SmartDebug for Software v11.7

User’s Guide

NOTE: PDF files are intended to be viewed on the printed page; links and cross-references in this PDF file
may point to external files and generate an error when clicked. View the online help included with
software to enable all linked content.

& Microsemi

& Microsemi

Table of Contents

Welcome to SMartDeDUQGcoooieieeeeeeeeeee e 5
INtroduction t0 SMArtDEBUQG.......ccviii i e e e 6
Getting Started With SMartDEDUGccvieiiiiiiieii e e e e e e e e e e anns 7
Using SmartDebug with SmartFusion and FUSIONccooiiiiiiiiiioe e 7
Using SmartDebug with SmartFusion2, IGLOO2, and RTG4ccccovvviciveiieeeeeieiiieeeee e e 7
Create Standalone SmartDebug ProjECtcuuiiiiiiiiiiiiiiiee et e e snnrre e e e e e 7
SmartDebug User INterface..........uuuvviiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeieeeeeeeeeeeeeeeeeeeee 10
Standalone SmartDebug USEr INTEIfACEcoivieiiiiiiiiiiie e e e 10
Programming Connectivity and INErfaCEeccoviiiiiieiie e a e 11
View Device Status (SmartFusion2, IGLOO2, and RTG4 ONly)uueieiiiiiiiiiiiieiiee e 15

Embedded Flash Memory (NVM) Content Dialog Box (SmartFusion2 and IGLOO2 Only).... 18

DEDUGGING o 20
Debug FPGA Array (SmartFusion2, IGLOO2, and RTG4 ONlY)ooouiiiiiiiiiiiiiiieeeee s 20
HIETAICNICAI VIBW ... ittt et e sttt e e s s it e e s sbbe e e e s sbbeeeesnnbeeeeans 20
INELHST VIBW ..ttt e e sttt e e s skttt e e e sab et e e s sbb et e e s abbeeeesnbbeeeesnbbeeeeans 22
Probe Grouping (Active Probes ONIY) ...t 26
Memory Blocks (SmartFusion2, IGLOO2, and RTG4)ccccuviieiieeeeiiiiiieee e e s s ssieeee e e e e e snnnenes 30
Probe Insertion (Post-Layout) - SmartFusion2, IGLOO2, and RTG4........cceeevviiciviieeeeeeiinnnns 32
Debug SERDES — LOOPDACK TEST ...ccoiiiiiiiiiiiiee ettt ettt e e e e 36
DebUg SERDES — PRBS TSt ..uuuuiiiieiiiiiiiiiiiie s s sitttee e e e e e s s s e s e e e e s s santaneeeaeessnnnnneneeaeessanns 37
DebUg SERDES — PHY RESEL ...uuuiiiieiiiiiiiiiise sttt e s st e e e e e e s s st e e e e e e s snnnnaeneeaeeeenans 39
Inspect Device Dialog Box (SmartFusion, Fusion, and ProASIC3 ONly)ccccceeeeeeeennnnnns 39
Device Status Report (SmartFusion and FUusion ONlY)cccuvevreeiiiiiiiieeee e 40
Embedded Flash Memory (NVM) Content Dialog Box (SmartFusion and Fusion Only) 41
Embedded Flash Memory: Browse Retrieved Data (SmartFusion and Fusion Only)............. 43
Embedded Flash Memory: Compare Memory Client (SmartFusion and Fusion Only)........... 44
FlashROM Content Dialog Box (Fusion and SmartFusion Only)cccccceeeeviiiiiiiieneee i, 45
Analog Block Configuration Dialog Box (SmartFusion and Fusion Only)ccccccceeeinnee 46
SmartDebug Tcl CommMandsooiiiiiiiii e 49
SmartDebug Tcl Support (SmartFusion2, IGLOO2, and RTG4)ccvveeviviciieieeee e eeciiieeeeeee 49
Device Debug / SmartDebug Tcl Commands (SmartFusion, IGLOO, ProASIC3, and Fusion

L]]) PSPPSR 51
add_to_probe_group (SmartFusion2, IGLOO2, and RTG4)cccccevveeeviiiiiieeeee e seeiviieee e 52
(o] o= Tod Qi F=] T 2 1= 0 o] 2% PSR 52
COMPAre_aNal0g_ CONFIQ ...eeiii ittt e ettt e e e e et e e e e e e e e e sababeeeeaaeeeaan 54
compare_flashrom_ClENTuiiiiiee e e e s r e e e e e e ean 54
(odo]] o F= T g =T 10 1= 100 o oY/ o 11T o | SO 55
create_probe_group (SmartFusion2, IGLOO2, and RTG4)c.uueeiiiieiiiiiiiiieee e 56
delete _aCtiVe _PrODEveeiee e e e 56
ddr_read (SmartFusion2, IGLOO2, and RTG4)ccccuuiiiiieeeiiiiiiiiee s e e s esiiieeee e e e s e nrnneeneee e 56
ddr_write (SmartFusion2, IGLOO2, and RTG4)......cuuuiiiiiiaeeiiiiiiee et 57

& Microsemi
SmartDebug User's Guide

export_smart_debug_data (SmartFusion2, IGLOO2, and RTG4)ccccveeveeeeeiiiiiiieeeeeeeeenns 58
[0ad_actiVe_Probe_lIST........oo e e e 59
loopback_test (SmartFusion2, IGLOO2, anNd RTG4)ccccoviciiiiiiieee e ceiiieeee e e seinneeee e e e 59
move_to_probe_group (SmartFusion2, IGLOO2, and RTG4)ccceeevvcciiieeiee e ciiiiieeeee e e 60
prbs_test (SmartFusion2, IGLOO2, aNd RTGA).......uuiiiiiiiiiiiiiiiiie ettt eiiaee e e e 60
read_active_probe (SmartFusion2, IGLOO2, and RTGA4).......cueeveeeeiiiiiiiiieie e s seivieeeee e e 61
read_analog BIOCK _CONFIg........uuiiiiiiiiiiiier e e e e e rr e e e e e e e ennes 62
(Y= Lo [0 N7 Tt T = L[1 62
(= T= Lo [To T o7 To 1= PSR 63
(== Lo [F=] 1 o] o o TSSO 63
read_flaSh_MEMOIYo ettt e e e e e s ae e e e e e e e ennes 64
read_Isram (SmartFusion2, IGLOO2, and RTG4)ccvveeiiiiiiiiiiiree e e ieiiiieee e e e s s ssnienneene e e s e ennns 65
read_usram (SmartFusion2 and IGLOO2)ccccuuiiiiieeee it e e e e seeee e e e e s s snnreare e e e e e e e anes 66
recover_flasSh _MEMOIY ... e e e e e e e e 66
remove_from_probe_group (SmartFusion2, IGLOO2, and RTG4).......ccccccveeeeeiiiiivnienneeeneinns 67
sample_analog_ChaNNEL.........cooi e 67
SAVE_ACHIVE _PrODE_IST.....eeeiiii it a s 69
select_active_probe (SmartFusion2, IGLOO2, and RTG4)ccccvveeveeeeiiiiiieeee e eiveeeeee s 69
YT (o LTS F= U 1= T (ST SRR 70
serdes_read_register (SmartFusion2, IGLOO2, and RTGA4)ccuuuiiiiiiiiiiiiiieeeeeeeeiieeeee 71
serdes_write_register (SmartFusion2, IGLOO2, and RTG4)cccuvveveeeeeiiciiiieeee e sieeneeee s 72
LY Ao [=1 010 o o (= o = SRR 72
Set_dEDUQG_ PrOGIAMIMETeiiii ettt e e e e e e s bbb e e e e e e e e aaab e s e e e e e e e s e aannbeeeaaaeeas 73
set_live_probe (SmartFusion2, IGLOO2, anNd RTG4)uuvvieeiiiiiiiieieee e e ssireeeee e s sineneeae s 73
ungroup (SmartFusion2, IGLOO2, and RTGA)uuueiiieeeeiiiiiieeeee e s sritiee e e e e s s ssnreane e e e e e s ennes 74
UNSEL_IIVE_PIODE ... e e et e e e e e e e aae 74
write_active_probe (SmartFusion2, IGLOO2, and RTGA4)ccceeevvviiiviieeee e ierieeee e 75
write_Isram (SmartFusion2, IGLOO2, and RTGA)ccovviciiiiiiie e e e e esiieee e e e 75
write_usram (SmartFusion2, IGLOO2, and RTGA)ooiiuiiiiiiieiieiiiee e 76
Solutions to Common Issues Using SmartDebug..........ccoocooiiiiiii. 77
Embedded Flash Memory (NVM) - Failure when Programming/Verifyingccccceeviveenene 77
Analog System Not Working as EXPECLEd............uueiiiiiiiiiiiiiiiee et 77
ADC Not Sampling the CorreCt VAIUEocueii it 77
Frequently Asked QUESTIONScoiiiiiii i 79
How do | unlock the device security SO | can debug?ooocuiiiiiiiiiiiii e 79
[(01T A0 [o T I =Y o Lo g A= T =T 0T | SO UPESR 79
How do | generate diagnostic reports for my target deviCe?.......ccccevvvecivieeiee s iiciiieee e 79
Where can | find files to compare my contents/SettingS?cuuooiiiiiiiieiee i 80
What is a UFC file? What is an EFC file?.......cooiiiiiiii e 80
IS My FPGA fabriC €Nabled?..........ooo it e e 80
Is my Embedded Flash Memory (NVM) programmed?...........coooiiiiiiiieieenniiiiieee e 81
How do | display Embedded Flash Memory (NVM) content in the Client partition? 81
How do | know if | have Embedded Flash Memory (NVM) corruption?ccccceeecvvvveeveeenninns 81
Why does Embedded Flash Memory (NVM) corruption happen?.........ccccceeviiiiieeeeee e, 81

& Microsemi

How do | recover from Embedded Flash Memory corruption?..........ccccoveeeeeeiiiiciieieee e 82
What is @ JTAG IR-Capture VAIUE?eeiiiiiiiiiiiie ettt e e e e 82
What does the ECCL/ECC2 €ITOr MEANTueeeeiiiiieeeiiieeeeeiiee e stieeessiteee s s ssteee e s snbeeesssnbeeeesnens 82
How can | tell if my FlashROM is programmed?cceoiiiiiiieiieeeis e e e e s s ssiieene e s e e e snnenes 82
Can | compare serialization dat@?oooeiiiiiiiaa e e e 82
Can | tell what security options are programmed in MY deVICE?ccovvvvvierreeeeeiiiiiieeeeeennn 82
Is my analog System CONfIQUIEA?uuiiiiei e a e e e 82
How do | interpret data in the Device Status repPOrt?........oo i 83
Device Status RepPOrt: USEI INO . ..uuiiii it e e e e e e s ne e e e e e e 83
Device Status Report: DEVICE STALEccvviiiiiee e e e e e e e e s eeeeeeean 84
Device Status Report: ANalog BIOCKeiiiiiiiiiiii e 85
Device Status Report; FACIONY Data........cc.uuueeveeeiiiiiiiiiieeeeesssiiiieee e e e e e sssnnreeeeeee e s snnnnnreeeeeeeesans 86
DeViCe StatUS REPOIM: SECUNLY.....uuriieeiiiitieiieiee e s s eitieeeeee e s s s sssrerreeee e e s s sanrereeeaeessanssnrenreeeeesanns 86
How do | interpret data in the Flash Memory (NVM) Status Report?........ccccccovviiiiieeeeeennnnnns 87
[oo 1V oa RS TN o] o Lo o SRR 89
OIS (o]0 =T GRS T =T o Tt PR R 89
Customer Technical SUPPOIT CENLET ...ttt e e e e e 89
JLIC=Tod T To= 1S U1 o] oo o 89
RV] (= SRR 89
Contacting the Customer Technical SUPPOrt CENLENocoiiiiiiiiiiiiiee e 89

AN N I=Ted o TT= LIRS U] o] o o] o (SRR 90

& Microsemi
SmartDebug User's Guide

Welcome to SmartDebug

Introduction to SmartDebug

Use Models

Design debug is a critical phase of FPGA design flow. Microsemi’s SmartDebug tool complements design
simulation by allowing verification and troubleshooting at the hardware level. SmartDebug provides access
to non-volatile memory (eNVM), SRAM, SERDES, DDR controller, and probe capabilities. Microsemi
SmartFusion2 System-on-chip (SoC) field programmable gate array (FPGA), IGLOO2 FPGA, and RTG4
FPGA devices have built-in probe logic that greatly enhance the ability to debug logic elements within the
device. SmartDebug accesses the built-in probe points through the Active Probe and Live Probe features,
which enables designers to check the state of inputs and outputs in real-time without re-layout of the design.

SmartDebug can be run in two modes:
¢ Integrated mode from the Libero Design Flow
e Standalone mode

Integrated Mode

When run in integrated mode from Libero, SmartDebug can access all design and programming hardware
information. No extra setup step is required. In addition, the Probe Insertion feature is available in Debug
FPGA Array.

To open SmartDebug in the Libero Design Flow window expand Debug Design and double-click
SmartDebug Design.

Standalone Mode

SmartDebug can be installed separately in the setup containing FlashPro, FlashPro Express, and Job
Manager. This provides a lean installation that includes all the programming and debug tools to be installed
in a lab environment for debug. In this mode, SmartDebug is launched outside of the Libero Design Flow.
When launched in standalone mode, you must to go through SmartDebug project creation and import a
Design Debug Data Container (DDC) file, exported from Libero, to access all the debug features in the
supported devices.

Note: In standalone mode, the Probe Insertion feature is not available in FPGA Array Debug, as it requires
incremental routing to connect the user net to the specified 1/0.

Standalone Mode Use Model Overview

The main use model for standalone SmartDebug requires users to generate the DDC file from Libero and
import it into a SmartDebug project to gain full access to the device debug features. Alternatively,
SmartDebug can be used without a DDC file with a limited feature set.

Supported Families, Programmers, and Operating Systems

Programming and Debug: SmartFusion2, IGLOO2, and RTG4
Programming only: ProAsic3/E, IGLOO, Fusion, and SmartFusion
Programmers: FlashPRO3, FlashPRO4, and FlashPRO5
Operating Systems: Windows XP, Windows 7, and RHEL 6.x

Note: Debug for ProAsic3/E, IGLOO, Fusion, and SmartFusion devices are available via FlashPro. Also
refer to "Inspect Device" in the "Device Debug User Interface” section of the FlashPro User's Guide.

& Microsemi

Getting Started with SmartDebug

This topic introduces the basic elements and features of SmartDebug. If you are already familiar with the
user interface, proceed to the Solutions to Common Issues Using SmartDebug or Frequently Asked
Questions sections.

SmartDebug enables you to use JTAG to interrogate and view embedded silicon features and device status
(FlashROM, Security Settings, Embedded Flash Memory (NVM) and Analog System). SmartDebug is
available as a part of the FlashPro programming tool.

See Using SmartDebug and Using SmartDebug with SmartFusion2, IGLOO2, and RTG4 for an overview of
the use flow.

You can use the debugger to:

Get device status and view diagnostics
Use the FlashROM debug GUI to read out and compare content

Use the Embedded Flash Memory Debug GUI to read out and compare your content with your original
files

Use the Analog System Debug to read out and compare your analog block configuration with your
original file

Using SmartDebug with SmartFusion and Fusion

Note: SmartDebug is referred to as Device Debug in some older families.
The most common flow for SmartDebug is:

1.
2.

Start FlashPro. If necessary, create a new project.

Set up your FlashPro Project with or without a PDB file. If you are in single-device mode you will need
a PDB file. You can create a PDB file in both Single Device and Chain mode.

With a PDB, you will get additional information such as FlashROM and Embedded Flash Memory
partitions when debugging the silicon features. Best practice is to use a PDB with a valid-use design to
start a debug session.

Select the target device from your chain and click Inspect Device.
Click Device Status to get device status and check for issues

Examine individual silicon features (FlashROM, Embedded Flash Memory Block and Analog System)
on the device.

Using SmartDebug with SmartFusion2, IGLOO2, and RTG4

The most common flow for SmartDebug is:

1.
2.

Create your design. You must have a FlashPro programmer connected to use SmartDebug.

Expand Debug Design and double-click Smart Debug Design in the Design Flow window.
SmartDebug opens for your target device.

Click View Device Status to view the device status report and check for issues.
Examine individual silicon features, such as FPGA debug.

Create Standalone SmartDebug Project

A standalone SmartDebug project can be configured in two ways:

Import DDC files exported from Libero

Construct Automatically

From the SmartDebug main window, click Project and choose New Project. The Create SmartDebug
Project dialog box opens.

& Microsemi

SmartDebug User's Guide

2 Create SmartDebug Project o]

Name: M2GLO10_test

Location: E:\Captures\SmartDebug\SASDV11_7_0_19_main [e

Construct JTAG chain for the project

Connected Programmers(s): §93535 'J[Refresh]

@ Import from DDC File: ‘Standalone_SD/DOC_files/Cap_19/M2GLO10T_PCle_Demao.ddc |

Desigry debug data will be imported with JTAG chain

Construct Automatically

Help oK | cancel

Figure 1 - Create SmartDebug Project Dialog Box

Import from DDC File (created from Libero)

When you select the Import from DDC File option in the Create SmartDebug Project dialog box, the Design
Debug Data of the target device and all hardware and JTAG chain information present in the DDC file
exported in Libero are automatically inherited by the SmartDebug project. The programming file information
loaded onto other Microsemi devices in the chain, including ProAsic3/E, SmartFusion, and Fusion devices,
are also transferred to the SmartDebug project.

Debug data is imported from the DDC file (created through Export SmartDebug Data in Libero) into the
debug project, and the devices are configured using data from the DDC file.

Construct Automatically

When you select the Construct Automatically option, a debug project is created with all the devices
connected in the chain for the selected programmer. This is equivalent to Construct Chain Automatically in
FlashPRO.

Configuring a Generic Device

For Microsemi devices having the same JTAG IDCODE (i.e., multiple derivatives of the same Die—for
example, M2S090T, M2S090TS, and so on), the device type must be configured for SmartDebug to enable
relevant features for debug. The device can be configured by loading the programming file, by manually
selecting the device using Configure Device, or by importing DDC files through Programming Connectivity
and Interface. When the device is configured, all debug options are shown.

For debug projects created using Construct Automatically, you can use the following options to debug the
devices:

e Load the programming file — Right-click the device in Programming Connectivity and Interface.
e Import Debug Data from DDC file — Right-click the device in Programming Connectivity and Interface.

The appropriate debug features of the targeted devices are enabled after the programming file or DDC file is
imported.

& Microsemi

Connected FlashPRO Programmers

The drop-down lists all FlashPro programmers connected to the device. Select the programmer connected
to the chain with the debug device. At least one programmer must be connected to create a standalone
SmartDebug project.

Before a debugging session or after a design change, program the device through Programming
Connectivity and Interface.

See Also

Programming Connectivity and Interface

View Device Status
Export SmartDebug Data (from Libero)

Import from DDC File (created from Libero)

When you select the Import from DDC File option in the Create SmartDebug Project dialog box, the Design
Debug Data of the target device and all hardware and JTAG chain information present in the DDC file
exported in Libero are automatically inherited by the SmartDebug project. The programming file information
loaded onto other Microsemi devices in the chain, including ProAsic3/E, SmartFusion, and Fusion devices,
are also transferred to the SmartDebug project.

Debug data is imported from the DDC file (created through Export SmartDebug Data in Libero) into the
debug project, and the devices are configured using data from the DDC file.

Construct Automatically

Configuring

When you select the Construct Automatically option, a debug project is created with all the devices

connected in the chain for the selected programmer. This is equivalent to Construct Chain Automatically in
FlashPRO.

a Generic Device

For Microsemi devices having the same JTAG IDCODE (i.e., multiple derivatives of the same Die—for
example, M2S090T, M2S090TS, and so on), the device type must be resolved for SmartDebug to enable
relevant features for debug. The device can be resolved by loading the programming file, manually selecting
the device using Configure Device, or by importing DDC files through Programming Connectivity and
Interface. When the device is resolved, all debug options are shown.

For debug projects created using Construct Automatically, you can use the following options to debug the
devices:

e Load the programming file — Right-click the device in Programming Connectivity and Interface.
e Import Debug Data from DDC file — Right-click the device in Programming Connectivity and Interface.

The appropriate debug features of the targeted devices are enabled after the programming file or DDC file is
imported.

& Microsemi

SmartDebug User's Guide

SmartDebug User Interface

Standalone SmartDebug User Interface

You can start standalone SmartDebug from the Libero installation folder or from the FlashPRO installation
folder.

Windows:

<Libero Installation folder>/Designer/bin/sdebug.exe
<FlashPRO Installation folder>/bin/sdebug.exe
Linux :
<Libero Installation folder>/ bin/sdebug
<FlashPRO Installation folder>/bin/sdebug
.& e =y
Project View Tools

ik
1B M &

New...
Open..

Recent Projects

Log 5 x

| () @ i vorss @1

Figure 2 - Standalone SmartDebug Main Window

& Microsemi

Project Menu

The Project menu allows you do the following:
e Create new SmartDebug projects (Project > New Project)
e Open existing debug projects (Project > Open Project)
e Execute SmartDebug-specific Tcl scripts (Project > Execute Script)
e Export SmartDebug-specific commands to a script file (Project > Export Script File)
e See a list of recent SmartDebug projects (Project > Recent Projects).
Log Window
SmartDebug displays the Log window by default when it is invoked. To suppress the Log window display,
click the View menu and toggle View Log.
The Log window has four tabs:
Messages — displays standard output messages
Errors — displays error messages
Warnings — displays warning messages
Info — displays general information
Tools Menu

The Tools menu includes Programming Connectivity and Interface and Programmer Settings options, which
are enabled after creating or opening a SmartDebug project.

Programming Connectivity and Interface

To open the Programming Connectivity and Interface dialog box, from the standalone SmartDebug Tools
menu, choose Programming Connectivity and Interface. The Programming Connectivity and Interface
dialog box displays the physical chain from TDI to TDO.

I+l Pregramming Connectivity and Interface == I-g

[»] 2 TDOD

Figure 3 - Programming Connectivity and Interface Dialog Box — Project created using Import from DDC File

All devices in the chain are disabled by default when a standalone SmartDebug project is created using the
Construct Automatically option in the Create SmartDebug Project dialog box.

11

& Microsemi
SmartDebug User's Guide

I+*[Programming Connectivity and Interface Lﬂ!ﬁ

JoO) EH Jlg r;ﬂ

"
L
L
L
L
L
L
2 TDO | 1 TDI 2
:
L
L
i

Figure 4 - Programming Connectivity and Interface window — Project created using Construct Automatically

The Programming Connectivity and Interface dialog box includes the following actions:

Construct Chain Automatically - Automatically construct the physical chain.

Running Auto-Construct in Programming Connectivity and Interface removes all existing
debug/programming data included using DDC/programming files. The project is the same as a new
project created using the Construct Automatically option.

Scan and Check Chain — Scan the physical chain connected to the programmer and check if it
matches the chain constructed in the scan chain block diagram.

Run Programming Action — Option to program the device with the selected programming procedure.

When two devices are connected in the chain, the programming actions are independent of the device.
For example, if M2S090 and M2GL010 devices are connected in the chain, and the M2S090 device is to
be programmed and the M2GL010 device is to be erased, both actions can be done at the same time
using the Run Programming Action option.

Zoom In — Zoom into the scan chain block diagram.
Zoom Out — Zoom out of the scan chain block diagram.

Hover Information

The device tooltip displays the following information if you hover your cursor over a device in the scan chain
block diagram:

Name: User-specified device name. This field indicates the unique name specified by the user in the
Device Name field in Configure Device (right-click Properties).

Device: Microsemi device name.
Programming File: Programming file name.

Programming action: The programming action selected for the device in the chain when a
programming file is loaded.

IR: Device instruction length.

TCK: Maximum clock frequency in MHz to program a specific device; standalone SmartDebug uses
this information to ensure that the programmer operates at a frequency lower than the slowest device
in the chain.

12

& Microsemi

iRTaG1S0 ES e~ |
| racis0 Fo <
© 100 | DI 2
1 [Name: [RT4G150_ES
|Device: |RTAG150_ES

|Programmmg File: |

|Pr::rgrammmg action: I
|IR: 8
[TCK: | 10000000

Device Chain Details
The device within the chain has the following details:
e User-specified device name
e Device name
e Programming file name

e Programming action — Select Enable Device for Programming to enable the device for programming.
Enabled devices are green, and disabled devices are grayed out.

Right-click Properties

Configure Device...

v Enable Device for Programming...

Load Programming File...
Select Program Procedure/Actions...
Import Debug Data from DDC File...

Configure Device - Ability to reconfigure the device.
e Family and Die: The device can be explicitly configured from the Family, Die drop-down.
e Device Name: Editable field for providing user-specified name for the device.

Enable Device for Programming - Select to enable the device for programming. Enabled devices are
shown in green, and disabled devices are grayed out.

Load Programming File - Load the programming file for the selected device.

Select Programming Procedure/Actions- Option to select programming action/procedures for the devices
connected in the chain.

e Actions: List of programming actions for your device.

13

& Microsemi

SmartDebug User's Guide

e Procedures: Advanced option; enables you to customize the list of recommended and optional
procedures for the selected action.

Import Debug Data from DDC File - Option to import debug data information from the DDC file.

The DDC file selected for import into device must be created for a compatible device. When the DDC file is
imported successfully, all current device debug data is removed and replaced with debug data from the
imported DDC file.

The JTAG Chain configuration from the imported DDC file is ignored in this option.

If a programming file is already loaded into the device prior to importing debug data from the DDC file, the
programming file content is replaced with the content of the DDC file (if programming file information is
included in the DDC file).

Debug Context Save

Debug context refers to the user selections in debug options such as Debug FPGA Array, Debug SERDES,
and View Flash Memory Content. In standalone SmartDebug, the debug context of the current session is
saved or reset depending on the user actions in Programming Connectivity and Interface.

The debug context of the current session is retained for the following actions in Programming Connectivity
and Interface:

e Enable Device for Programming

e Select Programming Procedure/Actions
e Scan and Check Chain

e Run Programming Action

The debug context of the current session is reset for the following actions in Programming Connectivity and
Interface:

e Auto Construct — Clears all the existing debug data. You need to reimport the debug data from DDC
file.

e Import Debug Data from DDC file

e Configure Device — Renaming the device in the chain
e Configure Device — Family/Die change

e Load Programming File

Selecting Devices for Debug

Standalone SmartDebug provides an option to select the devices connected in the JTAG chain for debug.
The device debug context is not saved when another debug device is selected.
Project View Tools
~

e B &

m-ce:‘msmmmrrrrsmmmnm v‘ Programmer: | 93536 (usb93536) -/
M25M2GLOSOTITSITV) (M2GLOJOTS!
M25M2GLO0 10(T |S[TS) (M2GLO10TS)

ID code read from device: 1F8071CF

View Device Status... ‘ [Debug FPGA Array...

View Flash Memory Content. .. ‘ { Debug SERDES...

Figure 5 - Select Devices

14

& Microsemi

View Device Status (SmartFusion2, IGLOOZ2, and RTG4 Only)

Click View Device Status in the standalone SmartDebug main window to display the Device Status Report.
The Device Status Report is a complete summary of IDCode, device certificate, design information,
programming information, digest, and device security information. Use this dialog box to save or print your
information for future reference.

Note: This information is available for SmartFusion2 and IGLOO2 devices only. For RTG4 devices, View
Device Status displays IDCode information only.

15

& Microsemi

SmartDebug User's Guide

3 Device Status Report »

[|
Device: M2S0D90T (M25090T) Programmer: S201YPVOZC (S201YPVDZC) Save | &3 Print |

Device Status:
IDCode (read from the device) (HEX): 1f8071cf

Device Certificate

Family: SmartFusion2
Die: M25090
Design Information
Design Name: 5YS_SERDES
Design checksum (HEX): 53AA
Design Version: 0
Back Lewvel: i}
Operating voltage: 1.2V
Internal Oscillator: S50MHz

Digest Information
Fabric Digest (HEX): 8d5382634b094bc5aa0667 715134 2dfa
0000f78130faBla31dcb45cbbl1cfl59

eNVM_0 Digest (HEX): 90d743000bb62a86acabab52c0dbbfbe
e3809034344d1a26624180728507254

Device Security Settings
ARM CortexM3 access to eSRAM module 0 read is protected.
ARM CortexM3 access to eSRAM module O write is protected.
ARM CortexM3 access to eSRAM module 1 read is protected.
ARM CortexM3 access to eSRAM module 1 write is protected.
ARM CortexM3 access to eNVM_0 read is protected.
ARM CortexM3 access to eNVM_0 write is protected.
ARM CortexM3 access to DDR bridge read is protected.
ARM CortexM3 access to DDR bridge write is protected.
Factory test mode access: Allowed.
Power on reset delay: 100ms
System Controller Suspend Mode: Disabled.

Programming Information

Cycle count: 333

VPP Range: HIGH [VPP == 3.3V)
Temp Range: HOT

*Algorithm Version: 2

* Programmer: FlashPro 5
* Software Version: FlashPro v11.6

* Programming Software: FlashPro
* Programming Interface Protecol: | TAG
* Programming File Type: STAPL

NOTE: * - The above Information is only relevant if the device was programmed through JTAG or 5P Slave mode.

Help # dose |
Figure 6 - Device Status Report

IdCode
IDCode read from the device under debug.

Device Certificate
Device certificate displays Family and Die information if device certificate is installed on the device.

& Microsemi

If the device certificate is not installed on the device, a message indicating that the device certificate may not
have been installed is shown.

Design Information
Design Information displays the following:
e Design Name
e Design Checksum
e Design Version
e Back Level
e Operating Voltage
¢ Internal Oscillator

Digest Information

Digest Information displays Fabric Digest, eNVM_0 Digest and eNVM_1 Digest (for M2S090 and M2S150
devices only) computed from the device during programming. eNVM digest is shown when eNVM is used in
the design.

Device Security Settings

Device Security Settings indicate the following:
e Factory test mode access
e Power on reset delay
e System Controller Suspend Mode

In addition, if custom security options are used, Device Security Settings indicate:
e User Lock segment is protected
e User Pass Key 1/2 encrypted programming is enforced for the FPGA Array
e User Pass Key 1/2 encrypted programming is enforced for the eNVM_0 and eNVM_1
e SmartDebug write access to Active Probe and AHB mem space
e SmartDebug read access to Active Probe, Live Probe & AHB mem space
e UJTAG access to fabric

Programming Information
Programming Information displays the following:
e Cycle Count
e VPP Range
e Temp Range
e Algorithm Version
e Programmer
e Software Version
e Programming Software
e Programming Interface Protocol
e Programming File Type

17

& Microsemi

SmartDebug User's Guide

Embedded Flash Memory (NVM) Content Dialog Box

(SmartFusion2 and IGLOO2 Only)

The NVM content dialog box is divided into two sections:

¢ View content of Flash Memory pages (as shown in the figure below)
e Check page status and identify if a page is corrupted or if the write count limit has exceeded the 10-

year retention threshold

Choose the eNVM page contents to be viewed by specifying the page range (i.e., start page and the end

page) and click Read from Device to view the values.

You must click Read from Device each time you specify a new page range to update the view.
Specify a page range if you wish to examine a specific set of pages. In the Retrieved Data View, you can

enter an Address value (such as 0010) in the Go to Address field and click the corresponding button to go
directly to that address. Page Status information appears to the right.

Contents of Page Status
e ECCI1 detected and corrected
e ECC2 detected
e Write count of the page
¢ If write count has exceeded the threshold
e If the page is used as ROM (first page lock)
e Overwrite protect (second page lock)
e Flash Freeze state (deep power down)

'@ Fen Memony

Retrieve Flash Hemary Content from Device:

Select | <PageRange> ¥) fead from Dewoe
StwtPage: 1 [addremss (500
Ered Page:) (10 pages, 1408 bytes)

Latest Content Retrweved lrom Devior:

Mes S 10 ThALAS 20
Retreved Conters: from Page 10 to Page 20. 1403 bytes staring bom address Ga%00
S — —
Vs Al Fage Stata G o Address P ()
Status for Fage 510 | Conbesit
Fage humber | Address ~ ~ ~
g TV WSS 15 U (R O S Y P Y) [S |
0 5N Fé& o a2 i a] 1] F& L] = 4 F+ = n
Recoverabie BCC] ormr defecid: Polse
Hor rescoeer sl dats eor detected: Faise w [0 (=] F@ = 1 o2 L | = L] R L] (11 (4] L} L]
Write counter over reshold Faise:
Wrie count 52 w0 | [% 5 e o o s a5] o n "} &1
o
Pt sat w 5| Fr = rr o 4 & o P2 o [o LTI]
Faise:
o054| DE = 0] 08 1 % & o @ ™3 @ o £
wEE B2 v F ® & F, o B 5 =] F "] 2 2
O 0 [c4 F a2 M a & -« L] 12 R {12 o
wsm| FE Do B o F B n” = L3 as Ft o o L 2
wen|w @ = LI [™ = = @™ & @ =B x 6
Help o

Figure 7 - Flash Memory Dialog Box for a SmartFusion2 Device (SmartDebug)

The page status gets updated when you:
e Click Page Range
e Click a particular cell in the retrieved eNVM content table

e Scroll pages from the keyboard using the Up and Down arrow keys

e Click Go to Address (hex)

The retrieved data table displays the content of the page range selection. If content cannot be read (for

example, pages are read-protected, but security has been erased or access to eNVM private sectors), Read

from Device reports an error.

18

& Microsemi

Click View Detailed Status for a detailed report on the page range you have selected.

For example, if you want to view a report on pages 1-3, set the Start Page to 1, set the End Page to 3, and
click Read from Device. Then click View Detailed Status. The figure below is an example of the data for a
specific page range.

D e ——eee—)

Figure 8 - Flash Memory Details Dialog Box (SmartDebug)

from Page 1 to Page 3, 334 bytes starting from address 0x80 as of Thu Jan 07 14:49:29 2016 [save][&t |
Page Status Summary [Page 1to 3]
Total number of pages with ECC2 errors: 0
Total number of pages with write count out of range: 0
FlashMemory Check PASSED for [Page 110 3]
Flash Memory Page Status [Page 1to 3]
FlashMemory Page =1: I
Recoverable ECC1 error detected: False
Mon recoverable data error detected: False i
Wrrite counter over threshold: se
Write count: 38 == This value may be incorrect due to OEPB is not set. l
Use as ROM: Off
Overwrite Protect: Not set
FlashFreeze state: False 1
FlashMemory Page £2:
Recoverable ECC1 error detected: False
Mon recoverable data error detected: False I
Write counter over threshold: False
Wite count: 38 ***This value may be incorrect due to OEPE is not set.
Use as ROM: off
Overwrite Protect: Mot set |
FlashFreeze state: False
FlashiMemory Page £3: |
Recoverable ECC1 error detected: False l
Mon recoverable data error detected: False
Write counter over threshold; False 1
Write count: 38 ***This value may be incorrect due to OEPB is not set.
Use as ROM: off
Overwrite Protect: Mot set
FlashFreeze state: False

19

& Microsemi

SmartDebug User's Guide

Debugging

Debug FPGA Array (SmartFusion2, IGLOO2, and RTG4 Only)

In the Debug FPGA Array dialog box, you can view your Live Probes, Active Probes, and Memory Blocks,
and Insert Probes (Probe Insertion).

The Debug FPGA Array dialog box includes the following four tabs:
e Live Probes
e Active Probes

e Memory Blocks
e Probe Insertion

Hierarchical View

The Hierarchical View lets you view the instance level hierarchy of the design programmed on the device
and select the signals to add to the Live Probes, Active Probes, and Probe Insertion tabs in the Debug
FPGA Array dialog box.

e Instance — Displays the probe points available at the instance level.

e Primitives — Displays the lowest level of probeable points in the hierarchy for the corresponding
component —i.e., leaf cells (hard macros on the device).

You can expand the hierarchy tree to see lower level logic.

Signals with the same name are grouped automatically into a bus that is presented at instance level in the
instance tree.

The probe points can be added by selecting any instance or the leaf level instance in the Hierarchical View.
Adding an instance adds all the probe able points available in the instance to Live Probes, Active Probes,
and Probe Insertion.

20

licrosemi

Mi

o

Hierarchical View | Netist View |

Filter: .
Instance(s):

ta_out_1[6]

ma.:.n::n

m_m_m_lz ummﬂﬂ__m m
z5z5Y 5 :
) M_M_M_MMM_MWMM B m o,
e 1 =1 1
=, =, ElvewEsiisnelaiisef |
ﬁwmmmommn:n:::nnnn::nnr: a1
mW:o.nicsb aa o aaB2fm
E@ 58 508~ §38-
By @ 8- Al

Figure 9 - Hierarchical View

21

& Microsemi

SmartDebug User's Guide

Search

In Live Probes, Active Probes, and the Probe Insertion Ul, a search option is available in the Hierarchical
View. You can use wildcard characters such as * or ? in the search column for wildcard matching.

Probe points of leaf level instances resulting from a search pattern can only be added to Live Probes, Active
Probes, and the Probe Insertion Ul. You cannot add instances of search results in the Hierarchical View.

Netlist View

The Netlist View displays a flattened net view of all the probe able points present in the design, along with
the associated cell type.

Heerarchecal View MNetist View |

Filter: | Search

Net(s): [add
Name Type
count_0_q[0]:count_0/q[0]:Q
count_0_q[10]:count_0/q[10]:Q
count_0_q[11]:count_0/q[11):Q
count_0_q[12]:count_0/q[12]:Q
count_0_q[13]:count_0/q[13]:Q
count_0_q[14]:count_0/q[14]:Q
count_0_q[15]:count_0/q[15]:Q
count_0_q[16]:count_0/q[16]:Q
count_0_q[17]:count_0/q[17]:Q
count_0_q[18]:count_0/q[18]:Q
count_0_q[15]:count_0/q[19]:Q
count_0_q[1):count_0/q[1]:Q
count_0_g[2]:count_0/q[2]:Q
count_0_q[3]:count_0/q[3]:Q
count_0_q[4]):count_0/q[4]:Q
count_0_q[5]:count_0/q[5]:Q
count_0_q[6]:count_0/q[5]:Q
count_0_q(7]:count_0/a(7]:Q

count_0_q[8]:count_0/q[8]:Q

R N R R T W A R AW RE A R R

count_0_q[9]:count_0/q[9]:Q

Figure 10 - Netlist View
Search

A search option is available in the Netlist View for Live Probes, Active Probes, and Probe Insertion. You can
use wildcard characters such as * or ? in the search column for wildcard matching.

22

& Microsemi

Live Probes (SmartFusion2, IGLOO2, and RTG4)

The Live Probes tab displays a table with the probe name and pin type.
Note: SmartFusion2 and IGLOO2 support two probe channels, and RTG4 supports one probe channel.

SmartFusion2 and IGLOO2

Two probe channels (ChannelA and ChannelB) are available. When a probe name is selected, it can be
assigned to either ChannelA or ChannelB.

You can assign a probe to a channel by doing either of the following:
e Right-click a probe in the table and choose Assign to Channel A or Assign to Channel B.

e Click the Assign to Channel A or Assign to Channel B button to assign the probe selected in the
table to the channel. The buttons are located below the table.

When the assignment is complete, the probe name appears to the right of the button for that channel, and
SmartDebug configures the ChannelA and ChannelB 1/Os to monitor the desired probe points. Because
there are only two channels, a maximum of two internal signals can be probed simultaneously.

Click the Unassign Channels button to clear the live probe names to the right of the channel buttons and
discontinue the live probe function during debug.

Note: At least one channel must be set; if you want to use both probes, they must be set at the same time.
The Active Probes READ/WRITE overwrites the settings of Live Probe channels (if any).

Live/Active Frobes Selection & X FPGA Array debug data

alview | NetistView 4] L Frobes | Active Probes | Memory Blocks |

Filter: Search |

Net(s): ﬁa _
4 :Inst_CLKO_Top/Inst_CLKD_B2/Inst_CLKO_B3/Inst_CLKO_B4/Inst_CLKO_B11/Inst_CLKD_| -
= Assign to Channel A

Assign to Channel B
:Inst_CLKO_Top/Inst_CLKL

:Inst_CLK0_Top/Inst_CLK(
:Inst_CLK0_Top/Inst_CLK(
:Inst_CLKO_Top/Inst_CLK(K

:Inst_CLKO_Top/Inst_CLK([hssignto Channela | ->
:Inst_CLKO_Top/Inst_CLK(. :

Assign to Channel B |
<Inet_CLKO_Top/Inst_CLKL _ | — -

Figure 11 - Live Probes Tab (SmartFusion2 and IGLOQO2) in SmartDebug FPGA Array Dialog Box

RTG4

One probe channel (Probe Read Data Pin) is available for RTG4 for debug. When a probe name is selected,
it can be assigned to the Probe Channel (Probe Read Data Pin).

You can assign a probe to a channel by doing either of the following:
e Right-click a probe in the table and choose Assign to Probe Read Data Pin.

e Click the Assign to Probe Read Data Pin button to assign the probe selected in the table to the
channel. The button is located below the table.

23

& Microsemi

SmartDebug User's Guide

Click the Unassign probe read data pin button to clear the live probe name to the right of the channel
button and discontinue the live probe function during debug.

The Active Probes READ/WRITE overwrites the settings of Live Probe channels (if any).

i Bl
7| Debug FPGA Array Lol 50

Live /Active Probes Selection F X FPGA Array debug data
Hierarchical View Netlist View Live Probes Active Probes Memory Blocks
Filter: Search l Delete] [Delete All

— vame e

LED_ctrl_0/pb1 regi:LED_ctrl_0/pb1_regi:Q

Instance Tree
4 I LED_ctrl_0
« I Primitives
» B counter LED_ctrl_0/pb2_reg1:LED_ctrl_0/pb2_reg1:Q DFF
pbl_regl
pbl reg2 LED_ctrl_0/pb2_reg2:LED_ctrl_0/pb2_reg2:Q DFF
pb2_regl
pb2_reg2
rot_Ift
rot_rgt

Assign to probe read data pin

LED_ctrl_0/pb1_reg2:LED_ctrl_0/pb1_req2:Q

(L1111

v v

I.Assigntoprobe readdampin] -

[Unassign probe read data pin]

Figure 12 - Live Probes Tab (RTG4) in SmartDebug FPGA Array Dialog Box

& Microsemi

Active Probes (SmartFusion2, IGLOO2, and RTG4)

In the left pane of the Active Probes tab, all available Probe Points are listed in instance level hierarchy in
the Hierarchical View. All Probe Names are listed with the Name and Type (which is the physical location of
the flip-flop) in the Netlist View.

Select probe points from the Hierarchical View or Netlist View, right-click and choose Add to add them to the
Active Probes Ul. You can also add the selected probe points by clicking the Add button. The probes list
can be filtered by using the Filter box.

)

75 Debug FPGA Aray =8
=]
Live[Active Probes Selection B X oo aray debug data
Herarchical View | Netst View | Live Probes | Active Probes | Memory Blodks
1 — r '] r
Fiter: [search | =t | s || o] Delete | Dslet=at
I) [| [Name (Type ead Value Write Value
) : |Count_Reset:Count_Reset0:Q DFF [|
Instance Tree [MUX_SEL_Q:MUX_SELU0:Q CFF 0 =]
B Count_Reset |User_CLK_Q:User CLKAIO:Q oer 0 |
g :ﬁg_t-!ﬂe‘: |[FIFO_Lane0_out_c[9:0] DFF 10000 10h
= ang 1 -]
B |FIFo, Lane1_out,c[5:0) LFF 10h00 10h
¥ 500 » |g_net_0[19:0] DFF 2000000 20h
B User Q1K
& count 0
Read Active Probes |
[hep | Clase]

Figure 13 - Active Probes Tab in SmartDebug FPGA Array Dialog Box

When you have selected the desired probe, points appear in the Active Probe Data chart and you can read
and write multiple probes (as shown in the figure below).

You can use the following options in the Write Value column to modify the probe signal added to the Ul:
e Drop-down menu with values ‘0’ and ‘1’ for individual probe signals
o Editable field to enter data in hex or binary for a probe group or a bus

25

& Microsemi

SmartDebug User's Guide

FPGA Array debug data

| LiveProbes | Active Probes | Memory Blocks |

e (= @) @) T
[Name g [Type Read Value [Write Value
| |Count_Reset:Count Reset/U0:Q DFF Unread =]
| MUX_SEL_Q:MUX_SELAJD:Q DFF Urread 0
| User_CLE_Q:User_CLKU0:Q DFF Unread 1
| |sB_sb_0_SDIFO_INIT_APB_PENABLE:SB_sh_0/CORECONFIGP_0/SDIF0_PENABLE:Q DFF Unread -
|FIFO_Lane0_out_c[9:0] DFF Unread 100101010101
| » [FIFO_Lane1_out_c[s:0] DFF Unread 10h3FF
Read Active Probes l [Write Active Probes

Figure 14 - Active Probes Tab - Write Value Column Options

Probe Grouping (Active Probes Only)

During the debug cycle of the design, designers often want to examine the different signals. In large
designs, there can be many signals to manage. The Probe Grouping feature assists in comprehending

multiple signals as a single entity. This feature is applicable to Active Probes only. Probe nets with the same

name are automatically grouped in a bus when they are added to the Active Probes tab. Custom probe
groups can also be created by manually selecting probe nets of a different name and adding them into the

group

The Active Probes tab provides the following options for probe points that are added from the Hierarchical

View/Netlist View:

Display of bus name. An automatically generated bus name cannot be modified. Only custom bus

names can be modified.

Expand/collapse of bus or probe group

Move Up/Down the signal or bus or probe group

Save (Active Probes list)

Load (already saved Active Probes list)

Delete (applicable to a single probe point added to the Active Probes tab
Delete All (deletes all probe points added to the Active Probes tab)

In addition, the context (right-click) menu provides the following operations:
o Create Group, Add/Move signals to Group, Remove signals from Group,
o0 Ungroup

o Reverse bit order, Change Radix for a bus or probe group

o Read, Write, or Delete the signal or bus or probe group

26

& Microsemi

FPGA Array debug data
Active Probes Memary Blocks
'+| E] (4| ¥ ’ Save...] ’ Load...] | Delets .
Mame t Type Read Value Write Value
Count EPCS Clk Q 0:Count EPCS Clk/UD:0 DFF 1 1 S
Count_EPCS_Reset:Count_EPCS_Reset/U:Q DFF 0 0 =1
FIFO_RESET_M_Q:FIFO_RESET_N/UD:Q DFF 1 |
GPIO_RESET_M_Q:GPIO_RESET NfUD:Q DFF 1 =
4 |g_c[19:0] DFF 20'hFOFOF 20"hFOFOF

g_c[19]:count_0/g[19]:Q DFF i =1
q_c[18]:count_D/q[18]:Q DFF 1 3
q_c[17]:count_0/q[17]:Q DFF 1 2|
q_c[18]:count_0/g[16]:Q DFF 1 =l
g_c[15]:count_0/g[15]:Q DFF 0 |
g_c[14]:count_0/g[14]:Q DFF [1] =1
g_c[13]:count_0/a[13]:Q DFF 0 |
q_c[12]:count_0fgq[12]:Q DFF 0 |
q_c[11]:count_0fq[11]:Q DFF 1 =1
q_c[10]:count_0/g[10]:Q DFF 1]
q_c[8]:count_0/q[s]:Q DFF 1 B |
q_c[8]:count_0fq[8]:Q DFF 1 =1
q_c[7]:count_0/q[7]:Q DFF] =1
q_c[s]:count_0/g[6]:q DFF] 3
q_c[5]:count_0/fq[5]:Q DFF 0 2|
q_c[4]:count_0/q[4]:Q DFF i S
q_c[3]:count_0/q[3]:Q DFF 1 =1
g_c[2]:count_0/q[2]:Q DFF 1 |
q_c[1:count_0/a[1]:Q DFF 1 B |
q_c[0]:count_0/q[0]:Q DFF 1 |

4 | group1[1:0] 2'hd oh
q_c[14]:count_0fgq[14]:Q DFF 0 8 =1
g_c[13]:count_0/g[13]:Q DFF 1] 1 B |

4 | group2[1:0] 2h1 Zh
Count_EPCS5_Reset:Count_FPCS_Reset/U0:Q DFF V] 0 1
FIFO RESET M _Q:FIFO_RESET MUD:Q DFF 1 |

Read Active Probes Write Active Probes

Figure 15 - Active Probes Tab

e Green entries in the “Write Value” column indicate that the operation was successful.
e Blue entries in the “Read Value” column show indicate values that have changed since the last read.

Context Menu of Probe Points Added to the Active Probes Ul

When you right-click a signal or bus, you will see the following menu options:

For individual signals that are not part of a probe group or bus:

e Read
e Write

& Microsemi

SmartDebug User's Guide

e Delete

e Create Group
e Add to Group
e Move to Group

Count_EPCS_Clk_Q_0:Count_EPCS_Ck/U0:Q

For individual signals in a probe group:
e Read
o Write
e Delete
e Create Group
e Add to Group
e Move to Group
¢ Remove from Group

Count_EPCS_Ck_Q_0:Count_EPCS_Ck/U0:Q
Cnlnt=EPC5=Rmt:Enmt=EPCS=RmtﬁJ0:Q

Read
Write

Delete

Create Group...

Add to Group...
Move to Group...

Read

FIFO_RESET &Q:FIFD=RESEI=N_M;Q

Write

'q_c[19]:count_0/q[19]:Q

Delete

q_c[18]:count_0/q[18]:Q

4 [q c[19:0]

Create Group...

_g'__c[lgl :comt=0,-‘q [19]:Q

Add to Group...

'q_c[18]:count_0/q[18]:Q

Move to Group...

q_c[17]:count_0/q[17]:Q

q_c[16]:count_0/q[16]:Q

Remove from Group

H

For individual signals in a bus:
e Read
e Write
e Create Group
e Add to Group

28

& Microsemi

q_c[17]:count_0/q[17]:Q

q_c[16]:count_0/q[16]:Q

_q__c[lS]:m.nt 0fq[15]:Q

q_c[14]:count_0/q[14]:Q

q_c[13]:count_0/q[13]:Q

Read
Write

Create Group...
Add to Group...

&c[l!]:m.nt&.-‘_q_[u]:q

q_c[11]:count_0/q[11]:Q

q_c[10]:count_0/q[10]:Q

For a bus:

Read

e Write

Delete

Reverse Bit Order

Change Radix to Hex/Binary
Create Group

q_c[19]:count_0/q[19]:Q

q_c[18]:count_0/a[18]:Q

q_c[17]:count_0/q[17]:Q

q_c[16]:count_0/q[16]:Q

q_c[15):count_0/q[15]:Q

q_c[14]:count_0/q[14]:Q

Lc[l..?.]:m.ntif&[l?.]:q

9_c[12]:count_0/q[12]:Q

Write
Delete

Reverse Bit Order
Change Radix to Binary

Create Group...

I

q_c[11]:count_0/q[11]:Q
Lc[lﬂ]:mntﬂlﬂlzq
For a probe group:

o Write

e Delete

e Reverse Bit Order

e Change Radix to Hex/Binary

e Create Group

e Ungroup

29

& Microsemi

SmartDebug User's Guide

PN aroup[4:0] -
Count_EPCS_Ck_Q_0:Count EPCS_CkAJ:Q | rite =
Comt=EPC5=RES-Et:CDu'1t_jPCS=Reget,Uu;Q | Delete i
FIF(J:RESET_I‘%__Q:FIFU:RESET:N,UEI:Q [: B
q_ c[19] :cotmt=n_.-'q[19] :Q i Reverse Bit Order B

[' q_c[18]):count_0/q[18]:Q Change Radix to Binary b

o ':I_C[l'g:D] |

- Create G =
'q_c[19]:count_0/q[19]:Q reate broup W
Lc[lﬂl :cntmt=ﬂ_."q[1.3] :Q Ungroup

Differences Between a Bus and a Probe Group

A bus is created automatically by grouping selected probe nets with the same name into a bus. A bus
cannot be ungrouped.

A Probe Group is a custom group created by adding a group of signals in the Active Probe tab into the
group. The members of a Probe Group are not associated by their names. A Probe Group can be
ungrouped.

In addition, the certain operations are also restricted to the member of a bus, whereas they are allowed in a
probe group.

The following operations are not allowed in a bus:

« Delete: Deleting an individual signal in a bus

* Move to Group: Moving a signal to a probe group

*« Remove from Group: Removing a signal from a probe group

Memory Blocks (SmartFusion2, IGLOO2, and RTG4)

The left pane in the Memory Blocks tab shows the list of defined memory blocks that are specified in your
design. Select a memory block and add it to the Ul. After you select a memory block, you can click Read
Block to show the current content of the memory or write to individual memory locations. Each field is
editable, and multiple memory locations can be written at the same time.

Each field is a 9-bit memory word (for SmartFusion2 and IGLOO2 devices) and 9-bit or 12-bit memory word
(for RTG4 devices, depending on the memory configuration). Valid inputs are hexadecimal values between
0x0 and Ox1FF (for SmartFusion2, IGLOO2, and RTG4 devices in 9-bit mode) and 0x0 and OxFFF (for
RTG4 devices only in 12-bit mode), as shown in the figure below.

30

& Microsemi

Memory Blocks Selaction [FPGA Aay debug data
Memory Blodks: [seet | [Lveprobes | Actveprobes | MemoryBods |

RAM_Probe.Fabric_ORAM_Probe_LRAM_73 LRAH ROCOTIST RAMERISF o | | CumentMemoryBlods RAM Probe Fabric_O/RAM Probe LRAM_73 LRAM ROCOINST RAMS4x18 P
RAM_Probe_Fabric_0/RAM_Probe_LRAM_35_URAM_ROCO/INST RAMGMI8 P | Data bit Mode: 9
RAM_Probe_Fabric_0fRAM_Probe_DPSRAM_21_DPSRAM_ROCO/INST RAMIKIE IP = |
RAM_Probe _Fabric_0/RAM Probe_DPSRAM_79_DPSRAM_ROCO/INST RAMIKIE IP | T

R Prim e LA b T RCUNET PR 0000 183 O3 080 180 002 024 005 000
RAM_Probe_Fabric_0/RAM Probe_URAM_33_URAM_ROCD/INST_RAMS<x 18_IP W01 000 004
RAM_Probe_Fabric_0/RAM Probe_URAM_101_URAM_RDCO/INST_RAME<x18_IP
RAM_Probe_Fabric_0/RAM_Probe_DPSRAM_76_DPSRAM_ROCD/INST RAMIK18_IP

RAM_Probe_Fabric_0/RAM Probe_LEAM_17_URAM_ROCO/INST_RAMS4x 18_IP T L0150 | Cot | ROz v O |90
RAM_Probe _Fabric_0/RAM Probe_DPSRAM_S55_DPSRAM_ROCD/INST RAMIK18_IP

RAM_Probe_Fabric_0/RAM Probe_LEAM_86_URAM_ROCO/INST RAMS4x13_IP ol S s e e e [
RAM_Probe_Fabric_0/RAM_Probe_DPSRAM_42_DPSRAM_ROCD/INST RAMIX18_IP 040
RAM_Probe Fabric_0/RAM Probe_LELAM_32_URAM_ROCO/INST RAMS4x 13 IP
RAM _Probe._Fabric_0/RAM _Probe_DPSRAM_63_DPSRAM_ROCO/INST RAMIK18 [P

RAM_Probe_Fabric_0/RAM Probe_DPSRAM_25_DPSRAM_ROCD/INST RAMIKIE IP 200 (0 100 [0 N 00 | L | 0
RAM_Probe_Fabric_0/RAM_Probs_DPSRAM_63_DPSRAM_ROCO/INST RAMIKIE_IP 060 01 100 041 000 018 002 040 008
RAM_Probe Fsbric_0/RAM Probe LELAM_84 LRAM_ROCO/INST RAMS4x 13 IP
RAM Probe Fabric_0/RAM Probe DPSRAM_33_DPSRAM_ROCD/INST RAMIK1E [P 0070 120 002 002 004 050 088 000 004
RAM_Probe Fabric_/RAM Probe_DPSRAM_I08_DPSRAM ROCO/INST RAMIKIS...
RAM_Probe_Fabric_0/RAM_Probe_DPSRAM_33_DPSAAM_ROCD/INST_RAMIK18_IP
RAM_Probe _Fabric_0/RAM_Probe_LRAM_103_URAM_RDCO/INST_RAME4x18_IP
RAM_Probe_Fabric_0/RAM_Probe_DPSRAM_80_DPSRAM_ROCD/INST_RAMIK18_IP
RAM_Probe _Fabric_0/RAM_Probe_LRAM_55_URAM_ROCO/INST RAMS4x 18_IP
RAM_Probe _Fabric_0/RAM_Probe_LRAM_106_URAM_ROCO/INST_RAME4x16_IP
RAM_Probe _Fabric_0/RAM_Probe_LEAM_100_URAM_RDCO/INST_RAME4x16_IP ReadBlock | | Write Block

020 00A 168 0RD 101 020 ICO

8

020 010 024 000 190 040 010 130 000 008

8

001 00

(=]

001 000 018 061 100

BB | R|8|8
8
g
g
g

g
]
g
g
g

01 000 144

.,
8
2
2

010 o€

g
B
8
Bl2|8|8
g
g
2|B|E B R

8
]
]

Figure 16 - Debug FPGA Array - Memory Blocks Tab

Fields that have changed but have not yet been written appear in red text until you click Write Block to
initiate a memory write (as shown in the figure below).

1] Debug FPGA Aray

8% FpcaAmay debug data
sdect | [LveProbes | Actveprobes | MemoryBods |

RAM ProbeFobric QRAM_Probe URAM.73 LRAM ROCO/INST RAMG4x13 P | » | | CurentMenceyBiock: - RAM Probe Fabeic_ORAM Probe URAM.73 LRAM ROCOMNST RAMG 18 [P
| RAM_Probe _Fabric_0/RAM_Probe_URAM_35_URAM_ROCO/INST RAM64(13 P | | Data bit Mode: 9

| RAM_Probe_Fabric_0/RAM_Probe_DPSRAM_21_DPSRAM_ROCO/INST RAMIKIS_IP = —
| RAM_Probe_Fabric_0/RAM_Frobe_DPSRAM_73_DPSRAM_ROCO/INST RAMIKIS IP | | 0000 001 002 003 004 005 006 007 06
| RAM_Probe_Fabric_0/RAM_Probe_DPSRAM_53_DPSRAM_ROCO/INST RAMIKIS_IP
| RAM_Probe_Fabric_0/RAM_Probe_URAM_33_LRAM ROCO/INST RAMG4x13 P 0010 000 004 108
RAM_Probe_Fabric_(/FAM_Probe_ URAM_101_URAM_ROCO/INST RAME4x18_[P
| RAM_Probe_Fabric_0/RAM_Probe_DPSRAM_76_DPSRAM_ROCO/INST_RAMIK15_IP 020 10 190 004
| RAM_Probe _Fabric_0/RAM_Frobe_URAM_17 LRAM ROCO/INST RAMG4x13 TP
| RAM_Probe_Fabric_0/RAM_Probe_DPSRAM_56_DPSRAM_ROCO/INST RAMIKIS_IP 0B i
| RAM_Probe_Fabric_0/RAM_Probe_URAM_55_URAM_ROCO/INST RAMS4x13 [P
j&m_nm_m_nﬁm_m_mm_az_m_mm_wum_m 0040 000
| RAM_Probe_Fabric_0/RAM_Probe URAM_32_URAM_ROCO/INST_RAMS4x 18_IP
|RAM _Probe_Fabric_0RAM _Probe DPSRAM 63 DPSRAM ROCO/INST RAMIKIS [P w050 000
| RAM_Probe_Fabric_0/RAM _Probe_DPSRAM_25 DPSRAM_ROCO/INST RAMIKIS_IP |

| RAM_Probe_Fabric_O/RAM_Probe_DPSRAM_63_DPSRAM_ROCO/INST_RAMIK13_IP 0080 01
| RAM_Probe_Fabric_0,RAM _Probe URAM_B4_LRAM ROCO/INST_RAMS4x13 P
| RAM_Probe_Fabric_0/RAM_Probe_DPSRAM_33_DPSRAM_ROCO/INST RAMIK15_IP oM i
| RAM_Probe_Fabric_0/RAM_Probe_DPSRAM_108_DPSRAM_ROCD/INST_RAMIKIS...
RAM_Probe_Fabric_RAM_Probe_DPSRAM_33_DPSRAM_ROCO/INST RAMIK1S_IP
| RAM_Probe_Fabric_0JRAM_Probe URAM_103 URAM ROCO/INST_RAMG4¢15 P
RAM_Probe_Fabric_/RAM_Probe DPSRAM_8)_DPSRAM_ROCO/INST RAM1K15_IP
| RAM_Probe_Fabric_0JRAM_Probe URAM_S5_LRAM ROCO/INST_RAMG4x18_TP

| RAM_Probe _Febric_0/RAM_Probe_URAM_106_URAM_ROCO/INST RAMS4x13_IP

| RAM_Probe_Fabric_0/RAM_Probe_URAM_100_URAM_ROCO/INST RAMG4x18_IP Read Block ” Wirie Block
| RAM_Probe_Fabric_0/RAM_Probe_URAM_104_URAM_ROCO(TNST_RAME4x 15 _IP
|RAM_Probe_Fabric_0/RAM_Probe URAM_S3_LRAM ROCO/INST RAME4X1S P ~

020 00A 168 0AD 101 020 1CO

g

010 024 000 190 040 010 130 000 008

g
z

g

100
000
012 000 040 000 004 083 000 0DO 100 0OL 002 OO0
000 001 000 018 061 100
08C 01C 020
002 000 OC1 040 101 080 011 010 0E

041 018

g
z
g
g

001

S|E|B|& |8
g
$ E|8|2
£E|8|8 |8 |k
g

000
0

002 000 004 000 O01
000

050 088 00O 004 003 000 00D

Figure 17 - Memory Blocks with Updated Values

& Microsemi

SmartDebug User's Guide

Probe Insertion (Post-Layout) - SmartFusion2, IGLOO2, and RTG4

Introduction

Probe insertion is a post-layout debug process that enables internal nets in the FPGA design to be routed to
unused I/Os. Nets are selected and assigned to probes using the Probe Insertion window in SmartDebug.
The rerouted design can then be programmed into the FPGA, where an external logic analyzer or
oscilloscope can be used to view the activity of the probed signal.

—
Pre-Synthesis
Simulation
Design Implementation ~ Synthesis ok Svriiasis
Simulation
——
Insert probes into design I |
Original e \"-’E 0 : - Place & Route
ﬁgﬂ = s 3 Incrementally
/}i ----- routed net for
Routing may change probing
after incremental
route
Analyze Probed Signals
- ‘. -

Figure 18 - Probe Insertion in the Design Process

The Probe Insertion debug feature is complementary to Live Probes and Active Probes. Live Probes and
Active Probes use a special dedicated probe circuitry.

Probe Insertion
1. Double-click SmartDebug Design in the Design Flow window to open the SmartDebug main window.
Note: FlashPro Programmer must be connected for SmartDebug.
2. Select Debug FPGA Array and then select the Probe Insertion tab.

32

& Microsemi

5| Debug FPGA Array

Prabe Insartion Data Sekection B X FpGA Array debug data

Hierarchical View | Nethst View Live Probes | Active Probes Memory Blocks Probe Insertion

Filter: | Search

Stancads): add ': Net Driver Package Pin Part Name

. | =

St e AND2_0_Y AND2_DAU0:Y | unassigned |Probe_Insertd
I prinitves D_c UITTAG_O/INST_UIJTAG_SYSRESET_FF_IP:UDRUFD [Unassgned = |Probe Inserti
5 Aanpz 0 z DIRET = TS (o= J 2
i p_buf
& FooC_0
| mux_seL
=/ M2 0
T Reset
& stop
W UITAG_0
T User QK
W count 0

Insrt probe(s) and program the device | Run

Figure 19 - Probe Insertion Tab

In the left pane of the Probe Insertion tab, all available Probe Points are listed in instance level hierarchy in
the Hierarchical View. All Probe Names are shown with the Name and Type in the Netlist View.

3. Select probe points from the Hierarchical View or Netlist View, right-click and choose Add to add them
to the Active Probes UI. You can also add the selected probe points by clicking the Add button. The
probes list can be filtered by using the Filter box.

Each entry has a Net and Driver name which identifies that probe point.

The selected net(s) appear in the Probes table in the Probe Insertion tab, as shown in the figure below.

SmartDebug automatically generates the Port Name for the probe. You can change the Port Name from
the default if desired.

4. Assign a package pin to the probe using the drop-down list in the Package Pin column. You can assign
the probe to any unused package pin (spare 1/O).

33

& Microsemi

SmartDebug User's Guide

1| Debug FPGA Array

& 0_buf

T T
WEFSEFEE
; Qﬁhsﬂ
'3§b2§ °H

...
LA

ke
=]

-

» B q.s

B X FpGA Array debug data

Live Probes | Active Probes | Memory Blodks

Driver
count_0fqf0]:Q
count_0fa[1]:Q
count_0faf3]:0Q

Probes Insertion

IH5 | Probe_fnsertd
S
|H5 - ‘ Testz

- 1
[Jé ~ | Probe_lnsert2

Insert probe(s) and program the device | Run

5.

Figure 20 - Debug FPGA Array > Probe Insertion > Add Probe
Click Run.

This triggers Place and Route in incremental mode, and the selected probe nets are routed to the
selected package pin. After incremental Place and Route, Libero automatically reprograms the device with
the added probes.

The log window shows the status of the Probe Insertion run.

Probe Deletion

To delete a probe, select the probe and click Delete. To delete all the probes, click Delete All.

Note: Deleting probes from the probes list without clicking Run does not automatically remove the probes
from the design.

Reverting to the Original Design
To revert to the original design after you have finished debugging:

1.
2.
3.

In SmartDebug, click Delete All to delete all probes.
Click Run.

Wait until the action has completed by monitoring the activity indicator (spinning blue circle). Action is
completed when the activity indicator disappears.

Close SmartDebug.

34

& Microsemi

Debug SERDES (SmartFusion2, IGLOOZ2, and RTG4)

You can examine and debug the SERDES blocks in your design in the Debug SERDES dialog box (shown
in the figure below).

To Debug SERDES, expand SmartDebug in the Design Flow window and double-click Debug SERDES.

Debug SERDES Configuration is explained below. See the PRBS Test and Loopback Test topics for
information specific to those procedures.

SERDES Block identifies which SERDES block you are configuring. Use the drop-down menu to select
from the list of SERDES blocks in your design.

Debug SERDES - Configuration

Configuration Report

The Configuration Report output depends on the options you select in your PRBS Test and Loopback Tests.
The default report lists the following for each Lane in your SERDES block:

Lane mode - Indicates the programmed mode on a SERDES lane as defined by the SERDES system
register.
PMA Ready - Indicates whether PMA has completed its internal calibration sequence for the specific lane

and whether the PMA is operational. See the SmartFusion2 or IGLOO2 High Speed Serial Interfaces User
Guide on the Microsemi website for details.

TxPII status - Indicates the loss-of-lock status for the TXPLL is asserted and remains asserted until the PLL
reacquires lock.

RxPLL status - Indicates the CDR PLL frequency is not grossly out of range of with incoming data stream.

Click Refresh Report to update the contents of your SERDES Configuration Report. Changes to the
specified SERDES register programming can be read back to the report.

SERDES Register Read or Write

Script - Runs Read/Write commands to access the SERDES control/status register map using a script.
Enter the full pathname for the script location or click the browse button to navigate to your script file. Click
Execute to run the script.

35

http://www.microsemi.com/document-portal/doc_download/130922-smartfusion2-soc-fpga-high-speed-serial-interfaces-user
http://www.microsemi.com/document-portal/doc_download/132011-igloo2-fpga-high-speed-serial-interfaces-user-s-guide

& Microsemi

SmartDebug User's Guide

%2 Debug SERDES

SERDES Blodk: |SERDESIF_0 - |

@ Lane 0 Lane 1 Lane 2 Lane 3
SERDES Lanes: —— ' ' 1
[Lane OReset | [Lane 1Reset | |Lane 2Reset | Lane 3Reset |
| Debug SERDES | Configuration Report:
Configuration [=] Refresh Report|
4 Tests Serdes Block SERDESIF 0 : ——————
et g EPCS (custom)
ane mode ; s
Loopback Test PMA Ready : Trus
THPLL status : Lodked
RyPLL status : Lodked
Lane 1:
Lane mode ; EPCS (custom)
PMA Ready : True
TxPLL status : Lodked 3
RxPLL status : Lodked 3
Lane 2 :
Lane made EPCS (custom)
PMA Ready : True
THPLL status : Lodked
RaPLL status : Locked
Lane 3:
Lane mode : EPCS (custom)
PMA Ready : True
THPLL status @ Lodked
RxPLL status : Lodked
SERDES Register Read or Write:
Saiph: v | Execste |

[ree |

Figure 21 - Debug SERDES - Configuration
Note: The PCle and XAUI protocols only support PRBS7. The EPCS protocol supports PRBS7/11/23/31.

Debug SERDES — Loopback Test

Loopback data stream patterns are generated and checked by the internal SERDES block. These are used
to self-test signal integrity of the device. You can switch the device through predefined tests.

See the PRBS Test topic for more information about the PRBS test options.

SERDES Block identifies which SERDES block you are configuring. Use the drop-down menu to select
from the list of SERDES blocks in your design.

SERDES Lanes

Select the Lane and Lane Status on which to run the Loopback test. Lane mode indicates the programmed
mode on a SERDES lane as defined by the SERDES system register.

Test Type

PCS Far End PMA RX to TX Loopback- This loopback brings data into the device and deserializes and
serializes the data before sending it off-chip. This loopback requires OPPM clock variation between the TX
and RX SERDES clocks.

See the SmartFusion2 or IGLOO2 High Speed Serial Interfaces User's Guide on the Microsemi website for
details.

36

http://www.microsemi.com/document-portal/doc_download/130922-smartfusion2-soc-fpga-high-speed-serial-interfaces-user
http://www.microsemi.com/document-portal/doc_download/132011-igloo2-fpga-high-speed-serial-interfaces-user-s-guide

& Microsemi

Near End Loopback (On Die) - To enable, select the Near End Loopback (On Die) option and click Start.
Click Stop to disable. Using this option allows you to send and receive user data without sending traffic off-
chip. You can test design functionality without introducing other issues on the PCB.

See the SmartFusion2 or IGLOO2 High Speed Serial Interfaces User's Guide on the Microsemi website for
details.

€ Debug SERDES LY

hep | [Cose |

SERDES Block: 'SEQESLF__D)

@ Lane D Lane 1 Lane 2 Lana 3
SERDES Lanes: ’ \ e 2
[Lane OReset] [Lane 1Reset | [Lane 2Reset | [Lane 3 Reset.
Debug SERDES Lane 0 status: RxPLL TxPLL
Configuration Tast Type:
4 Tests
PRES Test @ PCS Far End PMA Rx to Tx Loopback
Loopback Test | MNear End Serial Loopback (On Die)

Start

Figure 22 - Debug SERDES - Loopback Test

Debug SERDES — PRBS Test

PRBS data stream patterns are generated and checked by the internal SERDES block. These are used to
self-test signal integrity of the device. You can switch the device through several predefined patterns.

View Loopback Test settings in the Debug SERDES - Loopback Test topic.

SERDES Block identifies which SERDES block you are configuring. Use the drop-down menu to select
from the list of SERDES blocks in your design.

SERDES Lanes

Test Type

Select the Lane and Lane Status on which to run the PRBS test. Lane mode indicates the programmed
mode on a SERDES lane as defined by the SERDES system register.

Near End Serial Loopback (On-Die) enables a self test of the device. The serial data stream is sent from
the SERDES TX output and folded back onto the SERDES RX input.

Serial Data (Off-Die) is the normal system operation where the data stream is sent off chip from the TX
output and must be connected to the RX input via a cable or other type of electrical interconnection.

37

http://www.microsemi.com/document-portal/doc_download/130922-smartfusion2-soc-fpga-high-speed-serial-interfaces-user
http://www.microsemi.com/document-portal/doc_download/132011-igloo2-fpga-high-speed-serial-interfaces-user-s-guide

& Microsemi

SmartDebug User's Guide

Pattern
The SERDESIF includes an embedded test pattern generator and checker used to perform serial
diagnostics on the serial channel, as shown in the table below.
Pattern Type
PRBS7 Pseudo-Random data stream of 227 polynomial sequences

PRBS11 Pseudo-Random data stream of 2211 polynomial sequences

PRBS23 Pseudo-Random data stream of 2223 polynomial sequences

PRBS31 Pseudo-Random data stream of 2231 polynomial sequences

Cumulative Error Count

Lists the number of cumulative errors after running your PRBS test. Click Reset to reset to zero. 1. By
default, Cumulative Error Count = 0, the Data Rate text box is blank, and Bit Error Rate = NA.

& Debug SERDES [7)
SERDES Block: |SERDESIF O ~
@ Lane 0 Lane 1 Lane 2 Lane 3
SERDES Lanes: r r , .
[Laneﬂﬁ‘.uetf Lane 1Reset | |Lame 2Reset| |Lane 3Reset
.Dﬂbu': SERDES Lane O status: RaPLL TaPLL Lock to data
f[:onfigurafion Test Type:
4 Tests
PRES Tect @ Near End Serial Loopback (On-Die) Serial Data (Off-Die)
Lecpback Test Pattern:
@ PRBS7
PRBS11
Start
PRES 23
PRES 31 Stop
Cumudative Error Count Data Rate Bit Error Rate
0 1 Ghos NA | Reset
— R —
[_neo | e |
[

Figure 23 - Debug SERDES - PRBS Test
Note: If the design uses SERDES PCle, PRBS7 will be the only option shown for PRBS tests..

Bit Error Rate
Displays the Bit Error Rate (BER) for the PRBS test in progress.
The formula for calculating the BER is as follows:
BER = (#bit errors+1)/#bits sent
#bits sent = Elapsed time/bit period

& Microsemi

When clicked on Start:
e The BER is updated every second for the entered data rate and errors observed.
¢ If no data rate is entered by the user, the BER is set to the default.
When clicked on Stop:
e The BER resets to default.
When clicked on Reset:
e The BER is reset to default.
e If notestisin progress, the BER remains in the default value.
e If the PRBS test is in progress, the BER calculation restarts.

Debug SERDES — PHY Reset

SERDES PMA registers (for example, TX_AMP_RATIO) modified using a TCL script from the Configuration
tab require a soft reset for the new values to be updated. Lane Reset for individual lanes achieves this
functionality. Depending on the SERDES lanes used in the design, the corresponding Lane Reset buttons
are enabled.

Lane Reset Behavior for SERDES Protocols Used in the Design
e EPCS: Reset is independent for individual lanes. Reset to Lane X (where X = 0,1,2,3) resets the Xth
lane.
e PCle: Reset to Lane X (where X =0,1,2,3) resets all lanes present in the PCle link and PCle controller.

For more information about soft reset, refer to the SmartFusion2 and IGLOO2 High Speed Serial Interfaces
User Guide.

Inspect Device Dialog Box (SmartFusion, Fusion, and ProASIC3
Only)

Inspect Device is available as a part of the FlashPro programming tool. Refer to Using SmartDebug for
information about how to configure FlashPro to access this feature.

In the Inspect Device dialog box, you can access all SmartDebug features, such as the FlashROM,
Embedded Flash Memory (NVM), and Analog Block. If you have multiple devices and programmers
connected, choose your target device/programmer from the drop-down menu, and use the ID code to verify
that you are inspecting the correct device.

View Device Status - Displays the Device Status Report. The Device Status Report is a summary of your
device state, analog block test values, user information, factory data, and security information. You can save
or print your information for future reference.

View Analog Block Configuration - Opens the Analog Block Configuration dialog box. You can view the
channel configuration for your analog block and compare the channel configuration with any other analog
block file.

View Flash Memory Content - Opens the Flash Memory dialog box. You can view the details for each flash
memory block in your device.

View FlashROM Content - Opens the FlashROM data dialog box. You can view a list of the physical blocks
in your FlashROM and the client partitions in FlashROM configuration files.

39

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132011
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132011

& Microsemi

SmartDebug User's Guide

Y Inspect Device ? rz]

Device: ﬂ.."FEI.'.IL'H"'rEiF (AZF200M3F) Programmer: 51538 (usbS1538) W

ID code read From device: SA131CF

[view Device Status | [view Analog Block Configuration | [view Flash Memary Content | [view FlashROM Content

Figure 24 - Inspect Device Dialog Box

Device Status Report (SmartFusion and Fusion Only)

This dialog box displays the Device Information report. The Device Information report is a complete
summary of your device state, analog block test values, user information, factory serial number, and security
information. Use this dialog box to save or print your information for future reference.

40

Embedded Flash Memory (NVM) Content Dialog Box

1 Dewvice Status Report

Device: AFSE00 (AFS600) Programmer: 10868 (ush10868)

Device Status:
IDCode (HEX): 233261

User Information:
UROW data (HEX):
Programming Method:
Proge ammer :
Programmer Software:
Dwesign N
Design Check. Sum:
Algorithm Wersion:
Array Prog. Cychs Count:

Device State:
IRCapbure Regeter (HEX):
FPGA Array Stabus:

Analog Block:
OABTR Regester (HEX):
3.3 (wdd33):
1.5V (wdd15):
Bandgap:
=3.3V (wddn33):
ADC Reference:
FPGA_Good:

St st

Factory Data:
Factory Serial Number (HEX):

Security:
Device has no security enforced.

& Microsemi

id|d

wm || &Pt |

2306004 1020408102045 8766803481

FOE
FlashPro3
FlashPro vB.6
top

2308

19

1

Programmed and enabled

1dbe3bb
PASS
PASS
FASS
PASS
PASS
PASS

Analog Block 15 oper stional

B0e020486060

Figure 25 - Device Status Report

(SmartFusion and Fusion Only)

You can do the following in the NVM content dialog box:

e View content of Flash Memory pages (as shown

in the figure below)

e Compare device content with original design content (requires a PDB that contains your EFC data)

41

& Microsemi

SmartDebug User's Guide

e Check page status and identify if a page is corrupted or if the write count limit has exceeded the 10-

year retention threshold

Fusion Devices: Choose your block from the From block drop-down list This action populates the Select
drop-down list with the names of the clients in the selected block that is configured in the Flash Memory

System Builder.

SmartFusion Devices: Block selection is unused and unavailable.

Choose a client name from the Select drop-down list and click Read from Device to view the values. You

can also view a specific page range by selecting the <Page Range> option in the Select drop-down list and
then specifying the start page and the end page.

You must click Read from Device each time you specify a new page range to update the view.

If you do not have your original design programming database (PDB) file, you can examine and retrieve a

range of pages. Specify a page range if you wish to examine a specific set of pages. Page Status

information appears to the right.

Y Flash Memary

Retrieve Flash Memory Content from Device:
ﬁmm o Elevsd b

Select ACTEL PPE_MERGE CONFIG(p) W
Start address: FED
Chent sive: 4

Latest Content Retrieved from Device:

2 Read from Device *

(page 2044)
bytes (1 page)

Retrieved Contert: Chent "ACTEL_PPE_MERGE_CONFIG, 48 bytes starting from address O IFEDD

i3

Mion Jun 06 1610601 2011

[Wow Detaded Status| [Compare Chent Content

Cortent

nasb b mm ErE e P o = T e e T e e T

2044 | ¥E00j00 03 00 0
44 | ¥E10J1 03 40 00
2044 IFE20| 11 00 18 o
o244 | ¥EWj00 00 00 0
244 | ¥E0j00 00 00 00
2044 | ¥es0jo0 00 00
2044 | ¥E60jo0 00 00 O
2044 | ¥E0jo0 00 00 0

[]

00 10 10 1]
00 10 10 01
o3 20 18 10
00 00 00 o0
00 00 00 00
00 00 00 00
00 00 00 o0
oo 00 00 o0

10

8 E 8 8 8 8RB

04 10 20

2

10 20

o
b
8
=

8 8B B B
8 8 8B B 8
8 8 B B B

[oom]

Figure 26 - Flash Memory Content Dialog Box for a SmartFusion Device (SmartDebug)

42

& Microsemi

Embedded Flash Memory: Browse Retrieved Data (SmartFusion
and Fusion Only)

The retrieved data table displays the content of the selected client or the page range selection. Corrupted
page content is displayed in red. Read-only page content, corresponding to clients defined with the Prevent
read option in Flash Memory System Builder, is displayed with a gray background. If content cannot be read
(for example, pages are read-protected, but security has been erased), the content is displayed as XX. The
mouse tooltip summarizes abnormal content status (as shown in the figure below).

The corresponding page number and address (relative to the current block) are displayed in the left column.
The client size specified in the Flash Memory System Builder is shown at the top of the content table.

In the Retrieved Data View, you can enter an Address value (such as 0010) in the Go to Address field and
click the corresponding button to go directly to that address.

Click View Detailed Status for a detailed report on the page range you have selected.

For example, if you want to view a report on pages 1-3, set the Start Page to 1, set the End Page to 3, and
click Read from Device. Then click View Detailed Status The figure below is an example of the data for a
specific page range.

¥ Flash Memory Details EWE

In Block 1, from Page 1 to Page 3, 354 bytes starting From address 0x&0 as of Wed Jan 20 15:40:57 2010 ’ EI Save] [&4 Print l

~
Flash Memary Content [Page 1 to 3]
FlashMemaory Page #1:
Skatus Register(HEX): 0008000
Status ECCZ check: Pass
Data ECCZ Check: Pass
W'ribe Counk: Pass (2288 writes)
FlashMemaory Page #2:
Stakus Register{HEX): 000SFO00
Status ECCZ check: Pass
Data ECCZ Check: Pass
w'ribe Counk: Pass (2288 writes)
Flashfemory Page #3:
Stakus Register{HEX): 000SFO00
Status ECCZ check: Pass
Data BCCZ Check: Pass
w'ribe Counk: Pass (2288 writes)
Total number of pages with skatus ECCZ errors: O
Total number of pages with data ECCZ errors: O
Tatal nurmber of pages with write count auk of range: 0
FlashMemory Check PASSED For [Page 1 to 3]

Figure 27 - Flash Memory Details Dialog Box (SmartDebug)

43

& Microsemi

SmartDebug User's Guide

T Flash Memo ry El El

Retrieve Flash Memory Content from Device:
From block, | 3 - newCore.sfc |

s[>

Start Page: |0 {address 0o00000)
EndPage: |3 (4 pages, 512 bytes)
Latest Content Retrieved from Device: Wed Jan 20 10233117 2010

Retrieved Content: In Block 3, from Page O bo Page 3, 512 bytes starting From address 0x0
View Deballed Status

Go to Address (hes):

Conbent

o |1 Jz]a]s+|s]les]lr]lels]ale]c]le]cel]ecF

Page Mumber | Address

0 poooo] oo o0 o0 00 0o OO0 00 00 OO o0 OO o0 OO oo o0 oo
P OO0l D0 00 0 D0 00 00 O0 0O OO0 00 OO 00 OO 00 oo
0 poozOl OO 0D OO0 00 00 o0 00 00 OO _. o0 oo
o poo30)l o0 00 OO0 00 00 OO OO 0O OO0 00 OO 00 OO DO 00 OO
0 poo40] 0O 00 00 00 00 o0 00 00 00 00 OO 00 00 00 00 OO
0 poosol oo 00 OO0 D00 0O 00 OO 0O OO 00 OD 0O OO DO 00 OO
0 Doo60) DO 00 0 D0 00 oD O0 0O OO0 00 OO OO0 DD DO 00 OO
0 poorol oo o0 o0 0O 00 OO0 OO 0O OO OO0 OD 00 0O DO 00 DO
1 ooosg) OO OO0 0 OO0 00 00 OO 0O OO 00 OD 00 OO0 DO 00 OO
i DOOR0) OO 00 00 D0 00 oD 00 00 00 00 OO 00 D00 D00 00 OO
W

!
:

Figure 28 - Flash Memory Browse Retrieved Data

Embedded Flash Memory: Compare Memory Client (SmartFusion
and Fusion Only)

After you retrieve the data from the device, the Compare Client Content button lets you compare the content
of the selected client from the device with the original programming database (PDB) file. The differences are
shown in the Compare Memory Client dialog box (as shown in the figure below).

Note: This option is not available when you select to retrieve the data based on a page range.

44

1 Compare Memory Client

In Block 0, Clienk "DSBbIK", 256 bytes starting from address 0x0 as of Sun Jan 17 12:12:062010 | | save || &t |

Flash Memory Client Compare [DS8bit - Block 0] |

Difference at bybe 0.
Byte Design Device

L]

OefFh | O

Difference at bytes 2 to 4.

Byte Design |Device

2 O3 |00
d OochS | oD
4 OxBE | OwOD

6 |FF |0x00
7 el | O
& et | O
9 |oxA4 [0w00
10 [oxaa |0x00
1 |meas |ox00
12 |reesd, e |

Figure 29 - Compare Memory Client Dialog Box

FlashROM Content Dialog Box (Fusion and SmartFusion Only)

In the FlashROM Content dialog box, you can view the physical blocks in your FlashROM and the client
partitions specified in the original design content (requires a PDB that contains your UFC data). If the
project’'s PDB does not contain UFC data, only the physical blocks are displayed.

Scroll through the table to view the Words and Pages for your physical blocks.

The Client Partitions section lists the names and configuration details of the clients set up in the FlashROM
Builder. It automatically finds all mismatched client regions. To view the differences between a client and the
device content, select a region row in the Client Partitions table. This action highlights the corresponding

device content in the Physical Blocks table. The mismatch details are displayed below the Client Partitions
table.

To copy the content of the Physical Blocks table to clipboard, select one or more cells in the table and type
Ctrl+C.

45

& Microsemi

SmartDebug User's Guide

1 FlashROM

Phvsical Blocks

15| 14| 13| 12|11 | 10| 9| 8| 7| 6| 5| 4] 3] 2] 1] o
7/FF |7E |70 |FC |76 FA F9 |78 |77 |F6 |F5 |74 |F3 |72 |71 |FD
6lzz |22 |22 |22 |22 |22 |22 |22 |22 |22 |22 |22 |22 |22 |22 |22

5 SF DE DD SC DB SA S9 D8 DF 56 55 D4 53 D2 Dl 50
Pages |4 FEENIGININITINFE I 0r Fo a8 |0 EF [0 |BC DE FO |AB |CD

3/3F |BE |BD |3C BB |3A |39 BS |B7 |36 |35 B4 |33 B2 |Bl |30
200 00 00 OO0 OO0 00 OO0 OF BB FA FA FA FA FA FA BB
100 @00 @O0 00 00 OO0 00 00 00 00 00 00 00 00 00 00
olo1 |23 (45 |67 (89 01 |23 45 |67 |89 |AA AB BB | CC |CD DD

Client Partitions

FlashROM configuration file: D:\temphfromZifrom_File_corelfrom_File_core,ufc

Found Z client regions that do not match with device conkent,

Region Mame Region Type Page Start Word Size (words)
Region_3_11 Read Fram File 3 11 5
Reqgion_4_11 Skatic 4 11 5 &
Region_5_11 ko Inc 5 11 1 o

Zonkent details for selected region

From device: ABCDEFOAEC
Shown as: HEXADECIMAL
From config file: 0ooooooooo

& Mismatch between configuration file content and device content.

Figure 30 - FlashROM Content Dialog Box

Analog Block Configuration Dialog Box (SmartFusion and Fusion
Only)

In the Analog Block Configuration dialog box, you can:
e View the channel configuration on your analog system and identify if/how the channels are configured.

e Compare with the design configuration from the Analog System Builder for Fusion and SmartDesign
MSS Configurator for SmartFusion.

The values displayed for each channel vary depending on the device family and channel you select; the
Channel configuration register read from the ACM is shown for each analog channel. Individual, decoded bit

46

& Microsemi

fields of the register are listed immediately beneath (as described in the Fusion and SmartFusion
handbook). The dialog box may display the following values:

Fusion Device:

Analog MUX select

Internal chip T monitor

Scaling factor control

Current monitor switch

Current monitor drive control

Direct analog input switch

Pad polarity - G, T, V, C pad polarity, positive or negative
Select low/high drive

Prescaler op amp mode

SmartFusion Device:

Gain select

Channel state

Direct Input state

Current Monitor state
Current monitor strobe state
Comparator state
Hysteresis select

Analog MUX select

DAC input select
Temperature monitor state
Temperature monitor strobe state
Vref switch state

To use the compare feature, select the Compare with checkbox. If the loaded PDB file contains Analog

Block configuration information, the comparison appears automatically.

To use a specific Project File, click Browse and navigate to the Analog System Builder directory for Fusion
or SmartDesign for SmartFusion. In a typical IDE project, this directory is located at:

Fusion - <project_root>/smartgen/<analog_block_core_name>

SmartFusion - <project root>/component/work/<SmartDesign project>/MSS_ACE_0

After specifying the compare directory, the differences (if any) are indicated in red on a channel by channel
basis, as shown in the figure below.

47

& Microsemi

SmartDebug User's Guide

1 Analog Block Configuration

Channel configuration Compare with: 2515
. Found 32 mismakched dumsls. _ Brovess. ..
Fa
Channel Byte | e
Device Content File Content
ACO Qw00 Lﬁ Byte 1) | 38
Analog MUX select Prescaler Direct inpuk
cn 0x00 A :
A Scaling factor control 0.3125 (8v) 0.15625 {16V}
ATO Ox80 & Current monitor switch Off on
— Direct analog input switch OF on
Al ¥-pad polarity Positive Positive
ACL Ox10 Prescaler op amp mode Operstional Posvardosm
ACT Ox00 &
AT1 Ox80 | A\
A2 Oxo2 &
ACD 0x10 |

Figure 31 - Analog Block Configuration Dialog Box for a Fusion Device (Differences in Red)

48

& Microsemi

SmartDebug Tcl Commands

SmartDebug Tcl Support (SmartFusion2, IGLOOZ2, and RTGA4)

The following table lists the Tcl commands related to SmartDebug for SmartFusion2, IGLOO2, and RTGA4.
Click the command to view more information.

Table 1 - SmartDebug Tcl Commands

Command Action
DDR/MDDR
ddr_read Reads the value of specified configuration registers
pertaining to the DDR memory controller (MDDR/FDDR).
ddr_write Writes the value of specified configuration registers

pertaining to the DDR memory controller (MDDR/FDDR).

Probe

add to probe group

Adds the specified probe points to the specified probe
group.

create probe group

Creates a new probe group.

delete active probe

Deletes either all or the selected active probes.

load active probe_list

Loads the list of probes from the file.

move_to_probe_group

Moves the specified probe points to the specified probe
group.

set_live_probe

Set Live probe channels A and/or B to the specified probe
point (or points).

select_active probe

Manages the current selection of active probe points to be
used by active probe READ operations.

read_active probe

Reads active probe values from the device.

remove from probe group

Move out the specified probe points from the group.

save_active probe list

Saves the list of active probes to a file.

select_active _probe

Manages the current selection of active probe points to be
used by active probe READ operations.

ungroup

Disassociates the probes as group.

unset_live probe

Discontinues the debug function and clears live probe
channels.

49

& Microsemi
SmartDebug User's Guide

Command

Action

DDR/MDDR

write _active probe

Sets the target probe point on the device to the specified
value.

LSRAM
read_Isram Reads a specified block of large SRAM from the device.
write_lsram Writes a seven bit word into the specified large SRAM
location.
uUSRAM
read usram Reads a uSRAM block from the device.
write_usram Writes a seven bit word into the specified uUSRAM location.
SERDES
prbs_test Starts, stops, resets the error counter and reads the error

counter value in PRBS tests.

loopback_test

Starts and stops the loopback tests.

serdes lane reset

In EPCS mode, this command resets the lane. In PCI
mode, this command resets the lane, all other lanes in the
link, and the corresponding PCle controller.

serdes read regqister

Reads the SERDES register value and displays the result
in the log window/console.

serdes write register

Writes the value to the SERDES register.

Additional Commands

export_smart_debug_data

Exports debug data for the SmartDebug application.

50

Device Debug / SmartDebug Tcl Commands (SmartFusion,

IGLOO, ProASIC3, and Fusion Only)

Note: Tcl commands in this section may not be supported by all device families listed above. See

the individual commands for specific device support.

The following table lists the Tcl commands related to Device Debug / SmartDebug for SmartFusion and

Fusion). Click the command to view more information.

Table 2 - Device Debug / SmartDebug Tcl Commands

& Microsemi

Command

Action

Type

check flash_memory

Performs diagnostics of the page status
and data information.

Embedded
Flash Memory
(NVM)

compare_analog_config

Compares the content of the analog block
configurations in your design against the
actual values in the device.

Analog Block

compare_flashrom_client

Compares the content of the FlashROM
configurations in your design against the
actual values in the selected device.

FlashROM

compare_memory client

Compares the memory client in a specific
device and block.

Embedded
Flash Memory
(NVM)

(page status and page data).

read_analog_block config | Reads each channel configuration on your | Analog Block
analog system, enabling you to identify
iffnow each channel is configured.

read_device_status Displays a summary of the selected
device.

read flashrom Reads the content of the FlashROM from | FlashROM
the selected device.

read_flash_memory Reads information from the NVM modules | Embedded

Flash Memory
(NVM)

read id code

Reads IDCode from the device without
masking any IDCode fields.

recover_flash_memory

Removes ECC2 errors due to memory
corruption by reprogramming specified
flash memory (NVM) pages and initializing
all pages to zeros.

Embedded
Flash Memory
(NVM)

sample _analog_channel

Samples analog channel; enables you to
debug ADC conversion of the
preconfigured analog channel (you must
provide ADC conversion parameters).

set_debug device

Identifies the device you intend to debug.

set_debug_programmer

Identifies the programmer you want to use

51

& Microsemi
SmartDebug User's Guide

Command Action Type

for debugging (if you have more than
one).

add_to_probe_group (SmartFusion2, IGLOO2, and RTG4)

Tcl command; adds the specified probe points to the specified probe group.

add_to_probe_group -name probe_name -group group_name

Arguments
-name probe_name
Specifies one or more probes to add.
-group group_name
Specifies name of the probe group.

Supported Families
SmartFusion2, IGLOO2, and RTG4

Example
add_to_probe_group -name out[5]:out[5]:Q \
-name grpl.out[3]:out[3]:Q \
-name out.out[1].out[1]:Q \
—-group my_new_grp

check flash_memory

The command performs diagnostics of the page status and data information as follows:

e Page Status — includes ECC2 check of the page status information, write count
e Page Data - ECC2 check

check_flash_memory

[-name {device_name}]

[-block {integer_value}]
[-client {client_name}]
[-startpage {integer_value}]
[-endpage {integer_value}]
[-access {all | status | data}]
[-show {summary | pages}]
[-File {filename}]

At a minimum you must specify -client <name> OR
-startpage <page_number> -endpage <page_number> -block <number>

Arguments
-name {device_name}

Optional user-defined device name. The device name is not required if there is only one device in the
current configuration, or a device has already been selected using the set_debug_device command.

-block {integer_value}

52

& Microsemi

(Optional argument; you must set -client or —startpage, —endpage and —block before use.) Specifies
location of block for memory check.

-client {client_name}

Name of client for memory check.

-startpage {integer_value}

Startpage for page range; value must be an integer. You must specify a —endpage and —block along with
this argument.

-endpage {integer_value}

Endpage for page range; value must be an integer. You must specify a —startpage and -block along with
this argument.

-access {all | status | data}

(Optional argument; you must set -client or —startpage, —endpage and —block before use.) Specifies what
NVM information to check: page status, data or both.

Value Description

Shows the number of pages with corruption status, data corruption and
out-of-range write count (default)

status | Shows the number of pages with corruption status and the number of

pages with out-of-range write count

data | Shows only the number of pages with data corruption

-show {summary | pages}

(Optional argument; you must set -client or —startpage, —endpage and —block before use.) Specifies
output level, as explained in the table below.

Value Description
summary Displays the summary for all checked pages (default)
pages Displays the check results for each checked page

-file {filename}

(Optional argument; you must set -client or —startpage, —endpage and —block before use.) Name of output
file for memory check.

Supported Families

Exceptions

Example

SmartFusion, Fusion

None

The following command checks the page status for block 0 from starpage 0 to endpage 2:

check_flash_memory -startpage 0 -endpage 2 -block 0

The following command checks the memory status for the client 'DS8bit' and saves it to the file
‘checkFlashMemory.log":

check_flash_memory -client {DS8bit} -file {checkFlashMemory.log}

53

& Microsemi
SmartDebug User's Guide

compare_analog_config

Compares the content of the analog block configurations in your design against the actual values in the
device. In a typical SoC project, this directory is located at
<project_root>/smartgen/<analog_block _core_name>.

compare_analog_config
[-name *device_name'™] -mem_file_dir "mem_file_directory"
[-file "filename™]

Arguments

-name {device_name}

Optional user-defined device name. The device name is not required if there is only one device in the
current configuration, or a device has already been selected using the set_debug_device command.

-mem_File_dir {mem_file_directory}
Location of memory file.

-file {filename}

Output filename.

Supported Families

Exceptions

Example

Fusion

None

The following command reads the analog block configuration in the directory F:/tmp/Analog_Block and
saves the data in the logfile compare_analogReport.log:

compare_analog_config -mem_file_dir {F:/tmp/Analog_Block} -file
{compare_analogReport.log}

The following command reads the analog block configuration information in the device '"AFS600' in the
directory F:/tmp/Analog_Block and saves the data in the log file compare_analogReport.log:

compare_analog_config —name {AFS600} -mem_file_dir {F:/tmp/Analog_Block} -file
{compare_analogReport. log}

compare_flashrom_client

Compares the content of the FlashROM configurations in your design against the actual values in the
selected device.

compare_flashrom_client [-name {device_name}] [-Ffile {filename}]

Arguments

-name {device_name}

Optional user-defined device name. The device name is not required if there is only one device in the
current configuration, or a device has already been selected using the set_debug_device command.

-file {filename}
Optional file name for FlashROM compare log.

Supported Families

SmartFusion, IGLOO, ProASIC3 and Fusion

54

Exceptions

Example

& Microsemi

None

The following command saves the FlashROM data to the file ‘FlashRomCompReport.log'":
compare_flashrom_client -file {FlashRomCompReport.log}

The following command compares the data in the device 'A3P250' and saves the data in the logfile
'FlashRomCompReport.log":

compare_flashrom_client —name {A3P250} -file {FlashRomCompReport.log}

compare_memory_client

Compares the memory client in a specific device and block.

compare_memory_client [-name {device_name}] [-block integer_value] -client {client_name} [-
file {filename}]

Arguments

-name { device_name}

Optional user-defined device name. The device name is not required if there is only one device in the
current configuration, or a device has already been selected using the set_debug_device command.

-block {integer_value}

(Optional argument; you must set -client.) Specifies location of block for memory compare.
-client {client_name}

Name of client for memory compare.

-file {filename}

Optional file name.

Supported Families

Exceptions

Example

SmartFusion and Fusion

None

The following command compares the memory in the client 'DS32' on the device 'AFS600'.
compare_memory_client -client DS32 -name AFS600
The following command compares the data at block 'O’ to the client '‘DS8bit":
compare_memory_client -block 0 -client {DS8bit}
The following command compares the memory in the device 'AFS600' at block '0' to the memory client
'DS8bit":
compare_memory_client —name {AFS600} -block 0 -client {DS8bit}

The following command compares the memory at block '1' to the memory client 'DS8bit' and saves the
information in a log file to F:/tmp/NVMCompReport.log:

compare_memory_client -block 1 -client {DS8bit} -file {F:/tmp/NVMCompReport.log}

55

& Microsemi

SmartDebug User's Guide

create_probe group (SmartFusion2, IGLOOZ2, and RTG4)

Tcl command; creates a new probe group.

create_probe_group -name group_name

Arguments
-name group_name
Specifies the name of the new probe group.

Supported Families
SmartFusion2, IGLOO2, and RTG4

Example

create_probe_group -name my_new_grp

delete active probe

Tcl command; deletes either all or the selected active probes.
Note: You cannot delete an individual probe from the Probe Bus.

Delete_active_probe -all | -name probe_name

Arguments
-all
Deletes all active probe names.
-name probe_name
Deletes the selected probe names.

Supported Families
SmartFusion2, IGLOO2, and RTG4

Example
Delete —all <- deletes all active probe names
Delete -name out[5]:out[5]:Q \
-name my_grpl.out[1]:out[1]:Q <- deletes the selected probe names
Delete -name my_grpl \
-name my_bus <- deletes the group, bus and their members.

ddr_read (SmartFusion2, IGLOOZ2, and RTG4)

Tcl command; reads the value of specified configuration registers pertaining to the DDR memory controller
(MDDR/FDDR).

ddr_read -block ddr_name -name reg_name

Arguments
-block <fddr || mddr || east_fddr || west_fddr>
e Specifies which DDR configurator is used in the Libero design.
e SmartFusion2 and IGLOO2 - fddr and mddr

56

& Microsemi

e RTG4 - east_fddr and west_fddr
-name register_name

e Specifies which configuration registers need to be read.
o A complete list of registers is available in the DDR Interfaces User Guides for the respective families.

Supported Families
SmartFusion2, IGLOO2, and RTG4

Example
Read DDR Controller register DDRC_DYN_REFRESH_1_CR for a configured FDDR block on a
SmartFusion2 or IGLOO2 device:
ddr_read -block fddr -name DDRC_DYN_REFRESH_1 CR

Returns

Returns 16-bit hexadecimal value.

The result of the command in the example above will be:
Register Name: DDRC_DYN_REFRESH_1 CR Value: 0x1234
“ddr_read” command succeeded.

ddr_write (SmartFusion2, IGLOOZ2, and RTG4)

Tcl command; writes the value of specified configuration registers pertaining to the DDR memory controller
(MDDR/FDDR).

ddr_write-block ddr_name -name reg_name -value hex_value

Arguments
-block <fddr || mddr || east_fddr || west_fddr>
e Specifies which DDR configurator is used in the Libero design.
e SmartFusion2 and IGLOO2 - fddr and mddr
e RTGA4 - east_fddr and west_fddr
-name register_name

e Specifies which configuration registers need to be read.

o A complete list of registers is available in the DDR Interfaces User Guides for the respective families.
-value hex_value

e Specifies the value to be written into the specified register of a given block.

e Hex value in the form of “Ox12FA".

Supported Families
SmartFusion2, IGLOO2, and RTG4

Example
Write a 16-bit value DDR Controller register DDRC_DYN_REFRESH_1_CR for a configured FDDR block on
a SmartFusion2 or IGLOO?2 device:
ddr_write -block fddr -name DDRC_DYN_REFRESH_1 CR —value 0x123f

Returns

Returns if the command succeeded or failed to execute.

57

& Microsemi
SmartDebug User's Guide

“ddr_write” command succeeded

export_smart_debug data (SmartFusion2, IGLOO2, and RTGA4)

Tcl command; exports debug data for the SmartDebug application.

export_smart_debug_data [device_components] [bitstream_components] [-File_name {file} [-
export_dir {dir}]

The command corresponds to the Export SmartDebug Data tool in Libero. The command creates a file with
the extension “ddc” that contains data based on selected options. This file is used by SmartDebug to create
a new SmartDebug project, or it can be imported into a device in SmartDebug.

e If you not specify any design components, all components available in the design will be included by
default.

e The generate_bitstream parameter is required if you want to generate bitstream file and include it in
the exported file.

o You must specify the bitstream components you want to include in the generated

bitstream file or all available components will be included.

o Ifyou choose to include bitstream, and the design has custom security, the custom

security bitstream component must be included.

Arguments
device_components
The following device components can be selected. Specify "1" to include the component, and "0" if you do
not want to include the component.
-probes <1]0>
-package_pins <1]0>
-memory_blocks <1]0>
-envm_data <1]0>
-security _data <1]0>
-chain <1]0>
-programmer_settings <1]0>
-io_states <1]0>
bitstream_components
The following bitstream components can be selected. Specify "1" to include the component, and "0" if you
do not want to include the component.
-generate_bitstream <1]0>
-bitstream_security <1]0>
-bitstream_fabric <1]0>
-bitstream_envm <1]0>
-file_name file
Name of exported file with extension “ddc”.
-export_dir dir
Location where DDC file will be exported. If omitted, design export folder will be used.

Supported Families
SmartFusion2, IGLOO2, and RTG4

Example
The following example shows the export_smart_debug_data command with all parameters:

58

& Microsemi

export_smart_debug_data \
-file_name {sd1} \
—export_dir {d:\sd_prj\test3T\designer\sdl\export} \
-probes 1 \

-package_pins 0 \
-memory_blocks 1 \
-envm_data 0 \

-security _data 1 \

-chain 1 \
-programmer_settings 1 \
-ios_states 1 \
-generate_bitstream 0 \
-bitstream_security 0 \
-bitstream_fabric 0 \
-bitstream_envm 0O

The following example shows the command with no parameters:
export_smart_debug_data

load_active_probe _list

Tcl command; loads the list of probes from the file.

load_active_probe_list —File file_path

Arguments
-file file_path
The input file location.

Supported Families
SmartFusion2, IGLOO2, and RTG4

Example
load_active_probe_list -file “./my_probes.txt”

loopback_test (SmartFusion2, IGLOOZ2, and RTG4)

Tcl command; used to start and stop the loopback tests.

loopback _test [-deviceName device name] -start -serdes num -lane num -type LoopbackType
loopback test [-deviceName device_name] -stop -serdes num -lane num

Arguments
-deviceName device_name

Parameter is optional if only one device is available in the current configuration or set for debug (see the
SmartDebug User's Guide for details).

-start

Starts the loopback test.

-stop

Stops the loopback test.

-serdes num

Serdes block number. Must be between 0 and 4 and varies between dies.
-lane num

59

& Microsemi
SmartDebug User's Guide

Serdes lane number. Must be between 0 and 4
-type LoopbackType
Specifies the loopback test type. Must be meso (PCS Far End PMA RX to TX Loopback)

Supported Families
SmartFusion2, IGLOO2, and RTG4

Example
loopback_test —start —serdes 1 -lane 1 -type meso
loopback_test —start —serdes 0 -lane 0 -type plesio
loopback_test —start —serdes 1 -lane 2 -type parallel
loopback_test —stop —serdes 1 -lane 2

move_to_probe group (SmartFusion2, IGLOO2, and RTG4)

Tcl command; moves the specified probe points to the specified probe group.
Note: Probe points related to a bus cannot be moved to another group.

move_to_probe_group -name probe_name -group group_name

Arguments
-name probe_name
Specifies one or more probes to move.
—-group group_name
Specifies hame of the probe group.

Supported Families
SmartFusion2, IGLOO2, and RTG4

Example
move_to_probe_group -name out[5]:out[5]:Q \
-name grpl.out[3]:out[3]:Q \
-group my_grp2

prbs_test (SmartFusion2, IGLOOZ2, and RTG4)

Tcl command; used in PRBS test to start, stop, reset the error counter and read the error counter value.

prbs_test [-deviceName device_name] -start -serdes num -lane num [-near] -pattern PatternType
prbs_test [-deviceName device_name] -stop -serdes num -lane num

prbs_test [-deviceName device_name] -reset_counter -serdes num -lane num

prbs_test [-deviceName device_name] -read_counter -serdes num -lane num

Arguments
-deviceName device_name

Parameter is optional if only one device is available in the current configuration or set for debug (see the
SmartDebug User's Guide for details).

-start
Starts the prbs test.
-stop

60

& Microsemi

Stops the prbs test.

-reset_counter

Resets the prbs error count value to 0.

-read_counter

Reads and prints the error count value.

-serdes num

Serdes block nhumber. Must be between 0 and 4 and varies between dies.
-lane num

Serdes lane number. Must be between 0 and 4.

-near

Corresponds to near-end (on-die) option for prbs test. Not specifying implies off-die.
-pattern PatternType

The pattern sequence to use for PRBS test. It can be one of the following:
prbs7, prbs11, prbs23, or prbs31

Supported Families
SmartFusion2, IGLOO2, and RTG4

Example
prbs_test -start -serdes 1 -lane 0 -near -pattern prbsll
prbs_test -start -serdes 2 -lane 2 -pattern custom -value all_zeros
prbs_test -start -serdes 0 -lane 1 -near -pattern user -value 0x0123456789ABCDEF0123

read_active_probe (SmartFusion2, IGLOO2, and RTGA4)

Tcl command; reads active probe values from the device. The target probe points are selected by the
select active_probe command.

read_active_probe [-deviceName device_name] [-name probe_name] [-File file_path]

Arguments
-deviceName device_name
Parameter is optional if only one device is available in the current configuration.
-name probe_name

Instead of all probes, read only the probes specified. The probe name should be prefixed with bus or
group name if the probe is in the bus or group.

-file file_path
Optional. If specified, redirects output with probe point values read from the device to the specified file.

Note: When the user tries to read at least one signal from the bus/group, the complete bus or group is read.
The user is presented with the latest value for all the signals in the bus/group.

Supported Families
SmartFusion2, IGLOO2, and RTG4

Example
Read_active_probe -file output.txt
Read_active_probe -name grpl.out[3]:out[3]:Q -file output.txt

61

& Microsemi
SmartDebug User's Guide

read_analog_block config

Reads each channel configuration on your analog system, enabling you to identify iffhow each channel is
configured.

read_analog_block config [-name {device_name}] [-File {filename}]

Arguments
-name {device_name}

Optional user-defined device name. The device name is not required if there is only one device in the
current configuration, or a device has already been selected using the set_debug_device command.

-file {filename}
(Optional) Identifies the name of the file to which read results will be saved.

Supported Families
Fusion

Exceptions
None

Example

The following command reads the analog block configuration information in the device 'AFS600'":
read_analog_block_config —name {AFS600}

read_device_status

Displays the Device Information report; the Device Information report is a complete summary of your device

state, analog block test values, user information, factory serial number and security information..

read_device_status [-name {device_name}] [-File {Ffilename}]

Arguments
-name device_name

Optional user-defined device name. The device name is not required if there is only one device in the
current configuration, or a device has already been selected using the set_debug_device command.

-file {filename}
(Optional) Identifies the name of the file to which read results will be saved.

Supported Families
SmartFusion, IGLOO, ProASIC3 and Fusion

Exceptions
None

Example

The following reads device info from the '"AFS600' device.
read_device_status -name AFS600

62

& Microsemi

read_id_code

The command reads IDCode from the device without masking any IDCode fields. This is the raw IDcode
from the silicon.

Note: Being able to read the IDCode is an indication that the JTAG interface is working correctly.

read_id_code [-name {device_name}]

Arguments
-name device_name

Optional user-defined device name. The device name is not required if there is only one device in the
current configuration, or a device has already been selected using the set_debug_device command.

Supported Families
SmartFusion, IGLOO, ProASIC3 and Fusion

Exceptions
None

Example

The following command reads the IDCODE from the device 'AFS600':
read_id_code —name {AFS600}

read_flashrom

Reads the content of the FlashROM from the selected device.

read_flashrom [-name {device_name}] [-mapping {logical | physical}] [-file {filename}]

Arguments
-name device_name

Optional user-defined device name. The device name is not required if there is only one device in the
current configuration, or a device has already been selected using the set_debug_device command.

-mapping {logical | physical}
(Optional) Specifies how the data read from the UFROM is mapped. Values are explained in the table
below.

Value Description

logical Logical mapping (default)

physical Physical mapping

-file {filename}
(Optional) Identifies the name of the file to which read results will be saved.

Supported Families
SmartFusion, IGLOO, ProASIC3 and Fusion

63

& Microsemi
SmartDebug User's Guide

Exceptions

Example

None

The following reads the FROM content on the device 'AFS600' and sets to physical mapping:
read_flashrom -name {AFS600} -mapping {physical}

read_flash_memory

The command reads information from the NVM modules. There are two types of information that can be
read:

e Page Status — includes ECC2 status, write count, access protection
e Page Data

read_flash_memory

[-name {device_name}]

[-block {integer_value}]
[-client {client_name}]
[-startpage {integer_value}]
[-endpage {integer_value}]
[-access {all | status | data}]
[-File {filename}]

At a minimum you must specify -client <name> OR

-startpage <page_number> -endpage <page_number> -block <number>

Arguments
-name {device_name}
Optional user-defined device name. The device name is not required if there is only one device in the
current configuration, or a device has already been selected using the set_debug_device command.
-block {integer_value}
(Optional argument; you must set -client or —startpage and —endpage before use.) Specifies location of
block for memory read.
-client {client_name}
Name of client for memory read.
-startpage {integer_value}
Startpage for page range; value must be an integer. You must specify a —endpage and -block along with
this argument.
-endpage {integer_value}
Endpage for page range; value must be an integer. You must specify a —startpage and -block along with
this argument.
-access {all | status | data}
(Optional argument; you must set -client or —startpage, —endpage and —block before use.) Specifies what
eNVM information to check: page status, data or both.
Value Description

Shows the number of pages with corruption status, data corruption and
out-of-range write count (default)

status | Shows the number of pages with corruption status and the number of

pages with out-of-range write count

data

Shows only the number of pages with data corruption

64

& Microsemi

-file {filename}

(Optional argument; you must set -client or —startpage, —endpage and —block before use.) Name of output
file for memory read.

Supported Families
SmartFusion, Fusion

Exceptions
None

Example

The following command reads the flash memory for the client ‘DS8bit' and reports the data in a logfile
‘readFlashMemoryReport.log'":

read_flash_memory -client {DS8bit} -file {readFlashMemoryReport.log}
read_flash_memory —startpage 0 —endpage 2 —block 0 —access {data}

read_Isram (SmartFusion2, IGLOO2, and RTG4)

Tcl command; reads a specified block of large SRAM from the device.
read_lsram [-deviceName device_name] —block block_name [—File filename]

-deviceName device_name

Parameter is optional if only one device is available in the current configuration or set for debug (see
SmartDebug help for details).

-block block_name

Specifies the name for the target block.
-file filename

Optional; specifies the output file name for the data read from the device.

Supported Families
SmartFusion2, IGLOO2, and RTG4

Exceptions
e You must set a debug file
e Array must be programmed and active
e Security locks may disable this function
Example

Reads the SRAM Block sram_block1 from the sf2 device and writes it to the file sram_block_output.
read_Isram [-deviceName sf2] —block sram_blockl [—file sram_block_output]

65

& Microsemi
SmartDebug User's Guide

read_usram (SmartFusion2 and IGLOO?2)

Tcl command; reads a uSRAM block from the device.
read_lIsram [-deviceName device_name] —block block _name [—Fille filename]

-deviceName device_name

Parameter is optional if only one device is available in the current configuration or set for debug (see
SmartDebug help for details).

-block block_name

Specifies the name for the target block.
-File filename

Optional; specifies the output file name for the data read from the device.

Supported Families
SmartFusion2, IGLOO2, and RTG4

Exceptions
e You must set a debug file
e Array must be programmed and active
e Security locks may disable this function
Example

Reads the uSRAM Block usram_block?2 from the sf2 device and writes it to the file sram_block_output.
read_usram [-deviceName sf2] —block usram_block2 [-file sram_block_output]

recover_flash_memory

The command removes ECC2 errors due to memory corruption by reprogramming specified flash memory
(NVM) pages and initializing all pages to zeros. The recovery affects data blocks and auxiliary blocks.

The write counters of the corrupted pages might not be accurate due to corruption. The recovery operation
will not change state of the page write counters.

Use the check_flash_memory command to detect flash memory errors.
recover_flash_memory
[-name {device_name}]
[-block {integer_value}]
[-client {client_name}]
[-startpage {integer_value}]
[-endpage {integer_value}]

At a minimum you must specify -client <name> OR

-startpage <page_number> -endpage <page_number> -block <number>

Arguments
-name {device_name}

Optional user-defined device name. The device name is not required if there is only one device in the
current configuration, or a device has already been selected using the set_debug_device command.
-block {integer_value}

(Optional argument; you must set -client or —startpage and —endpage before use.) Specifies location of
block for memory recovery.

-client {client_name}

Name of client for memory recovery.

66

& Microsemi

-startpage {integer_value}

Startpage for page range; value must be an integer.You must specify a —endpage and -block along with
this argument.

-endpage {integer_value}

Endpage for page range; value must be an integer. You must specify a —startpage and -block along with
this argument.

Supported Families
SmartFusion, Fusion

Exceptions
None

Example
The following command recovers flash memory data in the client 'DS8bit":
recover_flash_memory -client {DS8bit}

The following command recovers flash memory from block 0, startpage 0, and endpage 3:
recover_flash_memory -block 0 -startpage O -endpage 3

remove_from_probe group (SmartFusion2, IGLOO2, and RTG4)

Tcl command; moves out the specified probe points from the group. That is, the moved out probe points
won't be associated with any probe group.

Note: Probes cannot be moved out from the bus.

remove_from_probe_group -name probe_name

Arguments
-name probe_name
Specifies one or more probe points to move out.

Supported Families
SmartFusion2, IGLOO2, and RTG4

Example

The following command moves out two probes from my_grp2.
Move_out_of probe_group -name my_grp2.out[3]:out[3]:Q \
-name my_grp2.out[3]:out[3]:Q

sample_analog_channel

Performs analog-to-digital conversion of a selected analog channel. This command is used when debugging
the Analog Subsystem and is performed on the pre-configured analog channel with user-supplied ADC
conversion parameters. The command also performs digital filtering using a single-pole low-pass filter if you
opt to use it.

sample_analog_channel [(-name {name})*]
[-resolution {8 | 10 | 12}]
[-clock periods {int_value}]
[-clock _divider {int_value}]
[-num_samples { int_value}]

67

& Microsemi
SmartDebug User's Guide

[-filtering_factor {real_value}]

[-initial_value {int_value}]
[-show_details {yes | no}]l

[-file {filename}]

Arguments

-name { name}

Specifies the analog channel to be sampled. Channel name is a combination of the channel type followed
by the channel index. Valid channel names are listed in the table below.

Family Valid Channel Name

Fusion AV<n>, AT<n>, AC<n>

SmartFusion AV<n>, AT<n>, AC<n>, ADC<n>

The maximum number of channels depends on particular device type; refer to the Analog Block
specification in the device handbook.

-resolution {8 | 10 | 12}

ADC conversion resolution. Specifies bit size of the conversion results. Selection of certain resolutions
may affect timing parameter valid ranges. See your device handbook for details.

-clock_periods {int_value }

Parameter specifying sampling time: Sampling_time = clock_periods * adc_clock_period.
-clock_divider {int_value }

Specifies clock prescaling factor.

-num_samples { int_value }

Optional argument that specifies the number of samples to be performed by the ADC. Default number of
samples is 1. Selecting multiple vs single sample will change appearance of the generated report. For the

single sample a single result is shown and if “show_details” is set to “yes” then detailed status of the ADC
register is also shown.

If multiple samples are requested then the results are printed in a table. If the digital filtering is enabled the
table also includes filtered results.

-filtering_factor {real_value}

Optional argument that specifies the filtering factor if multiple samples requested. The default value of 1.0
disables digital filtering.

-initial_value {int_value}
Optional argument that specifies the initial value for the digital averaging filter. The value is specified in

ADC register counts. Default value is set to 0. Specifying this parameter improves filtering process during
initial samples.

-show_details {yes | no}

Optional argument that specifies the level of the report output. Detailed output includes initial user-
supplied conversion parameters. For the single-sampling case final output also includes detailed content
of ADC register after sampling.

-file {filename}
Optional argument. Specifies name of output file for conversion results.

Supported Families

Exceptions

SmartFusion and Fusion

None

68

& Microsemi

Example
The following example performs single sample analog-to-digital conversion for channel AVO:
sample_analog_channel —channel AVO —resolution 8 —clock_periods 4 —clock_divider 4
Example with multiple sampling and digital signal filtering for AVO:

sample_analog_channel —channel AVO —resolution 10 —clock_periods 4 —clock _divider 4 —
num_samples 10 —filtering_factor 2.5

save_active_probe _list

Tcl command; saves the list of active probes to a file.

save_active_probe list -file file_path

Arguments
-file file_path
The output file location.

Supported Families
SmartFusion2, IGLOO2, and RTG4

Example
save_active_probe_list -file “./my_probes.txt”

select_active_probe (SmartFusion2, IGLOO2, and RTG4)

Tcl command; manages the current selection of active probe points to be used by active probe READ
operations. This command extends or replaces your current selection with the probe points found using the
search pattern.

select_active_probe [-deviceName device_name] [—-name probe_name_pattern] [-reset true|false]

Arguments
-deviceName device_name
Parameter is optional if only one device is available in the current configuration..
-name probe_name_pattern

Specifies the name of the probe. Optionally, search pattern string can specify one or multiple probe
points. The pattern search characters “*” and “?” also can be specified to filter out the probe names.

-reset true | false

Optional parameter; resets all previously selected probe points. If name is not specified, empties out
current selection.

Supported Families
SmartFusion2, IGLOO2, and RTG4

Example
The following command selects three probes. In the below example, “grpl” is a group and “out” is a bus..
Select_active_probe -name out[5]:out[5]:Q
Select_active_probe -name out.out[1]:out[1]:Q \
-name out.out[3]:out[3]:Q \
-name out.out[5]:out[5]:Q

69

& Microsemi
SmartDebug User's Guide

serdes_lane_reset

Tcl command. In EPCS mode, this command resets the lane. In PCI mode, this command resets the lane,
all other lanes in the link, and the corresponding PCle controller. The result is shown in the log

window/console.

serdes_lane_reset —serdes num -lane num

Arguments

-serdes num

The SERDES block number. It must be between 0 and varies between dies. It must be one of the

SERDES blocks used in the design.
lane num

The SERDES lane number. It must be between 0 and 3. It must be one of the lanes enabled for the block

in the design.

Supported Families

Example

Errors

SmartFusion2, IGLOO2, and RTG4

serdes_lane_reset -serdes O -lane 0

In EPCS mode, resets Lane 0, for block 0. In PCI mode, resets Lane 0 for block 0, all other lanes in the

same link for block 0
serdes_lane_reset -serdes 5 -lane 3

The following errors result in the failure of the Tcl command and the corresponding message on the smart

debug log window:

When the “-serdes” parameter is not specified:
Error: Required parameter "serdes® is missing.
Error: Failure when executing Tcl script. [Line
Error: The Execute Script command failed.

When the “-lane” parameter is not specified:
Error: Required parameter "lane® is missing.
Error: Failure when executing Tcl script. [Line
Error: The Execute Script command failed.

When “block number” is not specified:
Error: Parameter "serdes®" has illegal value.
Error: Failure when executing Tcl script. [Line
Error: The Execute Script command failed.

When “lane number” is not specified:
Error: Required parameter "lane® is missing.
Error: Failure when executing Tcl script. [Line
Error: The Execute Script command failed.

When “block number” is invalid:
Error: Phy Reset: Serdes block number should be
Error: The command "serdes_lane_reset” failed.
Error: Failure when executing Tcl script. [Line
Error: The Execute Script command failed.

26:

26:

26:

26:

one

26]

Error

Error

Error

Error

command

command

command

command

serdes_lane_reset]

serdes_lane_reset]

serdes_lane_reset]

serdes_lane_reset]

of the following: 0O

Note: Only the SERDES blocks used the design will be mentioned in the above list.

When “lane number” is invalid:

70

& Microsemi

Error: Phy Reset: Serdes lane number should be between 0 and 3.
Error: The command "serdes_lane_reset” failed.
Error: Failure when executing Tcl script. [Line 26]
Error: The Execute Script command failed.
For all the above scenarios, the following message appears:

€ SERDES Debug 2

Error running script: 0t/SAR_analysis/73276/1ane_testing.tcl

serdes _read_register (SmartFusion2, IGLOO2, and RTG4)

Tcl command; reads the SERDES register value and displays the result in the log window/console.

serdes_read_register —serdes num [-lane num] -name REGISTER_NAME

Arguments
-serdes num
SERDES block number. Must be between 0 and and varies between dies.
-lane num
SERDES lane number. Must be between 0 and 3.
The lane number must be specified when the lane register is used. Otherwise, the command will fail.

When the lane number is specified along with the SYSTEM or PCle register, the command will fail with an
error message, as the lane is not applicable to them.

-name REGISTER_NAME
Name of the SERDES register.

Supported Families
SmartFusion2, IGLOO2, and RTG4

Example
serdes_read_register -serdes O -name SYSTEM_SER_PLL_CONFIG_HIGH
serdes_read_register -serdes 0 -lane 0 -name CRO
serdes_write_register
UG0567: RTG4 High-Speed Serial Interfaces User Guide (includes all SERDES register names)
UG0447: SmartFusion2 and IGLOO2 FPGA High-Speed Serial Interfaces User Guide

71

http://www.microsemi.com/products/fpga-soc/radtolerant-fpgas/rtg4#documents
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132011

& Microsemi

SmartDebug User's Guide

serdes_write_register (SmartFusion2, IGLOOZ2, and RTG4)

Tcl command; writes the value to the SERDES register. Displays the result in the log window/console.

serdes_write_register -serdes num [-lane num] -name REGISTER_NAME —value 0x1234

Arguments
-serdes num
SERDES block number. Must be between 0 and 5 and varies between dies.
-lane num
SERDES lane number. Must be between 0 and 3.

The lane number should be specified when the lane register is used. Otherwise, the command will fail.

When the lane number is specified along with the SYSTEM or PCle register, the command will fail with an

error message, as the lane is not applicable to them.
-name REGISTER_NAME

Name of the SERDES register.

-value

Specify the value in hexadecimal format.

Supported Families
SmartFusion2, IGLOO2, and RTG4

Example
serdes_write_register -serdes 0 -name SYSTEM_SER_PLL_CONFIG_HIGH -value 0x5533

See Also

serdes_read_register.htm

UG0567: RTG4 High-Speed Serial Interfaces User Guide (includes all SERDES register names)
UG0447: SmartFusion2 and IGLOO2 FPGA High-Speed Serial Interfaces User Guide

set_debug_device

Identifies the device you intend to debug.

set_debug_device -name {device_name}

Arguments
name {device_name}

Device name. The device name is not required if there is only one device in the current configuration.

Supported Families
SmartFusion, IGLOO, ProASIC3 and Fusion

Exceptions
None

Example

The following example identifies the device 'A3P250' for debugging:
set_debug_device —name {A3P250}

72

http://www.microsemi.com/products/fpga-soc/radtolerant-fpgas/rtg4#documents
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132011

& Microsemi

set_debug_programmer

Identifies the programmer you want to use for debugging (if you have more than one). The name of the
programmer is the serial number on the bar code label on the FlashPro programmer.

set_debug_programmer -name {programmer_name}

Arguments
-name {programmer_name}
Programmer name is the serial number on the bar code label of the FlashPro programmer.

Supported Families
SmartFusion, IGLOO, ProASIC3 and Fusion

Exceptions
None

Example

The following example selects the programmer 10841
set_debug_programmer -name {10841}

set _live_probe (SmartFusion2, IGLOOZ2, and RTGA4)

Tcl command; set_live_probe channels A and/or B to the specified probe point(s). At least one probe point
must be specified. Only exact probe name is allowed (i.e. no search pattern that may return multiple points).

set_live_probe [-deviceName device_name] [—probeA probe_name] [—probeB probe name]

Arguments
-deviceName device_name

Parameter is optional if only one device is available in the current configuration or set for debug (see
SmartDebug user guide for details).

-probeA probe_ name

Specifies target probe point for the probe channel A.
-probeB probe_ name

Specifies target probe point for the probe channel B.

Supported Families
SmartFusion2, IGLOO2, and RTG4

Exceptions

e The array must be programmed and active

e Active probe read or write operation will affect current settings of Live probe since they use same
probe circuitry inside the device

e Setting only one Live probe channel affects the other one, so if both channels need to be set, they
must be set from the same call to set_live_probe

e Security locks may disable this function

73

& Microsemi
SmartDebug User's Guide

e In order to be available for Live probe, ProbeA and ProbeB I/O's must be reserved for Live probe
respectively

Example

Sets the Live probe channel A to the probe point A12 on device sf2.
set_live_probe [-deviceName sf2] [-probeA A12]

ungroup (SmartFusion2, IGLOOZ2, and RTG4)

Tcl command; disassociates the probes as a group.

NNgroup -name group_name

Arguments
-name group_name
Name of the group.

Supported Families
SmartFusion2, IGLOO2, and RTG4

Example
ungroup —name my_grp4

unset_live probe

Tcl command; discontinues the debug function and clears both live probe channels (Channel A and Channel
B). An all zeros value is shown for both channels in the oscilloscope.

Note: For RTG4, only one probe channel (Probe Read Data Pin) is available.

unset_live_probe [-deviceName device_name]

Arguments
-deviceName device_name

Parameter is optional if only one device is available in the current configuration or set for debug (see the
SmartDebug User's Guide for details).

Supported Families
SmartFusion2, IGLOO2, and RTG4

Exceptions
e The array must be programmed and active.
e Active probe read or write operation affects current of Live Probe settings, because they use the same
probe circuitry inside the device.
e Security locks may disable this function.
Example

The following example unsets both live probe channels (Channel A and Channel B) from the device sf2.
unset_live_probes [-deviceName sf2]

74

& Microsemi

write_active_probe (SmartFusion2, IGLOOZ2, and RTGA4)

Tcl command; sets the target probe point on the device to the specified value. The target probe point name
must be specified.

write_active_probe [-deviceName device_name] —name probe_name -value true|false
—-group_name group_bus_name -group_value “hex-value” | “binary-value”

Arguments
-deviceName device_name

Parameter is optional if only one device is available in the current configuration.
-name probe_name

Specifies the name for the target probe point. Cannot be a search pattern.
-value true | false hex-value | binary-value

Specifies values to be written.

True = High

False = Low

-group_name group_bus_name

Specify the group or bus name to write to complete group or bus.
-group_value ”’hex-value” | “binary-value”

Specify the value for the complete group or bus.

«

Hex-value format : “ <size’h<value>”

Binary-value format: “ <size>’b<value>”

Supported Families
SmartFusion2, IGLOO2, and RTG4

Example
write_active_probe —name out[5]:out[5]:Q —value true <-- write to a single probe
write_active_probe -name grpl.out[3]:out[3]:Q -value low <-- write to a probe in the group
write_active_probe -group_name grpl —group_value “8~hF0” <-- write the value to complete group
write_active_probe —group_name out —group_value “87b11110000” \

-name out[2]:out[2]:Q —value true <-- write multiple probes at the same time.

write Isram (SmartFusion2, IGLOO2, and RTG4)

Tcl command; writes a seven bit word into the specified large SRAM location.
write_lIsram [-deviceName device _name] —block block _name] —offset offset_value —value value

-deviceName device_name

Parameter is optional if only one device is available in the current configuration or set for debug (see
SmartDebug help for details).

-block block_name

Specifies the name for the target block.
-offset offset_value

Offset (address) of the target word within the memory block.
-value value

Value to be written to the target location.

75

& Microsemi
SmartDebug User's Guide

Supported Families
SmartFusion2, IGLOO2, and RTG4

Exceptions
e You must set a debug file
e Array must be programmed and active
e The maximum value that can be written is Ox1FF
e Security locks may disable this function
Example

Writes a value of Ox1A to the device sf2 in the block sram_block1 with an offset of 16.
write_Isram [-deviceName sf2] —block sram_blockl -offset 16 -value Ox1A

write_usram (SmartFusion2, IGLOOZ2, and RTG4)

Tcl command; writes a seven bit word into the specified uUSRAM location.
write_usram [-deviceName device_name] —block block _name] —offset offset_value —value value

-deviceName device_name

Parameter is optional if only one device is available in the current configuration or set for debug (see
SmartDebug help for details).

-block block_name
Specifies the name for the target block.
-offset offset_value

Offset (address) of the target word within the memory block.
-value value

Seven-bit value to be written.

Supported Families
SmartFusion2, IGLOO2, and RTG4

Exceptions
e You must set a debug file
e Array must be programmed and active
e The maximum value that can be written is Ox1FF
e Security locks may disable this function
Example

Writes a value of Ox1A to the device sf2 in the block usram_block2 with an offset of 16.
write_usram [-deviceName sf2] —block usram_block2 -offset 16 -value Ox1A

76

& Microsemi

Solutions to Common Issues Using
SmartDebug

Embedded Flash Memory (NVM) - Failure when
Programming/Verifying
If the Embedded Flash Memory failed verification when executing the PROGRAM_NVM, VERIFY_NVM or

PROGRAM_NVM_ACTIVE_ARRAY action, the failing page may be corrupted. To confirm and address this
issue:

1. Inthe Inspect Device window click View Flash Memory Content.

2. Select the Flash Memory block and client (or page range) to retrieve from the device.
3. Click Read from Device; the retrieved data appears in the lower part of the window.
4. Click View Detailed Status to check the NVM Status.

Note: You can use the check_flash_memory and read_flash_memory Tcl commands to perform
diagnostics similar to the commands outlined above.

5. Ifthe NVM is corrupted you must reset the affected NVM pages.

To reset the affected NVM pages, either re-program the pages with your original data or ‘zero-out’ the
pages by using the Tcl command recover_flash_memory.

If the Embedded Flash Memory failed verification when executing a VERIFY_NVM or
VERIFY_NVM_ACTIVE_ARRAY action, the failure may be due to the change of content in your design. To
confirm this, repeat steps 1-3 above.

Note: NVM corruption is still possible when writing from user design. Check NVM status for confirmation.

Analog System Not Working as Expected
If the Analog System is not working correctly, it may be due the following:
1. System supply issue. To troubleshoot:

e Physically verify that all the supplies are properly connected to the device and they are at the proper
level. Then confirm by running the Device Status.

e Physically verify that the relevant channels are correctly connected to the device.
2. Analog system is not properly configured. You can confirm this by examining the Analog System.

ADC Not Sampling the Correct Value

If the ADC is sampling all zero values then the wrong analog pin may be connected to the system, or the
analog pin is disconnected. If that is not the case and the ADC is not sampling the correct value, it may be
due to the following:

1. System supply issues - Run the device status to confirm.

2. Analog system is not configured at all - To confirm, read out the ACM configuration and verify if the
ACM content is all zero.

3. Analog system is not configured correctly - To confirm, read out the ACM configuration and verify that
the configuration is as expected .

77

& Microsemi

SmartDebug User's Guide

Once analog block configuration has been confirmed, you can use the sample_analog_channel Tcl
command for debug sampling of the analog channel with user-supplied sampling parameters.

If you have access to your Analog System Builder settings project (<Libero IDE
project>/Smartgen/AnalogBlock), you may use the compare function provided by the tool.

78

& Microsemi

Frequently Asked Questions

How do |

How do |

How do |

unlock the device security so | can debug?

You must provide the PDB file with a User Pass Key in order to unlock the device and continue debugging.

If you do not have a PDB with User Pass Key, you can create a PDB file in FlashPro (if you know the Pass
Key value).

export a report?

You can export three reports from the SmartDebug GUI: Device Status, Client Detailed Status from the
NVM, or the Compare Client Content report from the NVM. Each of those reports can be saved and printed.
If using a Tcl command, you can use the —File <filename> option for the following commands:
read_flash_memory

check flash_memory

compare_memory client

read_device_status

read_flashrom
read_analog_block config
sample_analog_channel
compare_flashrom_client
compare_analog_config

For example, you can use the following command to export the content of the client 'datastorel’ in NVM
block 0 to the report file datastorel_content.txt:
read_flash_memory —client “datastorel” —file {C:\temp\datastorel_content.txt}

For more information about Tcl commands supported by SmartDebug, see SmartDebug Tcl Commands.

generate diagnostic reports for my target device?

A set of diagnostic reports can be generated for your target device depending on which silicon feature you
are debugging. A set of Tcl commands are available to export those reports. The following is a summary of
those Tcl commands based on the silicon features.

When using the —file parameter, ensure that you use a different file name for each command so you do not
overwrite the report content. If you do not specify the —file option in the Tcl, the output results will be directed
to the FlashPro log window.

For the overall device:

read device_status
read_id_code

For FlashROM:

compare_flashrom_client
read_flashrom

For Embedded Flash Memory (NVM):

compare_memory_client
check flash_memory
read_flash_memory

79

& Microsemi
SmartDebug User's Guide

For Analog Block:

read_analog block config
compare_analog_config
sample_analog_channel

To execute the Tcl command, from the File menu choose Run Script.

Where can | find files to compare my contents/settings?

FlashROM

You can compare the FlashROM content in the device with the data in the PDB file. You can find the PDB in
the <Libero IDE project>/Designer/Impl directory.

Embedded Flash Memory (NVM)

You can compare the Embedded Flash Memory content in the device with the data in the PDB file. You can
find the PDB in the <Libero IDE project>/Designer/Impl directory.

Analog System

You can compare the Analog System configuration in the device with the data in the loaded PDB file or in
the Analog System folder. Go to:

e Fusion devices - <Libero IDE project>/Smartgen/AnalogBlock
e SmartFusion devices - <Libero IDE Project>/component/<SmartDesign Project>/MSS_ACE_0
The tool automatically identifies the necessary files in the selected folder for comparison.

What is a UFC file? What is an EFC file?

UFC is the User FlashROM Configuration file, generated by the FlashROM configurator; it contains the
partition information set by the user. It also contains the user-selected data for region types with static data.

However, for AUTO_INC and READ_FROM_FILE, regions the UFC file contains only:
e Start value, end value, and step size for AUTO_INC regions, and
e File directory for READ_FROM_FILE regions

EFC is the Embedded Flash Configuration file, generated by the Flash Memory Builder in the Project
Manager Catalog; it contains the partition information and data set by the user.

Both UFC and EFC information is embedded in the PDB when you generate the PDB file.

Is my FPGA fabric enabled?

When your FPGA fabric is programmed, you will see the following statement under Device State in the
Device Status report:

FPGA Array Status: Programmed and Enabled
If the FPGA fabric is not programmed, the Device State shows:
FPGA Array Status: Not Enabled

80

& Microsemi

Embedded Flash Memory (NVM) Frequently
Asked Questions

Is my Embedded Flash Memory (NVM) programmed?

To figure out if your NVM is programmed, read out and view the NVM content or perform verification with the
PDB file.

To examine the NVM content, see the FlashROM Memory Content Dialog Box.
To verify the NVM with the PDB select the VERIFY or VERIFY_NVM action in FlashPro.

How do | display Embedded Flash Memory (NVM) content in the

Client partition?
You must load your PDB into your FlashPro project in order to view the Embedded Flash Memory content in
the Client partition. To view NVM content in the client partition:

Load your PDB into your FlashPro project.

Click Inspect Device.

Click View Flash Memory Content.

Choose a block from the drop-down menu.

Select a client.

Click Read from Device. The Embedded Flash Memory content from the device appears in the Flash
Memory dialog box.

N

See the Flash Memory Dialog Box topic for more description on viewing the NVM content.

How do | know if | have Embedded Flash Memory (NVM)
corruption?

When Embedded Flash Memory is corrupted, checking Embedded Flash Memory may return with any or all
of the following page status:

e ECCI/ECC2 failure

e Page write count exceeds the 10-year retention threshold

e Page write count is invalid

e Page protection is set illegally (set when it should not be)
See the How do | interpret data in the Flash Memory (NVM) Status Report? topic for details.

If your Embedded Flash Memory is corrupted, you can recover by reprogramming with original design data.
Alternatively, you can ‘zero-out’ the pages by using the Tcl command recover_flash_memory.

Why does Embedded Flash Memory (NVM) corruption happen?

Embedded Flash Memory corruption occurs when Embedded Flash Memory programming is interrupted due
to:

e Supply brownout; monitor power supplies for brownout conditions. For SmartFusion monitor the
VCC_ENVM/VCC_ROSC voltage levels; for Fusion, monitor VCC_NVM/VCC_OSC.

e Reset signal is not properly tied off in your design. Check the Embedded Memory reset signal.

81

& Microsemi

SmartDebug User's Guide

How do | recover from Embedded Flash Memory corruption?

Reprogram with original design data or ‘zero-out’ the pages by using the Tcl command
recover_flash_memory.

What is a JTAG IR-Capture value?

JTAG IR-Capture value contains private and public device status values. The public status value in the value
read is ISC_DONE, which indicates if the FPGA Array is programmed and enabled.

The ISC_DONE signal is implemented as part of IEEE 1532 specification.

What does the ECC1/ECC2 error mean?

ECC is the Error Correction Code embedded in each Flash Memory page.
ECC1 - One bit error and correctable.
ECC2 — Two or more errors found, and not correctable.

How can | tell if my FlashROM is programmed?

To verify that your FlashROM is programmed, read out and view the FlashROM content or perform
verification with the PDB file by selecting the VERIFY or VERIFY _FROM action in FlashPro.

Can | compare serialization data?

To compare the serialization data, you can read out the FlashROM content and visually check data in the
serialization region. Note that a serialization region can be an AUTO_INC or READ_FROM_FILE region.

For serialization data in the AUTO_INC region, check to make sure that the data is within the specified
range for that region.

For READ_FROM_FILE region, you can search for a match in the source data file.

Can | tell what security options are programmed in my device?

To determine the programmed security settings, run the Device Status option from the Inspect Device dialog
and examine the Security Section in the report.

This section lists the security status of the FlashROM, FPGA Array and Flash Memory blocks.

Is my analog system configured?

To determine if the analog block is configured, run the Device Status option from the Inspect Device dialog
and examine the Analog Block Section in the report. For example, the excerpt from the Device Status report
below shows that the analog block status is operational:

Analog Block:
OABTR Register (HEX): 0dbe37b
3.3V (vdd33): PASS
1.5V (vdd15): PASS
Bandgap: PASS
-3.3V (vddn33): PASS
ADC Reference: PASS
FPGA_Good: PASS
Status: Analog Block is operational

If you read out an all zero value when examining the Analog System Configuration, it is possible that the
Analog System is not configured.

82

How do |

IDCode

& Microsemi

You need to compare your analog system configuration with the design configuration from the Analog
System Builder.

The -3.3V (vddn33) voltage is optional.

interpret data in the Device Status report?

The Device Status Report generated from the FlashPro SmartDebug Feature contains the following
sections:

e IDCode (see below)

e User Information

¢ Device State

e Analog Block (SmartFusion and Fusion only)
e Factory Data

e Security Settings

The IDCode section shows the raw IDCode read from the device. For example, in the Device Status report
for an AFS600 device, you will find the following statement:

IDCode (HEX): 233261cf
The IDCode is compliant to IEEE 1149.1. The following table lists the IDCode bit assignments:

Table 3 - IDCode Bit Assignments

Bit Field (little Example Bit Value for Description
endian) AFS600 (HEX)
Bit [31-28] (4 bits) |2 Silicon Revision
Bit [27-12] (16 3326 Device ID
bits)
Bit [11-0] (12 bits) | 1cf IEEE 1149.1 Manufacturer ID for
Microsemi

Device Status Report: User Info

The User Information section reports the information read from the User ROW (UROW) of IGLOO,
ProASIC3, SmartFusion and Fusion devices. The User Row includes user design information as well as
troubleshooting information, including:

e Design name (10 characters max)

e Design check sum (16-bit CRC)

e Last programming setup used to program/erase any of the silicon features.

e FPGA Array / Fabric programming cycle count

For example:

User Information:

UROW data (HEX): 603a04e0alc2860e59384af926fe389f
Programming Method: STAPL

Programmer: FlashPro3

Programmer Software: FlashPro vX.X

Design Name: ABCBASICTO

Design Check Sum: 603A

83

& Microsemi
SmartDebug User's Guide

Algorithm Version: 19
Array Prog. Cycle Count: 19

Table 4 - Device Status Report User Info Description

Category Field Description

User Row Data | (Example) Raw data from User Row
UROW data (HEX): (UROW)
603a04e0al1c2860e59384af926fe389f

Programming (Example) Known programming setup

Troubleshooting | Programming Method: STAPL used. This includes:

Info Programmer: FlashPro3 Programming method/file,
Programmer Software: FlashPro v8.6 | programmer and software. It
Algorithm Version: 19 also includes programming

Algorithm version used.

Design Info (Example) Design name (limited to 10
Design Name: ABCASICTO characters) and check sum.
Design Check Sum: 603A
Design check sumis a 16-
bit CRC calculated from the
fabric (FPGA Array)
datastream generated for
programming. If encrypted
datastream is generated
selected, the encrypted
datastream is used for
calculating the check sum.

Device Status Report: Device State

The device state section contains:.

e IR-Capture register value, and
e The FPGA status
The IR-Capture is the value captured by the IEEE1149.1 instruction register when going through the IR-

Capture state of the IEEE 1149.1 state machine. It contains information reflecting some of the states of the
devices that is useful for troubleshooting.

One of the hits in the value captured is the ISC_DONE value, specified by IEEE 1532 standard. When the
value is ‘1’ it means that the FPGA array/fabric is programmed and enabled. This is available for IGLOO,
ProASIC3, SmartFusion and Fusion devices.

For example:

Device State:

IRCapture Register (HEX): 55

FPGA Array Status: Programmed and enabled

For a blank device:

Device State:

IRCapture Register (HEX): 51

FPGA Array Status: Not enabled

84

Device Status Report: Analog Block

The Analog block of the SmartFusion and Fusion devices monitors some of the key power supplies needed
by the device to function. These power supply status is captured in the OABTR test register in the Analog

block.

& Microsemi

For example, if you run Device Status when the Fabric and Analog configuration is programmed and

powered up successfully the report indicates:
Analog Block:
OABTR Register (HEX): 0dbe3bb
3.3V (vdd33): PASS
1.5V (vdd15): PASS
Bandgap: PASS
-3.3V (vddn33): PASS
ADC Reference: PASS
FPGA_Good: PASS
Status: Analog Block is operational

Table 5 - Device Status Report - Analog Block Description

Analog Block Status Description
OABTR Register RAW data captured from the device
3.3V (vdd33) Vcc33a supply status
1.5V (vdd15) Vcenvm supply status
Bandgap Internal bandgap supply status
ADC Reference ADC reference voltage status
-3.3V (vddn33) Vddn33 supply status (optional voltage)
FPGA Good FPGA array or Fabric status

If the Fusion device is erased, the report indicates:
Analog Block:
OABTR Register (HEX): 188e3ba
3.3V (vdd33): PASS
1.5V (vdd15): PASS
Bandgap: PASS
-3.3V (vddn33): FAIL
ADC Reference: FAIL
FPGA_Good: FAIL
Status: Analog Block is non-operational
Analog Block is not programmed

85

& Microsemi
SmartDebug User's Guide

Device Status Report: Factory Data

The Factory Data section lists the Factory Serial Number (FSN).
Each of the IGLOO, ProASIC3, SmartFusion and Fusion devices has a unique 48-bit FSN.

Device Status Report: Security

The security section shows the security options for the FPGA Array, FlashROM and Flash Memory (NVM)
block that you programmed into the device.
For example, using a Fusion AFS600 device:
Security:
Security Register (HEX): 0000000088c01b
FlashROM
Write/Erase protection: Off
Read protection: OFf
Encrypted programming: OFfF
FPGA Array
Write/Erase protection: Off
Verify protection: OFf
Encrypted programming: OFF
FlashMemory Block O
Write protection: On
Read protection: On
Encrypted programming: OFF
FlashMemory Block 1
Write protection: On
Read protection: On
Encrypted programming: OFfF
Table 6 - Device Status Report - Security Description

Security Description
Status Info
Security Raw data captured from the device's security status register

Register (HEX)

Write/Erase Write protection is applicable to FlashROM, FPGA Array (Fabric)and
Protection Flash Memory (NVM) blocks. When On, the Silicon feature is
write/erase protected by user passkey.

Read Read protection is applicable to FlashROM and Flash Memory (NVM)

Protection blocks. When On, the Silicon feature is read protected by user
passkey.

Verify Verify Protection is only applicable to FPGA Array (Fabric) only. When

Protection On, the FPGA Array require user passkey for verification.

Reading back from the FPGA Array (Fabric) is not supported.

Verification is accomplished by sending in the expected data for
verification.

Encrypted Encrypted Programming is supported for FlashROM, FPGA Array
Programming (Fabric) and Flash Memory (NVM) blocks. When On, the silicon
feature is enable for encrypted programmed. This allows field design

& Microsemi

Security Description
Status Info

update with encrypted datastream so the user design is protected.

Encrypted Programming

To allow encrypted programming of the features, the target feature cannot be Write/Erase protected by user
passkey.

The security settings of each silicon feature when they are enabled for encrypted programming are listed
below.

FPGA Array (Fabric)
Write/Erase protection: Off
Verify protection: Off
Encrypted programming: On
Set automatically by Designer or FlashPro when you select to enable encrypted programming of the FPGA

Array (Fabric). This setting allows the FPGA Array (Fabric) to be programmed and verified with an encrypted
datastream.

FlashROM

Write/Erase protection: OFff

Read protection: On

Encrypted programming: On
Set automatically by Designer or FlashPro when you select to enable encrypted programming of the
FlashROM. This setting allows the FlashROM to be programmed and verified with an encrypted datastream.
FlashROM always allows verification. If encrypted programming is set, verification has to be performed with
encrypted datastream.

Designer and FlashPro automatically set the FlashROM to be read protected by user passkey when
encrypted programming is enabled. This protects the content from being read out of the JTAG port after
encrypted programming.

Flash Memory (NVM) Block

How do |

Write/Erase protection: OFff

Read protection: On

Encrypted programming: On
The above setting is set automatically set by Designer or FlashPro when you select to enable encrypted
programming of the Flash Memory (NVM) block. This setting allows the Flash Memory (NVM) block to be
programmed with an encrypted datastream.
The Flash Memory (NVM) block does not support verification with encrypted datastream.
Designer and FlashPro automatically set the Flash Memory (NVM) block to be read protected by user

passkey when encrypted programming is enabled. This protects the content from being read out of the
JTAG port after encrypted programming.

interpret data in the Flash Memory (NVM) Status Report?

The Embedded Flash Memory (NVM) Status Report generated from the FlashPro SmartDebug feature
consists of the page status of each NVM page. For example:

Flash Memory Content [Page 34 to 34]
FlashMemory Page #34:

Status Register(HEX): 00090000

Status ECC2 check: Pass

87

& Microsemi
SmartDebug User's Guide

Data ECC2 Check: Pass

Write Count: Pass (2304 writes)

Total number of pages with status ECC2 errors: 0O

Total number of pages with data ECC2 errors: O

Total number of pages with write count out of range: 0O
FlashMemory Check PASSED for [Page 34 to 34]

The "check_ flash_memory®" command succeeded.

The Execute Script command succeeded.

Table 7 - Embedded Flash Memory Status Report Description

Flash Description
Memory
Status Info

Status Raw page status register captured from device
Register
(HEX)

Status Check for ECC2 issue in the page status
ECC2
Check

Data ECC2 | Check for ECC2 issue in the page data
Check

Write Count | Check if the page-write count is within the expected range.
The expected write count is greater than or equal to:

6,384 - SmartFusion devices
2,288 - Fusion devices

Note: Write count, if corrupted, cannot be reset to a valid value within the
customer flow;invalid write count will not prevent device from being
programmed with the FlashPro tool.

The write count on all good eNVM pages is set to be 2288 instead of 0 in
the manufacturing flow. The starting count of the eNVM is 2288. Each
time the page is programmed or erased the count increments by one.
There is a Threshold that is set to 12288, which equals to 3 * 4096.

Since the threshold can only be set in multiples of 4096 (2°12), to set a
10,000 limit, the Threshold is set to 12288 and the start count is set to
2288; and thus the eNVM has a 10k write cycle limit. After the write count
exceeds the threshold, the STATUS bit goes to 11 when attempting to
erase/program the page.

& Microsemi

Product Support

Microsemi SoC Products Group backs its products with various support services, including Customer
Service, Customer Technical Support Center, a website, electronic mail, and worldwide sales offices. This
appendix contains information about contacting Microsemi SoC Products Group and using these support
services.

Customer Service

Contact Customer Service for non-technical product support, such as product pricing, product upgrades,
update information, order status, and authorization.
From North America, call 800.262.1060

From the rest of the world, call 650.318.4460
Fax, from anywhere in the world 650. 318.8044

Customer Technical Support Center

Microsemi SoC Products Group staffs its Customer Technical Support Center with highly skilled engineers
who can help answer your hardware, software, and design questions about Microsemi SoC Products. The
Customer Technical Support Center spends a great deal of time creating application notes, answers to
common design cycle questions, documentation of known issues and various FAQs. So, before you contact
us, please visit our online resources. It is very likely we have already answered your questions.

Technical Support

Website

For Microsemi SoC Products Support, visit http://www.microsemi.com/products/fpga-soc/design-
support/fpga-soc-support.

You can browse a variety of technical and non-technical information on the Microsemi SoC Products Group
home page, at http://www.microsemi.com/soc/.

Contacting the Customer Technical Support Center

Highly skilled engineers staff the Technical Support Center. The Technical Support Center can be contacted
by email or through the Microsemi SoC Products Group website.

Email

You can communicate your technical questions to our email address and receive answers back by email,
fax, or phone. Also, if you have design problems, you can email your design files to receive assistance. We
constantly monitor the email account throughout the day. When sending your request to us, please be sure
to include your full name, company name, and your contact information for efficient processing of your
request.

The technical support email address is soc_tech@microsemi.com.

My Cases

Microsemi SoC Products Group customers may submit and track technical cases online by going to My
Cases.

89

http://www.microsemi.com/products/fpga-soc/design-support/fpga-soc-support
http://www.microsemi.com/products/fpga-soc/design-support/fpga-soc-support
http://www.microsemi.com/soc
http://www.microsemi.com/soc/
http://www.microsemi.com/soc/mycases/
http://www.microsemi.com/soc/mycases/

& Microsemi

SmartDebug User's Guide

Outside the U.S.

Customers needing assistance outside the US time zones can either contact technical support via email
(soc_tech@microsemi.com) or contact a local sales office. Visit About Us for sales office listings and
corporate contacts.

ITAR Technical Support

For technical support on RH and RT FPGAs that are regulated by International Traffic in Arms Regulations
(ITAR), contact us via soc_tech@microsemi.com. Alternatively, within My Cases, select Yes in the ITAR
drop-down list. For a complete list of ITAR-regulated Microsemi FPGAs, visit the ITAR web page.

90

mailto:tech@microsemi.com
http://www.microsemi.com/soc/company/contact/default.aspx
http://www.microsemi.com/salescontacts
http://www.microsemi.com/index.php?option=com_content&view=article&id=137&catid=9&Itemid=747
mailto:tech@microsemi.com
http://www.microsemi.com/soc/ITAR/

Microsemi.

Microsemi Corporate Headquarters
One Enterprise, Aliso Viejo,
CA 92656 USA

Within the USA: +1 (800) 713-4113
Outside the USA: +1 (949) 380-6100
Sales: +1 (949) 380-6136

Fax: +1 (949) 215-4996

E-mail: sales.support@microsemi.com

2016 Microsemi Corporation. All
rights reserved. Microsemi and the
Microsemi logo are trademarks of
Microsemi Corporation. All other
trademarks and service marks are the
property of their respective owners.

Microsemi Corporation (Nasdag: MSCC) offers a comprehensive portfolio of semiconductor
and system solutions for communications, defense & security, aerospace, and industrial
markets. Products include high-performance and radiation-hardened analog mixed-signal
integrated circuits, FPGAs, SoCs, and ASICs; power management products; timing and
synchronization devices and precise time solutions, setting the world's standard for time; voice
processing devices; RF solutions; discrete components; security technologies and scalable
anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs and midspans; as well as
custom design capabilities and services. Microsemi is headquartered in Aliso Viejo, Calif. and
has approximately 3,600 employees globally. Learn more at www.microsemi.com.

Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or
the suitability of its products and services for any particular purpose, nor does Microsemi assume any
liability whatsoever arising out of the application or use of any product or circuit. The products sold
hereunder and any other products sold by Microsemi have been subject to limited testing and should not
be used in conjunction with mission-critical equipment or applications. Any performance specifications are
believed to be reliable but are not verified, and Buyer must conduct and complete all performance and
other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not
rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer's
responsibility to independently determine suitability of any products and to test and verify the same. The
information provided by Microsemi hereunder is provided “as is, where is” and with all faults, and the
entire risk associated with such information is entirely with the Buyer. Microsemi does not grant, explicitly
or implicitly, to any party any patent rights, licenses, or any other IP rights, whether with regard to such
information itself or anything described by such information. Information provided in this document is
proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this
document or to any products and services at any time without notice

5-02-00638-1/01.16

mailto:sales.support@microsemi.com
http://www.microsemi.com/

	Table of Contents
	Welcome to SmartDebug 5
	Introduction to SmartDebug 6
	Getting Started with SmartDebug 7
	Using SmartDebug with SmartFusion and Fusion 7
	Using SmartDebug with SmartFusion2, IGLOO2, and RTG4 7
	Create Standalone SmartDebug Project 7
	Standalone SmartDebug User Interface 10
	Programming Connectivity and Interface 11
	View Device Status (SmartFusion2, IGLOO2, and RTG4 Only) 15
	Embedded Flash Memory (NVM) Content Dialog Box (SmartFusion2 and IGLOO2 Only) 18
	Debug FPGA Array (SmartFusion2, IGLOO2, and RTG4 Only) 20
	Hierarchical View 20
	Netlist View 22
	Probe Grouping (Active Probes Only) 26
	Memory Blocks (SmartFusion2, IGLOO2, and RTG4) 30
	Probe Insertion (Post-Layout) - SmartFusion2, IGLOO2, and RTG4 32
	Debug SERDES – Loopback Test 36
	Debug SERDES – PRBS Test 37
	Debug SERDES – PHY Reset 39
	Inspect Device Dialog Box (SmartFusion, Fusion, and ProASIC3 Only) 39
	Device Status Report (SmartFusion and Fusion Only) 40
	Embedded Flash Memory (NVM) Content Dialog Box (SmartFusion and Fusion Only) 41
	Embedded Flash Memory: Browse Retrieved Data (SmartFusion and Fusion Only) 43
	Embedded Flash Memory: Compare Memory Client (SmartFusion and Fusion Only) 44
	FlashROM Content Dialog Box (Fusion and SmartFusion Only) 45
	Analog Block Configuration Dialog Box (SmartFusion and Fusion Only) 46
	SmartDebug Tcl Support (SmartFusion2, IGLOO2, and RTG4) 49
	Device Debug / SmartDebug Tcl Commands (SmartFusion, IGLOO, ProASIC3, and Fusion Only) 51
	add_to_probe_group (SmartFusion2, IGLOO2, and RTG4) 52
	check_flash_memory 52
	compare_analog_config 54
	compare_flashrom_client 54
	compare_memory_client 55
	create_probe_group (SmartFusion2, IGLOO2, and RTG4) 56
	delete_active_probe 56
	ddr_read (SmartFusion2, IGLOO2, and RTG4) 56
	ddr_write (SmartFusion2, IGLOO2, and RTG4) 57
	export_smart_debug_data (SmartFusion2, IGLOO2, and RTG4) 58
	load_active_probe_list 59
	loopback_test (SmartFusion2, IGLOO2, and RTG4) 59
	move_to_probe_group (SmartFusion2, IGLOO2, and RTG4) 60
	prbs_test (SmartFusion2, IGLOO2, and RTG4) 60
	read_active_probe (SmartFusion2, IGLOO2, and RTG4) 61
	read_analog_block_config 62
	read_device_status 62
	read_id_code 63
	read_flashrom 63
	read_flash_memory 64
	read_lsram (SmartFusion2, IGLOO2, and RTG4) 65
	read_usram (SmartFusion2 and IGLOO2) 66
	recover_flash_memory 66
	remove_from_probe_group (SmartFusion2, IGLOO2, and RTG4) 67
	sample_analog_channel 67
	save_active_probe_list 69
	select_active_probe (SmartFusion2, IGLOO2, and RTG4) 69
	serdes_lane_reset 70
	serdes_read_register (SmartFusion2, IGLOO2, and RTG4) 71
	serdes_write_register (SmartFusion2, IGLOO2, and RTG4) 72
	set_debug_device 72
	set_debug_programmer 73
	set_live_probe (SmartFusion2, IGLOO2, and RTG4) 73
	ungroup (SmartFusion2, IGLOO2, and RTG4) 74
	unset_live_probe 74
	write_active_probe (SmartFusion2, IGLOO2, and RTG4) 75
	write_lsram (SmartFusion2, IGLOO2, and RTG4) 75
	write_usram (SmartFusion2, IGLOO2, and RTG4) 76
	Embedded Flash Memory (NVM) - Failure when Programming/Verifying 77
	Analog System Not Working as Expected 77
	ADC Not Sampling the Correct Value 77
	How do I unlock the device security so I can debug? 79
	How do I export a report? 79
	How do I generate diagnostic reports for my target device? 79
	Where can I find files to compare my contents/settings? 80
	What is a UFC file? What is an EFC file? 80
	Is my FPGA fabric enabled? 80
	Is my Embedded Flash Memory (NVM) programmed? 81
	How do I display Embedded Flash Memory (NVM) content in the Client partition? 81
	How do I know if I have Embedded Flash Memory (NVM) corruption? 81
	Why does Embedded Flash Memory (NVM) corruption happen? 81
	How do I recover from Embedded Flash Memory corruption? 82
	What is a JTAG IR-Capture value? 82
	What does the ECC1/ECC2 error mean? 82
	How can I tell if my FlashROM is programmed? 82
	Can I compare serialization data? 82
	Can I tell what security options are programmed in my device? 82
	Is my analog system configured? 82
	How do I interpret data in the Device Status report? 83
	Device Status Report: User Info 83
	Device Status Report: Device State 84
	Device Status Report: Analog Block 85
	Device Status Report: Factory Data 86
	Device Status Report: Security 86
	How do I interpret data in the Flash Memory (NVM) Status Report? 87
	Customer Service 89
	Customer Technical Support Center 89
	Technical Support 89
	Website 89
	Contacting the Customer Technical Support Center 89
	ITAR Technical Support 90

	Welcome to SmartDebug
	Introduction to SmartDebug
	Use Models
	Integrated Mode
	Standalone Mode
	Standalone Mode Use Model Overview

	Supported Families, Programmers, and Operating Systems

	Getting Started with SmartDebug
	Using SmartDebug with SmartFusion and Fusion
	Using SmartDebug with SmartFusion2, IGLOO2, and RTG4
	Create Standalone SmartDebug Project
	Import from DDC File (created from Libero)
	Construct Automatically
	Configuring a Generic Device
	Connected FlashPRO Programmers
	See Also

	Import from DDC File (created from Libero)
	Construct Automatically
	Configuring a Generic Device

	SmartDebug User Interface
	Standalone SmartDebug User Interface
	Programming Connectivity and Interface
	Hover Information
	Device Chain Details
	Right-click Properties
	Debug Context Save
	Selecting Devices for Debug

	View Device Status (SmartFusion2, IGLOO2, and RTG4 Only)
	IdCode
	Device Certificate
	Design Information
	Digest Information
	Device Security Settings
	Programming Information

	Embedded Flash Memory (NVM) Content Dialog Box (SmartFusion2 and IGLOO2 Only)
	Contents of Page Status

	Debugging
	Debug FPGA Array (SmartFusion2, IGLOO2, and RTG4 Only)
	Hierarchical View
	Netlist View
	Probe Grouping (Active Probes Only)
	Context Menu of Probe Points Added to the Active Probes UI
	Differences Between a Bus and a Probe Group

	Memory Blocks (SmartFusion2, IGLOO2, and RTG4)
	Probe Insertion (Post-Layout) - SmartFusion2, IGLOO2, and RTG4
	Introduction
	Probe Insertion
	Probe Deletion
	Reverting to the Original Design

	Debug SERDES – Loopback Test
	Debug SERDES – PRBS Test
	Test Type
	Pattern
	Bit Error Rate

	Debug SERDES – PHY Reset
	Inspect Device Dialog Box (SmartFusion, Fusion, and ProASIC3 Only)
	Device Status Report (SmartFusion and Fusion Only)
	Embedded Flash Memory (NVM) Content Dialog Box (SmartFusion and Fusion Only)
	Embedded Flash Memory: Browse Retrieved Data (SmartFusion and Fusion Only)
	Embedded Flash Memory: Compare Memory Client (SmartFusion and Fusion Only)
	FlashROM Content Dialog Box (Fusion and SmartFusion Only)
	Analog Block Configuration Dialog Box (SmartFusion and Fusion Only)
	SmartDebug Tcl Commands
	SmartDebug Tcl Support (SmartFusion2, IGLOO2, and RTG4)
	Device Debug / SmartDebug Tcl Commands (SmartFusion, IGLOO, ProASIC3, and Fusion Only)
	add_to_probe_group (SmartFusion2, IGLOO2, and RTG4)
	Arguments
	Supported Families
	Example

	check_flash_memory
	Arguments
	Supported Families
	Exceptions
	Example

	compare_analog_config
	Arguments
	Supported Families
	Exceptions
	Example

	compare_flashrom_client
	Arguments
	Supported Families
	Exceptions
	Example

	compare_memory_client
	Arguments
	Supported Families
	Exceptions
	Example

	create_probe_group (SmartFusion2, IGLOO2, and RTG4)
	Arguments
	Supported Families
	Example

	delete_active_probe
	Arguments
	Supported Families
	Example

	ddr_read (SmartFusion2, IGLOO2, and RTG4)
	Arguments
	Supported Families
	Example
	Returns

	ddr_write (SmartFusion2, IGLOO2, and RTG4)
	Arguments
	Supported Families
	Example
	Returns

	export_smart_debug_data (SmartFusion2, IGLOO2, and RTG4)
	Arguments
	Supported Families
	Example

	load_active_probe_list
	Arguments
	Supported Families
	Example

	loopback_test (SmartFusion2, IGLOO2, and RTG4)
	Arguments
	Supported Families
	Example

	move_to_probe_group (SmartFusion2, IGLOO2, and RTG4)
	Arguments
	Supported Families
	Example

	prbs_test (SmartFusion2, IGLOO2, and RTG4)
	Arguments
	Supported Families
	Example

	read_active_probe (SmartFusion2, IGLOO2, and RTG4)
	Arguments
	Supported Families
	Example

	read_analog_block_config
	Arguments
	Supported Families
	Exceptions
	Example

	read_device_status
	Arguments
	Supported Families
	Exceptions
	Example

	read_id_code
	Arguments
	Supported Families
	Exceptions
	Example

	read_flashrom
	Arguments
	Supported Families
	Exceptions
	Example

	read_flash_memory
	Arguments
	Supported Families
	Exceptions
	Example

	read_lsram (SmartFusion2, IGLOO2, and RTG4)
	Supported Families
	Exceptions
	Example

	read_usram (SmartFusion2 and IGLOO2)
	Supported Families
	Exceptions
	Example

	recover_flash_memory
	Arguments
	Supported Families
	Exceptions
	Example

	remove_from_probe_group (SmartFusion2, IGLOO2, and RTG4)
	Arguments
	Supported Families
	Example

	sample_analog_channel
	Arguments
	Supported Families
	Exceptions
	Example

	save_active_probe_list
	Arguments
	Supported Families
	Example

	select_active_probe (SmartFusion2, IGLOO2, and RTG4)
	Arguments
	Supported Families
	Example

	serdes_lane_reset
	Arguments
	Supported Families
	Example
	Errors

	serdes_read_register (SmartFusion2, IGLOO2, and RTG4)
	Arguments
	Supported Families
	Example

	serdes_write_register (SmartFusion2, IGLOO2, and RTG4)
	Arguments
	Supported Families
	Example
	See Also

	set_debug_device
	Arguments
	Exceptions
	Example

	set_debug_programmer
	Arguments
	Exceptions
	Example

	set_live_probe (SmartFusion2, IGLOO2, and RTG4)
	Arguments
	Supported Families
	Exceptions
	Example

	ungroup (SmartFusion2, IGLOO2, and RTG4)
	Arguments
	Supported Families
	Example

	unset_live_probe
	Arguments
	Supported Families
	Exceptions
	Example

	write_active_probe (SmartFusion2, IGLOO2, and RTG4)
	Arguments
	Supported Families
	Example

	write_lsram (SmartFusion2, IGLOO2, and RTG4)
	Supported Families
	Exceptions
	Example

	write_usram (SmartFusion2, IGLOO2, and RTG4)
	Supported Families
	Exceptions
	Example

	Solutions to Common Issues Using SmartDebug
	Embedded Flash Memory (NVM) - Failure when Programming/Verifying
	Analog System Not Working as Expected
	ADC Not Sampling the Correct Value
	Frequently Asked Questions
	How do I unlock the device security so I can debug?
	How do I export a report?
	How do I generate diagnostic reports for my target device?
	Where can I find files to compare my contents/settings?
	What is a UFC file? What is an EFC file?
	Is my FPGA fabric enabled?
	Embedded Flash Memory (NVM) Frequently Asked Questions
	Is my Embedded Flash Memory (NVM) programmed?
	How do I display Embedded Flash Memory (NVM) content in the Client partition?
	How do I know if I have Embedded Flash Memory (NVM) corruption?
	Why does Embedded Flash Memory (NVM) corruption happen?
	How do I recover from Embedded Flash Memory corruption?
	What is a JTAG IR-Capture value?
	What does the ECC1/ECC2 error mean?
	How can I tell if my FlashROM is programmed?
	Can I compare serialization data?
	Can I tell what security options are programmed in my device?
	Is my analog system configured?
	How do I interpret data in the Device Status report?
	IDCode

	Device Status Report: User Info
	Device Status Report: Device State
	Device Status Report: Analog Block
	Device Status Report: Factory Data
	Device Status Report: Security
	FPGA Array (Fabric)

	How do I interpret data in the Flash Memory (NVM) Status Report?
	Product Support
	Customer Service
	Customer Technical Support Center
	Technical Support
	Website
	Contacting the Customer Technical Support Center
	Email
	My Cases
	Outside the U.S.

	ITAR Technical Support

