or edited
using the chain command in the console window. The settings shown below
are for a 2-device chain that has JTAG identification register lengths of 8 and
10 bits. In addition, the device named “fpga” has been enabled for debugging.

Auto-detect

“fpga” device enabled for debugging

Identify Debugger User Guide © 2015 Synopsys, Inc.
March 2015 1

Chapter 1: Using the Debugger Configuring and Invoking the Debugger

Saving the Debugged Design

Saving a your design in the debugger saves the following additional informa-
tion to the project definition file:

¢ JICE settings

¢ Instrumentations and activations

To save your design definition in the debugger, click the Save current
H activations icon or select File->Save activations from the menu.

Invoking the Debugger

Before you can open a design in the debugger, the design must have

been created with the instrumentor (only the instrumentor can

configure a design for debugging) and synthesized. The debugger can

be launched directly from a synthesis project or opened directly from
a Windows or Linux prompt. Invoking the debugger includes:

¢ Synthesis Tool Launch, on page 12

¢ Operating System Invocation, on page 13

Synthesis Tool Launch

If you are using a Synopsys FPGA synthesis tool or the Certify tool, invoke the
debugger directly from the graphical user interface as follows:

e From Synplify Pro or Synplify Premier, highlight the Identify implemen-
tation and select Run->Launch Identify Debugger from the menu bar or
popup menu, or click the Launch Identify Debugger icon in the top menu
bar.

e From Synplify, select Run->Launch Identify Debugger from the menu bar or
click the Launch Identify Debugger icon in the top menu bar.

¢ From Certify, highlight the Identify implementation and select
Tools->Launch Identify Debugger from the menu bar or popup menu, or click
the Launch Identify Debugger icon in the top menu bar.

The debugger IICE instrumentation window opens with the corresponding
project displayed (see IICE Instrumentation Window, on page 14).

© 2015 Synopsys, Inc. Identify Debugger User Guide
12 March 2015

Debugger Windows Chapter 1: Using the Debugger

Operating System Invocation

The debugger runs on both the Windows and Linux platforms. To explicitly
invoke the debugger from a Windows system, either:

¢ double click the Identify Debugger icon on the desktop
e run identify_debugger.exe from the /bin directory of the installation path

To explicitly invoke the debugger from a Linux system:

e run identify_debugger from the /bin directory of the installation path

The initial debugger project window opens. To display the instrumentation
window, do either of the following:

¢ Click the Open existing project icon in the menu bar and, in the Open Project
File dialog box, navigate to the project directory and open the corre-
sponding project (prj) file.

e Select File->Open project from the main menu and, in the Open Project File
dialog box, navigate to the project directory and open the corresponding
project (prj) file.

The debugger instrumentation (IICE) window opens with the corresponding
project displayed (see Project Window, on page 17).

Debugger Windows

The Graphical User Interface for the debugger has three major areas:
e IICE Instrumentation Window, on page 14
e Console Window, on page 16

* Project Window, on page 17

In this section, each of these areas and their uses are described. The
following discussions assume that:

* an HDL design has been loaded into the instrumentor and instrumented

¢ the design has been synthesized in the synthesis tool

Identify Debugger User Guide © 2015 Synopsys, Inc.
March 2015 13

Chapter 1: Using the Debugger Debugger Windows

¢ the synthesized output netlist has been placed and routed by the place
and route tool

¢ the resultant bit file has been used to program the FPGA with the
instrumented design

¢ the board containing the programmed FPGA is cabled to your host for
analysis by the debugger

lICE Instrumentation Window

The instrumentation window in the debugger, like the instrumentation
window in the instrumentor, includes a hierarchy browser on the left and the
source code display on the right.

File Edit Debug Options Window Help

@ Cycle: H

QEEEE 1@ B

Complex Counter Mode: | events | Walue |1 Sample Mode: | normal || Cross igger mode: | disabled - @
& ROOT (bus_dema) - 471 -]
& beh I
& word_sfer_inst (word_x 472 port map (
& word_sfer_cntr_inst [w 473 CLKFE =>»> clk,
@ blk_sfer_inst (block_xfe . _
& blk_sfer_cntil_inst [blk | T CLEIN => GM'
& arb_inst [arbiter) 475 DS3EN => low,
& rom_inst [whb_rom) .
& = - 476 P5CLE => 1
& raml_inst [wb_ram1) oy
@ ramZ_inst [wh_ramz) 477 PSEN => low,
U1 [IBUFG) . _ =
478 PSINCDEC => law,
doml (DCM) !
olk_bufl_fx [BUFG) |+ | RST => dfreser, .
T [(S |
@\denllfy_bus_demu* J@IIEE ®||CEJ J
INFO: Using Synplify installation C:/tools/syn201409_110R/1ib for variable $LIB. J
INFC: Added instrumentation 'rev_8' to the project
INFO: actiwvation list -instr rev_8 -noext
INFO: Loading instrumentation 'rev_8'
C:/designs/bus_demo 2012/rev_8% iice current IICE 0
INFO: iice current IICE O
IICE 0
INFO: com cabletype
C:/designs/bus demo 2012% J

bus_demo.vhd

© 2015 Synopsys, Inc. Identify Debugger User Guide
14 March 2015

Debugger Windows Chapter 1: Using the Debugger

Hierarchy Browser

The hierarchy browser on the left shows a graphical representation of the
design’s hierarchy. At the top of the browser is the ROOT node. The ROOT
node represents the top-level entity or module of your design. For VHDL
designs, the first level below the ROOT is the architecture of the top-level
entity. The level below the top-level architecture for VHDL designs, or below
the ROOT for Verilog designs, shows the entities or modules instantiated at
the top level.

Clicking on a + sign opens the entity/module instance so that the hierarchy
below that instance can be viewed. Lower levels of the browser represent
instantiations, case statements, if statements, functional operators, and other
statements.

ROOT [eight_bit_uc]
4 decode [ins_decode)
‘ alwayz_58
-] ‘ always_F7
E @ i 78
‘ caze_32
‘ alwapz_113

Single clicking on any element in the hierarchy browser causes the associ-
ated HDL code to be displayed in the adjacent source code window.

Source Code Display

The source code display shows the HDL source code annotated with signals
and breakpoints that were previously instrumented.

Note: Signals and breakpoints that were not enabled in the instru-
mentor are not displayed in the debugger.

Signals that can be selected for setting watchpoints are underlined, colored in
blue text, and have small watchpoint (or “P”) icons next to them. Breakpoints
that can be activated have small green circular icons in the left margin to the
left of the line number.

Identify Debugger User Guide © 2015 Synopsys, Inc.
March 2015 15

Chapter 1: Using the Debugger Debugger Windows

44 begin

45 dograntl <= '0';

46 dogrant? <= '0';

47

48 case [curr_state) is

49 when st_idlel =>

50 if { $greql = '1') and { &yreg2 = '1') then
@ 51 next_state <= st_grant2;

52 elsif { &gregql = '1') then
@ 53 next_state <= st_grantl;

G4 elsif { &yreq2 = '1l') then
@ 55 next_state <= st_grant2;

56 else

Selecting the watchpoint or “P” icon next to a signal (or the signal itself)
allows you to select the Watchpoint Setup dialog box from the popup menu. This
dialog box is used to specify a watchpoint expression for the signal. See
Setting a Watchpoint Expression, on page 19.

Selecting the green breakpoint icon to the left of the source line number
causes that breakpoint to become armed when the run command is executed.
See Run Command, on page 26.

Console Window

The debugger console window displays commands that have been executed,
including those executed by menu selections and button clicks. The console
window also allows you to enter debugger commands and to view the results
of command execution.

L #DESIGHNS-SYH_COUNTERS project open —reapply {D: /D881gns/syn counterssyn_counter . bsp}
INFOQ: Changed working directory to "D: /D831gns/svn counter”

INFD: Loading design instrumentation wer=sion 4.0

INFO: Created Mon Jan 06 10:41:00 2003

INFD: User = garyl
INFO: Platform = windows
INFO: Machine Hame = GARYZ2
INFO: Machine Type = intel
INFQ: 05 = Windows HT
IHFO: 0S5 wersion = E.0

INFO: Using instrumentation in "D:-Designs=-svn_counter-syn_syn counter”
D: /DESIGHNS-SYH_COUHTERS

© 2015 Synopsys, Inc. Identify Debugger User Guide
16

March 2015

Debugger Windows Chapter 1: Using the Debugger

To capture all the text written to the console, use the log console command
(see the Reference Manual). Alternately, you can click the right mouse button
inside the console window and select Save Console Output from the menu. To
capture all commands executed in the console window, use the transcript
command (see the Reference Manual).

To clear the text in the console window, use the clear command or click the
right mouse button inside the console window and select clear from the menu.

Project Window

An empty project window is displayed when you explicitly start up the
debugger. The window is replaced by the instrumentation window when the
synthesis project (prj) file is read into the debugger.

The project window is restored at any time by clicking its tab at the bottom of
the window.

3 Identify Debugger - [C:/designs/bus_demo_2012/identify_bus_demo*] EE

File Edit Debug Opticns Window Help

SR = e (R TR L[— Y
Complex Counter Maode: | events | Wale: |1 Sample Mode: | nomal || Cross trigger mode: | disabled = @
E_@ident\f}l bus dema” J Communication settings
Eqvhd Run
;m Cable type: Jumibus |'|

¥ IICE Port zettings | Show chain |

Comm check ...

JJ Instrumentation settings
J Device family: virtexh

E identify_bus_demo* I@”CE J®HCE‘D J

The project window displays the symbolic view of the project on the left and a
Run button with a list of all of the available IICE units that can be debugged
on the right.

Identify Debugger User Guide © 2015 Synopsys, Inc.
March 2015 17

Chapter 1: Using the Debugger Commands and Procedures

Commands and Procedures

This section describes the typical operations performed in the debugger and
includes the following topics:

¢ Opening and Saving Projects, on page 18

¢ Executing a Script File, on page 19

¢ Activating/Deactivating an Instrumentation, on page 19
* Selecting Multiplexed Instrumentation Sets, on page 23
e Activating/Deactivating Folded Instrumentation, on page 24
¢ Run Command, on page 26

¢ Sampled Data Compression, on page 28

e Sample Buffer Trigger Position, on page 29

¢ Sampled Data Display Controls, on page 31

¢ Saving and Loading Activations, on page 35

* Cross Triggering, on page 36

* Listing Watchpoints and Signals, on page 38

Opening and Saving Projects

The debugger commands to open and save projects are available as menu
items and icons.

Function Menu Bar Menu Command
Icon

Open existing project l File->Open project

Save current File->Save activations

activations

When opening a project:

© 2015 Synopsys, Inc. Identify Debugger User Guide
18 March 2015

Commands and Procedures Chapter 1: Using the Debugger

* The working directory is automatically set from the corresponding
project file.

» If the project was saved with encrypted original sources, you are
prompted to enter the original password used to encrypt the files. This
password is then used to read any encrypted files.

Executing a Script File

A script file contains Tcl commands and is a convenient way to capture a
command sequence that you would like to repeat. To execute a script file,
select the File->Execute Script menu selection and navigate to your script file
location or use the source command (see source, on page 83 in the Reference
Manual).

Activating/Deactivating an Instrumentation

The trigger conditions used to control the sampling buffer comprise break-
points, watchpoints, and counter settings (see Chapter 4, IICE Hardware
Description). Activation and deactivation of breakpoints and watchpoints are
discussed in this chapter.

Setting a Watchpoint Expression

Any signal that has been instrumented for triggering can be activated as a
watchpoint in the debugger. A watchpoint is defined by assigning it one or
two HDL constant expressions. When a watched signal changes to the value
of its watchpoint expression, a trigger event occurs.

A watchpoint is set on a signal by clicking-and-holding on the signal

|j;j" or the watchpoint icon next to the signal and then selecting the Set
Trigger Expressions menu item to bring up the Watchpoint Setup dialog
box.

A watchpoint is set on a partial bus signal by clicking-and-holding
E‘ on the signal or the “P” icon next to the signal, selecting the partial

bus group from the list displayed, and then selecting the Set Trigger

Expressions menu item to bring up the Watchpoint Setup dialog box.

There are two forms of watchpoints: value and transition.

Identify Debugger User Guide © 2015 Synopsys, Inc.
March 2015 19

Chapter 1: Using the Debugger Commands and Procedures

* A value watchpoint triggers when the watched signal attains a specific
value.

* A transition watchpoint triggers when the watched signal has a specific
value transition.

To create a value watchpoint, assign a single, constant expression to the
watchpoint. A value watchpoint triggers when the watched signal value
equals the expression. In the example below, the signal is a 4-bit signal, and
the watchpoint expression is set to “0010” (binary). Any legal VHDL or Verilog
(as appropriate) constant expression is accepted.

@ Setup the first walue only to watch a walue in a pattern tree on zignal

"contrl_rege" or bath values to watch a transition fron the first to the second in a
pattern tree:

Language: | native |
First value Second value [optional]

oo

OF. | LCancel

To create a transition watchpoint, assign two constant expressions to the
watchpoint. A transition watchpoint triggers when the watched signal value
is equal to the first expression during a clock period and the value is equal to
the second expression during the next clock period. In the example below, the
transition being defined is a transition from “0010” to “1011.”

Setup the first value only o watch a value in a pattern tree on zignal
"contr_req?' or bath values to watch a transition fram the first to the zecond ina
pattern tree:

Language: |native ﬂ

Firzt value Second walue [optional]

0010 101

© 2015 Synopsys, Inc. Identify Debugger User Guide
20 March 2015

Commands and Procedures Chapter 1: Using the Debugger

The VHDL or Verilog expressions that are entered in the Watchpoint Setup
dialog box can also contain “X” values. The “X” values allow the value of some
bits of the watched signal to be ignored (effectively, “X” values are don’t-care
values). For example, the above value watchpoint expression can be specified
as “X010” which causes the watchpoint to trigger only on the values of the
three right-most bits.

Hexadecimal values can additionally be entered as watchpoint values using
the following syntax:

x"hexValue"

As shown, a hexadecimal value is introduced with an x character and the
value must be enclosed in quotation marks. Similarly, you can include a

hexadecimal entry in an equivalent Tcl command by literalizing the quote
marks with back slashes as shown in the following example:

watch enable -iice IICE -condition 0 /structural/reg fout x\"aa\"

Clicking OK on the Watchpoint Setup dialog box activates the watchpoint (the
watchpoint or “P” icon changes to red) which is then armed in the hardware
the next time the Run button is pressed.

Deactivating a Watchpoint

By default, a watchpoint that does not have a watchpoint expression is
inactive. A watchpoint that has a watchpoint expression can be temporarily
deactivated. A deactivated watchpoint retains the expression entered, but is
not armed in the hardware and does not result in a trigger.

To deactivate a watchpoint, click-and-hold on the signal or the
d;j" associated watchpoint icon. The watchpoint popup menu appears.

or the associated “P” icon and select the bus segment from the list of

|FI To deactivate a partial-bus watchpoint, click-and-hold on the signal
segments displayed. The watchpoint popup menu appears.

v Sample

Change signal radix ...

Set trigger exprezsions ...

Identify Debugger User Guide © 2015 Synopsys, Inc.
March 2015 21

Chapter 1: Using the Debugger Commands and Procedures

The Watch menu selection will have a check mark to indicate that the watch-
point is activated. Click on the Watch menu selection to toggle the check mark
and deactivate the watchpoint.

Reactivating a Watchpoint

To reactivate an inactive watchpoint, click-and-hold on the signal or the
associated watchpoint or “P” icon. Clicking the watchpoint icon redisplays the
watchpoint popup menu: clicking the “P” icon, lists the partial bus segments;
select the bus segment from the list displayed to display the watchpoint
popup menu. Click on the Watch menu selection to toggle the check mark and
reactivate the watchpoint.

Activating a Breakpoint

Instrumented breakpoints are shown in the debugger as green icons in the
left margin adjacent to the source-code line numbers. Green breakpoint icons
are inactive breakpoints, and red breakpoint icons are active breakpoints. To
activate a breakpoint, click on the icon to toggle it from green to red.

Active breakpoint (red)

62 when = EIGHT =@

-] 63 dgcurrent s=tate <= = NINE:
64 when = NINE =:
65 docurrent state <= = TEN;
3 when = _TEH =3
67 dgcurrent s=tate <= = ELEVEN:
] when = ELEVEN =:

I 69 docurrent state <= = TWELVE:

\x vhen = TWELVE =3

Inactive breakpoint (green)

To deactivate an active breakpoint, click on the breakpoint icon to toggle it
from red to green.

© 2015 Synopsys, Inc. Identify Debugger User Guide
22 March 2015

Commands and Procedures Chapter 1: Using the Debugger

Selecting Multiplexed Instrumentation Sets

Multiplexed groups of instrumented signals defined in the instrumentor can
be individually selected for activation in the debugger (for information on
defining a multiplexed group in the instrumentor, see Multiplexed Groups, on
page 55 in the Instrumentor User Guide).

Using multiplexed groups can substantially reduce the amount of pattern
memory required during debugging when all of the originally instrumented
signals are not required to be loaded into memory at the same time.

To activate a predefined multiplexed group in the debugger:

1. Click on the IICE icon in the top menu to display the Enhanced Settings for
[ICE Unit dialog box.

4 Enhanced Settings for ICE Unit 'ucl [

[rata Compresgion

™ Enable

tux Group

[[

HAPS Deep Trace Debug

Self-test

o | Run external sample memary test

Sample Depth

128

Cancel

2. Use the drop-down menu in the Mux Group section to select the group
number to be active for the debug session.

3. The signals group command can be used to assign groups from the
console window (see signals, on page 78 of the Reference Manual).

Identify Debugger User Guide © 2015 Synopsys, Inc.
March 2015 23

Chapter 1: Using the Debugger Commands and Procedures

Activating/Deactivating Folded Instrumentation

If your design contains entities or modules that are instantiated more than
once, the design is termed to have a “folded” hierarchy (folded hierarchies
also occur when multiple instances are created within a generate loop). By
definition, there will be more than one instance of every signal and break-
point in a folded entity or module. During instrumentation, it is possible to
instrument more than one instance of a signal or breakpoint.

When debugging an instrumented design with multiple instrumented
instances of a breakpoint or signal, the debugger allows you to

activate /deactivate each of these instrumented instances independently.
Independent selection is accomplished by displaying a list of the instru-
mented instances when the breakpoint or signal is selected for activa-
tion/deactivation.

Activating/Deactivating a Folded Watchpoint

The following example consists of a top-level entity called folded2 and two
instances of the repeated_unit entity. The source code of repeated_unit is
displayed. In this folded entity, multiple instances of the signal val and the
breakpoint at line 24 (not shown) are instrumented.

To activate/deactivate instances of the val signal, select the watchpoint icon
next to the signal. A list will pop up with the two instrumented instances of
the signal val available for activation/deactivation:

/rtl/cnt inst0/val
/rtl/cnt instl/val

Either of these instances is activated/deactivated by clicking on the appro-
priate line in the list box to bring up the watchpoint menu shown in the
following figure.

© 2015 Synopsys, Inc. Identify Debugger User Guide
24 March 2015

Commands and Procedures

Chapter 1: Using the Debugger

LY u I TS I = L

10
11
1z
13
14
15
16

The color of the watchpoint icon is determined as follows:

entity repeated_unit 1=
port
clr © in =td logic;
v

clk
1

end repeated_unit:

architecture rtl of repeated unit i=

begin

ggval <= clk and clr:

If no instances of the signal are activated, the watchpoint icon is green

in color.

If some, but not all, instances of the signal are activated, the watchpoint

icon is yellow in color.

If all instances are activated, the watchpoint icon is red in color.

For related information on folded hierarchies, see Sampling Signals in a
Folded Hierarchy, on page 56 in the Instrumentor User Guide and Displaying
Data from Folded Signals, on page 32.

Activating/Deactivating a Folded Breakpoint

To activate/deactivate instances of the breakpoint on line 24, select the icon
next to line number 24. A list will pop up with the two instrumented
instances of the breakpoint available for activation/deactivation:

/rtl/inst0/rtl/process 18/if 20/if 23/repeated unit.vhd:24
/rtl/instl/rtl/process 18/if 20/if 23/repeated unit.vhd:24

Identify Debugger User Guide

March 2015

© 2015 Synopsys, Inc.
25

Chapter 1: Using the Debugger

Commands and Procedures

Either of these instances can be activated /deactivated by clicking on the

appropriate line in the list box.

The list of instrumented instances

architecture of repeated r

B ROOT (top) = [tity repeated wnit is |
B ril 7 oxti
@ instO (repe 8 elr : in std_logic;
@ inst1 (repe 3 deval : out unsigned (3 downbo 0 3;
10 clk Atlanst]Aval
11]
1z end repes MLt J
13
14

I~ Atlinst0stl process_184f_204fF_23/vrepeated_unit.wvhd:24
I~ AtlnstlAtl/process_18Af_204F_23/repeated_unit.vhd:24

.

INFO: Vser = beards
INFO: Platform wnix
INFO: Machine Name
INFO: Machine Type
INFO: 0%

INFO: 0% version Z2.4.1

IHFO0: VUsing instrumentation in i’homei’alvmfadmmi’fold.ed |_design/BZ5_demo_proj"
/homefalvise/ admin/ folded desig$

alviso
iG8E
I..'umx

20 if elr = '0' them
= 21 tmp <= 0000 i
[l 3 | »
INFO: Loading design instrmentation versiowm 3.4 ;I
INF0: Created T'hu Jqul 11 08:44:13 2002

The color of the breakpoint icon is determined as follows:

¢ If no instances of the breakpoint are activated, the breakpoint icon is

green.

¢ If some, but not all, instances of the breakpoint are activated, the break-

point icon is yellow.

o If all instances are activated, the breakpoint icon is red.

Run Command

The Run command sends watchpoint and breakpoint activations to the IICE,
waits for the trigger to occur, receives data back from the IICE when the
trigger occurs, and then displays the data in the source window.

© 2015 Synopsys, Inc.
26

Identify Debugger User Guide
March 2015

Commands and Procedures Chapter 1: Using the Debugger

select Debug->Run from the menu or click the Arm selected IICE(s) for

triggering icon. If data compression is to be used on the sample data,
see Sampled Data Compression, on page 28. To execute the Run command for
multiple IICE units, open the project window (click the project window tab),
enable the individual IICE units by checking their corresponding boxes, and
either click the large Run button or select Debug->Run from the menu.

| To execute the Run command for the active IICE (or a single IICE),

Run ‘

v IICE
Iv IICE_O
Iv IICE_1

After the Run command is executed, the sample of signal values at the trigger
position is annotated to the HDL code in the source code window. This data
can be displayed in a waveform viewer (see the debugger waveform command)
or written out to a file (see the debugger write ved command).

Note: In a multi-IICE environment, you can edit and run other IICEs
while an IICE is running. The icons within the individual IICE
tabs indicate when an IICE is running (rotating arrow) and when
an IICE has new sample data (green check mark).

The following example shows a design with one breakpoint activated, the
breakpoint triggered, and the sample data displayed. The small green arrow
next to the activated breakpoint in the example indicates that this breakpoint
was the actual breakpoint that triggered. Note that the green arrow is only
present with simple triggering.

Identify Debugger User Guide © 2015 Synopsys, Inc.
March 2015 27

Chapter 1: Using the Debugger Commands and Procedures

Activated and triggered breakpoint Sampled data (in yellow)
—
-
e grant? 0" =0;

case {(curr statel) is
when st_idlel =>

if { dereql' 0 = '1') and { drreq2'l’ = '1') the
next_state <= st_grant2;

elsif { doreql'D’ = '1') then
next_state ¢= st_grantl;

elsif { doreq2'l’ = '1') then
next_state <= st_grant2;

else
next_state <= st_idlel;

end if;

Stop Command

The Stop command sends control back to the debugger after you have
armed the trigger, but before the trigger occurs. The Stop command
can be executed by selecting Debug->Stop from the menu or by clicking
the Stop debugging hardware icon.

Note: If you are running the IICE from the project window using the
Run button and IICE check boxes (multi-IICE mode), you can
stop a run by clicking the STOP icon adjacent to the check box.

Sampled Data Compression

A data compression mechanism is available to compress the sampled data to
effectively increase the depth of the sample buffer without requiring any
additional hardware resources. When enabled, data compression is applied to
the sampled data to temporarily remove any data that remains unchanged
between cycles (a sample is automatically taken after 64 unchanging cycles).

© 2015 Synopsys, Inc. Identify Debugger User Guide
28 March 2015

Commands and Procedures Chapter 1: Using the Debugger

Data compression is enabled from the project view by clicking the IICE icon to
display the Enhanced Settings for IICE Unit dialog box and clicking the Enable
check box in the Data Compression section or from the command prompt by
entering the following command:

iice sampler -datacompression 1

Data compression must be set prior to executing the Run command and
applies to all enabled IICE units. Data compression is not available when
using state-machine triggering, or qualified or always-armed sampling.

Sample Data Masking

A masking option is available with data compression to selectively mask
individual bits or buses from being considered as changing values within the
sample data. This option is only available through the Tcl interface using the
following syntax:

iice sampler -enablemask 0 |1 [-msb integer -Isb integer] signalName

For example, the following command masks bits O through 3 of vector signal
mybus|[7:0] from consideration by the data compression mechanism:

iice sampler -enablemask 1 -msb 3 -1sb 0 mybus

Similarly, to reinstate the masked signals in the above example, use the
command:

iice sampler -enablemask 0 -msb 3 -1sb 0 mybus

Sample Buffer Trigger Position

The purpose of the activated watchpoints and breakpoints is to cause a
trigger event to occur. The trigger event causes sampling to terminate in a
controlled fashion. Once sampling terminates, the data in the sample buffer
is communicated to the debugger and then displayed in the GUI.

The sample buffer is continuously sampling the design signals. Conse-
quently, the exact relationship between the trigger event and the termination
of the sampling can be controlled by the user. Currently, the debugger
supports the following trigger positions relative to the sample buffer:

* Early
* Middle

Identify Debugger User Guide © 2015 Synopsys, Inc.
March 2015 29

Chapter 1: Using the Debugger Commands and Procedures

e Late

Determining the correct setting for the trigger position is up to the user. For
example, if the design behavior of interest usually occurs after a particular
trigger event, set the trigger position to “early.”

The trigger position can be changed without requiring the design to be
reinstrumented or recompiled. A new trigger position setting takes effect the
next time the Run command is executed.

Early Position

The sample buffer trigger position can be set to “early” so that the
E majority of the samples occurs after the trigger event. To set the

trigger position to “early,” use the Debug->Trigger Position->early menu
selection or click on the Set trigger position to early in the sample buffer icon.

Middle Position

The sample buffer trigger position defaults to “middle” so that there is
an equal number of samples before and after the trigger event. To set
the trigger position to “middle,” use the Debug->Trigger Position->middle
menu selection or click on the Set trigger position to the middle of the sample
buffer icon.

ENRH
ghl |

Late Position

—= The sample buffer trigger position can be set to “late” so that the
L—H majority of the samples occurs before the trigger event. To set the
trigger position to “late,” use the Debug->Trigger Position->late menu
selection or click on the Set trigger position to late in the sample buffer icon.

© 2015 Synopsys, Inc. Identify Debugger User Guide
30 March 2015

Commands and Procedures Chapter 1: Using the Debugger

Sampled Data Display Controls

The sampled data display controls are used to navigate through the data
values captured by the sample buffer. All sample buffer data is tagged with a
cycle number based on when the data item was stored in the sample buffer
relative to the trigger event. The data item stored at the trigger event time has
cycle number O, the data item stored one sample clock cycle after the trigger
has cycle number 1, and the data item stored one sample clock cycle before
the trigger has cycle number -1. The data display procedures allow you to
retrieve data values for a specific cycle number.

The sampled data displayed in the debugger is controlled by the Cycle text
field. You can manually change the cycle number by typing a number in the
entry field. Also, the up and down arrows to the right of the cycle number
increment or decrement the cycle number for each click.

B

ﬂ(Eycle:lﬂl%-| e

UaP\ Sampled data
display controls

24 entity counter_self i=
25 port

I To reset the cycle number to the default position (the zero time
'EE position), use the Debug->Cycle->home menu selection or click on the
Goto trigger event in sample history icon.

Radix

The radix of the sampled data displayed can be set to any of a number of
different number bases. To change the radix of a sampled signal:

1. Right click on the signal name or the watchpoint or “P” icon and select
Change signal radix to display the following dialog box.

Identify Debugger User Guide © 2015 Synopsys, Inc.
March 2015 31

Chapter 1: Using the Debugger Commands and Procedures

_ ™y
%% Change signal radix for signal: 'adr2' [g
e Select the desired radix for 10 bit wide signal:
@ ‘/beh/adr2'
" Select the zame radix for ach instumented vechar
default

binary
octal

integer

unzighed

hexadecinal

LCancel

2. Click the corresponding radio button.

3. Click OK.

Note: You can change the radix before the data is sampled. The watch-
point signal value will appear in the specified radix when the
sampled data is displayed.

Specifying default resets the radix to its initial intended value. Note that the
radix value is maintained in the “activation database” and that this informa-
tion will be lost if you fail to save or reload your activation. Also, the radix set
on a signal is local to the debugger and is not propagated to any of the
waveform viewers.

Note: Changing the radix of a partial bus changes the radix for all bus
segments.

Displaying Data from Folded Signals

If your design contains entities or modules that are instantiated more than
once, it is termed to have a “folded” hierarchy (folded hierarchies also occur
when multiple instances are created within a generate loop). By definition,

© 2015 Synopsys, Inc. Identify Debugger User Guide
32 March 2015

Commands and Procedures Chapter 1: Using the Debugger

there will be more than one instance of every signal in a folded entity or
module. During instrumentation, it is possible to instrument more than one
instance of a signal.

When debugging an instrumented design with multiple instrumented
instances of a signal, the debugger allows you to display the data values of
each of these instrumented signals.

Because multiple data values cannot be displayed at the same location, a
single data value is always displayed. For multiply instrumented signals, the
debugger displays an ellipsis (...) to indicate that there are multiple values
present. To display all of the instrumented values, click-and-hold on the
ellipsis indicator.

The example below consists of a top-level entity called top and two instances
of the repeated_unit entity. In the example, the source code of repeated_unit is
displayed, and both of the lists of instances of the signal val have been instru-
mented. The two instances are /rtl/inst0/val and /rtl/inst1/val, and their data
values are displayed in the pop-up window as shown in the following figure:

Indicator of folded data Data values for instances of folded signal val
5
& enti eated wmit is
7 poxtq
& [- in std logic;
9 dgival -+ - out wsidued (3 downto 0);
10 clk - i AtlAnst1Aval -> 1100
11). Atlinst0Aval -> 0110
1z end repeated wmit:

For related information on folded hierarchies, see Sampling Signals in a
Folded Hierarchy, on page 56 in the Instrumentor User Guide and
Activating/ Deactivating Folded Instrumentation, on page 24.

Displaying Data for Partial Buses

When debugging designs with partially instrumented buses, the debugger
displays the data values of each of the instrumented segments.

Identify Debugger User Guide © 2015 Synopsys, Inc.
March 2015 33

Chapter 1: Using the Debugger Commands and Procedures

To display the instrumented values for the individual bus segments, position
the cursor over the composite bus value. The individual partial bus values
are displayed in a tooltip in the specified radix as shown in the following
figure.

Composite bus value Data values of partial buses
342
343 gy cnd
. inBd 'h3ifad?910d1%%773
e (63:01 #Pgata n . ata_in_63_32 -> 37h3fad7510
345 [63:0] é¥dats cutb4'b1111110011100117 data_in_7_0-» Bh3E 11
- /data_in_31_24 > 8hdl

In the above figure, the question marks (?) in the composite bus value (64’
h3fad7910d1?7?7?36) indicate that the corresponding segment (data_in [23:8]) has
not been instrumented.

Displaying Data for Partial Instrumentation

In the debugger, the value for a fully instrumented record or structure is
shown with a value for each field, in field order. The following figure shows
instrumented signal sig_iport_P_Struc_instr. When displaying a partially instru-
mented bus, the value U is used for the uninstrumented slices. This same
notation is used to show the data values for a partially instrumented record
or structure (the value for each instrumented field is listed in field order, and
an uninstrumented field value is shown as a U).

10 module uddt_P Struc tbtop

11 Oclk ip,

12 type_Unsigned_F_Struc_data Psiq oport P Struc data
13)

14

15 logic éwth rstl'bl-

1t shortint unsigned fer=t cnth5535;

17

15 type_P_Struc_instr ¥sig iport P Struc instrCHP {{4'b0O000} {4'b0O010}}
13

20 alvays @ (posedge @clk ip) rzt generation

© 2015 Synopsys, Inc. Identify Debugger User Guide
34 March 2015

Commands and Procedures Chapter 1: Using the Debugger

The Find dialog in the debugger shows a partially instrumented signal with
the P icon. You can set the trigger expressions on the fields instrumented for
triggering in the same manner as if the signal was fully instrumented (that is,
select the signal, right click to bring up the dialog, and select the option to set
the trigger expression).

Saving and Loading Activations

The debugger includes a “capture and replay” function that allows you to
save and load a set of enabled watchpoints and breakpoints referred to collec-
tively as an “activation.” Each activation can additionally include the sample
data set that was captured for a given trigger condition. Activations are stored
in files with an adb extension in a project’s instrumentation subdirectory.

Saving an Activation

An activation can be explicitly saved or saved on exit. To explicitly save an
activation:

1. Enable the set of watchpoints and breakpoints for the activation.

2. If the sample data set is to be included, run the debugger to collect the
sample data.

3. Select File->Save activations or click the Save current activations icon in the
menu bar to bring up the following dialog box.

@ Save curment bigger zettings as: |rev_8

¥ Save cument sample data

Cancel ‘

4. Enter (or select) an activation name in the Save current trigger settings as:
field. Selecting an existing activation from the drop-down menu
overwrites the selected activation.

5. To include the sample data set with the activation, enable the Save
current sample data check box.

Identify Debugger User Guide © 2015 Synopsys, Inc.
March 2015 35

Chapter 1: Using the Debugger Commands and Procedures

6. Click Yes to save the activation.

Loading an Activation
To load an existing activation:
1. Open the project view.

2. Expand (if necessary) the hierarchy to display the list of activations as
shown in the following figure.

EE; counter
£ werilog
| counter_self.y
K inztr
£ activations

ko] instr

1
"

3. Click on the desired activation and select Load activation.

Autosaving Current Activation

By default, when you exit the debugger without explicitly saving an activa-
tion, the active activation is automatically saved to the last_run.adb file. This
file is automatically loaded the next time you open the project.

Note: To save a specific activation, always use Save current activations to
explicitly name the file and prevent the data from overwriting the
last_run.adb file.

To disable the auto-save feature, uncheck the Auto-save trigger settings and
sample results check box on the Debugger Preferences dialog box (select
Options->Debugger preferences).

Cross Triggering

Cross triggering allows the trigger from one IICE unit to be used to qualify a
trigger on another IICE unit, even when the two IICE units are in different

© 2015 Synopsys, Inc. Identify Debugger User Guide
36 March 2015

Commands and Procedures Chapter 1: Using the Debugger

time domains. Cross triggering is available in both the simple triggering and
complex counter triggering modes (state-machine triggering supports cross
triggering by allowing the IICE unit IDs to be included in the state-machine

equations).

Cross triggering for an IICE unit is enabled in the instrumentor by selecting
the Allow cross-triggering in lICE check box on the IICE Controller tab for the local
IICE unit. The cross-trigger mode is selected from the drop-down menu in the
debugger as shown below.

’]

Crozs tigger mode: Idisal:uled F

dizabled

ary
all
after-lICE
after-all

The drop-down menu selections are as follows:

Menu Selection

disabled

any

all

after-iiceName

after all

Function

No triggers accepted from external IICE units (event trigger can
only originate from local IICE unit)

Event trigger from local IICE unit occurs when an event at any
IICE unit, including the local IICE unit, occurs

Event trigger from local IICE unit occurs when all events,
irrespective of order, occur at all IICE units including the local
IICE unit

Event trigger from local IICE unit occurs only after the event at
selected external IICE unit iceName has occurred (external IICE
units are individually listed)

Event trigger from local IICE unit occurs after all events occur
at all IICE units

Identify Debugger User Guide © 2015 Synopsys, Inc.
37

March 2015

Chapter 1: Using the Debugger

Commands and Procedures

Note: If the drop-down menu does not display, make sure that Allow
cross-triggering in [ICE is enabled on the IICE Controller tab of the
instrumentor and that you have defined more than one IICE unit.

Listing Watchpoints and Signals

To list categories of watchpoints and signals in the debugger, use the popup
Debug menu selection and select the category from the list displayed.

= e
Identify Debugger - [Ci/designs/bus_derr
File Edit [Dehug Options Window

] Bun
= ‘ Stop

Trigger Pogition ...

Cormplex Co

Show dizabled breakpaints

Show enabled break points

Show all break

Show digabled signals

Show enabled zignals
Show all zignals

LCycle .

i OF type: Ibreakpoint

M amed: B

With status: I *

Lok, in: [#

In IICE: [uce
I~ Shaow hidden elements

Find | Cloze |

@ haps_dx says hello.v:46,26
@ haps_dx says hello.v:50,18
@ haps_dx says hello.v:52,39

J/i_helle 1/always 45/if 46/haps dx says he
Ji_hello 1/always 45/if 46/haps dx says he
/i_hello 1/always 45/if 46/if 52/haps_dx s

© 2015 Synopsys, Inc.
38

Identify Debugger User Guide
March 2015

Commands and Procedures Chapter 1: Using the Debugger

The show watchpoint and breakpoint icons in the menu bar display their
corresponding values in the Find Design Elements dialog box as follows:
Show Disabled Breakpoints
To display the disabled (inactive) breakpoints, click the Show disabled
breakpoints icon.
Show Enabled Breakpoints
To display the enabled (active) breakpoints, click the Show enabled
@ breakpoints icon.
Show Disabled Watchpoints
To display the disabled (inactive) watchpoints, click the Show disabled
frii watchpoints icon.
Show Enabled Watchpoints

To display the enabled (active) watchpoints, click the Show enabled
irsi watchpoints icon.

Identify Debugger User Guide © 2015 Synopsys, Inc.
March 2015 39

Chapter 1: Using the Debugger HAPS Deep Trace Debug

HAPS Deep Trace Debug

The HAPS Deep Trace Debug feature supports any of the following memory
configurations:

e DDR3_SODIMM_HTS3 (4GB single-rank daughter board)

* DDR3_SODIMM2R_HT3 (8GB dual-rank daughter board)

* HAPS SRAM_HTS3 (720MB daughter board)

e HAPS SRAM_1x1_HTII (288MB daughter board for HAPS-60 systems)

Using any of these types of added memory provides a significantly deeper,
signal-trace buffer.

With the HAPS deep trace debug mode, the flow remains unchanged. The
only difference is in the configuration of the additional memory as the sample
buffer using [ICE parameters in the instrumentor (see Chapter 3, HAPS Deep
Trace Debug in the Instrumentor User Guide).

When you debug the design, the debugger automatically calculates the
sample depth and source clock based on the configuration settings supplied
in the instrumentor. The configured sample depth can be varied dynamically
from the minimum depth to the maximum configured depth.

Running Deep Trace Debug with DDR3 Memory

To maximize performance when using DDR3 memory, refer to the guidelines
in the table below to determine the sample frequency based on the number of
sample bits being instrumented. The maximum number of instrumented bits
that can be sampled with DDR3 is 2042.

Instrumented Max Sample Max Sample Depth Max Sample Depth

Bits Frequency (4GB single rank) (8GB dual rank)
1 to 250 140 MHz 134,217,727 268,435,455
251 to 506 70 MHz 67,108,863 134,217,727
507 to 1018 35 MHz 33,554,431 67,108,863
1019 to 2042 17.5 MHz 16,777,215 33,554,431
© 2015 Synopsys, Inc. Identify Debugger User Guide
40 March 2015

HAPS Deep Trace Debug Chapter 1: Using the Debugger

Based on the number of signals instrumented, the tool automatically calcu-
lates the maximum buffer depth. The configured sample depth can be varied
dynamically from the minimum depth to the maximum depth.

When the sample depth is set to a large value, the captured samples are first
downloaded block-by-block. Once all of the blocks are downloaded, viewing of
large samples in the waveform viewer is very time consuming and also the
size of the VCD/FSDB dumps becomes extremely large (for a full buffer
depth, the time to download all the sample blocks can be between 30 and 40
minutes and a full VCD dump can require several hours).

To reduce these times, use the waveform writer in the debugger to dump a
specific range or slice of the VCD /FSDB waveform (see Viewing Captured
Deep Trace Debug Samples, on page 41). In the debugger, click on the
waveform display icon to bring up the pop-up window where you can specify
the cycle range over which to view the waveform. The configured sample
depth can be varied in the debugger, but cannot be greater than the depth set
in the instrumentor.

Also, using deep-trace debug on a Windows-based system with minimal
resources can be extremely slow, especially when downloading large captured
samples or when writing the corresponding VCD /FSDB waveform dumps.
Increasing the memory capacity and processor speed of the host can signifi-
cantly improve performance.

Viewing Captured Deep Trace Debug Samples

A large sample depth translates to large VCD/FSDB dump files. For these
cases, the debugger includes the option of viewing or writing out a slice of the
FSD or VCD waveform based the number of captured cycles.

To write out a slice of the waveform:

1. Launch the debugger with the exported runtime environment from the
operating system (see Invoking the Debugger, on page 12).

2. In the debugger GUI, open the design definition file (debug.prj).

3. Click the Waveform Display icon. If the sample depth is set to more than
8000000, the tool displays a popup window.

Identify Debugger User Guide © 2015 Synopsys, Inc.
March 2015 41

Chapter 1: Using the Debugger HAPS Deep Trace Debug

Waveform file size warning

": Waveform file is expected to be large.
— Saving could take several minutes (~30min for 4GB).

— Select sub-range (optional)

From cycle: (min:-4000000) -1000

To cycle: (max:3999999) |1ooc| |

How do you want to proceed?

Save waveform Cancel |

4. In the pop-up window:

— Specify the cycle range to view on either side of the trigger position.
The following example shows a sub-range of -1000 to 1000 specified,
although the complete VCD/FSDB extends from -4000000 to
3999999 on ether side of the trigger position.

— Click Save waveform at the bottom of the dialog box to save and view
the specified sub-range. If you click the button without specifying a
sub-range, the tool saves the entire waveform to IICE.vcd or IICE.fsdb.
This could take some time, as it downloads the full buffer depth and
all the sample blocks. A full VCD dump can take hours.

5. Alternatively, write out vcd or fsdb using the -range argument with the
appropriate TCL command:

write ved -range {fromCycle toCycle} filename.ved
write fsdb -range {fromCycle toCycle} filename.ved

Hardware Configuration Verification

A self-test is available for verifying the deep trace debug hardware configura-
tion. The self-test writes data patterns to the external memory and reads
back the data pattern written to detect configuration errors, connectivity
problems, and SRAM frequency mismatches.

© 2015 Synopsys, Inc. Identify Debugger User Guide
42 March 2015

HAPS Deep Trace Debug Chapter 1: Using the Debugger

The self test is normally executed:

» following the initial setup to verify the hardware configuration against
the instrumentation

e during routine operations whenever a hardware problem is suspect

* whenever the physical configuration is modified (changing any of the
IICE Sampler dialog box configuration settings such as relocating the
SRAM daughter card to another connector)

To run the self-test from the debugger GUI:
1. Open the project view.
2. Click the IICE icon.

3. Select one of the two patterns (pattern O or pattern 1) from the Self-test
drop-down menu.

4. Click the Run SRAM tests button.

HAPS Deep Trace Debug

Self-test

o | Run external sample memary test

Sample Depth [Download times far large buffer depths are long)

122 =

Selecting O uses one test pattern, and selecting 1 uses another pattern. To
ensure adequate testing, repeat the command using alternate pattern
settings.

The self-test can also be run from the command line using the following
syntax:

iice sampler -runselftest 1|0

Identify Debugger User Guide © 2015 Synopsys, Inc.
March 2015 43

Chapter 1: Using the Debugger Debugging on a Different Machine

Debugging on a Different Machine

It is not unusual for the instrumentation phase and the debugging phase to
be performed on different machines. For example, the debug machine is often
located in a hardware lab. When a different machine is used for debugging,
you must copy the project file (projectName.prj) and the following files to the lab
machine:

¢ Implementation folder (for example, rev_1); it is not necessary to copy the
contents of the folder

e syn.db file
e instr.db file

e orig_sources files

Because the instrumentor/debugger tool set allows you to debug your design
in the HDL, the debugger must have access to the original source files.
Depending on the type of your network, the debugger may be able to access
the original sources files directly from the lab machine. If this is not possible
or if the two computers are not networked, you must also copy the original
sources to the debug machine. If the debugger cannot locate the original
source files, it will open the project, but an error will be generated for each
missing file, and the corresponding source code will not be visible in the
source viewer.

Copying the source files to the debug machine can be done in two ways:

¢ The instrumentor can automatically include the original source files in
the implementation directory so that when you copy the implementation
directory to the lab machine, the original sources files (in the orig_sources
subdirectory) are included. The debugger automatically looks in this
directory for any missing source files. This preference is set before
compiling the instrumented design by selecting Options->Instrumentation
preference and making sure that Save original source in instrumentation directory
is checked.

* The original source files can be manually copied to the lab machine or
may already exist in a different location on this machine. In this case, it
may be necessary to help locate the design files using the searchpath
command. Simply call this command from the command line before
loading the project file (projectName.prj). The argument is a
semi-colon-separated (Windows) or colon-separated (Linux) list of direc-
tories in which to find the original source files.

© 2015 Synopsys, Inc. Identify Debugger User Guide
44 March 2015

Simultaneous Debugging

Chapter 1: Using the Debugger

searchpath {d:/temp;c:/Documents and Settings/me/my design/}

The debugger only displays files that match the CRC generated at the time of
instrumentation.

Note: If there are security issues with having the original source files
on the lab machine, the instrumentor can password-protect the
original sources on the development machine for use with the
debugger (for information on file encryption, see Including Orig-
inal HDL Source, on page 67 in the Instrumentor User Guide).

Simultaneous Debugging

When multiple debugger licenses are available, multiple FPGAs residing on a
single, non-HAPS board can be debugged concurrently through a single
cable. This capability is based on semaphores that allow more than one
debugger to share the common port.

pid1

pid2

Identify Debugger User Guide

March 2015

Debugger 1
PID1 Semaphore
I:—| Cable
|
Debugger 2 ’——‘ Board
PID2 FPGA1 FPGA2

© 2015 Synopsys, Inc.
45

Chapter 1: Using the Debugger Debugger-Analyst Integration

Debugger-Analyst Integration

The display of instrumented signals captured in a VCD file by the debugger is
available within the HDL Analyst in Synplify Premier.

The following steps outline an abbreviated procedure for using an
debugger-generated VCD file with the HDL Analyst. For a complete descrip-
tion of this feature, see VCD-Analyst Integration in the Synopsys FPGA
Synthesis User Guide.

After generating a VCD file in the debugger and opening the HDL Analyst RTL
view in Synplify Premier:

1. Click the VCD Panel icon (|ilj) or select VCD->VCD Panel from the
HDL-Analyst menu to display the VCD control panel.

2. If necessary, click the Move this panel to an alternate location button to
relocate the VCD control panel under the RTL view.

L+ Sheet 1 of 1 - top level (of module bus

Instances (38)
Ports (3)

Mets (71)

- E;'J Clock Tree

R

3. Click the Open a VCD File icon ([Z]) or select VCD->Load VCD File from the
HDL-Analyst menu to open the Load Identify VCD File dialog box.

© 2015 Synopsys, Inc. Identify Debugger User Guide
46 March 2015

Debugger-Analyst Integration Chapter 1: Using the Debugger

aEapan)a
@p v

0| @)
l [[[e[=2][@)(]

MName

4. In the dialog box, enter the path to the vcd file generated by the
debugger (use the browse ... button) and make sure that the Identify
Debug box is checked. The Validate VCD File with Netlist check box, when
enabled, checks for mismatches between the design netlist and the VCD
file loaded.

& Load Identify VCD File 2 x|

VCD File
(C:‘n,designs‘nbus_demo‘nrev_Tn,IICE.vcd) E] Load

Validate VCD File with MNetlist | Show Mismatches. ..

Time

® Full Range Limited Range
Start Time End Time
J ~| J[es -]

Unavailable Unavailable

Click Load to load the file (Identify Debug)

5. Click the Load button to load the VCD file and display the instrumented
signals from the VCD file in the waveform viewer.

6. If Validate VCD File with Netlist is checked, click the Show Mismatches button
to display any mismatched nets. Mismatches are reported in the
Mismatching Nets dialog box.

Identify Debugger User Guide © 2015 Synopsys, Inc.
March 2015 47

Chapter 1: Using the Debugger Debugger-Analyst Integration

blk_xfer_inst.wh_adr_o[3:2]
blk_xfer_inst.wb_adr_o[7:5]

7. Close the Load Identify VCD File dialog box.

8. To view values for the signals, select the desired signals in the waveform
viewer and select HDL-Analyst->VCD->VCD Properties. On the Parameters
tab, enable the Annotate check box.

Parameters

Property 5 | value |~ |
AlignCurrentTime / 'D\

Annotate ()

Center \ 1/ |
Format Default

Grid O

Margin 5 —
ReloadPalicy Auto [+ |

9. To annotate values on the waveform viewer to their respective HDL
Analyst sheet, check the Annotate box on the control panel.

© 2015 Synopsys, Inc. Identify Debugger User Guide
48 March 2015

Debugger-Analyst Integration Chapter 1: Using the Debugger

Select a particular signal on the control panel to highlight its corre-
sponding signal in the RTL view. Signals are annotated with their
previous, current, and next values.

Loading and Unloading VCD Files

You can load, re-load, or unload debugger VCD files from the
HDL-Analyst->VCD menu.

VeD ' VCD Panel Cri+R

= Physical Analyst Annotate Values Ctrl+
Load VCD File...

Reload VCD File
Unload the VCD File
Watch Sheet
Un-Watch Sheet
Automatically Watch Sheets

Next transition Cirl+.
Previous transition Ctrl+,
DVE b

VCD Properties...

* To load an debugger VCD file, select Load VCD File (or click the Open a VCD
File icon ([%]) on the control panel).

e To re-load an debugger VCD file, select Reload VCD File (or click the
Re-open the previously loaded VCD file icon ([#]) on the control panel).

When the debugger generates a revised VCD file, changes to the VCD file
must be handled after it is loaded. The reload policy implemented
provides the following options:

— Auto — automatically reload the VCD file (the default)
— Ask — prompt if the VCD file is to be reloaded
— Never — never reload the VCD file

The reload policy is set on the Parameters tab of the VCD Properties dialog
box. When a VCD file is reloaded, the tool preserves information as
much as possible such as the current time and watched signals.

¢ To unload a VCD file, select Unload the VCD File. This option frees up
memory used by the debug data without having to close and re-open the
HDL Analyst view.

Identify Debugger User Guide © 2015 Synopsys, Inc.
March 2015 49

Chapter 1: Using the Debugger Debugger-Analyst Integration

VCD Control Panel Functions
The following additional functions are available from the VCD control panel:
¢ Observing nets on a particular HDL Analyst sheet

¢ Changing the format of signals displayed in the viewer

These functions are described in detail in the Synopsys FPGA Synthesis User
Guide.

© 2015 Synopsys, Inc. Identify Debugger User Guide
50 March 2015

Waveform Display Chapter 1: Using the Debugger

Waveform Display

The waveform display control displays the sampled data in a waveform style.
By default, this feature uses the Synopsys DVE waveform viewer. Provision
for using other popular waveform viewers that support VCD data is included.
Alternately, you can interface your own waveform viewer by writing a custom-
ized script to access your waveform viewer from the debugger. For details, see
the application note, “Interfacing Your Waveform Viewer with the Debugger”
on the SolvNet website.

Viewer selection and setup are controlled by the Waveform Viewer Preferences
dialog box. Selecting Options->Debugger preferences from the menu bar brings
up the dialog box shown below.

' ™

Drefault i avetorm Wiewer

" Aldec Active-HDL
Synopays DVE
GTKWave

® 7

Model Technology ModelSim

SIS

Customn Procedure

cugtom_waveformyiewer

W aveform Display

Period [nz]: |2|:| ﬁ Set Default

[~ Shaow equivalent signals in waveformn

[¥ Shaows [dentify cycle in waveform

[¥ Show sample clock in waveform

Activation settings

[¥ futo-zave trigger settings and sample resulks

Cancel

The Synopsys DVE waveform viewer is only available on Linux platforms. To
use the included GTKWave viewer, click the GTKWave radio button in the
Default Waveform Viewer section.

Identify Debugger User Guide © 2015 Synopsys, Inc.
March 2015 51

Chapter 1: Using the Debugger Waveform Display

The Period field sets the period for the waveform display and is independent of
the design speed.

—o After running the debugger, the selected waveform viewer is displayed
ml by selecting Window->Waveform from the menu or by clicking the Open
Waveform Display icon in the menu bar. All sampled signals in the
design are included in the waveform display. Two additional signals are
added to the top of the display when enabled by their corresponding check
boxes. The first signal, identify_cycle, reflects the trigger location in the sample
buffer. The second signal, identify_sampleclock, is a reference that shows every
clock edge. The following figure shows a typical waveform view with the
identify_cycle and identify_sampleclock signals enabled (highlighted in the figure).

Signals Waves

4098& ns

identify cycle[31:0] =

identify_ sampleclock=

curr_state[71:0] =
next_ state[71:0] =
grantl =

wb_adr ol[3:

2]
wb_adr o[7:5] =

If you select a waveform viewer from the Waveform preference dialog box that is
not installed, an error message is displayed when you attempt to invoke the
viewer. To install the waveform viewer:

1. Open the Debugger Preferences dialog box (select Options->Debugger
preferences).

2. Select the desired waveform viewer by clicking the adjacent radio button
and then click OK.

3. Make sure that the selected simulator is installed on your machine and
that the path to the executable is set by your $PATH environment
variable.

To invoke the viewer after running the debugger, select Window->Waveform or
click on the Open Waveform Display icon.

© 2015 Synopsys, Inc. Identify Debugger User Guide
52 March 2015

Waveform

Display Chapter 1: Using the Debugger

Generating the Fast Signal Database

The debugger is used to generate the fast signal database (FSDB) for the
Verdi platform and for display by the Verdi nWave viewer. To generate this
database:

1.

Instrument the design with the essential signal list (see Instrumenting
the Verdi Signal Database, on page 58 in the Instrumentor User Guide).

. Run the instrumented design in the synthesis tool and load the project

into the debugger.

. Use the Debugger Preferences dialog box and make sure that Synopsys Verdi

nWave is selected as the default waveform viewer.

Setup the trigger conditions and click the Run button to download the
sample buffer.

. Generate the fast signal database using the following command syntax:

write fsdb -iice iicelD -showequiv fsdbFilename

Click the Open Waveform Display icon to view the samples in the nWave
viewer.

The fast signal database file (fsdbFilename) can be imported directly back into
the Verdi platform.

Identify Debugger User Guide © 2015 Synopsys, Inc.
53

March 2015

Chapter 1: Using the Debugger Logic Analyzer Interface Parameters

Logic Analyzer Interface Parameters

The logic analyzer interface parameters for the real-time debug

feature in the debugger are defined on the tabs of the RTD type [ICE
information dialog box. To display this dialog box, click on the RTD
(RTD type IICE Information/Settings) icon in the top menu. The remainder
of this section describes the individual logix analyzer tabs:

* Logic Analyzer Scan Tab, on page 54

* Logic Analyzer Properties Tab, on page 56
* Logic Analyzer Submit Tab, on page 56

¢ IICE Assignments Report Tab, on page 57

Logic Analyzer Scan Tab
The Logic Analyzer Scan tab defines:
¢ the logic analyzer type
e the TLA script program
e user name
¢ host name/IP address

¢ if pods are automatically assigned to Mictor connectors

Logic Analpzer Scan]

Type of Logic Analyzer: |l|a j
TLA Script Program; \Program FlleshTLA FO0WS pstembtazcript

Uzer Marne: Liser

Host Wames [P Address: 10.9.148.51

[Assign Pods automatically bo mictor conenctors

Scan Logic dnalyzer

© 2015 Synopsys, Inc. Identify Debugger User Guide
54 March 2015

Logic Analyzer Interface Parameters Chapter 1: Using the Debugger

Type of Logic Analyzer

Selects the type of logic analyzer from a drop-down menu. Current supported
types are Agilent 16700 and 16900 series and Tektronix TLA series analyzers.
The logic analyzer must be accessible on the local network.

TLA Script Program

Specifies the full path to the tlascript script file on the Tektronix logic analyzer.
The default path is C:\Program Files\ TLA 700\ System\tlascript. If this location
does not match the location expected by the Tektronix logic analyzer, change
the location setting. The logic analyzer requires an rsh daemon to access the
script file. To download and install the rsh daemon on the logic analyzer, see
the web-site at http://rshd.sourceforge.net.

User Name

Identifies the user name on the analyzer (Tektronix only).

Host Name/IP Address

Specifies the host name or IP address for the debugger host.

Assign Pods automatically to Mictor connectors

When checked, automatically assigns pods to the Mictor connectors.

Scan Logic Analyzer

Clicking the Scan Logic Analyzer button scans the specified IP address and, if
scanned successfully:

* opens a network connection with the given parameters
e retrieves the modules and pods information

» displays Logic Analyzer Properties and Logic Analyzer Submit tabs

Identify Debugger User Guide © 2015 Synopsys, Inc.
March 2015 55

http://rshd.sourceforge.net

Chapter 1: Using the Debugger Logic Analyzer Interface Parameters

Logic Analyzer Properties Tab

The Logic Analyzer Properties tab allows Mictor pin groups to be manually
assigned to modules and pods using corresponding drop-down menus.
Clicking the Assign Pods button updates the assignments.

Logic Analyzer Froperties]

MictorConnectaFinGraup Madule Pad
IMie 1 i
Ml | id
IM2e | i
M2 | id
IM3e | i
IM3e | id
I [=]
340 [~]
Assign Pads |

Logic Analyzer Submit Tab

The Logic Analyzer Submit tab submits signal/breakpoint names to the logic
analyzer.

© 2015 Synopsys, Inc. Identify Debugger User Guide
56 March 2015

Logic Analyzer Interface Parameters Chapter 1: Using the Debugger

Logic Analyzer Submit

Logic Analyzer: |t|a

TLA Script; |c:\F'rc-glam FllestTLd, 700,
Uzer Marne: |user

Host Mame/ IP Address: [10.8.148 51

[™ Delete Existing Lables

Submit

IICE Assignments Report Tab

When using the real-time debugging feature in the instrumentor (see
Real-time Debugging, on page 63 in the Instrumentor User Guide), the
signal/breakpoint interface assignments to the Mictor connector are reported
in the debugger on the IICE Assignments Report tab. Clicking the tab before
assigning logic analyzer pods to the Mictor pin groups reports only the
signal/breakpoint assignments. Clicking the tab after assigning logic
analyzer pods to the Mictor pin groups includes the pods assignments in the
report.

By default, the report is displayed on the screen (standard out). The report
can be redirected to a file using the iice assignmentsreport Tcl command (see iice,
on page 51 in the Reference Manual.

Identify Debugger User Guide © 2015 Synopsys, Inc.
March 2015 57

Chapter 1: Using the Debugger Logic Analyzer Interface Parameters

IICE Azzignmentz Report]

Pod Assignments [
Mictor Connector | LogicAnalyzer Module | LogicAnalyzer Pod
Signal'breakpoint Assignments
Mictor Pin | Signal Breakpoint
3M1.D0e |/adr_o[9] —
3M1Dle |/adr_o[E]
3M1Dle |/adr_o[7]

© 2015 Synopsys, Inc. Identify Debugger User Guide
58 March 2015

SYNOPSYS

CHAPTER 2

Board Bring-up

When using a HAPS system with the Certify multi-FPGA prototyping tool,
special software is available to query the HAPS system and then to use this
information to create a board file that describes that system configuration.
Once configured, a set of board bring-up utilities are available to validate the
configuration.

To assist in HAPS-60 and HAPS-70 series system board development, Certify
software uses the confpro shell in the debugger to:

* query the actual board configuration to create an initial board (vb) file for
the system including applicable daughter cards and cable interconnect,
clock and reset configuration, and voltage region definitions

* perform verification of the newly-defined board including HAPS
hardware checks, FPGA bus access verification, clock and reset checks,
HSTDM performance, and a self-test

Before you can use the HAPS board query and bring-up utilities, the following
software must be installed:

e Current version of the instrumentor/debugger tool set

¢ ConfPro GUI
For current versions and installation information, see the release notes.

Running the board bring-up utility launches a special debugger window
where you can either use the debugger graphical interface or enter a series of
haps utility and board-test commands at the command prompt to set board
parameters and to run individual board tests to verify the board configura-
tion.

Identify Debugger User Guide © 2015 Synopsys, Inc.
March 2015 59

Chapter 2: Board Bring-up Board Query

Board Query

The board query utility is initiated from the Certify user interface by selecting
Launch Identify in Bring Up and Query Mode from the Tools popup menu. Running
this utility creates a Tcl script for generating a first approximation of the

board file. This file replaces the original skeleton board file defined for the
project.

Implementation Options...

Change Implementation Mame...

Copy Implementation...

Remove Implementation... DEL
MNew Identify Implernentation...

Identify Instrumentar

EL

Launch Identify Debugger

Launch Identify in Bring Up and Query Mode
RTL View

Technology View

Run Preparation

Synthesize All SLP Projects

Synthesize All SLP Projects (Parallel)

Project View Options...

The script uses a set of board_system Tcl commands to describe the system
configuration in terms of boards, interconnect, clocks, resets, and voltage
regions. For detailed information and command syntax, see HAPS Board
Systems in Chapter 26, Board Description Files, in the Certify User Guide
and the individual board_system command descriptions in the Certify
Command Reference.

The following shows a set of auto-generated, board-query Tcl commands.

ABFG TCL file from Hardware Configuration
board system create -haps -name conf board
board system create -add HAPS64 -name FB1
board system create -add HAPS64 -name FB2

Connections on Board FB1

board system create -interconnect -manual CON CABLE40e
-name CON_ CABLE40e-13501 -connector {FBl.A6 FB1.B6}

board system create -interconnect -manual SRAM 1x1 HTII
-name SRAM 1x1 HTII-PD-00792 -connector {FB1.A2}

© 2015 Synopsys, Inc. Identify Debugger User Guide
60 March 2015

Board Query Chapter 2: Board Bring-up

Connections on Board FB2

board system create -interconnect -manual SRAM 1x1 HTII
-name SRAM 1x1 HTII-PD-00787 -connector {FB2.A3}

board system create -interconnect -manual SRAM 1x1 HTII
-name SRAM 1x1 HTII-PD-00788 -connector {FB2.A6}

Clocks and Resets

board system configure -voltage {FBl.Via} 2.
board system configure -clock {FB1.GCLK1l} PL
board system configure -reset {FB1.RESET . A}

#Save Board
board system save -board conf board.vb

The auto-generated Tcl file can be edited to explicitly describe additional
cable interconnect. In the excerpt below, commands are manually inserted to
describe the added interconnect.

ABFG TCL file from Hardware Configuration
board system create -haps -name conf board
board system create -add HAPS64 -name FB1
board system create -add HAPS64 -name FB2

Connections on Board FB1

Manual additions here to describe intra- and inter-board
cable interconnect

board system create -interconnect -auto -width 24
-devices {FBl.uA FB2.uB}

board system create -interconnect -manual CON_CABLE40e
-name CON CABLE40e-13501 -connector {FBl.A6 FB1.B6}

board system create -interconnect -manual SRAM 1x1 HTII
-name SRAM 1x1 HTII-PD-00792 -connector {FBL.A2}

Connections on Board FB2
Manual additions here to describe intra- and inter-board cable
interconnect
board system create -interconnect -auto -width 50
—devices {FBl.uB FB2.uA}
board system create -interconnect -manual SRAM 1x1 HTII
-name SRAM 1x1 HTII-PD-00787 -connector {FB2.A3}
board system create -interconnect -manual SRAM 1x1 HTII
-name SRAM 1x1 HTII-PD-00788 -connector {FB2.A6}

Clocks and Resets

board system configure -voltage {FBl.Vla} 2.
board system configure -clock {FB1.GCLK1l} PL
board system configure -reset {FB1.RESET . A}

Identify Debugger User Guide © 2015 Synopsys, Inc.
March 2015 61

Chapter 2: Board Bring-up Board Query

#Save Board
board system save -board new conf board.vb

© 2015 Synopsys, Inc. Identify Debugger User Guide
62 March 2015

Board Bring-up Chapter 2: Board Bring-up

Board Bring-up

The board bring-up utility is initiated from the Certify user interface by
selecting Launch Identify in Bring-up and Query Mode from the Tools popup menu.
To use this utility, an Identify implementation must be defined for the project
and a HAPS-60 or HAPS-70 board (vb) file must be included in the defined
project (an HDL design is not required, but an initial board file must be
present).

Implementation Options...

Change Implementation Mame...

Copy Implermnentation...

Remove Implementation... DEL
Mew Identify Implernentation...

Identify Instrumentor

o9

Launch Identify Debugger

Launch Identify in Bring Up and Query Mode
RTL View

Technology View

Run Preparation

Synthesize All 5LP Projects

Synthesize All 5LP Projects (Parallel)

Project View Options...

Running the board bring-up utility launches a special debugger window
where you can either use the debugger graphical interface or enter a series of
haps utility and board-test commands at the command prompt to set board
parameters and to run individual board tests to verify the board configura-
tion.

The debugger haps command syntax is described in the Debug Environment
Reference Manual. The individual board tests are described in Board Configu-
ration Tests, on page 66.

Setting Initial Values

The following table describes the selections and fields in the debugger
bring-up utility menu.

Identify Debugger User Guide © 2015 Synopsys, Inc.
March 2015 63

Chapter 2: Board Bring-up Board Bring-up

IUMRBus Device |0 PCIE |
ConfPra GUI |
Board / System | hapsEx |
Utils & Tests | x|
Fiun |

Function Description

UMRBUus Device

ConfPro GUI

Board/System

Utils & Tests

Run

ConfPro GUI

Selects the type and location of the UMRBus device. Eight PCle
and eight UMRBus devices can be selected from the drop-down
menu.

Selects the ConfPro GUI. If the location of the ConfPro GUI is not
specified, you are prompted for the install location. For more
information on the ConfPro GUI, see ConfPro GUI, on page 64.

Selects the type of board/system connected to the host. The
allowed selections are available from the drop-down menu.

Selects the query/test to be run based on the type of board
system selected. For more information on the available utilities
and tests, see Board Configuration Tests, on page 66

Runs the selected query/test to be executed.

The ConfPro GUI is launched from the board bring-up utility in the debugger
GUIL When you click the ConfPro button, the HAPS Configuration Tool menu
shown below is displayed.

© 2015 Synopsys, Inc.
64

Identify Debugger User Guide
March 2015

Board Bring-up Chapter 2: Board Bring-up

Il HAPS Configuration Tool =]

File Platform Help

System |FPG.A5| Clocksl Reset I Memoryl Readbackl HapsTrakI UMRBus I Firmware Update I

System Type I

Device or Source I

Serial Number I

Firmware Version I
System State I System Logfile |

Shia Systenm Struckure Start Selftest |

onfigure System lear System SEan Sy ke |

"Syﬂchronizah'on

| Y

The HAPS Configuration Tool dialog box includes both a File and a Platform
top-level menu as well as the top-level Help menu. Complete ConfPro GUI
documentation is available by selecting Help->Contents from the top-level
menu. The location of the ConfPro installation is specified by selecting
Options->Configure Confpro from the debugger menu.

x

— Confpro Ingtallation

' Use Cument Confpro Installation

|C:£t00|sx’confpm-H-2D1 30351
" Locate Confpro Installation

|C: Moolz/confpro-H-2013.03-5F1 r

Cancel |

Identify Debugger User Guide © 2015 Synopsys, Inc.
March 2015 65

Chapter 2: Board Bring-up Board Bring-up

Board Configuration Tests

The following board tests are available from the graphical user interface and
by individual Tcl commands. Before you can run any of the tests, make sure:

¢ confpro has been installed and configured
¢ the UMRBus PCI/USB device is selected

* a Board/System is selected

UMREws Device |0 PCIE |

ConfPro GUI |
Board / System |hapsfx |
Utis & Tests | x|

The corresponding Tcl command for device and board selection is
haps settings {PORT_NAME portName DEV_ID device BUS_NUM bus}

which specifies the HAPS port (PORT_NAME), device (DEV_ID), and bus
(BUS_NUM) settings. For detailed information on the haps Tcl commands, see
haps, on page 39 in the Reference Manual.

Board tests are selected from the Utils & Tests drop-down menu.

Ltils & Tests |umi_check hd
bioard

prog
T etvec
zetclk
restart
confscr

clock_check
con_zpeed

The same board configuration tests can be run directly from the debugger

command prompt without requiring the installation of the Certify prototyping
tool.

Identify Debugger User Guide

© 2015 Synopsys, Inc.
66 March 2015

Board Bring-up Chapter 2: Board Bring-up

umr_check Test

The umr_check test verifies the basic functionality of the UMRBus. The test
passes if the basic UMRBus operation succeeds. The umr_check test:

* Downloads bin files through the UMRBus
* Reads status registers

* Writes control registers

The umr_check test is selected from the Utils & Tests drop-down menu and
includes both FPGA ID and Frequency selections. The FPGA ID drop-down menu
selects the FPGA to be tested; the Frequency field sets the GCLK1 clock
frequency used to test the design. The test is executed by clicking the Run

button.
UMRBus Device |D PCIE j The uri_check test verifies the bagic functionality of the UMBBuUz. The test
will pazz if the UMREBUz is functioning correctly.
ConfPro GUI |
Board / System | hapsby x| FPGA 1D 1 R
Ltilz & Tests |uml_check j Frequency [Khz] 140000
Run |

The Tcl syntax for running the umr_check test is:
haps run umr_check fpgalD frequency

In the above syntax:

» fpgalD — indicates which FPGA device is to be tested. The default is 1,
which is the first FPGA device on the first board.

* frequency — sets the frequency for GCLK1 which is used in the test of the
design. The default frequency is 140Mhz.

con_speed Test

The con_speed test verifies the connectivity between HapsTrak® connectors as
well as the speed at which HSTDM can run. The con_speed test is selected
from the Utils & Tests drop-down menu and includes both a Speed and Mode
selection. The test is executed by clicking the Run button.

Identify Debugger User Guide © 2015 Synopsys, Inc.
March 2015 67

Chapter 2: Board Bring-up Board Bring-up

UMRBus Device |2 USE x|

The con_speed test verified the connectivity between HAPS Trak
conhectors, az well as the speed at which HSTDM could run.
ConfPro GUI |

Board / System |haps?>: j Speed |84D ﬂ

Ltils & Tests |con_speed hd Mode |fast |

bioard

prog
sebvos
zetclk
restart
confscr
vbigen
clock_check
[y eed
urnr_check

The Speed selection sets the HSTDM verification rate (in Mbps). The ALL selec-
tion scans a range of speeds to determine the highest rate possible. Two Mode
selections are available — fast and sweep. The fast mode (the default) verifies
each channel at the specified speed; the sweep mode tests (sweeps) all
channels at each speed and can require several hours to complete.

The con_speed test requires a connectivity.tcl file to describe the Certify board
configuration. A connGen.tcl script is used to generate the connectivity.tcl file for
the con_speed test based on the Certify board file. To run the connGen.tcl script
from the Certify GUI:

1.

2
3
4.
)

Open the project (select File->Open Project)

. If the project is not current, click the Run Preparation button

. Make sure that the HSTDM check box on the Partitioning tab is checked

Fully partition the design

. Source the connGen.tcl file:

source identify_install /lib / bringup_utils / swlib /connGen.tcl

To run the connGen.tcl script from the command line:

1. Open the project in Certify (project -load projectPath)

2. Run preparation (project -run compile)
© 2015 Synopsys, Inc. Identify Debugger User Guide
68 March 2015

Board Bring-up Chapter 2: Board Bring-up

3. Load the board file with HSTDM (load_board/proto/board.srs -hstdm)
4. Load the netlist (load_netlist/proto/designNetlist.srs)

5. Source the connGen.tcl file:

source identify_install /lib /bringup_utils /swlib /connGen.tcl

Sourcing the connGen.tcl file generates the connectivity.tcl file in the design direc-
tory. You must copy this file to your current directory before you can run the
con_speed test.

To run the con_speed test, either click the Run button in the debugger GUI or
use the following Tcl command syntax:

haps run con_speed speed {fast|sweep}

The con_speed test produces a log file (hapstest.log) in the current directory that
reports:

¢ FPGA connectivity and banks

* Voltage regions

* FPGA configuration including clock and reset

* Transfer speed and results

* Training results for the banks and minimum eye width

e Hardware/firmware version and test results including any failed
channels

HapsTrak 3 Connector Considerations

The HapsTrak 3 connectors at board locations 16, 17, 19, and 20 on a
HAPS-70 series system are special connectors in that each of these connec-
tors has only a single clock pair (normal connectors have four clock pairs).
When testing the connectivity between any of these special connectors and a
standard connector, the special connector is listed last in a connectPorts state-
ment as shown below:

connectPorts mbl.B13 mbl.Al6

When you use the connGen.tcl script in the Certify project directory to generate
the connectivity.tcl file, the connGen.tcl script automatically orders the entries in
the connectPorts statements.

Identify Debugger User Guide © 2015 Synopsys, Inc.
March 2015 69

Chapter 2: Board Bring-up Board Bring-up

clock_check Test

The clock_check test reports the clock frequency of each GCLK output to allow
all of the GCLK frequencies to be verified, and also reports board status. To
run the clock_check test, either click the Run button in the debugger GUI or
use the following Tcl command syntax:

haps run clock_check

self_test Test

The self_test test replaces the traditional self test with an STB2 test card. The
self test:

¢ Executes haps run self_test without an STB2 card inserted. The test should
pass; failure indicates a short circuit at the connector.

¢ Executes haps run self_test with an STB2 card inserted. The test should
pass; failure indicates an open circuit at the connector.

To run the self_test test, either click the Run button in the debugger GUI or use
the following Tcl command syntax:

haps run self_test

Utility Commands

Utility commands, like the board test commands, are selected from the Utils &
Tests drop-down menu.

Ltils & Tests |umi_check hd
nard
prog
sebvos
zetclk
restart
confscr

Clner_ched
con_zpeed

zelf_test

This menu is board/system dependent and remains disabled until a
board/system selection is made. Selecting a command from the drop-down
menu displays a description of the selected command, and clicking the Run

© 2015 Synopsys, Inc. Identify Debugger User Guide
70 March 2015

Board Bring-up Chapter 2: Board Bring-up

button executes the command. The same utility commands can be run
directly from the debugger command prompt without requiring the installa-
tion of the Certify prototyping tool.

board

Displays the board status to the console window. Status includes clock and
voltage settings, reset condition, daughter card connections, firmware
version, and board serial number. The equivalent Tcl command syntax is:

haps board

prog

Programs the FPGA specified in the FPGA ID field with the contents of the
selected bin file. Click the Open button to browse to the bin file location. The
FPGA ID selection ranges from 1 to 16.

Uil 8es Drevicz |D PLIE j Frogram FPGA with a bir file. 'dewlD* stark fram 1.
ConfPra GUI |
Board / System | hapsEx | BN File M
Ul & Tests @ =] FPEAID |1 hd
Fun |

The equivalent Tcl command syntax is:

haps prog binFile deviD

setvce

Sets the I/0O voltage for the board regions. The voltage value and region are
selected from the corresponding drop-down menus and differ with the
board /system selected. Multiple regions can be selected using the Ctrl key.

Identify Debugger User Guide © 2015 Synopsys, Inc.
March 2015 71

Chapter 2: Board Bring-up Board Bring-up

UMRBus Device [0 PCIE il Set 10 voltage. The default region is ALL.
ConfPra GUI |
Vaoltage E |
Board / System | hapsEx | "
Litils & Tests |setvcc j
Fun |

Region

The equivalent Tcl command syntax is:

haps setvcce voltage [region]

setclk

Sets the frequency for the global input clock identified by the Clock name entry
with the frequency specified in the Frequency field. The frequency value is in
kHz unless specified otherwise.

UMRBus Device |D PCIE j Set frequency for an global input clock,
ConfPro GUI
Clock name |GCLET |
Board / System |hapsE>: j
Frequency |100MHz
Ltilz & Tests EE A
Run |

The equivalent Tcl command syntax is:

haps setclk clockName frequency

restart
Restarts the board. The equivalent Tcl command syntax is:

haps restart

© 2015 Synopsys, Inc. Identify Debugger User Guide
72 March 2015

Board Bring-up Chapter 2: Board Bring-up

confscr

Runs confprosh Tcl scripts. For example, the confprosh command can be used
to source a HAPS clock and voltage-region configuration script; the user
could then run clock checks to verify the on-board clock configuration. The
name of the script is entered in the TCL script field; use the Open button to
browse to the script location.

UMRBus Device [0 PCIE il Fun confprosh tel scripts

ConfPra GUI |
TCL zcript Open
Board / System | hapsEx |

Ltils & Tests EE -

Fun |

The equivalent Tcl command syntax is:

haps confscr scriptFileName

vbgen

Queries the HAPS system and generates a corresponding Tcl file for Certify
board file generation. The output Tcl file is written to the filename specified in
the Output TCL file field. Clicking the Save button prompts for an alternate
location to save the Tcl file (by default, the Tcl file is saved to the current
working directory).

UMRBus Device |D PLIE j [uery the board and create board-generation tel file
ConfPra GUI |
Board / System [Papstn B Output TCL file |board_gen.tel ﬂ
Litils & Tests |vbgen j
Run |

The equivalent Tcl command syntax is:

haps vbgen (clFile

Identify Debugger User Guide © 2015 Synopsys, Inc.
March 2015 73

Chapter 2: Board Bring-up Board Bring-up

© 2015 Synopsys, Inc. Identify Debugger User Guide
74 March 2015

SYNOPSYS

CHAPTER 3

Incremental Flow

Incremental flow is a multi-pass flow available for the Xilinx technologies that
allows you to make minor changes to the set of instrumented signals without
needing to resynthesize and rerun place and route on your entire design. With
the incremental flow, signals within the initial pass can be replaced with a set
of different signals for a subsequent pass. The incremental flow is shown in
the following figure.

1st Pass 2nd Pass

Setup Project

Y »| Modify Instrumented
Instrument Signals
Design
Y
Y
- Incremental
Synthesize & Re-route
Place and Route

! v

Debug Debug

Requirements

The incremental flow supported by the instrumentor/debugger tool set is
available only when using a Xilinx Virtex-7 technology.

Identify Debugger User Guide © 2015 Synopsys, Inc.
March 2015 75

Chapter 3: Incremental Flow

Note: Incremental flow is supported by the most recent version of the
Xilinx Vivado software; see the release notes for the specific
Vivado release version.

To work with Xilinx Virtex-7 devices, the Vivado place-and-route flow is
required. To create an incremental implementation within this flow, a dcp file

is required.

Incremental Flow Modes

The incremental flow can be used with or without enabling the prepare incre-
mental function in the instrumentor.

¢ When the prepare incremental function is enabled (either by checking
the Prepare incremental check box in the Project view or using the device
prepare_incremental command with a value of 1), essentially any of the
signals in the base (original) instrumentation can be re-instrumented.

€3 Identify Instrumentor - [C:/designs/bus_demo_2014/proj_1]

== = |

File Edit Actions

Open Project...

Make Incremental

Mew [ICE

ail

£ prol_1 (XaIICE

Options Help

El prao_1 -
£ other]
B2 vhdl

arb.vhd [iwork]

blk_xfer_crtrl.vh
block_sfer.vhd [1
buz_dema.vhd [
IFzr vehd [work]

ram_impl.vhd [
rom_impl.whd [

wh_ram.vhd [wa__|
whb_rom.vhd [wo

wiord_sfer.vhd [v
lad e pkar canbd
4 »

Instrumentation Options for ev_33

B e ©

I Use skew resistant hardware

(¥ Prepare incremental)

Compile Optionz

Drevwice family: wirkes?
Cormmunication part: buiiltir j
Board type: HAPS-70

¢ When the prepare incremental function is disabled, only a subset of the
instrument signals in the base instrumentation can be reinstrumented.

© 2015 Synopsys, Inc.
76

Identify Debugger User Guide

March 2015

Chapter 3: Incremental Flow

Setting up the Original Design

To use the incremental flow, you must set the following in the instrumentor
before you instrument and place and route your original design:

1. Open the design in the instrumentor by clicking on the Identify
implementation and selecting Launch Identify Instrumentor from the popup
menu.

2. Select the incremental flow mode (see Incremental Flow Modes, on
page 76).

3. Instrument and save your original design and close the instrumentor.

4. From the synthesis tool:

— right click on the Identify implementation and select Add Place & Route
from the popup menu

— enable the Xilinx P & R check box

— click the Run button to run Xilinx place-and-route and generate the
dcp file

Creating the Incremental Instrumentation
To make incremental changes to your original design:

1. From the synthesis tool, open the instrumentor by clicking on the
original implementation and selecting Launch Identify Instrumentor from the
popup menu.

2. Open the project view and click the Make Incremental button to display the
Create Incremental Implementation dialog box.

Instrumentor: Create x|

Select baze ingtrumentation: Irev_4 j

HCD file path: Browse ... |
Cancel_|

3. In the dialog box, select the base (original) instrumentation and use the
Browse button to select the path to the Xilinx dcp file.

Identify Debugger User Guide © 2015 Synopsys, Inc.
March 2015 77

Chapter 3: Incremental Flow

Note: Make sure that you enter the path to the correct ncd or dep file.
4. Click OK to close the dialog box.

5. At this point, a new incremental icon appears in the project window.
This icon is labeled incr_baseinstr where baseinstr is the name of the
initial instrumentation. Click on the icon to display the new
instrumentation.

Redefining the Instrumented Signals

In the new instrumentation, most of the registered signals and most of the
I/O pins will be available. The console window reports status of the three
“buckets” (sample only, trigger only, and sample and trigger); for every new
signal or bit that you add to a bucket, you must remove at least one existing
signal or bit (the number of signals/bits in a bucket cannot exceed the
original number).

Note: You cannot change the device or IICE configuration in the new
instrumentation.

When you have finished removing and adding signals, save the new instru-
mentation. This action invokes the FPGA editor and runs incremental routing
in the background and creates a new ncd or dcp file in the instrumentation
directory. Use this file to generate your new bit file.

Generating the Bit File

When a new implementation is saved in the Vivado flow, the dcp files are
updated with the modifications. At this point, both the original and incre-
mental versions are available for debugging from their corresponding directo-
ries. Go to the appropriate directory and use the following command
sequence to generate the desired bit file:

vivado -mode tcl
read_checkpoint dcpFilename

write_bitstream bitFilename

© 2015 Synopsys, Inc. Identify Debugger User Guide
78 March 2015

Chapter 3: Incremental Flow

The first command opens Vivado in Tcl mode; the read_checkpoint command
reads the dcp file, and the write_bitstream command writes out the bit file. With
distributed instrumentation, this sequence must be repeated for each FPGA.

Incremental Implementation Support
with Distributed Instrumentation

To use incremental instrumentation with distributed implementation, every
FPGA must be synthesized. The basic distributed instrumentation flow with
incremental instrumentation is:

1. Launch the instrumentor.

2. Create an incremental implementation for each FPGA by selecting the
appropriate dcp file.

3. Re-instrument any desired signals noting which signals are partitioned
into which FPGAs.

4. Save the instrumentation; the Vivado (for V7) incremental routing script
is called separately for each individual FPGA and run in the
background.

Debugging the Incremental Version

In the debugger, open the project, load the incremental instrumentation (the
most recent instrumentation is loaded by default), and debug as normal.

Incremental Flow Limitations

The following limitations are present when using the incremental flow:

* The incremental flow is only available when using the Xilinx Virtex-7
technology.

* Removing the instrumentation from a signal assigned to a MUX group
automatically deletes the signal from its assigned group. If the replace-
ment signal is part of the incremental update, the signal must be
assigned to the same MUX group as the deleted signal (the sampling
logic in the IICE implementation is the only available resource for the
new signal).

Identify Debugger User Guide © 2015 Synopsys, Inc.
March 2015 79

Chapter 3: Incremental Flow

¢ A re-instrumented signal cannot exceed the bit-width of a removed
signal.

¢ The real-time debugging feature, which provides scope or logic analyzer
access to instrumented signals directly through a Mictor board interface
connector installed on the HAPS board, cannot be used with the incre-
mental flow.

© 2015 Synopsys, Inc. Identify Debugger User Guide
80 March 2015

SYNOPSYS

CHAPTER 4

lICE Hardware Description

The instrumentor adds instrumentation logic to your HDL design that allows
you to understand and debug design operation. There are some aspects of the
instrumentation logic that are important to understand in order to use the
debug environment tool set in the most effective way. In this chapter, the
overall instrumentation logic is described briefly followed by descriptions of
some of the more important features. A simplified functional breakdown of
the instrumentation logic consists of:

*» JTAG Communication Block

¢ Breakpoint and Watchpoint Blocks
* Sampling Block

¢ Complex Counter

e State Machine Triggering

JTAG Communication Block

The JTAG communication block can be implemented using either the built-in
device-specific TAP controller (the builtin option) or using the debug environ-
ment implementation of the TAP controller (the soft option). See

Chapter 5, Connecting to the Target System, for more information on the
JTAG controller.

Identify Debugger User Guide © 2015 Synopsys, Inc.
March 2015 81

Chapter 4: IICE Hardware Description Breakpoint and Watchpoint Blocks

Breakpoint and Watchpoint Blocks

The following topics are described in this section:
¢ Breakpoints
¢ Watchpoints, on page 83
e Multiple Activated Breakpoints and Watchpoints, on page 83

Breakpoints

Breakpoints are a way to easily create a trigger that is determined by the flow
of control in the design.

In both Verilog and VHDL, the flow of control in a design is primarily deter-
mined by if, else, and case statements. The control state of these statements is
determined by their controlling HDL conditional expressions. Breakpoints
provide a simple way to trigger when the conditional expressions of one or
more if, else, or case statements have particular values.

The example below shows a VHDL code fragment and its associated break-

points.
99 process(op code, cc, result) begin
100 case op code is
101 when "0100" =>
4 102 result <= part res;
103 if cc = '1' then
4 104 c _flag <= carry;
105 if result = zero then
4 106 z flag <= '1';
107 else
o 108 z flag <= '0';
109 end if;
110 end if;

© 2015 Synopsys, Inc. Identify Debugger User Guide
82 March 2015

Breakpoint and Watchpoint Blocks Chapter 4: IICE Hardware Description

The four breakpoints correspond to these control flow equations:
* Breakpoint at line number 102:
(op_code = "0100")
* Breakpoint at line number 104:
(op_code = "0100") and (cc = '1"')
* Breakpoint at line number 106:
(op_code = "0100") and (cc = 'l') and (result = zero)
* Breakpoint at line number 108:

(op_code = "0100") and (cc = 'l') and (result != zero)

Watchpoints

A watchpoint creates a trigger that is determined by the state of a signal in
the design. The watchpoint can trigger either on the value of a signal or on a
transition of a signal from one value to another.

Multiple Activated Breakpoints and Watchpoints

How breakpoints and watchpoints operate individually is described in the
Instrumentor User Guide. Activated breakpoints and watchpoints also interact
with each other in a very specific way.

Multiple Activated Breakpoints

Each breakpoint is implemented as logic that watches for a particular event
in the design. When an instrumented design has more than one activated
breakpoint, the breakpoint events are ORed together. This effectively allows
the breakpoints to operate independently — only one activated breakpoint
must trigger in order to cause the sampling buffer to acquire its sample.

Identify Debugger User Guide © 2015 Synopsys, Inc.
March 2015 83

Chapter 4: IICE Hardware Description Sampling Block

Multiple Activated Watchpoints

Each watchpoint is implemented as logic that watches for a specific event
consisting of a bit pattern or transition on a specific set of signals. When an
instrumented design has more than one activated watchpoint, the watch-
point events are ANDed together. This effectively causes the watchpoints to
be dependent on each other — all activated watchpoint events must occur
concurrently to cause the sampling buffer to acquire its sample.

For example, if watchpoint 1 implements (count == 23) and watchpoint 2
implements (ack == ‘1’), then activating these watchpoints together effectively
creates a new watchpoint: (count == 23) && (ack == ‘1)).

Combining Activated Breakpoints and Activated Watchpoints

When an instrumented design has one or more activated breakpoints and
one or more activated watchpoints, the result of the OR of the breakpoint
events and the result of the AND of the watchpoint events is ANDed together.
The result of this AND operation is called the Master Trigger Signal. This
ANDing effectively causes the breakpoints and watchpoints to be dependent
on each other — one activated breakpoint and all activated watchpoint events
must occur concurrently to cause the sampling buffer to acquire its sample.

As a result, a Master Trigger Signal event can be constructed that operates
like a conditional breakpoint. For example, activating a breakpoint and the
two watchpoints from the previous example produces a conditional break-
point: (breakpoint event) &®& (count== 23) && (ack == ‘1’).

Sampling Block

The sampling block is basically a large memory used to store all the sampled
signals. During an active debugging session, the sampled signals are contin-
ually being stored in the sample block. When the sample block receives an
event from the Master Trigger Signal event logic or the complex counter logic,
the sampling block stops writing new data to the buffer and holds its
contents. Eventually, the contents of the sample block are uploaded to the
debugger for display and formatting.

© 2015 Synopsys, Inc. Identify Debugger User Guide
84 March 2015

Complex Counter Chapter 4: IICE Hardware Description

Whenever possible, the sample block should use the built-in RAM blocks that
are available in most programmable chips. Otherwise, implementing the
sample buffer using individual storage elements will consume large amounts
of the logic capacity of the chip. If you have no choice but to use individual
storage elements, analyze how much logic you have available on your chip
and adjust how many signals you sample and the depth of the sample buffer.

Complex Counter

The complex counter connects the output of the breakpoint and watchpoint
event logic to the sampling block and allows the user to implement complex
triggering behavior.

Creating a Complex Counter

The counter is created, configured, and inserted into the HDL design during
instrumentation using the instrumentor [ICE Controller tab of the IICE Configura-
tion dialog box or using the instrumentor iice controller command.

During configuration, the size of the counter is specified. For example, a
16-bit counter is the default. This default value produces a counter that
ranges from O to 65535.

Setting the counter size to zero during instrumentation configuration
disables counter insertion.

Debugging with the Complex Counter

The complex counter is used to produce complex triggering behavior. During
the debugging of the design, the complex counter is set to zero on invocation
of the debugger run command. Then, it counts events from the Master Trigger
Signal event logic in a specific way depending on the counter mode.

Finally, the counter sends a trigger event to the sample block when a termi-
nation condition occurs. The form of the termination condition depends on
the mode of operation of the counter and on the target value of the counter:

* The counter target value can be set to any value in the counter’s range.

Identify Debugger User Guide © 2015 Synopsys, Inc.
March 2015 85

Chapter 4: IICE Hardware Description Complex Counter

¢ The counter has four modes: events, cycles, watchdog, and pulsewidth.

The counter target value and the counter mode can be set directly from the
main menu.

File Edit Debug Optionz ‘window Help

£’ E ‘ 1‘ i ‘ @‘ |:_'.Jl3|EZ||:| 3: ?

Carnplex Counter Mude:levents F "v"alue:l'l
|

The following table provides a general description of the trigger behavior for
the various complex counter modes. Each mode is described in more detail in
individual subsections, and examples are included showing how the modes
are used. In both the table and subsection descriptions, the counter target
value setting is represented by the symbol n.

Counter mode Target value =0 Target value n> 0
events illegal stop sampling on the nth trigger
event.
cycles stop sampling on 1st stop sampling n cycles after the
trigger event 1st trigger event.
watchdog illegal stop sampling if the trigger

condition is not met for n
consecutive cycles.

pulsewidth illegal stop sampling the first time the
trigger condition is met for n
consecutive cycles.

events Mode

In the events mode, the number of times the Master Trigger Signal logic
produces an event is counted. When the nth Master Trigger Signal event
occurs, the complex counter sends a trigger event to the sample block. For
example, this mode could be used to trigger on the 12278th time a collision
was detected in a bus arbiter.

© 2015 Synopsys, Inc. Identify Debugger User Guide
86 March 2015

Complex Counter Chapter 4: IICE Hardware Description

cycles Mode

In the cycles mode, the complex counter sends a trigger event to the sample
block on the nth cycle after the first Master Trigger Signal event is received.
The clock cycles counted are from the clock defined for sampling. For
example, this mode could be used to observe the behavior of a design
2,000,000 cycles after it is reset.

watchdog Mode

In the watchdog mode, the counter sends a trigger event to the sample block
if no Master Trigger Signal events have been received for n cycles. For
example, if an event is expected to occur regularly, such as a memory refresh
cycle, this mode triggers when the expected event fails to occur.

pulsewidth Mode

In the pulsewidth mode, the complex counter sends a trigger event to the
sample block if the Master Trigger Signal logic has produced an event during
each of the most recent n consecutive cycles. For example, this mode can be
used to detect when a request signal is held high for more than n cycles
thereby detecting when the request has not been serviced within a specified
interval.

Disabling the Counter

According to the previous table, the counter can be disabled simply by setting
its target value to 1 and its mode to events. Then, the complex counter will
pass any received event from the Master Trigger Signal logic on to the sample
block with no additional delay.

Identify Debugger User Guide © 2015 Synopsys, Inc.
March 2015 87

Chapter 4: IICE Hardware Description State Machine Triggering

State Machine Triggering

This section describes the different methods of triggering available in the
debugger. It explains the different choices available during instrumentation
and the functionality these choices provide in the debugger as well as
discussing the cost effects of the various types of instrumentation.

Simple or Advanced Triggering

There are two triggering modes available, the simple mode and the advanced
mode. The simple mode allows comparing signals to values (including don’t
cares) and then triggering when the signals match those values. This scheme
can be enhanced by using breakpoints to denote branches in control logic. If
a breakpoint is enabled, this particular branch must be active at the same
time that the signals match their respective values. The overall trigger logic
involves signals and breakpoints in the following way:

¢ Signals: All signals must match their respective comparison values in
order to trigger.

¢ Breakpoints: All breakpoints are OR connected, meaning that any one
enabled breakpoint is enough to trigger.

¢ Signals and breakpoints are combined using AND, such that all signals
must match their values AND at least one enabled breakpoint must
occur.

The logic that implements breakpoint and signal triggering is referred to as
trigger condition in the following text.

In the advanced trigger mode, multiple such trigger conditions are instru-
mented, and a runtime-programmable state machine is also instrumented to
allow you to specify the temporal and logical behavior that combines these
trigger conditions into a complex trigger function. For instance, this state
machine enables you to trigger on a certain sequence of events like “trigger if
pattern A occurs exactly five cycles after pattern B, but only if pattern C does
not intervene.”

By default, the instrumentor instruments the design according to the simple
trigger mode. See the following for more information on how to select the
advanced trigger mode.

© 2015 Synopsys, Inc. Identify Debugger User Guide
88 March 2015

State Machine Triggering Chapter 4: IICE Hardware Description

Advanced Triggering Mode

Setting up an instrumented design to enable advanced triggering is extremely
easy. There are two iice controller command options available in the instru-
mentor that control the extent and cost of the instrumentation:

-triggerconditions integer — The integer argument to this option defines
how many trigger conditions are created. The range is from 1 to 16. All
these trigger conditions are identical in terms of signals and breakpoints
connected to them, but they can be programmed separately in the
debugger.

-triggerstates integer — The integer argument to this option defines how
many states the trigger state machine will have. The range is 2 to 16;
powers of 2 are preferable as other numbers limit functionality and do
not provide any cost savings.

Similar to the simple-triggering mode, a counter can be instrumented to
augment the functionality of the state machine. To instrument a counter,
enter an iice controller -counterwidth option with an argument greater than O in
the instrumentor console window.

Please refer to the following text to determine cost and consequences of these
settings in the instrumentor.

Structural Implementation of State Machine Triggering

For each trigger condition c;, a logic cone is implemented which evaluates the
signals and the breakpoints connected to the trigger logic and culminates in a
1-bit result identical to the trigger condition in simple mode. All these 1-bit
results are connected to the address inputs of a RAM table.

If a counter has been added to the instrumentation, the counter output is
compared to constant O, and the single-bit output of that comparison is also
connected to the address inputs of the same RAM table.

The other address inputs are provided by the state register. The outputs of
the RAM table are:

the next-state value nstate

the trigger signal trigger (causes the sample buffer to take a snapshot if
high)

the counter-enable signal cnten (if ‘1’°, counter is decremented by 1)

Identify Debugger User Guide © 2015 Synopsys, Inc.
March 2015 89

Chapter 4: IICE Hardware Description State Machine Triggering

¢ the counter-load signal cntld (if ‘1’, counter is loaded with cntval)

* the counter value cntval (only useful in conjunction with cntld)

The last three outputs are only present if a counter is instrumented. Please
also refer to the figure below.

State
—— nstate g’
, 2-port RAM N cnild [T
cnten__ -'g

tnull
port 1, read-only | carval | 3| <"
1 o
o .
trigger -~

port 2, write-only

Write port driven by JTAG circuitry

The implementation of the RAM table is identical to the implementation of the
sample buffer (that is, the device buffertype setting selects the implementation
of both the sample buffer and the state-machine RAM table).

Cost Estimation

The most critical setting with respect to cost is the number of trigger condi-
tions, as each trigger condition results in an additional address bit on the
RAM, and thus doubles the size of the RAM table with each bit. Next in
importance is the counter width as this factor contributes directly to RAM
table width and is especially significant in the context of FPGA RAM primi-
tives that allow a trade-off of width for depth.

© 2015 Synopsys, Inc. Identify Debugger User Guide
90 March 2015

State Machine Triggering Chapter 4: IICE Hardware Description

The block RAM on Xilinx Virtex-II, Virtex-II Pro, Virtex-4, and Spartan-6
devices includes 18k bits per block and a number of different possible config-
urations (Virtex-5, Virtex-6, and Virtex-7 devices include 36k bits per block).
The following table provides some hints for good, trigger state-machine
settings for the smaller, 18k-bit devices when using only a single block for the
trigger-state machine.

Table 1: Xilinx Virtex-Il, Virtex-1l Pro, Virtex-4, and Spartan-6 devices

RAM size With counter Without counter
Address | Depth | Data | Conditions | States | Counter | Conditions | States

9-bit 512 36-bit 5 8 30-bit no useful setting
9-bit 512 36-bit 6 4 31-bit no useful setting
10-bit 1024 | 18-bit 6 8 12-bit no useful setting
10-bit 1024 | 18-bit 7 4 13-bit no useful setting
11-bit 2048 9-bit 7 8 3-bit 7 16
12-bit 4096 4-bit n/a n/a n/a 9 8

The actual instrumentation, however, is not limited to the values provided,
nor is it limited to the use of a single block RAM (for example, it may be
advantageous in a particular situation to trade away states for additional
trigger conditions or for additional counter width). Any configuration can be
automatically implemented, as long as it fits on the device with the remainder
of the design.

Although RAM parameters are automatically determined by the instru-
mentor, this information should be monitored to make sure that no resources
are wasted.

Using State Machine Triggering in the Debugger

Perform the following steps in the debugger console window to setup a trigger
in advanced triggering mode. These steps can be done in any order.

* setup the values for the trigger conditions using the debugger watch and
stop commands.

* setup the trigger state machine behavior using the debugger statemachine
command.

Identify Debugger User Guide © 2015 Synopsys, Inc.
March 2015 91

Chapter 4: IICE Hardware Description State Machine Triggering

The watch command takes an additional parameter, -condition, specifying the
trigger conditions that the given condition is intended for. This argument is
available in simple mode as well, but as there is only one trigger condition in
this case, the argument is redundant.

» watch enable -condition (triggerCondition|all) signalName value1 [valueZ2 ...]
+ watch disable -condition (triggerCondition|all) signalName

» watch info [-raw] signalName

The parameter triggerCondition is a list value conforming to the Tcl language.
Examples are: 1, "1 2 3", {2 3}, or [1list 1 2 3], quotes, braces, and
brackets included, respectively. Alternatively, the keyword all can be specified
to apply the setting to all trigger conditions.

The debugger watch info command reports status information about the signal.
This information is returned in machine-processible form if the optional
parameter -raw is specified.

Similarly for the debugger stop command:
+ stop enable -condition (triggerCondition|all) breakpoint
+ stop disable -condition (friggerCondition |all) breakpoint
» stop info [-raw] breakpoint

The semantics of the parameters are identical to the above descriptions.

The statemachine Command

During instrumentation, the number of states was previously defined using
the -triggerstates option of the instrumentor iice controller command. Now, at
debug time, you can define what happens in each state and transition
depending on the pattern matches computed by the trigger conditions.

The debugger statemachine command is used to configure the trigger state
machine with the desired behavior. This is very similar to the “advanced”
trigger mode offered by many logic analyzers. As it is very easy to introduce
errors in the process of specifying the state machine, special caution is
appropriate. Also, a state-machine editor is available in the debugger user
interface to facilitate state-machine development and understanding (see
State-Machine Editor, on page 99). It is also important to note that the initial
state for each run is always state O and that not all of the available states
need to be defined.

© 2015 Synopsys, Inc. Identify Debugger User Guide
92 March 2015

State Machine Triggering

The syntax forms of the debugger statemachine command are:

statemachine addtrans -from state [-to state] [-cond "equation|titriggerinID")
[-entval infeger] [-cnten] [-trigger]

statemachine clear (-all|state [state ...])

statemachine info [-raw] (-all|state [state ...])

Subcommand statemachine addtrans

The debugger addtrans subcommand defines the transitions between the
states. The options are as follows:

-from state — specifies the state this transition is exiting from.

-to state — specifies the state this transition goes to. If this is not given, it
defaults to the state given in the -from option.

-cond "equationltitriggerinID" — specifies the condition or external trigger
input under which the transition is to be taken. The default is “true”
(i.e., the transition is taken regardless of input data; see below for more
details).

-cntval integer — specifies that if this transition is taken, the counter is
loaded with the given value. Only valid when a counter is instrumented.

-cnten — when this flag is given, the counter is decremented by 1 during
this transition. Only valid when a counter is instrumented.

-trigger — when this flag is given, a trigger occurs during this transition.

The order in which the transitions are added is important. In each state, the
first transition condition that matches the current data is taken and any
subsequent transitions in the list that match the current data are ignored.

Conditions

The conditions are specified using Boolean expressions comprised of
variables and operators. The available variables are:

Identify Debugger User Guide
March 2015

c0, ... cn, where nis the number of trigger conditions instrumented.
These variables represent the output bit of the respective trigger condi-
tion.

titriggerinlD — the ID (0O thru 7) of an external trigger input.

© 2015 Synopsys, Inc.
93

Chapter 4: IICE Hardware Description

Chapter 4: IICE Hardware Description State Machine Triggering

¢ cntnull - true whenever the counter is equal to O (only available when a
counter is instrumented).

e icelD - variable used with cross triggering to define the source IICE units
to be included in the equation for the destination IICE trigger.

Operators are:
¢ Negation: not, !, ~
e AND operators: and, &&, &
¢ OR operators: or, ||, |
¢ XOR operators: xor, *
¢ NOR operators: nor, ~ |
¢ NAND operators: nand, ~&
¢ XNOR operators: xnor, ~*
¢ Equivalence operators: ==, =
e Constants: 0, false, OFF, 1, true, ON

Parentheses (¢, ‘)’ are recommended whenever the operator precedence is in
question. Use the debugger statemachine info command to verify the conditions
specified.

For example, valid expression examples are:

"cO and cl"
"1 (cl or c2) and c3"
"cO0 or ti4" (condition cO or external trigger ID ti4)

Other Subcommands

The debugger statemachine clear command deletes all transitions from the
states given in the argument, or from all states if the argument -all is speci-
fied.

The debugger statemachine info command prints the current state machine
settings for the states given in the argument, or for the entire state machine,
if the option -all is specified. If the option -raw is given, the information is
returned in a machine-processible form.

© 2015 Synopsys, Inc. Identify Debugger User Guide
94 March 2015

State Machine Triggering Chapter 4: IICE Hardware Description

State Machine Examples

To implement a trigger behavior that triggers when the pattern on condition 1
or condition 2 (c1 or c2) becomes true for the 10th time (a setting identical to
counter mode events in the simple mode triggering), the following state
machine can be used:

statemachine addtrans -from 0 -to 1 -cntval 9
statemachine addtrans -from 1 -cond " (cl | ¢2) & cntnull" -trigger
statemachine addtrans -from 1 -cond "cl or c2" -cnten

A trigger condition requiring pattern c2 to occur 10 times after pattern ¢1 has
occurred, without pattern ¢3 occurring in between (commonly available in
logic analyzers as “Pattern 1 followed by Pattern 2 before Pattern 3”) can be
achieved with the following state machine:

statemachine addtrans -from 0 -to 1 -cond cl -cntval 9
statemachine addtrans -from 1 -cond "c2 & cntnull" -trigger
statemachine addtrans -from 1 -to 0 -cond c3

statemachine addtrans -from 1 -cond "c2" -cnten

These behaviors can be cascaded by moving on to the next behavior instead
of triggering in the transition that has -trigger specified, as long as there are
trigger conditions and states available.

Identify Debugger User Guide © 2015 Synopsys, Inc.
March 2015 95

Chapter 4: IICE Hardware Description State Machine Triggering

Convenience Functions

There are a number of convenience functions to set up complex triggers avail-
able in the file InstallDir/share/contrib/syn_trigger_utils.tcl which is loaded into the
debugger at startup:

* st_events condition integer — Sets up the state machine to mimic counter
mode events of the simple triggering mode as described above. The
argument condition is a boolean equation setting up the condition, and
integer is the counter value.

* st_watchdog condition infeger — Same as st_events for watchdog mode.
* st_cycles condition integer — Same as above for cycles mode.
e st_pulsewidth condition integer — Same as above for pulsewidth mode.

* st_B_after_A conditionA conditionB [integer:=1] — Sets up a trigger mode to
trigger if conditionB becomes true anytime after conditionA became true.
The optional integer argument defaults to 1 and denotes how many
times conditionB must become true in order to trigger.

* st_B_after_A_before_C conditionA conditionB conditionC [integer:=1] — Sets up a
trigger mode to trigger if conditionB becomes true after conditionA
becomes true, but without an intervening conditionC becoming true
(same as the second example above). The optional integer argument
defaults to 1 and denotes how many times conditionB must become true
without seeing conditionC in order to trigger.

e st_snapshot_fill condition [infeger] — Uses qualified sampling to sample data
until sample buffer is full. The argument condition is a boolean equation
defining the trigger condition, and integer is the number of samples to
take with each occurrence of the trigger (default 1).

e st_snapshot_intr condition [integer] — Uses qualified sampling to sample data
until manually interrupted by an debugger stop command. The
argument condition is a boolean equation defining the trigger condition
and integer is the number of samples to take with each occurrence of the
trigger (default 1).

Please refer to the file syn_trigger_utils.tcl mentioned above for the implementa-
tion of these trigger modes using the debugger statemachine command. Users
can add their own convenience functions by following the examples in this
file.

© 2015 Synopsys, Inc. Identify Debugger User Guide
96 March 2015

State Machine Triggering Chapter 4: IICE Hardware Description

Cross Triggering with State Machines

Cross triggering allows a specific IICE unit to be triggered by one or more IICE
units in combination with its own internal trigger conditions. The IICE being
triggered is referred to as the “destination” IICE; the other IICE units are
referred to as the “source” IICE units.

Multiple IICE designs allow triggering and sampling of signals from different
clock domains. With an asynchronous design, a separate I[ICE unit can be
assigned to each clock domain, triggers can be set on signals within each
IICE unit, and then the IICE units scheduled to trigger each other on a
user-defined sequence using cross triggering. In this configuration, each IICE
unit is independent and can have unique IICE parameter settings including
sample depth, sample/trigger options, and sample clock and clock edges.

Cross triggering is supported in all three IICE controller configurations
(simple, complex counter, and state-machine triggering) and all three config-
urations make use of state machines.

Cross triggering is enabled in the instrumentor (cross triggering can be selec-
tively disabled in the debugger). To enable a destination IICE unit to accept a
trigger from a source IICE unit, enter the following command in the instru-
mentor console window (by default, cross triggering is disabled):

iice controller -crosstrigger 1

For cross triggering to function correctly, the destination and the contributing
source IICE units must be instrumented by selecting breakpoints and watch-
points. Concurrently run these units either by selecting the individual IICE
units and clicking the RUN button in the debugger project view or by entering
one of the following commands in the debugger console window:

run -iice all
run -iice {iiceIDl iiceID2 ... iiceIDn}

When simple- or complex-counter triggering is selected in the destination
IICE controller, the following debugger cross-trigger commands are available:

* The following debugger command causes the destination IICE to trigger
normally (the triggers from source IICE units are ignored).

iice controller -crosstriggermode DISABLED

* The following debugger command causes the destination IICE to trigger
when any source IICE triggers or on its own internal trigger.

Identify Debugger User Guide © 2015 Synopsys, Inc.
March 2015 97

Chapter 4: IICE Hardware Description State Machine Triggering

iice controller -crosstriggermode ANY

¢ The following debugger command causes the destination IICE to trigger
when all source IICE units and the destination IICE unit have triggered
in any order.

iice controller -crosstriggermode ALL

¢ The following debugger commands cause the destination IICE to trigger
after the source IICE unit triggers coincident with the next destination
IICE internal trigger.

iice controller -crosstriggermode after -crosstriggeriice iiceID
iice controller -crosstriggermode after -crosstriggeriice all

The first debugger command uses a single source IICE unit (iicelD), and
the second debugger command requires all source IICE units to trigger.

When state-machine triggering is selected, the state machine must be speci-
fied with at least three states (three states are required for certain triggering
conditions, for example, when the destination IICE is in Cycles mode and you
want to configure the destination IICE to trigger after another (source) IICE.

With state-machine triggering, the following debugger statemachine command
sequences are available in the debugger console window:

¢ The following debugger command sequence is equivalent to disabling
cross triggering. The destination IICE triggers on its own internal trigger
condition (c0).

statemachine clear -all
statemachine addtrans -from 0 -cond "cO" -trigger

* In the following debugger command sequence, the destination IICE
waits for iicelD to trigger and then triggers on its own internal trigger
condition (c0). This sequence implements the “after iiceID” functionality
of the simple- and complex-counter triggering modes.

statemachine clear -all
statemachine addtrans -from 0 -to 1 -cond "iiceID"
statemachine addtrans -from 1 -to 0 -cond "c0" -trigger

© 2015 Synopsys, Inc. Identify Debugger User Guide
98 March 2015

State Machine Triggering Chapter 4: IICE Hardware Description

* In the following debugger command sequence, the destination IICE
triggers when the last running IICE triggers.

statemachine clear -all

statemachine addtrans -from 0 -cond "cO and iiceID and iiceID1
and iiceID2" -trigger

statemachine addtrans -from 0 -to 1 -cond "cO"

statemachine addtrans -from 1 -to 0 -cond "iiceID and iiceID1l
and iiceID2" -trigger

* In the following debugger command sequence, the destination IICE
waits for all the other running source IICE units to trigger and then
triggers on its own internal trigger condition (cO).

statemachine clear -all

statemachine addtrans -from 0 -to 1 -cond "iiceID and iiceID1l
and iiceID2"

statemachine addtrans -from 1 -cond "cO" -trigger"

The incorporation of a counter in the state-machine configuration is similar
to the use of a counter in non-cross trigger mode for a state machine.

State-Machine Editor

The debugger includes a graphical state-machine editor that is available
when state-machine triggering is enabled for the active IICE unit on the IICE
Controller tab in the instrumentor.

To bring up the state-machine editor in the debugger, click the
ﬁ_ Configure Statemachine Trigger icon in the debugger toolbar. Note that
the icon will be grayed out if state-machine triggering was not enabled
in the instrumentor when the design was instrumented and that an error
message will be generated if more than 10 states are defined. Clicking the
icon displays the Statemachine Editor dialog box for the selected IICE.

Identify Debugger User Guide © 2015 Synopsys, Inc.
March 2015 99

Chapter 4: IICE Hardware Description State Machine Triggering

Statemachine Editor for IICE 'IICE' x|

D W | &2 | Insert Macro: j
—State 0

| a & co
— State 1

[C]@ [c1 and crtnul)
)

cl

— State 2

— State 3

ok Cancel

Each state is defined in an individual entry field. Within each entry, you can
add multiple definitions for transitioning from that state. Each transition
includes either one or two actions and a condition. The actions and condi-
tions are defined in the following tables.

Action Description

Decrement Counter Decrements counter when condition is true
@ (mutually exclusive with Initialize Counter)

statemachine transition editor (mutually exclusive

-ﬂ? Initialize Counter Initializes counter to count specified by
with Decrement Counter)

Trigger Sample Buf- Triggers sample buffer when condition is true
fer

IE Go to State

Transitions to specified state when condition is true

© 2015 Synopsys, Inc. Identify Debugger User Guide
100 March 2015

State Machine Triggering Chapter 4: IICE Hardware Description

Condition Description

cO0..cN References trigger event in active IICE unit

cntnull True when counter is equal to O (available only when counter is
instrumented)

iicelD References trigger event from a second IICE unit for cross

triggering (cross triggering must have been enabled when the
design was instrumented)

titriggerinlD References external trigger originating from an IICE module in
another FPGA or on-board external logic

Boolean Boolean operators used to define state-machine events (see
Conditions, on page 93)

To use the dialog box:

* As an optional starting point, use Insert Macro to select predefined
state-machine behaviors from the drop-down list. When a macro is
selected, a corresponding Configure Statemachine Macro dialog box is
displayed to set the parameters for the macro. The following figure
shows the dialog box for the st B_after A macro.

Configure Statemachine Mac x|

zt_B_after_A

Thiz macro configures the statemaching to mimic a
logic analyzer trigger. [t tiggers the zamplebuffer
when event 'B' happens M times after event 'A'
OCCUrs,

B: |cEI

A |c:1

N: |5

ak. I Cancel

Enter the required parameters into the dialog box. These parameters
include events, Boolean functions, transition count, and IICE unit. Click
OK after all of the parameters are entered.

Identify Debugger User Guide © 2015 Synopsys, Inc.
March 2015 101

Chapter 4: IICE Hardware Description State Machine Triggering

¢ Use the Add new transition, Edit current transition, and Delete current transition
icons as required. The Add new transition and Edit current transition icons
bring up the Statemachine transition editor dialog box which allows transi-
tions to be defined or redefined.

Statemachine transition editmﬁi x|

Transition From State: |1 % To State: |1 %

Ot Condition: |c:1

Available |dentifiers: o0 =l 2 o3 cntnull

Actionz
@ [Trigger the sample buffer

K v Decrement the counter

& [Initislize the counter to: |0

Cancel |

Click OK when the transition has been defined/redefined.

¢ Click OK in the initial Statemachine Editor dialog box when the
state-machine triggering condition has been defined.

Note that you can view the corresponding state-machine commands in the
debugger console window using the statemachine info -all command.

C:rtoolssident21l 078E-bin% statemachine info -all
State 0:
if "c0" goto 1 —cntwal 4
State 1:
if "{cl and cntnull)" goto 0 —trigger
if "c1" goto 1 —-cnten
State 2:
State 3:

C:-toolssident211l 078RE-bin%

© 2015 Synopsys, Inc. Identify Debugger User Guide
102 March 2015

State Machine Triggering Chapter 4: IICE Hardware Description

State-Machine Examples

The state-machine triggering feature allows the creation of counter-based
state machines from sequences of trigger conditions to create very effective
triggers. You can set up a state-machine trigger during instrumentation and
then program the state machine dynamically during debug to create a
complex, design-specific trigger.

Building a Complex State-machine Trigger

When building a complex, state-machine trigger, you specify the number of
trigger states, the trigger conditions (which can be set dynamically in the
debugger), and the counter width. A common design configuration is to
trigger when a specific sequence of events occurs which, in turn, causes data
collection to stop and the sample data to be downloaded by the corresponding
debugger executable from the FPGA. You can enable state-machine triggering
and specify the states through the user interface as outlined in the following
steps:

1. Make sure that the following prerequisites are done:

— In the instrumentor graphical user interface, select Actions->Configure
lICE from the top menu bar or click the IICE icon.

— From the instrumentor Configure IICE dialog box, select the [ICE
Controller tab, click the State Machine triggering radio button, and specify
the number of trigger states, trigger conditions, and the counter
width in the corresponding fields.

IICE Cortroller |

Current IICE: |IICE_D j IICE type: |regu|ar
— [ICE Cantroller

= Simple triggering

" Complex counter triggering

idth |16

(1]

{* State Machine tiggering

Trigger states: I 4 j‘

Trigger conditions: I 4 j‘

Counter width; I 16 j‘
Identify Debugger User Guide © 2015 Synopsys, Inc.
March 2015 103

Chapter 4: IICE Hardware Description State Machine Triggering

2. Build the state machine trigger from the debugger console window. The
following debugger command sequence is an example.

statemachine addtrans -from 0 -to 1 -cond c0 -cntval 7 -trigger
statemachine addtrans -from 1 -to 0 -cond "cntnull"
statemachine addtrans -from 1 -to 1 -cnten -trigger

Note that in the last debugger statemachine command, the -to 1 can be
omitted (unnecessary because there is no change in state) and that
because the -from states are the same in the second and third
commands, execution falls through to the third command when the
second condition is not true.

3. Once the state-machine trigger is created, use the debugger statemachine
info -all command to display and review the state-machine transitions.

The state-machine editor in the debugger GUI can be used to define the
state-machine trigger event described in step 3 as shown in the following
figure.

load counter

Statemachine Editor For 1ICE ‘lICE®

O E X/« InsertMacml .—»Ioad counter
— State 0 /

transition transition
|I1| e count—OT c0—1

— State 1 _»tngger
— A count =0
cninull <«— transition on counter = 0 ‘

‘/@

\ count

trigger when counter = 0

count>0

The following figure shows the state-machine transition editor (click the Add
new transition icon).

© 2015 Synopsys, Inc. Identify Debugger User Guide
104 March 2015

State Machine Triggering Chapter 4: IICE Hardware Description

Statemachine Edito x|

D g ¥ | &2 | Insertt Macro:l j
pEEELESSEe . Statemachine transition editor .

a & ct " = =

Trangition From State: |1 _|;l To State: |1 _|;l

—State 1—————————— 0On Condition; |tlue

D@L chtnul

) Available Identifiers: =0 =1 c2 =3 cntnull

—State 2—————— Actions:

@ [Trigger the sample buffer

5 v Decrement the courter

—State 3———

l— £ [Initialize the counter to: |
Cancel |

The debugger state-machine and state-machine transition editors allow:

e Graphical entry of state machines
* Editing of state transitions and trigger events
* Conditions to be combined with each other or with a counter

¢ Counter mode selection of up, down, or initialized to any value

State-machine Triggering with Tcl Commands

The IICE can be configured using TCL commands entered from both the
instrumentor and debugger console windows. Some of the example
commands are as follows:

* To delete the state transitions from each IICE, use the following
debugger command:

statemachine clear -iice all

* To enable complex counter triggering, use the following instrumentor
command:

iice controller complex

Identify Debugger User Guide © 2015 Synopsys, Inc.
March 2015 105

Chapter 4: IICE Hardware Description State Machine Triggering

¢ To set the counter width, use the following instrumentor command:
iice controller -counterwidth 8

* To configure an IICE for state-machine triggering, use the following
instrumentor command sequence:

iice controller -iice IICE statemachine

iice controller -iice IICE -counterwidth 4
iice controller -iice IICE -triggerconditions 2
iice controller -iice IICE -triggerstates 2

In addition to state-machine triggering, the above instrumentor
commands set the number of trigger conditions to 2 and the number of
trigger states to 2.

¢ To enable cross triggering, use the following instrumentor command:
iice controller -crosstrigger 1

e Similarly, to configure the sample depth, use the following instrumentor
command:

iice sampler -depth 2048

Note that the only option for buffer type is internal_memory.

Qualified Sampling

During qualified sampling, data is sampled on every clock. The following
example uses qualified sampling to examine the data for a given number of
clock cycles. To create a complex trigger event to perform qualified sampling:

1. As a prerequisite in the instrumentor GUI:

— From the Configure IICE dialog box, select the IICE Controller tab, click
the State Machine triggering radio button, and enter a value in the Counter
width field to define the width of the sample buffer.

— Select the IICE Sampler tab and enable the Allow qualified sampling check
box.

2. From the debugger GUI, select qualified_fill from the Sample Mode
drop-down menu.

© 2015 Synopsys, Inc. Identify Debugger User Guide
106 March 2015

State Machine Triggering Chapter 4: IICE Hardware Description

‘ Sample Mode: [quaified_fil |+
normal
qualified_intr

3. From the debugger GUI, click on the adjacent Configure Statemachine
Trigger icon and define the state-machine trigger event.

4. From the debugger GUI, select the st_snapshot_fill macro from the Insert
Macro drop-down menu.

Statemachine Edi x|

D o T &7 | Inzert Macro: Ist_snapshnl_fill j
BRI . Configure Statemachine Macro x|
i@ [H zt_gnapzhot_fill
— State 1 =
Thiz macro configures the statemachine to create a
complex trigger uzing 'qualified sampling'. It trigaers the
—Gtate 2——— samplebuffer to take N samples each time condition -

'A' ocours. The sampling stops when the samplebuffer

hasz been filled.

—State3——— I

’— .&:l I

N:l

ak. I Cancel —

Enter the trigger event (the condition that will be the qualifying trigger)
in field A, enter the number of samples to be accumulated in the sample
buffer after the trigger event occurs in field N, and click OK to update the
state-machine definition.

When you click Run in the debugger project window, the sample buffer begins
accumulating data when the trigger event occurs and stops accumulating
data after the specified number of samples is reached.

Note: If you use the debugger st_snapshot_intr macro in place of the
st_snapshot_fill macro, the sample buffer is continually overwritten
until manually interrupted by a stop command.

Identify Debugger User Guide © 2015 Synopsys, Inc.
March 2015 107

Chapter 4: IICE Hardware Description State Machine Triggering

You can also perform qualified sampling using equivalent debugger Tcl
commands. The following debugger example command sequence samples the
data every N cycles beginning with the first trigger event.

iice sampler -samplemode qualified fill

statemachine clear -iice IICE -all

statemachine addtrans -iice IICE -from 0 -to 1
-cond "true" -cntval 0O

statemachine addtrans -iice IICE -from 1 -to 2
-cond "c0" -cntval 15 -trigger

statemachine addtrans -iice IICE -from 2 -to 2
-cond "! cntnull" -cnten

statemachine addtrans -iice IICE -from 2 -to 2
-cond "cntnull" -cntval 15 -trigger

Remote Triggering

Remote triggering allows one debugger executable to send a software trigger
event to terminate data collection in the other debugger executables, effec-
tively creating a remote stop button.

You can selectively set the remote trigger to:
e trigger all [ICEs in all debugger executables
e trigger all [ICEs in a specific debugger executable

* trigger a specific IICE in a specific debugger executable

A common design configuration is to trigger all FPGAs on a single board-level
event; when that event occurs, data collection is stopped and the sample data
is downloaded by the corresponding debugger executables for all FPGAs.

Remote triggering is a scripting application. The IICE/debugger targets are
defined by the debugger remote_trigger command (see the command descrip-
tion in the Reference Manual).

As an example, the debugger scripting sequence
run ; remote trigger -pid 12

waits for the trigger condition in the active IICE and then sends a trigger to all
IICE units in the debugger executable identified by process ID 12.

© 2015 Synopsys, Inc. Identify Debugger User Guide
108 March 2015

State Machine Triggering Chapter 4: IICE Hardware Description

Importing External Triggers

An import external trigger capability can be used with trigger signals origi-
nating from on-board logic external to the FPGA or from an IICE module in a
second FPGA. For information on using this feature with state-machine
triggering, see the Importing External Triggers application note available on
SolvNet.

Identify Debugger User Guide © 2015 Synopsys, Inc.
March 2015 109

Chapter 4: IICE Hardware Description State Machine Triggering

© 2015 Synopsys, Inc. Identify Debugger User Guide
110 March 2015

SYNOPSYS

CHAPTER §

Connecting to the Target System

This chapter describes methods to connect the debugger to the target
hardware system. The programmable device or devices in the target system
that contain the design to be debugged are usually placed on a printed circuit
board along with a number of other support devices. The difficulty is that the
boards differ greatly in the connections between their programmable devices,
the other components, and the external connections of the boards.

This chapter outlines how to connect the debugger to most of the common
board configurations and addresses the following topics:

* Basic Communication Connection

e JTAG Communication

* JTAG Hardware in Instrumented Designs
¢ Using the Built-in JTAG Port

e Using the Synopsys Debug Port

* JTAG Communication Debugging

¢ UMRBus Communications Interface

Identify Debugger User Guide © 2015 Synopsys, Inc.
March 2015 111

Chapter 5: Connecting to the Target System Basic Communication Connection

Basic Communication Connection

The components that make up the debugging system are:
¢ The host machine running the debug environment with a loaded project.

¢ The communication cable connecting the host machine to the program-
mable device.

¢ The programmable device or devices loaded with the instrumented
version of the design to be debugged.

Debugger Communications Settings

Debugger communications settings are defined on the project window and
include selecting the cable type and setting the port parameters for the
selected cable.

Cable Type

The cable type is selected from a drop-down menu in the Communications
settings area of the debugger project window (see following figure).

Cormrmunication settings

Cahle twpe: | milinsuzb A

busteblaster

Port setfailinsauto

uilirush
ilinsparallel
bicrozemi Builtind TAG
HPTaGTecha?10
Instrurnentatits tera_Builtind TAG
dermo

Device famillCatapult_EJ1
umrbus
Cigilent_JTAG_HS1

Cirnrm o

© 2015 Synopsys, Inc. Identify Debugger User Guide
112 March 2015

Basic Communication Connection

Chapter 5: Connecting to the Target System

The following table lists the correspondence between cable-type setting and
the supported cables in the debugger.

Cable Type Setting

byteblaster
(soft JTAG port)

xilinxauto
xilinxusb

xilinxparallel

Microsemi_BuiltinJTAG

JTAGTech3710

Altera_BuiltindTAG
(builtin JTAG port)

Catapult_EJ1

Diligent_JTAG_HS1

Compatible Hardware Cables

Altera ByteBlaster and ByteBlaster MV

Auto selection of Xilinx USB or parallel cable
Xilinx USB (Windows only)

Xilinx Parallel Il and Xilinx Parallel IV
Microsemi FlashPro, FlashProLite, or FlashPro3
JTAGTech3710

Altera MasterBlaster (parallel, serial, or USB) or
Altera USBBlaster

Standard Ethernet cable in an IP network

Diligent cable for Xilinx FPGAs

If you are using the command interface, set the com command’s cabletype
option to byteblaster, xilinxauto, xilinxusb, xilinxparallel, Microsemi_BuiltinJTAG,
JTAGTech3710, Altera_BuiltinJTAG, Catapult_EJ1, Diligent JTAG_HS1, or demo
according to the cable being used. Note that if you are using the Altera builtin
JTAG port, any Altera cable type can be used (communications are controlled
through the Quartus driver). If you are using the soft JTAG port, you must
use either a ByteBlaster or ByteBlaster MV hardware cable.

Identify Debugger User Guide
March 2015

© 2015 Synopsys, Inc.
113

Chapter 5: Connecting to the Target System

Basic Communication Connection

Byteblaster Cable Setting

To configure a ByteBlaster cable, click the Port Settings button to display the
Configure Port Settings dialog box and select the appropriate port from the
drop-down menu (see following figure).

— Communication settingsz

Cable type: I byteblaster j

Fort settingz ... | Show JTAG chain ... |

—_—— Configure Port Settings [E3
— Instrumentation s

Device family: Fae I Ipt1 j

JTAG port; TTog Cancel |

Skew Free:)

If you are using the command interface, set the com command’s cableoptions
byteblaster_port option to 1 (Iptl), 2 (Ipt2), 3 (Ipt3), or 4 (Ipt4). Different
computers have their Ipt ports defined for different address ranges so the port
you use depends on how your computer is configured.

The debugger uses the “standard” I/O port definitions: Iptl: 0x378-0x37B,
Ipt2: 0x278-0x27B, Ipt3: 0x3BC-0x3BF, and Ipt4: 0x288-0x28B if it cannot
determine the proper definitions from the operating system. If the hardware
address for your parallel port does not match the addresses for Iptl through
Ipt4, you can use the setsys set command variable Ipt_address to set the
hardware port address (for example, setsys set Ipt_address 0x0378 defines port
Ipt1).

© 2015 Synopsys, Inc. Identify Debugger User Guide
114

March 2015

Basic Communication Connection Chapter 5: Connecting to the Target System

Xilinx Parallel Cable Settings

To configure a Xilinx parallel cable, click the Port Settings button to display the
Configure Port Settings dialog box and select the appropriate port and communi-
cation speed frequency from the drop-down menu (see following figure).

— Communication settings

Cable type: I wilirparallel j

Fort settings ... | Show JTAG chain ... |

Configure Port Settings x|
— Instrument

Device far Port: I Ipt1 j

JTAG port Frequency: [5000000 |
Skew Free

Cancel |

If you are using the command interface, set the com command’s port cableop-
tions xilinxparallel_port option to 1 (Ipt1), 2 (Ipt2), 3 (Ipt3), or 4 (Ipt4) and set the
xilinxparallel_speed option to 5000000 (5MHz), 2500000 (2.5 MHz), or 200000
(200kHz). Note that different computers have their 1pt ports defined for
different address ranges so the port you use depends on how your computer
is configured.

The debugger uses the “standard” I/O port definitions: Iptl: 0x378-0x37B,
Ipt2: 0x278-0x27B, Ipt3: 0x3BC-0x3BF, and Ipt4: 0x288-0x28B if it cannot
determine the proper definitions from the operating system. If the hardware
address for your parallel port does not match the addresses for Iptl through
Ipt4, you can use the setsys set command variable Ipt_address to set the
hardware port address (for example, setsys set Ipt_address 0x0378 defines port
Ipt1).

Xilinx USB Cable Setting

To configure a Xilinx USB cable, click the Port Settings button to display the
Configure Port Settings dialog box and select the appropriate communication
speed frequency from the drop-down menu (see following figure).

Identify Debugger User Guide © 2015 Synopsys, Inc.
March 2015 115

Chapter 5: Connecting to the Target System Basic Communication Connection

— Communication settings
Cable type: Ixilin:-:usb j
Port zettings ... I Show JTAG chain ... I
Configure Port Settings x|
r Instumentatio Frequency: {1 2000000 | '|
Device family:
Ok, I Cancel |

Note: The Xilinx USB cable is only supported on the Windows platform.

If you are using the command interface, set the com command’s port cableop-
tions xilinxusb_speed option to 24000000 (24MHz), 12000000 (12 MHz),
6000000 (6 MHz), 3000000 (3 MHz), 1500000 (1.5MHz), or 750000 (750
kHz).

Xilinxauto Cable Settings

Selecting the Xilinxauto cable type allows the debugger to dynamically select
the appropriate Xilinx cable (parallel or USB) for the hardware configuration.
From the project window, click the Port Settings button to display the Configure
Port Settings dialog box and select the appropriate parallel port and communi-
cation speed frequencies for both the parallel and USB cables from the
drop-down menus (see following figure).

Communication settings
Cable type: |xilinxauto j
Port zethings ... | Show JTAG chain ... |
Part: IIpt1 j
Farallel Part Frequency: IEDDDDDD j
| e | 12000000 =
N Cancel |
© 2015 Synopsys, Inc. Identify Debugger User Guide
116 March 2015

Basic Communication Connection

Identify Debugger User Guide
March 2015

If you are using the command interface, set the com command’s port cableop-
tions xilinxparallel_port, xilinxparallel_speed, and xilinxusb_speed options described
previously in Xilinx Parallel Cable Settings, on page 115 and Xilinx USB Cable
Setting, on page 115.

JTAGTech3710 Cable Settings

To configure a JTAGTech3710 cable, click the Port Settings button to display
the Configure Port Settings dialog box (see following figure) and enter the corre-
sponding parameters (type, port, and tap number). If you are using the
command interface, use the com command’s cableoptions option to set the
cable-specific parameters — JTAGTech_type (takes values PCl and USB; default
is PCI), JTAGTech_port (takes values O, 1, 2, ...; default value is 0), and
JTAGTech_tapnum (takes values 1, 2, 3, or 4; default is 1).

Configure Port Settin x|
Type: |PCI -]
Fart: ID ﬁ
Taprum: (1 [~

ak. I Cancel |

Microsemi Actel_BuiltinJTAG cable Settings

To configure a Microsemi FlashPro, FlashProLite, or FlashPro3 cable, simply
select the Microsemi_BuiltindTAG setting from the Cable type drop-down menu. If
you are using the command interface, you can additionally use the com
command’s cableoptions option to set the tristate pin parameter (see the com
command cableoptions option in the Reference Manual for the parameter
syntax).

Catapult EJ-1 Settings

To configure a Catapult EJ-1 cable, select the Catapult_EJ1 setting from the
Cable type drop-down menu. Click the Port Settings button to display the
Configure Port Settings dialog box and enter the host IP address.

© 2015 Synopsys, Inc.
117

Chapter 5: Connecting to the Target System

Chapter 5: Connecting to the Target System Basic Communication Connection

Diligent_JTAG_HS1 Settings

To configure a Diligent JTAG HS1 cable, select the Diligent JTAG_HS1 setting
from the Cable type drop-down menu. Click the Port Settings button to display
the Configure Port Settings dialog box and select the appropriate communication
frequency from the drop-down menu.

Demo Cable Settings

The Port Settings button is disabled when the demo cable is selected.

Debugger Configuration

All parts of the debugging system must be configured correctly to make a
successful connection between the debugger and the instrumented device or
devices through the cable. In addition to selecting the cable type and port
parameters described in Debugger Communications Settings, on page 112, the
following additional requirements must be met to ensure proper communica-
tions.

Client-Server Configuration

The client-server configuration is set from a dialog box available by selecting
Options->Configure client/server server in the debugger. The default settings are
usually correct for most configurations and require changing only when the
default server port address is already in use or when the debugger is being
run from a machine that is not the same machine connected to the FPGA
board/device (see Client-Server Configuration for Remote Debugging, on

page 120).

© 2015 Synopsys, Inc. Identify Debugger User Guide
118 March 2015

Basic Communication Connection Chapter 5: Connecting to the Target System

i 7% Configure client/server settings u

Cable type
’]ﬁilinxusb j ¥ Use client/server

— server address [127.0.0.1"
[127.001

— client/zerver port ['B7015"
57015

— chent/zerver logfile [ipc_top_usiling lag']

|i|:|c:_lcp_>:ilin:<. log

— Start/Stop

Start zerver |
Stop server |
Update log |

In the dialog box:
Cable type — the type of interface cable (see Cable Type, on page 112).

server address — the address of the server. The address localhost is used
when the debugger is run on the same machine connected to the FPGA
device. The server address is set to the IP address of the machine
connected to the FPGA device/board when the debugger is run from a
different machine.

client/server port — the port number of the server. For all Xilinx cable types,
the default port number is 57015. Change the server port setting when
there is a conflict with another tool on the machine.

client/server logfile — the name of the log file.

Start/Stop — server control buttons for starting and stopping the server.
The Update log button adds a start/stop entry to the log file.

Identify Debugger User Guide © 2015 Synopsys, Inc.
March 2015 119

Chapter 5: Connecting to the Target System Basic Communication Connection

Client-Server Configuration for Remote Debugging

The debugger uses a client-server architecture to communicate with FPGAs.
Client-server architecture lets you work remotely with the debugger using
Ethernet as the backbone for client-server communication. The debugger can
be configured in either the client or server mode.

In the client-server architecture, the machine connected to the target FPGA
board is termed the server and any machine on the same network that is
used to launch the debugger and connect to the server is termed the client.
You can use the Configure client/server settings dialog box described in the
previous section to set the IP address or the host name of the server so that
you can remotely debug the design. You can also specify the port for
client-server communication. Client-server communication uses the TCP/IP
communication protocol.

Client-Server Configuration
To establish a client-server connection:

1. Configure the target FPGA with the design to be debugged.

2. Start the server on the machine connected to the target FPGA board,
launch the debugger, and then configure the server-side debugger as
described below:

— Load the project file (design) to be debugged.

— In the debugger Ul, select Configure client/server from the Options
drop-down menu.

— Specify the server address, port number, and log file name in the
Configure client/server settings dialog box. The server address can be
either the name of the host machine or its IP address. If you do not
know the hostname or IP address, set it to localhost. Set the
client/server port according to the selected cable type. Configuring
the client-server parameters does not start the server.

— To start the server, select the Start server button in the dialog box.
Alternatively, you can run the com check command by selecting the
Comm check button in the debugger project view. If the server starts
successfully, you see the xilinxjtag process running in the task
manager. If the server cannot be started on the host machine, an
error message is displayed.

© 2015 Synopsys, Inc. Identify Debugger User Guide
120 March 2015

Basic Communication Connection Chapter 5: Connecting to the Target System

3. To debug the design from a remote machine (client), launch the
debugger on the client machine and load the project to be debugged.
Then configure the client-side debugger as described below:

— In the debugger Ul, select Configure client/server from the Options
drop-down menu.

— Specify the server address, port number, and log file name in the
Configure client/server settings dialog box. The server address can be
either the name of the host machine or its IP address. The port
number must be the same as the port number used to configure the
server.

The following is the syntax for the equivalent TCL command to configure the
server:

jtag_server set -addr {hostName/IP_address} -port {serverPort} -logf {logFfileName}

To view the existing server configuration settings, use the jtag_server get Tcl
command.

Check the client-server communication by running the com check command
by selecting the Comm check button in the debugger project view. If the
client-server communication cannot be established, an error message is
displayed in the debugger.

Once the client-server communication is running properly, you can debug
the design remotely.

Parallel/USB Port Drivers

The parallel port or USB driver must be installed and operating (see the
installation procedures in the release notes). Make sure the host machine on
which you are running the debugger has the parallel port or USB driver
installed. If you are using the Altera builtin JTAG, the bin directory for the
Quartus software must be included in the users “path” variable.

Identify Debugger User Guide © 2015 Synopsys, Inc.
March 2015 121

Chapter 5: Connecting to the Target System Basic Communication Connection

Communication Cable Connections

The communication cable must be connected correctly. There are two
connections:

Cable-to-host — make sure that the parallel port you connect the cable to
corresponds to the Ipt specified using the com port command.

The debugger uses the “standard” I/O port definitions: 1pt1:
0x378-0x37B, Ipt2: 0x278-0x27B, 1pt3: 0x3BC-0x3BF, and Ipt4:
0x288-0x28B if it cannot determine the proper definitions from the
operating system. If the hardware address for your parallel port does not
match the addresses for Iptl through 1pt4, you can use the setsys set
command variable Ipt_address to set the hardware port address (for
example, setsys set Ipt_address 0x0378 defines port Ipt1).

Cable-to-board — the cable must be connected correctly to the board that
contains the programmable device or devices to be debugged. The Altera
ByteBlaster cable connects with a 10-pin connector to a special
connector on the board. The Xilinx parallel cable (and similar cables)
have six flying leads. The leads connect to the four JTAG signals and
also to power and ground. Be sure to connect ALL six leads. When you
instrumented your design, you selected a JTAG connection to use:
builtin or Synopsys debug port (soft). If you selected the builtin option,
connect the cable to the same leads that you use for the JTAG based
programming of the chip. If you selected the Synopsys debug port (soft),
four JTAG signals were added to the top level of your design. You must
assign these signals to pins on the chip that are connected to accessible
probe points on your board. Once this is complete, connect the four
JTAG signals to the proper probe points, and make sure that you also
connect the power and ground leads.

Project File

Make sure that the project file you load into the debugger is the same one
used to create the instrumented version of your design. The debugger will
detect any difference between the project and hardware versions when it first
attempts to communicate with the device.

© 2015 Synopsys, Inc. Identify Debugger User Guide
122

March 2015

Basic Communication Connection Chapter 5: Connecting to the Target System

JTAG Chain Description

If you are using the builtin JTAG connection and the device to be debugged is
part of a multi-device scan chain, the debugger first attempts to detect the
devices in the scan chain. If auto-detection is unsuccessful, describe the
device chain to the debugger using the chain command.

Device Family

If you are using the instrumentor/debugger tool set in stand-alone mode,
make sure that the device family (generic, APEX, Virtex-4, ProASIC, ...) is
correct for the type of programmable chip being used. If this is incorrect, you
must go back and re-instrument your design using the proper device family.

Chip Programming

Make sure that you program the device with the instrumented version of your
design, NOT the original version.

Identify Debugger User Guide © 2015 Synopsys, Inc.
March 2015 123

Chapter 5: Connecting to the Target System

JTAG Communication

JTAG Communication

JTAG is a 4-wire communication protocol defined by the IEEE 1149.1
standard. The JTAG standard defines the names of the four connections as:
TCK, TMS, TDI, and TDO.

The JTAG-compliant devices can be connected to a host computer through a
JTAG cable. Such devices can be connected directly to the cable (see following
figure), or multiple devices can be connected in a serial chain as shown in the
figure on the following page.

JTAG
Cable

TCK
TMS
TDI
TDO

-
[
TAP -
Control

4>

i

Notice in the second figure that the TCK and TMS connections are connected
directly to both devices while the TDI and TDO connections route from one
device to the other and loop back to the JTAG cable.

© 2015 Synopsys, Inc.
124

Identify Debugger User Guide
March 2015

JTAG Communication Chapter 5: Connecting to the Target System

IIIVIIIIIIIIIIIIIIIIIII

e

JTAG | T™s TAP - = —5=| TAP =

Cable = TDI Control = > Control =

- - = | TDO = =

TDO | - [= = = =

S IR ARRRRRRRRRRRRRRRRRRRRRRRRRRRR AR AR R AR RRRRRRRRRRRRRRRRRRRRRRRRRRR AR
Identify Debugger User Guide © 2015 Synopsys, Inc.
March 2015 125

Chapter 5: Connecting to the Target System JTAG Hardware in Instrumented Designs

JTAG Hardware in Instrumented Designs

The debug environment uses a JTAG connection to communicate with the
instrumented design. To do this, the IICE must contain a TAP controller that
implements the JTAG standard. The IICE JTAG connection currently can be
implemented in one of two ways:

¢ The IICE can be configured (using the builtin option) to use the JTAG
controller that is built into the programmable chip. This approach has
the advantage that the built-in TAP controller already has hard-wired
connections and four dedicated pins. Accordingly, employing the debug
environment does not cost extra pins. In addition, the built-in TAP
controller does not require any user logic resources because it usually is
implemented in hard-wired logic on the chip. Unfortunately, not all
devices have a usable built-in TAP controller.

¢ The IICE can be configured (using the soft JTAG port option) to include a
complete, JTAG-compliant TAP controller. The TAP controller is
connected to external signals by using four standard I/O pins on the
programmable device. Any programmable device family can utilize this
type of cable connection since it only requires four standard I/O pins.

The following sections provide more detail on these two communication
options.

Using the Built-in JTAG Port

Some programmable device families employ a built-in TAP controller as a
means for device configuration. In most cases, the IICE also can be config-
ured to use this built-in TAP controller. Using this TAP controller saves the
user logic necessary to implement the controller and also saves four I/O pins.

Using the built-in port is slightly more complicated than using the debug port
because the built-in port usually has special board-level connections that
facilitate the programming of the chip. Consequently, these programming
connections must be understood to properly connect the JTAG cable to the
board and to properly communicate with the IICE.

© 2015 Synopsys, Inc. Identify Debugger User Guide
126 March 2015

JTAG Hardware in Instrumented Designs Chapter 5: Connecting to the Target System

Boards with Direct JTAG Connections

HAPS boards and other boards that connect the built-in JTAG port directly to
four header pins on the board allow the JTAG cable to simply be connected
directly to the header pins. This configuration works for both directly
connected devices and serially chained devices.

A common serial configuration is the combination of an EEPROM with a
programmable device. This configuration allows you to either directly
program the chip, or to program the EEPROM and then use the contents of
the EEPROM to program the device via some other connection (see following

figure).

:lllllIlIllllIlIlIIlIlIlIlIIlIlIlIll:

= EEPROM| =

TCK = > AP E

JTAG | 1ws = Control 2
Cable ™ E
TDO | e——— E E
:IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII:

:lIIIIIIIllIIIIIIIIIIIIIIIIIIIIIIIII:

3 FPGA E

= | TAP [=

E Control =

EIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIE

This configuration is well suited to the debugger and works just like any
other serially connected chain.

Similarly, when using the instrumentor/debugger tool set with a HAPS board
in a multi-FPGA environment, the design is distributed among the FPGAs
and the instrumented logic is included in one or more of the FPGAs. In this
configuration, the IICE unit or units in each FPGA are individually accessed
to provide the required debugging capabilities for their associated portion of
the design logic.

Identify Debugger User Guide © 2015 Synopsys, Inc.
March 2015 127

Chapter 5: Connecting to the Target System JTAG Hardware in Instrumented Designs

:lllllllllllllllll|l|l||l|l|l|l||l|l:

3 FPGA1 E

TCK = > AP S

JTAG ws = Control —
Cable ™ Ele
TDO = :

LR R R RN ARRRNRRRR R

:lll|llII|lIIIllIIIIIIIIIIIIIIIIIIII:

E FPGA2 =

ERN R I =

E Control |~ =

EIII|IIII|IIIIIIIIIlllllllllllllllllé

Using the Synopsys Debug Port

By configuring the IICE using the soft JTAG port option, the design instrumen-
tation includes a complete, JTAG-compliant TAP controller. The debugger
connects the TAP controller to four top-level I/O connections to the design.
The signal names for these connections are:

* identify_jtag_tck: the asynchronous clock signal
e identify_jtag_tms: the control signal

e identify_jtag_tdi: the serial data IN signal

e identify_jtag_tdo: the serial data OUT signal

Direct JTAG Connection

Commonly, the host computer is directly connected to the four JTAG signals
on the programmable chip as follows:

e The four JTAG I/O signals on the programmable chip are connected to a
header on the circuit board that contains the programmable chip.

¢ A standard JTAG cable is connected to the four pins on the circuit board
header.

¢ The other end of the JTAG cable is connected to the host computer.

© 2015 Synopsys, Inc. Identify Debugger User Guide
128 March 2015

JTAG Hardware in Instrumented Designs Chapter 5: Connecting to the Target System

Serial JTAG Connection

A programmable chip using the Synopsys FPGA Debug Port can also be
connected in a serial chain. To allow the debugger to communicate with the
device, the configuration of the device chain must be successfully
auto-detected or declared using the chain command (see the Reference
Manual). The steps for making a serial cable connection are the same as a
direct cable connection described above.

JTAG Clock Considerations

The JTAG clock signal syn_tck on the JTAG port drives many flip-flops in the
instrumentation logic — the number depends on the instrumentation, but can
be larger than 1000 flip-flops. Consequently, the clock signal on the program-
mable device must be able to drive large numbers of flip-flops and have
low-skew properties. If the JTAG clock signal is not handled correctly, it is
likely that the instrumentation will act erratically.

Most programmable devices have the ability to route such high-fanout
signals using dedicated clock drivers and global clock distribution networks.
Different devices use different methods of accomplishing this and have
different names for this resource. Here are some simple guides:

* Some programmable devices have a number of dedicated clock I/O pins
that drive internal clock distribution networks. In this case, be sure to
connect the syn_tck signal to the chip using one of these clock I/O pins.

* Other programmable devices have clock buffers and clock distribution
networks that can use any internal signal as a clock signal. For these
technologies, the synthesis tool usually detects high-fanout signals and
implements them with a clock buffer. In this case, it is important to
make sure that the synthesis tool has worked correctly. If it does not put
the syn_tck signal into a global bulffer, it may be necessary to manually
add a global buffer to this signal.

Identify Debugger User Guide © 2015 Synopsys, Inc.
March 2015 129

Chapter 5: Connecting to the Target System JTAG Hardware in Instrumented Designs

JTAG Registers

Xilinx-based designs allow JTAG boundary-scan registers to be user-defined
through the BSCAN_VIRTEX* library macro. After configuring the Xilinx
FPGA, these registers are accessible through the JTAG controller’s TAP pins.
The Virtex-4, Virtex-5, Virtex-6, and Virtex-7 devices include four
boundary-scan registers designated USER1, USER2, USER3, and USER4;
the other supported Xilinx devices include two registers designated USER1
and USER2.

The instrumentor requires two boundary-scan registers. For Virtex-4,
Virtex-5, Virtex-6, and Virtex-7 applications, you can specify which two regis-
ters are dedicated to avoid any contention among the available registers for
user applications (two BSCAN_VIRTEX* cells cannot share the same
address). By default, registers USER3 and USER4 are reserved for the instru-
mentor. To change the default register settings, use the xilinxjtagaddr1 and
xilinxjtagaddr2 options to the device command (see device, on page 33 of the
Debug Environment Reference Manual).

Boards Without Direct Built-in JTAG Connections

Some boards are designed so that the built-in JTAG port cannot be reached
from pins on the board. For example, a board may connect an EEPROM
directly to the built-in JTAG port on the programmable device. The EEPROM
is directly programmable from the JTAG connection (see following figure).

© 2015 Synopsys, Inc. Identify Debugger User Guide
130 March 2015

JTAG Hardware in Instrumented Designs Chapter 5: Connecting to the Target System

:Ill|ll|ll|ll|ll|ll|ll||l||l||l||l||:
= EEPROM =
TCK ER =
JTAG T™S > CZﬁtFr’ol =
Cable TDI > E
TDO | < 3 E
E||||||||||||||||||||||| ||||||||E

:lllll|I|I|Illlllllllllllllllllllll]:

: FPGA =

In this case, the only connection that allows the debugger to communicate
with the programmable device is a soft JTAG Port. This configuration requires
a second JTAG cable to directly connect to the four I/O pins on the program-
mable device as shown in the figure below.

SYN Debug Port

EEPROM

TTEEEETET e e e e e e e et

= FPGA °

e =

TCK S C> S

JTAG ™S f%_> SYNTAP| =
Cable TDI == » Control =
TDO = = P =

== A A =

:IIIIIIIIIII [NRR LRRNN RRAR IIIIIIIII:

Con'EgEuPraRtfglr\]/lPOrt :IIIIIIIIII LELILLLLELLL] IIIIIlllIl:

= Yy -

TCK = =

JTAG ™S = 5| TAP =
Cable TDI =~ » Control E
TDO | = z ;

Identify Debugger User Guide © 2015 Synopsys, Inc.
March 2015 131

Chapter 5: Connecting to the Target System Setting the JTAG Chain

Setting the JTAG Chain

JTAG connections on an FPGA board usually chain devices together to form a
serial chain of devices. This chain includes PROMs and other FPGA devices
present on the board.

The debugger automatically detects the JTAG chain at the beginning of the
debug session. You can review the JTAG chain settings by clicking the Show
JTAG chain button in the Communications settings section of the project window:.

Debug: Device ID: IR Length: =
1. [1 prom 8
2. [=] frga 10

o

Auto-detect

To enable the debugger to properly communicate with the target device, the
device chain must be configured correctly. If, for some reason, the JTAG
chain cannot be successfully configured, you must manually specify the
chain through a series of chain instructions entered in the console window.

Configuring a device chain is very similar to the steps required to program the
device with a JTAG programmer.

For the debugger, the devices in the chain must be known and specified. The
following information is required to configure the device chain:

¢ the number of devices in the JTAG chain

* the length of the JTAG instruction register for each device

Instruction register length information is usually available in the bsd file for
the particular device. Specifically, it is the Instruction_length attribute listed in
the bsd file.

© 2015 Synopsys, Inc. Identify Debugger User Guide
132 March 2015

Setting the JTAG Chain Chapter 5: Connecting to the Target System

For the board used in developing this documentation, the following sequence
of commands was used to specify a chain consisting of a PROM followed by
the FPGA. The instruction length of the PROM is 8 while the instruction
length of the FPGA is 5. Note that the chain select command identifies the
instrumented device to the system. Identifying the instrumented device is
essential when a board includes multiple FPGAs.

Note: The names PROM and FPGA have no meaning to the debugger —
they simply are used for convenience. The two devices could be
named devicel and device2, and the debugger would function
exactly the same.

Again, the sequence of chain commands is specific to the JTAG chain on your
board; these commands are the chain commands for the board used to
develop this document — the board you use will most likely be different.

Type the following sequence in the console window of the debugger:

chain clear
chain add prom 8
chain add fpga 5
chain select fpga
chain info

The following figure shows the results of the above command sequence.

[»DESIGHS-IDENTIFY: chain clear

D »DESIGHS-IDENTIFYS chain add prom 8

IHFQ: Added dewice 'prom’ to jtag scan chain.
D sDESIGHS-IDENTIFYS chain add fpga &

IHFQ: Added device 'fpga’ to jtag scan chain.
D sDESIGHS-IDENTIFYS chain select fpga

INFO: How debugging 'fpga'.

[#DESIGHS-IDENTIFYS chain info

Debug: Dewvice ID: IF Length:
1. [1] prom g
2 [=] fpga 5

D:~-DESIGHS-IDENTIFYS

Identify Debugger User Guide © 2015 Synopsys, Inc.
March 2015 133

Chapter 5: Connecting to the Target System JTAG Communication Debugging

JTAG Communication Debugging

The debugger performs a number of diagnostic communication tests. The
first time the debugger connects to the on-chip TAP controller, it performs
extensive communication tests. Later, every time the “run” function is
executed, either by clicking the Run button or executing the run command,
simpler and faster tests are executed.

Below is a list of communication related error messages with some additional
explanations.

Basic Communication Test

This test sends a pattern of ones and zeros to the chip and examines the
return values

ERROR: Communication is stuck at zero. Please check the cable connection.

It is likely that the debugger is unable to communicate with the instru-
mented chip. This error is usually a cable connection problem, or the
cable type is not set correctly.

ERROR: Communication is stuck at one. Please check the cable connection.
This has the same reasons as a stuck-at-zero communication error.

ERROR: Communication is returning incorrect IR data. Please check the cable
connection.

If this error is received, then the previous two errors were NOT received
as the communication is returning a mixture of ones and zeroes.
However, the data is not coherent and again the communication connec-
tion is suspect.

ERROR: Communication problem - data sent is not the same as data received.

This test verifies that the debugger can shift data into the instrumented
chip and receive the same data back. If this error occurs, there is again a
problem with your cable connection or the cable type setting is incorrect.
Also, the JTAG chain may be experiencing noise immunity/signal integ-
rity problems. As a troubleshooting step, select a reduced JTAG clock
frequency by clicking Port settings in the debugger project window and
selecting a lower clock frequency.

© 2015 Synopsys, Inc. Identify Debugger User Guide
134

March 2015

JTAG Communication Debugging Chapter 5: Connecting to the Target System

The last two errors can also be the result of a syn_tck signal that is not using a
high-fanout clock buffer resource, and thus may show large clock skew
properties. If you are using a parallel port, make sure that you have selected
the correct port.

On-chip Identification Register

The instrumentor adds hardware to implement an on-chip identification
register.

¢ ERROR: Cannot find valid instrumented design.
The debugger cannot verify that the identification register on the instru-
mented design is correct or even exists. This error usually means that
the design on the programmable chip is NOT the instrumented version
of the design.

* ERROR: Instrumented design on FPGA differs from design loaded into Identify
Debugger.
The debugger verified that the chip is instrumented but the instrumen-
tation does not match the project that was loaded into the debugger.

JTAG Chain Tests

The debugger attempts to verify the device chain (as defined by the chain
auto-detector or the chain command).

* ERROR: No hardware devices were found. Please check the cable connection.
No devices can be seen in the JTAG identification register chain.
Probably a bad cable connection, or the cable type is incorrect.

* ERROR: The actual number of devices differs from the defined number: ACTUAL: XX
DEFINED: YY
The number of devices seen in the JTAG chain is XX, but the debugger
was expecting the number to be YY (as was defined using the chain
command). The chain description is incorrect.

* ERROR: The actual IR chain size differs from the defined size: ACTUAL: XX
DEFINED: YY
The total number of JTAG identification register bits is incorrect. The
debugger measured the hardware to have XX bits, but was expecting YY
bits (as was defined using the chain command). Please review your chain
configuration.

Identify Debugger User Guide © 2015 Synopsys, Inc.
March 2015 135

Chapter 5: Connecting to the Target System UMRBus Communications Interface

¢ ERROR: Communication with device number XX is not correct. Please check your
chain setup.
If this error appears, the previous error does not appear. Thus, the total
JTAG instruction register length is correct, but the size of the instruc-
tion register of device number XX is incorrect. It is likely that the order
of your devices is incorrect. Review your chain settings.

UMRBuUs Communications Interface

The UMRBus is available as a communication interface between the HAPS
hardware and the host machine running the debugger. With the UMRBus, all
communications are performed over the UMRBus communication system,
and the JTAG port is no longer used. During instrumentation, the top level of
the user design is automatically extended with the additional top-level ports
for the UMRBuUs.

The UMRBus requires a HAPS UMRBus Interface Kit to replace the Xilinx USB
cable. The UMRBus communications over the USB port supports both the
internal_memory and haps_DTD buffer types; the UMRBus is intended only for
use by the debugger. To enable the use of the UMRBus in the debugger:

¢ In the instrumentor, select umrbus from the Port drop-down menu in the
Communication interface section of on the Instrumentor Preferences dialog box
or set the device jtagport option to umrbus in the console window.

¢ In the debugger, set the com cabletype option to umrbus in the console
window.

© 2015 Synopsys, Inc. Identify Debugger User Guide
136 March 2015

Index

A

activations
auto-saving 36
loading 36
saving 35

asynchronous clocks 97

B

blocks
JTAG communication 81
sampling 84
board bring
HAPS 63
board configuration tests 66
board query 60
boundary-scan registers 130
breakpoints
activating 22
combined with watchpoints 84

folded 25
multiple 83

buckets
sample and trigger 78

Byteblaster cable settings 114

C

cable compatibility 113
cable type 112

cable type settings
Byteblaster 114
JTAGTech3710 117
Microsemi 117
Xilinx parallel 115
Xilinx USB 115
Xilinxauto 116

cables
connection 122

Identify Debugger User Guide
March 2015

client-server configuration 118

clocks
asynchronous 97

communication cable
settings 10

communications settings 112

complex counter 85
cycles mode 87
disabling 87
events mode 86
modes 85
pulsewidth mode 87
size 85
watchdog mode 87

con_speed test 67

condition operators 93
Configure IICE dialog box 54
ConfPro 64

ConfPro installation 65
connGen.tcl script 68

console window 16
operations 17

convenience functions 96

cross triggering 36,45, 97
commands 97
enabling 97
state machine commands 98

cycles mode
complex counter 87

D

data compression 28
masking 29

DDR3 performance 40

debug sample data
viewing 41
Debugger tool

© 2015 Synopsys, Inc.
137

Index

invoking 12
debugger tool
opening projects 12

debugging

on separate machines 44
deep trace debug configurations 40

dialog boxes
Configure IICE 54

E

environment variables
PAR BELDLYRPT 77

events mode
complex counter 86

F

fast signal database 53

files
last_run.adb 36
ncd 77
script 19
syn_trigger_ utils.tcl 96

folded breakpoints 25
folded signals 32
folded watchpoints 24

H

HAPS
board bring-up 63

identification register 135

IICE
cross triggering 97
JTAG connection 126

IICE parameters
individual 54

IICE units
cross triggering 36

incremental flow 75
restrictions 76

© 2015 Synopsys, Inc.
138

J

JTAG
chain tests 135
communication 124
communication block 81
communication test 134
connections 130
debugging 134
direct connection 128
serial connection 129

JTAG chain
settings 11

JTAG registers 130

JTAGTech3710 cable settings 117

L

last_run.adb file 36

macros
st_snapshot_fill 107
st_snapshot_intr 107

Microsemil
cable type settings 117

modes
cross triggering 37

multi-IICE
tabs 54

multiple signal values 33

multiplexed groups
selecting 23

N

ncd file 77

(0

operators
condition 93

original source files
searchpath 44

original sources 44

Identify Debugger User Guide

March 2015

Index

P

PAR_BELDLYRPT variable 77

projects
opening in debugger 12
saving 12

pulsewidth mode
complex counter 87

Q

qualified sampling 106

R

radix
sampled data 31

RAM resources 85

registers
boundary scan 130

remote triggering 108
run command 26

S

sample and trigger buckets 78

sample buffer 31
trigger position 29

sample data
viewing 41
sample modes 106

sampled data
changing radix 31
compressing 28
display controls 31
masking 29
sampling block 84
sampling signals 15
saving a project 12
script files 19
settings
cable 10
JTAG chain 11
signal values
displaying multiple 33

Identify Debugger User Guide
March 2015

signals
folded 32
listing available 15
listing instrumented 15
multiply instrumented 33
partially instrumented 34
replacing 75
sampling selection 15
status 92

source files

copying 44
st_snapshot_fill macro 107
st_snapshot_intr macro 107

state machines
transitions 93
triggering 89, 91

statemachine command 92
state-machine editor 99
status reporting 92

stop command 28, 92
syn_trigger utils.tcl file 96

T

TAP controller 126

Tcl scripts
connGen.tcl 68

tools
invoking Debugger 12

transition watchpoint 20
trigger conditions 88
triggering

advance mode 89

between IICEs 97

modes 88

remote 108

state machine 89, 91
triggers

complex 85

U

UMRBus 136
UMRBus test 67

© 2015 Synopsys, Inc.
139

Index

Vv

value watchpoint 20

variables
PAR _BELDLYRPT 77

Verdi nWave viewer 53

w

watch command 92

watchdog mode
complex counter 87

watchpoints 83
activating 19, 22
combined with breakpoints 84
deactivating 21
folded 24
hexadecimal values 21
listing 38
multiple 84
transition 20
value 20

waveform display 51

waveform viewers 51
Verdi 53

windows
console 16

X

Xilinx parallel cable settings 115
Xilinx USB cable settings 115
Xilinxauto cable settings 116

© 2015 Synopsys, Inc. Identify Debugger User Guide
140 March 2015

	User Guide
	Copyright Notice and Proprietary Information
	Right to Copy Documentation
	Destination Control Statement
	Disclaimer
	Registered Trademarks (®)
	Trademarks (™)
	Service Marks (sm)

	Using the Debugger
	Configuring and Invoking the Debugger
	Reviewing the Instrumentation Settings
	Changing the Communication Settings
	Reviewing the JTAG Chain Settings
	Saving the Debugged Design
	Invoking the Debugger

	Debugger Windows
	IICE Instrumentation Window
	Console Window
	Project Window

	Commands and Procedures
	Opening and Saving Projects
	Executing a Script File
	Activating/Deactivating an Instrumentation
	Selecting Multiplexed Instrumentation Sets
	Activating/Deactivating Folded Instrumentation
	Run Command
	Sampled Data Compression
	Sample Buffer Trigger Position
	Sampled Data Display Controls
	Saving and Loading Activations
	Cross Triggering
	Listing Watchpoints and Signals

	HAPS Deep Trace Debug
	Running Deep Trace Debug with DDR3 Memory
	Viewing Captured Deep Trace Debug Samples
	Hardware Configuration Verification

	Debugging on a Different Machine
	Simultaneous Debugging
	Debugger-Analyst Integration
	Waveform Display
	Generating the Fast Signal Database

	Logic Analyzer Interface Parameters
	Logic Analyzer Scan Tab
	Logic Analyzer Properties Tab
	Logic Analyzer Submit Tab
	IICE Assignments Report Tab

	Board Bring-up
	Board Query
	Board Bring-up
	Setting Initial Values
	ConfPro GUI
	Board Configuration Tests
	Utility Commands

	Incremental Flow
	Requirements
	Setting up the Original Design
	Creating the Incremental Instrumentation
	Redefining the Instrumented Signals
	Generating the Bit File
	Incremental Implementation Support with Distributed Instrumentation
	Debugging the Incremental Version
	Incremental Flow Limitations

	IICE Hardware Description
	JTAG Communication Block
	Breakpoint and Watchpoint Blocks
	Breakpoints
	Watchpoints
	Multiple Activated Breakpoints and Watchpoints

	Sampling Block
	Complex Counter
	Creating a Complex Counter
	Debugging with the Complex Counter
	Disabling the Counter

	State Machine Triggering
	Simple or Advanced Triggering
	Advanced Triggering Mode
	State-Machine Editor
	State-Machine Examples

	Connecting to the Target System
	Basic Communication Connection
	Debugger Communications Settings
	Debugger Configuration

	JTAG Communication
	JTAG Hardware in Instrumented Designs
	Using the Built-in JTAG Port
	Using the Synopsys Debug Port
	Boards Without Direct Built-in JTAG Connections

	Setting the JTAG Chain
	JTAG Communication Debugging
	Basic Communication Test
	On-chip Identification Register
	JTAG Chain Tests

	UMRBus Communications Interface

	Index
	A
	B
	C
	D
	E
	F
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

