

Limiting Surge Current During SmartFusion2/IGLOO2 Device Reset Operation

Table of Contents

Purpose
Introduction
References
Design Requirements
Limiting Surge Current using Flash*Freeze Feature
SmartFusion2 Devices
IGLOO2 Devices
Design Implementation
SmartFusion2 Hardware Implementation
SmartFusion2 Software Implementation9
Validation Results
Board-Level Changes Required
Conclusion
Appendix: Design Files
Appendix: Observed Surge Currents in Evaluation and Development Kits
List of Changes

Purpose

After device power-up, if the application asserts the DEVRST_N pin and there are no decoupling capacitors on the board, additional surge current on VDD may be observed during assertion of DEVRST_N or during a digest check operation. This application note describes how to minimize additional surge current during SmartFusion2/IGLOO2 device reset operation. Note that this additional surge current does not occur during device power-up and is applicable only when DEVRST_N is asserted.

Introduction

SmartFusion2/IGLOO2 device reset can be activated either directly through an external DEVRST_N pin, or indirectly through the Tamper macro IP. When the device reset is asserted, the system controller immediately puts the field programmable gate array (FPGA) core in inactive state. During this operation, depending on the board design layout and decoupling capacitors used, there may be additional surge current on the VDD power rail. The additional surge current has no effect on device reliability.

This surge current is for a very short duration and is normally handled by bulk decoupling capacitors on the power plane in a typical system. For guidelines on proper board design using SmartFusion2/IGLOO2 devices, see AC393: Board Design Guidelines for SmartFusion2 SoC and IGLOO2 FPGAs Application Note.

In cases where Microsemi-recommended board design guidelines cannot be implemented for decoupling capacitors for VDD (due to limited board spacing or other reasons), there is a possibility of higher than expected surge current during device reset. This application note provides a method to limit surge current using the Flash*Freeze feature of SmartFusion2/IGLOO2 devices.

Table 1 provides the characterized surge current data for VDD during DEVRST_N assertion. This data represents the worst case condition with no decoupling capacitors on the board.

	Width of Surge at Surge Current on VDD						
Device	50% of Pulse (uS)	0°C to 85°C	-40°C to 100°C	-55°C to 125°C	Units		
M2S005/M2GL005	2	0.5	0.6	0.6	А		
M2S010/M2GL010	3	0.9	0.9	0.9	А		
M2S025/M2GL025	6	1.7	1.7	1.7	А		
M2S050/M2GL050	12	3.2	3.2	3.2	А		
M2S060/M2GL060	12	3.2	3.2	3.2	А		
M2S090/M2GL090	22	4.4	4.6	4.6	А		
M2S150/M2GL150	42	7.0	7.3	7.3	А		

Table 1 • Surge Current on VDD during DEVRST_N Assertion (No decoupling capacitors on board)

However, Table 1 surge current data does not represent a typical system. To illustrate this, surge current during device reset was measured at room temperature separately for the M2S090 security evaluation kit and the M2S150 advanced development kit. These kits have decoupling capacitors as per

Microsemi-recommended board design guidelines. Table 2 shows the observed surge currents on the M2S090 security evaluation kit and the M2S150 advanced development kit. These surge current values are within acceptable limits.

Table 2 • M2S090 and M2S150 Surge Current During DEVRST_N Assertion (With recommended decoupling capacitors on board)

Kits	Width of Surge at 50% of Pulse	Surge Current
M2S090 Security Evaluation Kit	5 us	150 mA
M2S150 Advanced Development Kit	40 us	1.5 A

Note: "Appendix: Observed Surge Currents in Evaluation and Development Kits" on page 12 shows the screen shots of the observed surge current.

The digest check system service performs on-chip non-volatile memory (NVM) data integrity check on SmartFusion2 devices. The digest check using system services may also cause additional surge current on VDD. For more information on Digest Check Service, refer to UG0450: SmartFusion2 SoC and IGLOO2 FPGA System Controller User Guide.

Table 3 lists surge current data for VDD during digest check using system services. To limit the surge current during digest check, follow the Microsemi-recommended board design guidelines.

Table 3 • Surge Current on VDD during Digest Check using System Services (No decoupling capacitors on board)

	Width of Surge at Surge Current on VDD						
Device	50% of Pulse (uS)	0°C to 85°C	-40°C to 100°C	-55°C to 125°C	Units		
M2S005/M2GL005	12	0.2	0.2	0.2	А		
M2S010/M2GL010	12	0.5	0.5	0.5	А		
M2S025/M2GL025	13	0.6	0.6	0.6	А		
M2S050/M2GL050	13	0.9	0.9	0.9	А		
M2S060/M2GL060	13	0.9	0.9	0.9	А		
M2S090/M2GL090	20	1.0	1.0	1.0	А		
M2S150/M2GL150	26	1.0	1.0	1.0	А		

References

Following are the references:

- UG0444: SmartFusion2 and IGLOO2 Low Power Design User Guide
- AC393: Board Design Guidelines for SmartFusion2 SoC and IGLOO2 FPGAs Application Note
- UG0331: SmartFusion2 Microcontroller Subsystem User Guide
- UG0450: SmartFusion2 SoC and IGLOO2 FPGA System Controller User Guide

Design Requirements

Table 4 lists the design requirements.

Table 4 •	Design	Requirements
-----------	--------	--------------

Design Requirements	Description								
Hardware Requirements									
SmartFusion2 Security Evaluation Kit:	Rev D or later								
12 V adapter									
FlashPro4 programmer									
USB A to Mini-B cable									
Host PC or Laptop	Any 64-bit Windows Operating System								
Software Requirements	•								
Libero [®] System-on-Chip (SoC)	v11.7								
SoftConsole	v3.4SP1								
Host PC Drivers	USB Drivers								

Limiting Surge Current using Flash*Freeze Feature

If the board is severely space constrained with virtually no decoupling capacitors, placing the device in Flash*Freeze mode before asserting DEVRST_N prevents surge currents from occurring.

SmartFusion2/IGLOO2 FPGAs offer the Flash*Freeze technology for implementing low-power solutions. The Flash*Freeze mode is an ultra-low power static mode. The Flash*Freeze technology enables easy entry and exit from ultra-low power static mode while retaining SRAM content, I/O state, and register data, thereby dramatically reducing power.

Initiating the Flash*Freeze ultra-low power mode feature and then issuing an active low pulse to DEVRST_N pin to reset the device prevents high surge currents. To disable the function of FPGA core logic, a standard practice followed in Microsemi flash-based FPGAs is to switch the ground supply of the FPGA to VDD rather than switching VDD to ground. Setting the power switches this way offers technological advantages in terms of programming. This method also eliminates the need to have power switches on both the power and ground connections.

As a result, the peak current can be high for a short duration during the device reset. Using the Flash*Freeze feature, the FPGA core logic is disabled in a controlled manner, thereby avoiding any surge current increase.

SmartFusion2 Devices

To limit surge current during device reset in SmartFusion2 devices, the active low pulse to DEVRST_N pin can be generated using the Cortex[®]-M3 processor after initiating the Flash*Freeze feature, as shown in Figure 1.

In the sample design provided in this application note, a microcontroller subsystem (MSS) general purpose I/O (GPIO) is routed to DEVRST_N pin. The Cortex-M3 processor drives the GPIO to activate and assert a device reset, as shown in Figure 1.

Figure 1 • Top-Level Block Diagram to Reset a SmartFusion2 Device

IGLOO2 Devices

To limit surge current during device reset in IGLOO2 devices, the active low pulse to DEVRST_N can be generated using an external microcontroller after initiating the Flash*Freeze feature, as shown in Figure 2.

To reset IGLOO2 devices:

- 1. Initiate the Flash*Freeze feature by sending the Flash*Freeze command to the CoreSystemServices IP using an external microcontroller.
- 2. Monitor the Flash*Freeze start signal for 1, using the external microcontroller (expose the IGLOO2 FLASH_FREEZE macro signal, Flash*Freeze start, to an I/O, and configure that I/O to store the last value during Flash*Freeze using the I/O editor).
- 3. Drive active low pulse to DEVRST_N from the external microcontroller.

Figure 2 • Top-Level Block Diagram to Reset SmartFusion2/IGLOO2 Devices

Note:

- 1. Another option for IGLOO2 is to migrate to the corresponding SmartFusion2 device. SmartFusion2 and IGLOO2 devices are pin compatible with each other. No board changes are required to swap between the devices.
- 2. This implementation can also be followed for SmartFusion2 devices.

Design Implementation

SmartFusion2 Hardware Implementation

The hardware implementation involves configuring the MSS, fabric, clocks, and oscillator using System Builder.

1. In the System Builder - Peripherals window, select MM_UART_1 and MSS_GPIO check boxes.

	Select the peripherals an	d masters for eac	h sub	system		
Direct Connecti	on Mode (FIC interfaces are exported out of System Builder) Fabric Slave Cores			Sub	systems	
Core	Version			MSS FIC_0 - MS	SS Master Subsystem	^
1 CoreAHBLSRAM	2.0.113			drag and drop here	e to add to subsystem	
2 CoreI2C	7.0.102			MSS FIC 0 - Fab	nic Master Subsystem	
3 CoreSPI	3.0.156			drag and drop here	e to add to subsystem	
4 CoreGPIO	3.0.120			MCC	, Di-ll-	
5 CoreTimer	1.1.101	Garfa	. Cashi	M55 /	Peripherais	_
6 CoreUARTapb	5.2.2	Conrigui			IName	
7 CorePWM	4.1.106	at a		MMU_UART_U		
8 Fabric AMBA Sla	ve 0.0.102			MIN_UART_1		
				MSS_I2C_0		
	Fabric Master Cores			MSS_IZC_I		
Core	Version			MSS_SPI 1		
1 Fabric AMBA Ma	ster 0.0.102	ø		MSS GPIO		
				MSS USB		
				MSS_MAC		
				MSS_CAN		
		<u> </u>				

Figure 3 • Peripherals Selection Using System Builder

 Select GPIO_0 as an Output under GPIO Assignment. The GPIO must be configured as input or output package pin I/Os and not routed to fabric. Ensure that the reset state of these I/Os are high.

Figure 4 • MSS GPIO Configuration

3. Select the On-chip 25/50 MHz RC Oscillator from the list under System Clock in the System Builder - Clocks window.

Figure 5 • Clock Configuration

For more information about how to generate a complete system builder component for SmartFusion2 devices, see the *SmartFusion2 System Builder User Guide*. Figure 6 shows the top-level SmartDesign of the application.

Figure 6 • Top-Level SmartDesign

 Under Compile > Configure Flash*Freeze option of Libero, set the MSS Clock Source in the Flash*Freeze Hardware Settings to On-Chip 50 MHz RC Oscillator. This is the MSS clock base when the part goes into Flash*Freeze mode.

~	Synthesize	
	🔷 🌔 Verify Post-Synt	thesis Implementation
	Simulate	
✓	🗟 Compile	E
	 Configure Flash* 	Freeze
	Place and Route	
ſ	Flash Freeze Hardware	Settings 8 X
	uRAM/LSRAM State	Suspend 🔻
	MSS Clock Source	On-chip 50 MHz RC Oscillator 🔻
	Help	OK Cancel

Figure 7 • Flash*Freeze Hardware Settings

5. In the **I/O Editor**, make the GPIO_0 signals and MMUART_1 signals available in Flash*Freeze mode, as shown in Figure 8. Also, set the **Resistor Pull** to **Up** for GPIO_0_OUT.

File	Edit View Tools	<u>H</u> elp								
		ofe 👫 👫	1 1 1							
	Ports Package Pin	IS Packade	e Viewer							
_								0		
	Port Name 1	Direction 💌	I/O Standard 💌	Pin Number 💌	Locked 💌	Macro Cell 💌	Bank Name 🔻	ate in Flash*Free 💌	Resistor Pull 💌	I/O available in Flash*Freeze mode
1	Port Name GPIO_0_OUT	Direction 💌 Output	I/O Standard 💌 LVCMOS25	Pin Number 💌 P22	Locked 💌	Macro Cell 💌 ADLIB:OUTBUF	Bank Name 💌 Bank3	ste in Flash*Free▼ TRISTATE	Resistor Pull 💌 Up	I/O available in Flash*Freeze mode Yes
1 2	Port Name 1 GPIO_0_OUT MMUART_1_RXD	Direction Cutput Input	I/O Standard LVCMOS25 LVCMOS25	Pin Number 💌 P22 G18	Locked 💌	Macro Cell ADLIB:OUTBUF ADLIB:INBUF	Bank Name 💌 Bank3 Bank2	ste in Flash*Free TRISTATE TRISTATE	Resistor Pull 🔽 Up None	I/O available in Flash*Freeze mode Yes Yes

Figure 8 • I/O Editor

6. Ensure that the latest firmware cores are exported from Libero. In the sample design, the following versions of the firmware are used:

	Generate			Instance Name	Core Type	Version
1		Ť	•	SmartFusion2_CMSIS_0	SmartFusion2_CMSIS	2.3.105 🚽
2				SmartFusion2_MSS_GPIO_Driver_0	SmartFusion2_MSS_GPIO_Driver	2.1.102 🗸
3			-	SmartFusion2_MSS_HPDMA_Driver_0	SmartFusion2_MSS_HPDMA_Driver	2.2.100
4			-	SmartFusion2_MSS_MMUART_Driver_0	SmartFusion2_MSS_MMUART_Driver	2.1.100
5				SmartFusion2_MSS_NVM_Driver_0	SmartFusion2_MSS_NVM_Driver	2.4.100
6				SmartFusion2_MSS_System_Services_Driver_0	SmartFusion2_MSS_System_Services_Driver	2.7.100
7				SmartFusion2_MSS_Timer_Driver_0	SmartFusion2_MSS_Timer_Driver	2.2.100

Figure 9 • Firmware Versions

SmartFusion2 Software Implementation

The software sequentially performs the following operations:

- 1. Initializes UART and GPIO
- 2. Waits for the command from UART
- 3. Requests the system controller to put the device in Flash*Freeze mode. The fabric is set in Flash*Freeze power down mode using the command:

MSS_SYS_flash_freeze(MSS_SYS_FPGA_POWER_DOWN);

4. Drives GPIO_0 to 0 to reset the device

Validation Results

The device reset is controlled through MSS_UART in the sample design. The command sent through MSS_UART is detected by the Cortex-M3 processor, which then drives the GPIO to 0. Driving the GPIO to 0 causes the device to be reset because on board this GPIO is connected to DEVRESET_N pin of SmartFusion2 SoC FPGA.

Figure 10 shows the results of the device reset in the sample design and no surge current is observed during the SmartFusion2 device reset.

Figure 10 • IDD Current During SmartFusion2 Device Reset – When Device in Flash*Freeze

Board-Level Changes Required

To run the sample design on the SmartFusion2 090 evaluation kit, the following board changes are required:

- 1. Remove the R15 resistor to disconnect the voltage sensing circuit from DEVRESET_N.
- 2. Connect RVI header J4-15 pin (DEVRESET_N pin) to the I²C header H1-3 pin (MSS GPIO_0 pin). The MSS GPIO_0 pin is connected to DEVRESET_N, as shown in Figure 11.

The above procedure can be followed if the users require to implement it on their boards.

Figure 11 • Board Level Changes

Conclusion

This application note describes methods to limit surge current during SmartFusion2/IGLOO2 device reset. Implementation and validation results are provided for issuing a device reset after setting the fabric in Flash*Freeze mode.

Appendix: Design Files

Download the following design files from Microsemi website:

http://soc.microsemi.com/download/rsc/?f=m2s_m2gl_ac452_liberov11p7_df

The design file consists of Libero SoC Verilog project, SoftConsole software project, and programming files (*.stp) for the SmartFusion2 security evaluation kit board. Refer to the Readme.txt file included in the design file for the directory structure and description.

Appendix: Observed Surge Currents in Evaluation and Development Kits

Figure 12 shows IDD surge current, VDD, and VPP variations on SmartFusion2 security evaluation kit during device reset operation.

Edit Vertica	al Digital H	loriz/Acq Tri	g Display	Cursor	rs Measure	Mask	Math M	MyScope	Analyze	Utilitie	s Help					Tek		
	1 1 1 1		i l i	أحلحيا	ي و ک						i - i -		اصلاحها		الصراحي			
96 - 61 - 86 - 663 -	0	K S K		0					<u> </u>				C 0. 34					
					Autora Vicen	-	kustul merilini		a solution of the solution of		1qV) trouvelle	easues was	and the set	-	and the second second	of the local data in the locae	and the second
the effect of the left in	Contraction of the local distribution		Constant of the second second	and the state of the	The state of the second		The second second	dens katheodada	and the design of the		the other states in party	A STATEMENT	alara per di	(Phonesola)	al assessments	in the second		
							Idd ±											
							+											
			Vdd				- hand be dealer	- to an an also as										
	State of the second		vuu		-		Ŧ								A			
							_, I					i i i i i i i i i i i i i i i i i i i						
												-						
							. <u>I</u>						-	Andreas and				
																	-	
							· · · +											
							· · · + ·											
							- -											
<u>j i j i</u>	$\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$		<u>i j i</u>	1 ()		1 1 1		1 1 1		1	1	<u> </u>					<u>i i</u>	
C1 300mV	Offset:-1.0	/ 50Ω 🖣	v:4.0G	V1 1	.58V	1	-23.2µs		A'	$1 \setminus 1$	1.09V] 2	0.0µs/c	liv 625	MS/s	1.6ns	/pt
200mV	div	1MO ^B W:500	M	V2 1	.422V	t2	-16.0µs						R	un	5	Sample		
63 400mV	div	1MO BW:500	M		157.5mV	Δt	7.2µs						1	acqs			RL:125	k
			(ΔV/Δt	21.875kV/s	<u>1/Δt</u>	138.889	kHz					A	uto F	ebruar	y 09, 20	16 17	24
	Value	Mean	м	in	Max	St Dev	Cour	nt Info	ſ									
C1 Mean	866.4mV	866.36118	3m 866.4	m 86	6.4m 0.	0	1.0											
C2 Mean	1.167V	1.1670591	1.167	1.	167 0.	0	1.0											
C3 Mean	3.212V	3.2115864	3.212	3.	212 0.	0	1.0											
	-30.3mV	-30.29992	2m -30.3r	n -3	0.3m 0.	0	1.0											
C4 Mean																		
C4 Mean*																		
Mean																		
Cursor Co	ontrols	S	ource			1200		C	Cursor Ty	/pe			N	love Ci	ursors			
Cursor Co	ontrols Cu	S rsor 1	ource	Cursor	2	HB	ars	C V Bars	Cursor Ty Wav	/pe eform	Sci	een	N	love Ci to Ce	ursors nter		Setup	

Figure 12 • IDD Surge Current Observed on M2S090 Security Evaluation Kit

Figure 13 shows IDD surge current, VDD, and VPP variations on SmartFusion2 advanced development kit during device reset operation.

Figure 13 • IDD Surge Current Observed on M2S150 Advanced Development Kit

List of Changes

The following table shows important changes made in this document for each revision.

Revision	Changes	Pages
Revision 1 (March 2016)	Initial release.	NA

Microsemi Corporate Headquarters One Enterprise, Aliso Viejo, CA 92656 USA

Within the USA: +1 (800) 713-4113 Outside the USA: +1 (949) 380-6100 Sales: +1 (949) 380-6136 Fax: +1 (949) 215-4996

E-mail: sales.support@microsemi.com

© 2016 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.

Microsemi Corporation (Nasdaq: MSCC) offers a comprehensive portfolio of semiconductor and system solutions for communications, defense & security, aerospace and industrial markets. Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world's standard for time; voice processing devices; RF solutions; discrete components; Enterprise Storage and Communication solutions, security technologies and scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs and midspans; as well as custom design capabilities and services. Microsemi is headquartered in Aliso Viejo, Calif., and has approximately 4,800 employees globally. Learn more at www.microsemi.com.

Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer's responsibility to independently determine suitability of any products and to test and verify the same. The information provided by Microsemi hereunder is provided "as is, where is" and with all faults, and the entire risk associated with such information is entirely with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP rights, whether with regard to such information itself or anything described by such information. Information provided in this document is proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this document or to any products and services at any time without notice.