Libero SoC v11.5

User’s Guide

NOTE: PDF files are intended to be viewed on the printed page; links and cross-references in this
PDF file may point to external files and generate an error when clicked. View the online help
included with software to enable all linked content.

& Microsemi

& Microsemi
Libero SoC User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Table of Contents

Welcome to Microsemi's LIDEro® SOC VIL5cc.vvecereriereeseseeeissesiessesesssessesssssessssssesssssssesssnsenns 5
Firmware Cores Frequently AsSKed QUESTIONS..........cccviviiiieieesese st see e 14
GENETAl QUESTIONS ...ttt ettt ettt et et st et e s e s be e sbe e e beebeeabeeabeebbesbaesbeesbeebeeseesaeesaeesbeeebeenbeenns 21
Instantiating iNt0 YOUr SMArTDESIONcoeiiiiiiieie ettt sbe b 22
Working with Processor-Based Designs in SmMartDeSIGNc..covvvivieieeiereine e e eeie e 23
VHDL Construct SUPPOrt in SMartDESIGN.ccvvvieiieiiieie e se et ere e eee e sre e e 24
Making your DeSigN LOOK INICE.cciiiriiiiiieiee sttt sttt st e et sae b e e 25
GENETALING YOUT DESIGN .veviiieiereeieiiie ettt et ettt re s e e e et st e besre e s e e e et e seestesteaneereeseeneeneenrenns 26
GENETAl QUESTIONS ...ttt ettt ettt et et st et e s e s be e sbe e e beebeeabeeabeebbesbaesbeesbeebeeseesaeesaeesbeeebeenbeenns 27
Instantiating INto Y OoUr SMArtDESIGNcceeviiiiieieiiieieie ettt ettt e bbb e 28
Working with Processor-Based Designs in SmMartDeSIGNc..covvvvirriieeriereene s e eeee e 30
VHDL Construct SUPPOrt in SMartDESIGN.ccevviiiieiieeeriese e se e e e e sre e e 31
Making your DeSigN LOOK NICE.ccutiiriiieieiei sttt sttt bbbttt see b e 32
Getting Started With SMartDeSIgNc..coviiiiiiie e 33
CANVAS VIBW ...ttt ettt et b et e et e e n e e be e e nte e beeanbeenaaeaneas 37
Creating @ SMArtDESIGNc.vcvi i sre e sre e e 46
COoNNECTING INSTANCESeoiviiiie e arre e aneas 48
BUS INTEITACES ... et e e saeeaaeas 52
INCrEMENTAl DESIGNvviiiiie et e e e sreenne s 60
=] =] = ot PSPPSR 64
VHDL Special Types - Examples and meta.out File Format.............ccoovvveivevincicc v 72
SMArtDESIGN TESIDENCH ..ottt bbbt see b e 80
Designing with Designer Block Components..........cccocvevveeiiiiie e s 84
Creating a Designer Block Component in Libero SoC...........cccoovviieiiiieiiieveennne. 87
Creating a Designer Block Component in LiDero SOCccooiiiiiiiiieiieieee e 88
Place @Nd ROULE.........ooiiieiie ettt et e re e 108
DeViCe Programmingc.cccoviiiioiie ettt snre e raesnn e 115
Security PoliCy Manager (SPM) ..ottt bbb 124
PrOGIAM DEBVICEveveiieieiteieie ittt sttt sttt sttt s b ettt bbbt b et s b e st e b e b e bt et s b e st et st et et e en et n s 134
Generating Programming FIlES ... 148
Generate a Programming File for Serialization Support in In House Programming (IHP).................. 155
SPI Programming TULOrial OVEIVIEWccvieiiieieeierice st ste sttt st sne e e snesne e 178

Libero SoC User's Guide

& Microsemi

Table of Contents

F AN (o T ad (T [a2l 3211 o S 179
In Application Programming (IAP) TULOITAL.........cooiiiiiiie s 180
Programming RECOVENY TULOTIAL..........coviviieieece et nne s 181
Security PoliCy Manager (SPM)ocieiee ettt sresre e ne e nnenre e e 188
Solutions to Common Issues Using Device Debugccccevveieiveieciiesieececee 196
Frequently Asked QUESTIONScuoiiiiiiiiiicie e 198
Embedded Flash Memory (NVM) Frequently Asked Questionsc.......... 200
Device Debug User INTErfaCe........ccovviiiiieiecie et 210
DEDUG SERDESooiiii ittt ettt s et st e b Re e R e e e n e et e EenReere e e n e nnenrenne e 222
LIVE PIODES ...ttt bbb bbbttt 227
g o V=T (0] o1 OSSP 228
Designer iN LIDEro SOC ...t 242
e] (T =] 1= PRSPPI 260
0o [Tox BT U o] o o] i USROS 277

& Microsemi

Table of Contents

Welcome to Microsemi's Libero® SoC v11.5

Libero SoC is the most comprehensive and powerful FPGA design and development software available,
providing start-to-finish design flow guidance and support for novice and experienced users alike. Libero
SoC combines Microsemi's tools with such EDA powerhouses as Synplify Pro® and ModelSim®.

IGLOO2- Build designs targeting the newest Microsemi FPGA device using the IGLOO2 System Builder.

SmartFusion?2 - This SoC FPGA combines a powerful Cortex-M3 microcontroller with programmable FPGA
logic.

What's New in Libero SoC v11.5 - Learn more about Libero SoC

New IGLOO2 and SmartFusion2 Devices
e M2GL060 676 FBGA, M2GL060T 676 FBGA, M2GL0O60TS 676 FBGA
e M2GL150 FCV484, M2GL150T FCV484, M2GL150TS FCV484
e M2GL005 144 TQ, M2GL005S 144 TQ Replacing 144 VQ
e M2GLO010 144 TQ, M2GL010S 144 TQ Replacing 144 VQ
e M2S060 676 FBGA, M2S060T 676 FBGA, M2S060TS 676 FBGA
e M2S150 FCV484, MS150T FCV484, M2S150TS FCV484
e M2S005 144 TQ, M2S005S 144 TQ Replacing 144 VQ
e M2S010 144 TQ, M2S010S 144 TQ Replacing 144 VQ

Timing and Power Updates
e Production Timing and Power Analysis for M2GL005 and M2S005
e Production Power Analysis for M2GL090, M2S090, M2GL150 and M2S150

Faster Project Conversion and System Builder
Redesigned Project Wizard and New Device Selector
Post-layout Probe Insertion for SmartFusion2 and IGLOO2

Programming — Learn more about Programming Solutions

e Serialization using FlashPro Express and expanded TCL support
See the Microsemi website for the complete list of devices and packages supported in this release.

Discontinued Parts— Update designs in progress using Libero SoC v11.4 SP1
e M2GL100 and M2S100 are replaced by the equivalent M2GL150 and M2S150 parts
e IGLOO2 and SmartFusion2 “S” devices are replaced by the equivalent “TS” parts

See the Libero SoC v11.5 Release Notes for more information.

Design Flow - Libero SoC

See the Libero SoC SmartFusion2 Design Flow topic for more information on designing for that device.

The Libero SoC Build button © enables you to proceed from synthesis to programming in one click.
Once you create your design (configure your MSS; create SmartDesign; Create HDL) and click the Build
button the software automatically executes the following operations with default settings (if it encounters no
errors):

e Synthesis

e Compile

e Place and Route

Libero SoC User's Guide 5

http://www.microsemi.com/products/fpga-soc/fpga/igloo2-fpga
http://www.microsemi.com/products/fpga-soc/soc-fpga/smartfusion2
http://www.microsemi.com/products/fpga-soc/design-resources/design-software/libero-soc
http://www.microsemi.com/products/fpga-soc/design-resources/programming-debug
http://www.microsemi.com/products/fpga-soc/design-resources/design-software/libero-soc%23device-support
http://www.microsemi.com/products/fpga-soc/design-resources/design-software/libero-soc%23downloads

& Microsemi

Table of Contents

e Verify Timin
e Generate Programming Data

You can also import constraint files, organize and associate them for use during synthesis and compile.

In the event of an error the operation is halted and an explanatory error message appears in the Log
window.

To change the default settings for any of the operations, right-click and choose Open Interactively to open
the tool associated with the operation.

For example, to change the Compile settings, expand Implement Design, right-click Compile and choose
Open Interactively. This displays the Compile options for your design.

Libero SoC Design Flow - SmartFusion2 and IGLOO2 ONLY

This Libero release incorporates several features that are unique to SmartFusion2 and IGLOO2.

The Libero SoC Build button @ still enables you to proceed from synthesis to programming in one click
(using default settings).

The basic design flow is shown in the figure below.

& Microsemi

Table of Contents

Create Design

¢ Pre-Compile Constraint Editor
- 1/0 constraint and Floorplan constraint
Create Constraints —»| files are separated -
- Enables you to import Timing constraint
¢ (5DC) files pre-Compile

Synthesis

v

Compile

Post-Compile I/O Editor
- Assign pins and attributes
- Rules checking
- State Management on modifications

Y

Place and Route

Y

Post-Compile PDC file
- Post-Compile /O PDC file generated
automatically if you explicitly add/modify
your /O Constraints post-Compile

\]

Generate Fabric
Programming Data

Y

Figure 1 - Design Flow for SmartFusion2

Create Design

Once you create your design (using System Builder; using the MSS builder - the flow for which is similar to
the MSS flow for SmartFusion; create SmartDesign; Create HDL; SmartDesign Testbench) and click the
Build button the software automatically executes the operations below with default settings (if it encounters
no errors).

Create Constraints - Pre-Compile

SmartFusion2 I/0O constraint PDC files are separate from Floorplan constraint PDC files; if you have a PDC
file that contains both I/O and Floorplan constraints then Libero SoC errors out with an invalid constraint
error.

e |/O Constraints - To add an I/O constraint, in the Design Flow window expand Create Constraints,
right-click 1/0 Constraints and choose Import Files.

e Timing Constraints - Enables you to import SDC files pre-Compile.

¢ Floorplan Constraints - Created with the Floorplanner or a text editor; to add a Floorplan constraint, in
the Design Flow window expand Create Constraints, right-click Floorplan Constraints and choose
Import Files.

Libero SoC User's Guide 7

& Microsemi
Table of Contents

Synthesis

Double-click Synthesize to run synthesis on your design automatically; automatic synthesis uses the default
settings in your synthesis tool.

Compile

To compile your design with custom settings, right-click Compile in the Design Flow window and choose
Configure Options.

Place and Route

Place and Route runs automatically with default settings as part of the push-button design flow in Libero
SoC.

Edit Constraints - Post-Compile

e |/O Constraints - The Post-Compile I/O Editor displays all assigned and unassigned 1/0O macros and
their attributes in a spreadsheet format; use this editor to view, sort, select, edit, lock and unlock
assigned attributes.

The post compile editor ensures that the Compile/Place and Route state is maintained (you do not
have to rerun Compile or Place and Route), if you make changes to the attributes that do not require it.

However, if you modify the 1/O PDC file directly, it is equivalent to modifying the source file of the
design, which means the tools starting from Compile will become out of date because one of the
source files was modified.

e Timing Constraints - Run SmartTime to perform Min/Max analysis and manage timing constraints.
¢ Floorplan Constraints - Use to create and edit regions on your chip and assign logic to these regions.

Generate Fabric Programming Data

Generates programming data for your design. This operation is completed automatically as the last step if
you use the Build button

Programming

You do not have to open FlashPro or FlashPoint to program your SmartFusion2 device. All programming
functionality is available from within the Design Flow window, including:

Programming Connectivity and Interface - Organizes your programmer(s) and devices.

Programmer Settings - Opens your programmer settings; use if you wish to program using settings other
than default.

Device I/O States During Programming - Sets your device I/O states during programming; use if your
design requires that you change the default I/O states.

Security Policy Manager - Enables you to set your Secured Programming Use Model, User Key Entry and
Security Policies for your design.

Design Flow Window Updates for SmartFusion2 and IGLOO2 Only

The Design Flow window for the SmartFusion2 and IGLOO2 families has been changed in v11.0. Some
functions, such as running SmartTime and the 1/0O Editor, no longer require that you open Designer.

When you move through the steps in the Design Flow window, only the steps in bold are required to
complete and program your design. The bold steps are completed automatically if you use the Build button.

The table below summarizes the new or updated functions in the Design Flow window for the SmartFusion2
and IGLOO2 families.

Value

Function

Create Design >
System Builder

System Builder creates your design based on high level design
specifications by walking you through a set of high-level
questions that will define your intended system.

Create Constraints

Timing Constraints- Import or edit Timing Constraint SDC files

Floorplan Constraints - Import or edit Floorplan Constraint
PDC files

Note that I/O Constraint and Floorplan Constraint PDC files are
handled separately in v11.0; if you have a PDC file that contains
both 1/0O Constraints and FloorPlan Constraints then it will error
out.

Configure
Flash*Feeze

Enables you to configure your Flash*Freeze hardware settings

Edit Constraints

1/0 Constraints - Opens the Post-Compile |/O Editor, enables
you to modify the post-Compile database.

Timing Constraints - Opens SmartTime for SmartFusion2;
enables you to create/edit your timing constraints (SDC files)

Floorplan Constraints - Opens ChipPlanner for SmartFusion2;
enables you to edit your Floorplan PDC files.

Generate Back
Annotated Files

Similar to Export Back Annotated Files for other families,
enables you to generate your Back Annotated files and/or set
your options without opening Designer.

Edit Design
Hardware
Configuration

Configures your Programing Connectivity, Programmer Settings
and Device I/O States During Programming. These functions
were previously available in FlashPro but are now managed
from within Libero SoC.

Configure Security
and Programming
Options

Security Policy Manager - Sets the options for your Secured
Programming Use Model, User Key Entry and Security Policies
(Update Policy, Protocol Policy and Operational Integrity Policy)

Configure Bitstream - Enables you to select which features you
wish to program.

Update eNVM Memory Content - Enables you to change your
eNVM content for programming without having to rerun Compile
and Place and Route.

Generate
Programming Data

Generates programming data for your design; this operation is
completed automatically as the last step if you use the Build
button.

& Microsemi

Table of Contents

The figure below shows a SmartFusion Design Flow window on the left and a SmartFusion2 Design Flow
window on the right.

Libero SoC User's Guide

& Microsemi

Table of Contents

Design Flow ® Design Flow

SmartFusion a Q SmartFusion2
Tool Tool 7
» Create Design } Create Design
=+ # Constrain Design = ¢ Create Constraints
+ Import IO Constraints "E I1/O Constraints
Irnport Timing Conskrainks Timing Conskrainks
=+ » Implement Design %" Floorplan Constraints
v =- 5 synthesize = ¢ Implement Design
= [Constraints v S Synthesize
a synthesisiSh1 _sdc,sdc = ¢ ¥erify Post-Synthesis Implementation
= # ¥erify Post-Synthesis Implementation . Simulate
B simulate (%4 % Compile
(%4 = % Compile] Canfigure Flash*Freeze
= [Constraints v 9,3 Place and Route
a synthesisiSh1 _sdc.sdc = # Edit Constraints
=+ # Constrain Place and Route 1/O Constraints
CreatefEdit IjO Attributes Timing Constraints
Create/Edit Timing Constraints %" Floorplan Constraints
%" Floorplan = # ¥erify Post Layout Implementation
v 15 Place and Route +[| Generate Back Annotated Files
.« = # ¥erify Post Layout Implementation . Simulate
. Simulate .g (.'?_1 ‘erify Timing
.« (}_1 Yerify Timing E{ Werify Power
Ih ‘erify Power = # Edit Design Hardware Configuration
d_im Export Back Annotated Files [Programming Connectivity and Interface
_ : ! : an Programmer Settings
=+ » Program Design E,'ﬁ Device If0 States During Programming
@5 Program Device = # Configure Security and Programming Options
= b Rghug Design Security Policy Manager
.Q Instrument Design : Programming Features
=+ » Handoff Design for Production %y.: Update el Memary Content
-@ Export Programming File v = # Program Design
+[| Export Pin Report ‘
+L| Export IBIS Model
=+ » Develop Firmware = »

B yirite Application Cade
€ SmartDebug Design

Handoff Design for Production

-@ Export Programming File

+L| Export Pin Report

+[| Export BSDL »

i

Figure 2 - SmartFusion (left) and SmartFusion2 (right) Design Flow Windows

File Types in Libero SoC

When you create a new project in the Libero SoC it automatically creates new directories and project files.
Your project directory contains all of your local project files. If you import files from outside your current
project, the files must be copied into your local project folder. (The Project Manager enables you to manage
your files as you import them.)

Depending on your project preferences and the version of Libero SoC you installed, the software creates
directories for your project.

The top level directory (<project_name>) contains your PRJ file; only one PRJ file is enabled for each Libero
SoC project.

component directory - Stores your SmartDesign components (SDB and CXEF files) for your Libero SoC
project.

constraint directory - All your constraint files (SDC, PDC)

designer directory - ADB files (Microsemi Designer project files), -_ba.SDF, _ba.v(hd), STP, PRB (for

Silicon Explorer), TCL (used to run designer), impl.prj_des (local project file relative to revision), designer.log

(lodfile)

Note: The Microsemi ADB file memory requirement is equivalent to 2x the size of the ADB file. If
your computer does not have 2x the size of your ADB file's memory available, please make
memory available on your hard drive.

hdl directory - all hdl sources. *.vhd if VHDL, *.v and *.h if Verilog

simulation directory - meminit.dat, modelsim.ini files

10

& Microsemi
Table of Contents

smartgen directory - GEN files and LOG files from generated cores

stimulus directory - BTIM and VHD stimulus files

synthesis directory - *.edn, *_syn.prj (Synplify log file), *.psp (Precision project file), *.srr (Synplify lodfile),
precision.log (Precision logfile), *.tcl (used to run synthesis) and many other files generated by the tools (not
managed by Libero SoC)

viewdraw directory - viewdraw.ini files

Software Tools - Libero SoC

The Libero SoC integrates design tools, streamlines your design flow, manages design and log files, and
passes design data between tools.

For more information on Libero SoC tools, please visit:
http://www.microsemi.com/products/fpga-soc/design-resources/design-software/libero-soc#overview

Function Tool Company
Project Manager, HDL Editor, Core Generation Libero SoC Microsemi
SoC
Synthesis Synplify® Pro | Synopsys
ME
Simulation ModelSim® Mentor
ME Graphics
Timing/Constraints, Power Analysis, NetlistViewer, Libero SoC Microsemi
Floorplanning, Package Editing, Place-and-Route, SoC
Debugging
Programming Software FlashPro Microsemi
SoC
Programming Software FlashPro Microsemi
Express SoC

Project Manager, HDL Editor targets the creation of HDL code. HDL Editor supports VHDL and Verilog
with color, highlighting keywords for both HDL languages.

Synplify Pro ME from Synopsys is integrated as part of the design package, enabling designers to target
HDL code to specific devices.

Microsemi SoC software package includes:
e ChipPlanner displays I/0 and logic macros in your design
e NetlistViewer design schematic viewer
e SmartPower power analysis tool
e SmartTime static timing analysis and constraints editor

ModelSim ME from Mentor Graphics enables source level verification so designers can verify HDL code line
by line. Designers can perform simulation at all levels: behavioral (or pre-synthesis), structural (or post-
synthesis), and back-annotated, dynamic simulation. (ModelSim is supported in Libero Gold and Platinum

only.)

Libero SoC User's Guide 11

http://www.microsemi.com/products/fpga-soc/design-resources/design-software/libero-soc%23overview

& Microsemi

Table of Contents

Frequently Asked Questions - Libero SoC

The collection of Frequently Asked Questions are useful for anyone that is new to Libero SoC. All the
information listed below is explained in detail in other sections of the help, but the information is summarized
here for easy reference. Click any question to go to the corresponding explanation.

Libero SoC Frequently Asked Questions

How do | set my Multi-Pass place and route options?

How do | set FlashPro security options?

How do | instantiate my HDL in SmartDesign?

How do | add a bus interface to my HDL code and then add it to SmartDesign?

| don't see any DirectCore IP's in the Catalog but | have both Libero IDE 9.1 and Libero SoC 10.0
installed. Where are the DirectCore IP's?

How do | assign I/O/s in Libero SoC?

How do | make sure that my design is using the latest driver(s)?
How do | improve the timing of my design?

How do | manage clocks?

10. How do I write a testbench?

M

o © N

Firmware Cores Frequently Asked Questions

1. Where are the firmware files generated?
2. Why are some firmware in italics?

3. Why am | getting the following error on generation? "Error: 'Missing Core Definition': Core
'‘Actel:Firmware:MSS_SPI Driver:2.0.101 ' is missing from the vault."?

Why is my firmware view empty?
5. Why are there multiple firmware instances of the same type?

Libero SoC Frequently Asked Questions

How do I set my Multi-Pass place and route options?

In the Design Flow window, expand Implement Design, right-click Place and Route and choose Open
Interactively. Designer opens. Click Layout to open the Layout Options dialog box and choose your place
and route options. Once Layout is complete, save your ADB to retain your custom place and route options.

How do I set FlashPro security options?
In the Libero SoC Design Flow window, expand Program Design, right-click Program Device and choose

Open Interactively. FlashPro opens and enables you to set/change your security options. See the FlashPro
help for more information.

How do I instantiate my HDL in SmartDesign?
Import your HDL file into the Libero SoC (File > Import Files). After you do this, your HDL module appears in
the Project Manager Hierarchy. Then, drag-and-drop it from the Hierarchy onto your SmartDesign Canvas.
How do I add a bus interface to my HDL code and then add it to SmartDesign?
If you want to add a bus interface to your HDL code and then add it to SmartDesign, see the Adding or
Modifying Bus Interfaces in SmartDesign topic.
I don't see any DirectCore IP's in the Catalog but I have both Libero IDE 9.1 and Libero SoC 10.0 installed. Where are
the DirectCore IP's?

12

& Microsemi

Table of Contents

Make sure the vault location is correct. Click the Catalog Options button to open the Catalog Options dialog
box. Then check and, if necessary, update your vault location.

How do I assign I/O's in Libero SoC?

In the Design Flow window, expand Implement Design, then expand Constrain Place and Route. Right-
click Edit I/O Attributes and choose Open Interactively to open the |/O Attribute Editor.

How do I make sure that my design is using the latest driver(s)?

In the Design Flow tab, expand Create Design and double-click View/Configure Firmware Cores to view
the DESIGN_FIRMWARE tab. The Firmware table lists the compatible firmware and drivers based on the

hardware peripherals that you have used in your design. Use the Version drop down menus to check for the
latest firmware and firmware drivers.

How do I improve the timing of my design?

The SmartTime tool enables you to set clock constraints, analyze timing, identify critical paths, and find the
minimum cycle time that does not result in a timing violation.

To improve the timing of your design:

1. Run timing analysis to identify timing violations.
2. View the paths with timing violations.

3. Modify timing constraints on the critical path(s) in order to meet your timing requirements.
4. Run Timing-Driven Place and Route.

For more information on improving timing, see the Analysis and Optimization application notes. The
Designing for Performance on Flash-Based FPGAs application note is a good starting point.

How do I manage clocks?

Specify clock constraints in your design. See the sections on explicit clocks, potential clocks and clock
networks for more information on clocks in Libero SoC.

How do I write a testbench?

You can write or edit a testbench manually using the HDL editor, or you can create a new HDL testbench

and automatically populate it with all your design information with Create New HDL Testbench in Libero
SoC. Create New HDL Testbench is in the Design Flow window under Create Design.

Testbench file are generated automatically when you generate a SmartDesign. You can find them in your
Files window in Libero SoC (View > Window > Files).

Libero SoC User's Guide 13

http://www.actel.com/techdocs/appnotes/analysis_optimization.aspx
http://www.actel.com/documents/Design_Performance_AN.pdf

& Microsemi

Table of Contents

Firmware Cores Frequently Asked Questions

Where are the firmware files generated?
The firmware files are generated to the firmware working directory <project>\firmware. Your software IDE
workspace is generated to <project>\<software IDE tool chain>.
Why are some firmware in italics?
This indicates the firmware is in the IP repository but not in your local IP vault. You must download it to your
local IP vault so that the Libero SoC will generate the firmware files.
Why am I getting the following error on generation? "Error: 'Missing Core Definition': Core
'Actel:Firmware:MSS_SPI_Driver:2.0.101 ' is missing from the vault."?
This happens when a firmware that is in your design but the VLNV definition could not be found in your IP
vault. This can happen if you:
e Changed your vault settings to point to another vault
e Opened a project that was created on another machine
Why is my firmware view empty?
Check that you are pointing to the proper firmware repository:

www.actel-ip.com/repositories/Firmware

Check with your network administrator to make sure you can communicate with Microsemi's IP repository
URL.

Why are there multiple firmware instances of the same type?

Some firmware cores have configurable options, and in certain cases you will have two peripherals of the
same firmware VLNV. In this situation, you may want to configure each peripheral driver separately.

Software IDE Integration

Libero SoC simplifies the task of transitioning between designing your FPGA to developing your embedded
firmware.

Libero SoC manages the firmware for your FPGA hardware design, including:
e Firmware hardware abstraction layers required for your processor
e Firmware drivers for the processor peripherals that you use in your FPGA design.
e Sample application projects are available for drivers that illustrate the proper usage of the APIs

You can see which firmware drivers Libero SoC has found to be compatible with your design by opening the
Firmware View. From this view, you can change the configuration of your firmware, change to a different
version, read driver documentation, and generate any sample projects for each driver.

Libero SoC manages the integration of your firmware with your preferred Software Development
Environment, including SoftConsole, Keil, and IAR Embedded Workbench. The projects and workspaces for
your selected development environment are automatically generated with the proper settings and flags so
that you can immediately begin writing your application.

See Also

Exporting Firmware and the Software IDE Workspace
Libero SoC Frequently Asked Questions
Running Libero SoC from your Software Tool Chain

View/Configure Firmware Cores

14

& Microsemi
Table of Contents

System Builder

System Builder is a graphical design wizard that enables you to enter high-level design specifications for
SmartFusion2 or IGLOO2.

System Builder takes you through the following steps:
e Asks basic questions about your system architecture and peripherals
e Builds a correct-by-design complete system

System Builder automatically configures the silicon features you select. To complete the design, add your
custom logic or IP and connect them to your System Builder-generated design.

See the SmartFusion2 System Builder documentation or the IGLOO2 System Builder documentation for a
complete family-specific explanation of the tool.

Instantiate a SmartFusion MSS in your Design

You can configure peripherals within the SmartFusion MSS, such as the ARM® Cortex™-M3, embedded
nonvolatile memory (eNVM), Ethernet MAC, timer, UART, and SPI to suit your needs. The MSS operates
standalone without any dependencies on other logic within the device; however, designs that require
functionality beyond a standalone MSS are handled by using SmartDesign to add user logic in the
SmartFusion FPGA fabric.

You can instantiate a Microcontroller Subsystem into your design from the New Project Creation Wizard
when you start a new SmartFusion project, or from the Design Flow window after you have created a new
project.

To instantiate a SmartFusion MSS from the New Project Creation Wizard you must enable Use Design
Tool (under Design Templates and Creators) and click to select SmartFusion Microcontroller
Subsystem (MSS) from the list.

If you opted not to use a Design Tool when you created your project, in the Design Flow window expand
Create Design and double-click Configure MSS. This opens the Add Microcontroller Subsystem dialog
box. Enter your Design Name and click OK to continue. A SmartDesign Canvas appears with the MSS
added to your project; double-click the MSS to view and configure MSS components.

Configure the SmartFusion MSS

Documents for specific SmartFusion MSS peripherals are available on the Peripheral Documents web page.

The SmartFusion Microcontroller Subsystem (MSS) Configurator (as shown in the figure below) contains the
elements listed below. Double-click any element in the MSS to configure it; click the checkbox (if available)
to enable or disable it in your design.

MSS ARM® Cortex™-M3
Peripherals

e ACE Configuration

e ACE Simulation

e AHB Bus Matrix Configuration

e Clock Configuration

e Configurator Overview

e Embedded FlashROM (eFROM) Configuration

e Embedded Nonvolatile Memory (eNVM) Configuration
e Ethernet MAC Configuration

e External Memory Controller (EMC) Configuration
e Firmware

e GPIO Configuration

e |2C Configuration

Libero SoC User's Guide 15

http://coredocs.s3.amazonaws.com/Actel/Tool/SysBuilder/sf2_system_builder_ug_1.pdf
http://coredocs.s3.amazonaws.com/Libero/Tool/SysBuilder/igl2_system_builder_ug_1.pdf
http://coredocs.s3.amazonaws.com/Actel/IndexPage/mss_doc_index_sf.html

& Microsemi

Table of Contents

¢ Interrupt Management
e |/O Configuration
e |/O Editor
e Peripheral DMA Configuration
¢ Real Time Counter (RTC) Configuration
¢ Reset Management Configuration
e SPI Configuration
e Timer Configuration
e UART Configuration
e Watchdog Configuration
Fabric

e Dedicated Fabric Clock Conditioning Circuit with PLL Integration

Interfaces

e How to Create a MSS and Fabric AMBA AHBLite Design (MSS Master Mode)

e How to Create a MSS and Fabric AMBA APB3 Design (MSS Master Mode)

e How to Create a MSS and Fabric AMBA AHBLite/APB3 Design (MSS Master Mode)
SmartFusion SmartDesign Documents

e SmartDesign MSS Canvas
e SmartDesign MSS Simulation
e SmartDesign MSS Running the MSS Configurator in your Software Tool Chain

Project File Edit Wiew Design SmartDesign Help

IDedaxol|Z

f@ Reports a smarkfusion_projeck_M55 |
e ml ;I
28|z
T
[
=y Cladk Nanagement cartexna Estan
i 4 [T ENVH Extemal Hamary € antrallar
— I T i I | I i

fPE_O APB_1
ace — waRT_o vanT_1
TINER:2
’—r_.‘ J m']

WATCHDOG

MAC
Reset Hanagament GFIO EFROM

T %““T I =

@

e ‘_’I:’

O/ >REAPI%

NS5 T/0 Fabwie Intertace

A ST = tmeen Sniuntin
L I
— -
4 | >

||Fam: SmartFusion |Die: AZFZDOMSF | Pka: 256 FBGA | terlon.

Figure 3 - SmartFusion MSS

16

& Microsemi

Table of Contents

Generate SmartFusion MSS Files

See the MSS Configurator help for more information on generating SmartFusion MSS files.

Click the Generate Component button % to create your SmartFusion MSS files.
The MSS Configurator generates the following files:

e HDL files for the MSS design and its sub-components: MSS CCC, etc. HDL files are automatically
managed by the Libero SoC and passed to the Synthesis and Simulation point tools.

e EFC File. MSS hardware configuration that is loaded into eNVM. FlashPro automatically detects this
file and includes it in your final programming file.

e UFC file. Contains your Embedded FlashROM configuration and data. FlashPro automatically detects
this file and includes it in your final programming file.

e Firmware drivers and memory maps are exported into the <project>\firmware\ directory - Libero SoC
automatically generates a Software IDE project that includes your Firmware drivers. If you are not
using a software project automatically created by Libero, you can import this directory into your
Software IDE project.

e Testbench HDL and BFM script for the MSS design: These files are managed by Libero SoC and
automatically passed to the Simulation point tool.

o PDC files for the MSS and the top-level design: These files are managed by Libero SoC and
automatically integrated during Compile and Layout.

Instantiate a SmartFusion2 MSS in your Design

You can configure peripherals within the SmartFusion2 MSS, such as the ARM® Cortex™-M3, embedded
nonvolatile memory (eNVM), Ethernet MAC, timer, UART, and SPI to suit your needs. The MSS operates
standalone without any dependencies on other logic within the device; however, designs that require
functionality beyond a standalone MSS are handled by using SmartDesign to add user logic in the
SmartFusion2 FPGA fabric.

You can instantiate a Microcontroller Subsystem into your design from the New Project Creation Wizard
when you start a new SmartFusion2 project, or from the Design Flow window after you have created a new
project.

To instantiate a SmartFusion2 MSS from the New Project Creation Wizard you must enable Use Design
Tool (under Design Templates and Creators) and click to select SmartFusion2 Microcontroller
Subsystem (MSS) from the list.

If you opted not to use a Design Tool when you created your project, in the Design Flow window expand
Create Design and double-click Configure MSS. This opens the Add Microcontroller Subsystem dialog
box. Enter your Design Name and click OK to continue. A SmartDesign Canvas appears with the MSS
added to your project; double-click the MSS to view and configure MSS components.

Configure the SmartFusion2 MSS

Documents for specific SmartFusion2 MSS peripherals are available on the Peripheral Documents web
page.

The SmartFusion2 Microcontroller Subsystem (MSS) Configurator (as shown in the figure below) contains
the elements listed below. Double-click any element in the MSS to configure it; click the checkbox (if
available) to enable or disable it in your design.

MSS ARM® Cortex™-M3

Peripherals
e MSS CAN
e MSS Peripheral DMA (PDMA)
¢ MSSGPIO
e MSSI2C

Libero SoC User's Guide 17

http://coredocs.s3.amazonaws.com/Actel/IndexPage/mss_doc_index.html
http://coredocs.s3.amazonaws.com/Actel/IndexPage/mss_doc_index.html

& Microsemi

Table of Contents

e MSS Ethernet MAC

e MSS DDR Controller (MDDR)

¢ MSS MMUART

e MSS Real Time Counter (RTC)

e MSS Embedded Nonvolatile Memory (eNVM)

e MSS SPI

¢ MSS USB

e MSS Watchdog Timer
Fabric Interfaces

e MSS Fabric Interface Controllers (FICs)
Additional Information

e MSS Cache Controller
e MSS DDR Bridge Controller
e MSS AHB Bus Matrix
e MSS Clocks Configurator (MSS CCC)
e MSS Interrupts Controller
e MSS Reset Controller
e MSS SECDED Configurator
e MSS Security Configurator
The MSS generates a component that is instantiated into your top-level design.

@ Reparts 53 sf2_mss_test1 53 sfz_mss_test1_mss [

WICROCONT ROLLER SUBSTSTEM
-y

=

cork iz

[]
»
caune
neon samamn

o

O/ > REAL A % %%

.

oo
oo

S (1) (LX) C_2 (Feripheal Intiatl =dan) B
e

n

Figure 4 - Microcontroller Subsystem Configurator

Generate SmartFusion2 MSS Files

See the MSS Configurator help for more information on generating SmartFusion2 MSS files.

18

Click the Generate Component button

& Microsemi
Table of Contents

®

to create your SmartFusion2 MSS files.

The MSS Configurator generates the following files:

HDL files for the MSS components, including timing shells for synthesis - HDL files are automatically
managed by the Libero SoC and passed to the Synthesis and Simulation tools.

EFC File: Contains your eNVM client data - The EFC content is included in your final programming file.

Firmware drivers and memory maps are exported into the <project>\firmware\ directory - Libero SoC
automatically generates a Software IDE project that includes your Firmware drivers. If you are not
using a software project automatically created by Libero, you can import this directory into your
Software IDE project.

Testbench HDL and BFM script for the MSS design: These files are managed by Libero SoC and
automatically passed to the Simulation tool.

PDC files for the MSS and the top-level design: These files are managed by Libero SoC and
automatically integrated during Compile and Layout.

Create ViewDraw Schematic

You must enable ViewDraw in your Project Settings to create a schematic source file in Libero SoC.

To create a schematic source file:

1.

2.
3.
4

In the Design Flow window, double-click Create ViewDraw Schematic.
Type a name for your schematic file in the Name field. Click OK. ViewDraw AE starts.
Using ViewDraw AE, create your schematic.

When you are done, click Save+Check in ViewDraw. The Save+Check command creates your WIR
file. When Save and Check is complete, the message Check complete, 0 errors and 0 warnings in
project <name> appears in the status bar.

You must select Save & Check. Selecting Save will not generate the needed WIR file for that block.

(Optional) Right-click the schematic file in the Files tab and choose Check Schematic. The
connectivity checker checks the connectivity of the WIR file. Errors and warnings appear in the log
window.

From the File menu, choose Exit. The schematic is saved to your project in Libero SoC and appears
in both the File Manager and the Design Hierarchy tabs.

About SmartDesign

SmartDesign is a visual block-based design creation tool for instantiation, configuration and connection of
Microsemi IP, user-generated IP, custom/glue-logic HDL modules. The final result is a design-rule-checked
and automatically abstracted synthesis-ready HDL file. A generated SmartDesign can be the entire FPGA
design or a component subsystem of a larger design.

Instantiate IP cores, macros and HDL modules by dragging them from the Catalog onto the Canvas, where
they are viewed as blocks in a functional block diagram. From the Canvas you can:

Configure your blocks
Make connections between your blocks
Generate your SmartDesign
o This step generates the HDL and testbench files required to proceed with Synthesis

and Simulation.

e View a Memory Map / Datasheet - The datasheet reports the memory map of the

different subsystems of your design, where a subsystem is any independent bus

structure with a Master and Slave peripheral attached.

Libero SoC User's Guide 19

& Microsemi

Table of Contents

SmartDesign supports all Microsemi SoC product families.

SmartDesign Design Flow

Using Exi

SmartDesign enables you to stitch together design blocks of different types (HDL, IP, etc) and generate a
top-level design. The Files tab lists your SmartDesign files in alphabetical order.

You can build your design using SmartDesign with the following steps:

Step One - Instantiating components: In this step you add one or more building blocks, HDL modules,
components, and schematic modules from the project manager to your design. The components can be
blocks, cores generated from the core Catalog, and IP cores.

Step Two — Connecting bus interfaces: In this step, you can add connectivity via standard bus interfaces
to your design. This step is optional and can be skipped if you prefer manual connections. Components
generated from the Catalog may include pre-defined interfaces that allow for automatic connectivity and
design rule checking when used in a design.

Step Three — Connecting instances: The Canvas enables you to create manual connections between
ports of the instances in your design. Unused ports can be tied off to GND or VCC (disabled); input buses
can be tied to a constant, and you can leave an output open by marking it as unused.

Step Four — Generating the SmartDesign component: In this step, you generate a top-level (Top)
component and its corresponding HDL file. This component can be used by downstream processes, such as
synthesis and simulation, or you can add your SmartDesign HDL into another SmartDesign.

When you generate your SmartDesign the Design Rules Check verifies the connectivity of your design; this
feature adds information to your report; design errors and warnings are organized by type and message and
displayed in your Datasheet / Report.

You can save your SmartDesign at any time.

sting Projects with SmartDesign

You can use existing Libero SoC projects with available building blocks in the project to assemble a new
SmartDesign design component. You do not have to migrate existing top-level designs to SmartDesign and
there is no automatic conversion of the existing design blocks to the SmartDesign format.

SmartDesign Frequently Asked Questions

The collection of SmartDesign Frequently Asked Questions are useful for anyone that is new to
SmartDesign. All the information listed below is explained in detail in other sections of the help, but the
information is summarized here for easy reference. Click any question to go to the corresponding
explanation.

20

& Microsemi

Table of Contents

General Questions

1. What is SmartDesign?
2. How do I create my first SmartDesign?

Libero SoC User's Guide 21

& Microsemi

Table of Contents

Instantiating into your SmartDesign

1
2.
3.
4

Where is the list of cores that | can instantiate into my SmartDesign?
How do | instantiate cores into my SmartDesign?
| have a block that | wrote in VHDL (or Verilog), can | use that in my SmartDesign?

My HDL module has Verilog parameters or VHDL generics declared; how can | configure those in
SmartDesign?

Working in SmartDesign

Y 0 N ok W e

=
N o= o

How do | make connections?

Auto Connect didn’t connect everything for me; how do | make manual connections?
How do | connect a pin to the top level?

Oops, | just made a connection mistake. How do | disconnect two pins?

| need to apply some simple ‘glue’ logic between my cores. How do | do that?
My logic is a bit more complex than inversion and tie offs - what else can | do?
How do | create a new top level port for my design?

How do | rename one of my instances?

How do | rename my top level port?

How do | rename my group pins?

I need to reconfigure one of my Cores, can | just double click the instance?

| want more Canvas space to work with!

22

& Microsemi

Table of Contents

Working with Processor-Based Designs in SmartDesign

1. How do | connect my peripherals to the bus?

How do | view the Memory Map of my design?

How do | simulate my processor design?

I have my own HDL block that | want to connect as a peripheral on the AMBA bus. How can | do that?
How do | generate the firmware drivers for my design?

How do [start writing my application code for my design?

A

Libero SoC User's Guide 23

& Microsemi

Table of Contents

VHDL Construct Support in SmartDesign

N oA b

What are VHDL Special Types in Libero?

How can | import files with VHDL Special Types into SmartDesign?
What is the purpose of the mapping file?

Where is the mapping file meta.out be generated?

What VHDL constructs are not generated automatically?

What do | do about the constructs that are not generated automatically?
What is the meta.out file format?

24

& Microsemi

Table of Contents

Making your Design Look Nice

1. Can the tool automatically place my instances on the Canvas to make it [ook nice?

2. My design has a lot of connections, and the nets are making my design hard to read. What do | do?

3. My instance has too many pins on it, how can | minimize that?

4. Qops, | missed one pin that needs to be part of that group? How do | add a pin after | already have the
aroup?

5. lhave a pin that | don’t want inside the group, how do | remove it?

6. How can | better see my design on the Canvas?

Libero SoC User's Guide 25

& Microsemi

Table of Contents

Generating your Design

1. Ok, I'm done connecting my design, how do | ‘finish’ it so that | can proceed to synthesis?

2. |l get amessage saying it's unable to generate my SmartDesign due to errors, what do | do? What is
the Design Rules Check?

3. How do | generate my firmware?

26

& Microsemi

Table of Contents

General Questions
What is SmartDesign?

SmartDesign is a design entry tool. It's the first tool in the industry that can be used for designing System on
a Chip designs, custom FPGA designs or a mixture of both types in the same design. A SmartDesign can be
the entire FPGA design, part of a larger SmartDesign, or a user created IP that can be stored and reused
multiple times. It's a simple, intuitive tool with powerful features that enables you to work at the abstraction
level at which you are most comfortable.

It can connect blocks together from a variety of sources, verify your design for errors, manage your memory
map, and generate all the necessary files to allow you to simulate, synthesize, and compile your design.

How do I create my first SmartDesign?

In the Libero SoC Project Manager Design Flow window, under Create Design, double-click Create
SmartDesign.

Libero SoC User's Guide 27

& Microsemi

Table of Contents

Instantiating Into Your SmartDesign

Where is the list of Cores that I can instantiate into my SmartDesign?

The list of available cores is displayed in the Project Manager Catalog. This catalog contains all DirectCore
IP, Design Block cores, and macros.

How do I instantiate cores into my SmartDesign?

Drag and drop the core from the Catalog onto your SmartDesign Canvas. An instance of your Core appears
on the Canvas; double-click to configure it.

I have a block that I wrote in VHDL (or Verilog), can I use that in my SmartDesign?

Yes! Import your HDL file into the Project Manager (File > Import Files). After you do this, your HDL module
will appear in the Project Manager Hierarchy. Then, drag-and-drop it from the Hierarchy onto your
SmartDesign Canvas.

My HDL module has Verilog parameters or VHDL generics declared, how can I configure those in SmartDesign?

If your HDL module contains configurable parameters, you must create a ‘core’ from your HDL before using
it in SmartDesign. Once your HDL module is in the Project Manager Design Hierarchy, right-click it and
choose Create Core from HDL. You will then be allowed to add bus interfaces to your module if necessary.
Once this is complete, you can drag your new HDL+ into the SmartDesign Canvas and configure your
parameters by double-clicking it.

Working in SmartDesign

How do I make connections?

Let SmartDesign do it for you. Right-click the Canvas and choose Auto Connect.

Auto Connect didn’t connect everything for me, how do I make manual connections?
Enter Connection Mode and click and drag from one pin to another. Click the Connection Mode button in
the Canvas to enter Connection Mode.
Alternatively:
1. Select the pins you want connected by using the mouse and the CTRL key.
2. Right-click one of the selected pins and choose Connect.
How do I connect a pin to the top level?
Right-click the pin and choose Promote to Top Level. You can even do this for multiple pins at a time, just

select all the pins you want to promote, right-click one of the pins and choose Promote to Top Level. All
your selected pins will be promoted to the top level.

Oops, I just made a connection mistake. How do I disconnect two pins?

Use CTRL+Z to undo your last action. If you want to undo your ‘undo’, hit redo (CTRL+Y).
To disconnect pins you can:
¢ Right-click the pin you want to disconnect and choose Disconnect
e Select the net and hit the delete key
I need to apply some simple ‘glue’ logic between my cores. How do I do that?
For basic inversion of pins, you can right-click a pin and choose Invert. An inverter will be placed at this pin

when the design is generated. You can also right-click a pin and choose Tie Low or Tie High if you want to
connect the pin to either GND or VCC.

To tie an input bus to a constant, right-click the bus and choose Tie to Constant. To mark an output pin as
unused, right-click the pin and choose Mark as Unused.

To clear these, just right-click on the pin again and choose Clear Attribute.

28

& Microsemi

Table of Contents

My logic is a bit more complex than inversion and tie offs - what else can I do?

You have full access to the library macros, including AND, OR, and XOR logic functions. These are located
in the Project Manager Catalog, listed under Macro Library. Drag the logic function you want onto your
SmartDesign Canvas.

How do I create a new top level port for my design?

Click the Add Port button in the Canvas toolbar

How do I rename one of my instances?

Double-click the instance name on the Canvas and it will become editable. The instance name is located
directly above the instance on the Canvas.

How do I rename my top level port?

Right-click the port you want to rename and choose Modify Port.

How do I rename my group pins?

Right-click the group pin you want to rename and choose Rename Group.

I need to reconfigure one of my Cores, can I just double-click the instance?

Yes.

I want more Canvas space to work with!

Maximize your workspace (CTRL-W), and your Canvas will maximize within the Project Manager. Hit CTRL-
W again if you need to see your Hierarchy or Catalog.

Libero SoC User's Guide 29

& Microsemi

Table of Contents

Working with Processor-Based Designs in SmartDesign

How do I connect my peripherals to the bus?

Click Auto Connect and it will help you build your bus structure based on the processor and peripherals that
you have instantiated.

But I need my peripheral at a specific address or slot.

Right-click the Canvas and choose Modify Memory Map to invoke the Modify Memory Map dialog that
enables you to set a peripheral to a specific address on the bus.

The bus core will show the slot numbers on the bus interface pins. These slot numbers correspond to a
memory address on the bus.

Verify that your peripheral is mapped to the right bus address by viewing your design’s Memory Map.
How do I view the Memory Map of my design?

Generate your project and open datasheet in the Report View.
The memory map section will also show the memory details of each peripheral, including any memory
mapped registers.

How do I simulate my processor design?

SmartDesign automatically generates the necessary Bus Functional Model (BFM) scripts required to
simulate your processor based design. A top level testbench for your SmartDesign is generated
automatically as well.

Create your processor design, generate it, and you will be able to simulate it in ModelSim.

I have my own HDL block that I want to connect as a peripheral on the AMBA bus. How can I do that?

SmartDesign supports automatic creation of data driven configurators based on HDL generics/parameters.
If your block has all the necessary signals to interface with the AMBA bus protocol (ex: address, data,
control signals):
1. Right-click your custom HDL block and choose Create Core from HDL. The Libero SoC creates your
core and asks if you want to add bus interfaces.
2. Click Yes to open the Edit Core Definition dialog box and add bus interfaces. Add the bus interfaces as
necessary.
3. Click OK to continue.
Now your instance has a proper AMBA bus interface on it. You can manually connect it to the bus or let Auto

Connect find a compatible connection. See the DirectCore Advanced Microcontroller Bus Architecture - Bus
Functional Model User's Guide for more information on CoreAMBA BFM commands.

How do I generate the firmware drivers for my design?

SmartDesign automatically finds all the compatible firmware drivers based on your peripherals and
processor. You can view the list of firmware drivers that the design found by going to the design flow and
choosing View/Configure Firmware Cores.

How do I start writing my application code for my design?

Libero SoC simplifies the embedded development process by automatically creating the workspace and
project files for the Software IDE that you specify in the Tools profile.

Once you have generated your design, the firmware and workspace files will automatically be created. Click
Write Application Code in the Design Flow tab and the Software IDE tool will open your design’s
workspace files.

30

http://www.actel.com/ipdocs/CoreAMBA_BFM_UG.pdf
http://www.actel.com/ipdocs/CoreAMBA_BFM_UG.pdf

& Microsemi

Table of Contents

VHDL Construct Support in SmartDesign

What VHDL constructs do you support?
VHDL types Record, Array, Array of Arrays, Integer and Unsigned are supported on entity ports of imported
VHDL files - these are treated as special types in Libero.

How can I import files with VHDL Special Types into SmartDesign?

To work with a VHDL file with Special Types you must:

1. Drag and drop the entity into SmartDesign and connect it just as you would with any other
SmartDesign instance.

2. Generate the Mapping File (meta.out):
Navigate to the Design Hierarchy view, under the current SmartDesign.
Right-click every VHDL file or every top hierarchical file and choose Create Mapping File (VHDL).

3. Generate the SmartDesign
4. Continue with the Libero SoC Design Flow steps (Synthesis, Simulation, etc.)

If you do not generate the Mapping File, and try to Generate your SmartDesign, you will see the following
error in the log window:

Error: Select the HDL file in the Design Hierarchy and right-click the HDL file and
choose Create Mapping File(VHDL) because at least one entity port is of type Array or
Record.

The above is reported only if the entity port is of type Record, Array, Array of Array, or Unsigned.
What is the purpose of the mapping file?
The mapping file contains the mapping information between the SmartDesign ports and original user-
specified data types of ports in design files, and is used for type casting of signals during design generation.
Where will the mapping file meta.out be generated?

The file is generated in your $project_dir/hdl folder. This file will be used to during SmartDesign generation.
What are the VHDL special types that are not generated automatically?
The following types are not automatically generated from the right-click menu option Create Mapping
File(VHDL):
e Array of array is not supported
e Array of record is not supported
e Enum in range of array is not supported.
e Constants are not supported.
e Buffer output ports are not supported
What do I do if I am using VHDL types that are not generated automatically?
You must manually write the mapping information in the meta.out file for unsupported types (types which are
not generated automatically) in the prescribed format. Click the link to see an example.
* Integer

e Unsigned
e Array and Array of Arrays

e Record

What is the meta.out file format?

See the meta.out file format topic for more information.

Libero SoC User's Guide 31

& Microsemi

Table of Contents

Making your Design Look Nice

Can the tool automatically place my instances on the Canvas to make it look nice?

Yes. Right-click the Canvas white space and choose Auto Arrange Instances.

My design has a lot of connections, and the nets are making my design hard to read. What do I do?
You can disable the display of the nets in the menu bar (RMC > Hide Nets). This automatically hides all the
nets in your design.

You can still see how pins are connected by selecting a connected pin, the net will automatically be visible
again.

You can also selectively show certain nets, so that they are always displayed, just right click on a connected
pin and choose Show Net.

My instance has too many pins on it; how can I minimize that?

Try grouping functional or unused pins together. For example, on the Corelnterrupt there are 8 FIQSource*
and 32 IRQSource* pins, group these together since they are similar in functionality.

To group pins: Select all the pins you want to group, then right-click one of the pins and choose Add pins to
group.

If a pin is in a group, you are still able to use it and form connections with it. Expand the group to gain
access to the pin.

Oops, I missed one pin that needs to be part of that group? How do I add a pin after I already have the group?

Select the pin you want to add and the group pin, right-click and choose Add pins to <name> group.

I have a pin that I don’t want inside the group, how do I remove it?

Right-click the pin and choose Ungroup selected pins.

How can I better see my design on the Canvas?

There are zoom icons in the Canvas toolbar. Use them to Zoom in, Zoom out, Zoom to fit, and Zoom
selection. You can also maximize your workspace with CTRL-W.

Generating your Design

Ok, I'm done connecting my design, how do I ‘finish’ it so that I can proceed to synthesis?

In the Canvas toolbar, click the Generate Project icon .
I get a message saying it’s unable to generate my SmartDesign due to errors, what do I do? What is the Design Rules
Check?

The Design Rules Check is included in your Report View. It lists all the errors and warnings in your design,
including unconnected input pins, required pin connections, configuration incompatibilities between cores,
etc.

Errors are shown with a small red stop sign and must be corrected before you can generate; warnings may
be ignored.

What does this error mean? How do I fix it?

Review the Design Rules Check topic for an explanation of errors in the Design Rules Check and steps to
resolve them.

How do I generate my firmware?

In the Design Flow window, expand Handoff Design for Firmware Development and double-click
Configure Firmware Coresand Export Firmware.

32

& Microsemi
Table of Contents

Getting Started with SmartDesign

Creating a New SmartDesign Component

1. From the File menu, choose New > SmartDesign or in the Design Flow window double-click Create
SmartDesign. The Create New SmartDesign dialog box opens (see figure below).

I Create New SmartDesign

Marne:
|
ox

Figure 5 - Create New SmartDesign Dialog Box

2. Enter a component name and click OK. The component appears in the Hierarchy tab of the Design
Explorer. Also, the main window displays the design Canvas.

Note: The component name must be unique in your project.

Opening an Existing SmartDesign Component

To open an existing component do one of the following:
Click the Design Hierarchy tab and double-click the component you want to open.
The main window displays the SmartDesign Canvas for the SmartDesign component.

Saving/Closing a SmartDesign Component

To save the current SmartDesign design component, from the File menu, choose Save
<component_name>. Saving a SmartDesign component only saves the current state of the design; to
generate the HDL for the design refer to Generating a SmartDesign component.

To close the current SmartDesign component without saving, from the File menu, choose Close. Select NO
when prompted to save.

To save the active SmartDesign component with a different name use Save As. From the File menu choose
Save SD_<filename> As. Enter a new name for your component and click OK.

Generating a SmartDesign Component

Before your SmartDesign component can be used by downstream processes, such as synthesis and
simulation, you must generate it.

v
Click the Generate button to generate a SmartDesign component. 1
This will generate a HDL file in the directory <libero_project>/components/<library>/<yourdesign>.
Note: The generated HDL file will be deleted when your SmartDesign design is modified and
saved to ensure synchronization between your SmartDesign component and its generated
HDL file.

Libero SoC User's Guide 33

& Microsemi

Table of Contents

Generating a SmartDesign component may fail if there are any DRC errors. DRC errors must be corrected
before you generate your SmartDesign design.

Generating a Datasheet (SmartFusion, IGLOOe, ProASIC3L, ProASIC3E, Fusion)

If your SmartDesign is the root design in your project, then a Memory Map / Datasheet that contains your
design information is produced.

Generating Firmware and Software IDE Workspace (SmartFusion, IGLOOe, ProASIC3L,
ProASIC3E, Fusion)

If your SmartDesign is the root design in your project, then any compatible firmware drivers for your
peripherals are generated to <project>/firmware.

The datasheet provides all the specifics of the generated firmware drivers.

Importing a SmartDesign Component

From the File menu, choose Import and select the CXF file type.

Importing an existing SmartDesign component into a SmartDesign project will not automatically import the
sub-components of that imported SmartDesign component.

You must import each sub-component separately.

After importing the sub-components, you must open the SmartDesign component and replace each sub-
component so that it references the correct component in your project. .

Deleting a SmartDesign Component from the Libero SoC Project

To delete a SmartDesign component from the project:
1. Inthe Design Hierarchy tab, select the SmartDesign component that you want to delete.

2. Right-click the component name and select Delete from Project or Delete from Disk and Project, or
click the Delete key to delete from project.

Memory Maps / Data Sheet

If your design contains standard Bus Instances such as the DirectCore AMBA bus cores, CoreAPB or
CoreAHB, then you can view the Memory Map Configuration of your design in the Report View. To do so,
generate your top level design and click the Reports button in the toolbar.

The design’s memory map is determined by the connections made to the bus component. A bus component
is divided into multiple slots for slave peripherals or instances to plug into. Each slot represents a different
address location and range to the Master of the bus component.

The datasheet reports the memory map of the different subsystems of your design, where a subsystem is
any independent bus structure with a Master and Slave peripheral attached.

Connecting peripherals to busses can be accomplished using the normal SmartDesign connectivity options:

e Auto-Connect - the system creates a bus structure based on the peripherals that you have
instantiated and finds compatible bus interfaces and connects them together

e The Modify Memory Map dialog box

e Canvas - Make connections between your blocks.

Your application and design requirements dictate which address location (or slots) is most suitable for your
bus peripherals. For example, the memory controller should be connected to Slot0O of the CoreAHB bus
because on Reset, the processor will begin code execution from the bottom of the memory map.

An example of the datasheet is shown in the figure below.

34

& Microsemi

Table of Contents

Data Sheet: SDTOP

Project Settings

FAM: Fusion
Die: AFSEO0
Package: 256 FBGA

HDL: Verilog
Location: C/Documents and Settingsfarleyc/Desktopfarleyc_Actelpri_84ihy First SmarDesignfcomponentinorkfSDTOP

State: NOTREADY

Table of Contents

Cores
Mermory Map
10%s
Port Name Direction Pin 10 Standard
VAREF INOUT - LVTTL
cl_V N - LVTTL
cl IN - LVTTL
w1 IN - LVTTL
il g, Jppp— | "_|

Figure 6 - Example Memory Map

Modify Memory Map Dialog Box

The Modify Memory Map dialog box (shown in the figure below) enables you to connect peripherals to buses
via a drop-down menu. To open the dialog box, right-click the bus instance and choose Modify Memory
Map.

This dialog simplifies connecting peripherals to specific base addresses on the bus. The dialog shows all the
busses in the design; select a bus in the left pane to assign or view the peripherals on a bus. Busses that
are bridged to other busses are shown beneath the bus in the hierarchy.

Libero SoC User's Guide 35

& Microsemi

Table of Contents

20 Modify Memory Map [z|

Select Bus to View or
Azsign Peripheral(s)

CorefHE_0 Address Petipheral 5
CorefPE_O oo ;
Q00000000 &

Q=01 000000

Q02000000

03000000 E
(04000000

Q05000000

Qe 0a000000

Q=07 000000 e

[K l [Zancel

Figure 7 - Modify Memory Map Dialog Box

Assign peripherals bo addresses on bus:

Click the Peripheral drop-down menu to select the peripheral you wish to assign to each address. To
remove (unassign) a peripheral from an address, click the drop-down and select the empty element.

Click OK to create the connections between the busses and peripherals in the design.

36

& Microsemi
Table of Contents

Canvas View

Canvas Overview

The SmartDesign Canvas is like a whiteboard where functional blocks from various sources can be
assembled and connected; interconnections between the blocks represent nets and busses in your design.

You can use the Canvas to manage connections, set attributes, add or remove components, etc. The
Canvas displays all the pins for each instance (as shown in the figure below).

The Canvas enables you to drag a component from the Design Hierarchy or a core from the Catalog and
add an instance of that component or core in the design. Some blocks (such as Basic Blocks) must be
configured and generated before they are added to your Canvas. When you add/generate a new component
it is automatically added to your Design Hierarchy.

To connect two pins on the Canvas, click the Connection Mode button to enable it and click and drag
between the two pins you want to connect. The Connection Mode button is disabled if you attempt to illegally
connect two pins.

Click the Maximize Work Area button to hide the other windows and show more of the Canvas. Click the
button again to return the work area to the original size.

The Canvas displays bus pins with a + sign (click to expand the list) or - (click to hide list). If you add a slice
on a bus the Canvas adds a + to the bus pin.

Components can be reconfigured any time by double-clicking the instance on the Canvas. You can also add
bus interfaces to instances using this view. In the Canvas view, you can add graphic objects and text to your
design.

Inputs and bi-directional pins are shown on the left of components, and output pins are shown on the right.

B | startpae &2 of praj_t* &
; "y
&)
[| :
i sf_proj_1_MSS_0
o MSS_RESET_M FAB_CLK
MzF_RESET_M
EMCE @EEMC
1} 5} UART_1E] QELART
UART_OE SUART
12C_0@ TC 0
’—__/_5 SPI_1E@ P L
SPI_0E CEDE]
o I2C_1E QELC 1
o MAC_RMII_PHY_MGMT_PADSE ;+ AL _F
s MAC_RMIL_DATA_PADsE HMAC_F
- il
£
p 5
\.& %I
=
=y, |
- &
ja
&2
2
[y}
[x}
K - Fr,
A
O v
< *

Figure 8 - SmartDesign Canvas

Libero SoC User's Guide 37

& Microsemi

Table of Contents

See Also
Canvas Icons

Displaying Connections on the Canvas

The Canvas shows the instances and pins in your design (as shown in the figure below). Right-click the
Canvas and choose Show Nets to display nets.

@ StartPage [| B <f _proi_1* B3 |
~
=8
b3 i sf_proj_1_MSS_0
o MS5_RESET_M FAB_CLK
MZF_RESET_M
EMCE
"ﬁ UART_LE
UART_0E
) [2C_0E
=5 SPI_LE
SPI_0E
o 2C_1@
o MAC_RMII_PHY_MGMT_PADsE
o MAC_RMIL_DATA_PADSE
: :
, 5
& o
f - IG:|
=\ %
]
iy}
=n
e 2
in
X = e,
A
O b
< | >

Figure 9 - Components in SmartDesign

Pin and Attribute Icons

Unconnected pins that do not require a connection are gray. .
Unconnected pins that require a connection are red.
Unconnected pins that have a default tie-off are pale green.

Connected pins are green. .
Right-click a pin to assign an attribute.
Pins assigned attributes are shown with an icon, as shown in the table below.
Table 1 - Pin Attribute Icons

Attribute Icon

Tie Low I

38

Attribute

Icon

Tie High

RN

Invert

Mark as Unused

Tie to Constant

I

See the Canvas Icons reference page for definitions for each element on the Canvas.

& Microsemi

Table of Contents

Each connection made using a bus interface is shown in a separate connection known as a bus-interface

net.

Move the mouse over a bus interface to display its details (as shown below).

Hover over a bus interface net to see details (as shown below).

Mame: |AHBmslavel

Role: | |mirroredSlaye

State: |Connected

Pin Map
Formal Actual
HADDR HADDR_S1[31:0]

HTRANS | HTRANS_S1[1:0]
HWRITE || HWRITE_S1

HSIZE H5IZE_51[2:0]
HWDATA | HWDATA_S1[31:0]
HSELx HSEL_S1

HROATA HRODATA_S1[31:0]
HREADY | HREADY_S1
HMASTLOCK | HMASTLOCK_S1
HREADYOUT | HREADYOUT 51

HRESP HRESP_S1[1:0]
HEURST HEURST_51[2:0]
HPROT HPROT_51[3:0]

Scalar: smartfusion_project_MSS_D_FAB_CLK

Making Connections Using the Canvas

Use the Canvas or Connectivity dialog box to make connections between instances.

You can use Connection Mode on the Canvas to quickly connect pins. Click the Connection Mode button to
start, then click and drag between any two pins to connect them. lllegal connections are disabled. Click the
Connection Mode button again to exit Connection Mode.

Libero SoC User's Guide

39

& Microsemi

Table of Contents

To connect two pins on the Canvas, select any two (Ctrl + click to select a pin), right-click one of the pins
you selected and choose Connect. lllegal connections are disabled; the Connect menu option is
unavailable.

Promoting Ports to Top Level

To automatically promote a port to top level, select the port, right-click, and choose Promote To Top Level.
This automatically creates top-level ports of that name and connects the selected ports to them. If a port
name already exists, a choice is given to either connect to the existing ports or to create a new port with a
name <port name>_<i>wherei=1...n.

Double-click a top-level port to rename it.

Bus slices cannot be automatically promoted to top level. You must create a top level port of the bus slice
width and then manually connect the bus slice to the newly created top level port.

Tying Off Input Pins

To tie off ports, select the port, right-click and choose Tie High or Tie Low.

Tying to Constant

To tie off bus ports to a constant value, select the port, right-click and choose Tie to a Constant. A dialog
appears (as shown in the figure below) and enables you to specify a hex value for the bus.

To remove the constant, right-click the pin and choose Clear Attribute or Disconnect.

@ Tie to Constant - RXD[3:0]

Enker a HEX walue: Ox |0

[0%0 ko 0xF)

o [o=

Figure 10 - Tie to Constant Dialog Box

Making Driver and Bus Interface Pins Unused

Driver or bus interface pins can be marked unused (floating/dangling) if you do not intend to use them as a
driver in the design. If you mark a pin as unused the Design Rules Check does not return Floating Driver or
Unconnected Bus Interface messages on the pin.

Once a pin is explicitly marked as unused it cannot be used to drive any inputs. The unused attribute must
be explicitly removed from the pin in order to connect it later. To mark a driver or bus interface pin as
unused, right-click the driver or bus interface pin and choose Mark as Unused.

See Also

Show/Hide Bus Interface Pins

Simplifying the Display of Pins on an Instance using Pin Groups

The Canvas enables you to group and ungroup pins on a single instance to simplify the display. This feature
is useful when you have many pins in an instance, or if you want to group pins at the top level. Pin groups
are cosmetic and affect only the Canvas view; other SmartDesign views and the underlying design are not
affected by the pin groups.

Grouping pins enables you to:
e Hide pins that you have already connected
e Hide pins that you intend to work on later

40

& Microsemi

Table of Contents

e Group pins with similar functionality
e Group unused pins
e Promote several pins to Top Level at once
To group pins:
1. Ctrl + click to select the pins you wish to group. If you try to click-and-drag inside the instance you will
move the instance on the Canvas instead of selecting pins.

2. Right-click and choose Add pins to group to create a group. Click + to expand a group. The icon
associated with the group indicates if the pins are connected, partially connected, or unconnected (as
shown in the figure below).

smartfusion_project_MSS_0

M55 RESETN FAB_CLK
M2F_RESET_I
UART_1
MAC_RMIT_PHY_MEMT_PADs
MAC_RMIT_DATA_PADSE
MAC_R¥D[1:0]
MRC_TAD[1:0]
MAC _CRSDY
MAT_RXER
MRC_THEN

MES_IMASTER_AHE_LITE

G Ipy

&

Figure 11 - Groups in an Instance on the Canvas
To add a pin to a group, Ctrl + click to select both the pin and the group, right-click and choose Add pin to
group.
To name a group:
To name a group, right-click the port name and choose Rename Group.

To ungroup pins:

1. Click + to expand the group.

2. Right-click the pin you wish to remove from the group and choose Ungroup selected pins. Ctrl + click
to select and remove more than one pin in a group.

A group remains in your instance after you remove all the pins. It has no effect on the instance; you can
leave it if you wish to add pins to the group later, or you can right-click the group and choose Delete Group
to remove it from your instance.

If you delete a group from your instance any pins still in the group are unaffected.
To promote a group to Top level:

1. Create a group of pins.

2. Right-click the group and choose Promote to Top Level.

Bus Instances

Bus Components in the Core Catalog, such as CoreAHB or CoreAPB, implement an on-chip bus fabric.
When these components are instantiated into your canvas they are displayed as horizontal or vertical lines.
Double-click the bus interfaces of your component to edit the connections.

Libero SoC User's Guide 41

& Microsemi
Table of Contents

(=Nl WO O
%3] RN

250
CoreAHBLite_0 Wllm-
Ggr ez é

Figure 12 - Bus Instance in SmartDesign

510

HRESETN
REMAP_MO

Adding Graphic Objects

You can document your design by adding comments and notations directly on the Canvas.

The Canvas toolbar enables you to add and modify decorative graphic objects, such as shapes, labels and
lines on the Canvas.

Adding and Deleting Lines and Shapes

To add aline or a shape:

1. Select the line or shape button.
2. Click, drag and release on the Canvas. The table below provides a description of each button.

Button Description

\ Line

Rectangle

O

Note: Hold the Shift key to constrain line and arrow to 45 degree increments or constrain the
proportions of the rectangle (square).
To change the line and fill properties:
1. Select the element(s), right-click it, and choose Properties.
e Select Line to modify the color, style and width of the line.
e Select Fill to modify the crosshatch and the foreground and background colors.
2. Click OK.
To delete a line or shape, select the object and press Delete.

Adding Text
To add text, select the text tool and click the Canvas to create a text box. To modify the text, double-click the
text box and then type.
To modify the text box properties:
1. Select the text box, right-click it, and choose Properties.
e Select Text to modify the text alignment.
e Select Line to modify the color, style and width of the line.
e Select Fill to modify the crosshatch and the foreground and background colors.
e Select Font to modify the font properties.
2. Click OK.

42

& Microsemi

Table of Contents

Editing Properties for Graphic Objects on the Canvas

Right-click any graphic object to update properties, such as Fill, and Line properties for shapes and lines, or
Font options for text properties.

Auto-Arranging Instances

Right-click the Canvas and choose Auto Arrange Instances from the right-click menu to auto-arrange the
instances on the Canvas.

Locking Instance and Top Level Port Positions

You can lock the placement of instances on the Canvas. Right-click the instance or Top-level port and
choose Lock to lock the placement. When you lock placement you can click and drag to move the instance
manually but the Auto Arrange Instances menu option has no effect on the instance.

To unlock an instance, right-click the instance and choose Unlock.
Right-click a top level port and choose Unlock Position to return it to its default position.

See Also
Bus Instances
Simplifying the Display of Pins on an Instance using Pin Groups

Replace Component for Instance

You can use the Replace Component for Instance dialog box (shown in the figure below) to restore or
update version instances on your Canvas without creating a new instance and losing your connections.

Replace Component for Instance{s) HE

Instanceis)

Mame: RAM_SAYE_0

Current Cormponent File
RAM_SAVE Ci\Documents and Set.. AM_SAVEIRAM_SAVE.cxf

Choose an entry from the list of possible replacements for component 'RAM_SAYE":

Component File

\Documents and Setting...gn2ismartgentASEVASE, cxf
COMP_AE CiiDocuments and Settin...gent COMP_ABVWCOMP_AR, cxf
FME Ci\Documents and Setting...gn2ismartgentFMB\FME, cxf
MEMUXBLE CiDocuments and Settin.. mMNGMUXBLKAMGMUXBLE, cxf - |
RAM_SAYE CiDocuments and Settin.. miRAM_SAVEIRAM_SAYE.cxf
RCOSCELE CiiDocuments and Settin.. mRCOSCELK\RCOSCELE, cxf
SD_ClockBlock Ci\Documents and Settings.. ckBlockl,SD_ClockBlock, cxf
WREBLK CiiDocuments and Setting.. smartgen YRELK\YRELK . cxf LI

Help | OF I Cancel |

Figure 13 - Replace Component for Instance Dialog Box

To change the version of an instance:

1. From the right-click menu choose Replace Component for Instance. The Replace Component for
Instance dialog box appears.

2. Select a component and choose a new version from the list. Click OK.

Replace Instance Version

The Replace Instance Version dialog box enables you to replace an IP instance with another version. You
can restore or replace your IP instance without creating a new instance or losing your connections.

Libero SoC User's Guide 43

& Microsemi

Table of Contents

Hl Replace Instance Yersion EHE
Instance: COREIO100_0
Core Name Yendor Library ¥ersion | Change to Yersion
COREL0100 Actel DirectCore 4.0.143 EESTTI |

Help | OF I Cancel |

Figure 14 - Replace Instance Version Dialog Box

To replace an instance version:
1. Rightclick any IP instance and choose Replace Instance Version. The dialog box appears.

2. Choose the version you wish to use from the Change to Version dropdown menu (as shown in the
figure above) and click OK to continue.

Slicing
Bus ports can be sliced or split using Slicing. Once a slice is created, other bus ports or slices of compatible
size can be connected to it.
The Edit Slices dialog box enables you to automatically create bus slices of a specified width.
To create a slice:

1. Select a bus port, right-click, and choose Edit Slice. This brings up the Edit Slices dialog box (see
figure below).

B Edit Slices - HRDATA[31:0]

Create slices af width |1 V| [Add Slices]

) (%

HROATA[31:0] <] Left Right ~

=

L ISV I T) B O 5 T S T
(xR I = R) B R SR SN =
Lu R I = VR) B OO S S

o) [t

Figure 15 - Edit Slices Dialog Box

2. Enter the parameters for the slice and click Add Slices. You can also create individual slices and
specify their bus dimensions manually.

3. Click OK to continue.

Note: Overlapping slices cannot be created for IN and INOUT ports on instances or top-level OUT
ports.

To remove a slice, select the slice, right-click, and choose Delete Slice.

44

& Microsemi

Table of Contents

Rename Net

To rename a net:
1. Right-click the net on the Canvas and choose Rename Net. This opens the Rename Net dialog box.
2. Type in a new name for the net.

Note: The system automatically assigns net names to nets if they are not explicitly specified.
Once you have specified a name for a net, that name will not be over-written by the system.

Automatic Names of Nets
Nets are automatically assigned names by the tool according to the following rules:
In order of priority
If user named then name = user name

2. If netis connected to top-level port then name = port name; if connected to multiple ports then pick first
port

3. If the net has no driver, then name = net_{i]
4. If the net has a driver, name = instanceName_driverpinName
Slices

For slices, name = instanceName_driverpinName_sliceRange; for example
u0_outl_4to6.

GND and VCC Nets

The default name for GND/VCC nets is net_GND and net_VCC.

Expanded Nets for Bus Interface Connections

Expanded nets for bus interface connections are named businterfaceNetName_<i>_driverPinName.

Organizing Your Design on the Canvas

You may find it easier to create and navigate your SmartDesign if you organize and label the instances and
busses on the Canvas.

You can show and hide nets, lock instances, rotate busses, group and ungroup pins, rename instances /
groups / pins, and auto-arrange instances.
To organize your design:

1. Right-click the Canvas and choose Auto Arrange Instances from to automatically arrange instances.
SmartDesign's auto-arrange feature optimizes instance location according to connections and instance
size.

2. Right-click any instance and choose Lock Location to fix the placement. Auto-Arrange will not move
any instances that are locked.

3. Click Auto-Arrange again to further organize any unlocked instances. Continue arranging and locking
your instances until you are satisfied with the layout on the Canvas.

If your design becomes cluttered, group your pins. It may help to group pins that are functionally similar, or
to group pins that are already connected or will be unused in your design.

To further customize your design's appearance:

Double-click the names of instances to add custom names. For example, it may be useful to rename an
instance based on a value you have set in the instance: the purpose of an instance named
‘array_adder_bus_width_5' is easier to remember than ‘array_adder_0'.

Libero SoC User's Guide 45

& Microsemi

Table of Contents

Creating a SmartDesign

Adding Components and Modules (Instantiating)

SmartDesign components, Design Block cores, IP cores, and HDL modules are displayed in the Design
Hierarchy and Files tabs.

To add a component, do either of the following:
e Select the component in the Design Hierarchy tab or Catalog and drag it to the Canvas.

¢ Right-click a component in the Design Hierarchy tab or Catalog and choose Instantiate in
<SmartDesign name>.

The component is instantiated in the design.

SmartDesign creates a default instance name. To rename the instance, double-click the instance name in
the Canvas.

Adding a SmartDesign Component
SmartDesign components can be instantiated into another SmartDesign component.

Once a SmartDesign is generated, the exported netlist can be instantiated into HDL like any other HDL
module.

Note: HDL modules with syntax errors cannot be instantiated in SmartDesign. However, since
SmartDesign requires only the port definitions, the logic causing syntax errors can be
temporarily commented out to allow instantiation of the component.

Adding or Modifying Top Level Ports

You can add ports to, and/or rename ports in your SmartDesign.

Add Prefixes to Bus Interface / Group Names on Top-level Ports:

Bus Interfaces and Groups are composed of other ports. On the top level, you can add prefixes to the group
or bus interface port name to the sub-port names. To do so, right-click the group or bus interface port and
choose Prefix <name> to Port Names.

Adding/Renaming Ports

To add ports:
1. From the SmartDesign menu, choose Add port. The Add Port dialog box appears (as shown below).

46

& Microsemi

Table of Contents

& Add Port

Mame: || |

Direckion:
{(*) Input
{:} Outpuk
() Bi-directional {inout)

[0K H Cancel]

Figure 16 - Add New Port Dialog Box

2. Specify the name of the port you wish to add. You can specify a bus port by indicating the bus width
directly into the name using brackets [], such as mybus[3:0].

3. Select the direction of the port.

To remove a port from the top level, right-click the port and choose Delete Top Level Port.

Modify Port

To rename a top-level port, right-click the top-level port and choose Modify Top Level Port. You can
rename the port, change the bus width (if the port is a bus), and change the port direction.

Right-click a top-level port and choose Modify Port to change the name and/or direction (if available).

See Also
Top Level Connections

Libero SoC User's Guide 47

& Microsemi

Table of Contents

Connecting Instances

Automatic Connections

Using automatic connections (as shown in the figure below) enables the software to connect your design
efficiently, reducing time required for manual connections and the possibility of introducing errors.

Auto Connect also constructs your bus structure if you have a processor with peripherals instantiated. Based
on the type of processor and peripherals, the proper busses and bridges are added to your design.

To auto connect the bus interfaces in your design, right-click the design Canvas and select Auto Connect,
or from the SmartDesign menu, choose Auto Connect.

SmartDesign searches your design and connects all compatible bus interfaces.

SmartDesign will also form known connections for any SoC systems such as the processor CLK and RESET
signals.

If there are multiple potential interfaces for a particular bus interface, Auto Connect will not attempt to make
a connection; you must connect manually. You can use the Canvas to make the manual connections.

% StartPage &) sf_proj_1* [
: e
=5
[| :
v sf_proj_1_MSS_0
fm M55 RESET M FAE_CLK
M2F_RESET_M _
EMCE ‘ HEMC
'ﬁ UART_LE UAR T
UART_DE @LUART
2C_0@E * 12C 0
E_Z; SPI_1HE B SPT 1
SFI_0@ :_I SFI_0
- [2C_1@ [ZC 1
o MAC_RMII_PHY MGMT_PADsE ‘+ [Tel;
o MAC_RMII_DATA_PADsE SMAC F
= il
=
P 5
\.i %I
=
- i
_& 5
,_
4
2
i
X = Fe)
A
O @
< ¥

Figure 17 - Auto-Connected Cores

QuickConnect

The QuickConnect dialog box enables you to make connections in your design without using the Canvas. It
is useful if you have a large design and know the names of the pins you wish to connect. Connections are
reflected in the Canvas as you make them in the dialog box; error messages appear in the Log window
immediately. It may be useful to resize the QuickConnect dialog box so that you can view the Log window or
Canvas while you make connections.

48

& Microsemi

Table of Contents

To connect pins using QuickConnect:
1. Find the Instance Pin you want to connect and click to select it.

2. InPins to Connect, find the pin you wish to connect, right-click and choose Connect. If necessary,
use the Search field to narrow down the list of pins displayed in Pins to Connect.

Note that if the connection is invalid then Connect is grayed out.

If you wish to invert or tie a pin high, low or Mark Unused:
1. Find the Instance Pin you want to invert or tie high/low
2. Right-click Connection and choose Invert, Tie High, Tie Low or Mark Unused.

If you wish to promote a pin to the top level of your design:

1. Find the Instance Pin you want to promote.
2. Right-click the pin and choose Promote to Top.

You can perform all connectivity actions that are available in the Canvas, including: slicing bus pins, tying
bus pins to a constant value, exposing pins from a bus interface pins and disconnecting pins. All actions are
accessible from the right-click context menu on the pin.

Instance Pins lists all the available instance pins in your design and their connection (if any). Use the drop-
down list to view only unconnected pins, or to view the pins and connections for specific elements in your
design.

Pins to Connect lists the instances and pins in your design. Use the Search field to find a specific instance
or pin. The default wildcard search is *.*'. Wildcard searches for CLK pins (*.*C*L*K) and RESET pins
(*.*R*S*T) are also included.

Here are some of the sample searches that you may find useful:
e *UART*.*: show all pins of any instances that contain UART in the name
e MyUART_O0.*: only show the pins of the “MyUART_0" instance
e *.p:show all pins in the design that contain the letter ‘p’

Double-click an instance in Pins to Connect to expand or collapse it.

The pin letters and icons in the QuickConnect dialog box are the same as the Canvas icons and
communicate information about the pin. Inputs, Outputs and I/Os are indicted by I, O, and I/O, respectively.

Additional information is communicated by the color:
¢ Red - Mandatory connection, unconnected
e Green - Connected
e Grey - Optional, unconnected pin
e Brown - Pad
e Light Green - Connected to a default connection on generation
e Blue - Driver pin

Libero SoC User's Guide 49

& Microsemi

Table of Contents

-

Al unconnected pins in design

@ ‘test_mss_mss_o:emC_cLE B pap
[B* test_mss_MSS_0:FAB_CLK

Right-cilick on ping fo perform conneckivty ackions. Dvar pine ave shonm i Hite.

QuickConnect

Instance Pins Pins to Connect

| Search: |+ *

Enfer a wildrard search i Ehe Form of fTnsfance £ P

[=F kest_mss Y
> cLka_rap

B cLkc_pap

B emc_sezs:0]
B e BvTEN[1:0]
B emc_ ok

B emc cson

B emc_csin

@ EMc_DE(15:0]
B emc_cEno N
B evc_cenin
B evc R N

@ 12c 00

@ 12c 0 504

@ 1201 50

@ 1201 504

B> maC_CRSDY
B mac_moc

@ mac_moto

B mac_rxp[1:0]
B> MAC_RXER
B raac THD[1:0]
B rac_THEN

B mss_RESET N
@ sp1 0 Lk

[<et n DI

Fin Cannection

Close

Figure 18 -
QuickConnect Dialog Box

Manual Connections

You can use Connection Mode to click and drag and connect pins. Click the Connection Mode button to
toggle it, and click and drag between any two pins to connect them. lllegal connections will not be allowed.

To make manual connections between to pins on the Canvas, select both pins (use CTRL + click), right-click
either pin and choose Connect. If the pins cannot be legally connected the connection will fail.

Deleting Connections

To delete a net connection on the Canvas, click to select the net and press the Delete key, or right-click and
choose Delete.

To remove all connections from one or more instances on the Canvas, select the instances on the Canvas,
right-click and choose Clear all Connections. This disconnects all connections that can be disconnected
legally.

Certain connections to ports with PAD properties cannot be disconnected. PAD ports must be connected to
a design’s top level port. PAD ports will eventually be assigned to a package pin. In SmartDesign, these
ports are automatically promoted to the top level and cannot be modified or disconnected.

50

& Microsemi
Table of Contents

Top-Level Connections

Connections between instances of your design normally require an OUTPUT (Driver Pin) on one instance to
one or more INPUT(s) on other instances. This is the basic connection rule that is applied when connecting.

However, directions of ports at the top level are specified from an external viewpoint of that module. For
example, an INPUT on the top level is actually sending (‘driving’) signals to instances of components in your
design. An OUTPUT on the top level is receiving (‘sinking’) data from a Driver Pin on an internal component
instance in your SmartDesign design.

The implied direction is essentially reversed at the top-level. Making connections from an OUTPUT of a
component instance to an OUTPUT of top-level is legal.

This same concept applies for bus interfaces; with normal instance to instance connections, a MASTER
drives a SLAVE interface. However, they go through a similar reversal on the top-level.

Libero SoC User's Guide 51

& Microsemi

Table of Contents

Bus Interfaces

About Bus Interfaces

A bus interface is a standard mechanism for specifying the interconnect rules between components or
instances in a design. A bus definition consists of the roles, signals, and rules that define that bus type. A
bus interface is the instantiation of that bus definition onto a component or instance.

The available roles of a bus definition are master, slave, and system.
A master is the bus interface that initiates a transaction (such as read or write) on a bus.
A slave is the bus interface that terminates/consumes a transaction initiated by a master interface.

A system is the bus interface that does not have a simple input/output relationship on both master/slave.
This could include signals that only drive the master interface, or only drive the slave interface, or drive both
the master and slave interfaces. A bus definition can have zero or more system roles. Each system role is
further defined by a group name. For example, you may have a system role for your arbitration logic, and
another for your clock and reset signals.

Mirror roles are for bus interfaces that are on a bus core, such as CoreAHB or CoreAPB. They are
equivalent in signal definition to their respective non-mirror version except that the signal directions are
reversed.

The diagram below is a conceptual view of a bus definition.

52

& Microsemi

Table of Contents

ADDRESS -
DATA, -
EMABLE -
- READY
Master — REQUEST — — ERROR —— Slave
+— GRANT
< CLOCK .
-+ RESET g

System.Clock

T

System.Arbitration

System.Error “

&

Figure 19 - Bus Definition

See Also:
Using bus interfaces in SmartDesign

Using Bus Interfaces in SmartDesign
Adding bus interfaces to your design enables SmartDesign to do the following:
e Auto connect compatible interfaces
e Enforce DRC rules between instances in your design

e Search for compatible components in the project

The Catalog in the Project Manager contains a list of Microsemi SoC-specific and industry standard bus
definitions, such as AMBA.

You can add bus interfaces to your design by dragging the bus definitions from the Bus Interfaces tab in the
Catalog onto your instances inside SmartDesign.

SmartDesign supports automatic creation of data driven configurators based on HDL generics/parameters.

If your block has all the necessary signals to interface with the AMBA bus protocol (ex: address, data,
control signals):

Libero SoC User's Guide 53

& Microsemi

Table of Contents

1. Right-click your custom HDL block and choose Create Core from HDL. The Libero SoC creates your
core and asks if you want to add bus interfaces.

2. Click Yes to open the Edit Core Definition dialog box and add bus interfaces. Add the bus interfaces as
necessary.

3. Click OK to continue.
Now your instance has a proper AMBA bus interface on it. You can manually connect it to the bus or let Auto
Connect find a compatible connection.
Some cores have bus interfaces that are instantiated during generation.

Certain bus definitions cannot be instantiated by a user. Typically these are the bus definitions that define a
hardwired connection and are specifically tied to a core/macro. They are still available in the catalog for you
to view their properties, but you will not be able to add them onto your own instances or components. These
bus definitions are grayed out in the Catalog.

A hardwired connection is a required silicon interconnect that must be present and specifically tied to a
core/macro. For example, when using the Real Time Counter in a Fusion design you must also connect it to
a Crystal Oscillator core.

Maximum masters allowed - Indicates how many masters are allowed on the bus.
Maximum slaves allowed - Indicates how many slaves are allowed on the bus.

Default value - indicates the value that the input signal will be tied to if unused. See Default tie-offs with bus
interfaces.

Required connection - Indicates if this bus interface must be connected for a legal design.

Adding or Modifying Bus Interfaces in SmartDesign

SmartDesign supports automatic creation of data driven configurators based on HDL generics/parameters.
You can add a bus interface from your HDL module or you can add it from the Catalog.
To add a bus interface using your custom HDL block:

If your block has all the necessary signals to interface with the AMBA bus protocol (such as address, data,
and control signals):

1. Right-click your custom HDL block and choose Create Core from HDL. The Libero SoC creates your
core and asks if you want to add bus interfaces.

2. Click Yes to open the Edit Core Definition dialog box and add bus interfaces. Add the bus interfaces as
necessary.

3. Click OK to continue.

Now your instance has a proper AMBA bus interface on it. You can manually connect it to the bus or let Auto
Connect find a compatible connection.

To add (or modify) a bus interface to your Component:

1. Right-click your Component and choose Edit Core Definition. The Edit Core Definition dialog box
opens, as shown in the figure below.

54

& Microsemi

Table of Contents

X Edit Core Definition - Bus Interfaces

HOL: Fiiduddelamiprojects\SARS\ST096:1 1 hdlhdl_plus. v

Module: test_hdl_plus

#dd Bus Interface, .. Remove
—Bus Interfaces an this core; — —Configure bus interface details:
BIF_1 Bus interface (4PE): @ [BIF_t
Map by Mame Prefix
Bus Definition Core
Signal Dir | Req Signal
1 | [racor @ [uo =
i PSELx <@ |Mo -
5 || |PenasLe @ |no 3
| [PwRiTe @ |no 3
e B | 3
[PAWDETA @ Mo j
[l PREADY B |mo j
| PSLYERR B |mo j

Help | (0] 4 Cancel

Figure 20 - Edit Core Definition Dialog Box

Click Add Bus Interface. Select the bus interface you wish to add and click OK.
If necessary, edit the bus interface details.

Click Map by Name to map the signals automatically. Map By Name attempts to map any similar
signal names between the bus definition and pin names on the instance. During mapping, bus
definition signal names are prefixed with text entered in the Map by Name Prefix field.

5. Click OK to continue.

Bus Interface Details
Bus Interface: Name of bus interface. Edit as necessary.
Bus Definition: Specifies the name of the bus interface.
Role: Identifies the bus role (master or slave).
Vendor: Identifies the vendor for the bus interface.
Version: Identifies the version for the bus interface.

Configuration Parameters
Certain bus definitions contain user configurable parameters.
Parameter: Specifies the parameter name.
Value: Specifies the value you define for the parameter.

Consistent: Specifies whether a compatible bus interface must have the same value for this bus parameter.
If the bus interface has a different value for any parameters that are marked with consistent set to yes, this
bus interface will not be connectable.

Libero SoC User's Guide 55

& Microsemi

Table of Contents

Signal Map Definition

The signal map of the bus interface specifies the pins on the instance that correspond to the bus definition
signals. The bus definition signals are shown on the left, under the Bus Interface Definition. This
information includes the name, direction and required properties of the signal.

The pins for your instance are shown in the columns under the Component Instance. The signal element is a
drop-down list of the pins that can be mapped for that definition signal. .

If the Req field of the signal definition is Yes, you must map it to a pin on your instance for this bus interface
to be considered legal. If it is No, you can leave it unmapped.

Bus Interfaces

ExtSeqCitrl

RTCXTL

RTCVR

InitCfg

InitCfgSave

InitCfg Ctrl

When you add a bus interface the Edit Core Definition dialog box provides the following Microsemi SoC-
specific bus interfaces:

This bus interface defines the set of signals required to interface to the Analog System External Sequence
Control. If the Analog System is configured with more than a single procedure, it will export this bus
interface. Your own logic would need to connect to this bus interface to properly communicate and control
the sequencer.

This bus interface represents the hardwired connection needed between the Real Time Counter and the
Crystal Oscillator.

This bus interface represents the hardwired connection needed between the Real Time Counter and the
Voltage Regulator Power Supply Monitor.

This is the initialization and configuration interface that is generated as part of the Flash Memory Builder.
Any clients can be initialized from the Flash Memory as long as it can connect to this bus interface. This is
for pure initialization clients that do not require save-back to the Flash Memory.

This is the initialization and configuration interface that is generated as part of the Flash Memory Builder.
Any client can be initialized or saved-back to the Flash Memory as long as it can connect to this bus
interface. This is for clients that require initialization and save-back capabilities to the Flash Memory.

This interface is used to initiate the save-back procedure of the Flash Memory.

InitCfgAnalog

FlashDirect

This interface is required between the Flash Memory System and the Analog System core.

This bus interface defines the set of signals that are required to interface directly to the Flash Memory. From
the Flash Memory, if you add a data storage client, this interface will be exported. Interfacing to this interface
enables direct access to the Flash Memory.

56

& Microsemi

Table of Contents

XTLOscClk

This interface represents the Crystal Oscillator clock.

RCOscClk

This interface represents the RC Oscillator clock.

DirectCore Bus Interfaces

When you add a bus interface the Edit Core Definition dialog box provides the following DirectCore bus

interfaces.

AHB
The AMBA AHB defines the set of signals for a component to connect to an AMBA AHB or AHBLite bus.
The bus interface that is defined in the system is a superset of the signals in the AHB and AHBLite protocol.
You can use the AHB bus interface in the bus definition catalog to connect your module to an AHB or
AHBLite bus.

APB

The AMBA APB defines the set of signals for a component to connect to an AMBA APB or APB3 bus. The
bus interface that is defined in the system is a superset of the signals in the APB and APB3 protocol. You
can use the APB bus interface in the bus definition catalog to connect your module to an APB or APB3 bus.

Syslinterface
The Sysinterface is the interface used between the CoreMP7 and CoreMP7Bridge cores.

DBGinterface
This is the set of debug ports on the CoreMP7 core.

CPlInterface
This is the co-processor interface on the CoreMP7 core.

Show/Hide Bus Interface Pins

Pins that are contained as part of a bus interface will automatically be filtered out of the display. These ports
are considered to be connected and used as part of a bus interface.

However, there are situations where you may wish to use the ports that are part of the bus interface as an
individual port, in this situation you can choose to expose the pin from the bus interface.

To Show/Hide pins in a Bus Interface:

1. Select a bus interface port, right-click, and choose Show/Hide BIF Pins. The Show/Hide Pins to
Expose dialog box appears (as shown below).

Libero SoC User's Guide 57

& Microsemi

Table of Contents

Default Ti

Tying Off

Required

Pins to Expose - "APBmslave15’ on 'CoreAPB_0°

PADDRS[Z3:0]
PWRITES
‘PEMABLES
PWDATAS[31:0]
PROATAS1S[31:0]
PSELS1S

OROROO

o] [Come

Figure 21 - Expose Driver Pin Dialog Box

2. Click the checkbox associated with the driver pin you want to show. Once the port is shown it appears
on the Canvas and is available for individual connection.

Note: If you have already connected the bus interface pin, then you will not be able to expose the non-
driver pins. They will be shown grayed out in the dialog. This is to prevent the pin from being
driven by two different sources.

To un-expose a driver pin, right-click the exposed port and choose Show/Hide BIF Pins and de-select the
pin.

e-offs with Bus Interfaces
Bus definitions can contain default values for each of the defined signals. These default values specify what
the signal should be tied to if it is mapped to an unconnected input pin on the instance.

Bus definitions are specified as_required connection vs optional connection that defines the behavior of tie-
offs during SmartDesign generation.

Required bus interfaces - The signals that are not required to be mapped will be tied off if they are mapped
to an unconnected input pin.

Optional bus interfaces - All sighals will be tied off if they are mapped to an unconnected input pin.

(Disabling) Unused Bus Interfaces

Tying off (disabling) a bus interface sets all the input signals of the bus interface to the default value.
To tie off a bus interface, right-click the bus interface and select Tie Off.

This is useful if your core includes a bus interface you plan to use at a later time. You can tie off the bus
interface and it will be disabled in your design until you manually set one of the inputs.

Some bus interfaces are required; you cannot tie off a bus interface that is required. For example, the
Crystal Oscillator to RTC (RTCXTL) bus interface is a silicon interface and must be connected.

To enable your pin, right-click the pin and choose Clear Attribute.

vs. Optional Bus Interfaces

A required bus interface means that it must be connected for the design to be considered legal. These are
typically used to designate the silicon interconnects that must be present between certain cores. For

58

& Microsemi
Table of Contents

example, when using the Real Time Counter in a Fusion design you must also connect it up to a Crystal
Oscillator core.

An optional bus interface means that your design is still considered legal if it is left unconnected. However, it
may not functionally behave correctly.

(=Nl WO O
%3] RN

85a
CoreAHBLite_0 Wmo-
Fr ez

X
T

510

HRESETN
REMAP_MO

Figure 22 - Required Unconnected, Optional Unconnected, and Connected Bus Interfaces

See Also
Canvas icons

Promoting Bus Interfaces to Top-level

To automatically connect a bus interface to a top-level port, select the bus interface, right-click, and choose
Promote To Top Level.

This automatically creates a top-level bus interface port of that name and connects the selected port to it. If
a bus interface port name already exists, a choice is given to either connect to the existing bus interface port
or to create a new bus interface port with a name <port name>_<i> where i =1...n.

The signals that comprise the bus interface are also promoted.
Promoting a bus interface is a shortcut for creating a top-level port and connecting it to an instance pin.

Libero SoC User's Guide 59

& Microsemi

Table of Contents

Incremental Design

Reconfiguring a Component

To reconfigure a component used in a SmartDesign:

¢ In the Canvas, select the instance and double-click the instance to bring up the appropriate configurator, or the

HDL editor; or select the instance, right-click it, and choose Configure Component.

o Select the component in the Design Hierarchy tab and from the right-click menu select Open Component.

When the configurator is launched from the canvas, you cannot change the name of the component.

See Also
Desiqn state management

Replacing components

Fixing an Out-of-Date Instance

Any changes made to the component will be reflected in the instance with an exclamation mark when you
update the definition for the instance. An instance may be out-of-date with respect to its component for the

following reasons:

e If the component interface (ports) is different — after reconfiguration - from that of the instance

e If the component has been removed from the project
e If the component has been moved to a different VHDL library
e If the SmartDesign has just been imported

You can fix an out-of-date instance by:

¢ Replacing the component with a new component (as shown in the figure below)

e Updating with the latest component

Y W)
2 I

FMB_O ,
B INIT_CLK INIT_DOME B
B SYS_RESET [@’ _ =

~=INIT_POWER_UP Configure
IntClient_IntCfgSave_bi () ...

R IntCfgCtrl_bif

i . Delete

Replace Component For Instancers). ..

]

Ipdate Instancels) with Lakest Component. ..

<~ Clear User Connections

Figure 23 - Right-Click Menu - Replace Component for this Instance

See Also
Design state management
Reconfiguring components

60

& Microsemi

Table of Contents

Replacing components

Replacing Component Version

Components of an instance on the Canvas can be replaced with another component and maintain
connections to all ports with the same name.

To replace a component in your design:

1. Select the component in the Design Hierarchy, right-click, and choose Replace Component Version.
The Replace Component for Instance dialog box appears (see figure below).

Ml Replace Component Yersion ﬂ E

Component: smarkfusion_project_M3S

Core Name ¥Yendor Library ¥ersion | Change to ¥Yersion

M55 Actel SmartFusionM55 2.5.106 24,105 j

Help | OF I Cancel |

Figure 24 - Replace Component Version Dialog Box

2. Select the version you want to replace it with and click OK.

Design State Management

When any component with instances in a SmartDesign design is changed, all instances of that component
detect the change.

If the change only affects the memory content, then your changes do not affect the component's behavior or
port interface and your SmartDesign design does not need to be updated.

If the change affects the behavior of the instantiated component, but the change does not affect the
component's port interface, then your designh must be resynthesized, but the SmartDesign design does not
need to be updated.

If the port interface of the instantiated component is changed, then you must reconcile the new definition for
all instances of the component and resolve any mismatches. If a port is deleted, SmartDesign will remove
that port and clear all the connections to that port when you reconcile all instances. If a new port is added to
the component, instances of that component will contain the new port when you reconcile all instances.

The affected instances are identified in your SmartDesign design in the Grid and the Canvas with an
exclamation point. Right-click the instance and choose Update With Latest Component.

Note: For HDL modules that are instantiated into a SmartDesign design, if the modification
causes syntax errors, SmartDesign does not detect the port changes. The changes will be
recognized when the syntax errors are resolved.

Changing memory content

For certain cores such as Analog System Builder, Flash Memory, or FlexRAM it is possible to change the
configuration such that only the memory content used for programming is altered. In this case Project
Manager (SoC) will only invalidate your programming file, but your synthesis, compile, and place-and-route
results will remain valid.

When you modify the memory content of a core such as Analog System Builder or RAM with Initialization
that is used by a Flash Memory core, the Flash Memory core indicates that one of its dependent
components has changed and that it needs to be regenerated. This indication will be shown in the Hierarchy

. L
or Files Tab \'@ .
RAM with Initialization core - You can modify the memory content without invalidating synthesis.

Analog System Builder core - You can modify the following without invalidating synthesis:

e Existing flag settings: threshold levels, assertion/de-assertion counts, OVER/UNDER type
e Modifying sequence order or adding sequence operations

Libero SoC User's Guide 61

& Microsemi

Table of Contents

e Changing acquisition times
e Resistor Value for the Current Monitor

e RTC time settings

e Gate Driver source current

Flash Memory System Builder core - You can modify the following without invalidating synthesis:

e Modifying memory file or memory content for clients

e JTAG protection for Init Clients

Design Rules Check

The Design Rules Check runs automatically when you generate your SmartDesign; the results appear in the

Reports tab. To view the results, from the Desigh menu, choose Reports.

e Status displays an icon to indicate if the message is an error or a warning (as shown in the figure
below). Error messages are shown with a small red sign and warning messages with a yellow

exclamation point.

¢ Message identifies the specific error/warning (see list below); click any message to see where it

appears on the Canvas

e Details provides information related to the Message

"« Libero - E:\DEMO\FTC\st\L IBERO_DEMOM.IBERO_DEMO. prjx*

Project Flle Edit View Design Help

: ~ ==

DEd2o>«@o03
5] LIBERG_DEMO Reports

[=h LIBERO_DEMO reports
(= LIBERG_DEMO
LIBERQ_DEMO_DRC .xml

Status

B EOREEE OB

DRC Report: LIBERO_DEMO

Message
Floating Driver
Undriven Pin
Eloating Driver
Floating Driver
Floating Driver
Floating Driver
Floating Driver
Floating Driver
Undriven Pin
Eloating Driver
Floating Driver

Details
Floating output bus pin CoreGRIO_0:INT[31:0]
Unconnectad input pin CoreGPIO_0:GPIC_IN[31:0]
Floating output bus pin CoreGPIC_0:GPIC_QUT[31:0]
Floating output bus pin CoreGPIO_0:GPIC_OE[31:0]
Floating output pin Corel JAR Tapb_0:TXRDY
Floating output pin Corel AR Tapb_00RARDY
Floating output pin Corel JAR Taph_0:PARITY_FRR
Floating output pin CorelJAR Tapb_0:OVERFLOWY
Unconnectad input pin CoreUARTapb_0:RX
Floating output pin CorelJAR Tapb_0:TX
Floating output pin Corel AR Tapb_0:FRAMIMNG_ERR

Fam: SmartFusion | |Die: AZF200M3F | Pkqg: 484 FBGA | | Yerilog

Figure 25 - Design Rules Check Results

Message Types:

Unused Instance - You must remove this instance or connect at least one output pin to the rest of the

design.

Out-of-date Instance - You must update the instance to reflect a change in the component referenced by

this instance; see_Fixing an out-of-date instance.

Undriven Pin - To correct the error you must connect the pin to a driver or change the state, i.e. tie low

(GND) or tie high (VCC).

Floating Driver - You can mark the pin unused if it is not going to be used in the current design. Pins

marked unused are ignored by the Design Rules Check.

62

& Microsemi

Table of Contents

Unconnected Bus Interface - You must connect this bus interface to a compatible port because it is
required connection.

Required Bus Interface Connection — You must connect this bus interface before you can generate the
design. These are typically silicon connection rules.

Exceeded Allowable Instances for Core — Some IP cores can only be instantiated a certain number of
times for legal design. For example, there can only be one CortexM1 or CoreMP7 in a design because of
silicon rules. You must remove the extra instances.

Incompatible Family Configuration — The instance is not configured to work with this project’s Family
setting. Either it is not supported by this family or you need to re-instantiate the core.

Incompatible Die Configuration — The instance is not configured to work with this project’s Die setting.
Either it is not supported or you need to reconfigure the Die configuration.

Incompatible ‘Debug’ Configuration — You must ensure your CoreMP7 and CoreMP7Bridge have the
same ‘Debug’ configuration. Reconfigure your instances so they are the same.

No RTL License, No Obfuscated License, No Evaluation License — You do not have the proper license
to generate this core. Contact Microsemi SoC to obtain the necessary license.

No Top level Ports - There are no ports on the top level. To auto-connect top-level ports, right-click the
Canvas and choose Auto-connect

Generating a SmartDesign Component

Before your SmartDesign component can be used by downstream processes, such as synthesis and
simulation, you must generate it.

Click the Generate button to generate a SmartDesign component.
This will generate a HDL file in the directory <libero_project>/components/<library>/<yourdesign>.

Note: The generated HDL file will be deleted when your SmartDesign design is modified and
saved to ensure synchronization between your SmartDesign component and its generated
HDL file.

Generating a SmartDesign component may fail if there are any DRC errors. DRC errors must be corrected
before you generate your SmartDesign design.

Generating a Datasheet (SmartFusion, IGLOOe, ProASIC3L, ProASIC3E, Fusion)

If your SmartDesign is the root design in your project, then a Memory Map / Datasheet that contains your
design information is produced.

Generating Firmware and Software IDE Workspace (SmartFusion, IGLOOe, ProASIC3L,
ProASIC3E, Fusion)

If your SmartDesign is the root design in your project, then any compatible firmware drivers for your
peripherals are generated to <project>/firmware.

The datasheet provides all the specifics of the generated firmware drivers.

Libero SoC User's Guide 63

http://www.actel.com/products/ip/order.aspx

& Microsemi

Table of Contents

Reference

SmartDesign Menu

Command Icon Function

Generate 3 Generates the SmartDesign component

Component

Auto Connect) Auto-connects instances

Connection Mode -1 Toggles connection mode on or off
+

Add Port B Opens the Add Port dialog box, adds a port to the top

+ SmartDesign component
QuickConnect |_E Opens the QuickConnect dialog box, enables you to
view, find and connect pins

Auto-Arrange D Adds a port to the top of the SmartDesign component

Instances =0

Route All Nets o | | Re-routes your nets; useful if you are unsatisfied with the
o default display

Show/Hide Nets o D Enables you to show or hide nets on the Canvas

Show/Hide Net EL D Enables you to show or hide net names on the Canvas

Names

Zoom In \ﬂ\ Zooms in on the Canvas

Zoom Out ‘:k Zooms out on the Canvas

Zoom to Fit Zooms in or out to include all the elements on the
¥ Canvas in the view

Zoom Box Q Zooms in on the selected area

Add Note A Adds text to your Canvas

Add Line \ Enables you to add a line to the Canvas

64

Command Icon Function
Add Rectangle D Enables you to add a rectangle to the Canvas
SmartDesign Glossary

Term Description
BIF Abbreviation for bus interface.
bus An array of scalar ports or pins, where all scalars have a common base

name and have unique indexes in the bus.

Bus Defines the signals that comprise a bus interface. Includes which signals
Definition are present on a master, slave, or system interface, signal direction,

width, default value, etc. A bus definition is not specific to a logic or
design component but is a type or protocol.

Bus Interface

Logical grouping of ports or pins that represent a single functional
purpose. May contain both input and output, scalars or busses. A bus
interface is a specific mapping of a bus definition onto a component
instance.

Bus Interface
Net

A connection between 2 or more compatible bus interfaces.

Canvas Block diagram, connections represent data flow; enables you to connect
instances of components in your design.

Component | Design element with a specific functionality that is used as a building
block to create a SmartDesign core.
A component can be an HDL module, non-IP core generated from the
Catalog, SmartDesign core, Designer Block, or IP core. When you add a
component to your design, SmartDesign creates a specific instance of
that component.

Component | VHDL construct that refers to a specific component.

Declaration

Component | An individual port on a component definition.

Port

Driver A driver is the origin of a signal on a net. The input and slave BIF ports
of the top-level or the output and Master BIF ports from instances are
drivers.

Instance A specific reference to a component/module that you have added to

your design.

You may have multiple instances of a single component in your design.

& Microsemi

Table of Contents

Libero SoC User's Guide

65

& Microsemi

Table of Contents

Term Description
For each specific instance, you usually will have custom connections
that differ from other instances of the same component.

Master Bus | The bus interface that initiates a transaction (such as a read or write) on

Interface a bus.

Net Connection between individual pins. Each net contains a single output
pin and one or more input pins, or one or more bi-directional pins. Pins
on the net must have the same width.

PAD The property of a port that must be connected to a design’s top level
port. PAD ports will eventually be assigned to a package pin. In
SmartDesign, these ports are automatically promoted to the top-level
and cannot be modified.

Pin An individual port on a specific instance of a component.

Port An individual connection point on a component or instance that allows
for an electrical signal to be received or sent. A port has a direction
(input, output, bi-directional) and may be referred to as a ‘scalar port’ to
indicate that only a single unit-level signal is involved. In contrast, a bus
interface on an instance may be considered as a non-scalar, composite
port.

A component port is defined on a component and an instance port (also
known as a ‘pin’) is part of a component instance.

Signal A net or the electrical message carried on a net.

Slave Bus Bus interface that terminates a transaction initiated by a master

Interface interface.

System Bus | Interface that is neither master nor slave; enables specialized

Interface connections to a bus.

Top Level An external interface connection to a component/module. Scalar if a 1-

Port bit port, bus if a multiple-bit port.

Canvas lcons

Hover your pointer over any icon in the SmartDesign Canvas view to display details.

Icon Description

66

Icon

Description

Representation of an
instance in your design. An
instance is a component that
has been added to your
SmartDesign component.
The name of the instance
appears at the top and the
name of the generic
component at the bottom.

The instance type is
indicated by an icon inside
the instance. There are
specific icons for instances
from SmartDesign, HDL,
and ViewDraw. The instance
icon at left indicates a
Microsemi SoC core.

‘ CoreAHBLite_0

Fr ez

=
o~ MO O
%3] RN RG]

HCLK

HRESETN
REMAP_MO

Bus instance; you can click
and drag the end of a bus
instance to resize it; also,
the bus instance will resize
based on the number of
instances that you connect
to it.

Optional unconnected pin.
Required pins are red.

Connected pin

Pin with default Tie Off

Pin tied low

Pin tied high

Pin inverted

Pin marked as unused

[B

Pin tied to constant

& Microsemi

Table of Contents

Libero SoC User's Guide

67

& Microsemi
Table of Contents

Description

Icon

Mame: CoreAhbSram_D
Instance af; CoreAhbSram
Twpe: P

Class: Reqular
Yendor: Actel

Library: DirectCore
Core Mame: CoreAhbSram
Version: 1.4.104
Mumber of ports: 13

|
|Pin: [HCLE N
Fin: |HRESETn [T
|Pin: |HSEL N
[Fint || HWRITE |
[Fin: |HREADYIN |IN
|Pin: |HREADY lout

| |Fin: |HTRANS[1:0] |
Fin: [HsIzE[2:0] |IN

|Pin: [HWDATAL31:0] |IN

|Fin: |HADDR[14

0] |

|Fin: [HRESP[1:0] ||oUT

|Pin: [HRDATA[31:0] |OUT

|F‘in: |F'.HBsIave

|SLAVE

Instance details. If there are
less than twenty ports, they
are listed in the details.

Bus Met: DataB[1:0]

DataB[1:0]

subtr_1_ 0

DataB[1:0]

Bus Net detalils.

Master bus interface icon. A
master is a bus interface
that initiates a transaction on
a bus interface net.

An unconnected master BIF
with REQUIRED connection
is red (shown at left).

A master BIF with
unconnected OPTIONAL
connection is gray.

68

Icon

Description

Mame: RTCYR_bif

Role: master

State: Unconnected - required

*This pin is a required connection,
you must connect it for a valid design.

Master BIF details, showing
name, role, and state.

The Pin Map shows the
Formal name of the pin
assigned by the component
(in this example,
RCCLKOUT) and the Actual,

Formal Actual -
RTCPSMMATCH _|RTCPSMMATCH or representative name
_ assigned by the user
(CLKOUT).
Slave BIF (shown at left).
Unconnected slave icons
with REQUIRED
connections are red.
Unconnected slave icons
with OPTIONAL connections
are gray.
@ Slave BIF details, showing

Homo ExtSeqCtrl_bif name, role, and state.

Rale: slave ’ ’

State: Unconnected
The Pin Map shows the

Foreval weral Formal name of the pin

ASSC_SEQIN ASSC_SEQIN[S:0] assigned by the component

ASSC_SEQIUMP |ASSC_SEQIUMP (in this example,

ASSC_MODE A4SSC_XMODE RCCLKOUT) and the Actual,

ASSC_XTRIG ASSC_XTRIG or representative name

ASSC_DONE ASSC_DONE assigned by the user

ASSC_SEQOUT ASSC_SEQOUT[S:0] (CLKA).

ASSC_SEQCHANGE [ASSC_SEQCHANGE

ASSC_SAMPFLAG ASSC_SAMPFLAG

Master-slave bus interface
connection

& Microsemi

Table of Contents

Libero SoC User's Guide

69

& Microsemi

Table of Contents

Icon

Description

Mame: |AHBmslaye2

Role: | |mirroredSlave

State: |Connected

Pin Map
Formal Actual
HADDR HADOR_52[31:0]

HTRAMS |[HTRA&NS_52[1:0]

HWRITE HWRITE_S52

HSIZE HS1ZE_52[2:0]
HWDATA |[HWDATA_S2[31:0]
HSELx HSEL_52

HROATA HRODATA_52[31:0]

HREADY HREADY 52

HMASTLOCE, ||HMASTLOCK _52

HREADYOUT ||HREADYOUT_S52

HRESP HRESP_S2[1:0]
HEURST HEURST_52{2:0]
HPROT HPROT_S52{3:0]

Master-slave bus interface
connection details.

Groups of pins in an
instance.

Fully connected groups are
solid green.

Partially connected groups
are gray with a green
outline.

Unconnected groups (no
connections) are gray with a
black outline.

A system BIF is the bus
interface that does not have
a simple input/output
relationship on both
master/slave.

This could include signals
that only drive the master
interface, or only drive the
slave interface, or drive both
the master and slave
interfaces.

o

Mame: InitCfgSawve_hbif

Role: system

State: Connected

Formal

Actual

CLIEMNTAMATLxO

ramrd

e

System BIF details, showing
name, role, and state.

The Pin Map shows the
Formal name of the pin
assigned by the component
(in this example,
CLIENTAVAILX0), and the
Actual name assigned by
the user (in this example:

70

& Microsemi

Table of Contents

Icon Description

ramrd).

Pad port icon; indicates a
hardwired chip-level pin

Libero SoC User's Guide 71

& Microsemi
Table of Contents

VHDL Special Types - Examples and meta.out File Format

The VHDL Special Types are:

e Integer

e Unsigned

e Array and Array of Arrays
e Record

The meta.out file format follows the examples.

Integer
-- Package Declaration
library IEEE;
use IEEE.std_logic_1164._all;
use IEEE.std_logic_arith.all;
package universal_pkg is
subtype integerl is integer range 0 to 127;
subtype integer2 is integer range 0 to 127;
end package universal_pkg;
--Entity Declaration
entity adder is
port (
D1 , D2 : in integerl;
D3 , D4 : in integer2;
int_outl : out integer range O to 255;
int_out2 : out integer range O to 255
);
end entity adder;
Meta.out file:
package universal_pkg
integer integerl [0 : 127]
integer integer2 [0 : 127]
end
entity adder
D1 integerl
D2 integerl
D3 integer2
D4 integer2
int_outl integer [O : 255]
int_out2 integer [O : 255]
end
Unsigned
Entity declaration:

entity unsigned 2multiply_acc is
port(A : in unsigned(16 downto 0);
B : in unsigned(34 downto 0);

72

C :

D :

E :

P :

clk
);

in unsigned(13 downto 0);
in unsigned(37 downto 0);
in unsigned(51 downto 0);
out unsigned(51 downto 0);

in std_logic

end unsigned_2multiply_acc;

Meta.out file:

entity unsigned_2multiply_acc

T moOoO W >

End

unsigned [16 : 0]
unsigned [34 : 0]
unsigned [13 : 0]
unsigned [37 - 0]
unsigned [51 : 0]
unsigned [51 : 0]

Array and Array of Arrays
--Package Declaration

library IEEE;
use IEEE.std_logic_1164.all;
package array_package is
subtype ram_input is std_logic_vector(31 downto 0);
type ram_in is array(1 downto 0) of ram_input;

type ram_out is array(l downto 0) of ram_input;
end package array_package;
-- Entity Declaration

entity ram_inference is
port (

ram_init : in ram_in;

write_enable : in std_logic;

read_enable : in std_logic;

CLK : in std_logic;

write_address : in integer range 63 downto O;
read_address : in integer range 63 downto O;
read_data : out ram_out

);

end entity ram_inference;

Meta.out file:

package array_package
array_of_array ram_in [1 - 0]

end

array_of_array ram_out [1 : 0]

end
end

entity ram_inference
ram_init[1] ram_in

& Microsemi

Table of Contents

Libero SoC User's Guide

73

& Microsemi

Table of Contents

ram_init[0] ram_in
write_address integer [63 - 0]
read_address integer [63 : 0]
read_data[1] ram_out
read_data[0] ram_out

end

Record
- Package Declaration

library I1EEE;
use IEEE.std_logic_1164._all;
use IEEE.std_logic_arith.all;
package record_pkg is
type arrayl is array(3 downto 0) of std _logic;
type array2 is array(3 downto 0) of std_logic_vector(3 downto 0);
type test is record
test_std_logic : std_logic;
test_std_logic_vector : std_logic_vector(l downto 0);
test_integer : integer range 0 to 127;
test_array : arrayl;
test_array_of _array : array2;
test_unsigned : unsigned(2 downto 0);
end record;
end package record_pkg;
-- Entity Declaration

entity MUX is

generic (N : integer =1);

port (
mux_inl, mux_in2 : in test;
sel_lines : in std_logic_vector(N-1 downto 0);
mux_out : out test;
mux_array : out arrayl

);

end entity MUX;

Meta.out file:

package record_pkg

array arrayl

end

array_of _array array2 [3 : 0]
end

record test

test_integer integer [0 : 127]
test_array arrayl
test_array_of_array array?
test_unsigned unsigned [2 = 0]
end

end

entity MUX

74

& Microsemi

Table of Contents

mux_inl.test_std_logic test
mux_inl.test_std_logic_vector test
mux_inl.test_integer test
mux_inl.test _array test
mux_inl.test _array_of_array[0] test
mux_inl.test _array_of _array[l] test
mux_inl.test _array_of _array[2] test
mux_inl.test_array_of _array[3] test
mux_inl.test _unsigned test
mux_in2.test_std_logic test
mux_in2.test_std_logic_vector test
mux_in2.test_integer test
mux_in2.test_array test
mux_in2.test_array_of_array[0] test
mux_in2.test_array_of_array[l] test
mux_in2.test_array_of _array[2] test
mux_in2.test_array_of_array[3] test
mux_in2.test_unsigned test
mux_out.test_std_logic test
mux_out.test_std_logic_vector test
mux_out.test_integer test
mux_out.test_array test
mux_out.test array of array[0] test
mux_out.test array of array[1l] test
mux_out.test array of array[2] test
mux_out.test array of array[3] test
mux_out.test _unsigned test
mux_array arrayl

end

meta.out File Format
MetaFile : MetaLibraryltem | MetaPackageList | MetaEntityList
MetaLibraryltem : library <lib_name>
MetaPackageList : MetaPackageltem MetaPackageList
MetaPackageltem : package <package_name> MetaltemDeclarationList end
MetaltemDeclarationList: Metaltem MetaltemDeclarationList
Metaltem : (MetaRecordltem | MetaArrayOfArrayltem | MetalntegerType | MetaArrayltem)
Metalntegeritem : (MetalntegerType | MetalntegerWithoutType)
MetalntegerType : integer <integer_name> NumericRange
MetalntegerWithoutType : integer NumericRange
MetaUnsigneditem : unsighed <name> NumericRange
MetaArrayOfArrayltem : array_of_array < MetaArrayOfArrayName> Range [MetaArrayltem] end
MetaRecordltem : record <record_name> RecordltemList end
RecordltemList : Recordltem RecordltemList

Recordltem : <Inst_name> (MetaArrayOfArrayName | Metalntegerltem | MetaUnsigneditem |
MetaSimpleArray)

MetaEnumurateditem : enum <enum_name> (ltem_name{,Item_name})
Range : [NumericRange | MetaEnumuratedltem]
NumericRange : Isd : msd

Libero SoC User's Guide 75

& Microsemi

Table of Contents

MetaArrayltem :array <array_name> [<record_name>] end
MetaEntityList : entity <entity _name> MetaEntityltemList end
MetaEntityltemList : MetaEntityltem MetaEntityltemList

MetaEntityltem : (RecordEntityltemList | IntegerEntityltemList | ArrayEntityltemList |
ArrayOfArrayEntityltemList | UnsignedEntityltemList | BufferPortltemList)

RecordEntityltemList : RecordEntityltem RecordEntityltemList

RecordEntityltem : (RecordNormalltem | RecordArrayOfArrayltemList)
RecordNormalltem : <user_port_name>. Recordltem <record_name>
RecordArrayOfArrayltemList : <record_port_name>[index]. Recordltem <record_name>
BufferPortltemList : BufferPortltem BufferPortltemList

BufferPortltem : buffer <buffer_name>

IntegerEntityltemList : IntegerEntityltem IntegerEntityltemList

IntegerEntityltem : <user_port_name> (MetalntegerType | MetalntegerWithoutType)
ArrayEntityltemList : ArrayEntityltem ArrayEntityltemList

ArrayEntityltem : <user_port_name> MetaArrayltem

ArrayOfArrayEntityltemList : ArrayOfArrayEntityltem ArrayOfArrayEntityltemList
ArrayOfArrayEntityltem : <port_name> < MetaArrayOfArrayName>
UnsignedEntityltemList : UnsignedEntityltem UnsignedEntityltemList
UnsignedEntityltem : <user_port_name> MetaUnsignedltem

Create Core from HDL

You can instantiate any HDL module and connect it to other blocks inside SmartDesign. However, there are
situations where you may want to extend your HDL module with more information before using it inside
SmartDesign.

¢ If you have an HDL module that contains configurable parameters or generics.

e If your HDL module is intended to connect to a processor subsystem and has implemented the
appropriate bus protocol, then you can add a bus interface to your HDL module so that it can easily
connect to the bus inside of SmartDesign.

To create a core from your HDL:
1. Import or create a new HDL source file; the HDL file appears in the Design Hierarchy.

2. Select the HDL file in the Design Hierarchy and click the HDL+ icon or right-click the HDL file and
choose Create Core from HDL.

The Edit Core Definition — Ports and Parameters dialog appears. It shows you which ports and parameters were extracted from
your HDL module.
3. Remove parameters that are not intended to be configurable by selecting them from the list and

clicking the X icon. Remove parameters that are used for internal variables, such as state machine
enumerations.

If you removed a parameter by accident, click Re-extract ports and parameters from HDL file to reset the list so it matches your
HDL module.

76

M[Edit Core Definition - Ports and Parameters

HOL: Ci\Documents and SettingsifarlevciDeskiopifarleyc_actelpritsoc_10spl_cc_hdihdliMyAPE_adder.w

Module: MyAPE_adder

& Microsemi

Table of Contents

Extracted Ports Extracted Parameters N
PCLE i |WIDTH
PRESETH SIZE
PADDR[4:0] APE_SIZE
PSEL FIFCO_EMABLE
PEMAELE COUNTER _EMNABLE
PWRITE

PROATA[7:0]
PYDATA[7:00]
PREADY
PSLYERR
TN_A[15:0]
N_E[15:0]
RESULT[15:0]
OWERFLOWY

Re-extract ports and parameters from HDL |

Help | AddEdit bus interfaces... I OF |

Figure 26 - Edit Core Definition - Ports and Parameters Dialog Box
4. (Optional) Click Add/Edit Bus Interfaces to add bus interfaces to your core.

Cancel |

After you have specified the information, your HDL turns into an HDL+ icon in the Design Hierarchy. Click
and drag your HDL+ module from the Design Hierarchy to the Canvas.

If you added bus interfaces to your HDL+ core, then it will show up in your SmartDesign with a bus interface
pin that can be used to easily connect to the appropriate bus IP core.

If your HDL+ has configurable parameters then double-clicking the object on the Canvas invokes a
configuration dialog that enables you to set these values. On generation, the specific configuration values
per instance are written out to the SmartDesign netlist.

B, Configuring MyaAPE_Adder_0 (MyaPE_... [H[=] B3

i'! Configuration
E i i
WIDTH: 16|
MyAPB_Adder_0
> PCLK RESULT[15:0] SIZE: 200
PRESE TN OVERFLOW
IN_A[15:0] ;
IN_B[15:0] ; APE_SIZE: | 1
FIFO_ENAELE: | 0
COUNTER_EMABLE: |o
[t e e o)
Ot 0 00 L0 AD 00 T e et
L Tty
CoreAPE_O Help | OF I Cancel |
gFwe| =
4

Figure 27 - HDL+ Instance and Configuration Dialog Box
You can right-click the instance and choose Modify HDL to open the HDL file inside the text editor.

Edit Core Definition

You can edit your core definition after you created it by selecting your HDL+ module in the design hierarchy
and clicking the HDL+ icon.

Remove Core Definition

You may decide that you do not want or need the extended information on your HDL module. You can
convert it back to a regular HDL module. To do so, right-click the HDL+ in the Design Hierarchy and choose
Remove Core Definition. After removing your definition, your instances in your SmartDesign that were

Libero SoC User's Guide 77

& Microsemi

Table of Contents

referencing this core must be updated. Right-click the instance and choose Replace Component for
Instance.

Create HDL

Create HDL opens the HDL editor with a new VHDL or Verilog file. Your new HDL file is saved to your /hdl
directory; all modules created in the file appear in the Design Hierarchy.

You can use VHDL and Verilog to implement your design.

To create an HDL file:
1. Inthe Design Flow window, double-click Create HDL. The Create new HDL file dialog box opens.

2. Select your HDL Type. Choose whether or not to Initialize file with standard template to populate
your file with default headers and footers. The HDL Editor workspace opens.

3. Enter a Name. Do not enter a file extension; Libero SoC adds one for you. The filename must follow
Verilog or VHDL file naming conventions.

4. Click OK.
After creating your HDL file, click the Save button to save your file to the project .

Using the HDL Editor

The HDL Editor is a text editor designed for editing HDL source files. In addition to regular editing features,
the editor provides a syntax checker.

You can have multiple files open at one time in the HDL Editor workspace. Click the tabs to move between
files.

Editing

Editing functions are available in the Edit menu. Available functions include cut, copy, paste, find, and
replace. These features are also available in the toolbar.

Saving

You must save your file to add it to your Libero SoC project. Select Save in the File menu, or click the Save
icon in the toolbar.

Printing
Print is available from the File menu and the toolbar.

Note: To avoid conflicts between changes made in your HDL files, Microsemi recommends that
you use one editor for all of your HDL edits.

HDL Syntax Checker

To run the syntax checker:

In the Files list, double-click the HDL file to open it. Right-click in the body of the HDL editor and choose
Check HDL File.

The syntax checker parses the selected HDL file and looks for typographical mistakes and syntactical errors.
Warning and error messages for the HDL file appear in the Libero SoC Log Window.

Commenting Text

You can comment text as you type in the HDL Editor, or you can comment out blocks of text by selecting a
group of text and applying the Comment command.

To comment or uncomment out text:

1. Type your text.
2. Select the text.
3. Right-click inside the editor and choose Comment Selection or Uncomment Selection.

78

& Microsemi

Table of Contents

Importing HDL Source Files

To import an HDL source file:
1. Inthe Design Flow window, right-click Create HDL and choose Import Files.
2. In Look in, navigate to the drive/folder that contains the file.
3. Select the file to import and click Open.

Mixed-HDL Support in Libero SoC

You must have ModelSim PE or SE to use mixed HDL in the Libero SoC. Also, you must have Synplify Pro
to synthesize a mixed-HDL design.

When you create a project, you must select a preferred language. The HDL files generated in the flow (such
as the post-layout netlist for simulation) are created in the preferred language.

The language used for simulation is the same language as the last compiled testbench. (E.g. if tb_top is in
verilog, <fam>.v is compiled.)

If your preferred language is Verilog, the post-synthesis and post-layout netlists are in Verilog 2001.

Libero SoC User's Guide 79

& Microsemi

Table of Contents

SmartDesign Testbench

SmartDesign Testbench is a GUI-based tool that enables you to design your testbench hierarchy. Use
SmartDesign Testbench to instantiate and connect stimulus cores or modules to drive your Root design.

You can create a SmartDesign Testbench by right-clicking a SmartDesign in the Design Hierarchy and
choosing Create Testbench > SmartDesign.

SmartDesign Testbench automatically instantiates the selected SmartDesign into the Canvas.

You can also double-click Create SmartDesign Testbench in the Design Flow window to add a new
SmartDesign testbench to your project.

New testbench files appear in the Stimulus Hierarchy.
SmartDesign Testbench automatically instantiates your root design into the Canvas.

You can instantiate your own stimulus HDL or simulation models into the SmartDesign Testbench Canvas
and connect them to your DUT (design under test). You can also instantiate Simulation Cores from the
Catalog. Simulation cores are basic cores that are useful for stimulus generation, such as driving clocks,
resets, and pulses.

Click the Simulation Mode checkbox in the Catalog to view available simulation cores.

HDL Testbench

You can create a HDL Testbench by right-clicking a SmartDesign in the Design Hierarchy and choosing
Create Testbench > HDL.

HDL Testbench automatically instantiates the selected SmartDesign into the Canvas.

You can also double-click Create HDL Testbench to open the Create New HDL Testbench dialog box. The
dialog box enables you to create a new testbench file and gives you the option to include standard testbench
content and your design data.

Set your HDL Type, specify a name, select the data options and click OK to create a new testbench.

Initialize file with standard template populates the new HDL file with basic headers and Clock/Reset
driver, as in the header of the example file below.

Instantiate Root Design includes your root design information in the new file. It includes architectural,
constant, signal, component, clock, and port information.

Bl Create New HDL Testbench File @g|

HOL Type

() verilog () YHOL

Marne:

hdl_testbench_1]

Initialize file with standard template
Instantiate Root Design

Ik] [Cancel

Figure 28 - Create HDL Testbench Dialog Box

80

24

-- Company: <Name>

-- File: hdl_testhench_l1.wvhd

-- File history:

= <Rewision number>: <Date>! <Comments>
ik <Fewision number>: «<Date>: <Comments>
. <Rewision number>: <Date>:!: Comments>

-- Deacription:

-— <Description herel

& Microsemi

Table of Contents

-- Targeted dewvice: «<Family::3martFusion> <Die::A2F200M3F> <Package::4534 FEGL-

-— dnthor: =HName>

library ieee;
use ieee.std_logic_lla4.all:

entity hdl testbench 1 i=
end hdl testhench 1:

architecture behavioral of hdl_testhench_1 is
constant SYICLE_PERIOD : time := 100 ns:

sigmal 3Y¥3CLE : std_logic := '0O';
signal NST3RESET : std_logic = '0':

component test mss

-- ports

port |
-- Inputs
UART 1 F¥D : in std logic:
UART 0 _FXD : in std logic:
3PI_L DI : im std_logic:
SPI_0 DI @ im std logic:
MAC CESDYV @ im std logic:
MaC PXER : im 3td_logic:
M55 FESET N : in std logic:
CLEA PAD : im std_logic;
CLEC_FAD : im std_logic:
MAC FxD : im std_logic wector({l downto 0);

Figure 29 - HDL Testbench Example - Standard Template and Root Design Enabled

View/Configure Firmware Cores

Use this dialog to select and configure firmware cores (drivers) for your Software IDE project. The Design
Firmware tab lists the compatible firmware for the hardware that you have instantiated in your design. In the
Design Flow tab, expand Create Design and double-click View/Configure Firmware Cores to view the

DESIGN_FIRMWARE tab.

The Firmware table lists the compatible firmware and drivers based on the hardware peripherals that you
have used in your design. Each row represents a firmware core that is compatible with a hardware

peripheral in your design. The columns in the Firmware table are:

e Generate - Allows you to choose whether you want the files for this firmware core to be generated on
disk and added to your Software IDE project. Click the checkbox to generate firmware for each

peripheral in your design.

Libero SoC User's Guide

81

& Microsemi

Table of Contents

e Instance Name - This is the name of the firmware instance. This may be helpful in distinguishing
firmware cores when you have multiple firmware cores with the same Vendor:Library:Name:Version
(VLNV) in your design.

e Core Type - Firmware Core Type is the Name from the VLNV id of the core. This generally
corresponds to the name of the hardware peripheral with which the firmware core is compatible.

e Version - Firmware Core Version; you can upgrade or choose a different version via a dropdown
menu in this column.

e Compatible Hardware Instance - The hardware instance in your design that is compatible with this
firmware core.

Downloading Firmware

Configuring

Libero attempts to find compatible firmware located in the IP Vault located on your disk, as well as firmware
in the IP Repository via the Internet.

If compatible firmware is found in the IP repository but not on your disk, the row will be italicized, indicating
that it needs to be downloaded. To download all firmware cores necessary for your project peripherals, click
the Download All Firmware icon in the vertical toolbar.

Firmware
Firmware cores that have configurable options will have a wrench icon in the row. Click the wrench icon to
configure the firmware core.

It is important that you check the configuration of your firmware cores if they have configurable options. They
may have options that target your software IDE (Keil, IAR or Softconsole), or your processor, that are vital
configuration options to getting your system to work properly.

Generating Firmware

Click the Generate icon to export the firmware drivers and software IDE project for your project. The
firmware drivers are generated into <project>\firmware and the software workspace is exported to
<project>\<toolchain>. <toolchain> could be SoftConsole, IAR or Keil, depending on your software IDE.

The firmware drivers are also copied into the <toolchain> folder.

Changing Firmware Core Versions

You can manually change to the latest version by selecting the drop down in the Version column.

There will often be multiple versions of a firmware cores available for a particular peripheral. The MSS

Configurator selects the latest compatible version for a new design.

However, once the firmware has been added to your design, Libero will not automatically change to the

latest version if one becomes available.

Note: If a core version is shown in italics it is available in the Web Repository but not in your
Vault; you must download the firmware core version to use it in your design.

Generating Sample Projects

Firmware cores are packaged with sample projects that demonstrate their usage. They are packaged for
specific tool chains, such as Keil, IAR and SoftConsole

To generate a sample project, right-click the firmware core and choose Generate Sample Project, then
select your IDE tool chain (such as Keil), and choose from the list of available samples.

You will be prompted to select the destination folder for the sample project.

Once this project is generated you can use it as a starting point in your Software IDE tool or use the
example project as a reference on how to use the firmware driver.

82

Fabric Peripherals

Libero SoC also attempts to find compatible firmware for soft (fabric) peripherals that you have added in
your top-level SmartDesign if that top-level is Set as Root.

To set your top-level design as a root, right-click your top-level design in the Design Hierarchy and choose
Set as Root. The root component appears in bold.

The figure below shows CoreGPIO, CorePWM and CoreUARTapb soft cores that have been added into
your top-level SmartDesign.

Project File Edit View Design Tools SmartDesign Help

& Microsemi

Table of Contents

IDESd=2nN< o

@ Esmartfusionjroject x| | a smartfusion_project_M55 [EDESIGN_FIRMWARE x| |

S (Generate I Instance Name Core Type iersion Compatible Hardware Instance
1 72 CoreGPIo_Driver_0O ZareGPIO_Driver 3.0.101L smarkfusion_project:CoreGPIO_0
2 I~ CarePyWM_Driver_0 CareP\WM_Driver 2,1.107 « ||smartfusion_project:corepwm_0
3 v CorelJARTapb_Driver 0 CorellaRTapb_Driver 3.0.105? smartfusion_project:CorellaRTapb_0
4 =2 g' HAL_O HAL 2.1.102? smartfusion_project_MSS
=} I MS5_ACE_Driver_0 M55_ACE_Driver 2.2.101? smarkfusion_project_MS5:MSS_ACE_O
(s} Ird # M55_Ethernet_MAC_Driver_0 M55_Ethernet_MAC_Driver 2‘0.103_ smartfusion_project_MS55:M55_MAC_D
7 I M55_GPIO_Driver_0 M55_GPIO_Driver 2.0.105 ~ | smartfusion_project_M5S5:MS5_GPIO_O
t] I M35 _IAP Driver 0 M35 _IAP _Drriver 2'2'101L smatkFusion_project_M35
9 I~ @’ MS5_MAC_ Driver 0 MS5_MAC_Driver 1.0.1 smartfusion_project_MS5:M55_MAC_0

Figure 30 - Firmware Cores Tab (DESIGN_FIRMWARE)
See Also

Exporting Firmware and the Software IDE Workspace

Libero SoC Frequently Asked Questions

Running Libero SoC from your Software Tool Chain

Software IDE Integration

Libero SoC User's Guide

83

& Microsemi

Table of Contents

Designing with Designher Block Components

Designer Blocks (also generically called "components") enable you to partition a design and optimize critical
sections. You can reuse them later in new applications, ensuring consistent performance. Designing with
blocks enables multiple designers to work independently on parts of a single design.

Designer Block Advantages

e You can focus on the timing of critical blocks and ensure the timing across the blocks meets
requirements before proceeding to the top-level flow.

e Changes in other blocks have no impact on your own block, you can re-use your block without re-
calculating the timing.

e The block can be re-used in multiple designs
e Shorter verification time. You need to re-verify only the portion of the design that has changed.

Designer Block Features

e You can create a Designer Block with or without 1/Os.

e A Designer Block can be synthesized, simulated, and placed-and-routed the same way as a regular
design.

e You can lock the place-and-route of the Designer Block to ensure performance does not change.

e Performance and place-and-route can be fixed absolutely; however these rules can be relaxed
gradually, if necessary, to ensure that you can integrate the Designer Block into your <top> project.

e You can use all the features in Designer Blocks in SmartDesign.

Use Designer Blocks When

e The design is congested (uses 90% of the resources on a given die).

¢ You have difficulty meeting timing by doing the design in its entirety. Blocks enable you to
compartmentalize the design and optimize sections before you optimize the entire design.

e You want to re-use some elements of your design.
e You want to use the identical elements multiple times in a single design.

You cannot use Designer Blocks with all families, they are family and die specific; if your Designer Block has
1/Os it is also package specific.

Supported Families
SmartFusion, IGLOO, ProASIC3, Fusion

Designer Blocks and Synthesis

You must run the synthesis tool in No I/0O mode when you create your component. The Designer Block is not
a full design; Libero SoC sets this option for Synplify if you Enable Designer Block creation.

When you Publish a Designer Block, the Project Manager creates a timing shell that enables the synthesis
tool to better synthesize the <top> project. The timing shell is named <blockname>_syn.v(.vhd) if you are
using Synplify or <blockname>_pre.v(.vhd) if you are using Precision.

When you are working in your <top> project, the synthesis tool does not know how many globals you have
in your Designer Block, or if there will be clock sharing. The synthesis tool promotes as many globals as it
can and if you have globals in the Designer Block you will exceed the total number of globals allowed in your
device.

84

& Microsemi
Table of Contents

In this case, you must limit the number of globals added by the synthesis tool so that the total number
(Designer Block plus <top> project) does not exceed the number available on your device.

To add an internal global, you can use either the Synplify constraints editor (SCOPE) or an SDC file.
For example, to add a CLKINT after a CLK port, the command is:
define_attribute {n:CLK} syn_insert_buffer {CLKINT}

See Also
Creating a component in Designer

Creating a component in Libero SoC

Managing I/Os in a Designer Block Component

If you use 1/Os in your Designer Block, use the following rules:
e Ifthe I/O is placed in the block, placement and VCCI of the I/O cannot be changed in the <top> design.
e The register combining option cannot be changed in the <top> design.
e Attributes and Vref pins can be changed if the values are legal (the I/O will not be unplaced).

Globals and Designer Block Components

You must manage your globals when creating a Designer Block to ensure that you have some available
after you import the Block into your <top> project.

There is no limit to the number of globals you can use in a Designer Block.

Global Sharing
You can share a global between the Designer Block and the <top> project. You must:
e Use an internal global in the Designer Block.
e Drive the global port in the <top> project with a global net.
Libero SoC removes the internal global and re-routes the entire net.
You can use other global macros in the Designer Block, but you cannot share them with the <top> project.

Global Sharing with SmartFusion, IGLOO, ProASIC3 and Fusion - Use CLKINT in the Designer Block to
share the global in the component with the <top> project.

See the list of Physical Design Constraint (PDC) files for more information on how to assign constraints.

Local Clock

You can use local clocks in your component to save on globals, but you may need to do some floorplanning
in your <top> project.

Limitations
When you create your block, you cannot assign a port-connected net to a local clock.
The routing for local clocks from the blocks cannot always be preserved.

For all other families, local clocks are rerouted only if they are used in more than one block. The local clock
constraint is preserved and the only difference in the routing is from the driver to the entry point of the clock
network (when it gets to the clock network you end up with the same routing since the macros are locked in
the same location).

Designer Block Compile Report

If you instantiate Designer Blocks in your design, the Compile report includes a description of the blocks you
used. The report appears in the Log window after Compile is complete.

Libero SoC User's Guide 85

& Microsemi

Table of Contents

Designer

The report lists the name of the module, the name of the instance, the number of macros and nets used in
the blocks, and information on how conflicts between blocks were resolved by the Compile options or PDC
commands (if any). For example:

Block Information Report :

Conflict resolution from Compile options :

Placement : Resolve conflict/Keep and Lock non conflicting placement
Routing : Resolve conflict/Keep and Lock non conflicting routing
Block Name : corel
Instance Name : corel_inst
| Locked | Total
Instances | 4 | 4 (100.00%)

Nets | 3 | 3 (100.00%)

Block Name : corel
Instance Name : corell_inst

PDC Constraints :

Move : move_block -inst_name {corell_inst} -left 10 -up O -non_logic UNPLACE
] Locked | Total

Instances | 4 | 4 (100.00%)
Nets | 0 | 3 (0.-00%)

Block Component Limitations

If you instantiate the same Designer Block many times in the <top> design, only the first instance retains the
place-and-route information (if it has any); the others do not. Only the netlist is preserved.

To preserve the relative placement and routing of other blocks you must move the blocks using a PDC
command. This PDC file must be imported as a source file along with the netlist(s) and CDB files. If
possible, routing is preserved when you move the blocks with a PDC command.

See the move_block PDC command for more information.

86

& Microsemi

Table of Contents

Creating a Designer Block Component in
Libero SoC

Libero SoC User's Guide 87

& Microsemi

Table of Contents

Creating a Designer Block Component in Libero SoC

You must create two Libero SoC projects in order to instantiate your Designer Block in Libero SoC: one to
create and publish your Designer Block, and another in which to instantiate your Designer Block. This
section describes how to create your Designer Block.

See Instantiating a Designer Block in Libero SoC for more information.

The general design flow for creating a Designer Block in Libero SoC is shown in the figure below.

(Create anew)

Libero IDE project,
enable Designer
Block creation

R —

|

Create RTL for

Pre-Synthesis

Designer Block

!

Synthesize

Post-Synthesis

Designer Block
Simulation

Designer Block-
without 110s

!

Designer

Prst-Layout

Place-and-Route

Publish
Designer Block

Figure 31 - Create a Designer Block Flow in Libero SoC

To create a Designer Block in Libero SoC with a new design:

1. Start a new project. You must select a family that supports Block designs (SmartFusion2,
SmartFusion, IGLOO, ProASIC3, Fusion). After your project opens, from the Project menu, choose

Settings > Flow, and click the Enable Block Creation checkbox.

2. Create a design in Libero SoC (standard design flow - create RTL, synthesize, run place-and-route
and generate the block using Designer).

To create a Designer Block in the Libero SoC with an existing design, open your design and from the
Project menu, choose Setting > Flow, and click the Enable Block Creation checkbox. Note that your
design must use a device family that supports Designer Blocks (SmartFusion2, SmartFusion, IGLOO,

ProASIC3, Fusion).

Instantiating a Designer Block in Libero SoC

You must have two projects in order to instantiate your Designer Block in Libero SoC: one to create and
publish your Designer Blocks, and another in which to instantiate your Designer Block. This topic and the
flow shown in the figure below describe how to instantiate your Designer Block in the Libero SoC.

88

& Microsemi

Table of Contents

See Creating a Designer Block in Libero SoC for information on how to create a Designer Block. You can
also import your Designer Blocks into SmartDesign.

Create a new
Libaro IDE
project

Import the published
Designer Block (CXF file)
into the project

Deselect the Enable

Designer Block creation
checkbox

!

Create RTL for the =<top= project

Pre-Synthesis
{ RTL sowrce =<nama=_sim.v (or vhd)) Design Simulation
{full chip)
Instantiated
Designer Block
Synthesize <top> project
Prog-Symihess
{ Top Netist <=name=_sim v {or .vhd)}
Instantiated
Designer Block
(black box

during synithesis)

!

Designer Place-and-Route

Post-Layout
{ Complete Metist and S0OF)
Designer Block
CDB file imported
by Dwesigner

Figure 32 - Libero SoC Designer Block Instantiation Flow

To instantiate (import) a Designer Block in Libero SoC, import your design netlist and CXF file(s). The CXF
file imports all the files you need for your Designer Block. After you import your files, the design flow is the
same as regular Libero SoC designs. There is no limit to the number of CXF files you can import, but you
cannot import the same Designer Block more than once, and the family and device for your imported block
must match your project.

After you import the CXF file, the Project Manager displays the imported files in the Design Hierarchy tab.

The Designer Block(s) you instantiate must have the same family and die (and package, if it contains 1/0s)
as your current <top> project. If the family, die, and package do not match, Libero SoC asks if you want to
change the current setting to match the one from the Designer Block.

The Project Manager passes all the Designer Block files to Designer automatically.
Note: Note

Libero SoC User's Guide 89

& Microsemi

Table of Contents

e Disable Designer Block creation when you import a component into your <top> project. If you are using
a Designer Block component to create another Designer Block, leave it enabled.

e If you already have an HDL component with the same name as the one you imported, the new
Designer Block component is not be used by default. You must and right-click the Designer Block
component in the Project Manager and choose Use this file to make it use your Designer Block.

RTL Simulation

To perform pre-synthesis simulation, in the Stimulus Hierarchy right-click the testbench and choose
Simulate Pre-Synth Design > Run.

If you wish to perform pre-layout simulation, in the Design Flow Window, under Verify Pre-Synthesized
design, double-click Simulate.

The default tool for RTL simulation in Libero SoC is ModelSim ME.

ModelSImTM ME is a custom edition of ModelSim PE that is integrated into Libero SoC's design
environment. ModelSim for Microsemi is an OEM edition of Model Technology Incorporated’'s (MTI) tools.
ModelSim for Microsemi supports VHDL or Verilog. It only works with Microsemi libraries and is supported
by Microsemi.

Other editions of ModelSim are supported by Libero SoC. To use other editions of ModelSim , simply do not
install ModelSim ME from the Libero SoC CD.

Note: ModelSim for Microsemi comes with its own online help and documentation. After starting
ModelSim, click the Help menu.

See the following topics for more information on simulation in Libero SoC:
e Simulation Options

e Selecting a Stimulus File for Simulation

e Selecting additional modules for simulation

e Performing Functional Simulation

Simulation Options

DO File

You can set a variety of simulation options for your project.

To set your simulation options:
1. From the Project menu, choose Project Settings.
2. Click the simulation option you wish to edit: DO file, Waveforms, or Vsim commands.
3. Click Close to save your settings.

e Use automatic Do file - Select to execute the wave.do or other specified Do file. Use the wave.do file
to customize the ModelSim Waveform window display settings.

e Simulation Run Time - Specify how long the simulation should run in nanoseconds. If the value is 0,
or if the field is empty, there will not be a run command included in the run.do file.

e Testbench module name - Specify the name of your testbench entity name. Default is “testbench,”
the value used by WaveFormer Pro.

e Top Level instance name - Default is <top_0>, the value used by WaveFormer Pro. The Libero SoC
replaces <top> with the actual top level macro when you run ModelSim.

e Generate VCD file - Select this checkbox to have ModelSim automatically generate a VCD file based
on the current simulation. VCD files can be used in SmartPower. For best results, we recommend that
a postlayout simulation be used to generate the VCD.

e VCD filename - Specify the name of the VCD file that will be automatically generated by ModelSim

e User defined DO file - Available if you opt not to use the automatic DO file. Input the path or browse
to your user-defined DO file.

90

& Microsemi

Table of Contents

e DO Command parameters - Text in this field is added to the DO command.

Waveforms

¢ Include DO file - Including a DO file enables you to customize the set of signal waveforms that will be
displayed in ModelSim.

e Display waveforms for - You can display signal waveforms for either the top-level testbench or for the
design under test. If you select top-level testbench then Libero SoC outputs the line ‘add wave
ltestbench/*' in the DO file run.do. If you select DUT then Libero SoC outputs the line 'add wave
ltestbench/*' in the run.do file.

e Log all signals in the design - Saves and logs all signals during simulation.

Vsim Commands

e SDF timing delays - Select Minimum, Typical, or Maximum timing delays in the back-annotated SDF
file.

e Resolution: The default is family-specific, but you can customize it to fit your needs.
Some custom simulation resolutions may not work with your simulation library. For example,
simulation resolutions above 1 ps will cause errors if you are using ProASIC3 devices (the simulation
errors out because of an infinite zero-delay loop). Consult your simulation help for more information on
how to work with your simulation library and detect infinite zero-delay loops caused by high resolution

values.
Family Default Resolution
ProASIC3 1ps
IGLOO 1ps
SmartFusion and Fusion 1ps
SmartFusion2 1ps
IGLOO2 1ps

e Additional options: Text entered in this field is added to the vsim command.

Simulation Libraries

e Verilog (or VHDL) library path - Enables you to choose the default library for your device, or to
specify your own library. Enter the full pathname of your own library to use it for simulation.

e Restore Defaults: Restores factory settings.

Selecting a Stimulus File for Simulation

Before running simulation, you must associate a testbench. If you attempt to run simulation without an
associated testbench, the Libero SoC Project Manager asks you to associate a testbench or open ModelSim
without a testbench.

To associate a stimulus:

1. Run simulation or in the Design Flow window under Verify Pre-Synthesized Design right-click
Simulate and choose Organize Input Files > Organize Stimulus Files. The Organize Stimulus Files
dialog box appears.

2. Associate your testbench(es):

Libero SoC User's Guide 91

& Microsemi
Table of Contents

In the Organize Stimulus Files dialog box, all the stimulus files in the current project appear in the Source Files in the Project list

box. Files already associated with the block appear in the Associated Source Files list box.

In most cases you will only have one testbench associated with your block. However, if you want simultaneous association of

multiple testbench files for one simulation session, as in the case of PCI cores, add multiple files to the Associated Source Files list.

To add a testbench: Select the testbench you want to associate with the block in the Source Files in the Project list box and click
Add to add it to the Associated Source Files list.

To remove a testbench: To remove or change the file(s) in the Associated Source Files list box, select the file(s) and click Remove.

To order testbenches: Use the up and down arrows to define the order you want the testbenches compiled. The top level-entity

should be at the bottom of the list.

3. When you are satisfied with the Associated Source Files list, click OK.

Selecting Additional Modules for Simulation

Libero SoC passes all the source files related to the top-level module to simulation .

If you need additional modules in simulation, in the Design Flow window right-click Simulate and choose
Organize Input Files > Organize Source Files. The Organize Files for Simulation dialog box appears.

Select the HDL modules you wish to add from the Simulation Files in the Project list and click Add to add
them to the Associated Stimulus Files list

Performing Functional Simulation

To perform functional simulation:

1. Create your testbench.

2. Right-click Simulate (in Design Flow window, Implement Design > Verify Post-Synthesis
Implementation > Simulate) and choose Organize Input Files > Organize Source Files from the
right-click menu.

In the Organize Files for Source dialog box, all the stimulus files in the current project appear in the Source Files in the Project list

box. Files already associated with the block appear in the Associated Source Files list box.

In most cases you will only have one testbench associated with your block. However, if you want simultaneous association of

multiple testbench files for one simulation session, as in the case of PCI cores, add multiple files to the Associated Source Files list.

To add a testbench: Select the testbench you want to associate with the block in the Source Files in the Project list box and click
Add to add it to the Associated Source Files list.

To remove a testbench: To remove or change the file(s) in the Associated Source Files list box, select the file(s) and click Remove.

3. When you are satisfied with the Associated Simulation Files list, click OK.

4. To start ModelSim AE, right-click Simulate in the Design Hierarchy window and choose Open
Interactively.

ModelSim starts and compiles the appropriate source files. When the compilation completes, the simulator runs for 1 ps and the
Wave window opens to display the simulation results.

5. Scroll in the Wave window to verify that the logic of your design functions as intended. Use the zoom
buttons to zoom in and out as necessary.

6. From the File menu, select Quit.

92

& Microsemi

Table of Contents

Performing DirectCore Functional Simulation
Libero SoC overwrites all the existing files of the Core when you import a DirectCore project (including
testbenches). Save copies of your project stimulus files with new names if you wish to keep them.

You must import a DirectCore BFM file into the Libero SoC in order to complete functional simulation (the
BFM is a stimulus file that you can edit to extend the testbench). VEC files are generated automatically from
the BFM when you run ModelSim.

The SoC Project Manager overwrites your BFM file if you re-import your project. Edit and save your BFM
outside the Libero SoC project to prevent losing your changes. After you re-import your DirectCore project,
you can import your modified BFM again.
To perform functional simulation of a DirectCore project:

1. Right-click a stitched module of the DirectCore project and select Set as root.

2. To start ModelSim AE, right-click Simulate in the Design Hierarchy window and choose Open
Interactively.

ModelSim starts and compiles the appropriate source files. When the compilation completes, the simulator runs for 1 s and the

Wave window opens to display the simulation results.

3. Scroll in the Wave window to verify that the logic of your design functions as intended. Use the zoom
buttons to zoom in and out as necessary.

4. From the File menu, select Quit.

/O Constraints - SmartFusion2 and IGLOO2

SmartFusion2 and IGLOO2 I/O constraints are PDC files. Note that for these devices 1/O constraint PDC
files are separate from Floorplan constraint PDC files; if you try to import a PDC file that contains both I/O
and Floorplan constraints then Libero SoC errors out with an invalid constraint error.

Libero SoC generates an I/0 PDC file automatically if you explicitly add/modify your 1/0 Constraints in the
post-Compile 1/O Editor. Your new I/O PDC file is added to the project and marked as Used.

1/0 Constraints enables you to:

Import Files - If you do not have a compiled project, right-click I/O Constraints and choose Import Files to
open the Import Files dialog box and import I/O constraint files (*.pdc files).

Create a New Constraint from Your Root Module - Right-click and choose Create a New Constraint
from your Root Module to create a new constraint if you already have a compiled project.

Link Files - Right-click I/O Constraints and choose Link Files to link PDC constraint files from other
projects. Linked files are not copied into your local project directory; instead the path is stored in your
project, enabling you (or others) to update the file separately from Libero SoC. If your linked file is updated
then the Project Manager indicates that the file has been changed and asks you if you wish to recompile, as
appropriate.

Linked files appear in your Files window (View > Windows > Files), where they can be opened, deleted
from the project, updated, or unlinked and copied to your local project.

Once you import an I/O Constraint file you can double-click the file in the Design Flow window (Create
Constraints > I/O Constraints > <filename>) to open it in the Libero text editor, or right-click the file to:

Use for Compile - Includes the constraint file when you run Compile.
Open in Text Editor - Opens the file in the Text Editor so that you can update the code manually.

Save as - Opens the Save As dialog box, enables you to save the constraint with a different filename. This
is useful if you want to preserve the settings of a particular constraint.

Delete from Project - Removes the file from the project.
Delete from Disk and Project - Removes the file from the project and deletes it from the disk.

Timing Constraints - SmartFusion2 and IGLOO2

Timing Constraints enables you to:

Libero SoC User's Guide 93

& Microsemi

Table of Contents

Floorplan

Import Files - Double-click Timing Constraints to open the Import Files dialog box and import timing
constraint files (*.sdc files).

Link Files - Right-click Timing Constraints and choose Link Files to link SDC constraint files from other
projects. Linked files are not copied into your local project directory; instead the path is stored in your
project, enabling you (or others) to update the file separately from Libero SoC. If your linked file is updated
then the Project Manager indicates that the file has been changed and asks you if you wish to recompile, as
appropriate.

Linked files appear in your Files window (View > Windows > Files), where they can be opened, deleted
from the project, updated, or unlinked and copied to your local project.

Once you import or generate a Timing Constraint file, you can double-click the file in the Design Flow
window (Create Constraints > Timing Constraints > <filename>) to open it in the Text Editor, right-click
the file to:

Use for Synthesis - Uses the file for synthesis.

Use for Compile - Includes the file during Compile.

Open in Text Editor - Opens the file in the Project Manager Text Editor.

Save as - Opens the Save As dialog box, enables you to save the constraint in a different location and/or
filename. This is useful if you want to preserve the settings of a particular constraint, or to save it outside
your project.

Delete from Project - Removes the file from the project.

Delete from Disk and Project - Removes the file from the project and deletes it from the disk.

Constraints - SmartFusion2 and IGLOO2

SmartFusion2 and IGLOO2 Floorplan constraints are PDC files. Note that for SmartFusion2 and IGLOO2
devices Floorplan constraint PDC files are separate from I/O constraint PDC files; if you try to import a PDC
file that contains both I/O and Floorplan constraints then Libero SoC errors out with an invalid constraint
error.

Floorplan Constraints enables you to:

Import Files - Double-click Floorplan Constraints to open the Import Files dialog box and import Floorplan
constraint files (*.pdc files).

Link Files - Right-click FloorPlan Constraints and choose Link Files to link PDC constraint files from other
projects. Linked files are not copied into your local project directory; instead the path is stored in your
project, enabling you (or others) to update the file separately from Libero SoC. If your linked file is updated
then the Project Manager indicates that the file has been changed and asks you if you wish to recompile, as
appropriate.

Linked files appear in your Files window (View > Windows > Files), where they can be opened, deleted
from the project, updated, or unlinked and copied to your local project.

Once you import Floorplan Constraint file you can double-click the file in the Design Flow window (Create
Constraints > Floorplan Constraints > <filename>) to open it in the Text Editor, or right-click the file to:

Use for Compile - Includes the constraint file when you run Compile.
Open in Text Editor - Opens the file in the Project Manager Text Editor.

Save as - Opens the Save As dialog box, enables you to save the constraint with a different filename. This
is useful if you want to preserve the settings of a particular constraint.

Delete from Project - Removes the file from the project.
Delete from Disk and Project - Removes the file from the project and deletes it from the disk.

Constrain Design - Import 1/0O Constraints and Import Timing

Constrain

ts

Import I/O Constraints and Import Timing Constraints opens the Import Files dialog box to import PDC or
SDC files, respectively.

94

& Microsemi

Table of Contents

Right-click Import I/O Constraints and choose Import Files to open the Import Files dialog box and import
PDC files.

Right-click Import Timing Constraints and choose Import Files to open the Import Files dialog box and
import SDC files.

I/O Constraints (PDC Files)

The software enables you to specify the physical constraints to define the size, shape, utilization, and
pin/pad placement of a design. You can specify these constraints based on the utilization, aspect ratio, and
dimensions of the die. The pin/pad placement depends on the external physical environment of the design,
such as the placement of the device on the board.

Timing Constraints (SDC Files)

Timing constraints represent the performance goals for your designs. Software uses timing constraints to
guide the timing-driven optimization tools in order to meet these goals.

You can set timing constraints either globally or to a specific set of paths in your design.
You can apply timing constraints to:

e Specify the required minimum speed of a clock domain

e Set the input and output port timing information

e Define the maximum delay for a specific path

¢ Identify paths that are considered false and excluded from the analysis

¢ Identify paths that require more than one clock cycle to propagate the data

e Provide the external load at a specific port

To get the most effective results you need to set the timing constraints close to your design goals.
Sometimes slightly tightening the timing constraint helps the optimization process to meet the original
specifications.

Synthesize

Double-click Synthesize to run synthesis on your design with the default settings specified in the synthesis
tool.

If you wish to run the synthesis tool interactively, right-click Synthesize and choose Open Interactively. If
you open your tool interactively, you must complete synthesis from within the synthesis tool.

The default synthesis tool included with Libero SoC is Synplify Pro ME. If you wish to use a different
synthesis tool you can change the settings in your Tool Profiles.

Libero SoC works with the following synthesis tools:
e Synplify Pro ME from Synopsys
e Precision RTL from Mentor Graphics

While Precision RTL is not part of the Libero SoC package, it can be integrated to work with Libero SoC.
You can also integrate Precision RTL or different versions of Synplify by adding them to your project profile.
Right-click Synthesize and choose Edit Profile.

You can organize input synthesis source files via the Organize Source Files dialog box.

Some families enable you to set or change synthesis configuration options for your synthesis tool. To do so,
in the Design Flow window expand Implement Design, right-click Synthesize and choose Configure
Options. This opens the Synthesize Options dialog box.

Verilog Standard - Enables you to set your Verilog Standard to Verilog 2001 and/or System Verilog - if
nothing is checked the standard defaults to Verilog 95.

VHDL Standard - Enables you to set your VHDL Standard to VHDL 2008.

Libero SoC User's Guide 95

& Microsemi

Table of Contents

Synplify Pro ME

Synplify Pro ME is the default synthesis tool for Libero SoC.
To run synthesis using Synplify Pro ME and default settings, right-click Synthesize and choose Run.

If you wish to use custom settings you must run synthesis interactively.

To run synthesis using Synplify Pro ME with custom settings:

1.

If you have set Synplify as your default synthesis tool, right-click Synthesize in the Libero SoC Design
Flow and choose Open Interactively. Synplify starts and loads the appropriate design files, with a few
pre-set default values.

From Synplify’s Project menu, choose Implementation Options.
Set your specifications and click OK.

Deactivate synthesis of the defparam statement. The defparam statement is only for simulation tools
and is not intended for synthesis. Embed the defparam statement in between translate_on and

translate_off synthesis directives as follows :
/* synthesis translate off */
defparam MO.MEMORYFILE = "meminit.dat"

/*synthesis translate_on */
// rest of the code for synthesis

Click the RUN button. Synplify compiles and synthesizes the design into an EDIF, *.edn, file. Your
EDIF netlist is then automatically translated by the software into an HDL netlist. The resulting *edn and
*.vhd files are visible in the Files list, under Synthesis Files.

Should any errors appear after you click the Run button, you can edit the file using the Synplify editor. Double-click the file name

in the Synplify window showing the loaded design files. Any changes you make are saved to your original design file in your

project.

6.

From the File menu, choose Exit to close Synplify. A dialog box asks you if you would like to save any
settings that you have made while in Synplify. Click Yes.

Note: See the Microsemi Attribute and Directive Summary in the Synplify online help for a list of

attributes related to Microsemi devices.

Note: To add a clock constraint in Synplify you must add "n:<net_name>" in your SDC file. If you

put the net_name only, it does not work.

Precision RTL

Libero SoC supports Precision RTL from Mentor Graphics.

To run synthesis with Precision RTL default settings, set Precision RTL as the synthesis tool for your project
(as outlined below), right-click Synthesize and choose Run.

To run synthesis with custom settings, right-click Synthesize and choose Open Interactively. Precision
RTL opens and enables you to change settings before you run synthesis.

If your design is not ready for synthesis then Open does not appear in your right-click menu.

To set Precision RTL as the synthesis tool for your project:

1.

¥ 0 N R WD

From the Project menu, choose Tool Profiles. The Tool Profiles dialog box appears.

Click Synthesis to choose the synthesis tool profile.

Click the Add button. The Add Profile dialog box appears.

Enter a name. This is the name that appears in the Tool Profile dialog box.

In the Tool integration dropdown menu choose Precision RTL.

Enter the location of Precision RTL and any additional parameters.

Click OK.

Select Precision RTL in the Tool Profile dialog box and click OK.

Double-click Synthesize in the Design Flow window to start Precision RTL and run synthesis.

96

& Microsemi
Table of Contents

|dentify Debug Design

Libero SoC integrates the Identify RTL debugger tool. It enables you to probe and debug your FPGA design
directly in the source RTL. Use Identify software when the design behavior after programming is not in
accordance with the simulation results.

To open the Identify RTL debugger, in the Design Flow window under Debug Design double-click
Instrument Design.

Identify features:

e Instrument and debug your FPGA directly from RTL source code .
e Internal design visibility at full speed.

¢ Incremental iteration - Design changes are made to the device from the Identify environment using
incremental compile. You iterate in a fraction of the time it takes route the entire device.

e Debug and display results - You gather only the data you need using unique and complex triggering
mechanisms.

You must have both the Identify RTL Debugger and the Identify Instrumentor to run the debugging flow
outlined below.

To use the Identify debugger:

1. Create your source file (as usual) and run pre-synthesis simulation.

2. (Optional) Run through an entire flow (Synthesis - Compile - Place and Route - Generate a
Programming File) without starting Identify.

3. In Synplify, click Options > Configure Identify Launch to setup Identify.

4. Right-click Synthesize and choose Open Interactively in the Libero SoC to launch Synplify. In
Synplify, create an Identify implementation; to do so, click Project > New Identify Implementation.

5. In the Implementations Options dialog, make sure the Implementation Results > Results Directory
points to a location under <libero project>\synthesis\, otherwise Libero SoC is unable to detect your
resulting EDN file

6. From the Instumentor Ul specify the sample clock, the breakpoints, and other signals to probe.
Synplify creates a new synthesis implementation. Synthesize the design.

7. InLibero SoC, select the edif netlist of the Identify implementation you want to use in the flow. Right-
click Compile and choose Organize Input Files > Organize Source Files and select the edif netlist
of your Identify implementation.

8. Run Compile, Place and Route and Generate a Programming File with the edif netlist you created with
the Identify implementation.

9. Double-click Instrument Design in the Design Flow window to launch the Identify Debugger.

The Identify RTL Debugger, Synplify, and FlashPro must be synchronized in order to work properly. See the
Release Notes for more information on which versions of the tools work together.

Verify Post-Synthesis Implementation - Simulate

The steps for performing functional (post-synthesis) and timing (post-layout) simulation are nearly identical.
Functional simulation is performed before place-and-route and simulates only the functionality of the logic in
the design. Timing simulation is performed after the design has gone through place-and-route and uses
timing information based on the delays in the placed and routed designs.

To perform functional simulation:

1. If you have not done so, back-annotate your design and create your testbench.

2. Right-click Simulate (in Design Flow window, Implement Design > Verify Post-Synthesis
Implementation > Simulate) and choose Organize Input Files > Organize Source Files from the
right-click menu.

In the Organize Files for Source dialog box, all the stimulus files in the current project appear in the Source Files in the Project list

box. Files already associated with the block appear in the Associated Source Files list box.

Libero SoC User's Guide 97

http://www.actel.com/download/software/libero

& Microsemi

Table of Contents

In most cases you will only have one testbench associated with your block. However, if you want simultaneous association of

multiple testbench files for one simulation session, as in the case of PCI cores, add multiple files to the Associated Source Files list.

To add a testbench: Select the testbench you want to associate with the block in the Source Files in the Project list box and click
Add to add it to the Associated Source Files list.

To remove a testbench: To remove or change the file(s) in the Associated Source Files list box, select the file(s) and click Remove.

To order testbenches: Use the up and down arrows to define the order you want the testbenches compiled. The top level-entity

should be at the bottom of the list.

3. When you are satisfied with the Associated Simulation Files list, click OK.

4. To start ModelSim AE, right-click Simulate in the Design Hierarchy window and choose Open
Interactively. ModelSim starts and compiles the appropriate source files. When the compilation
completes, the simulator runs for 1 us and the Wave window opens to display the simulation results.

5. Scroll in the Wave window to verify the logic works as intended. Use the cursor and zoom buttons to
zoom in and out and measure timing delays.

6. When you are done, from the File menu, choose Quit.

Compile - SmartFusion, IGLOO, ProASIC3, Fusion

See the SmartFusion2/IGLOO2 Compile options if you are using those devices.

Compile contains a variety of functions that perform legality checking and basic netlist optimization. Compile
checks for netlist errors (bad connections and fan-out problems), removes unused logic (gobbling), and
combines functions to reduce logic count and improve performance. Compile also verifies that your selected
device has sufficient resources to fit your design.

To compile your device with default settings, right-click Compile in the Design Flow window and choose
Run.

During compile, the Log window displays information about your design, including warnings and errors.
Libero SoC issues warnings when your design violates recommended Microsemi design rules. Microsemi
recommends that you address all warnings, if possible, by modifying your design before you continue.

If the design fails to Compile due to errors, you must modify the design to remove the errors and re-Compile.

To compile your design with custom settings, right-click Compile in the Design Flow window and choose
Configure Options.

Configure Options in Compile

The configuration dialog provides options that enable you to control merge behavior during Compile .

Merge SDC file(s) with Existing Timing Constraints

Select Merge SDC file(s) with existing timing constraints to preserve all existing timing constraints that
you have entered using either the constraints editor or in a previously imported SDC file.

If you import new SDC files and you have this checkbox selected, the software merges the existing
constraints and the constraints from the new SDC files. In case of a conflict, the new constraints have
priority over the existing constraints.

This option is On by default. When this option is Off, all the existing timing constraints are replaced by the
constraints in the newly imported SDC files.

Merge PDC file(s) with Existing Physical Constraints

Select Merge PDC file(s) with existing physical constraints to preserve all existing physical constraints
that you have entered using either one of the MVN tools or in a previously imported PDC file.

If you import new PDC files and you have this checkbox selected, the software merges the existing
constraints and the constraints from the new PDC files. In case of a conflict, the new constraints have
priority over the existing constraints.

98

& Microsemi

Table of Contents

This option is On by default. When this option is Off, all the existing physical constraints are replaced by the
constraints in the newly imported PDC files.

Compile - SmartFusion2 and IGLOO2

See the Compile options for SmartFusion, IGLOO, ProASIC3, Fusion if you are designing for those families.

Compile contains a variety of functions that perform legality checking and basic netlist optimization. Compile
checks for netlist errors (bad connections and fan-out problems), removes unused logic (gobbling), and
combines functions to reduce logic count and improve performance. Compile also verifies that your selected
device has sufficient resources to fit your design.

To compile your device with default settings, right-click Compile in the Design Flow window and choose
Run.

During compile, the Log window displays information about your design, including warnings and errors.
Libero SoC issues warnings when your design violates recommended Microsemi design rules. Microsemi
recommends that you address all warnings, if possible, by modifying your design before you continue.

If the design fails to compile due to errors, you must modify the design to remove the errors and re-Compile.

To compile your design with custom settings, right-click Compile in the Design Flow window and choose
Configure Options.

Configure Options in Compile

The Compile Options dialog box enables you to control SDC file merge behavior, PDC error reporting, and
limit the number of high fanout nets in the Compile Report .

Merge User SDC file(s) with Existing Timing Constraints

Select Merge User SDC file(s) with existing timing constraints to preserve all existing timing constraints
that you have entered using either the constraints editor or in a previously imported SDC file.

If you import new SDC files and you have this checkbox selected, the software merges the existing
constraints and the constraints from the new SDC files. In case of a conflict, the new constraints have
priority over the existing constraints.

This option is On by default. When this option is Off, all the existing timing constraints are replaced by the
constraints in the newly imported SDC files.

Abort Compile if errors are found in the physical design constraints

Controls the compile flow behavior if errors are encountered in the physical design constraints (PDC) file.
Select this option to stop the flow if any error is reported in reading your PDC file. If you deselect this option,
the tool skips errors when reading your PDC file and reports them as warnings. The default is ON.

This option is useful if you do not wish to debug your PDC commands before you run Compile.

Note: Compile fails even if this option is deselected if there is a PDC command syntax error (for
example, the command does not exist or the syntax of the command is incorrect)

Note: Every time you invoke this dialog box, this option is reset to its default value ON. This is to
ensure that your PDC file is correct.

Enable Design Separation Methodology Checkbox — Check this box if your design is for security and
safety critical applications and you want to make your design’s individual subsystems (design blocks)
separate and independent (in terms of physical layout and programming) to meet your design separation
requirements. When checked, Libero generates a parameter file (MSVT.param) that details design blocks
present in the design and the number of signals entering and leaving a design block. Microsemi provides a
separate tool, known as Microsemi Separation Verification Tool (MSVT), which checks the final design place
and route result against the MSVT.param file and determines whether the design separation meets your
requirements.

Limit the number of displayed high fanout nets in compile report to - The number of high fanout nets
to be displayed is controlled using the Limit the number of displayed high fanout nets; the default value
is 10. This means the top 10 nets with the highest fanout will appear in the Compile Report.

Libero SoC User's Guide 99

& Microsemi

Table of Contents

Block Instantiation Compile Options

If there are multiple blocks instantiated in your design, the software uses the Compile Options to resolve the
conflicts. These options appear only if you are using Blocks in your design.

Placement

Error if conflict - Compile errors out if any instance from a designer block is unplaced. This is the default
option.
Resolve conflict

Keep non-conflicting placement - If some instances get unplaced for any reason, the non-conflicting
elements remaining are preserved but not locked (you can move them).

Keep and lock non-conflicting placement - If some instances get unplaced for any reason, the
remaining non-conflicting elements are preserved and locked.

Discard placement from all blocks — Placement information will be discarded from all blocks even if
there is no conflict.

Routing
Error if conflict - Compile errors out if any preserved net routing in a designer block is deleted.
Resolve conflict

Keep non-conflicting routing- If a nets' routing is removed for any reason, the routing for the non-
conflicting nets is preserved but not locked (so that they can be rerouted). This is the default option.

Keep and lock non-conflicting routing- If the routing is removed for any reason, the remaining non-
conflicting nets are preserved and locked; they cannot be rerouted. This is the default option.

Discard routing from all blocks — Routing information will be discarded from all blocks even if there
is no conflict.

Compile Options

To set custom compile options:

1.
2.

3.

Right-click Compile and choose Open Interactively. Designer opens.

Click the Compile button. The Compile Options dialog box opens. The Options available are family
specific.

Select your options, and click OK.

The Compile Options dialog box enables you to do the following:

Set your Block Instantiation options (used for conflict resolution when you instantiate multiple blocks)
Verify Physical Design Constraints

Perform Globals Management

Netlist Optimization

Generate a Compile report in Display of Results

Set Block Creation options (available only if you are creating a block)

100

& Microsemi

Table of Contents

Block Instantiation

Compile Options E
Block Instantit

=1~ Select a categon:
Block |nstantiation

Flacement

.) . i+ F
Physical Design Congtraints * o

Metlizt O ptirnization i Resolve conflick
Dizplay of Results '__

-

Rauting

™ Errar if conflict

* Resolve conflict

v Keep non conflicting routing
[v Lock non conflicking routing

Restare Defaulks |

W Show these options every time Compile is run,

Help (] | Cancel ‘

Designer uses the Block Instantiation options to resolve conflicts between multiple blocks in your design.
The default options is to return an error if there is overlapping placement between the blocks and resolve
any conflict for nets.

This ensures you are aware that the blocks overlap; you can go back and set the placement to resolve the
conflicts and it will Compile.

See Conflict resolution in Designer Blocks for more information.

Physical Design Constraints
This interface enables you to verify the Physical Design Constraints (PDC) file.

Libero SoC User's Guide 101

& Microsemi

Table of Contents

Figure 33 -

Globals Man

Physical Design Const |

= SgE|Ed a categony: — Checking of the Phyzical Dezsign Constraints [FDC]

B Pz
& v Abort Compile i emors are found in the

GIDI:.uaIs Mén:age.ment physical design constraints.
- Metlist Optimization

Dizplay of Results

r Dizplay object names that are no longer found after
netlist matching iz performed on the design.

Lirviit the nurmber of displaved messages bo: |-| nnoo

Restore Defaults

¥ Show these options eveny time Compile is e,

Help |

Checking the Physical Design Constraint (PDC)

Abort Compile if errors are found in the physical design constraints: Changes the Abort on PDC error
behavior. Select this option to stop the flow if any error is reported in reading your PDC file. If you deselect
this option, the tool skips errors in reading your PDC file and just reports them as warnings. The default is
ON.

Note: The flow always stops even if this option is deselected in the following two cases:

0K |: I Cancel |

o |Ifthere is a Tcl error (for example, the command does not exist or the syntax of the command is

incorrect)

The assign_local_clock command for assigning nets to LocalClocks fails. This may happen if any floor
planning DRC check fails, such as, region resource check, fix macro check (one of the load on the net
is outside the local clock region). If such an error occurs, then the Compile command fails. Correct
your PDC file to proceed.

Note: Every time you invoke this dialog box, this option is reset to its default value ON. This is to
ensure that your PDC file is correct.

Display object names that are no longer found after netlist matching is performed on the design: Displays

netlist objects in the PDC that are not found in the imported netlist during the Compile ECO mode. Select

this option to report netlist objects not found in the current netlist when reading the internal ECO PDC

constraints. The default is OFF.

Limit the number of displayed messages to: Defines the maximum number of errors/warnings to be
displayed in the case of reading ECO constraints. The default is 10000 messages.

agement
The interface provides a global control to the Compile component of the design flow.

102

& Microsemi

Table of Contents

Compile Options E3

=+ Select 2 categary:

— Automatic D'emation/Promotion

hPSi':al D esign Constraints Demate global netz whosze fanout is 1z
[Globals tanagement less thar:
i Metlist O ptirmization p t | ts whose | ¥ =00
Y romate regular nets whosze fanout iz
Dizplay of Results o greater than:
But dorot promote more thar: [
— Local Clocks
Lirnit the number of shared instances bebween 1

any bwo non-overlapping local clock regions to:

YWhen inzerting buffers to legalize shared
instances between non-overlapping local clock
regionz, limit the buffers' fanout to:

T8

Restore Defaults |

¥ Show these options eveny time Compile is iun.

Help |] I Cancel |

Automatic Demotion/Promotion

Demote global nets whose fanout is less than: Enables the global clock demotion of global nets to
regular nets.
By default, this option is OFF. The maximum fanout of a demoted net is 12.

Note: A global net is not automatically demoted (assuming the option is selected) if the resulting
fanout of the demoted net is greater than the max fanout value. Microsemi recommends
that the automatic global demotion only act on small fanout nets. Microsemi recommends
that you drive high fanout nets with a clock network in the design to improve timing and
routability.

Promote regular nets whose fanout is greater than: Enables global clock promotion of nets to global
clock network. By default, this option is OFF. The minimum fanout of a promoted net is 200.

But do not promote more than: Defines the maximum number of nets to be automatically promoted to
global. The default value is 0. This is not the total number as nets need to satisfy the minimum fanout
constraint to be promoted. The promote_globals_max_limit value does not include globals that may have
come from either the netlist or PDC file (quadrant clock assignment or global promotion).

Note: Demotion of globals through PDC or Compile is done before automatic global promotion is
done.

Note: You may exceed the number of globals present in the device if you have nets already
assigned to globals or quadrants from the netlist or by using a PDC file. The automatic
global promotion adds globals on what already exists in the design.

Local clocks

Limit the number of shared instances between any two non-overlapping local clock regions to:
Defines the maximum number of shared instances allowed to perform the legalization. It is also for quadrant
clocks.

The maximum number of instances allowed to be shared by 2 local clock nets assigned to disjoint regions to
perform the legalization (default is 12, range is 0-1000). If the number of shared instances is set to 0, no
legalization is performed.

When inserting buffers to legalize shared instances between non-overlapping local clock regions,
limit the buffers' fanout to: Defines the maximum fanout value used during buffer insertion for clock
legalization. Set the value to 0 to disable this option and prevent legalization (default value is 12, range is O-

Libero SoC User's Guide 103

& Microsemi

Table of Contents

1000). If the value is set to 0, no buffer insertion is performed. If the value is set to 1, there will be one buffer
inserted per pin.

Note: If you assign quadrant clock to nets using MultiView Navigator, no legalization is
performed.

Netlist Optimization
This interface allows you to perform netlist optimization.
Compile Options

Netlist Optimizaton |

- Select a cateqary:

! ; i] — Combining
i Physical Design Constraints

i+ Globals Management

[Combine registers into 1703 whenever possible.

tlizt Optirmization

Dizplay of Results

— Buffer/lnverter Management

r Delete buffers and inverter trees whoze I‘l 2
fanout is less than:

—Rg Restore Defaults |

¥ Show these options every time Compile is run,

Help | ak, I Cancel |

Combining

Combine registers into 1/0 wherever possible: Combines registers at the 1/0O into I/O-Registers. Select this
option for optimization to take effect. By default, this option is OFF.

Buffer/Inverter Management

Delete buffers and inverter trees whose fanout is less than: Enables buffer tree deletion on the global signals
from the netlist. The buffer and inverter are deleted. By default, this option is OFF. The maximum fanout of a
net after buffer tree deletion is 12.

Note: A net does not automatically remove its buffer tree (assuming the option is on) if the
resulting fanout of the net (if the buffer tree was removed) is greater than the max fanout
value. Microsemi recomends that the automatic buffer tree deletion should only act on
small fanout nets. From a routability and timing point of view, it is not recommended to
have high fanout nets not driven by a clock network in the design.

Display of Results
This interface lets you generate a Compile report.

104

& Microsemi

Table of Contents

Display of Results |

=+ Select & categary:
Phyzical Design Constraints

Globals M anagement Lirnit the number of displayed high fanout nets bo: I-] i

Compile Report

i Metlist Dptirizatio

3

Restore Defaults |

¥ Show these options eveny time Compile is iun.

Help |] I Cancel |

Compile Report

Limit the number of displayed high fanout nets to: Enables flip-flop net sections in the compile report
and defines the number of nets to be displayed in the high fanout. The default value is 10.

Block Creation (Available only when creating Designer Blocks)

Compile Options

[=- Select a category:
i Physical Design Canstraints
Globals Management [~ Delete |0z whenever pozsible

‘. Metlist Optirization
Dizplay of Results [~ Add buifers on parts whose fanout is areater than I'l 2

Restore Defaultz

W Show these options every time Caompile is .
Help | aK I: I Cancel |

Delete I/0Os whenever possible - Deletes 1/Os in the block during compile (except TRIBUFF and BIBUFF,
because they cannot be removed). Useful if you have 1/Os in your design but want to create a block anyway.

Libero SoC User's Guide 105

& Microsemi

Table of Contents

Add buffers on ports whose fanout is greater than <value> - Adds buffers on ports with a fanout greater
than a value you specify. This option enables more predictable block timing. For example, if you have a net
with a fanout of 100 the net will be unrouted. If you add a buffer, the output of the buffer is routed and the
routing is preserved.

See Also
compile

Configure Flash*Freeze

Opens the Flash*Freeze Hardware Settings dialog box. For more information on the Flash*Freeze mode for
SmartFusion2 see the SmartFusion2 Low Power User's Guide.

The fabric SRAMs can be put into a Suspend Mode or a Sleep Mode. This applies to both the Large SRAM
(LSRAM) instances of RAM1xK18 and the Micro SRAM (uSRAM) instances of RAM64x18. These SRAMs
are grouped in rows in Libero® System-on-Chip (SoC) devices

URAM/LSRAM State

Sleep - Sets to Sleep; LSRAM and uSRAM contents are not retained.
Suspend - Sets to Suspend; LSRAM and uSRAM contents are retained.

MSS Clock Source

The lower the frequency the lower the power will be. But for some peripherals that can remain active (such
as SPI or MMUART), you may need a higher MSS clock frequency (such as to meet the baud rate for
MMUART).

Options are:
e On-Chip 1 MHz RC Oscillator
e On-Chip 50 MHz RC Oscillator
e External 32 KHz Crystal Oscillator

Place and Route - SmartFusion2 and IGLOO2

This topic describes Place and Route options available for SmartFusion2 and IGLOO2. See the topic for
SmartFusion, IGLOO (except IGLOO2), ProASIC3 and Fusion for information on Place and Route for those
families.

To change your Place and Route settings:
Expand Implement Design, right-click Place and Route and choose Configure Options.

Timing-Driven

Timing-Driven Place and Route is selected by default. The primary goal of timing-driven Place and Route is
to meet timing constraints, specified by you or generated automatically. Timing-driven Place and Route
typically delivers better performance than Standard.

If you do not select Timing-driven Place and Route timing constraints are not considered by the software,
although a delay report based on delay constraints entered in SmartTime can still be generated for the
design.

If you have set multiple timing constraint Scenarios in SmartTime, the Scenario selected for TDPR will be
used in Timing-Driven layout.

Power-Driven

Select this option to run Power-Driven layout. The primary goal of power-driven layout is to reduce dynamic
power while still maintaining timing constraints.

106

http://www.actel.com/documents/SmartFusion2_LPower_UG.pdf

& Microsemi

Table of Contents

High Effort Layout
Enable this option to optimize performance; layout runtime will increase if you select this option.

Repair Minimum Delay Violations

Enable this option to instruct the Router engine to repair Minimum Delay violations for Timing-Driven Place
and Route mode (Timing-Driven Place and Route option enabled). The Repair Minimum Delay Violations
option, when enabled, performs an additional route that will attempt to repair paths that have minimum delay
and hold time violations.

Incremental Layout

Choose Incremental Layout to use previous placement data as the initial placement for the next run. If a high
number of nets fail, relax constraints, remove tight placement constraints, deactivate timing-driven mode, or
select a bigger device and rerun Place and Route.

You can preserve portions of your design by employing Compile Points, which are RTL partitions of the
design that you define before synthesis. The synthesis tool treats each Compile Point as a block which
enables you to preserve its structure and timing characteristics. By executing Layout in Incremental Mode,
locations of previously-placed cells and the routing of previously-routed nets is preserved. Compile Points
make it easy for you to mark portions of a design as black boxes, and can enable you to divide the design
effort between designers or teams. Please refer to the Synopsys FPGA Synthesis Pro ME User Guide for
more information.

Alternatively, you can employ block-based design methodologies. Small designs can be placed, routed,
tuned and then turned into blocks once timing constraints have been met. These blocks can then be
imported into larger designs while ensuring that timing characteristics of the individual blocks are preserved.
Refer to the SmartFusion2 and IGLOO2 Block Flow for more information.

See Also
SmartTime Constraint Scenario - SmartFusion2 and IGLOO2
SmartFusion2 and IGLOO2 Block Flow
extended_run_lib - Libero SoC Only

Libero SoC User's Guide 107

http://www.microsemi.com/products/fpga-soc/design-resources/design-software/synplify-pro-me%23documents

& Microsemi

Table of Contents

Place and Route

The following topic applies to SmartFusion, IGLOO (except IGLOOZ2), ProASIC3 and Fusion families. See
the SmartFusion2 and IGLOQO2 Place and Route topic for information specific to those families.

Place and Route runs automatically using Timing-Driven Place and Route as the default during the push-
button design flow in Libero SoC.

Custom Layout options are saved when you save your ADB after place and route. You must invoke Layout
in interactive mode from Libero SoC and run Layout from Designer to view your custom Layout options.
When your options are saved you can run Layout from Libero, but you must set your additional Layout
Options in Designer. See below for more information on setting additional Layout Options when you open
Interactively.

The 1/0 Bank Assigner and Global Planner run automatically after you click OK in the Layout Options
dialog box. The I/O Bank Assigner automatically assigns technologies to all I/O banks that have not been
assigned a technology. The Global Planner automatically assigns global nets to clock conditioning circuit
(CCC) locations on the chip in the design.

Note: All I/O technologies assigned to I/O banks by the 1/0 Bank Assigner in Layout are
unlocked.

To change your Place and Route settings:

Expand Implement Design, right-click Place and Route and choose Configure Options.

Place and Route Options

Tim

ing-Driven
Timing-Driven place and route is selected by default. The primary goal of timing-driven layout is to meet

timing constraints, specified by you or generated automatically. Timing-driven layout typically delivers better
performance than Standard layout.

If you do not select Timing-driven layout, Designer runs Standard layout. Standard layout targets efficient
usage of the chip resources. Chip performance is not optimized. Timing constraints are not considered by
the layout in standard mode, although a delay report based on delay constraints entered in SmartTime can
still be generated for the design. This is helpful to determine if Timing-Driven layout is required.

If you have set multiple timing constraint Scenarios in SmartTime, you can select a scenario from the pull-
down list to perform timing-driven layout. Timing constraints from the Scenario you select will be used in
Timing-Driven layout.

Place and Route Incrementally

Select this option to use previous placement data as the initial placement for next placement run.
Additionally, this will preserve previous placement data during the next incremental placement run.

Router will also be run incrementally. Select to fully route a design when some nets failed to route during a
previous run. Incremental routing should only be used if a low number of nets fail to route (less than 50 open
nets or shorted segments). A high number of failures usually indicates a less than optimal placement (if
using manual placement through macros, for example) or a design that is highly connected and does not fit
in the device. If a high number of nets fail, relax constraints, remove tight placement constraints, deactivate
timing-driven mode, or select a bigger device and rerun Layout. Also, see the Advanced Layout options for
your device.

You can also use it when the post-synthesis netlist has undergone a minor or incremental change.

108

& Microsemi

Table of Contents

Additional Layout Options Available if you Open Interactively

You must invoke Layout in interactive mode from Libero SoC and run Layout from Designer to view your
custom Layout options. To open Additional Layout Options interactively, in the Design Flow window right-
click Layout and choose Open Interactively.

Lock Existing Placement (Fix)
Locks your existing placement. Use this option if you do not want any changes in your layout.

Power-Driven

Select this option to run Power-Driven Layout. The primary goal of power-driven layout is to reduce dynamic
power while still maintaining timing constraints. This option is available when you select Timing Driven
Layout.

To get the most out of Power-Driven Layout:

1. Enter maximum delay, minimum delay, setup, and hold constraints in SmartTime's constraint editor or
in SDC.

2. Set false paths on any paths that have a constraint, but do not need one (this will help layout meet the
constraints that are needed).

Perform Layout with Timing-Driven, Run Place, and Run Route options checked.
Resolve worst case setup and maximum delay violations.
Generate an SDF back-annotation file.

Perform a post layout back-annotated simulation using this SDF file, and export a VCD (Value Change
Dump) file that will capture real activities for each net.

Open smartPower and import the VCD file using Simulation > Import VCD File.
Perform Layout with Timing-Driven and Power-Driven checked. Run Place and Route.

S

© N

. Verify that your timing constraints are still met with SmartTime.
10. Analyze your power with SmartPower.
In case you do not have simulation vectors for your design, the following alternative flow is recommended:

1. Enter maximum delay, minimum delay, setup, and hold constraints in SmartTime's constraint editor or
in SDC.

2. Set false paths on any paths that have a constraint, but do not need one (this will help layout to meet
the constraints that are needed).

Perform Layout with Timing-Driven, Run Place, and Run Route options checked.
Resolve worst case setup and maximum delay violations.
Verify that your timing constraints are still met with SmartTime.

A

Open SmartPower and set clock frequencies and toggle rates for the different clocks. Clock
frequencies can be imported from your timing constraints. Refer to Initialize Frequencies for more
information.

Perform Layout with Timing-Driven, and Power-Driven options checked. Run Place and Route.
. Verify that your timing constraints are still met with SmartTime.
9. Analyze your power with SmartPower

Run Place

Select this option to run the placer during Layout. By default, it reflects the current Layout state. If you have
not run Layout before, Run Place is selected by default. If your design has already been placed but not
routed, this box is cleared by default. You can also select the following incremental placement options.

e Incrementally: Select to use previous placement data as the initial placement for the next place run.

e Lock Existing Placement (fix): Select to preserve previous placement data during the next
incremental placement run.

Incremental options apply to the entire design. For more detailed control of the placer behavior (such as, to
fix placement of a portion of the design), use the MultiView Navigator tools or set fixed attributes on the
placed instances via PDC constraint files.

Libero SoC User's Guide 109

& Microsemi

Table of Contents

Run Route

Select to run the router during Layout. By default, it reflects the current Layout state. If you have not run
Layout before, Run Route is checked. Run Route is also checked if your previous Layout run completed with
routing failures. If your design has been routed successfully, this check box is cleared.

¢ Incrementally: Select to fully route a design when some nets failed to route during a previous run. You
can also use it when the incoming netlist has undergone an ECO. (Engineering Change Order).
Incremental routing should only be used if a low number of nets fail to route (less than 50 open nets or
shorted segments). A high number of failures usually indicates a less than optimal placement (if using
manual placement through macros, for example) or a design that is highly connected and does not fit
in the device. If a high number of nets fail, relax constraints, remove tight placement constraints,
deactivate timing-driven mode, or select a bigger device and rerun Layout. Also, see the Advanced
Layout options for your device.

There is no "Fix" option for the router. In incremental mode the router tries to preserve the existing routing;
there is no guarantee that it will be preserved. Therefore the timing characteristics of the previously routed
portion of the design may change, even if the placement was fixed for that portion of the design. The chance
of this is quite small, and the router will print the list of nets that have fixed terminals (i.e. those nets whose
every pin's macro has the placement FIX attribute).

Use Multiple Passes

Select to run layout multiple times with different seeds. Multiple Pass Layout attempts to improve layout
quality by selecting from a greater number of layout results. Click Configure to set your Multiple Pass
Configuration.

Click the Advanced button to set Timing-Driven options.

SmartFusion, IGLOO, ProASIC3 and Fusion Place and Route
Advanced Options

To set these advanced options during Layout, click Advanced in the Layout dialog box. The Advanced
Layout options are only available in timing-driven Layout mode.

High Effort Layout Mode

This option turns on netlist optimizations to obtain better performance. Layout runtime will increase when
this option is selected. You can also combine this option with the Multi-Pass mode to achieve the best
possible performance.

In the regular flow the compile step in Designer would modify the netlist to make use of efficient resources
on the chip, such as global networks and special macros. When the High Effort Layout option is turned on,
the placer could further change the mapping of the logic components, preserving the original functionality of
the design. The changed netlist is then used in all post-layout Designer tools including back-annotation.

The names and types of the combinational core logic primitives may change. All other logic cells (such as

registers, memory, 1/0s or clocks) or combinational logic primitives that are assigned a physical constraint
(locked at a location, assigned to a region, or part of a block component), referred in a timing constraint, or
have a preserve property, will remain unchanged.

When the Lock Existing Placement option is also turned on, the placer runs in regular effort mode.
Note: If you change the High Effort Setting you must rerun Place and Route to complete Layout.

Sequential Optimization

This option turns on optimization of sequential cells in the High Effort Layout mode. This typically enables
register retiming without disturbing timing latency. The names of registers may change unless they are
assigned a physical constraint (locked at a location, assigned to a region, or part of a block component),
referred in a timing constraint, or have a preserve property. Other restrictions may also apply.

The following cases are excluded from sequential optimization:

e Registers that have any timing constraint other than global FMAX, TSU (setup time) or TCO (clock to
out). Registers referred by multi-cycle or exception timing constraints are not moved.

110

Router

& Microsemi

Table of Contents

¢ Registers that feed asynchronous control signals on another register.
¢ Registers feeding the clock of another register.

¢ Reqgisters feeding a register in another clock domain.

e Registers that are fed by a register in another clock domain.

e Registers connected to PLL.

¢ Registers that have PDC attribute “preserve”, assigned a physical constraint (locked at a location,
assigned to a region, or part of a block component).

e Both registers in a direct connection from input I/O-to-register-to-register if both registers have the
same clock and the first register does not fan out to anywhere else. These registers are considered
synchronization registers.

e Both registers in a direct connection from register-to-register if both registers have the same clock, the
first register does not fanout anywhere else, and the first register is fed by another register in a
different clock domain. These registers are considered synchronization registers.

Repair Minimum Delay Violations

With this option selected, layout will perform an additional route that will attempt to repair paths that have
minimum delay and hold time violations. This is done by increasing the length of routing paths and inserting
routing buffers to add delay to paths. Since placement will remain unchanged and no additional tiles or
modules will be inserted, the amount of delay inserted is limited. As a result, this function is best suited to
repair paths with small (0 to 3 ns) hold and minimum delay violations. Paths with large violations will likely
improve, but for a complete repair of these paths, manual placement or source code modification may be
necessary. Every effort will be made to avoid creating max-delay timing violations on worst case paths.

To get the most out of repair minimum delay violations:

1. Enter max-delay, min-delay, setup and hold constraints in SmartTime's constraint editor or in SDC.

2. Set false paths on any paths that have a constraint, but do not need one (this will help layout to meet
the constraints that are needed).

3. Perform Layout with Timing Driven, Run Place, Run Route and optionally Run incrementally
enabled.

Resolve worst case setup and max-delay violations before running minimum delay violations repair.

5. After worst case max-delay timing is resolved, evaluate timing in SmartTime’s Timing Analyzer in
minimum delay analysis mode to check for hold time and minimum delay violations.

6. Run repair minimum delay violations with incremental route enabled.
The repair minimum delay violations tool will attempt to fix all hold time and minimum delay violations
by lengthening routing delay paths and inserting routing buffers. As delay is added to paths, worst
case max-delay timing is verified to avoid creating new max-delay timing violations. Designer will
report the worst minimum slack and the number of violating paths in the log window. In some cases,
additional improvement can occur by running repair minimum delay violations multiple times with Run
Incrementally enabled.

7. Perform both maximum and minimum delay timing analysis to check the timing. Manual placement or
source code modification may be necessary to repair all minimum delay violations.

8. After making placement or source code changes, run incremental route and repair minimum delay
violations, and then analyze timing again.

Additional Factors

Runtime may vary greatly with the number of paths that need repair, the number of nets in those paths, and
the resources available for the tool to insert delay. Over-constraining paths will increase runtime, but will not
likely improve results .

The tool will only work on paths that have min delay and hold time constraints. However, other paths that
share common nets to the constrained paths may be inadvertently affected.

It is recommended to run minimum delay violations repair with incremental route. This will ensure that paths
which do not have minimum delay violations are preserved.

Libero SoC User's Guide 111

& Microsemi

Table of Contents

Repair will be performed on:

¢ Reqgister to register paths where both registers are on the same global or non-global clock

e Reqgister to register paths where the registers are on different clock networks and a minimum delay
constraint exists

e Input to register, register to output, clock to out, input to output paths with minimum delay or hold
constraint.

You may select programmable input delays to increase delay on input to register paths for devices that
support the feature.

Restore Defaults
Click Restore Defaults to run the factory default settings for Advanced options.

Simulate - Opens ModelSim AE

The back-annotation functions are used to extract timing delays from your post layout data. These extracted
delays are put into a file to be used by your CAE package’s timing simulator. The default simulator for Libero
SoC is ModelSim AE. You can change your default simulator in your Tool Profile.

If you wish to perform pre-layout simulation: In the Design Flow Window, under Verify Pre-Synthesized
design, double-click Simulate.

To perform timing simulation:

1. If you have not done so, back-annotate your design and create your testbench.

2. Right-click Simulate (in Design Flow window, Implement Design > Verify Post-Synthesis
Implementation > Simulate) and choose Organize Input Files > Organize Source Files from the
right-click menu.

In the Organize Files for Source dialog box, all the stimulus files in the current project appear in the Source Files in the Project list

box. Files already associated with the block appear in the Associated Source Files list box.

In most cases you will only have one testbench associated with your block. However, if you want simultaneous association of

multiple testbench files for one simulation session, as in the case of PCI cores, add multiple files to the Associated Source Files list.

To add a testbench: Select the testbench you want to associate with the block in the Source Files in the Project list box and click
Add to add it to the Associated Source Files list.

To remove a testbench: To remove or change the file(s) in the Associated Source Files list box, select the file(s) and click Remove.

To order testbenches: Use the up and down arrows to define the order you want the testbenches compiled. The top level-entity
should be at the bottom of the list.

When you are satisfied with the Associated Simulation Files list, click OK.

4. To start ModelSim AE, right-click Simulate in the Design Hierarchy window and choose Open
Interactively. ModelSim starts and compiles the appropriate source files. When the compilation
completes, the simulator runs for 1 us and the Wave window opens to display the simulation results.

5. Scroll in the Wave window to verify the logic works as intended. Use the cursor and zoom buttons to
zoom in and out and measure timing delays. If you did not create a testbench with WaveFormer Pro,
you may get error messages with the vsim command if the instance names of your testbench do not

follow the same conventions as WaveFormer Pro. Ignore the error message and type the correct vsim
command.

6. When you are done, from the File menu, choose Quit.

Generate Back Annotated Files - SmartFusion2 and IGLOO2 Only

Generates Back Annotated files for your design.
Back Annotated files include:

112

& Microsemi

Table of Contents

e *ba.sdf - Standard Delay Format for back-annotation to the simulator.
e *ba.v/.vhd - Post-placement netlist used for back-annotated timing simulation.

To generate these files, in the Design Flow window click Implement Design and double-click Generate
Back Annotated Files.

Right-click Generate Back Annotated Files and choose Configure Options to open the Generate Back
Annotated Files Options dialog box.

Simulator Language Type - Set your simulator language type according to your design.

Timing: Export enhanced min delays for best case - Exports your enhanced min delays to include your
best-case timing results in your Back Annotated file.

Export Back Annotated Files

Libero SoC uses post-layout files for back-annotated timing simulation.
Post-layout files include:
e *ba.sdf - Standard Delay Format for back-annotation to the simulator.

e *ba.vivhd - Post-layout flattened netlist used exclusively for back-annotated timing simulation. May
contain low level macros not immediately recognizable to you; these were added by the software to
improve your design performance.

To generate a post-layout file, in the Design Flow window click Implement Design and double-click Export
Back Annotated Files.

If you wish to export the Back Annotated files with options that are different than the default, right-click
Export Back Annotated Files and choose Open Interactively.

Generate Bitstream - SmartFusion2 and IGLOO2 Only

Generates the bitstream for use with the Run PROGRAM Action tool.

The tool incorporates the Fabric design, eNVM configuration (if configured) and security settings (if
configured) to generate the bitstream file.

Modifications to the Fabric design, eNVM configuration, or security settings will invalidate this tool and
require regeneration of the bitstream file.

The Fabric programming data will only be regenerated if you make changes to the Fabric design, such as in
the Create Design, Create Constraints and Implement Design sections of the Design Flow window.

This operation is completed automatically as the last step if you use the Build button.

When the process is complete a green check appears next to the operation in the Design Flow window (as
shown in the figure below) and information messages appear in the Log window.

Libero SoC User's Guide 113

& Microsemi

Table of Contents

Design Flow 8 x

o B O |4

Tool -

A, 4 » Program Design
@ Configure Bitstream

_V BE: Generate Bitstream
A g Run PROGRAM Action i!'j
4)} DebugDesign
223, Identify Debug Design .

Figure 34 - Generate Bitstream (Complete)

114

& Microsemi
Table of Contents

Device Programming

Default Programming Data is generated automatically as part of the Libero SoC push-button design flow.

To generate your programming data with custom settings via FlashPoint, expand Implement Design, right-
click Generate Programming Data and choose Open Interactively.

FlashPoint enables you to generate other programming files, such as DirectC files (*.dat), IEEE 1532 files
(*.bsd, *.isc), programming data files (*.pdb), or Serial Vector Files (*.svf).

You must have completed your design to generate your programming (*.stp or STAPL) file.

SmartFusion, IGLOO, ProASIC3 and Fusion devices use the FlashPoint program file generator to create a

programming file. The FlashPoint interface enables the advanced security features in all three device
families.

See Also
Generate a DAT file

Programming Connectivity and Interface - SmartFusion2 and
IGLOO2 Only

In the Libero SoC Design Flow window, expand Edit Design Hardware Configuration and double-click
Programming Connectivity and Interface to open the Programming Connectivity and Interface window.
The Programming Connectivity and Interface window displays the physical chain from TDI to TDO or SPI
Slave configuration.

The Programming Connectivity and Interface view enables the following actions:

e Select Programming Mode — Select JTAG or SPI Slave mode. SPI Slave mode is only supported by
FlashPro5.

e Construct Chain Automatically - Automatically construct the physical chain

e Add Microsemi Device — Add a Microsemi Device to the chain

e Add Non-Microsemi Device — Add a non-Microsemi Device to the chain

e Add Microsemi Devices From Files — Add a Microsemi Device from a programming file
e Delete Selected Device — Delete selected devices in the grid

e Scan and Check Chain — Scan the physical chain connected to the programmer and check if it
matches the chain constructed in the grid

e Zoom In — Zoom into the grid
e Zoom Out — Zoom out of the grid

Hover Information
The device tooltip displays the following information if you hover your pointer over a device in the grid:

e Name - Editable field for a user-specified device name. If you have two or more identical devices in
your chain you can use this field to give them unique names.

e Device - Device name.
e File - Path to programming file.

e Programming action — When a programming file is loaded, the user can select a programming action
for any device which is not the Libero design device.

¢ IR Length - Device instruction length.

e TCK - Maximum clock frequency in MHz to program a specific device; Libero uses this information to
ensure that the programmer operates at a frequency lower than the slowest device in the chain.

Libero SoC User's Guide 115

& Microsemi

Table of Contents

27100 |

M25050T (2)

[}—"1_Lli.
Marme: | M25050T (2)
[Device: |ma2sosor |
File: |

:prcgramming e-;tion.'li
[1r: s
[Tck: (10000000

Figure 35 - Device Information

Device Chain Details
The device within the chain has the following details:

Libero design device — Has a red circle within Microsemi logo. Libero design device cannot be
disabled.

Left/right arrow — Move device to left or right according to the physical chain.

Enable Device - Select to enable the device for programming; enabled devices are green, disabled
devices are gray.

Name - Displays your specified device name.
File - Path to programming file.

Right-Click Properties

Set as Libero Design Device - The user needs to set Libero design device when there are multiple
identical Libero design devices in the chain.

Enable Device - Select to enable the device for programming; enabled devices are green, disabled
devices are gray.

HIGH-Z - Sets disabled Microsemi SoC ProAsic3, IGLOO, Fusion, and SmartFusion devices in the
chain to HIGH-Z (tri-states all the 1/Os) during chain programming of enabled Microsemi devices in the
daisy chain (Not supported for Libero SoC target design device)

Configure Device — Ability to reconfigure the device (for a Libero SoC target device the dialog
appears but only the device name is editable)

Load Programming File — Load programming file for selected device (Not supported for Libero SoC
target design device)

Enable Serial - Select to enable serialization when you have loaded a serialization programming file
(not supported in software version 11.0)

Serial Data - Opens the Serial Settings dialog box; enables you to set your serialization data.
Select Program Procedure/Actions (Not supported for Libero SoC target design device):

e Actions - List of programming actions for your device.

e Procedures - Advanced option; enables you to customize the list of recommended and

optional procedures for the selected Action.

Move Device Left/Right — Move device in the chain to left or right.

116

& Microsemi

Table of Contents

i .

& TDO

'

ﬁ Set As Libero Design Device

Configure Device...

Enable Device for Programming...
Load Programming File...

HIGH-Z...

Set Serial Data..,

Select Program Procedure/Actions...
Move Device Right...

Figure 36 - Right-click Properties

Programmer Settings - SmartFusion2 and IGLOO2 Only

In the Libero SoC Design Flow window expand Edit Design Hardware Configuration and double-click
Programmer Settings to view the name, type, and port. The dialog box displays information about your
programmer if it is connected.

——
Connected Programmer

Programmer name: 30983
Programmer type: FlashPro4
Port: ush30983 (USB 2.0)

Edit Programmer Settings...]

Figure 37 - Programmer Settings for Connected Programmer

Click Edit Programmer Settings to view the Programmer Settings Dialog box. It enables you to set specific
voltage and force TCK frequency values for your programmer.

Libero SoC User's Guide 117

& Microsemi

Table of Contents

Programmer Settings ﬁ

FlashPro |FIashProLite FlashPro3 | FlashPro4

Sethp

[¥]setVpn

[¥] setvdd()

[V]setvddp @25v ©33v
["|Drive TRST

["]Force TCK Frequency

4 -

Default

[ok || cancel | Help

Figure 38 - Programmer Settings Dialog Box

The Programmer Settings dialog box includes setting options for FlashPro5/4/3/3X, FlashPro Lite and
FlashPro.

Set the TCK setting in your PDB/STAPL file by selecting the TCK frequency in the Programmer Settings
dialog box. TCK frequency limits by programmer:

e FlashPro supports 1-4 MHz

e FlashPro Lite is limited to 1, 2, or 4 MHz only.

e FlashPro5/4/3/3X supports 1-4 MHz.
TCK frequency limits by target device:
* IGLOO, ProASIC3, Fusion, SmartFusion and SmartFusion2 — 10MHz to 20MHz
¢ ProASICPLUS and ProASIC - 10 MHz.

During execution, the frequency set by the FREQUENCY statement in the PDB/STAPL file overrides the
TCK frequency setting selected by you in the Programmer Settings dialog box unless you also select the
Force TCK Frequency checkbox.

FlashPro Programmer Settings

Choose your programmer settings for FlashPro (see above figure). If you choose to add the Force TCK
Frequency, select the appropriate MHz frequency. After you have made your selection(s), click OK.

Default Settings
e The Vpp, Vpn, Vdd(l), and Vddp options are checked (Vddp is set to 2.5V) to instruct the FlashPro
programmer(s) to supply Vpp, Vpn, Vdd(l) and Vddp.

e The Driver TRST option is unchecked to instruct the FlashPro programmer(s) NOT to drive the TRST
pin.

e The Force TCK Frequency option is unchecked to instruct FlashPro to use the TCK frequency
specified by the Frequency statement in the STAPL file(s).

FlashPro Lite Programmer Settings

If you choose to add the Force TCK Frequency, select the appropriate MHz frequency. After you have made
your selection(s), click OK.

Default Settings

e The Vpp and Vpn options are checked to instruct the FlashPro Lite programmer(s) to supply Vpp and
Vpn.

118

& Microsemi
Table of Contents

e The Driver TRST option is unchecked to instruct the FlashPro Lite programmer(s) NOT to drive the
TRST pin.

e The Force TCK Frequency option is unchecked to instruct the FlashPro Lite to use the TCK frequency
specified by the Frequency statement in the STAPL file(s).

FlashPro5/4/3/3X Programmer Settings

For FlashPro3, you have the option of choosing the Set Vpump setting or the Force TCK Frequency. If you
choose the Force TCK Frequency, select the appropriate MHz frequency. For FlashPro4/3X settings, you
have the option of switching the TCK mode between Free running clock and Discrete clocking. After you
have made your selections(s), click OK.

Default Settings

e The Vpump option is checked to instruct the FlashPro3 programmer(s) to supply Vpump to the device.

e The Force TCK Frequency option is unchecked to instruct the FlashPro3 to use the TCK frequency
specified by the Frequency statement in the PDB/STAPL file(s).

e FlashPro3x default TCK mode setting is Free running clock

Device I/0O States During Programming

In the Libero SoC Design Flow window expand Edit Design Hardware Configuration and double-click
Device I/O states during programming to specify the 1/O states prior to programming. In Libero SoC, this
feature is only available once Layout is completed.

The default state for all I/Os is Tri-state.

To specify 1/O statues during programming:

1. Sort the pins as desired by clicking any of the column headers to sort the entries by that header.
Select the I/Os you wish to modify (as shown in the figure below).

2. Set the /0O Output state. You can set Basic I/O settings if you want to use the default I/O settings for
your pins, or use Custom 1/O settings to customize the settings for each pin. See the Specifying 1/O
States During Programming - I/O States and BSR Details help topic for more information on setting
your 1/O state and the corresponding pin values. Basic I/O state settings are:

e 1-1/O is set to drive out logic High

e 0-1I/O is set to drive out logic Low

e Last Known State: I/O is set to the last value that was driven out prior to entering the

programming mode, and then held at that value during programming

e 7 -Tri-State: I/0O is tristated

Libero SoC User's Guide 119

& Microsemi

Table of Contents

Specify I/0 States During Programming
Load from File. .. Save ko file... [™ show BSR Details
Port Hame Macro Cell Pin Humber 1/0 State [Output Only) j
BIST ADLIB:INBUF T2 1
BvPA55_10 ADLIB:INBUF K1 1
CLE. ADLIB:INBUF B1 1
ENOUT ADLIB:INBUF J16 1
LED ADLIB:OUTBUF M3 a
MOMITOR[O] ADLIB:OUTBUF ES a
MOMNITOR[1] ADLIB:OUTBUF c7 d
MOMNITOR[2] ADLIB:OUTBUF k] d
MOMITOR[3] ADLIB:OUTBUF D7 d
MOMNITOR[4] ADLIB:OUTBUF A1 d
OEa ADLIB:INBUF E4 d
OEb ADLIB:INBUF F1 d
O5C_EN ADLIB:INBUF K3 d
PAD[10] ADLIB:BIBUF_LYCMOS33U ME d
PAD[11] ADLIB:BIBUF_LYCMOS33D R? d
PAD[12] ADLIB:BIBUF_LYCMOS33U D11 d
PAD[13] ADLIB:BIBUF_LYCMOS33D c12 d
PAD[14] ADLIB:BIBUF_LYCMOS33U RE d LI
Help | OF I Cancel |

Figure 39 - /O States During Programming Window
6. Click OK to save your settings.

Note: 1/O States During programming will be used during programming or when exporting the
bitstream.

Configure User Programming Data

Sets your Design Version and Silicon Signature.
Design name is a read-only field that identifies your design.

Design Version (number between 0 and 65535) - Specifies the design version to be programmed to the
device. This field is also used for Back-level protection in Update Policy of the Security Policy Manager and
in Enable Auto Update in the Programming Recovery tool.

Silicon signature (max length is 8 HEX chars) - 32-bit user configurable silicon signature to be
programmed into the device. This field can be read from the device using the JTAG (IEEE 1149-1)
USERCODE instruction or by running the DEVICE _INFO programming action.

[8°| Configure User Programming Data &

Design name: sdi

Design version (number between 0 and 65535): 2|

Silicon signature (max length is 8 HEX chars):

L Help

Figure 40 - Configure User Programming Data Dialog Box

120

& Microsemi

Table of Contents

Configure Programming Recovery

The Programming Recovery dialog box enables you to set your Auto Update and Programming Recovery
options for programming.
Auto Update takes place during power-up and compares your Update SPI image Design Version against the
Design Version programmed in the device. It performs Auto Update programming on your SPI update Image
if:

e The device has been programmed AND

e The Update SPI image Design Version is greater than the Design Version on the device

Auto Recovery enables the device to automatically reprogram itself if there is a power failure during
programming.

Design version - The Design Version used for Auto Update Programming or for Backlevel protection within
the SPM update policy. This is a read-only field that must be configured within the tool Configure User
Programming Data.

Enable Auto Update - Click the checkbox to auto update the SPI update image at power up. Auto-update
occurs only when the SPI update image Design Version is greater than the Design Version already on the
device. When enabling Auto Update, Programming Recovery must also be enabled and this checkbox will
be disabled.

Enable Programming Recovery - Click the checkbox to enable programming recovery in the event of a
power failure during programming.

SPI clock frequency - Sets your SPI clock frequency. SPI is a full duplex, four-wire synchronous transfer
protocol that supports programmable clock polarity (SPO) and clock phase (SPH).The state of SPO and
SPH control bits decides the data transfer modes. See the SmartFusion2 Microcontroller Subsystem User's
Guide or the IGLOO2 High Performance Memory Subsystem User's Guide for more information.

SPI data transfer mode - Sets your SPI data transfer mode for SPO and SPH. The SPO control bit
determines the polarity of the clock and SPS defines the slave select behavior. SPS is hardcoded to b'1l and
cannot be changed. The SPH control bit determines the clock edge that captures the data. See the
SmartFusion2 Microcontroller Subsystem User's Guide or the IGLOO2 High Performance Memory
Subsystem User's Guide for more information.

Libero SoC User's Guide 121

http://www.microsemi.com/document-portal/doc_download/130918-smartfusion2-microcontroller-subsystem-user
http://www.microsemi.com/document-portal/doc_download/130918-smartfusion2-microcontroller-subsystem-user
http://www.microsemi.com/document-portal/doc_download/132009-igloo2-fpga-high-performance-memory-subsystem-user-s-guide
http://www.microsemi.com/document-portal/doc_download/130918-smartfusion2-microcontroller-subsystem-user
http://www.microsemi.com/document-portal/doc_download/132009-igloo2-fpga-high-performance-memory-subsystem-user-s-guide
http://www.microsemi.com/document-portal/doc_download/132009-igloo2-fpga-high-performance-memory-subsystem-user-s-guide

& Microsemi

Table of Contents

P it

| Configure Programming Recovery

0 Design version: 10
V| Enable Auto Update

Enable Programming Recovery

SPI clock frequency: [25.00 ¥ | MHz

SPI data transfer mode

SPS:1 SPO: SPH:

o] [caes

Figure 41 - Configure Programming Recovery Dialog Box

Security Features Frequently Asked Questions

The following Frequently Asked Questions address the most common queries related to managing and
programming SmartFusion2 and IGLOO2 Security Features.

I have configured the Security Policy Manager and enabled security in my design but I do not want to program my design

with the Security Policy Manager features enabled. What do I do?

Go to Configure Bitstream and un-check Security.

What is programmed when I click Program Device?

All features configured in your design and enabled in the Configure Bitstream tool. Any features you have
configured (such as eNVM or Security) are enabled for programming by default.

When I click Program Device is the programming file encrypted?

All programming files are encrypted. To generate programming files encrypted with UEK1 or UEK2 you must

generate them from Export Bitstream for field updates.

Note: Once security is programmed, you must erase the security before attempting to reprogram
the security.

How do I generate encrypted programming files with User Encryption Key 1/2?

e Configure the Security Policy Manager and specify a User Key Set 1 and User Key Set 2 (User Key
Set 2 is available if you select Field Update Broadcast mode). Ensure the Security programming
feature is enabled in Configure Bitstream; it is enabled by default once you configure the Security
Policy Manager.

122

& Microsemi
Table of Contents

e Export Bitstream from Handoff Design for Production - <filename>_uek1.(stp/svf/spi/dat) and
<filename>_uek2.(stp/svf/spi/dat) files are encrypted with UEK1 and UEK2 respectively. See Security
Programming File Descriptions below for more information on programming files.

What are Security Programming Files?

See the Security Programming Files topic for more information.

Security Programming Files

Export Bitstream (expand Handoff Design for Production in the Design Flow window) creates the following
files:

<filename>_master.(stp/svf/spi/dat) - Created when Enable custom security options is specified in the
Security Policy Manager. This is the master programming file; it includes all programming features enabled,
User Key Set 1, User Key Set 2 (optionally if specified), and your security policy settings.
<filename>_security_only_master.(stp/svf/spi/dat) — Created when Enable custom security options is
specified in the Security Policy Manager. Master security programming file; includes User Key Set 1, User
Key Set 2 (optionally if specified), and your security policy settings.

<filename>_uek1.(stp/svf/spi/dat) — Programming file encrypted with User Encryption Key 1 used for field
updates; includes all your features for programming except security .

<filename>_uek2.(stp/svf/spi/dat) — Programming file encrypted with User Encryption Key 2 used for field
updates; includes all your features for programming except security.

Libero SoC User's Guide 123

& Microsemi
Table of Contents

Security Policy Manager (SPM)

Expand Configure Security and Programming Options, double-click Configure Security to customize
the security settings in your design.

Use this dialog box to set your User Keys, Security Policies and Microsemi factory test mode access level.

Note: Microsemi enabled default bitstream encryption key modes are disabled after user security is programmed.

1 Security Policy Manager

=l
e

Security key mode Security policies
Bitstream encryption with defaul key Update Policy. s Use
@ Enable custom security options L Debug Rolcriy J B Use
Key Mode Policy. . Use
User keys and Security policies protection Microsermi Factory test mode access level
@ Write-protect using FlashLockjUPK1 Allows Factnry test mode accsss

@ Protect Factory test mode access using FlashLock/UPKI
Permanently protect factory test mode access

Permanenthy wrike-protect

User Key Set 1
FlashLockJUPK1 (84 HEX chars): O B470CHZ7ZTF4FO44DI 1471620 B SS6FZICFOMZZCIAE =
UEK1 (User Encryption Key 1) (64 HEX chars): 0x 2F154C3EF219A1EASSA209SDEFCO3D2SCERC I FIBSASEEDESEFSEZEDIT2E10190 i]
] User Key Set 2
UPKZ (User Pass Key 2) (64 HEX chars); Dx 329AFIFSE4B2FIT7C 123726 703435005 3F 37B56B304EECE950 1 FIASIES646736 | & |
UEKZ (User Encryption Key 2) (64 HEX chars) 0% BI7ABTERFCH] 3A34G0FS63977001 EB7C] ACTI0BDECECENSTEOCET | 664686063 Ew
Selected Securky options:
User keys and Security Policies protection
Protect UEK1, UEK2, DPK and Security Policies using FlashlLockjUPK1.
Disable Factory enabled def ault bitstream encryption key modes.
Microsemi Factory test mode access level
Protect Microsemi factory test mode access using FlashLockjUPK 1.
Help O Cancel

Figure 42 - Security Policy Manager Dialog Box

Security Key Mode

Bitstream encryption with default key - Encrypt bitstream files with Microsemi default key (pre-placed key

in silicon). When this option is selected, user keys, security and Microsemi factory test mode access level
configurations are disabled.

Enable custom security options - Enables you to set User Keys, Security Policies and Microsemi factory
test mode access level (see below for a description).

User keys and Security policies protection

Write-protect using FlashLock/UPK1 - Protect UEK1 (User Encryption Key 1), DPK (Debug Pass Key)
and Security Policies using FlashLock/ UPK1.

Note: UEK2 (User Encryption Key2) is protected by UPK2 (User Pass Key 2).

Permanently write-protect - Permanently protect UEK1 (User Encryption Key 1), UPK2 (User Pass Key 2),
UEK?2 (User Encryption Key 2), DPK (Debug Pass Key), Security Policies, and Microsemi factory test mode
access level. This setting, once programmed will not be modified in the device. Microsemi enabled default
bitstream encryption key modes are permanently disabled as well.

Note: When this option is selected, you cannot specify the FlashLock/UPK 1 and UPK2 (User Pass Key 2)
value, since the value cannot be used to unlock the corresponding protected features.

Microsemi Factory Test Mode Access Level

Protect factory test mode access using FlashLock/UPKZ1 - Protects access to Microsemi factory test
mode using Flashlock/ UPK1.

Permanently protect factory test mode access - Permanently locks access to Microsemi factory test
mode.

124

& Microsemi

Table of Contents

Note: When this option is selected, User Key Set 2 is permanently write-protected. Once programmed, User
Key Set 2 cannot be changed in the device. You can specify UEK2 (User Encryption Key 2). However, you
cannot specify UPK2 (User Pass Key 2), since the value cannot be used to unlock User Key Set 2.

Allow factory test mode access - Allows access to Microsemi factory test mode.
Security Policies

Update Policy - Sets your Fabric, eNVM and Back Level protections. See the Update Policy topic for more
information.

Debug Policy - Enables and sets your Debug Pass Key and debug options. See the Debug Policy topic for
more information.

Key Mode Policy - Configures the key mode to enable or disable. See the Key Mode Policy topic for more
information.

Configuring User Keys

User Key Set 1 is required. User Key Set 1 includes FlashLock/UPK1 (User Pass Key 1) and UEK1 (User
Encryption Key 1)..

User Key Set 2 is optional. User Key Set 2 includes UPK2 (User Pass Key 2) and UEK2 (User Encryption
Key 2).

Note that User Pass Key 2 (UPK2) protects only User Encryption Key 2 (UEK?2).

Update Policy
This dialog box enables you to specify components that can be updated in the field, and their field-update
protection parameters.

Choose your protection options from the drop-down menus; click the appropriate checkbox to set your
programming protection preferences.

Fabric update protection

e Use FlashLock/UPK1 to unlock Erase/Write/Verify operations- Select this option to require UPK1
to erase, write, or verify the Fabric.

e Updates allowed using UEK1 or UEK2; FlashLock/UPK1 is not required for updates - Encrypted
update is allowed with either UEK1 or UEK?2 (if enabled).

eNVM update protection

e Use FlashLock/UPK1 to unlock Write/Verify/Read operations- Select this option to require UPK1 to
write, verify or read to the eNVM.

e Updates allowed using UEK1 or UEK2; Flashlock/UPK1 is not required for updates - Encrypted
update is allowed with either UEK1 or UEK?2 (if enabled).
Back Level protection - When enabled, a design being loaded must be of a version higher than the Back
Level version value in the programmed device.
e Back Level Protection- Limits the design versions that the device can update. Only programming
bitstreams with Designer Version greater than the Back Level version are allowed for programming.

e Design version - Displays the current Design version (set in the Configure User Programming Data
tool). Back level uses the Design version value to determine which bitstreams are allowed for
programming.

e Back Level Bypass - If selected, design is programmed irrespective of Back Level version.

Note: Back Level Bypass should be set if you allow programming recover with recovery image lower than
the Back Level version selected. Alternatively, you should update the design version of the recovery image
so that it is always greater than the Back Level version. (Refer to the Configure Programming Recovery
section for details.)

Disable access to the following programming interfaces:

These settings protect the following programming interfaces:
e Auto Programming

Libero SoC User's Guide 125

& Microsemi

Table of Contents

e |AP/ISP services
e JTAG (use FlashLock to/UPK1 to unlock)
e SPI Slave (use FlashLock/UPK1 to unlock)

For more technical information on the Protect Programming Interface with Pass Key option see the
SmartFusion2 Programming User's Guide.

Note that when the Permanently write-protect option is selected for User keys and Security policies
protection in SPM, the dialog box informs you of features that are no longer reprogrammabile. In this case, if
Use FlashLock/UPK1 to unlock option is selected for Fabric/eNVM update protection then Fabric/eNVM will
be One Time Programmable.

s -1
| Update Policy
Fabric update protection:
[Use FlashLock/UPK1 to unlock Erase/wWrite/verify operations N]
elNVM update protection:
[Use FlashLock{UPK1 to unlock WritefVerify/Read operations =]

|| Back Level protection
e Design version (number between 0 and 65535);

Back Level v

Disable access to the following programming interfaces:

|71 Auto Programming

[7] 18Pj1SP Services

|| ITAG {use FlashLock/UPK1 to unlock)

|| SPI Slave (use FlashLockfUPK1 to unlock)
Disable access to the following programming features:

- Fabric {use FlashLockfUPK1 ko unlock EraseWrite fverify)
- eNVM {use FlashLockfUPK1 ko unlock WritefVerify/Read)

ok J[concel]

Figure 43 - Update Policy Dialog Box

Debug Security Policy

Debug access to the embedded systems can be controlled via the customer Debug Policy.
Protect Embedded Debug with DPK (Debug Pass Key)

Restrict UJTAG access - Restrict access to UJTAG; DPK is required for access.
Restrict Cortex M3 debug (SmartFusion2 Only) - Restrict Cortex M3 debug; DPK is required for debug.

SmartDebug access control

126

http://www.microsemi.com/soc/documents/SmartFusion2_Programming_UG.pdf

& Microsemi

Table of Contents

Access control available during debug mode.
Full Access (No restrictions to SmartDebug architecture; DPK is not required)- Enables full debug
access to eNVM, uSRAM, LSRAM, eSRAMO0/1, DDRAM and Fabric probing.

No debug (Restrict read/write access to SmartDebug architecture; DPK is required for read/write
access) - Blocks all debug access to eNVM, uSRAM, LSRAM, eSRAMO/1, DDRAM and Fabric probing.

DPK (Debug Pass Key) (length is 64 HEX characters)

Specify a Debug Pass Key to unlock features protected by DPK.
Restrict external Fabric/eNVM design digest check request via JTAG and SPI. Use FlashLock/UPK1
to allow digest check- Protects design digest check request with FlashLock/UPK1.

55

| Debug Security Policy
Protect Embedded Debug with DPK (Debug Pass Key)
[7] Restrict UITAG access
[Restrict Cortex M3 debug
SmartDebug access control:
{Full aceess (Mo restrictions to SmartDebug architecture; DPK is not required)

DPK {Debug Pass Key) {64 HEX chars)
(r=w!
o)

3

Restrict external Fabric/eMVM design digest check request via JTAG and SPI. Use FlashLockfUPK1 to allow the digest check.

OK Cancel

Help

Figure 44 - Debug Security Policy Dialog Box

Key Mode Policy

Protect user encryption key modes with FlashLock/UPK1. If a key mode is disabled, then FlashLock/UPK1 is
required to program with that key mode.
Two key modes can be disabled:

e UEK1 (User Encryption Key 1)

e UEK2 (User Encryption Key 2)
If both key modes are disabled then device update is impossible. A warning message is displayed in this

case.
Note: If a key mode is disabled then the corresponding bitstream file will be disabled.

Libero SoC User's Guide 127

& Microsemi

Table of Contents

K Programming Key Mode Policy
Disable Key Mode:

| UEK1 {User Encryption Key 1)

LUEK2Z {User Encryption Key 2)

[Help \. OK Cancel]

Figure 45 - Programming Key Mode Policy Dialog Box

Update eNVM Memory Content (SmartFusion2 and IGLOOZ2 Only)

Modify Data

Right-click Update eNVM Memory Content and choose Configure Options (eNVM Memory Content >
Configure Options) or double-click Update eNVM Memory Content to open the dialog box and modify
your eNVM content.

The Update eNVM Memory Content dialog box enables you to update your eNVM content for programming
without having to rerun Compile and Place and Route. It is useful if you have reserved space in the eNVM
configurator within the MSS for firmware development, for example. Use the Update eNVM Memory Content
dialog box when you have completed your firmware development and wish to incorporate your updated
firmware image file into the project.

NOTE: To disable a client for programming, you must modify the client and select “No Content (Client is a
placeholder and will not be programmed)”. The content from the memory file, serialization data file, or auto-
incremented serialization content will be preserved if you later decide to enable this client for programming.
Clients disabled for programming will not be included in the generated bitstream and will not be
programmed.

Storage Client
Double-click the Storage Client to open the Modify Data Storage Client dialog box.

Note: You cannot add, delete or rename a data storage client in the Modify Data Storage Client dialog box.
To make these changes, go to the eNVM configurator inside the MSS/HPMS Configurator or navigate to the
System Builder's Memory page (eNVM tab).

128

& Microsemi

Table of Contents

= | Modify Data Storage Clen o

Format: | Intel-Hex bl
Lise absolute addressing e
@ Content filled with Os
Mo Content (Client is a placeholder and will not be programmed)

Start address: 0x 0 =

Size of word: Bits
Numnber of Words: 512 {Decimal)

[luseasrom @

[7] Use Content far Simulation

s |)

Figure 46 - Modify Data Storage Client Dialog Box
You have three options to specify the eNVM content:
e Import a Memory File
¢ Fill eNVM content with Zero’s

e Assign No Content (eNVM as a Placeholder). The client will not be included in the programming
bitstream and will not be programmed

If you have completed Place and Route and you import a memory file for the eNVM content, you do not
have to rerun Compile or Place and Route. You can program or export your programming file directly.
Programming will generate a new programming file that includes your updated eNVM content.

You can also specify the start address where the data for that client starts, the word size and the number of
words to reserve for the data storage client.

Modify Serialization Client
Double-click the Serialization Client to open the Modify Serialization Client dialog box.

Note: You cannot add, delete or rename a Serialization Client in the Modify Serialization Client dialog box.
Go to the eNVM configurator inside the MSS/HPMS Configurator or the System Builder Memory page
(eNVM tab) to make these changes.

Libero SoC User's Guide 129

& Microsemi

Table of Contents

1| Modify Serialization Client

2 Content suto indremented:
StartValue: Ox 0 StepValue: Ox 20 Madmum Valee: O0x 20
Mo content (| Clent is a placeholder and will not be programmed)

Start address: 200 = (Hexadeomal)
Mumber of pages: 15 (128 bytes per page)
Maximum devices to program: 20 { Decimal)
Help ok [canca |

Figure 47 - Modify Serialization Client Dialog Box
You have three options to specify the eNVM content:
e Import a Memory File
e Increment values automatically

e Assign No Content (eNVM as a Placeholder). The client will not be included in the programming
bitstream and will not be programmed

If you have completed Place and Route and you import a memory file for the eNVM content, you do not
have to rerun Compile or Place and Route. You can program or export your programming file directly.
Programming will generate a new programming file that includes your updated eNVM content.

You can also specify the start address where the data for the Serialization Client starts, the number of pages
and the maximum number of devices you want to program serialization data into.

Setting a maximum number of devices to program for Serialization clients will generate a programming
bitstream file that has serialization content for the number of devices specified. The maximum number of
devices to program must match for all serialization clients. If the user would like to program a subset of the
devices during production programming, this can be done within the FlashPro Express tool, which allows
you to select a range of indices desired for programming for that serialization programming job session.
Refer to the FlashPro Express User's Guide for more information.

Serialization Client Editor

Serialization enables you to have a client in the eNVM whose value is different for each device that is
programmed. You can program n number of devices with values that are configured as either Auto
Incremented (AUTO_INC) or Read from File (READ_FROM_FILE).

The Serialization Client Editor is available from within the Update eNVM Memory Core dialog box. Double-
click eNVM in your MSS (SmartFusion) or System Builder (IGLOO?2) to view the eNVM Memory Core dialog
box.

130

& Microsemi
Table of Contents
The Serialization Client Editor enables you to specify your serialization type. You must use eNVM

Configuration to reserve a client for serialization - see the eNVM Configuration help and the tutorial topic for
more information.

Content Type
Content from file

The number of lines in the file is the number of devices desired for serialization programming. The first line is
the first serial index to be used for programming, the second line is the second serial index to be used for
programming and the last line is the last serial index to be used for programming. Blank lines and comments
(lines that begin with a # character) will be ignored.

Two file formats:
e DEC: An unsigned 64-bit decimal value.

¢ HEX: Hexadecimal value to be programmed into the device. If one page is specified for the
serialization client, then a maximum of 256HEX characters can be placed on each line. The data
orientation is MSB -> LSB, where the least significant byte is all the way to the right. If the data does
not complete a page, then the page will be padded with 0's. If serialization client is larger than one
page then the data format is as follows:

<Page N><PageN-1>.....<Pagel><Page0>
Where each Page X is a maximum of 256HEX characters
Content auto incremented
e Start Value (Hex) - The first 64-bit unsigned value to program to the device.
e Step Value (Hex) - The step value to use for each subsequent device to be programmed.
e Maximum Value (Hex) - The maximum value to be programmed on the last device.

M Serialization Client Editor

Client Mame: ser_client

Conkent Type
() Content from file
;IDecimaI

@ Content auka incremented

Start Yalue Ox Step Value Ox Taximum Yalue Ox
oo

Figure 48 - Serialization Client Editor Dialog Box

Configure Bitstream Dialog Box - SmartFusion2 and IGLOO2 Only

Enables you to select which components you wish to program. Only features that have been added to your
design are available for programming. For example, you cannot select eNVM for programming if you do not
have an eNVM in your design.

Libero SoC User's Guide 131

http://coredocs.actel-ip.com/Actel/SmartFusion2MSS/MSS_ENVM/sf2_mss_envm_config_ug_1.pdf

& Microsemi

Table of Contents

| Configure Bitstream [o]
Program
','ii'j'-:'..” 1 components only

@ Selected components

Help | [OK I [Cancel

Figure 49 - Configure Bitstream Dialog Box
Updated components only (not supported in this release) - Updates only the components that have
changed since your last programming.
Selected components - Updates the components you select, regardless of whether or not they have
changed since your last programming.

Generate Bitstream - SmartFusion2 and IGLOO2 Only

Generates the bitstream for use with the Run PROGRAM Action tool.

The tool incorporates the Fabric design, eNVM configuration (if configured) and security settings (if
configured) to generate the bitstream file.

Modifications to the Fabric design, eNVM configuration, or security settings will invalidate this tool and
require regeneration of the bitstream file.

The Fabric programming data will only be regenerated if you make changes to the Fabric design, such as in
the Create Design, Create Constraints and Implement Design sections of the Design Flow window.

This operation is completed automatically as the last step if you use the Build button.

When the process is complete a green check appears next to the operation in the Design Flow window (as
shown in the figure below) and information messages appear in the Log window.

132

& Microsemi

Table of Contents

Design Flow & X

= 8 O [¢

Tool a

. 4 » Program Design

@‘ Configure Bitstream

v @‘ Generate Bitstream
A B Run PROGRAM Action
4)} Debug Design =
243 Identify Debug Design &

Figure 50 - Generate Bitstream (Complete)

Run PROGRAM Action - SmartFusion2 and IGLOO2 Only

If you have a device programmer connected you can double-click Run PROGRAM Action to execute your
programming in batch mode with default settings.

If your programmer is not connected, or if your default settings are invalid, the Reports view lists the error(s).

Right-click Run PROGRAM Action and choose Configure Action/Procedures to open the Select Action
and Procedures dialog box.

Libero SoC User's Guide 133

& Microsemi
Table of Contents

Program Device

Expand Program Design and double-click Program Device to program your device with default settings.
Right-click Program Device and choose from the following menu options:

Clean and Run All - Cleans all tools, deletes all reports and output files and runs through
programming. All logs will be updated with new files.

Clean - deletes only reports and output files associated with the Program Device; the other tool files
and reports are unaffected.

Configure Actions/Procedures - Enables you to set the specific Action you wish to program. Select
your programming action from the dropdown menu.

SmartFusion2 and IGLOO2 Programming - Default Settings

To view your default settings, from the Project menu choose Project Settings.

To program your SmartFusion2 or IGLOO?2 device with default settings:

1.

Create a Libero Soc project using any SmartDesign component. For example, you can create a project
using a SmartDesign component, such as a simple fabric module and a MSS block with Flash Memory
module.

Click the Build button to complete Synthesis, Place and Route and program the device with default
settings. The default settings do not contain any security settings; use the Security Policy Manager
(SPM) to manage your settings prior to programming your device.

SmartFusion2 and IGLOO2 Programming - Custom Settings

Custom Programming Settings enable you to build the JTAG chain, define programmer settings, set I/O
states during programming and run scan chain.

1.

To create a JTAG chain, in the Design Flow window expand Edit Design Hardware Configuration,
right-click Programming Connectivity and Interface and choose Open Interactively. It opens a
schematic view of the devices connected in a JTAG chain; all the devices are targeted by default.

The Programming and Connectivity Interface detects and constructs the JTAG chain automatically. Use the interface to add

devices manually.

When you add Microsemi devices you can either load the STP or PDB file or add the device from a drop-down list. You must
provide the IR length and Max TCK frequency OR load the BSDL file for non-Microsemi devices.

2.

Right-click Programmer Settings and choose Open Interactively to view your programmer settings.
If necessary, click Edit Programmer Settings to specify custom settings for your programmer.

Right-click Device 1/O States During Programming and choose Open Interactively to open the
Specify I/0O States During Programming dialog box and set your device 1/O states. Click OK to save
your settings and continue.

Expand Configure Security, right-click Security Policy Manager and choose Open Interactively to
specify your Secured Programming Use Model, User Key Entry and Security Policies.

Exit Codes (SmartFusion2 and IGLOQO2)

Exit Exit Message Possible Cause Possible Solution
Code
0 Passed (no error) |- -
5 Failed to disable Unstable voltage level Monitor related power supplies

programming

that cause the issue during

134

Exit Exit Message
Code

Possible Cause

Possible Solution

mode

Failed to set
programming
voltage

Device is busy

Failed to read
design information

Failed to enter
programming
mode

Failed to set
programming
mode

Failed to read
programming

Signal integrity issues on
JTAG pins

programming; check for
transients outside of Microsemi
specifications. See your device
datasheet for more information
on transient specifications.

Monitor JTAG supply pins
during programming; measure
JTAG signals for noise or
reflection

information
6 Failed to verify Incorrect programming Choose the correct
IDCODE file programming file and select

Incorrect device in chain

Signal integrity issues on
JTAG pins

the correct device in the chain.

Measure JTAG pins and noise
for reflection. If TRST is left
floating then add pull-up to pin.

Reduce the length of Ground
connection.

10 Authentication
Error - See
Authentication
Error Codes

If Authentication
Error is not
displayed, see
Error Codes

-18 Digest request
from SPI/JTAG is
protected by user
pass key 1

Digest request from
SPI/JTAG is protected by
user pass key 1. Lock bit
has been configured in
the Debug Policy within
SPM (Security Policy
Manager)

Provide a programming file
with a pass key that matches
pass key programmed into the
device

-19 Failed to verify
digest

Unstable voltage level

Monitor related power supplies
that cause the issue during
programming; check for

& Microsemi

Table of Contents

Libero SoC User's Guide

135

& Microsemi

Table of Contents

Exit Exit Message Possible Cause Possible Solution
Code
transients outside of Microsemi
specifications. See your device
datasheet for more information
on transient specifications.
Signal integrity issues on | Monitor JTAG supply pins
JTAG pins during programming; measure
JTAG signals for noise or
reflection
-20 FPGA Fabric Programming bitstream Use the same programming file
digest verification: | components do not match | that was used to program the
FAIL components programmed | device.
FPGA Fabric is either Program the device.
erased or the data has
been corrupted or
tampered
eNVM_0/1 digest | Programming bitstream Use the same programming
verification: FAIL | components do not match | file that was used to program
components programmed | the device.
eNVM_0/1 data has been
corrupted or tampered
User security Programming bitstream Use the same programming file
policies segment [components do not match | that was used to program the
digest verification: | components programmed | device.
FAIL
User key set 0/1 Programming bitstream Use the same programming file
segment digest components do not match | that was used to program the
verification: FAIL | components programmed | device.
User key set 0/1segment
data has been corrupted
or tampered with
Factory row and Programming bitstream Use the same programming file
factory key components do not match | that was used to program the
segment digest components programmed | device.
verification: FAIL | Factory row and factory
key segment data has
been corrupted or
tampered
Fabric Programming bitstream Use the same programming file
configuration components do not match | that was used to program the
segment digest components device.
verification: FAIL | programmed. Fabric
configuration segment
data has been corrupted
or tampered with
-35 Failed to unlock Pass key in file does not | Provide a programming file

136

Exit Exit Message
Code

Possible Cause

Possible Solution

User Pass Key 1

Failed to unlock
User Pass Key 2

match device

with a pass key that matches
pass key programmed into the
device

& Microsemi

Table of Contents

SmartFusion2 and IGLOO2 Programming Authentication Error
Codes (AUTHERRCODE)

The table below lists authentication error codes for SmartFusion2 and IGLOO2 devices.

Errors related to programming failures (ERRORCODE errors) are summarized in SmartFusion2 and
IGLOO2 Programming Error Codes.

Table 2 - SmartFusion2 Programming Authentication Error

AUTHERRCODE | Description Possible Cause Possible Solution
0 Passed (no - -
error)
1,2 Invalid, Programming file has | Regenerate
corrupted been corrupted programming file
bitstream
3 Invalid, corrupt | File contains an Provide a programming
encryption key | encrypted key that file with an encryption
does not match the key that matches that on
device the device
File contains user First program security
encryption key, but with master programming
device has not been file, then program with
programmed with the | user encryption 1/2 field
user encryption key update programming files
Device has user You must first ERASE
encryption key 1/2 security with the master
enforced and you are | security file, then you can
attempting to reprogram new security
reprogram security settings
settings
4 Invalid, Programming file has | Regenerate the
corrupted been corrupted programming file
bitstream
5 Back level not | Design version is not Generate a programming
satisfied higher than the back- | file with a design version
level programmed higher than the back
device level version
7 DSN binding DSN specified in Use the correct
mismatch programming file does | programming file with a

Codes

Libero SoC User's Guide

137

& Microsemi

Table of Contents

AUTHERRCODE | Description Possible Cause Possible Solution
not match the device DSN that matches the
being programmed DSN of the target device

being programmed

8 Invalid, Programming file has | Regenerate the

corrupted been corrupted programming file
bitstream

9 Insufficient Device does not Generate a programming

device support the capabilities | file with the correct
capabilities specified in capabilities for the target
programming file device

10 Incorrect Incorrect programming | Choose the correct

DEVICEID file programming file and

select the correct device

Incorrect device in in chain

chain
Measure JTAG pins and

Signal integrity issues | noise or reflection. If

on JTAG pins TRST is left floating, then
add pull-up to pin
Reduce the length of
ground connection

11 Unsupported Old programming file Generate programming

bitstream file with latest version of
protocol Libero SoC
version
12 Verify not
permitted on
this bitstream

SmartFusion2 and IGLOO2 Programming Error Codes
(ERRORCODE)

The table below lists authentication error codes for SmartFusion2 and IGLOO2 devices.

Errors related to authentication failures are summarized in SmartFusion2 and IGLOO2 Programming
Authentication Error Codes.

Table 3 - SmartFusion2 and IGLOO2 Programming Error Codes

ERRORCODE Description
0 Passed (no error)
1 Fabric verification verification failed
2 Device security prevented operation
3 Programming mode not enabled

138

ERRORCODE Description
4 eNVM programing operation failed
5 eNVM verify operation failed
ERRORCODE Description Possible Cause Possible Solution
0 Passed (no error)
Failed to disable Unstable voltage Monitor related power
programming mode | level supplies that cause the
issue during
programming; check for
transients outside of
Microsemi specifications.
See your device
datasheet for more
information on transient
specifications.
Failed to set
programming
voltage
Device is busy Signal integrity issues | Monitor JTAG supply pins
on JTAG pins during programming;
measure JTAG signals
for noise or reflection
5 Failed to read
design information
Failed to enter
programming mode
Failed to set
programming mode
Failed to read
programming
information
6 Failed to verify Incorrect Choose the correct
IDCODE programming file programming file and
select the correct device
in the chain.
Incorrect device in Measure JTAG pins and
chain noise for reflection. If
TRST is left floating then
add pull-up to pin.

& Microsemi

Table of Contents

Table 4 -
Table 5 -
Table 6 -

Libero SoC User's Guide

139

& Microsemi

Table of Contents

ERRORCODE Description Possible Cause Possible Solution
Signal integrity issues | Reduce the length of
on JTAG chain ground connection

10 Authentication

Error - See
Authentication
Error Codes
If Authentication
Error is not
displayed, see
Error Codes
18 Digest request "Digest request from | Use a programming file
from SPI/JTAG is SPIJTAG is with user pass key 1.
protected by user | protected by user
pass key 1 pass key 1" lock bit
has been configured
in the Debug Policy
within SPM (Security
Policy Manager)
19 Failed to verify Unstable voltage Monitor related power
digest level supplies that cause the
issue; check for
transients outside of
Microsemi specifications.
See your device
datasheet for more
information.
Signal integrity issues | Monitor JTAG supply pins
on JTAG pins during programming;
measure JTAG signals
for noise or reflection.
20 FPGA Fabric Programming Use the same
digest verification: | bitstream programming file that was
FAIL components do not used to program the
match components device.
programmed
FPGA Fabric is either | Program the device.
erased or the data
has been corrupted
or tampered
eNVM_0 digest Programming Use the same
verification: FAIL bitstream programming file that was
components do not used to program the
match components device.
programmed
eNVM_0 data has
been corrupted or

140

ERRORCODE Description

Possible Cause

Possible Solution

tampered

eNVM_1 digest
verification: FAIL

Programming
bitstream
components do not
match components
programmed

Use the same
programming file that was
used to program the
device.

eNVM_1 data has
been corrupted or
tampered

User security
policies segment

FAIL

digest verification:

Programming
bitstream
components do not
match components
programmed

Use the same
programming file that was
used to program the
device.

User security policy
segment data has
been corrupted or
tampered with

User key set 1
segment digest
verification: FAIL

Programming
bitstream
components do not
match components
programmed

Use the same
programming file that was
used to program the
device.

User key set 1
segment has been
corrupted or
tampered with

User key set 2
segment digest
verification: FAIL

Programming
bitstream
components do not
match components
programmed

Use the same
programming file that was
used to program the
device.

User key set 2
segment has been
corrupted or
tampered with

Factory row and
factory key
segment digest
verification: FAIL

Programming
bitstream
components do not
match components
programmed

Use the same
programming file that was
used to program the
device.

Factory row and
factory key segment
data has been
corrupted or
tampered with

& Microsemi
Table of Contents

Libero SoC User's Guide

141

& Microsemi

Table of Contents

ERRORCODE Description Possible Cause Possible Solution
Fabric Programming Use the same
configuration bitstream programming file that was
segment digest components do not used to program the
verification: FAIL match components device.

programmed

Fabric configuration
segment data has
been corrupted or
tampered with

35 Pass key in file does | Provide a programming
not match device file with a pass key
programmed into the
device.

Programming File Actions - SmartFusion2 and IGLOO2
Libero SoC enables you to program security settings, FPGA Array, and eNVM features for SmartFusion2
and IGLOO2 device support.
You can program these features separately using different programming files or you can combine them into
one programming file.
In the Design Flow window, expand Program Design, click Run PROGRAM Action, and right-click
Configure Actions/Procedures.

142

& Microsemi

Table of Contents

B Salect Action and Procedures ﬁ
Action:
[VERIFY_DIGEST v
PROGRAM

VERIFY x i
ENC_DATA_AUTHENTICATION
READ_IDCODE

DEVICE_INFO

[K J [Cancel

Table 7 - Programming File Actions

Action Description

PROGRAM Programs all selected family features: FPGA Array,
targeted eNVM clients, and security settings.

ERASE Erases the selected family features: FPGA Array
and Security settings.

VERIFY Verifies all selected family features: FPGA Array,
targeted eNVM clients, and security settings.

VERIFY_DIGEST Calculates the digests for the components (Custom
Security, Fabric, or eNVM) included in the bitstream
and compares them against the programmed digest.

ENC_DATA_AUTHENTICATION [Encrypted bitstream authentication data.

READ_IDCODE Reads the device ID code from the device.

DEVICE_INFO Displays the IDCODE, the design name, the
checksum, and device security settings and
programming environment information programmed
into the device.

VERIFY_DIGEST Calculates digests for the components included in
the bitstream and compares them against the
programmed values.

Libero SoC User's Guide 143

& Microsemi

Table of Contents

Options Available in Programming Actions

The table below shows the options available for specific programming actions.
Table 8 - Programming File Actions - Options

Action

Option and Description

PROGRAM

DO_VERIFY - Enables or disables programming verification

Bitstream Encryption with Default Key in Security Policy Manager -
SmartFusion2 and IGLOO2

See the Export Bitstream topic for more information on exporting your bitstream.

Bitstream file formats: Bitstream file name:

V] STAPL file e |
Support far ISP Esdsting bitstream files:

Chain STAFL file

Support for ISP

Singhe Microsemi device in a JTAG chain

= teststp

DAT file
Support for Embedded ISP (JTAG and SPF-Slave)
] sPtfile
Support for Auto Programming, A
Programming Recovery and

SVF files

Support for ISP

Selected Security options (medify via Configure Security tool)
Encrypt bitstream with default key. No User keys and Security Policies are enabled.

Bitstream files to be exported
Bitstream components

File to program at trusted facility [¥] Fabric [V] envm

|| Export SP1 Directory for programming recovery | Specify SPI Directory...

(oc [conen]

Figure 51 - Export Bitstream Dialog Box

Bitstream file name - Sets the name of your bitstream file. The prefix varies depending on the name of your
top-level design.

Existing bitstream files - Lists bitstream files you created already.
Bitstream File Formats:

Select the Bitstream File format you want to export:

e STAPL file

e Chain STAPL file (Enabled only when there are two or more devices in the chain)
o DAT file

e SPIfile

e SVFfiles

144

& Microsemi

Table of Contents

Selected Security options (modify via Security Policy Manager) — Gives a brief description of current

security options.

Bitstream files to be exported — Lists all the bitstream files that will be exported.

File to program at trusted facility — Click to include Fabric and/or eNVM into the bitstream files to be

programmed at a trusted facility.

Note: Only features that have been added to your design are available for programming. For
example, you cannot select eNVM for programming if you do not have an eNVM in your
design.

Export SPI Directory for programming recovery — Allows you to export SPI directory containing Golden

and Update SPI image addresses and design versions, used in Auto-update and Programming Recovery
flow. Check this option and click Specify SPI Directory to set the required information (see figure below).

5| SPI Directory (-2)
| Golden SPI Image
Design version (DEC): & Load from File. .. Address (HEX):0x 678

|¥| Update SPI Image

Design version (DEC): 11 Load from file... Address (HEX):0x ABC

Help

Figure 52 - SPI Directory Dialog Box

Enable Custom Security Options in the Security Policy Manager
(SmartFusion2 and IGLOO2)

See the Export Bitstream topic for information on exporting your bitstream.

Libero SoC User's Guide 145

& Microsemi

Table of Contents

Bitstream file formats: Bitstream file name:
V| STAFL file test
Support for ISP

Existing bitstreamn files:

Chain STAPL file = teststp

Selected Security options (modify via Configure Security tool)
Protect UEK1, UEKZ, DPK and Security Policies using FlashLock/UPK1.
Disable factory enabled default bitstream encryption key modes.
Protect Microsemi factory test mode access using FlashLock/UPK1.

Bitstream files to be exported

Bitstream components
Master file to program at trusted facility Custorn security || Fabric |v| eNVM
File encrypted with UEK1 to program at untrusted facility or /| Fabric 7] eNvM
for Broadcast field uodate
File encrypted with UEK2 to program at untrusted facility or | Fabi 7] elivm
for Broadcast field update e bl e
b [o]

Figure 53 - Export Bitstream Dialog Box with Enable Custom Security Options in the Security Policy Manager

Bitstream file name - Sets the name of your bitstream file. The prefix varies depending on the name of your
top-level design.

Existing bitstream files - Lists bitstream files you created already.

Bitstream File Format:

Select the Bitstream File format you want to export:
e STAPL file
e Chain STAPL file (Enabled only when there are two or more devices in the chain)
e DAT file
e SPIfile
e SVFfiles
Selected Security options (modify via Configure Security tool) — Gives a brief description of current
security options.
Bitstream files to be exported — Lists all the bitstream files that will be exported.

Note: If a component (for example, eNVM) is not present in design then it will be disabled in the
bitstream component selection.

Master file to program at trusted facility — Click to include Fabric and/or eNVM into the bitsream files to
be programmed at a trusted facility. Note that Security is always programmed in Master file.

File encrypted with UEK1 to program at untrusted facility or for Broadcast field update — Click to
include Fabric and/or eNVM into the bitsream files to be programmed. If the selected features is not
protected by UPK1, the bitstream can be programmed at untrusted location, since it is encrypted with UEK1
that is preprogrammed into the device.

File encrypted with UEK2 to program at untrusted facility or for Broadcast field update - Click to
include Fabric and/or eNVM into the bitsream files to be programmed. If the selected features is not
protected by UPK1, the bitstream can be programmed at untrusted location, since it is encrypted with UEK2
that is preprogrammed into the device.

146

& Microsemi

Table of Contents

Note: If the eNVM/Fabric is protected with UPK1 and included in the bitstream, UPK1 will be
added to the STAPL and DAT file, and cannot be used at untrusted location.

Note: If eNVM/Fabric is One Time Programmable, it precluded from bitstream encrypted with
UEK1/2.

Export SPI Directory for programming recovery — Allows you to export SPI directory containing Golden

and Update SPI image addresses and design versions, used in Auto-update and Programming Recovery
flow. Check this option and click Specify SPI Directory to set the required information (see figure below).

| SPI Directory |3
| Golden SPI Image
Design version (DEC): § [Loed from file. .. Address (HEX):0x 678

[¥] Update 5PI Image

Design version (DEC): 11 Load from file... Address (HEX):0x ABC

Hep | oK Cancel

Figure 54 - SPI Directory Dialog Box

Programming SmartFusion in the Libero SoC

Double-click Program Device to create a programming file (if necessary) and program your device with
default settings.

Right-click Program Device and choose Open Interactively to open FlashPro.

Note that SmartFusion only exports the FDB file via Libero SoC. You must add the eNVM and Security in
the FlashPro, and then you can export the FDB file via Libero SoC.

Libero SoC User's Guide 147

& Microsemi

Table of Contents

Generating Programming Files

Generate a Programming File in FlashPoint

FlashPoint enables you to program security settings, FPGA Array, and FlashROM features for SmartFusion,
IGLOO, ProASIC3, Fusion family devices. You can program these features separately using different
programming files or you can combine them into one programming file. Each feature is listed as a silicon
feature in the GUI.

Note: You can generate a programming file with one, two, or all of the silicon features from the
Programming File Generator first page.

To generate a programming file:
1. Select the Silicon feature(s) you want to program.

e Security settings
o FPGA Array

e FlashROM
FlashPoint - Programming File Generator - Step 1 of 2 [%]

Silicon Featurels) to be programmed:
[Security settings
¥ FPaa Array
[V FlashromM
Criginal FlashROM configuration file:

r?:'|,A3PEQUAL'|,A3P125_BI'|,smartgen'l,UFROMFIXZ'l,UFROMFIXZ.ch —— |

™ Programming previously secured device(s)

o Specify [j0 States During Programming. ..

Silicon signature {max length is 8 HEX chars):

Back | Mext | Finish | Cancel |

Figure 55 - Programming File Generator — Step 1 of 2

Note: When FlashPoint is invoked for the first time, after netlist files are imported and the design is in
post-layout state, the software retrieves the FlashROM and EFM blocks configuration files from
the imported netlists and imports the configuration files. Otherwise, you need to import
configuration files.

2. Click the Programming previously secured device(s) check box if you are reprogramming a device
that has been secured.

Because the SmartFusion, IGLOO, ProASIC3, Fusion families enable you to program the Security Settings
separately from the FPGA Array and/or FlashROM, you must indicate if the Security Settings were
previously programmed into the target device. This requirement also applies when you generate
programming files for reprogramming.

3. Enter the silicon signature (0-8 HEX characters). See Silicon Signature for more information.

148

& Microsemi

Table of Contents

4. Depending upon the Silicon features you selected, click Next or Finish.

If you click Next, follow the instructions in the appropriate dialog box. If you click Finish, the Generate
Programming Files dialog box appears (as shown in the figure below). Use this dialog box box to specify
the programming file name, location, output format (STAPL file, SVF file, PDB file, DirectC DAT file, 1532
file), and, if necessary, limit the file size (as explained below).

Some testers may have memory size restrictions for a single SVF file. The SVF limit file option enables you
to limit the size of each SVF file by either file size or vectors.

The generated SVF files append an index to the file name indicating the sequence of files. The format is:
<SVF_filename>_XXXXX.svf

where XXXXX is the index of the SVF file. The first SVF file begins with <SVF_filename>_00000.svf and
increments by 1 until file generation is complete.

Maximum file size: Max file size limit for the SVF file; use this option to limit your SVF file size based on
number of kB.

Maximum number of vectors: Max vector limit for the SVF file; use this option to limit the size of your SVF
based on number of vectors.

Generate Programming Files E|
hame: Existing programming files in this location:
o | TOP HF.pdb
HF .stp
Location:
| Piladbia3p2s0 TOP.stp
[dTop_1532

MBS [Tor_sv

6 Output Farmats:

[JIEEE 1532 Files (*.bsd; *.isc)
[|DirectC File (*.dat)
[w|Programrming Data File (*.pdb)
[WISTAFL File {*.skp)

[w]Serial Wector Files {*.suf

v Limit file size

(% Maxirnum file size 9000 KE
™ Maximum number of vectors ,7

Generate | Cancel |

Figure 56 - Generate Programming Files Dialog Box (Flashpoint)

Programming File Types

The table below summarizes the Microsemi SoC programming file types and programmers.

Unless otherwise noted, listing an individual device indicates the device family and all its derivatives. For
example, IGLOO indicates IGLOO, IGLOOe, IGLOO nano and IGLOO plus. See the Supported Families
topic for more information. See the list of programming file type descriptions below for more details.

Programming File Device Support Programmer
Type
PDB (*.pdb) See device FlashPro 4/3/3x
specifications
STAPL (*.stp) FlashPro 4/3/3x, FlashPro Lite, FlashPro,
Silicon Sculptor /11

Libero SoC User's Guide 149

http://www.actel.com/documents/directc_ug.pdf

& Microsemi

Table of Contents

Programming File Device Support Programmer
Type
SVF (*.svf) Third party programmer
IEEE 1532 (*.isc or Third party programmer
* bsd)

The following programming-related files are required if you use the related functional block elements in your
enabled devices. See the appropriate sections of the FlashPro help for more information on creating these
files.

File Type Device Support Function
FDB (*.fdb) | See device specifications | Contains your FPGA array data
UFC (*.ufc) Contains your FlashROM data
EFC (*.efc) Contains your Embedded Flash Memory file

PDB Files

A proprietary Microsemi programming data file.

STAPL Files

The Standard Test And Programming Language (STAPL) is designed to support the programming of
programmable devices and testing of electronic systems, using the IEEE Standard 1149.1: “Standard Test
Access Port and Boundary Scan Architecture” (commonly referred to as JTAG) interface. As a STAPL file is
executed, signals are produced on the IEEE 1149.1 interface, as described in the STAPL file. STAPL
operates on a single IEEE 1149.1 chain. STAPL supports the programming of any IEEE 1149.1-compliant
programmable device.

STAPL has support for programming and test systems with user interface features. A single STAPL file may
perform several different functions, such as programming, verifying, and erasing a programmable device.

Bitstream Files

Proprietary Microsemi programming data file.

SVF Files

Courtesy Serial Vector Format Specification from ASSET InterTech, 1999:

Serial Vector Format (SVF) is the media for exchanging descriptions of high-level IEEE 1149.1 bus
operations. In general, IEEE 1149.1 bus operations consist of scan operations and movements between
different stable states on the IEEE 1149.1 state diagram. SVF does not explicitly describe the state of the
IEEE 1149.1 bus at every Test Clock.

The SFV file is defined as an ASCII file that consists of a set of SVF statements. The maximum number of
characters on a line is 256, although one SVF statement can span more htan one line. Each statement
consists of a command and associated parameters. Each SVF statement is terminated by a semicolon. SVF
is not case sensitive.

IEEE 1532 Files

Courtesy ieee.org:

The IEEE 1532 files implement programming capabilities within programmable integrated circuit devices,
utilizing (and compatible with) the 1149.1 communication protocol. This standard allows the programming of
one or more compliant devices concurrently, while mounted on a board or embedded in a system, known as
In-System Configuration.

150

& Microsemi
Table of Contents

Generate a Programming File for SmartFusion

You can configure and generate a new PDB file from FlashPoint.

If you are using Single Mode, click Create to add a new PDB, or click Modify to make changes to a loaded
PDB.

In Chain Mode, if you have not already done so, construct a chain and click Create PDB to create a new
PDB for programming, or click Modify PDB to make changes to a loaded PDB.

FlashPoint enables you to specify your security settings and silicon features when you generate your
programming file in SmartFusion. You can specify your FPGA Array, FlashROM, and Embedded Flash
Memory by importing FDB, UFC and EFC files, respectively (as shown in the figure below). If you have
imported a FlashROM and Embedded Flash Memory file you can click Modify to configure these feature
before saving your PDB file.

Click Specify I/O States During Programming to set custom I/O states.
Note: You must import an FDB to populate Port Name and Macro Cell columns.

FlashPoint - A2F200M3F. pdb X

Silicon Featureds) to be programmed:

I¥ Security settings Specify,..

ER ¥ Frca array

Cihactelpritsmartfusion_sample_fpro_files\SD.fdb Impott. ..

B W Flashrom
Cihactelpritsmartfusion_sample_fpro_files\MSs_IUFROM_0,ufc Import. .. | Modify, .. |

m Iv Embedded Flash Memary

/¢y SilActel_Project_Testings|SmartFusionicomponentiwork),.. \M55_ENYM_D.efc Impart... | Madify. .. |

o Specify [j0 States During Programming. ..

Silicon signature {max length is 8 HEX chars):

Help Save PDB | Cancel

Figure 57 - FlashPoint Programming Settings for SmartFusion

Libero SoC User's Guide 151

& Microsemi

Table of Contents

Generate a Programming File for CoreMP7/Cortex-M1

Device Support
FlashPoint enables you to program FPGA Array and FlashROM features for CoreMP7/Cortex-M1 devices.
You can program these features separately using different programming files or you can combine them into
one programming file. Each feature is listed as a silicon feature in the GUIL You can generate a programming
file with one, two, or all of the silicon features from the Programming File Generator first page. For
CoreMP7/Cortex-M1 device support, you cannot select your own security settings. The generated
programming file always has the encrypted FPGA Array content. The programming file generation is the
same as the ProASIC3 family devices.

To generate a programming file:
1. Select the Silicon feature(s) you want to program.
FPGA Array
FlashROM
2. Click Next or Finished depending on the silicon features you selected.

If you click Next, follow the instructions in the appropriate dialog box. If you click Finish, the Generate
Programming Files dialog box appears. Use this dialog box box to specify the programming file name, location, and

output format (STAPL file, SVF file, PDB file, DirectC DAT file, 1532 file).

For more information on DAT files, refer to the Data File Generator (DatGen) section of the DirectC User's Guide.

CoreMP7/Cortex-M1 Device Security
CoreMP7/Cortex-M1 devices are shipped with the following security enabled:

e FPGA Array enabled for AES encrypted programming and verification.
¢ FlashROM enabled for plain text read and write.
You cannot select your own security settings. The generated programming file includes the encrypted

FPGA Array content.

Programming FlashROM and FPGA Array

For CoreMP7/Cortex-M1 device support, the programming generation for FlashROM and FPGA Array is the
same as the programming generation for ProASIC3 and ProASIC family devices.

Generate a Programming File for AFS Device Support - Designer
Only

FlashPoint enables you to program Security Settings, FPGA Array, Embedded Flash Memory Blocks, and
FlashROM features for AFS device support. You can program these features separately using different
programming files or you can combine them into one programming file. Each feature is listed as a silicon
feature in the GUI. You can generate a programming file with one, two, or all of the silicon features from the
Programming File Generator first page.

152

http://www.actel.com/documents/directc_ug.pdf

AFS Programming

& Microsemi
Table of Contents

In addition to FPGA Array, FlashROM and security setting, the Fusion devices provide Embedded Flash

Memory

Blocks (FB) for both Analog configuration initialization and regular memory storage. Depending on the
targeted AFS device, you may have one, two, or four FBs available to you. FlashPoint enables you to
initialize the FB Instance(s), as desribed in the Embedded Flash Memory help.

To generate a programming file:

1. Select the Silicon feature(s) you want to program.

Security Settings

FPGA Array

FlashROM

Embedded Flash Memory Block

FlashPoint - Programming File Generator - Step 1 of 3

o Iv Security settings
Iv FPGa array

¥ FlashRomM

F:iymy_FROM, ufc

Silicon Featurels) to be programmed:

Criginal FlashROM configuration File:

Embedded Flash Memory Blocks (EFMB):

X

Help

Program :I;ﬁt LE(I:ztl:iI:Jn Original Configuration File
1 Ird firmwareh /N 1 F:AFlash_Memomy_Block. efc Modify...
[Programming previously secured deviceds)
Modify I/ States During Programming. ..
Silicon signature (max length is 8 HEX chars):
| et | Finish | Cancel

Figure 58 - FlashPoint- Programming File Generator for AFS
Note: Check the check box in the Program column to enable block modification.

2. Check the Programming previously secured devices(s) box if you want to program previously
secured devices.

3. Enter the Silicon signature.

4. Depending upon the Silicon features you selected, click Finish or Next.

If you click Next, follow the instructions in the appropriate dialog box. If you click Finish, the Generate
Programming Files dialog box appears. Use this dialog box box to specify the programming file name,
location, and output format (STAPL file, SVF file, PDB file, DirectC DAT file, 1532 file).

For more information on DAT files, refer to the Data File Generator (DatGen) section of the DirectC User's

Guide.

Libero SoC User's Guide

153

http://www.actel.com/documents/directc_ug.pdf

& Microsemi

Table of Contents

Programming Security Settings, FlashROM, and FPGA Array

For AFS device support, the programming generation for Security Settings, FlashROM and EPGA Array is
the same as the programming generation for ProASIC3 family devices.

154

& Microsemi

Table of Contents

Generate a Programming File for Serialization Support in In House
Programming (IHP)

FlashPoint allows you to program security settings, FPGA Array, and FlashROM features for SmartFusion,
IGLOO, ProASIC3, Fusion family devices. You can program these features separately using different
programming files or you can combine them into one programming file. Each feature is listed as a silicon
feature in the GUI.

SVF Serialization Support in IHP

In addition to FPGA Array, FlashROM, and security setting, FlashPoint supports generating SVF files with
serialization support in IHP.

To generate SVF with serialization support:
1. Select the Silicon feature(s) you want to program.
e Security settings
o FPGA Array
e FlashROM

¢ Programming Embedded Flash Memory Block

2. Import the UFC file which contains serialization data to FlashROM. Click Next.
Type in the number of devices to program (as shown in the figure below).

FlashROM Settings - Step 2 of 2 x|
|FIashROM regions; Region_7_10 LI
Program Properkies:
page Marng Reqion 710
v Start page 7
Start word 10
v Length g
Content Static
¥ State Fixed
I Type HE=
" alue 123123
=2
=2
=2
v
FlashROM STAPL File type
’7 @ Single STAPL fil for all devices " One STAPL file per device
Number of devices ko program: 100 Target Pragrammet. .. |
Help | Back I Iext I Finish Cancel

Figure 59 - Type Number of Devices
4. Click Target Programmer and select Microsemi IHP.

Libero SoC User's Guide 155

& Microsemi

Table of Contents

Select Programmer Type

Programmer types:

" Generic STAPL player

£ Silicon Sculptor 1, BP Auta Programmer, ar FlashPro3

v pctel IHP [In House Prograrmming]

Help | k. | Cancel

Figure 60 - Select Microsemi IHP

5. Click OK. The Generate Programming Files window appears (as shown in the figure below). Select
Serial Vector Files (*.svf).

Generate Programming Files

Manee:

AP060 FG256 Rl

Location:
rF:'l,adh'l,aBpDSD
Browse, ..
Qubput Formats:
[JIEEE 1532 Fias (*.bsd; *.isc)

[IProgramming Data Files (*.pdb)
|STAPL Files (*,stp)
T Serial Vecter Files (*,svF)

Cancel

Select Serial Vector Files

6. Click Generate. An Microsemi-specific SVF file will be generated with a corresponding serialization
data file.

Note: Generated SVF files will only work with IHP.

156

& Microsemi
Table of Contents

Creating a Programming Database (PDB) File in Designer

The programming database (PDB) file supports SmartFusion, IGLOO, ProASIC3 and Fusion devices only.
This allows reconfiguration of the security settings, FlashROM, FPGA Array, and Embedded Flash Memory
Blocks. You create the file in Designer using FlashPoint and you modify the file in FlashPro.

You must create programming files for SmartFusion in FlashPro; see the Generate a Programming File for
SmartFusion topic for more information.

1. From the Designer main window, click the Programming File button. This brings up FlashPoint (see
figure below).

FlashPoint - Programming File Generator - Step 1 of 3 §|

Silicon Featurels) o be programmed:
o Iv Security settings
v FPGA Array
¥ FlashRoM
Original FlashROM configuration File:

Embedded Flash Memory Blocks (EFME):

Program :I:;:; LE:;?:EH Original Configuration File
1 Ird firraare AR 1 F:\Flazh_Meman_Block. efc Modify,..

[Programming previously secured device(s)

Modify /0 States During Programming. ..

Silicon signature (max length is 8 HEX chars):

Help Texk Finish Cancel

Figure 61 - FlashPoint Programming File Generator - PDB File

2. Select the silicon feature(s) to be programmed: Security Settings, FPGA array, FlashROM, and
Embedded Flash Memory Block. If you are programming a previously secured device, check the
Programming previously secured device(s) and enter the silicon signature.

3. Click Finish to create the PDB file.

See Also
Configuring security and FlashROM settings in FlashPro
Configuring security settings in FlashPro
Configuring FPGA array settings
Configuring FlashROM settings in FlashPro
Configuring Embedded Flash Memory Block settings in FlashPro

Programming Embedded Flash Memory Block

For more information about the Embedded Flash Memory Block, see the Flash Memory System Builder
online help.

To program the Embedded Flash Memory Block:

1. Check the Program box to enable Embedded Flash Memory Block modification.

Libero SoC User's Guide 157

http://www.actel.com/documents/asb_flashrom_nvm_ug.pdf

& Microsemi

Table of Contents

2. Click the Modify button to import Embedded Flash Memory Block configuration and memory content.
The Modify Embedded Flash Memory Block dialog box appears.

Modify Embedded Flash Memory Block

Block name!

Block location:

Firmware) NYM_INST

1

)

Help

O |

Block configuration file: D:prodB0auditinvm_all_newinyvm_all_new.efc Impart Configuration File,.,
Block content:
Select All Clients Unselect All Clisnts
JTAG Protection
. ' Lt Cliant - !
Program | Client Type | Client Name | Address |, or gy | Prevent | Prevent | Driginal Memory Content File
[hex] Read Wirite
q " Analog Syste ash MNa N/& I i
2 [~ CFl Data cfiData M MNZ& I i D:AprodBOauditsnym_simplehinput_m Import content.
3 [~ [rata Storage ds 1} 18 I I Lr:\prodB0auditsnem_simpletinput_m Import content,.
4 Ird Initizlization init1 a0 1B r ' [:AprodB0auditsnym_simplehinput_m Import content..
5 Ird RaM Initializat raminit 100 51249 r r

Cancel ‘

Figure 62 - Modify Embedded Flash Memory Block Content Dialog Box

3. Click the Import Configuration File button (if available) to import the Embedded Flash Memory Block
configuration and memory content from the EFC file. This will populate the client table below. All
clients that belong to this block will be selected by default.

. Click the Import content button if you want to change the client memory content.
5. Click OK.

Note: FlashPoint audits original configuration and memory content files and warns you if the files
cannot be located or if they have been updated.

Programming the FlashROM

You can program selected memory pages and specify the region values of the FlashROM.

e Single STAPL file for all devices: generates one programming file with all the generated increment
values or with values in the custom serialization file.

e One STAPL file per device: generates one programming file for each generated increment value or
for each value in the custom serialization file.

1. Select your target Programmer type.
* Select Generic STAPL Player when generating STAPL files for generic STAPL players.

* Select Silicon Sculptor II, BP Auto Programmer, or FlashPro5/4/3x/3 when generating

programming files for those programmers.

* Select Microsemi IHP (In House Programming) when generating STAPL or SVF files for
Microsemi SoC (formerly Actel) IHP.
2. Click OK.
FlashPoint generates your programming file.

Note: You cannot change the FlashROM region configuration from FlashPoint. You can only
change the configuration from the FlashROM core generator.

For more information, click the Help button in FlashROM.
To program FlashROM:
1. Select FlashROM from the Generate Programming File page.

2. Enter the location of the FlashROM configuration file. The FlashROM Settings page appears (see
figure below).

158

& Microsemi

Table of Contents

FlashROM Settings - Step 2 of 2 x|
|FIashROM regions: Region_7_10 ;I
Pragrarn Properkies:
page MName Region_7_10
v Start page 7
Start word 10
v Length B
Cantent Static
¥ State Fixed
I~ Type HEX
W alue 123123
v
I3
=2
I~
FlashR.OM STAPL File tvpe
’7 " Single STAPL file for all devices One STAPL file per device
Number of devices ko program: 100 Target Programmer... |
Help | Back I Tt I Firish Cancel

Figure 63 - FlashROM Settings
3. Select the FlashROM memory page that you want to program.

Enter the data value for the configured regions.

4
5. Ifyou selected the region with a Read From File, specify the file location.

>

If you selected the Auto Increment region, specify the Start and Max values.
Enter the number of devices you want to program.

Select your target Programmer Type.

Select Programmer Type

Praogramrer bypes:

™ Generic STAPL player

& Silicon Sculptar |, BP &uto Programmer, or FlazhPro3

i actel IHP [In House Programming]

Help |] I Cancel

Select Programmer

7. Click Finish.
FlashPoint generates your programming file.
Note: You cannot change the FlashROM region configuration from FlashPoint. You can only change the
configuration from the FlashROM core generator.

Libero SoC User's Guide 159

& Microsemi

Table of Contents

Silicon Signature

With Libero SoC tools, you can use the silicon signature to identify and track Microsemi designs and
devices. When you generate a programming file, you can specify a unique silicon signature to program into
the device. This signature is stored in the design database and in the programming file, and programmed
into the device during programming.

The silicon signature is accessible through the USERCODE JTAG instruction.

Note: If you set the security level to high, medium, or custom, you must program the silicon
signature along with the Security Setting. If you have already programmed the Security
Setting into the target device, you cannot reprogram the silicon signature without
reprogramming the Security Setting.

Note: The previously programmed silicon signature will be erased if:
e You have already programmed the silicon signature and
e You are programming the security settings, but you do not have an entry in the silicon signature field

Programming Security Settings

FlashPoint allows you to set a security level of high, medium, or none (SmartFusion uses radio buttons and
the option Clear Security instead of None).

To program Security Settings on the device:
1. If you choose to program Security Settings on the device from the Generate Programming File page,
the wizard takes you to the Security Settings page.

Your Security Settings page depends on your family.
2. Set the security level for FPGA and FlashROM (see the table below for a description of the security

levels).
Table 9 - FPGA and FROM Security Settings
Security Security Option Description
Level
High Protect with a 128-hit | Access to the device is protected by an AES Key

Advanced Encryption | and the Pass Key.

Standard (AES) key The Write and Verify operations of the FPGA Array
and a Pass Key use a 128-bit AES encrypted bitstream.

From the JTAG interface, the Write and Verify
operations of the FlashROM use a 128-bit AES
encrypted bitstream. Read back of the FlashROM
content via the JTAG interface is protected by the
Pass Key.

Read back of the FlashROM content is allowed
from the FPGA Array.

Medium Protect with Pass Key | The Write and Verify operations of the FPGA Array
require a Pass Key.

From the JTAG interface, the Read and Write
operations on the FlashROM content require a
Pass Key. You can Verify the FlashROM content
via the JTAG interface without a Pass Key.

Read back of the FlashROM content is allowed
from the FPGA Array.

None No security The Write and Verify operations of the FPGA Array
do not require keys.
The Read, Write, and Verify operations of the

160

& Microsemi

Table of Contents

Security Security Option Description
Level

FlashROM content also do not require keys.

This option is available for SmartFusion; to choose
it, de-select the Security Settings checkbox.

Note: When a Device is programmed with a Pass key and AES key, only the Pass key is required for
reprogramming since re-entering the correct Pass key unlocks the bits that restrict programming to
require AES encryption and also unlocks the bits that prohibit reprogramming altogether (if
locked); thus both plaintext and encrypted programming are [re-] enabled.

3. Enable eNVM client JTAG protection - Enables eNVM client JTAG protection in
the event you have not set Medium or High security. Enables you to protect specific
clients with a user pass key and then leave others unprotected. This can be
advantageous if you want to protect your IP, but give another user access to the rest of

the eNVM for storage. You can also set custom security levels for your eNVIM.

4. Enter the Pass Key and/ or the AES Key as appropriate. You can generate a random
key by clicking the Generate random key button.

The Pass Key protects all the Security Settings for the FPGA Array and/or FlashROM.
The AES Key decrypts FPGA Array and/or FlashROM programming file content. Use the AES Key if you

intend to program the device at an unsecured site or if you plan to update the design at a remote site in the
future.

You can also customize the security levels by clicking the Custom Level button. For more information, see
the Custom Security Levels section.

To change or disable your security keys you must run the ERASE_SECURITY action code. This erases your
security settings and enables you to generate the programming file with new keys and reprogram, or to
generate a programming file that has no security key.

Custom Security Levels

For advanced use, you can customize your security levels.
To set custom security levels:

1. Click the Custom Level button in the Security Settings page. The Custom Security Level dialog
box appears.

2. Select the FPGA Array Security and the FlashROM Security levels. ForSmartFusion and Fusion
devices, you can also choose the Embedded Flash Memory Block level of security. The FPGA Array
and the FlashROM can have different Security Settings. See the tables below for a description of the
custom security option levels for FPGA Array and FlashROM.

Table 10 - FPGA Array

Security Option Description
Lock for both writing and verifying Allows

: Set Security Settings writing/erasing

Device Feature i Encrypt ificati
Security ryp i | e | Write and verification

of the FPGA

FPGA Array ¥ r &R 5 Array via the
JTAG interface

only with a

Libero SoC User's Guide 161

& Microsemi

Table of Contents

Security Option

Description

valid Pass
Key.

Lock for writing

Device Feature

Set

Security

Encrypt

Security Seftings

Read | Verify | Write

FPGA Arrzy

¥

| 0

@ | A

Allows the
writing/erasing
of the FPGA
Array only with
a valid Pass
Key.
Verification is
allowed
without a valid
Pass Key.

Use the AES Key for both writing and verifying

Device Feature

Set
Security

Encrypt

Security Settings

Read | Verify | Write

FPGA Array

| ¥

| &

Allows the
writing/erasing
and verification
of the FPGA
Array only with
a valid AES
Key via the
JTAG
interface. This
configures the
device to
accept an
encrypted
bitstream for
reprogramming
and verification
of the FPGA
Array. Use this
option if you
intend to
complete final
programming
at an
unsecured site
or if you plan
to update the
design at a
remote site in
the future.
Accessing the
device security
settings
requires a valid
Pass Key.

Allow write and verify

Device Fzature

Set
Security

Encrypt

Security Settings

Read | Verify | Wirite

FPGA Array

Allows
writing/erasing
and verification
of the FPGA
Array with
plain text
bitstream and

162

& Microsemi
Table of Contents

Security Option Description

without
requiring a
Pass Key or an
AES Key. Use
this option
when you
develop your
product in-
house.

Note: The ProASIC3 family FPGA Array is always read protected regardless of the Pass Key or
the AES Key protection.

Table 11 - FlashROM

Security Option Description
Lock for both reading and writing Allows the
i Set Security Settings writing/erasing and
Device Feature .. | Encrypt i
Security Read | Veriy | write | | [oding ofthe
FlashROM via the
FlashROM 4 r A (] /| J7AG interface
only with a valid
Pass Key.

Verification is
allowed without a
valid Pass Key.

Lock for writing Allows the
z : writing/erasing of

Device Feature Seiitritg.r Encrypt pray L.T.ettlngs - the FIQ:J";lshROI\Q/IJ via

Read | Verify | write the JTAG interface
FlashROM ~ r | @] 3 | only with a valid
Pass Key. Reading
and verification is
allowed without a
valid Pass Key.

Use the AES Key for both writing and verifying Allows the
: set Security Settings writing/erasing and
Device Feature Security| ENCTYPt Read | Veriy | Wirite verification of the
— FlashROM via the
FlashROM ~ ¥ B JTAG interface
only with a valid
AES Key. This
configures the
device to accept
an encrypted
bitstream for
reprogramming
and verification of
the FlashROM.
Use this option if
you complete final
programming at an
unsecured site or if

Libero SoC User's Guide 163

& Microsemi
Table of Contents

Security Option

Description

you plan to update
the design at a
remote site in the
future.

Note: The
bitstream that is
read back from the
FlashROM is
always
unencrypted (plain
text).

Allow reading, writing, and verifying

Security Setti
Device Feature SEt. Encrypt Sy o
Security Read | Verify | Write
FlashROM | H

Allows
writing/erasing,
reading and
verification of the
FlashROM content
with a plain text
bitstream and
without requiring a
valid Pass Key or
an AES Key.

Note: The FPGA Array can always read the FlashROM content regardless of these Security

Settings.

Table 12 - Embedded Flash Memory Block

Security Option

Description

Lock for reading, verifying, and writing

Allows the writing
and reading of the
Embedded Flash
Memory Block via
the JTAG interface
only with a valid
Pass Key.
Verification
accomplished by
reading back and
compare.

Security Setti
Device Feature SEt. En{:ry.rpt| EEUly LN |
Security | Read | Verify | Write |
firmwarel/NVM_INST (# 1) | = r 5 i % i
Lock for writing
Security Setti
Device Feature SEt. Encrypt ECUITY ClE
Security Read | Verify | Write
firmwareUNVIM_INST (#1) I~ r] [Ei] A

Allows the writing
of the Embedded
Flash Memory
Block via the JTAG
interface only with
a valid Pass Key.
Reading and
verification is
allowed without a
valid Pass Key.

Use AES Key for writing

Allows the writing
of the Embedded
Flash Memory

164

& Microsemi

Table of Contents

Security Option

Description

Device Feature

Set

Security Settings

Security SLaL

Read | Verify | Wirite

firmwareWNVM_INST (#1)

= 5

BE 0 R E

Block via the JTAG
interface only with
a valid AES Key.
This configures the
device to accept
an encrypted
bitstream for
reprogramming of
the Embedded
Flash Block. Use
this option if you
complete final
programming at an
unsecured site or if
you plan to update
the design at a
remote site in the
future. The
bitstream that is
read back from the
Embedded Flash
Memory Block is
always
unencrypted (plain
text), when a valid
pass key is
provided.

Allow reading, writing, and verifying

5 ity Setti
Device Feature SEt. Encrypt EEUITY o« HNNE
Security Read | Verify | Virite
firmwareUHVM_INST (#1) | r i

Allows writing,
reading and
verification of the
Embedded Flash
Memory Block
content with a
plain text bitstream
and without
requiring a valid
Pass Key or an
AES Key.

3. To make the Security Settings permanent, select Permanently lock the security settings check box.
This option prevents any future modifications of the Security Setting of the device. A Pass Key is not
required if you use this option.

Note: When you make the Security Settings permanent, you can never reprogram the Silicon

Signature. If you Lock the write operation for the FPGA Array or the FlashROM, you can never

reprogram the FPGA Array or the FlashROM, respectively. If you use an AES key, this key

cannot be changed once you permanently lock the device.

4. (SmartFusion Only) Enable M3 Debugger option enables access to the M3 debugger even if security is
enforced. Select the Enable M3 debugger checkbox if you want to access the M3 debugger after
programming.

5. To use the Permanent FlashLock™ feature, select Lock for both writing and verifying for FPGA
Array and Lock for both reading and writing for FlashROM and select the Permanently lock the

Libero SoC User's Guide

165

& Microsemi

Table of Contents

Security Settings - Step 2 of 2 F§|

security settings checkbox as shown in the figure below. This will make your device one-time-
programmable.

Silicon Feature Se?:zllilyn Encrppt Heasdecu'\l:-:risfeumizrile
FPGA Array I I & R
FlashROM ¥ r i [E] i
eNVM (i 0) ~ r & & R
eNVM (i 1) I r & & R

To see ellyM client ITAG protection information place your mouse cursor over each ellyi
block.

V¥ Enable M3 debugger
¥ Permanently lock the security settings.

o The Following silicon Features will not be reprogrammable:
- Security settings, AES key, and silicon signature

- FPEA Array

- FlashRomM

- MM (# 00

- MM (# 1)

Help | OF I Cancel

Custom Security Level

6. Click the OK button. The Security Settings page appears with the Custom security settings
information as shown in the figure below.

Security level For this device:

s SRR SRS Security settings For FPGEA Array:

- se AES kew bowrite or verify the FPGA Array.

Security settings For FlashROM:
- Use AES key ko write the FlashROM via the JTAG interface.

Custam Level,.. | Default Lewvel |

Pass Kew {max length is 32 HEX chars):

DE67BEOFIGASD7ESAE] 766D4A64EE 1 683 Generate randam key |

AES Key (max length is 32 HEX chars):

| GATAESGOSCCBOATF4 7 7ER007EZ 7 FDO7TS Generate random key

Help Back Finish Cancel

Figure 64 - Security Settings

Reprogramming a Secured Device

You must know the previous Security Settings of the device before you can reprogram a device with
Security Settings.

166

& Microsemi

Table of Contents

To program a secured device:

1. Inthe Generate Programming File window, click the Programming previously secured devices(s)
check box (see figure below).

FlashPoint - Programming File Generator - Step 1 of 2 E

Silicon Featureds) to be programmed:
[Security settings
V' FPGa Array

[~ FlashRom

EZE

Embedded Flash Memory Blocks (EFME);

Program :I:;:; LE(';T:EH Oniginal Configuration File
1 Ird Frd1_0AMWR_IM... 1 D:Mus_ B0wssrvem_allsnem_all efc Modify,..

[+ Programming previously secured devices)

Modify IQ States During Programming. .. |

e Select Security settings above to program silicon signature,

Help ext | Finish | Cancel

Figure 65 - Generate Programming File

2. Specify the previously programmed security setting for the FlashROM and/or the FPGA Array. To
generate a programming file for encrypted programming please ensure that the Security settings
checkbox is unchecked.

3. If you programmed the device with a custom security level, click the Custom Level button to open the
Custom security dialog box, and select the Security Settings for the FPGA Array or the FlashROM
that you programmed (see figure below).

Libero SoC User's Guide 167

& Microsemi

Table of Contents

Security Settings - Step 2 of 2

%]

Security level For this device:

i SREUTE) SRR Security settings For FPGA Array:

- |lse AES kew ko write or verify the FPGA Array,

Custom Level... Default Lewvel |

Pass Kew (max length is 32 HEX chars):

BES key (max length is 32 HEX chars):

| &A7EESEECCBOATF47FE00FEZ77DOTTE

The AES Key must match the one
e previously programmed in this device,

Help Back | Finish | Cancel

Figure 66 - Security Settings

4. Enter the previously programmed Pass Key and/or the AES Key.
5. Click Finish.

Note: Enter the AES Key only if you want to perform encrypted programming.

Programming a Secured SmartFusion Device
After you create a PDB you may wish to export a programming file for a secured device. To do so:
1. Create a PDB file (as explained above) with security set to High or Medium. Save the PDB file.

2. From the File menu, choose Export Single Programming File. The Export Programming Files dialog
box appears.

3. Click the Export programming file(s) for currently secured device checkbox. This exports
programming files for devices that already have security settings programmed.

Choose your outputs and enter your output file Name and Location.

5. Click Export to create the file(s). Your updated secured programming files are in the directory you
specified.

Custom Serialization Data for FlashROM Region

FlashPoint enables you to specify a custom serialization file as a source to provide content for programming
into a Read from file FlashROM region. You can use this feature for serializing the target device with a
custom serialization scheme.

To specify a FlashROM region:

1. From the Properties section in the FlashROM Settings page, select the file name of the custom
serialization file (see figure below). For more information on custom serialization files, see Custom
Serialization Data File Format.

168

& Microsemi
Table of Contents

Figure 67 - FlashROM Settings
2. Select the FlashROM programming file type you want to generate from the two options below:

e Single programming file for all devices option: generates one programming file with all the values in the custom
gle prog g P g prog g

serialization file.

One programming file per device: generates one programming file for each value in the custom serialization file.

Enter the number of devices you want to program.
Click the Target Programmer button.

Select your target Programmer type.

Click OK.

S

Custom Serialization Data File Format

Semantics

FlashPoint supports custom serialization data files that specify the data in binary, HEX, decimal, or ASCII

text. The custom serialization data files may contain multiple data with the Line Feed (LF) character as the
delimiter. You can create a file by entering serialization data into any type of text editor. Depending on the
serialization data format (hex, ASCII, binary, decimal), input the serialization data according to the size of

the region you specified in the FlashROM settings page.

Each custom serialization file has only one type of data format (binary, decimal, Hex or ASCII text). For
example, if a file contains two different data formats (i.e. binary and decimal) it is considered an invalid file.

The length of each data file must be shorter or equal to the selected region length. If the data is shorter then
the selected region length, the most significant bits shall be padded with 0’s. If the specified region length is
longer then the selected region length, it is considered an invalid file.

The digit / character length is as follows:

-Binary digit: 1 bit

-Decimal digit: 4 bits

-Hex digit: 4 bits

-ASCIl Character: 8 bits

Note: Note the standard example below:

If you wanted to use, for example, device serialization for three devices with serialization data 123, 321, and
456, you would create file name from_read.txt. Each line in from_read.txt corresponds to the serialization
data that will be programmed on each device. For example, the first line corresponds to the first device to be
programmed, the second line corresponds to the second device to be programmed, and so on.

Hex serialization data file example

The following example is a Hex serialization data file for a 40-bit region. Enter the serialization data below
into file created by any text editor:

123AEd210
AeB1
0001242E

Libero SoC User's Guide 169

& Microsemi

Table of Contents

Note: If you enter an invalid Hex digit such as 235SedF1, an error occurs. An error will also occur
if you enter data that is out of range, i.e. 4300124EFE.
The following is an example of programming "AeB1" into Region_7_1 located on page 7, from Word 5 to

Word 1 in the FlashROM settings page. See Custom serialization data for FlashROM region for more
information.

Table 15 | ... Word 5 | Word 4 | Word 3 | Word 2 | Word 1 | Word O

Page 7 | ... o | ... | 00 00 00 AE B1

Binary serialization data file example
The following example is a binary serialization data file for a 16-bit region:

1100110011010001

100110011010011

11001100110101111 (This is an error: data out of range)
1001100110110111

1001100110110112 (This is an error: invalid binary digit)

Decimal serialization data file example

The following example is a decimal serialization data file for a 16-bit region:
65534

65535

65536 (This is an error: data out of range)

6553A (This is an error: invalid decimal digit)

Text serialization data file example

The following example is a text serialization data file for a 32-bit region:
AESB

A e

ASE3 23 (This is an error: data out of range)

65A~

1234

AEbF

Syntax
Indentations in the syntax below indicate a wrapped line. If a line wraps and is not indented, then it should
appear on one line; you may need to expand your help window to view the syntax correctly.
Custom serialization data file =
<hex region data list> | <decimal region data list> |
<binary region data list> | <ascii text data list>
Hex region data list = <hex data> <new line> { < hex data> <new line> }
Decimal region data list = <decimal data> <new line> {<decimal data><new line> }
Binary region data list = <binary data> <new line> { <binary data> <new line> }
ASCII text region data list = < ascii text data> <new line> { < ascii text data> <new
line> }
hex data = <hex digit> {<hex digit>}
decimal data = < decimal digit> {< decimal digit>}
binary data = < binary digit> {< binary digit>}
ASCIl text data = <ascii character> {< ascii character >}
new line = LF
binary digit = “07]“1~

170

& Microsemi

Table of Contents

decimal digit = “0”7|“1”|“2”|“3”|“4"|“5°|“6”|“7"|“8"]| “9~
hex digit = “0”]“1”]“2”]“3”|“47|“57|“67 778" |“9”|“A”|“B”|“C”|“D” | “E”| “F” |
“a’] “b* | “c”| <d” | e’| “f

ascii character = characters from SP(0x20) to“~’(Ox7E).

File Format Limitations

The read from file data size cannot exceed the size of the region. The maximum size supported for each
format is described below:

HEX - limited to the size of the FlashROM page. Maximum size of 128-bits
DEC - 32-bit unsigned numbers. Maximum decimal value is: 4294967295
BIN - limited to the size of the FlashROM page. Maximum size of 128-bits
TEXT - limited to the size of the FlashROM page. Maximum size of 128-bits

Specifying 1/0O States During Programming

In Libero SoC, the I/O states can be set prior to programming, and held at the set values during
programming. In Libero SoC, this feature is only available once layout is completed.

1. From the Designer GUI, click the Modify I/O States During Programming button. The Programming
File Generator window appears.

2. Click the Specify I/O States During Programming button to display the Specify /O States During
Programming dialog box.

3. Sort the pins as desired by clicking any of the column headers to sort the entries by that header.
Select the I/Os you wish to modify (as shown in the figure below).

4. Set the I/0O Output state. You can set Basic I/O settings if you want to use the default I/O settings for
your pins, or use Custom /O settings to customize the settings for each pin. See the Speci
States During Programming - I/O States and BSR Details help topic for more information on setting
your 1/O state and the corresponding pin values. Basic I/O state settings are:

e 1-1/O is set to drive out logic High

e 0-1I/Ois set to drive out logic Low

e Last Known State: I/O is set to the last value that was driven out prior to entering the

programming mode, and then held at that value during programming

e 7 -Tri-State: I/O is tristated

Libero SoC User's Guide 171

& Microsemi

Table of Contents

Specify I/0 States During Programming
Load from File. .. Save ko file... [™ show BSR Details
Port Hame Macro Cell Pin Humber 1/0 State [Output Only) j
BIST ADLIB:INBUF T2 1
BvPA55_10 ADLIB:INBUF K1 1
CLE. ADLIB:INBUF B1 1
ENOUT ADLIB:INBUF J16 1
LED ADLIB:OUTBUF M3 a
MOMITOR[O] ADLIB:OUTBUF ES a
MOMNITOR[1] ADLIB:OUTBUF c7 d
MOMNITOR[2] ADLIB:OUTBUF k] d
MOMITOR[3] ADLIB:OUTBUF D7 d
MOMNITOR[4] ADLIB:OUTBUF A1 d
OEa ADLIB:INBUF E4 d
OEb ADLIB:INBUF F1 d
O5C_EN ADLIB:INBUF K3 d
PAD[10] ADLIB:BIBUF_LYCMOS33U ME d
PAD[11] ADLIB:BIBUF_LYCMOS33D R? d
PAD[12] ADLIB:BIBUF_LYCMOS33U D11 d
PAD[13] ADLIB:BIBUF_LYCMOS33D c12 d
PAD[14] ADLIB:BIBUF_LYCMOS33U RE d LI
Help | OF I Cancel |

Figure 68 - /O States During Programming Window
6. Click OK to return to the FlashPoint — Programming File Generator window.

Note: 1/O States During programming are saved to the ADB and resulting programming files after
completing programming file generation.

Custom 1/O Settings and Boundary Scan Registers

Each 1/O in your device is comprised of an Input, Output and Output Enable Boundary Scan Register (BSR)
cell..

The BSR cells enable you to define 1/O states during programming and control the individual states for each
Input, Output, and Output Enable register.

The Specify I/0O States During Programming dialog box enables access to each of these BSR cells for
control over the individual states. You can use the 1/0 State (Output Only) settings to set a specific output
state and ignore the other values for the individual BSR elements, or you can click the Show BSR Details
checkbox for control over the settings for each Input, Output Enable, and Output as you exit programming.

Specifying 1/0 States During Programming - I/O States and BSR
Details

The I/O States During Programming dialog box enables you to set custom I/O states prior to programming.

I/O State (Output Only)
Sets your I/O states during programming to one of the values shown in the list below.
e 1 -1/Os are set to drive out logic High
e 0-1/Os are set to drive out logic Low

e Last Known State: I/Os are set to the last value that was driven out prior to entering the programming
mode, and then held at that value during programming

e Z-Tri-State: I/Os are tristated

172

& Microsemi

Table of Contents

When you set your 1/O state, the Boundary Scan Register cells are set according to the table below. Use the
Show BSR Details option to set custom states for each cell.

Table 13 - Default I/O Output Settings

Output State Settings
Input Control (Output Output
Enable)
Z (Tri-State) 1 0 0
0 (Low) 1 1 0
1 (High) 0 1 1
Last_Known_State | Last_Known_State | Last_Known_State Last_Known_State
Table Key:

e 1 —High: I/Os are set to drive out logic High
e 0-—Low: I/Os are set to drive out logic Low

e Last Known_State - I/Os are set to the last value that was driven out prior to entering the
programming mode, and then held at that value during programming

Boundary Scan Registers - Enabled with Show BSR Details

Sets your I/O state to a specific output value during programming AND enables you to customize the values
for the Boundary Scan Register (Input, Output Enable, and Output). You can change any Don't Care value in
Boundary Scan Register States without changing the Output State of the pin (as shown in the table below).

For example, if you want to Tri-State a pin during programming, set Output Enable to 0; the Don't Care
indicates that the other two values are immaterial.

If you want a pin to drive a logic High and have a logic 1 stored in the Input Boundary scan cell during
programming, you may set all the values to 1.

Table 14 - BSR Details 1/0 Output Settings

Output State Settings
Input Output Enable Output
Z (Tri-State) Don't Care 0 Don't Care
0 (Low) Don't Care 1 0
1 (High) Don't Care 1 1
Last Known State Last State Last State Last State
Table Key:

e 1 — High: I/Os are set to drive out logic High
e 0-Low: I/Os are set to drive out logic Low
e Don't Care — Don'’t Care values have no impact on the other settings.

e Last Known_State — Sampled value: I/Os are set to the last value that was driven out prior to entering
the programming mode, and then held at that value during programming

The figure below shows an example of Boundary Scan Register settings.

Libero SoC User's Guide 173

& Microsemi

Table of Contents

Specify I/0 States During Programming
Load from File. .. Save ko file... ¥ show BSR Details

_ Boundary Scan Registers -

Port HName Macro Cell Pin Number Input %l:.lapl;‘::g Dutput j
BIST ADLIB:INBUF T2 a 1 1
BvPA55_10 ADLIB:INBUF K1 a 1 1
CLE. ADLIB:INBUF B1 a 1 1
ENOUT ADLIB:INBUF J16 a 1 1
LED ADLIB:OUTBUF M3 1 1 a
MOMITOR[O] ADLIB:OUTBUF ES 1 1 a
MOMNITOR[1] ADLIB:OUTBUF c7 1 a a
MOMNITOR[2] ADLIB:OUTBUF k] 1 a a
MOMITOR[3] ADLIB:OUTBUF D7 1 a a
MOMNITOR[4] ADLIB:OUTBUF A1 1 a a
OEa ADLIB:INBUF E4 1 a a
OEb ADLIB:INBUF F1 1 a a
O5C_EN ADLIB:INBUF K3 1 a a
PAD[10] ADLIB:BIBUF_LYCMOS33U ME 1 a a
PAD[11] ADLIB:BIBUF_LYCMOS33D R? 1 a a
PAD[12] ADLIB:BIBUF_LYCMOS33U D11 1 a a
PAD[13] ADLIB:BIBUF_LYCMOS33D c12 1 a a

PAD[14] ADLIB:BIBUF_LYCMOS33U RE 1 a a LI

Help | OF I Cancel |

Figure 69 - Boundary Scan Registers

Specify 1/0 States During Programming Dialog Box

The 1/O States During Programming dialog box enables you to specify custom settings for 1/0Os in your
programming file. This is useful if you want to set an 1/O to drive out specific logic, or if you want to use a
custom 1/O state to manage settings for each Input, Output Enable, and Output associated with an 1/O.

Load from file

Load from file enables you to load an I/O Settings (*.ios) file. You can use the 10S file to import saved
custom settings for all your I/Os. The exported |I0OS file have the following format:

e Used I/Os have an entry in the 10S file with the following format:

set_prog_io_state -portName {<design_port_name>} -input <value> -outputEnable <value> -
output <value>

e Unused I/Os have an entry in the IOS file with the following format:

set_prog_io_state -pinNumber {<device_pinNumber>} -input <value> -outputEnable <value> -
output <value>

Where <value> is:
e 1-1/Ois set to drive out logic High
e 0-1/Ois set to drive out logic Low

e Last Known_State: I/O is set to the last value that was driven out prior to entering the programming
mode, and then held at that value during programming

e 7 - Tri-State: I/O is tristated

Save to file

Saves your I/O Settings File (*.ios) for future use. This is useful if you set custom states for your 1/Os and
want to use them again later in conjunction with a PDC file.

174

& Microsemi

Table of Contents

Port Name

Lists the names of all the ports in your design.
Macro Cell

Lists the 1/O type, such as INBUF, OUTBUF, PLLs, etc.
Pin Number

The package pin associate with the 1/0.

I/O State (Output Only)

Your custom I/O State set during programming. This heading changes to Boundary Scan Register if you
select the BSR Details checkbox; see the Specifying I/O States During Programming - I/O States and BSR

Details help topic for more information on the BSR Details option.

Specify I/0 States During Programming
Load from File. .. | Save ko file... | [™ show BSR Details
Port Hame Macro Cell Pin Humber 1/0 State [Output Only) —
BIST ADLIB:INBUF T2 1 —
BvPA55_10 ADLIB:INBUF K1 1
CLE. ADLIB:INBUF B1 1
ENOUT ADLIB:INBUF J16 1
LED ADLIB:OUTBUF M3 a
MOMITOR[O] ADLIB:OUTBUF ES a
MOMNITOR[1] ADLIB:OUTBUF c7 d
MOMNITOR[2] ADLIB:OUTBUF k] d
MOMITOR[3] ADLIB:OUTBUF D7 d
MOMNITOR[4] ADLIB:OUTBUF A1 d
OEa ADLIB:IMBUF E4 z
OEb ADLIB:INBUF F1 d
O5C_EN ADLIB:INBUF K3 d
PAD[10] ADLIB:BIBUF_LYCMOS33U ME d
PAD[11] ADLIB:BIBUF_LYCMOS33D R? d
PAD[12] ADLIB:BIBUF_LYCMOS33U D11 d
PAD[13] ADLIB:BIBUF_LYCMOS33D c12 d
PAD[14] ADLIB:BIBUF_LYCMOS33U RE d LI
Help | OF I Cancel |

Figure 70 - I/O States During Programming Dialog Box

Generate a DAT file

DAT files are generated via the Generate Programming Files dialog box.
To access the Generate Programming Files dialog box from Libero SoC and generate a DAT file:
1. In the Design Flow window, expand Implement Design, right-click Generate Programming Data and
choose Open Interactively. This opens Designer.
Click Programming File to start FlashPoint.

Set your feature and I/O options if necessary. Click Finish. This opens the Generate Programming File
dialog box, as shown in the figure below.

Libero SoC User's Guide 175

& Microsemi

Table of Contents

Generate Programming Files @

Mame: Existing programming files in this location:
DAT_progl]| sp1.pdb
S01.skp

Location:

Ci\Documents and SettingsiFarleyciDeskioplactel_projy

Browse...

Oukput formats:

[C]IEEE 1532 Files (*.bsd; *.isc)
[#]DirectC File {*.dat)
[¥]Pragramming Data File (*.pdb)
[]STARL File (* stp)

[C]5erial ector Files (*.5vf)

[Generate] [Cancel]

Figure 71 - Generate Programing Files Dialog Box - DirectC File (*.dat)
Set your output file Name and Location.
Set your Output Formats to DirectC file (*.dat) and Programming Data File (*.pdb).
Click Generate to create your file.

FlashLock®

Microsemi's SmartFusion devices contain FlashLock circuitry to lock the device by disabling the
programming and readback capabilities after programming. Care has been taken to make the locking
circuitry very difficult to defeat through electronic or direct physical attack.

FlashLock has three security options: No Lock, Permanent Lock, and Keyed Lock.

No Lock
Creates a programming file which does not secure your device.

Permanent Lock

The permanent lock makes your device one time programmable. It cannot be unlocked by you or anyone
else.

Keyed Lock

Within each device, there is a multi-bit security key user key. The number of bits depends on the size of the
device. Once secured, read permission and write permission can only be enabled by providing the correct
user key to first unlock the device. The maximum security key for the device is shown in the dialog box.

Generating Bitstream and STAPL files

Bitstream allows you to generate a STAPL file for SmartFusion, IGLOO, ProASIC3, Fusion devices. Please
consult the Program Files table to find out which file type you should choose.

To generate a STAPL file:
1. From the Tools menu, choose Programming File.

2. Select Bitstream or STAPL from the File Type drop-down list box. Bitstream files are not available for
SmartFusion, IGLOO, ProASIC3 and Fusion devices.

3. FlashLock. Select one of the following options:

176

& Microsemi
Table of Contents

e No Locking: Creates a programming file which does not secure your device.

e Use Keyed Lock: Creates a programming file which secures your device with a FlashLock key. The
maximum security key for the device is shown in the dialog box. The maximum security key for the
device is shown in the dialog box.

e Use Permanent Lock: Creates a one-time programmable device.
4. Click OK. Designer validates the security key and alerts you to any concerns.
Note: The bitstream file header contains the security key.

Libero SoC User's Guide 177

& Microsemi

Table of Contents

SPI Programming Tutorial Overview

SmartFusion2 and IGLOO2 devices can be programmed using multiple programming methods.
Refer to the Programming User Guide for your respective device for details on different programming
methods.
The following tutorials describe programming methods that involve the MSS/HPMS SPI_0 ports:

e Auto Programming

e In Application Programing (IAP) Tutorial

e Programming Recovery - Auto Update

178

& Microsemi

Table of Contents

Auto Programming

Auto programming uses the Microcontroller Subsystem SPI port (SPI_0) to fetch the bitstream from the
external SPI flash (pre-programmed) connected to the same port and then program the FPGA Fabric and

eNVM. The transaction between the System controller and the external SPI flash happens in SPI master
mode.

The SPI_0 port is enabled to operate as a SPI master at power-on reset or DEVRST_N assertion if the

FLASH_GOLDEN_N pin is pulled low. The Auto Programming can be protected in the Security Policy
Manager > Update Policy.

1. Right-click Configure Security and Programming > Configure Security and choose Configure
Options (as shown in the figure below).

4 » (Configure Security and Programming ...
Configure User Programming Data
&% Configure Programming Recovery
@ Configure Security —
@ pdate eNVM Me Configure Options...
4 » Program Design Help
B Configure Bitstream
B Generate Bitstream
% Run PROGRAM Action Il

Figure 72 - Launch Security Policy Manager
2. In Security key mode select Enable customer security options.
3. In Security policies click the checkbox to enable Update Policy.
4. Click the Update Policy button and click to enable Auto Programming.

1]

Auto programming uses a *.spi programming file. You must export a *.spi file using Export Bitstream (under
Handoff Design for Production).

Libero SoC User's Guide 179

& Microsemi

Table of Contents

In Application Programming (IAP) Tutorial

In Application Programming (IAP) is a two-step process. In the first step, the intended bitstream is written to
an external SPI flash connected to SPI_0 port of MSS. In the second step, Cortex-M3(SmartFusion2) or
user logic in Fabric (IGLOO?2) calls the IAP programming service of the system controller to program the
FPGA fabric and eNVM with the bitstream fetched from the external SPI flash.

In order to perform IAP, the required functional blocks must be configured by pre-programming the chip.

To enable SmartFusion2/IGLOO2 device for IAP, you must configure the following components in Libero
SoC:

e Source of application image: eSRAM, eNVM or DDR/SDR memories or Fabric
e Source of programming bitstream: MSS peripherals including SPI_0 port
e Interface between System Controller and Cortex-M3: COMM_BLK
To create a programming file with IAP configuration (SmartFusion2 steps shown):
1. Create a Libero SoC project targeting the desired SmartFusion2 device. Select SmartFusion2
Microcontroller. Click the checkbox to enable Use Design Tool and select the SmartFusion2

Microcontroller Subsystem (MSS). Click OK to continue. A dialog box appears to name your new
component.

. Name the component IAP_Setup_MSS_0.
3. Double-click IAP_Setup_MSS_0 to configure the blocks:
¢ ENVM stores the two step IAP application code.

e USB is the interface used to read the programming bitstream and download it to the External SPI
flash.

e MSS_CCC is the Cortex-M3 Clock

e RESET Controller is the Chip reset

e SPI_0is connected with External SPI flash

¢ MMUART_1 is the Host PC communication to get status

See the SmartFusion2 Microcontroller Subsystem User Guide section on How to Use Blocks for details on how to configure them.

Click SmartDesign > Generate Component.

Complete the design flow up to Place and Route and export the firmware to enable the MSS
component.

6. Click Generate Bitstream or Export Bitstream to export a programming file you can use to program
your device.

Note: Libero SoC will error out if SPI_0 routs to the fabric instead of a package pin.

180

http://www.microsemi.com/document-portal/doc_download/130918-smartfusion2-microcontroller-subsystem-user

& Microsemi

Table of Contents

Programming Recovery Tutorial

If programming recovery is enabled, SmartFusion2/IGLOO2 device automatically recovers from a power
failure during a programming operation. Programming recovery requires an external SPI flash to be
connected to the MSS SPI_0 port. The FPGA must be pre-programmed with the programming recovery
settings. Programming recovery settings define the location of the image and how to recovery will take
place.

For a blank device the image location is set to MSS SPI_0 port where an external SPI flash must be
connected.

To configure Programming Recovery:
1. Under Configure Security and Programming Options double-click Configure Programming
Recovery.

2. Select Enable Programming Recovery. If Auto update is selected then Design version is mandatory.
You must enter the design version in the Configure User Programming Data menu.

3. Check Enable Programming Recovery and set the SPI clock frequency and data transfer mode.
Refer to the table below for SPI data transfer options. For a blank device SPO and SPH are defaulted

to 1.
Table 15 - SPI Signal Polarity Modes
SPO | SPH SPI Sample | Shift SPI SPI Select Between
Clock in Edge Edge | Selectin Frames
Idle Idle

0 0 Low Rising Falling | High Stays active until all the
frames set by frame

0 1 Low Falling Rising [High counter have been
transmitted

1 0 High Falling Rising [High

1 1 High Rising Falling | High

Note: SPO = SPI clock polarity; SPH = SPI clock phase

If Enable Auto Update is checked, Programming recovery is automatically enabled. In this scenario when
the device is powering up, it will be auto programmed with the bitstream stored in SP1_0 port if the update
SPI image design version is greater than the design version currently programmed in the device.

During programming recovery, if there is a programming failure due to power failure, then the the device will
be recovered with the golden image.

Back Level protection - If you enable Back Level protection it provides bitstream replay protection. The
BACKLEVEL value limits the design versions that the device can update. So, only programming bitstreams
with DESIGNVER > BACKLEVEL are allowed for programming

Libero SoC User's Guide 181

& Microsemi

Table of Contents

[a| Update Policy ﬁ

Fabric update protection:

[Use FlashLock/UPK1 to unlock Erase/Write/Verify operations v]

eNVM update protection:

[Use FlashLock/UPK1 to unlock Write/Verify/Read operations -]

[¥] Back Level protection
o Design version (number between 0 and 65535): 2
" Back Level version (number between 0 and 65535): 1
A [V] Back Level Bypass

D" SR < = z Ll
1 Bypass the Back Level check in the event of a recovery

caused by power failure during an update.
] 1AP/ISP Services

|| ITAG (use FlashLock/UPK1 to unlock)

|| sP1Slave (use FlashLock/UPK1 to unlock)

Disable access to the following programming features:
- Fabric (use FlashLock/UPK1 to unlock Erase/Write/Verify)
- eNVM (use FlashLock/UPK1 to unlock Write/Verify/Read)

E' Help | oK] [Cancel
L

Figure 73 - Bypass Back Level Version Check

4. In the Update Policy dialog box click the checkbox to enable Back Level Protection, as shown in the
figure above. Note that in order to use Back Level Protection you must enter the Design version in the
Configure User Programming Data dialog box. By default the Back Level bypass is checked in order to
continue with programming recovery with current/golden image in the event of power failure. This
allows the golden SPI image to be programmed even if the design version is less than the backlevel
version without the need of a pass key.

Consider an instance where the device is programmed with a golden image first which has DESIGNVER = 2
and BACKLEVEL = 1. Now you want to program the device with an update image that has DESIGNVER = 3
and BACKLEVEL = 2. If the Back Level bypass is not checked and power fails, the programming recovery
will stop and the device will be left inoperable because the golden image DESIGNVER is not greater than
the BACKLEVEL of update image.

5. Export the SPI directory for Programming recovery. The flash device on the MSS SPI_0 port contains
a directory at address 0 with the information shown in the table below.

Offset Name Description

0 GOLDEN_IMAGE_ADDRESS[3:0] Contains the address where the
golden image starts

4 GOLDEN_IMAGE_DESIGNVER[1:0] | Contains the design version of the

182

& Microsemi

Table of Contents

Offset Name Description

golden image

6 UPDATE_IMAGE_ADDRESS][3:0] Contains the address where the
update image starts

10 UPDATE_IMAGE_DESIGNVER][1:0] | Contains the design version of the
update image

Right-click Export Programming File and choose Configure Options.

In the Export Bitstream dialog box, click the checkbox to enable Export SPI directory for
programming recovery and click the Specify SPI Directory button.

8. Inthe SPI Directory dialog box enter the Design version and browse to the location of the Golden
SPI Image and/or Update SPI Image. You must enter the Address of the bitstream manually (as
shown in the figure below).

Auto-Update Programming

Auto Update is configured the same way as Programing Recovery. When you select Enable Auto Update
the device will auto program itself on power up or upon insertion of DEVRST_N if the image version in the

SPI flash connected in the SPI_0 port is greater than that of the currently programmed device. Auto update
mode can also be initiated on a demand basis by inserting the FLASH_GOLDEN_N pin.

SmartFusion2 Programming Tutorial

The SmartFusion2 Programming Tutorial describes the basic steps for SmartFusion2 programming.

Only the bold steps in the Design Flow window are required to complete and program your design. Note that
the bold steps are completed automatically if you use the Build button.

1. MSS Confiquration - eNVM

eNVM configuration enables you to configure eNVM as a ROM so that it can be included in the eNVM
digest calculations.

Data Security Configuration controls which masters have access to which memory region within the MSS.

2. Generate Bitstream

Generate bitstream for programming within Libero.

3. Edit Design Hardware Configuration
Configures Device /O States During Programming.

N

. Configure Security and Programming Options

e Security Policy Manager

e Configure Bitstream
e Update eNVM Memory Content

ol

. Program Design
Configure Actions/Procedures (sets programming options) and programs your device.

5. Handoff Design for Production

e Export Bitstream
e Export BSDL

Libero SoC User's Guide 183

& Microsemi

Table of Contents

MSS Configuration - eNVM

eNVM Configuration
You must create a MSS to configure your eNVM. Use System Builder to configure your eNVM for IGLOO?2.

eNVM configuration enables you to configure eNVM as a ROM so that it can be included in the eNVM digest
calculations. To do so:

1. Open your MSS and double-click the eNVM block to open the eNVM configuration dialog box, as
shown in the figure below.

eM¥M: Modify core -~ E‘
)
Available client ypes User Clients in eMyvM
Depth X
- Start Page o
= g Width |, Initi Lock Start
Client Type Client Name o b Order Address
Pages [hex] Start End
1 e Data Storage program B5536 % 8 0 1] 511 M8 F

Uszage Statistics

Awailable Pages 2032

Used Pages: 512

Free Pages: 1520
Ready

Figure 74 - eNVM Configuration Dialog Box
The example design shown in the figure above already has a Data Storage Client.

2. Double-click the Data Storage Client to open the Modify Data Storage Client dialog box, as shown
in the figure below.

184

6.
7.

Figure 75 - Modify Data Storage Client Dialog Box - Use as ROM Selected

tModify Data Storage Client r5_<

Client name: | program |

ehlii

Content:

(O Memary file: |

Farmat:

(%) Mo conkent fclient is a placehalder)

Start address: 0

Size of word: bits

65536 {decimal)

mI
I

MNumber of words:

Use as ROM

C o] [o=]

& Microsemi

Table of Contents

Click Use as ROM (as shown in the figure above) to configure the memory region as a ROM and
include the eNVM digest calculations.

Click OK in the Modify Data Storage Client dialog box to continue.

Double-click Serialization to open the Add Serialization Client dialog box (as shown in the figure
below) and reserve a client for serialization. Add your Client name and eNVM Start address and
Number of pages, as appropriate. You can configure the content of your serialization client in the
Serialization Client Editor, available from the Update eNVM Memory Content dialog box.

Add Serialization Client

Client name: | ser_client| |
L 1
eMWM (reserve memary)
Skart address: ox |0 =

w

Mumber of pages (128 bytes per page): 1 |

Cancel

x] |

Enable Data Security

The Data Security Configuration controls which masters have access to which memory region within the
MSS. To configure your data security:

Figure 76 - Add Serialization Client Dialog Box

Click OK in the Add Serialization Client dialog box to continue.
Click OK in the eNVM Configuration dialog box to return to the MSS.

Libero SoC User's Guide

185

& Microsemi

Table of Contents

Double-click the Security block in the MSS to open the MSS Security Policies Configurator, as shown in
the figure below.

M WSS Security Policies Configurator @El

Master [Slave M55 ko Fabric Memary Map Configuration Registers

Masker to Slaves Read/Write Access

Shaw Special + AHEZAHE
Sectors Imss1
ESRAMD eSRAML ehivM0 [MS52] FIC_0 DDR Bridge
[Msa] [M31] [M54] [M56]
1€ Bus [MMO R R R - -

[Ho] Read Read Read Read
D-BUS [MM1] R/ Wrike R Wtike RA! Write i = Write
SBUS[MMZ] RME R R R
FIC_0 [MM4 RM R R R R

O] Read Read Read Read
FIC_1[MMS] R Wirite: Rl Write R Write R Rt Write
HEDMA [MM3] R R R R -

(rnez] Read Read Read Read
MAC_M[MME] RM/ Wrike R tike o Write Rl R Wrike
FOMA[MMZ] R R R R R
UsE [MME] RM R - R R

To protect these advanced security bits with user pass key 1, you must configure the Security Policy Manager, specify user key set 1, and program the security
feature.

If the security programming feature is enabled for programming, then you must reprogram the security features if you modify the advanced security bits

Figure 77 - MSS Security Policies Configurator

Masters are listed on the left, Slaves are shown at the top. All Masters have access to all Slaves by default;
click to enable or disable Read/Write access for specific Masters and Slaves.

Restrict your Master/Slave Read/Write access according to your preference and click OK to continue.

Generate Bitstream - SmartFusion2 and IGLOO2 Only

Generates the bitstream for use with the Run PROGRAM Action tool.

The tool incorporates the Fabric design, eNVM configuration (if configured) and security settings (if
configured) to generate the bitstream file.

Modifications to the Fabric design, eNVM configuration, or security settings will invalidate this tool and
require regeneration of the bitstream file.

The Fabric programming data will only be regenerated if you make changes to the Fabric design, such as in
the Create Design, Create Constraints and Implement Design sections of the Design Flow window.

This operation is completed automatically as the last step if you use the Build button.

When the process is complete a green check appears next to the operation in the Design Flow window (as
shown in the figure below) and information messages appear in the Log window.

186

& Microsemi

Table of Contents

Design Flow & X

top Bog'

Tool -

i 4 » Program Design
@‘ Configure Bitstream

v B Generate Bitstream
N B Run PROGRAM Action
4 » DebugDesign
Q Identify Debug Design -

Figure 78 - Generate Bitstream (Complete)

Edit Design Hardware Configuration - Device 1/O States During
Programming

You can configure your FPGA 1/Os while the device is being programmed using Device 1/O States During
Programming.

In the Design Flow window, expand Edit Design Hardware Configuration and double-click Device I/O
States During Programming.

The Device 1/O States During Programming dialog box appears.

Click a value in the 1/O State (Output Only) column to set your I/O State options according to your
preference, as shown in the figure below.

Specify I/0 States During Programming rz|
[Load from File. ..] [Save tafile. ..] [5how BSR Details
A
Port Hame Macro Cell Pin Humber 1/0 State [Output Only])
ARST_N ADLIB:INBUF k23 zZ v
CLK ADLIB:INBUF AE2T 1
CLK_0 ADLIB:INBUF T4 a
Last Known State
CLR ADLIB:INBUF A28
D ADLIB:INBUF AF25 d
2} ADLIB:OUTBUF AG2T d
a_0 ADLIB:OUTBUF AR2T d
RADDR[O] ADLIB:INBUF K25 d
RADDR[1] ADLIB:INBUF F30 d
RADDR[Z] ADLIB:INBUF L23 d
WaDDR[O] ADLIB:INBUF k24 d
WaDDR[1] ADLIB:INBUF J26 d
WaDDR[2] ADLIB:INBUF H26 d
WwD[0] ADLIB:INBUF Gao d
WEN ADLIB:INBUF Ha7 d
UMUSED UMUSED A27 d
UMUSED UMUSED AH2T d
UMUSED UMUSED)26 d 2
Ok] [Cancel

Figure 79 - Set I/O State

Libero SoC User's Guide 187

& Microsemi
Table of Contents

Security Policy Manager (SPM)

Expand Configure Security and Programming Options, double-click Configure Security to customize
the security settings in your design.

Use this dialog box to set your User Keys, Security Policies and Microsemi factory test mode access level.

Note: Microsemi enabled default bitstream encryption key modes are disabled after user security is programmed.

1 Security Policy Manager (=
Security key mode Security policies
Bitstream encryption with default key Update Policy... Use
@ Enable custom security options L Debug Rolcriy J B Use
Key Mode Policy. . Use
User keys and Security policies protection Microsermi Factory test mode access level
@ Write-protect using FlashLockjUPK1 Allows Factnry test mode accsss
@ Protect Factory test mode access using FlashLock/UPK1
Permanenthy wrike-protect
Permanently protect Fackory test mode access
User Key Set 1
FlashLockJUPK1 (84 HEX chars): Ox B470C4Z727F4FO4H4D1 1471620 B SS6FZICFOMZZCIAE =
EKI (Liser Encryption Key 1) (64 HEX chars): 0x 2F154C3EF219A1EASSA209SDEFCO3D2SCERC I FIBSASEEDESEFSEZEDIT2E10190 i]
7] User Key Set 2
UPKZ (User Pass Key 2) (64 HEX chars); 0x S29AFTFSS4B2FITIC123726703439005 3F 37656B304EECE9501 FIASIE5646736 | & |
UEKZ (User Encryption Key 2) (64 HEX chars) 0% BI7ABTERFCH] 3A34G0FS63977001 EB7C] ACTI0BDECECENSTEOCET | 664686063 m
Selected Securky options:
User keys and Security Polides protection
Protect UEK1, UEK2, DPK and Security Policies using FlashlLockjUPK1.
Disable Factory enabled def ault bitstream encryption key modes.
Microsemi Factory test mode access level
Protect Microsemi factory test mode access using FlashLockjUPK 1.
Help O Cancel

Figure 80 - Security Policy Manager Dialog Box

Security Key Mode

Bitstream encryption with default key - Encrypt bitstream files with Microsemi default key (pre-placed key

in silicon). When this option is selected, user keys, security and Microsemi factory test mode access level
configurations are disabled.

Enable custom security options - Enables you to set User Keys, Security Policies and Microsemi factory
test mode access level (see below for a description).

User keys and Security policies protection

Write-protect using FlashLock/UPK1 - Protect UEK1 (User Encryption Key 1), DPK (Debug Pass Key)
and Security Policies using FlashLock/ UPK1.

Note: UEK2 (User Encryption Key2) is protected by UPK2 (User Pass Key 2).

Permanently write-protect - Permanently protect UEK1 (User Encryption Key 1), UPK2 (User Pass Key 2),
UEK?2 (User Encryption Key 2), DPK (Debug Pass Key), Security Policies, and Microsemi factory test mode
access level. This setting, once programmed will not be modified in the device. Microsemi enabled default
bitstream encryption key modes are permanently disabled as well.

Note: When this option is selected, you cannot specify the FlashLock/UPK 1 and UPK2 (User Pass Key 2)
value, since the value cannot be used to unlock the corresponding protected features.

Microsemi Factory Test Mode Access Level

Protect factory test mode access using FlashLock/UPK1 - Protects access to Microsemi factory test
mode using Flashlock/ UPK1.

Permanently protect factory test mode access - Permanently locks access to Microsemi factory test
mode.

188

& Microsemi

Table of Contents

Note: When this option is selected, User Key Set 2 is permanently write-protected. Once programmed, User
Key Set 2 cannot be changed in the device. You can specify UEK2 (User Encryption Key 2). However, you
cannot specify UPK2 (User Pass Key 2), since the value cannot be used to unlock User Key Set 2.

Allow factory test mode access - Allows access to Microsemi factory test mode.

Security Policies

Update Policy - Sets your Fabric, eNVM and Back Level protections. See the Update Policy topic for more
information.

Debug Policy - Enables and sets your Debug Pass Key and debug options. See the Debug Policy topic for
more information.

Key Mode Policy - Configures the key mode to enable or disable. See the Key Mode Policy topic for more
information.

Configuring User Keys

User Key Set 1 is required. User Key Set 1 includes FlashLock/UPK1 (User Pass Key 1) and UEK1 (User
Encryption Key 1)..

User Key Set 2 is optional. User Key Set 2 includes UPK2 (User Pass Key 2) and UEK2 (User Encryption
Key 2).

Note that User Pass Key 2 (UPK2) protects only User Encryption Key 2 (UEK2).

Bitstream Configuration

Expand Configure Security and Programming Options and double-click Bitstream Configuration to open the
Bitstream Configuration dialog box, as shown in the figure below.
i 1

'| Configure Bitstream [

Program
','::'1'-1'..” 1 components only
@ Selected components

N SECUricy

|| Fabric

Help | [OK] [Cancel

Figure 81 - Configure Bitstream Dialog Box

Libero SoC User's Guide 189

& Microsemi

Table of Contents

You can program your Security, Fabric, eNVM or any combination.

Features (Security, Fabric, eNVM) are enabled for programming by default when you add them to your
design. If you manually disable a feature in this dialog box then you must re-enable it here if you want it
included during programming.

Update eNVM Memory Content (SmartFusion2 and IGLOOZ2 Only)

Modify Data

Right-click Update eNVM Memory Content and choose Configure Options (eNVM Memory Content >
Configure Options) or double-click Update eNVM Memory Content to open the dialog box and modify
your eNVM content.

The Update eNVM Memory Content dialog box enables you to update your eNVM content for programming
without having to rerun Compile and Place and Route. It is useful if you have reserved space in the eNVM
configurator within the MSS for firmware development, for example. Use the Update eNVM Memory Content
dialog box when you have completed your firmware development and wish to incorporate your updated
firmware image file into the project.

NOTE: To disable a client for programming, you must modify the client and select “No Content (Client is a
placeholder and will not be programmed)”. The content from the memory file, serialization data file, or auto-
incremented serialization content will be preserved if you later decide to enable this client for programming.
Clients disabled for programming will not be included in the generated bitstream and will not be
programmed.

Storage Client
Double-click the Storage Client to open the Modify Data Storage Client dialog box.

Note: You cannot add, delete or rename a data storage client in the Modify Data Storage Client dialog box.
To make these changes, go to the eNVM configurator inside the MSS/HPMS Configurator or navigate to the
System Builder's Memory page (eNVM tab).

190

& Microsemi

Table of Contents

= | Modify Data Storage Clen o

Format: | Intel-Hex bl
Lise absolute addressing e
@ Content filled with Os
Mo Content (Client is a placeholder and will not be programmed)

Start address: 0x 0 =

Size of word: Bits
Numnber of Words: 512 {Decimal)

[luseasrom @

[7] Use Content far Simulation

s |)

Figure 82 - Modify Data Storage Client Dialog Box
You have three options to specify the eNVM content:
e Import a Memory File
¢ Fill eNVM content with Zero’s

e Assign No Content (eNVM as a Placeholder). The client will not be included in the programming
bitstream and will not be programmed

If you have completed Place and Route and you import a memory file for the eNVM content, you do not
have to rerun Compile or Place and Route. You can program or export your programming file directly.
Programming will generate a new programming file that includes your updated eNVM content.

You can also specify the start address where the data for that client starts, the word size and the number of
words to reserve for the data storage client.

Modify Serialization Client
Double-click the Serialization Client to open the Modify Serialization Client dialog box.

Note: You cannot add, delete or rename a Serialization Client in the Modify Serialization Client dialog box.
Go to the eNVM configurator inside the MSS/HPMS Configurator or the System Builder Memory page
(eNVM tab) to make these changes.

Libero SoC User's Guide 191

& Microsemi

Table of Contents

| Modity Serialization Client

2 Content suto indremented:
StartValue: Ox 0 Step Volue: Ox 20 Maximum Valee: Ox 20
Mo content (| Clent is a placeholder and will not be programmed) |

Start address: 200 = (Hexadeomal)
Murber of pages: 16 { 128 bytes per page) |
Maximum devices to program: 20 { Decimal)
|
Help ok || cancel |

Figure 83 - Modify Serialization Client Dialog Box
You have three options to specify the eNVM content:
e Import a Memory File
e Increment values automatically

e Assign No Content (eNVM as a Placeholder). The client will not be included in the programming
bitstream and will not be programmed

If you have completed Place and Route and you import a memory file for the eNVM content, you do not
have to rerun Compile or Place and Route. You can program or export your programming file directly.
Programming will generate a new programming file that includes your updated eNVM content.

You can also specify the start address where the data for the Serialization Client starts, the number of pages
and the maximum number of devices you want to program serialization data into.

Setting a maximum number of devices to program for Serialization clients will generate a programming
bitstream file that has serialization content for the number of devices specified. The maximum number of
devices to program must match for all serialization clients. If the user would like to program a subset of the
devices during production programming, this can be done within the FlashPro Express tool, which allows
you to select a range of indices desired for programming for that serialization programming job session.
Refer to the FlashPro Express User's Guide for more information.

Program Design - Run PROGRAM Action

Expand Program Design and double-click Run PROGRAM Action to program your device with default
settings, as shown in the figure below.

192

& Microsemi

Table of Contents

Design Flow 8 X

top Bog'

Tool -
. 4 P Program Design
@]‘ Configure Bitstream
v B2 Generate Bitstream
i B Run PROGRAM Action
4 » Debug Design
R Identify Debug Design s

Figure 84 - Program Device in the Design Flow Window
Right-click Run PROGRAM Action and choose from the following menu options:

e Clean and Run All - Cleans all tools, deletes all reports and output files and runs through
programming. All logs will be updated with new files.

e Clean - deletes only reports and output files associated with this tool; the other tool files and reports
are unaffected.

e Configure Actions/Procedures - Enables you to set the specific Action you wish to program. Select
your programming action from the dropdown menu.

Handoff Design for Production

In order to handoff your design for production you must export a programming file or generate a BSDL file.

See the Export Bitstream - SmartFusion2 and IGLOQO?2 topic for complete instructions on how to handoff
your design for production.

You can also export your programming job.

Export BSDL File

Double-click Export BSDL File to generate a BSDL file for your project.

Right-click Export BSDL File and choose Clean and Run All to remove all data and output from tools run
previously and rerun the Design Flow up through this point.

|dentify Debug Design

Libero SoC integrates the Identify RTL debugger tool. It enables you to probe and debug your FPGA design
directly in the source RTL. Use Identify software when the design behavior after programming is not in
accordance with the simulation results.

To open the Identify RTL debugger, in the Design Flow window under Debug Design double-click
Instrument Design.

Identify features:
e Instrument and debug your FPGA directly from RTL source code .
¢ Internal design visibility at full speed.

¢ Incremental iteration - Design changes are made to the device from the Identify environment using
incremental compile. You iterate in a fraction of the time it takes route the entire device.

Libero SoC User's Guide 193

& Microsemi

Table of Contents

e Debug and display results - You gather only the data you need using unique and complex triggering
mechanisms.

You must have both the Identify RTL Debugger and the Identify Instrumentor to run the debugging flow
outlined below.

To use the Identify debugger:

1. Create your source file (as usual) and run pre-synthesis simulation.

2. (Optional) Run through an entire flow (Synthesis - Compile - Place and Route - Generate a
Programming File) without starting Identify.

3. In Synplify, click Options > Configure Identify Launch to setup Identify.

4. Right-click Synthesize and choose Open Interactively in the Libero SoC to launch Synplify. In
Synplify, create an Identify implementation; to do so, click Project > New Identify Implementation.

5. In the Implementations Options dialog, make sure the Implementation Results > Results Directory
points to a location under <libero project>\synthesis\, otherwise Libero SoC is unable to detect your
resulting EDN file

6. From the Instumentor Ul specify the sample clock, the breakpoints, and other signals to probe.
Synplify creates a new synthesis implementation. Synthesize the design.

7. In Libero SoC, select the edif netlist of the Identify implementation you want to use in the flow. Right-
click Compile and choose Organize Input Files > Organize Source Files and select the edif netlist
of your Identify implementation.

8. Run Compile, Place and Route and Generate a Programming File with the edif netlist you created with
the Identify implementation.

9. Double-click Instrument Design in the Design Flow window to launch the Identify Debugger.

The Identify RTL Debugger, Synplify, and FlashPro must be synchronized in order to work properly. See the
Release Notes for more information on which versions of the tools work together.

Device Debug

Device Debug / SmartDebug enables you to use JTAG to interrogate and view embedded silicon features
and device status (FlashROM, Security Settings, Embedded Flash Memory (NVM) and Analog System).

It provides tools to help troubleshoot some of the common issues related to the Embedded Flash Memory
and Analog System.

Device Debug supports IGLOO, ProASIC3, SmartFusion and Fusion devices. SmartDebug supports
SmartFusion2 and ProASIC3 devices.

The user support is separated into two sections:

e Using Device Debug to Find Solutions to Common Issues - Contains common issues and
troubleshooting instructions that will enable you to solve your problems as quickly as possible.

e Frequently Asked Questions - Answers to the most frequently asked questions about the tools and
silicon features related to your solution.

If you are unfamiliar with Device Debug, you may find it helpful to review the Getting Started with Device
Debug topic. You can view descriptions of the Device Debug interface in the Reference section of the help.

Getting Started with Device Debug

This topic introduces the basic elements and features of Device Debug. If you are already familiar with the
user interface then proceed to Solutions to Common Problems or Frequently Asked Questions sections.

Device Debug (SmartDebug for some families) enables you to use JTAG to interrogate and view embedded
silicon features and device status (FlashROM, Security Settings, Embedded Flash Memory (NVM) and
Analog System). Device Debug is available as a part of the FlashPro programming tool.

See the Using Device Debug topic for an overview of the use flow.

You can use the debugger to:
e Get device status and view diagnostics

194

http://www.actel.com/download/software/libero

& Microsemi
Table of Contents

e Use the FlashROM debug GUI to read out and compare content

e Use the Embedded Flash Memory Debug GUI to read out and compare your content with your original
files

e Use the Analog System Debug to read out and compare your analog block configuration with your
original file

Using Device Debug

The most common flow for Device Debug is:
1. Start FlashPro. If necessary, create a new project.

2. Set up your FlashPro Project with or without a PDB file. If you are in single-device mode you will need
a PDB file. You can create a PDB file in both Single Device and Chain mode.

With a PDB, you will get additional information such as FlashROM and Embedded Flash Memory
partitions when debugging the silicon features. Best practice is to use a PDB with a valid-use design to
start a debug session.

Select the target device from your chain and click Inspect Device.
Click Device Status to get device status and check for issues

5. Examine individual silicon features (FlashROM, Embedded Flash Memory Block and Analog System)
on the device.

Libero SoC User's Guide 195

& Microsemi
Table of Contents

Solutions to Common Issues Using Device
Debug

Embedded Flash Memory (NVM) - Failure when
Programming/Verifying

If the Embedded Flash Memory failed verification when executing the PROGRAM_NVM, VERIFY_NVM or
PROGRAM_NVM_ACTIVE_ARRAY action, the failing page may be corrupted. To confirm and address this
issue:

1. Inthe Inspect Device window click View Flash Memory Content.

2. Select the Flash Memory block and client (or page range) to retrieve from the device.
3. Click Read from Device; the retrieved data appears in the lower part of the window.
4. Click View Detailed Status to check the NVM Status.

Note: You can use the check_flash_memory and read_flash_memory Tcl commands to perform
diagnostics similar to the commands outlined above.

5. Ifthe NVM is corrupted you must reset the affected NVM pages.

To reset the affected NVM pages, either re-program the pages with your original data or ‘zero-out’ the
pages by using the Tcl command recover_flash_memory.

If the Embedded Flash Memory failed verification when executing a VERIFY_NVM or
VERIFY_NVM_ACTIVE_ARRAY action, the failure may be due to the change of content in your design. To
confirm this, repeat steps 1-3 above.

Note: NVM corruption is still possible when writing from user design. Check NVM status for
confirmation.

Analog System Not Working as Expected

If the Analog System is not working correctly, it may be due the following:
1. System supply issue. To troubleshoot:

e Physically verify that all the supplies are properly connected to the device and they are at the proper
level. Then confirm by running the Device Status.

e Physically verify that the relevant channels are correctly connected to the device.
2. Analog system is not properly configured. You can confirm this by examining the Analog System.

ADC Not Sampling the Correct Value

If the ADC is sampling all zero values then the wrong analog pin may be connected to the system, or the
analog pin is disconnected. If that is not the case and the ADC is not sampling the correct value, it may be
due to the following:

1. System supply issues - Run the device status to confirm.

2. Analog system is not configured at all - To confirm, read out the ACM configuration and verify if the
ACM content is all zero.

3. Analog system is not configured correctly - To confirm, read out the ACM configuration and verify that
the configuration is as expected .

Once analog block configuration has been confirmed, you can use the sample_analog_channel Tcl

196

& Microsemi

Table of Contents

command for debug sampling of the analog channel with user-supplied sampling parameters.

If you have access to your Analog System Builder settings project (<Libero IDE
project>/Smartgen/AnalogBlock), you may use the compare function provided by the tool.

Libero SoC User's Guide 197

& Microsemi

Table of Contents

Frequently Asked Questions

How do |

How do |

How do |

unlock the device security so | can debug?

You must provide the PDB file with a User Pass Key in order to unlock the device and continue debugging.

If you do not have a PDB with User Pass Key, you can create a PDB file in FlashPro (if you know the Pass
Key value).

export a report?

You can export three reports from the Device Debug GUI: Device Status, Client Detailed Status from the
NVM, or the Compare Client Content report from the NVM. Each of those reports can be saved and printed.
If using a Tcl command, you can use the —File <filename> option for the following commands:
read_flash_memory

check flash_memory

compare_memory client

read_device_status

read_flashrom

read_analog_block config

sample_analog_channel

compare_flashrom_client

compare_analog_config

For example, you can use the following command to export the content of the client 'datastorel’ in NVM
block 0 to the report file datastorel_content.txt:

read_flash_memory —client “datastorel” —file {C:\temp\datastorel_content.txt}

generate diagnostic reports for my target device?

A set of diagnostic reports can be generated for your target device depending on which silicon feature you
are debugging. A set of Tcl commands are available to export those reports. The following is a summary of
those Tcl commands based on the silicon features.

When using the —file parameter, ensure that you use a different file name for each command so you do not
overwrite the report content. If you do not specify the —file option in the Tcl, the output results will be directed
to the FlashPro log window.

For the overall device:

read device status

read_id_code

For FlashROM:

compare_flashrom_client
read_flashrom

For Embedded Flash Memory (NVM):

compare_memory client
check flash_memory
read_flash_memory

For Analog Block:

read_analog block config

198

& Microsemi
Table of Contents

compare_analog_config
sample_analog_channel

To execute the Tcl command, from the File menu choose Run Script.

Where can | find files to compare my contents/settings?

FlashROM

You can compare the FlashROM content in the device with the data in the PDB file. You can find the PDB in
the <Libero IDE project>/Designer/Impl directory.

Embedded Flash Memory (NVM)

You can compare the Embedded Flash Memory content in the device with the data in the PDB file. You can
find the PDB in the <Libero IDE project>/Designer/Impl directory.

Analog System

You can compare the Analog System configuration in the device with the data in the loaded PDB file or in
the Analog System folder. Go to:

e Fusion devices - <Libero IDE project>/Smartgen/AnalogBlock
¢ SmartFusion devices - <Libero IDE Project>/component/<SmartDesign Project>/MSS_ACE_0
The tool automatically identifies the necessary files in the selected folder for comparison.

What is a UFC file? What is an EFC file?

UFC is the User FlashROM Configuration file, generated by the FlashROM configurator; it contains the
partition information set by the user. It also contains the user-selected data for region types with static data.

However, for AUTO_INC and READ_FROM_FILE, regions the UFC file contains only:
e Start value, end value, and step size for AUTO_INC regions, and
e File directory for READ_FROM_FILE regions

EFC is the Embedded Flash Configuration file, generated by the Flash Memory Builder in the Project
Manager Catalog; it contains the partition information and data set by the user.

Both UFC and EFC information is embedded in the PDB when you generate the PDB file.

Is my FPGA fabric enabled?

When your FPGA fabric is programmed, you will see the following statement under Device State in the
Device Status report:

FPGA Array Status: Programmed and Enabled
If the FPGA fabric is not programmed, the Device State shows:
FPGA Array Status: Not Enabled

Libero SoC User's Guide 199

& Microsemi

Table of Contents

Embedded Flash Memory (NVM) Frequently
Asked Questions

Is my Embedded Flash Memory (NVM) programmed?

To figure out if your NVM is programmed, read out and view the NVM content or perform verification with the
PDB file.

To examine the NVM content, see the FlashROM Memory Content Dialog Box.
To verify the NVM with the PDB select the VERIFY or VERIFY_NVM action in FlashPro.

How do | display Embedded Flash Memory (NVM) content in the

Client partition?
You must load your PDB into your FlashPro project in order to view the Embedded Flash Memory content in
the Client partition. To view NVM content in the client partition:

Load your PDB into your FlashPro project.

Click Inspect Device.

Click View Flash Memory Content.

Choose a block from the drop-down menu.

Select a client.

Click Read from Device. The Embedded Flash Memory content from the device appears in the Flash
Memory dialog box.

N

See the Flash Memory Dialog Box topic for more description on viewing the NVM content.

How do | know if | have Embedded Flash Memory (NVM)
corruption?
When Embedded Flash Memory is corrupted, checking Embedded Flash Memory may return with any or all
of the following page status:
e ECCI/ECC2 failure
e Page write count exceeds the 10-year retention threshold

e Page write count is invalid
e Page protection is set illegally (set when it should not be)
See the How do | interpret data in the Flash Memory (NVM) Status Report? topic for details.

If your Embedded Flash Memory is corrupted, you can recover by reprogramming with original design data.
Alternatively, you can ‘zero-out’ the pages by using the Tcl command recover_flash_memory.

Why does Embedded Flash Memory (NVM) corruption happen?

Embedded Flash Memory corruption occurs when Embedded Flash Memory programming is interrupted due
to:

e Supply brownout; monitor power supplies for brownout conditions. For SmartFusion monitor the
VCC_ENVM/VCC_ROSC voltage levels; for Fusion, monitor VCC_NVM/VCC_OSC.

e Reset signal is not properly tied off in your design. Check the Embedded Memory reset signal.

200

& Microsemi

Table of Contents

How do | recover from Embedded Flash Memory corruption?

Reprogram with original design data or ‘zero-out’ the pages by using the Tcl command
recover_flash_memory.

What is a JTAG IR-Capture value?

JTAG IR-Capture value contains private and public device status values. The public status value in the value
read is ISC_DONE, which indicates if the FPGA Array is programmed and enabled.

The ISC_DONE signal is implemented as part of IEEE 1532 specification.

What does the ECC1/ECC2 error mean?

ECC is the Error Correction Code embedded in each Flash Memory page.
ECC1 - One bit error and correctable.
ECC2 — Two or more errors found, and not correctable.

How can | tell if my FlashROM is programmed?

To verify that your FlashROM is programmed, read out and view the FlashROM content or perform
verification with the PDB file by selecting the VERIFY or VERIFY _FROM action in FlashPro.

Can | compare serialization data?

To compare the serialization data, you can read out the FlashROM content and visually check data in the
serialization region. Note that a serialization region can be an AUTO_INC or READ_FROM_FILE region.

For serialization data in the AUTO_INC region, check to make sure that the data is within the specified
range for that region.

For READ_FROM_FILE region, you can search for a match in the source data file.

Can | tell what security options are programmed in my device?

To determine the programmed security settings, run the Device Status option from the Inspect Device dialog
and examine the Security Section in the report.

This section lists the security status of the FlashROM, FPGA Array and Flash Memory blocks.

Is my analog system configured?

To determine if the analog block is configured, run the Device Status option from the Inspect Device dialog
and examine the Analog Block Section in the report. For example, the excerpt from the Device Status report
below shows that the analog block status is operational:

Analog Block:
OABTR Register (HEX): 0dbe37b
3.3V (vdd33): PASS
1.5V (vdd15): PASS
Bandgap: PASS
-3.3V (vddn33): PASS
ADC Reference: PASS
FPGA_Good: PASS
Status: Analog Block is operational

If you read out an all zero value when examining the Analog System Configuration, then it is possible that
the Analog System is not configured.

Libero SoC User's Guide 201

& Microsemi

Table of Contents

You need to compare your analog system configuration with the design configuration from the Analog
System Builder

The -3.3V (vddn33) voltage is optional.

How do | interpret data in the Device Status report?

The Device Status Report generated from the FlashPro Device Debug Feature contains the following
sections:

e IDCode (see below)

e User Information

¢ Device State

e Analog Block (SmartFusion and Fusion only)
e Factory Data

e Security Settings

IDCode
The IDCode section shows the raw IDCode read from the device. For example, in the Device Status report
for an AFS600 device, you will find the following statement:
IDCode (HEX): 233261cf
The IDCode is compliant to IEEE 1149.1. The following table lists the IDCode bit assignments:
Table 16 - IDCode Bit Assignments
Bit Field (little Example Bit Value for Description
endian) AFS600 (HEX)
Bit [31-28] (4 bits) |2 Silicon Revision
Bit [27-12] (16 3326 Device ID
bits)
Bit [11-0] (12 bits) | 1cf IEEE 1149.1 Manufacturer ID for
Microsemi

Device Status Report: User Info

The User Information section reports the information read from the User ROW (UROW) of IGLOO,
ProASIC3, SmartFusion and Fusion devices. The User Row includes user design information as well as
troubleshooting information, including:

e Design name (10 characters max)

e Design check sum (16-bit CRC)

e Last programming setup used to program/erase any of the silicon features.

e FPGA Array / Fabric programming cycle count

For example:

User Information:

UROW data (HEX): 603a04e0alc2860e59384af926fe389f
Programming Method: STAPL

Programmer: FlashPro3

Programmer Software: FlashPro vX.X

Design Name: ABCBASICTO

Design Check Sum: 603A

202

& Microsemi

Table of Contents

Algorithm Version: 19
Array Prog. Cycle Count: 19

Table 17 - Device Status Report User Info Description

Category Field Description

User Row Data | (Example) Raw data from User Row
UROW data (HEX): (UROW)
603a04e0a1c2860e59384af926fe389f

Programming (Example) Known programming setup

Troubleshooting | Programming Method: STAPL used. This includes:

Info Programmer: FlashPro3 Programming method/file,
Programmer Software: FlashPro v8.6 | programmer and software. It
Algorithm Version: 19 also includes programming

Algorithm version used.

Design Info

(Example) Design name (limited to 10
Design Name: ABCASICTO characters) and check sum.
Design Check Sum: 603A
Design check sumis a 16-
bit CRC calculated from the
fabric (FPGA Array)
datastream generated for
programming. If encrypted
datastream is generated
selected, the encrypted
datastream is used for
calculating the check sum.

Device Status Report: Device State

The device state section contains:.

e IR-Capture register value, and
e The FPGA status
The IR-Capture is the value captured by the IEEE1149.1 instruction register when going through the IR-

Capture state of the IEEE 1149.1 state machine. It contains information reflecting some of the states of the
devices that is useful for troubleshooting.

One of the hits in the value captured is the ISC_DONE value, specified by IEEE 1532 standard. When the
value is ‘1’ it means that the FPGA array/fabric is programmed and enabled. This is available for IGLOO,
ProASIC3, SmartFusion and Fusion devices.

For example:

Device State:

IRCapture Register (HEX): 55

FPGA Array Status: Programmed and enabled

For a blank device:

Device State:

IRCapture Register (HEX): 51

FPGA Array Status: Not enabled

Libero SoC User's Guide 203

& Microsemi

Table of Contents

Device Status Report: Analog Block

The Analog block of the SmartFusion and Fusion devices monitors some of the key power supplies needed
by the device to function. These power supply status is captured in the OABTR test register in the Analog
block.

For example, if you run Device Status when the Fabric and Analog configuration is programmed and
powered up successfully the report indicates:

Analog Block:

OABTR Register (HEX): 0dbe3bb

3.3V (vdd33): PASS

1.5V (vdd15): PASS

Bandgap: PASS

-3.3V (vddn33): PASS

ADC Reference: PASS

FPGA_Good: PASS

Status: Analog Block is operational

Table 18 - Device Status Report - Analog Block Description

Analog Block Status Description
OABTR Register RAW data captured from the device
3.3V (vdd33) Vcc33a supply status
1.5V (vdd15) Vcenvm supply status
Bandgap Internal bandgap supply status
ADC Reference ADC reference voltage status
-3.3V (vddn33) Vddn33 supply status (optional voltage)
FPGA Good FPGA array or Fabric status

If the Fusion device is erased, the report indicates:
Analog Block:
OABTR Register (HEX): 188e3ba
3.3V (vdd33): PASS
1.5V (vdd15): PASS
Bandgap: PASS
-3.3V (vddn33): FAIL
ADC Reference: FAIL
FPGA_Good: FAIL
Status: Analog Block is non-operational
Analog Block is not programmed

Device Status Report: Factory Data

The Factory Data section lists the Factory Serial Number (FSN).
Each of the IGLOO, ProASIC3, SmartFusion and Fusion devices has a unique 48-bit FSN.

204

Device Status Report: Security

The security section shows the security options for the FPGA Array, FlashROM and Flash Memory (NVM)

block that you programmed into the device.
For example, using a Fusion AFS600 device:
Security:
Security Register (HEX): 0000000088c01b
FlashROM
Write/Erase protection: Off
Read protection: OFf
Encrypted programming: Off
FPGA Array
Write/Erase protection: Off
Verify protection: Off
Encrypted programming: OFF
FlashMemory Block O
Write protection: On
Read protection: On
Encrypted programming: OFf
FlashMemory Block 1
Write protection: On
Read protection: On
Encrypted programming: OFF

& Microsemi

Table of Contents

Table 19 - Device Status Report - Security Description

Security Description
Status Info
Security Raw data captured from the device's security status register

Register (HEX)

Write/Erase Write protection is applicable to FlashROM, FPGA Array (Fabric)and

Protection Flash Memory (NVM) blocks. When On, the Silicon feature is
write/erase protected by user passkey.

Read Read protection is applicable to FlashROM and Flash Memory (NVM)

Protection blocks. When On, the Silicon feature is read protected by user
passkey.

Verify Verify Protection is only applicable to FPGA Array (Fabric) only. When

Protection On, the FPGA Array require user passkey for verification.
Reading back from the FPGA Array (Fabric) is not supported.
Verification is accomplished by sending in the expected data for
verification.

Encrypted Encrypted Programming is supported for FlashROM, FPGA Array

Programming

(Fabric) and Flash Memory (NVM) blocks. When On, the silicon
feature is enable for encrypted programmed. This allows field design
update with encrypted datastream so the user design is protected.

Libero SoC User's Guide

205

& Microsemi

Table of Contents

Encrypted Programming

To allow encrypted programming of the features, the target feature cannot be Write/Erase protected by user
passkey.

The security settings of each silicon feature when they are enabled for encrypted programming are listed
below.

FPGA Array (Fabric)

Write/Erase protection: Off

Verify protection: OFf

Encrypted programming: On
Set automatically by Designer or FlashPro when you select to enable encrypted programming of the FPGA
Array (Fabric). This setting allows the FPGA Array (Fabric) to be programmed and verified with an encrypted
datastream.

FlashROM

Write/Erase protection: Off

Read protection: On

Encrypted programming: On
Set automatically by Designer or FlashPro when you select to enable encrypted programming of the
FlashROM. This setting allows the FlashROM to be programmed and verified with an encrypted datastream.
FlashROM always allows verification. If encrypted programming is set, verification has to be performed with
encrypted datastream.

Designer and FlashPro automatically set the FlashROM to be read protected by user passkey when
encrypted programming is enabled. This protects the content from being read out of the JTAG port after
encrypted programming.

Flash Memory (NVM) Block

How do |

Write/Erase protection: Off

Read protection: On

Encrypted programming: On
The above setting is set automatically set by Designer or FlashPro when you select to enable encrypted
programming of the Flash Memory (NVM) block. This setting allows the Flash Memory (NVM) block to be
programmed with an encrypted datastream.

The Flash Memory (NVM) block does not support verification with encrypted datastream.
Designer and FlashPro automatically set the Flash Memory (NVM) block to be read protected by user

passkey when encrypted programming is enabled. This protects the content from being read out of the
JTAG port after encrypted programming.

interpret data in the Flash Memory (NVM) Status Report?

The Embedded Flash Memory (NVM) Status Report generated from the FlashPro Device Debug Feature
consists of the page status of each NVM page. For example:

Flash Memory Content [Page 34 to 34]

FlashMemory Page #34:

Status Register(HEX): 00090000

Status ECC2 check: Pass

Data ECC2 Check: Pass

Write Count: Pass (2304 writes)

Total number of pages with status ECC2 errors: 0

Total number of pages with data ECC2 errors: O

Total number of pages with write count out of range: O

FlashMemory Check PASSED for [Page 34 to 34]

The "check_flash_memory® command succeeded.

206

The Execute Script command succeeded.

& Microsemi

Table of Contents

Table 20 - Embedded Flash Memory Status Report Description

Flash
Memory
Status Info

Description

Status
Register
(HEX)

Raw page status register captured from device

Status
ECC2
Check

Check for ECC2 issue in the page status

Data ECC2
Check

Check for ECC2 issue in the page data

Write Count

Check if the page-write count is within the expected range.
The expected write count is greater than or equal to:

6,384 - SmartFusion devices
2,288 - Fusion devices

Note: Write count, if corrupted, cannot be reset to a valid value within the
customer flow;invalid write count will not prevent device from being
programmed with the FlashPro tool.

The write count on all good eNVM pages is set to be 2288 instead of 0 in
the manufacturing flow. The starting count of the eNVM is 2288. Each
time the page is programmed or erased the count increments by one.
There is a Threshold that is set to 12288, which equals to 3 * 4096.

Since the threshold can only be set in multiples of 4096 (2”12), to set a
10,000 limit, the Threshold is set to 12288 and the start count is set to
2288; and thus the eNVM has a 10k write cycle limit. After the write count
exceeds the threshold, the STATUS bit goes to 11 when attempting to
erase/program the page.

Add Probes

To insert probes, right click SmartDebug Design in the Design Flow window and choose Open
Interactively (SmartDebug Design > Open Interactively). When SmartDebug opens, click Debug FPGA

Array and then click the Probe Insertion tab.

Libero SoC User's Guide

207

& Microsemi

Table of Contents

[53 Debug FPGA Ay . i — [
> 3

Debug Fle: Orrlantmp ety Mo e P L 50 desgnes S ystem MySystem _debusg, tet | Browse... | 1
FPGA Array Debug Dats I

| LiveProbes | AcoveProves | MemoryBods | Probe lnserson |

Probes (Laddbrobe] [€dtprove | [odewe | [osenal]

Insert Probe(s]) and Program the device | Pun |

[heo | [Cose |

Figure 85 - Probe Insertion Tab
Click Add Probe. The Add Probe dialog box displays the available probe points on the right side. Each entry
has Net and Driver name which identify that probe point. The left (filter) pane allows filtering of the probe
points by net names or instance names.

To add filtering for Cell Types, enter the Cell Type Name in the Cell Type field. Enter, for example, SEQ in
the Cell Type field and all SEQ (Sequential) cell types will be displayed. If you enter COMB in the Cell Type
field, all COMB (Combinational Cells) will be displayed.

W] Add Probe(s) []
Filter net{s) by: Select a Nets) for the Probe

[hame | Tstances Met Diriver - |

Instance Name = i Qim0 0 intf301Q I
2 QL ink[25] Q_ind[26]:0)

cTe seq 3 Qinis) Qiniz5kQ I

[ieni0) R 4 QUi Q_int24):0 |
Qint{10] 5 Qin[X) Qint[231:Q

Qntil1] & Quint[2Z] QLint[2210 £

Qinti12] z 7 Quint{2l] Qint[21:Q
Qint]13] 8 Quint20] Qint20}Q
QitiLd) 5 Qinllg] Q_int{151:Q
T 1 Q imii6) Qinti181Q
Linil7] 11 Qintfi7] Qint{17}:Q
& i8] 12 QLink(16] 0 im161:Q
Qint19] 13 QLint{15] Qint{15:Q
Qintf1] 14 Quintf1d] QL intf24]:Q

QLint]20] % 15 Qint[13] Qint[13}:Q |
. 1% Qint[1d] Qint123Q
Select Al 17 Quintfll] QUint111Q
18 Quint[10] Qintf10]:Q

se |19 0 inef9) 0_intf9L0 hal |
L _— R

Figure 86 - Add Probe(s) Dialog Box

Click a net to select it for adding to the Probe. Click OK. The Probe appears in the top level Probe Insertion
dialog. SmartDebug automatically generates the Port Name for the probe you add.

To complete the probe insertion, you need to assign a package pin to the probe you add. You may assign
the probe to an unused package pin (spare I/O) or to an assigned package pin (pin already used by Place
and Route for an 1/O port).

Note: When you use an assigned pin to add a probe, SmartDebug disconnects the chosen I/O from the
design. A Yellow Warning Icon appears. Use this option with caution and only when you do not have spare
1/0Os for your probes.

208

Debug Fle: ColAcielr)'st_prep!lidesigresishft_reg32'shift_reg2_debug.ixt
FEGA Amay Debug Data

melaaﬁnm]muvm-ﬁﬁmw_

Probes

Het

& Microsemi

Table of Contents

|3 oy

QR3]0

Q_int[Z7]

Q_ma[27:Q

Rizs)

Qra[9)g

Q]

|Q_ea[34]:0

Trsart Probe(s) orsd Program the device .-_h_n]

Figure 87 - Debug FPGA Array > Probe Insertion > Add Probe
Click Run to insert the probes and program the device with the added probes.

Deleting Probes
To delete a probe, select the probe and click Delete.
To delete all the probes, click Delete All.

Edit Probes

To edit/change a probe, select the probe and click Edit Probe. The Edit Net for Probe dialog box appears.

|1 e forPre L
| Fitber netis) by Select 5 Hetl for S Probe
|| | rame [instances | { L L -
| 1 Q30 | impe |
! Erter below 8 reguls expresson Sat rame shoukd matich I! Q) ime|]) ma EQ ’
A 1
o 4 0 sl M) 0 a|HE D
| 5 Qe T
& Qmal) Qa2
| 7 Q=) Q a2k
8 Qe QD
8 Q) 20pG
I| B Qmald) [ee{10E
| Bl Q18] Q18R
12 Q17 Q{17 Q
13 O me(15] Qw1630
4 Q en1S) Q{150
Maich Case |85 Q mf1a) QL wailap] bl |
[] o [

Figure 88 - Edit Net for Probe Dialog Box
Click and select a net to replace the original net for the Probe.

Libero SoC User's Guide

209

& Microsemi

Table of Contents

Device Debug User Interface

Inspect Device Dialog Box

Inspect Device is available as a part of the FlashPro programming tool. Refer to Using Device Debug for
information on how to configure the FlashPro to get access to this feature.

The Inspect Device dialog box enables you to access all the Device Debug features, such as the FlashROM,
Embedded Flash Memory (NVM) and Analog Block. If you have multiple devices and programmers
connected, choose your target device/programmer from the dropdown menu and use the ID code to verify
that you are inspecting the correct device.

View Device Status - Displays the Device Status Report. The Device Status Report is a complete summary
of your device state, analog block test values, user information, factory data and security information. Use
this dialog box to save or print your information for future reference.

View Analog Block Configuration - Opens the Analog Block Configuration dialog box. Enables you to view
the channel configuration for your analog block and compare the channel configuration with any other
analog block file.

View Flash Memory Content - Opens the Flash Memory dialog box. This dialog box enables you to view
the details for each flash memory block in your device.

View FlashROM Content - Opens the FlashROM data dialog box, enables you to view a list of the physical
blocks in your FlashROM and the client partitions in FlashROM configuration files.

Y Inspect Device ?)X]

TR APF200M3F (AZF200M3F) Programrmer: 51538 (usbS1538) w

ID code read from device: SA131CF

|'u'iew Device Status i I‘.n'iew Analog Block Cmfiguratinnl [vim Flash Memary Cantaﬂ] \mw FlashROM Cmtent]

Figure 89 - Inspect Device Dialog Box

Device Status Report

This dialog box displays the Device Information report. The Device Information report is a complete
summary of your device state, analog block test values, user information, factory serial number and security
information. Use this dialog box to save or print your information for future reference. See the Interpreting
the Device Status Report topic for information on the report contents.

210

1 Device Status Report

& Microsemi

Table of Contents

Device: AFSE00 (AFSE00) Programmer: 10865 (usb10368)

[I save]

[¢ Print]

Device Skaktus:

IDiCode (HE=):

233261cF

IJser Information:

LIROMY daka (HE®): 23080041020408102045Fd3766303481

Programming Method: PDE

Prograrnmnet: FlashPro3

Programmer Software: FlashPro 3.6

Design Mame: tap

Design Check Sum: 2305

Algorithm Yersion: 19

Array Prog, Cycle Count: 1
Device Stake:

IRiZapture Register (HEX): 55

FPGA frray Status: Programmed and enabled
Analog Block:

QOABTR Regisker (HEX): 1dbe3bhb

3,3 (wdd3an PASS

1.5 {wdd15): PASS

Bandgap: Pass

-3.3Y {vddn33): PASS

ADC Reference: PAs5

FPGA_Good: PASS

Skakus: #nalog Block is operational
Fackory Data:

Factory Serial Mumber (HE=): B0e0904360a0
Securiby;

Device has no security enforced.

Close

Figure 90 - Device Status Report

Analog Block Configuration Dialog Box (SmartFusion and Fusion

Only)

Enables you to:

e View the channel configuration on your analog system, identify iffhow the channels are configured.

e Compare with the design configuration from the Analog System Builder for Fusion and SmartDesign
MSS Configurator for SmartFusion

The values displayed for each channel vary depending on the device family and channel you select; the
Channel configuration register read from the ACM is shown for each analog channel. Individual, decoded bit
fields of the register are listed immediately beneath (as described in Fusion and SmartFusion handbook).
The dialog box may display the following values:

Fusion Device
e Analog MUX select
e Internal chip T monitor

Libero SoC User's Guide 211

& Microsemi

Table of Contents

Scaling factor control

Current monitor switch

Current monitor drive control

Direct analog input switch

Pad polarity - G, T, V, C pad polarity, positive or negative
Select low/high drive

Prescaler op amp mode

SmartFusion Device

To use the compare feature, select the Compare with checkbox. If the loaded PDB file contains Analog
Block configuration information the comparison appear automatically.

To use a specific Project File, click Browse and navigate to the Analog System Builder directory for for
Fusion or SmartDesign for SmartFusion. In a typical IDE project, this directory is located at:

After specifying the compare directory the differences (if any) are indicated in red on a channel by channel

Gain select

Channel state

Direct Input state

Current Monitor state
Current monitor strobe state
Comparator state
Hysteresis select

Analog MUX select

DAC input select
Temperature monitor state
Temperature monitor strobe state
Vref switch state

Fusion - <project_root>/smartgen/<analog_block_core_name>
SmartFusion - <project root>/component/work/<SmartDesign project>/MSS_ACE_0

basis, as shown in the figure below.

212

& Microsemi

Table of Contents

¥ Analog Block Configuration ? E]
Channel configuration Compare with: as15
Found 32 mismatched channals
Browse. ..
il
Channel Byte lo 1AV
\ Oxg
Do Conent e Cortn
ACD Ox00 F.'b- | Byte D81 038
Analog MUX select Prescaler Direck input
AGD 000 |4 ;
G0 ! Scaling factor control 0.3125 (8v) 0.15625 (16}
ATOD OxE0 .ﬂ Current monitor switch — Off on
o2 Direct analog input switch OFF on
AVl ¥-pad polarity Pasitive Positive
A1 w10 Prescaler op amp mode Cperational Powwardowm
AGL 00 |4
AT1 Ox80 A
AN2 0x92 i‘»
ACP Licatd |

Figure 91 - Analog Block Configuration Dialog Box for a Fusion Device (Differences in Red)

Embedded Flash Memory (NVM) Content

The NVM content dialog is divided into two sections. The top section shows the data that is retrieved from
the PDB that you specified. The bottom section shows the data that is retrieved from the actual device. The
View Flash Memory Content diagnostic enables you to:

e View content of Flash Memory pages (as shown in the figure below)
e Compare device content with original design content (requires a PDB that contains your EFC data)

e Check page status and identify if a page is corrupted or if the write count limit has exceeded the 10-
year retention threshold

Fusion Devices: Choose your block from the From block dropdown list This action populates the Select
dropdown list with the names of the clients in the selected block that is configured in the Flash Memory
System Builder.

SmartFusion Devices: Block selection is unused and unavailable.

Choose a client name from the Select dropdown list and click Read from Device to view the values. You
can also view a specific page range by selecting the <Page Range> option in the Select dropdown list and
then specifying the start page and the end page.

You must click Read from device each time you specify a new page range to update the view.

If you do not have your original design programming database (PDB) file, then you can also examine and
retrieve a range of pages. Specify a page range if you wish to examine a specific set of pages.

Libero SoC User's Guide 213

& Microsemi

Table of Contents

Figure 92

" Flash Memory @El

Retrieve Flash Memory Content from Device:
From block |0 - M55 _EmMWM_0.efe

Select |ACTEL_PPE_MERGE_CONFIG (p) |2} Read from Device *

Start address: | OxEFEQD (page 2044)
Chient size: 48 | bytes (1 page)
Latest Content Retrieved from Device: Mon Jun 06 16:16:01 2011

Retrieved Content: Client *ACTEL_PPE_MERGE_CONFIG", 48 bytes starting from address Ox3FEQD

View Detailed Status| [Compare Client Content

Page Mumber | Address

2044 3FEOQ| 00 03 0o 0o 10 0o 10 10 an 03 10 0z 03 04 10 20

2044 3FE10| 01 L] 40 oo 10 L] 10 10 01 03 1o oz 43 04 10 20

2044 IFEZ0) 11 oo 13 o1 o1 0z 20 18 10

2044 IFE30 0o

2044 3FE40 a0

0o oo ao

2044 IFESOD 0o 0o o0 00 oo an i) an an

00 00 00
0o oo 00
2044 3FESD| 0O 0o oo 0o oo oo oo 00 ao
00 00 00
00 o0 00

2044 IFETD 00 0o oo 0o oo an fuls] o an

Figure 93 - Flash Memory Dialog Box for a SmartFusion Device (Device Debug)

Embedded Flash Memory: Browse Retrieved Data

The retrieved data table displays the content of the selected client or the page range selection. Corrupted
pages content is displayed in red. Read-only page content, corresponding to clients defined with the Prevent
read option in Flash Memory System Builder, is displayed on gray background. If content cannot be read
(e.g. pages are read-protected, but security has been erased), it is displayed as XX. The mouse tooltip
summarizes abnormal content status (as shown in the figure below).

The corresponding page number and address (relative to the current block) are displayed in the left column.
The client size specified in the Flash Memory System Builder is shown at the top of the content table.

In the Retrieved Data View you can enter an Address value (such as 0010) in the Go to Address field and
click the corresponding button to go directly to that address.

Click View Detailed Status for a detailed report on the page range you have selected.

For example, if you want to view a report on pages 1-3, set the Start Page to 1, End Page to 3 and click

Read from Device, then click View Detailed Status; the figure below is an example of the data for a
specific page range.

214

& Microsemi

Table of Contents

¥ Flash Memory Details

In Elock 1, from Page 1 to Page 3, 384 bytes starting from address 0x&0 as of Wed Jan 20 15:40:57 2010 ’

Hs

| (@rm

aVE

Flash Memory Content [Page 1 ko 3]
FlashMemary Page #1:
Status Register{HEX): 0O0Sf000
Status ECCZ check: Pass
Data ECC2 Check: Pass
W'rite Count: Pass (2288 writes)
FlashMemory Page #2:
Status Register{HEX): 000SFO00

Status ECCZ check: Pass
Data ECCZ Check: Pass
W'rite Count: Pass (2258 writes)

FlashMemory Page #3:
Status Register{HEX): 000SF000

Status ECC2 check: Pass
Data ECCZ Check: Pass
W'rite Count; Pass (2258 writes)

Total number of pages with status ECCZ errars: 0

Total number of pages with data ECCZ errors: 0

Tatal number of pages with write count ouk of range: 0
FlashMemary Check PASSED for [Page 1 ka3]

s

Figure 94 - Flash Memory Details Dialog Box (Device Debug)

T Flash Memo ry

Retrieve Flash Memory Content from Device:

From black |3 - newiZore.efc &
st [3
Stark Page: |0 {address o00000)
EndPage: |3 {4 pages, 512 bytes)

Latest Content Retrieved from Device:

Retrieved Content: In Block 3, from Page 0 bo Page 3, 512 bytes starting from address 00

G b deddrass (hee:

Wed Jan 20 103317 2010

Wiew Detaded Status

Conbent
Page Mumber | Address

o J 1 2l s]+dslelzfofofajelcl]

o |E|F

11}

ojlojojlo|jloljlo|o|o

o0 00 00 00 00

| 0 00
Corrupted; Resd Protected;
. s aca e ol

S8|l8'8 '8 &8 B8 883
E E|lg 2 2 B E B E E
SE|IFEFE 88 888 =
2 E|lg 2 2 B E B E E
2 E|g 2 28 BE E B E B
2 E|g8 BE B B E

E E|lg B E B E

{8 Bl g 2828 88 8 8
{8 8|l e B8t 88 8 8
{8 EB|ls 8B 8 8 8 8

! 8 2888288 ¢E 8 8 8
i 8 BE|]g E 2 8 &

i
i
i
i
i
i
i

d

& E|lg 2 B B E

i

2 E|lg 2 2 BE E B E B

i B E|g8 BE E B E B E B
4

i

E

Figure 95 - Flash Memory Browse Retrieved Data

Libero SoC User's Guide

215

& Microsemi

Table of Contents

Embedded Flash Memory: Compare Memory Client

After you retrieve the data from the device, the Compare Client Content button enables you to compare the
content of the selected client from the device with the original programming database (PDB) file. The
differences are shown in the Compare Memory Client dialog (as shown in the figure below).

Note: This option is not available when you select to retrieve the data based on a page range.

1 Compare Memory Client

In Block 0, Client "DSBbIK", 256 bytes starting from address 0x0 as of Sun Jan 17 12:12:06 2010 | | save || &Pt |

Flash Memory Client Compare [DS8bit - Block 0] ~|

Difference at byte 0.

Byte

Design

Device

[i]

Oy

]

Difference at bytes 2 to 4.

Byte Design Device
2 Oee3h, | Owl
3 OxcAB | 000
4 OxB8 | OwD

Difference at bytes 6 to 255,

Byte Design Device
& FF | Ol
7 aCD (000
& Oncad, | O
9 OcAd, | O
10 |ecAA (Ox00
11 |kcAB [O0x00
12 IMkefd |l

Figure 96 - Compare Memory Client Dialog Box

FlashROM Content Dialog Box

Enables you to view the physical blocks in your FlashROM and the client partitions specified in the original
design content (requires a PDB that contains your UFC data). If the project’'s PDB does not contain UFC
data, only the physical blocks are displayed.

Scroll through the table to view the Words and Pages for your physical blocks.

The Client Partitions section lists the names and configuration details of the clients set up in the FlashROM
Builder. It automatically finds all mismatched client regions. To view the differences between a client and the
device content, select a region row in the Client Partitions table. This action will highlight the corresponding
device content in the Physical Blocks table. The mismatch details are displayed below the Client Partitions
table.

To copy to clipboard the content of the Physical Blocks table, select one or more cells in the table and type
Ctrl+C.

216

1 FlashROM

& Microsemi

Table of Contents

Phesical Blocks

Wards

15 (14|23 | 12|11 | w| o] | 7| =] 43| 2] 1] o

7FF |7E |70 FC 7B |F& F@ |78 |77 F& |F5 74 F3 72 |71 |FO

62z |22 |2z |2z e |2z |2z |z |22 |2z |2z 22 me z2 |2 |22

5/5F DE Db 5C DB |54 59 D8 D7 56 |55 D4 53 D2 D1 |50

Pages |4 PENNISIIGEIEEES o @ s | EF 0A BC |DE FO A |(D
%/3F |BE |BD 3C BB |34 |39 B8 |BF |3 |35 B4 33 B2 (Bl |30

/00 00 |00 o0 00 |00 |00 OF |BE |FA |FA FA F4 FA |FA |EB

1/00 o0 00 o0 00 00 (OO0 OO 00 (OO0 00 00 00 00 |00 |00

ool 23 (45 (67 89 |01 |23 45 |&F 89 |AA AR BB CC |CD DD

Client Partitions

Found 2 client regions that do not match with dewvice content,

FlashROM configuration file: D:\templfrom2\From_File_care'\from_File_core.ufc

Reqgion Marne

Region_3_11

Reqgion_4_11

Region_5_11

Reqion Type
Read from file 3
Skatic 4
Aukao Inc 3

Page

11

11

11

Start Ward

Size (words)

Content dekails For selected region

From dewvice:

AECDEFOAEC

From config file: 0000000000

& Mismatch between configuration file content and device content,

Shown as: HEXADECIMAL

Close

Device Debug Tcl Commands

Figure 97 - FlashROM Content Dialog Box

The following table lists the Tcl commands related to Device Debug. Click the command to view more

information.

Table 21 - Device Debug Tcl Commands

Command

Action

Type

check flash _memory

Performs diagnostics of the page status and
data information

Embedded
Flash
Memory
(NVM)

compare_analog_config

Compares the content of the analog block

Analog Block

Libero SoC User's Guide

217

& Microsemi

Table of Contents

Command Action Type
configurations in your design against the
actual values in the device.
compare_flashrom_client | Compares the content of the FlashROM FlashROM
configurations in your design against the
actual values in the selected device.
compare_memory_client Compares the memory Embedded
client in a specific device | Flash
and block Memory
(NVM)
read analog_block_config Reads each channel Analog Block
configuration on your
analog system, enabling
you to identify iffhow each
channel is configured.
read_device_status Displays a summary of the selected device
read_flashrom Reads the content of the FlashROM from FlashROM
the selected device
read flash_memory Reads information from the NVM modules Embedded
(page status and page data) Flash
Memory
(NVM)
read id code Reads IDCode from the device without
masking any IDCode fields
recover_flash_memory Removes ECC2 errors due to memory Embedded
corruption by reprogramming specified flash | Flash
memory (NVM) pages and initializing all Memory
pages to zeros. (NVM)

sample _analog_channel

Samples analog channel; enables you to
debug ADC conversion of the preconfigured
analog channel (you must provide ADC
conversion parameters)

set_debug_device

Identifies the device you intend to debug.

set_debug_programmer

Identifies the programmer you want to use
for debugging (if you have more than one).

SmartDebug for SmartFusion2 and IGLOO2

SmartDebug for SmartFusion2 and IGLOO2 supports probe capabilities in the device architecture and

device debug features for memory.

To open SmartDebug, in the Design Flow window expand Debug Design and double-click SmartDebug
Design (as shown in the figure below). The SmartDebug dialog box appears and lists your Device, the ID

Code read from your device, and your Programmer.

218

& Microsemi
Table of Contents

SmartDebug enables you to:

View Device Status — Displays the Device Summary Report. It is a summary of your device state, user
information, factory serial number and security information. Use this dialog box to save or print your
information for future reference.

View Flash Memory Content - Use this information to view, save or print the flash memory content in your
design.

Debug FPGA Array — SmartFusion2 and IGLOO2 devices have built in probe points that greatly enhance
the ability to debug logic elements within the device. The enhanced debug features implemented into the
devices give access to any logic element and enable designers to check the state of inputs and outputs in
real time. Live Probe and Active Probe are only available for the SmartFusion2 and IGLOO2 families.

e With Live Probe, two dedicated probes can be configured to observe a Probe Point (any input or
output of a logic element). The probe data can then be sent to an oscilloscope or even redirected back
to the FPGA Fabric to drive a software logic analyzer.

e Active Probe allows dynamic asynchronous read and write to a flip-flop or probe point. This enables
you to quickly observe the output of the logic internally or to quickly experiment on how the logic will be
affected by writing to a probe point.

e Memory debug gives you the ability to perform dynamic asynchronous reads and writes to a micro
SRAM or large SRAM block so you can quickly verify if the content of the memory is changing as
expected.

Debug SERDES - Enables you to examine and debug the SERDES blocks in your design. You can
configure your SERDES debug, and run PRBS and Loopback tests.

Libero SoC User's Guide 219

& Microsemi

Table of Contents

Design Flow]

testcases

Tool
Create Constraints
=- # Implement Design
*> Synthesize
=~ # ¥erify Post-Synthesis Implementation
. Simulake
Compile
| Configure Flash*Freeze
ﬁ:; Place and Route
= # Edit Constraints
I Constraints
Tirnimg Conskrainks

-

Create Design

-

LS AR S

%" Floorplan Constrainks
¥ ¥Yerify Post Layout Implementation
. Sirmulake
ﬁh ¥Yerify Timing
El ‘erify Poveer
v *!| Generate Fabric Programming Daka
=~ # Edit Design Hardware Configuration
I+[Prograrmming Connectivity and Interface
.’u Programmer Setkings
% Device /D Stakes During Programming
=~ # Configure Security and Programming Opt...
Security Policy Manager
¢ Programming Feakures
% Update efWM Mermory Content
=~ # Program Design
@‘ Program Device
=- # Debug Design
25 Instrument Design
_ & SmartDebug Design
=~ # Handoff Design for Production
-@ Export Programming File
ol Expork Pin Report
«[| Export BSDL
=- # Develop Firmware
B: vrite Application Code

-4
o

Figure 98 - SmartDebug in the Design Flow Window

Using SmartDebug with SmartFusion2 and IGLOO2

The most common flow for Device Debug is:

1. Create your design. You must have a FlashPro programmer connected in order to use SmartDebug.

2. Expand Debug Design and double-click Smart Debug Design in the Design Flow window.
SmartDebug opens for your target device.

3. Click View Device Status to view the device status report and check for issues.

220

& Microsemi

Table of Contents

4. Examine individual silicon features, such as FPGA debug.

Device Status Report - SmartFusion2 and IGLOO2

This dialog box displays the Device Information report. The Device Information report is a summary of your
device state, user information, factory serial number and security information. Use this dialog box to save or
print your information for future reference.

Libero SoC User's Guide 221

& Microsemi

Table of Contents

Debug SERDES

The Debug SERDES dialog box (as shown in the figure below) enables you to examine and debug the
SERDES blocks in your design.

To Debug SERDES, expand SmartDebug in the Design Flow window and double-click Debug SERDES.

Debug SERDES Configuration is explained below. See the PRBS Test and Loopback Test topics for
information specific to those procedures.

SERDES Block identifies which SERDES block you are configuring. Use the dropdown menu to select from
the list of SERDES blocks in you design.

Debug SERDES - Configuration

Configuration Report

The Configuration Report output depends on the options you selected in your PRBS Test and Loopback
Tests. The default report lists the following for each Lane in your SERDES block:

Lane mode - Indicates the programmed mode on a SERDES lane as defined by the SERDES system
register.
PMA Ready - Indicates whether PMA has completed its internal calibration sequence for the specific lane

and the PMA is operational. See the SmartFusion2 or IGLOO2 High Speed Serial Interfaces User's Guide
on the Microsemi website for details.

TxPIl status - Indicates the loss-of-lock status for the TXPLL is asserted and remains asserted until the PLL
reacquires lock.

RxCDR status - Indicates the RxCDR loss-of-lock for the channel when asserted and locking to the
incoming data stream.

Click Refresh Report to update the contents of your SERDES Configuration Report. Any changes to the
specified SERDES register programming can be read back to the report.

SERDES Register Read or Write

Script - Runs your MSS Read/Write using a script. Enter the full pathname for the script location or click the
Browse button to navigate to your script file. Click Execute to run the script.

222

http://www.microsemi.com/document-portal/doc_download/130922-smartfusion2-soc-fpga-high-speed-serial-interfaces-user
http://www.microsemi.com/document-portal/doc_download/132011-igloo2-fpga-high-speed-serial-interfaces-user-s-guide

& Microsemi

Table of Contents

[| Debug SERDES

Debug SERDES

SERDES Block |SERDESIF 1 =

Configuration Report:

Cenfiguration * | | Refresh Report
4 Tests SE[dES E[i)lm:k SERDESIF_1:
ane 0 :
PRES Test Lane mode : EPCS (1.25 GHz)]
Loopback Test PMA Ready : True |=
TuPLL status : Locked
RxCDR status : Unlocked
Lane 1:
Lane mode : EPCS (1.25 GHz)
PMA Ready : True
THPLL status : Locked
RxCDR status : Unlocked
Lane 2:
Lane mode : EPCS (1.25 GHz) o

SERDES Register Read or Write:

=) e

Script:

Close

Figure 99 - Debug SERDES - Configuration

Debug SERDES- PRBS Test

PRBS data stream patterns are generated and checked by the internal SERDES block. These are used to
self-test signal integrity of the device. You can switch the device through several predefined patterns.

View Loopback Test settings in the Debug SERDES - Loopback Test topic.

SERDES Block identifies which SERDES block you are configuring. Use the dropdown menu to select from
the list of SERDES blocks in you design.

SERDES Lanes

Select the Lane and Lane Status on which you wish to run the PRBS test. Lane mode indicates the
programmed mode on a SERDES lane as defined by the SERDES system register.

Test Type
Near End enables a self test of the device. The serial data stream is sent from the SERDES TX output and
folded back onto the SERDES RX input.
External Cable is the normal system operation where the data stream is sent off chip from the TX output
and must be connected to the RX input via a cable or other type of electrical interconnection

Pattern
The SERDESIF includes an embedded test pattern generator and checker used to perform serial
diagnostics on the serial channel, as shown in the table below.

Pattern Type

Libero SoC User's Guide

223

& Microsemi

Table of Contents

Pattern Type

PRBS7 Pseudo-Random data stream of 27 polynomial sequences
PRBS11 Pseudo-Random data stream of 2211 polynomial sequences
PRBS23 Pseudo-Random data stream of 2223 polynomial sequences
PRBS31 Pseudo-Random data stream of 2231 polynomial sequences
All Zeros Fixed pattern data

All Ones Fixed pattern data

Alternated Fixed pattern data

Dual Alternated

Fixed pattern data

User Defined

Sets your custom pattern

Error Count

Lists the number of errors after running your PRBS test. Click Reset to reset to zero.

2] =

| Debug SERDES
SERDES EBlock |SERDESIF_1 =
Debug SERDES SERDES Lanes: @ Lane 0 ™) Lane 1 T Lane 2
Ceonfiguration Lane 0 status: TwPLL RxCDR.
4 Tests
PRBS Test Test Type:
Loophaie @ Near End Serial Loopback (On-Die) | Serial Data (Off-Die)
Pattern:
@ PRBS7) All Zeros { 0000....00)
) PRBS11 () All Onmes (1111....11)
) PRBS 23 () Alternated { 101010..10)
) PRBS 31 () Dual Alternated { 1100 ... 1100)
) User Defined

Error Count:

o

™) Lane 3

w
=
=

Close

Figure 100 - Debug SERDES - PRBS Test

224

& Microsemi

Table of Contents

Debug SERDES - Loopback Test

Loopback data stream patterns are generated and checked by the internal SERDES block. These are used
to self-test signal integrity of the device. You can switch the device through predefined tests.

See the PRBS Test topic for more information on the PRBS test options.

SERDES Block identifies which SERDES block you are configuring. Use the dropdown menu to select from
the list of SERDES blocks in you design.

SERDES Lanes

Test Type

Select the Lane and Lane Status on which you wish to run the Loopback test. Lane mode indicates the
programmed mode on a SERDES lane as defined by the SERDES system register.

PCle Far End PCS RX to TX Loopback - See the SmartFusion2 or IGLOO2 High Speed Serial Interfaces
User's Guide on the Microsemi website for details.

Parallel loopback - See the SmartFusion2 or IGLOO2 High Speed Serial Interfaces User's Guide on the

Microsemi website for details.

PCS Far End PMA RX to TX Loopback- See the SmartFusion2 or IGLOO2 High Speed Serial Interfaces
User's Guide on the Microsemi website for details.

li | Debug SERDES (2] = |

SERDES Block |SERDESIF 1 =

Debug SERDES SERDES Lanes: (@) Lane® () lamel () lame2 () lLane3
Ceonfiguration Lane 0 status: TwPLL RxCDR.
4 Tests
PRBS Test Test Type:
Loopback Test

PCle Far End PCS Rx to Tx Loopback (PCIe only)
Parallel loopback { PCIe only)

@ PCS Far End PMA Rx to Tx Loopback

Stop

Figure 101 - Debug SERDES - Loopback Test

Debug FPGA Array

The Debug FPGA Array dialog box enables you to view your Live Probes, Active Probes and Memory
Blocks and allows you to Insert Probes (Probe Insertion).

Libero SoC User's Guide 225

http://www.microsemi.com/document-portal/doc_download/130922-smartfusion2-soc-fpga-high-speed-serial-interfaces-user
http://www.microsemi.com/document-portal/doc_download/132011-igloo2-fpga-high-speed-serial-interfaces-user-s-guide
http://www.microsemi.com/document-portal/doc_download/130922-smartfusion2-soc-fpga-high-speed-serial-interfaces-user
http://www.microsemi.com/document-portal/doc_download/132011-igloo2-fpga-high-speed-serial-interfaces-user-s-guide
http://www.microsemi.com/document-portal/doc_download/130922-smartfusion2-soc-fpga-high-speed-serial-interfaces-user
http://www.microsemi.com/document-portal/doc_download/132011-igloo2-fpga-high-speed-serial-interfaces-user-s-guide

& Microsemi
Table of Contents

Debug File - Shows a path to your Debug File. The Debug file contains information used by SmartDebug
mainly for mapping user design names to their respective physical addresses. It also contains other
information used during debug process.

The Debug file is generated by Libero SoC during Place and Route and is stored in the design folder.

The Debug FPGA Array dialog box includes the following four tabs:
e Live Probes
e Active Probes

e Memory Blocks
e Probe Insertion

226

& Microsemi
Table of Contents

Live Probes

The Live Probes tab shows a table with the probe name and pin type. Once a net hame is selected, it can be
assigned to either ChannelA or ChannelB.

Note: At least one channel must be set; if you intend to use both probes, they must be set at the

same time.
Note: The Active Probes READ/WRITE will overwrite the settings of Live Probe channels (if any).
T Debug FPGA Array L8
DebugFle: | C:Microsemi/SmartDebug/debugFle_combined_names. bt [Browse...

FPGA Array Debug Data

Live Probes | ActiveProbes | Memary Blodks |

Filter search |
[Mame Type
NorthellowNetl:NorthVellowlnstl Logic
NorthYellowNet2:NerthYellowlnst2 SEURE

Logic

NorthGreenNet3:MorthGreenlnst3

South 10
NorthG: Netd:MorthGr Instd
ot tikittdciinie Channeld | -> Westrelowhame 1:WestfelowInst1 i
Logic Set
SouthVellowNetl:SouthYellowdnstl L
ChannelB -> SputhGreenNet3:SouthGreenlnst3

SouthYellowNet2:SouthYellowlnst2 Seuth 10

| SouthGreenNet3:SouthGreeninst3 Logic

SouthGreentNetd:SouthGreenlnstd South 10

EastVellowhamel :EastYellowlnstl Logic

Logic

EastYellowName2:EastYellowlnst2

[reo | [cese

Figure 102 - Live Probes Tab in SmartDebug FPGA Array Dialog Box

After the channels have been set, SmartDebug configures the ChannelA and ChannelB 10’s to monitor the
desired probe points. The maximum number of simultaneous probes is two internal signals. There is also a
Filter box to filter through the Net Names. As you begin typing in the Filter box, the Net Name table only
shows results for the queried names.

Libero SoC User's Guide 227

& Microsemi

Table of Contents

Active Probes

On the Active Probes tab a table of Probe Names is shown with the Name, Type (which is the physical
location of the flip-flop) and Value.

Click the Select Active Probes button to open a window that lists all the Available Probe Points and
Selected Probe Points. Both lists can be filtered using the inline Filter box . In between the two lists of Probe
points are buttons for adding and removing probe points from either list.

5] Debug FPGA Array

== e’

Debug File:

FPGA Array Debug Data

Active Probes

Select Active Probes
Read Active Probes
Write Active Probes

Memory Blocks

Z: fworkflashpro_projectsfenvm_nov7/designer fenvm_test_design/envm_test_design_debug. txt

Erowse...

Active Probe Data

renvm_test_design_MSS_0/MDDR_ADDR._..

renvm_test_design_MSS_0/MDDR._ADDR._...

renvm_test_design_MSS_0/MDDR._ADDR._...

renvm_test_design_MSS_0/MDDR._ADDR._...

renvm_test_design_MSS_0/MDDR_ADDR._...

:envm_test_design_MSS_0/MDDR_ADDR_...

Type ;?3'
Morth IO Low
Morth IO Low
MNorth IO High
Morth IO Low
MNorth IO High
Morth IO Low

Value

Close

Figure 103 - Active Probes Tab in SmartDebug FPGA Array Dialog Box

Once you have selected the desired probe points appear in the Active Probe Data chart and you can read

and write multiple probes at the same time (as shown in the figure below).

The Value column fields are editable for each of the probe points. Clicking the circle shaped icon changes
the value, and clicking the back-arrow resets the value. Fields that have been changed are indicated by red
text. After the probes have been written, the values return to black text.

(53 Select Active Probe Points [R5

Available Probe Points Selected Prabe Points
Flter Search Filter Search

Name Type T4 [Name Type
NorthYellowNetL:NorthVellowinstl Logic | SouthVellowNett:South¥ellowinstt Logic
North¥ellowNet2:NerthVellowlnst2 Souh SouthGresnNet3:SouthGreenlnst3 Logic
NorthGreenMet3:NorthGreenlnst3 Logic WestYellowNamel:WestYellowlnstl Logic
NerthGreenNetd:NorthGreenlnstd ks = IWestGleenNamé:WestGleenInsB Logic
SouthVellowNetl:SouthVellowlnstl Logic Add >
SouthVellowNet2:SouthVellowlnst2 South10 <-Remave
SouthGreenMNet3:SouthGreenlnst3 Logic [—]<‘m M
SouthGreentNetd:SouthGreenlnstd South10
EastYellowNamel:EastYellowInstl Logic
EastVellowName2:EastYellowlnst2 Logic
EastGreenName3:EastGreenlnst3 Logic
EsstGreenNamed:EastGreenlnstd Logic -

e]

Figure 104 - Active Probes Tab - Select Active Probe Points

228

& Microsemi

Table of Contents

Memory Blocks Tab

The Memory Blocks tab shows a dropdown menu of defined memory blocks that are specified in your design
and generate a debug file. Once you select a memory block you can click Read Block to show the current
contents of the memory or write to individual memory locations. Each field is editable and multiple memory
locations can be written at the same time.

Each field is a 9 bit memory word so valid inputs are hexadecimal values between 0x0 and Ox1FF (as shown
in the figure below).

(&7 Debug FPGA Array [IRE)

Debug File: C:/Microsemi/SmartDebug/debugFile_combined_names, txt
FPGA Array Debug Data

Live Probes | Active Probes | Memory Blocks

(MySiBlock2 v [_ReadBlock | | write Block
Memory Block Data

g

0010 000

0020

ElEEREEEEENEERDS
5% 333 3T EEEGE DS
g 88 888gggggsgsegse g g s
I BEERELNEREAENEDD
§ 8§88 888g8g88g8ggegsegsgs
g 88 888gggggsegsegsesg g s
g 8888888 eggsgzegegsgs
53 %% 33838802
ENIEE RN LER NN ESEEE
g 8888888 8g8ggzegeg g s
§ 8§88 888gg8g88geggegsegsgs
E B EEREEEBEESEHEEERAES
EAEE EEREEEEAERS
§ 8§88 888gg88g8ggegsegsgs
g 88 888gggggsgsegesg g s

g
g 88 88ggegggse g g 8

p
]
B
B
]
-]
-]
b
]
1
-]
-}
B
B
]
1
1
-]
-]
b
B
]
B
]
-]
-]
b
P
]
1
]
-]
-]
b
P

Figure 105 - Debug FPGA Array - Memory Blocks Tab

Fields that have changed but have not yet been written appear in red text until you click the Write Block
button to initiate a memory write (as shown in the figure below).

Libero SoC User's Guide 229

& Microsemi

Table of Contents

(&7 Debug FPGA Array (P =
DebugFie: C:/Microsemi/SmartDebug/debugFile_combined_names. txt
FPGA Array Debug Data
[LiveProbes | Active Probes | Memory Blocks |
[MysiBlock2 ~] [ReadBlock | [write Block |

Memory Block Data

0230 000 000 000 000 000 000 000 000 00O 000 00O 000 000 000 000 000 °
0240 000 000 000 000 000 000 000 000 00O 000 00O 000 000 000 000 000
0250 000 000 000 000 000 000 000 000 00O 000 00O 000 000 000 000 000
0260 001 002 003 004 005 005 006 007 00Z 009 00O 000 000 000 000 000
0270 000 000 000 00O 000 000 000 000 00O 000 00O 000 000 000 000 000
0280 000 0AA 000 000 000 000 000 000 00O 000 00O 000 000 000 000 000 |-
0290 000 000 000 000 OAA 000 000 000 00O 000 000 000 000 000 000 000 |
0240 000 000 000 000 000 000 000 0S5 000 000 000 000 000 000 000 000
0280 000 055 000 000 000 000 000 000 OAA 000 000 000 000 000 000 000
02C0 000 000 000 000 000 000 000 000 00O 000 00O 000 000 000 000 000
0200 000 000 000 000 000 000 055 000 000 000 000 000 000 000 000 000
02€0 000 000 000 000 000 000 000 000 000 000 OAA 000 000 000 000 000
02F0 000 000 000 000 000 000 000 000 00O 000 00O 000 000 000 000 000
0300 000 000 000 000 OAA 000 000 000 000 055 000 000 000 000 000 000
0310 000 000 000 000 000 000 000 000 00O 000 00O 000 000 000 000 000
0320 000 000 000 000 000 000 000 000 00O 000 00O 000 000 000 000 000

Figure 106 - Memory Blocks with Updated Values

Add Probes

To insert probes, right click SmartDebug Design in the Design Flow window and choose Open
Interactively (SmartDebug Design > Open Interactively). When SmartDebug opens, click Debug FPGA
Array and then click the Probe Insertion tab.

230

& Microsemi

Table of Contents

[53 Debug FPGA Ay . i — [
> 3

Debug Fle: Orrlantmp ety Mo e P L 50 desgnes S ystem MySystem _debusg, tet | Browse... | 1
FPGA Array Debug Dats I

| LiveProbes | AcoveProves | MemoryBods | Probe lnserson |

Probes (Laddbrobe] [€dtprove | [odewe | [osenal]

Insert Probe(s]) and Program the device | Pun |

[heo | [Cose |

Figure 107 - Probe Insertion Tab
Click Add Probe. The Add Probe dialog box displays the available probe points on the right side. Each entry
has Net and Driver name which identify that probe point. The left (filter) pane allows filtering of the probe
points by net names or instance names.

To add filtering for Cell Types, enter the Cell Type Name in the Cell Type field. Enter, for example, SEQ in
the Cell Type field and all SEQ (Sequential) cell types will be displayed. If you enter COMB in the Cell Type
field, all COMB (Combinational Cells) will be displayed.

W] Add Probe(s) []
Filter net{s) by: Select a Nets) for the Probe

[hame | Tstances Met Diriver - |

Instance Name = i Qim0 0 intf301Q I
2 QL ink[25] Q_ind[26]:0)

cTe seq 3 Qinis) Qiniz5kQ I

[ieni0) R 4 QUi Q_int24):0 |
Qint{10] 5 Qin[X) Qint[231:Q

Qntil1] & Quint[2Z] QLint[2210 £

Qinti12] z 7 Quint{2l] Qint[21:Q
Qint]13] 8 Quint20] Qint20}Q
QitiLd) 5 Qinllg] Q_int{151:Q
T 1 Q imii6) Qinti181Q
Linil7] 11 Qintfi7] Qint{17}:Q
& i8] 12 QLink(16] 0 im161:Q
Qint19] 13 QLint{15] Qint{15:Q
Qintf1] 14 Quintf1d] QL intf24]:Q

QLint]20] % 15 Qint[13] Qint[13}:Q |
. 1% Qint[1d] Qint123Q
Select Al 17 Quintfll] QUint111Q
18 Quint[10] Qintf10]:Q

se |19 0 inef9) 0_intf9L0 hal |
L _— R

Figure 108 - Add Probe(s) Dialog Box

Click a net to select it for adding to the Probe. Click OK. The Probe appears in the top level Probe Insertion
dialog. SmartDebug automatically generates the Port Name for the probe you add.

To complete the probe insertion, you need to assign a package pin to the probe you add. You may assign
the probe to an unused package pin (spare I/O) or to an assigned package pin (pin already used by Place
and Route for an I/O port).

Note: When you use an assigned pin to add a probe, SmartDebug disconnects the chosen I/O from the
design. A Yellow Warning Icon appears. Use this option with caution and only when you do not have spare
1/0Os for your probes.

Libero SoC User's Guide 231

& Microsemi

Table of Contents

Debug Fler Coictelpn'sf2_prep lidesgresishift_reg32shift_regd2_debug. it
FPGA Array Debug Data

Uve Probes | Actve Probes. | Memorysiods | Frobe Inserton

Probes

Met

& qrpy
0 _nt(27)
Qint{25)
3_int[24]

Iraert Probe(s) o Program the device |

Figure 109 - Debug FPGA Array > Probe Insertion > Add Probe
Click Run to insert the probes and program the device with the added probes.

Deleting Probes
To delete a probe, select the probe and click Delete.
To delete all the probes, click Delete All.

SmartDebug Tcl Commands

The following table lists the Tcl commands related to Device Debug for SmartFusion2 and IGLOO2. Click
the command to view more information.

Table 22 - Device Debug Tcl Commands

Command Action

Debug File

set debug_data_file [Sets the debug file

Probe

set_live_probe Set Live probe channels A and/or B to the specified probe point
(or points)

select_active_probe [Manages the current selection of active probe points to be used
by active probe READ operations

read_active probe | Reads active probe values from the device

write_active_probe | Sets the target probe point on the device to the specified value

LSRAM
read_Isram Reads a specified block of large SRAM from the device
write_lsram Writes a seven bit word into the specified large

SRAM location

232

& Microsemi
Table of Contents

uSRAM
read_usram Reads a uSRAM block from the device.
write_usram Writes a seven bit word into the specified

uUSRAM location.

Export Pin Report

Double-click Export Pin Report to display the pin report in your Design Datasheet/Report.

The Pin Report lists the pins in your device. Right-click Export Pin Report and choose Configure Options
to select your pin report type. You can generate a report sorted by port name and/or by package pin name,
as shown in the figure below. The Pin Report generates two files:

e <design>_pinrpt_name.rpt - Pin report sorted by name.
e <design>_pinrpt_number.rpt - Pin report sorted by pin number.
You must select at least one report.
Export Pin Report also generates a Bank Report by default; the filename is <design>-bankrpt.rpt.

B Configuring

Configuration

Generake Report Sorked by Pork Mame

Generate Repork Sorted by Package Pin Mame

Help O,] [Cancel]

Figure 110 - Export Pin Report Dialog Box

Export BSDL File

Double-click Export BSDL File (in the Libero SoC Design Flow window, Handoff Design for Production >
Export BSDL File) to generate the BSDL File report to your Design Datasheet/Report.

The BSDL file provides a standard file format for electronics testing using JTAG. It describes the boundary
scan device package, pin description and boundary scan cell of the input and output pins. BSDL models are
available as downloads for many Microsemi SoC devices; see the Microsemi website for more information.

Export IBIS Model

Double-click Export IBIS Model (in the Libero SoC Design Flow window, Handoff Design for Production >
Export IBIS Model) to generate the IBIS Model report to your Design Datasheet/Report.

The IBIS model report provides a standard file format for recording parameters like driver output impedance,
rise/fall time, and input loading, which may then be used by any software application.

See the IBIS model application note for more information on IBIS models.

Libero SoC User's Guide 233

http://www.actel.com/download/bsdl/default.aspx
http://www.actel.com/documents/Ibis_AN.pdf

& Microsemi

Table of Contents

Exporting Firmware and the Software IDE Workspace
(SmartFusion2)

When your design has been completed, you can export the design firmware configuration using the Export
Firmware tool; the firmware configuration contains:

e Register configuration files for MSS, FDDR and SERDES blocks instantiated in your design. This
information must be compiled with your application along with the SmartFusion2 CMSIS firmware core
to have proper Peripheral Initialization when the Cortex-M3 will boot.

e Firmware drivers compatible with the hard and soft peripherals instantiated in your design.

To export your design firmware configuration, use the Export Firmware tool available in the Libero SoC
Design Flow window under the Handoff Design for Firmware Development phase.

In the Export Firmware dialog box, provide the location where you want the firmware configuration files to be
exported. When you export the firmware, Libero SoC creates a Firmware folder to store all the drivers.

Location: C:\Actelprj\sf2_115]

Software Tool Chain: |SoftConsole3.4 ~ |

[¥] Create project for selected Software Tool Chain

Figure 111 - Export Firmware
Software Tool Chain: Select SoftConsole, IAR or Keil as your Software Tool Chain.

Create project for selected Software Tool Chain

This option is checked by default. Libero SoC creates the firmware project for the IDE tool of your choice
and creates the SoftConsole/IAR/Keil (per your choice) folder to store the projects.

To enable you to manage your firmware project separately from Libero’s automatically generated firmware
data, the created software workspace contains two software projects:

hardware_platform - This project contains all the firmware and hardware abstraction layers that correspond
to your hardware design. This project is configured as a library and is referenced by your application project.
The contents of this folder get overwritten every time you export your firmware project.

application - This project produces a program and results in the binary file. It links with the
hardware_platform project. This folder does not get overwritten when you re-export your firmware. This is
where you can write your own main.c and other application code, as well as add other user drivers and files.
You can reference header (*.h) files of any hardware peripherals in the hardware_platform project — include
paths are automatically set up for you.

To build your workspace, make sure you have both the hardware_platform and _application projects set to
the same compile target (Release or Debug) and build both projects.

To open your exported firmware projects you must invoke your third-party development tool (SoftConsole,
Keil or IAR) outside Libero SoC and point it to the exported firmware workspace.

Note that you must re-export firmware if you make any changes to your design.

234

& Microsemi

Table of Contents

TCL Command

export_firmware \

-export_dir {D:\Designs\software_drivers} \
-create_project 1 \

-software_ide {Keil}

Version Supported

Libero SoC v11.4 supports the following versions of third-party development tools:
« SoftConsole v3.4

* IAR v5.4

* Keil V4.14

Running Libero SoC from your Software Tool Chain

When launched from your software toolchain, Libero SoC becomes solely an MSS configurator. This can be
useful if you are responsible for the embedded code development for the SmartFusion device and are more
comfortable in your existing software tool chain.

Any FPGA fabric development needs to be done using the regular Libero® SoC tool flow. Using the Libero
SoC in the software toolchain mode only enables you to configure the SmartFusion Microcontroller
Subsystem (MSS) and not the FPGA fabric.

The MSS Configurator can be integrated in any software development IDE that supports external tools.
Configure your IDE to start the Libero SoC executable and use the parameters below to customize your
interface. For SoftConsole, Keil and IAR the parameters are:

""PROJECT_LOCATION:<path>" //Project directory location, and the location of your
generated MSS files.

"DESIGN_NAME:<name>"" //Name of your design.

"STARTED_BY:<tool>" //ldentifies which tool invoked the MSS Configurator; can be
SoftConsole, Keil, or IAR EWARM

See Also

Exporting Firmware and the Software IDE Workspace
Libero SoC Frequently Asked Questions

Software IDE Integration

View/Configure Firmware Cores

Application Notes

Application notes are available for all Microsemi SoC devices. A full list of application notes is available at
the Microsemi SoC website.

Application notes are organized by product or type. For example, you can view a full list of application notes

for SmartFusion, or you can view a list of application notes on Design Entry that includes documents for all
available families.

The following is a short list of popular application notes covering a range of applications and devices.

e AC333: Connecting User Logic to the SmartFusion Microcontroller Subsystem App Note (design files
required - 23 MB) - Describes how to create AHB Lite or APB3 wrapper on custom logic and how to
connect it to the MSS System via the Fabric Interface Controller.

e AC225 Programming Antifuse Devices App Note - Provides an overview of the programming options
available for the antifuse families.

e AC362: SmartFusion cSoC: Programming FPGA Fabric and eNVM Using In-Application Programming
Interface App Note (design files required - 50 MB)

Libero SoC User's Guide 235

http://www.microsemi.com/soc/techdocs/appnotes/default.aspx
http://www.actel.com/techdocs/appnotes/smartfusion.aspx
http://www.actel.com/techdocs/appnotes/smartfusion.aspx
http://www.actel.com/techdocs/appnotes/design_entry.aspx
http://www.actel.com/documents/User_Logic_MSS_AN.pdf
http://www.microsemi.com/soc/download/rsc?f=A2F_AC333_DF
http://www.microsemi.com/soc/download/rsc?f=A2F_AC333_DF
http://www.actel.com/documents/AntifuseProgram_AN.pdf
http://www.actel.com/documents/A2F_AC362_AN.pdf
http://www.actel.com/documents/A2F_AC362_AN.pdf
http://www.microsemi.com/soc/download/rsc?f=A2F_AC362_DF

& Microsemi

Table of Contents

e AC335: Building an APB3 Core for SmartFusion cSoC FPGAs App Note (design files required - 13
MB) - Describes how to create an APB3 wrapper interface for your logic or IP and connect it to the
MSS via the Fabric Interface Controller.

e AC265: Clock Generation and Distribution Design Example App Note (design files required - 1 MB) -
Demonstrates the use of the IGLOO and ProASIC3 clock conditioning circuits and phase-locked loops
(PLLs) to generate multiple clock signals with different phases and frequencies.

Tutorials and Training Modules

Software tutorials, webcasts and online training modules are available on the Microsemi website. See the
website for a full list.

The following list is an example of the tutorials available. Training modules may require you to register to
enter the Microsemi Training Portal. Registration is free.

Example Tutorials

Catalog

ARM Cortex M1-Embedded Processor Tutorial (design files required - 105 MB) - Describes how to create a
Cortex-M1 processor system that runs on the Fusion development kit board available from Microsemi SoC.

SmartFusion cSoC Webserver Demo Using ulP and FreeRTOS - Demonstrates the SmartFusion device
capabilities using the SmartFusion Development Kit Board. Requires the following design files and the
SmartFusion Development Kit Board.

o Design files using Softconsole (RAR, 15.2 MB, 5/12)
e Design files using IAR (RAR, 11.9 MB, 5/12)

¢ Design files using Keil (RAR, 13.5 MB, 5/12)

e Programming File (RAR, 226 KB, 5/12)

Using Keil uVision and Microsemi SmartFusion (programming files required - 91 KB)- Describes the process
of operating an ARM Keil MDL Toolkit featuring pVision and Microsemi's SmartFusion family.

In the Libero SoC, from the View menu choose Windows > Catalog.
The Catalog displays a list of available cores, busses and macros (see image below).

236

http://www.actel.com/documents/SmartFusion_Build_APB3core_AN.pdf
http://www.microsemi.com/soc/download/rsc?f=A2F_AC335_DF
http://www.actel.com/documents/Clock_Generation_Distribution_AN.pdf
http://www.actel.com/download/rsc?f=Clock_Generation_Distribution_DF
http://www.actel.com/products/software/libero/docs.aspx
http://www.actel.com/support/webcasts/default.aspx
http://mscctraining.com/
http://www.actel.com/documents/CortexM1-Processor_Tutorial_UG.pdf
http://www.microsemi.com/soc/download/rsc?f=CortexM1_Proc_Tutorial_DF
http://www.actel.com/documents/SmartFusion_Webserver_uIPRTOS_UG.pdf
http://www.actel.com/download/rsc?f=A2F_Webserver_uIPRTOS_SoftConsole_DF
http://www.actel.com/download/rsc?f=A2F_Webserver_uIPRTOS_IAR_DF
http://www.actel.com/download/rsc?f=A2F_Webserver_uIPRTOS_Keil_DF
http://www.actel.com/download/rsc?f=A2F_Webserver_uIPRTOS_PF
http://www.actel.com/documents/Keil_SmartFusion_tutorial.pdf
http://www.actel.com/download/rsc?f=Keil_SmartFusion_tutorial_PF

& Microsemi

Table of Contents

Catalog S
& ~ [simulation Mode v R

Mame Version
> Arithmetic

» Basic Blocks

» Bus Interfaces

» (lock & Management
- DSP

» Fusion Peripherals

- /O

> Memory & Controllers
» Peripherals

* Power Management
* Processors

» Tamper

Mo core selected

Figure 112 - Libero SoC Catalog

From the Catalog, you can create a component from the list of available cores, add a processor or
peripheral, add a bus interface to your SmartDesign component, instantiate simulation cores or add a macro
(Arithmetic, Basic Block, etc.) to your SmartDesign component.

Double-click a core to configure it and add it to your design. Configured cores are added to your list of
Components/Modules in the Design Explorer.

Click the Simulation Mode checkbox to instantiate simulation cores in your SmartDesign Testbench.
Simulation cores are basic cores that are useful for stimulus, such as driving clocks, resets, and pulses.

Viewing Cores in the Catalog
The font indicates the status of the core:
e Plain text - In vault and available for use
o Asterisk after name (*) - Newer version of the core (VLN) available for download
e |talics - Core is available for download but not in your vault
o Strikethrough - core is not valid for this version of Libero SoC

The colored icons indicate the license status. Blank means that the core is not license protected in any way.
Colored icons mean that the core is license protected, with the following meanings:

Green Key - Fully licensed; supports the entire design flow.

Yellow Key - Has a limited or evaluation license only. Precompiled simulation libraries are provided,
enabling the core to be instantiated and simulated within Libero SoC. Using the Evaluation version of the
core it is possible to create and simulate the complete design in which the core is being included. The
design is not synthesizable (RTL code is not provided). No license feature in the license.dat file is needed
to run the core in evaluation mode.You can purchase a license to generate an obfuscated or RTL netlist.

Yellow Key with Red Circle - License is protected; you are not licensed to use this core.

Right-click any item in the Catalog and choose Show Details for a short summary of the core specifications.
Choose Open Documentation for more information on the Core. Right-click and choose Configure Core to
open the core generator.

Click the Name column heading to sort the cores alphabetically.

You can filter the cores according to the data in the Name and Description fields. Type the data into the filter
field to view the cores that match the filter. You may find it helpful to set the Catalog Display Options to List
cores alphabetically when using the filters to search for cores. By default the filter contains a beginning

Libero SoC User's Guide 237

& Microsemi

Table of Contents

and ending ¥, so if you type ‘controller’ you get all cores with controller in the core name (case insensitive
search) or in the core description. For example, to list all the Accumulator cores, in the filter field type:
accu

Catalog Options

Click the Options button ““* to customize the Catalog Display Options. Click the Catalog Options drop-down
arrow to import a core, reload the Catalog, or enter advanced download mode.

You may want to import a core from a file when:
e You do not have access to the internet and cannot download the core, or
e A core is not complete and has not been posted to the web (you have an evaluation core)

See Also
Project Manager - Cores Dialog Box (Advanced Download Mode)

Catalog Options Dialog Box

The Catalog Options dialog box (as shown below) enables you to customize your Catalog display. You can
add a repository, set the location of your vault, and change the View Settings for the Catalog. To display this

dialog box, click the Catalog Options button .

+ Options HE
(- Yault/Repositories Settings I add
m Repositaries
- _" Waulk location wivww, ackel-ip, comfrepositaries/SgCore Remave |
= View Settings v, actel-ip, com/repositories/DirectCore

- Display
- Filters

Defaults |
o« | _cma |

Figure 113 - Catalog Display Options Dialog Box

Vault/Repositories Settings

Repositories
A repository is a location on the web that contains cores that can be included in your design.

The Catalog Options dialog box enables you to specify which repositories you want to display in your Vault.
The Vault displays a list of cores from all your repositories, and the Catalog displays all the cores in your
Vault.

The default repository cannot be permanently deleted; it is restored each time you open the Manage
Repositories dialog box.

Any cores stored in the repository are listed by name in your Vault and Catalog; repository cores displayed
in your Catalog can be filtered like any other core.

Type in the address and click the Add button to add new repositories. Click the Remove button to remove a
repository (and its contents) from your Vault and Catalog. Removing a repository from the list removes the
repository contents from your Vault.

Vault location

Use this option to choose a new vault location on your local network. Enter the full domain pathname in the
Select new vault location field. Use the format:

\\server\share

238

& Microsemi

Table of Contents

and the cores in your Vault will be listed in the Catalog.

View Settings

Display
Group cores by function - Displays a list of cores, sorted by function. Click any function to expand the list
and view specific cores.

List cores alphabetically - Displays an expanded list of all cores, sorted alphabetically. Double click a core
to configure it. This view is often the best option if you are using the filters to customize your display.

Show core version - Shows/hides the core version.

Filters

Filter field - Type text in the Filter Field to display only cores that match the text in your filter. For example,
to view cores that include 'sub’ in the name, set the Filter Field to Name and type sub.

Display only latest version of a core - Shows/hides older versions of cores; this feature is useful if you are
designing with an older family and wish to use an older core.

Show all local and remote cores - Displays all cores in your Catalog.
Show local cores only - Displays only the cores in your local vault in your Catalog; omits any remote cores.

Show remote cores that are not in my vault - Displays remote cores that have not been added to your
vault in your Catalog.

Changing Device Information

Device and package information, device variations, and operating conditions are set when you import a
netlist and compile a new design. However, you can change this information for existing designs.
To change device information for existing designs:

1. Inthe Project menu, choose Project Settings. The Project Settings dialog box opens.

2. Select your updated options, such as Die, Package, and Speed.

3. Click Close.

Refer to the Microsemi FPGA Data Book or call your local Microsemi Sales Representative for information
about device, package, speed grade, variations, and operating conditions.

Compatible Die Change
When you change the device, some design information can be preserved depending on the type of change.

Changing Die Revisions
If you change the die from one technology to another, all information except timing is preserved. An example
is changing an A1020A (1.2um) to an A1020B (1.0um) while keeping the package the same.

Device Change Only

Constraint and pin information is preserved, when possible. An example is changing an A1240A in a PL84
package to an A1280A in a PL84 package.

Repackager Function

When the package is changed (for the same device), the Repackager automatically attempts to preserve the
existing pin and Layout information by mapping external pin names based on the physical bonding
diagrams. This always works when changing from a smaller package to a larger package (or one of the
same size). When changing to a smaller package, the Repackager determines if any of the currently
assigned 1/Os are mapped differently on the smaller package. If any of the I/Os are mapped differently, then
the layout is invalidated and the unassigned pins identified.

Libero SoC User's Guide 239

& Microsemi
Table of Contents

Core Manager

The Core Manager only lists cores that are in your current project. If any of the cores in your current project
are not in your vault, you can use the Core Manager to download them all at once.

For example, if you download a sample project and open it, you may not have all the cores in your local
vault. In this instance you can use the Core Manager to view and download them with one click. Click
Download All to add any missing cores to your vault. To add any individual core, click the green download
button.

To view the Core Manager, from the View menu choose Windows > Cores.
The column headings in the Core Manager are:

e Name - Core name.

e Vendor - Source of the core.

e Core Type - Core type.

e Version - Version of the core used in your project; it may be a later version than you have in your
vault. If so, click Download All to download the latest version.

Deleting Files
Files can be deleted from the current project or from the disk.

To delete a file from the project:
1. Select the Files tab in the Design Explorer window.
2. Right-click the file and choose Delete from Project. The file remains on your disk.

To delete a file from your project and the disk:
1. Select the Files tab in the Design Explorer window.

2. Right-click the file and choose Delete from Disk and Project. The file is deleted from your disk and
is no longer part of any project.

Design Hierarchy in the Design Explorer

The Design Hierarchy tab displays a hierarchical representation of the design based on the source files in
the project. The software continuously analyzes and updates source files and updates the content. The
Design Hierarchy tab (see figure below) displays the structure of the modules and components as they
relate to each other.

Shiow: IComponents LI
- @ work,

2] smartfusion_project
[IP] CoreaHBLit=
CoredhbSram
COREAHETOAPES
CoreAPE3
CoreGPIO
carepwm
CorelARTaph
Fie] smarkfusion_project_MS5
L) SD_group_instance
[+ e isd_bif
- fly CustomAHELitePeripheral {Customé...
- i) M55 _EFM_LIE

Design Hierarchy I Files |
Figure 114 - Design Hierarchy

You can change the display mode of the Design Hierarchy by selecting Components or Modules from the
Show drop-down list. The components view displays the entire design hierarchy; the modules view displays
only schematic and HDL modules.

The file name (the file that defines the block) appears next to the block name in parentheses.

240

& Microsemi

Table of Contents

To view the location of a component, right-click and choose Properties. The Properties dialog box displays
the pathname, created date, and last modified date.

All integrated source editors are linked with the SoC software. If a source is modified and the modification
changes the hierarchy of the design, the Design Hierarchy automatically updates to reflect the change.

If you want to update the Design Hierarchy, from the View menu, choose Refresh Design Hierarchy.

To open a component:

Double-click a component in the Design Hierarchy to open it. Depending on the block type and design state,
several possible options are available from the right-click menu. You can instantiate a component from the
Design Hierarchy to the Canvas in SmartDesign.

Icons in the Hierarchy indicate the type of component and the state, as shown in the table below.

Table 23 - Design Hierarchy Icons

Icon Description

o) SmartDesign component

©= | SmartDesign component with HDL netlist not generated

IP core was instantiated into SmartDesign but the HDL netlist has not been
generated

E Core

E% | Error during core validation

"\ | Updated core available for download

B HDL netlist

Design Menu - Libero SoC

Command Icon Function
Configure Opens the firmware view
Firmware
Generate (] Runs the push-button flow from synthesis through layout,
Bitstream compile, and place and route.
Generate Generates a datasheet for your design.
Datasheet
Reports Creates and/or opens the Datasheet Reports for your project

Libero SoC User's Guide 241

& Microsemi

Table of Contents

Designer in Libero SoC

Microsemi's Designer software is integrated with the Libero SoC Project Manager. The Designer interface
opens only when you choose not to use the default settings in the push-button design flow.

To implement your design, click the Build button in the Libero SoC Design Flow window. If you wish to
change the default settings for any element in the design flow, right-click the function and choose Open
Interactively.

The following tools are available to run interactively:
SmartTime

SmartPower

NetlistViewer

PinEditor

ChipPlanner
1/0 Attribute Editor

Edit Core Definition - Ports and Parameters Dialog Box

This dialog box appears when you add a core you created with HDL+.

Click to select any Extracted Parameter and click the Delete button to remove it from the list. Extracted
Parameters may be configured if you add the HDL+ core to the Canvas.

If you delete an Extracted Parameter and want to re-add it to the list click the Re-extract ports and
parameters from HDL button.

Click Add/Edit bus interfaces to open the Edit Core Definition - Bus Interfaces dialog box.

M[Edit Core Definition - Ports and Parameters

HOL: Ci\Documents and SettingsifarlevciDeskiopifarleyc_actelpritsoc_10spl_cc_hdihdliMyAPE_adder.w

Module: MyAPE_adder

Extracted Ports Extracted Parameters N
PCLE i |WIDTH
PRESETH SIZE
PADDR[4:0] APE_SIZE
PSEL FIFCO_EMABLE
PEMAELE COUNTER _EMNABLE

PURITE
PROATA[7:0]
PYDATA[7:00]
PREADY
PSLYERR
TN_A[15:0]
N_E[15:0]
RESULT[15:0]
OWERFLOWY

Re-extract ports and parameters from HDL |

Help | AddEdit bus interfaces... I OF | Cancel |

Figure 115 - Edit Core Definition - Ports and Parameters Dialog Box

Edit Menu - Libero SoC

242

& Microsemi

Table of Contents

Command | Icon | Shortcut Function
Undo x| CTRL + [Reverses your last action
=z
Redo cu | CTRL+ | Reverses the action of your last Undo command
N %
Find CTRL + | Displays the Find dialog box, which you use to locate
F instances, nets, ports, and regions
Find Next F3 Finds the next occurrence of the text in the Find field
Replace CTRL + [Displays the Replace dialog box; enables you to search
H and replace content in your files (files must be open and
selected to use this feature)

Execute Script Dialog box

You can use the Execute Script dialog box to run Tcl scripts from within Libero SoC. You do not need to
have a design open in order to run a script.

Specify a script file, enter Arguments (if necessary), and click Run to execute.

Execute Script ﬂ E
Script file: I _I
Argurments: I

[V shaow script report

Rn | coneel |

Figure 116 - Execute Script Dialog Box

Script file

Specify a script file. Browse to Select a script file with a valid extension (*.tcl or *.dsf).
Arguments

Input your arguments for your script file (if necessary).

Export Script Dialog Box

The Export Script Files dialog box enables you to export Tcl script file, useful if you want to run Libero SoC
in batch mode or run operations from the command line.

Export Script ﬂ E

Script file: I;'l,daily_builds'l,rel1D'l,pc'l,rellDJJc_Sep19_0?25'|,bin'|,exported.tcl| _I

™ Include commands from current session only,

Files name Formatting
% Relative file names (relative to the script file location)

(™ Qualified file names (Full path; including directory narme)

Help | OF I Cancel |

Figure 117 - Export Script Dialog Box

Script file
Specifies the location of the file you are about to save.

Libero SoC User's Guide 243

& Microsemi

Table of Contents

Include commands from current session only limits your commands to the current session. De-select if
you wish to include commands from other sessions.

File name formatting

Relative file names (relative to the script file location) truncates all the directories in the script with
relative filenames. Select this option if you do not plan to move the script file.

Qualified file names (full path; including directory name) includes the full pathname for all the files and
directories. Select this option if you want to move the file to a different directory.

File Menu - Libero SoC

Command | Icon |Shortcut| Sub-menu Function
New SmartDesign Opens the appropriate New file
dialog box and prompts you to enter
HDL a name and specify additional
options (if necessary)
SmartDesign
Testbench
HDL
Testbench
SDC (sdc)
Physical
Design
Constraint
(PDC)
Simulation
Script (do)
Open Opens the Open dialog box; enables
you to select a file to open
Close Closes the current file; the Project
<filename> Manager remains open
Save Ctrl+S Saves the current file
<filename> E
Save Saves the current file as a different
<filename> type (such as a TXT file)
As
Import Files Opens the Import Files dialog box;
enables you to import project files
into the Project Manager. Types
include HDL Source Files, HDL
Stimulus Files, Blocks, I/0
Constraint (PDC) Files, Timing
Constraint files, and more.
Link Files Create Link Opens the Create Link dialog box;

244

Command | Icon |Shortcut| Sub-menu Function
browse to select the file you wish to
link. Linked files are added to the
Design Explorer in the Modules
defined in multiple files list.
Change All Opens the Change All Links dialog
Links box; enables you to update/change
all the links for the files in your
project at once.
Unlink All: Copies all linked files to your local
Copy Files project.
Locally
VHDL Add Library Adds VHDL library to your Design
Library > Hieararchy
Rename Renames an existing VHDL library
Library
Remove Removes an existing VHDL library
Library from your project
Print Displays the Print dialog box (if

available); allows you to print
whatever element of the project you
are working on

Files Tab and File Types

The Files tab displays all the files associated with your project, listed in the directories in which they appear.

Right-clicking a file in the Files tab provides a menu of available options specific to the file type. You can
also delete files from the project by selecting Delete from Project from the right-click menu. You can delete
files from the project and the disk by selecting Delete from Disk and Project from the right-click menu.

You can instantiate a component by dragging the component to a SmartDesign Canvas or by selecting
Instantiate in SmartDesign from the right-click menu.

& Microsemi

Table of Contents

You can configure a component by double-clicking the component or by selecting Open Component from
the right-click menu.

File Types

When you create a new project in the Libero SoC it automatically creates new directories and project files.
Your project directory contains all of your 'local' project files. If you import files from outside your current
project, the files must be copied into your local project folder. (The Project Manager enables you to manage

your files as you import them.)

Depending on your project preferences and the version of Libero SoC you installed, the software creates
directories for your project.

The top level directory (<project_name>) contains your PRJ file; only one PRJ file is enabled for each Libero
SoC project.

component directory - Stores your SmartDesign components (SDB and CXF files) for your Libero SoC
project.

Libero SoC User's Guide

245

& Microsemi

Table of Contents

constraint directory - All your constraint files (SDC, PDC)

designer directory - ADB files (Microsemi Designer project files), -_ba.SDF, _ba.v(hd), STP, PRB (for

Silicon Explorer), TCL (used to run designer), impl.prj_des (local project file relative to revision), designer.log

(logfile)

Note: The Microsemi ADB file memory requirement is equivalent to 2x the size of the ADB file. If
your computer does not have 2x the size of your ADB file's memory available, please make
memory available on your hard drive.

hdl directory - all hdl sources. *.vhd if VHDL, *.v and *.h if Verilog
simulation directory - meminit.dat, modelsim.ini files

smartgen directory - GEN files and LOG files from generated cores
stimulus directory - BTIM and VHD stimulus files

synthesis directory - *.edn, *_syn.prj (Synplify log file), *.psp (Precision project file), *.srr (Synplify logfile),
precision.log (Precision logdfile), *.tcl (used to run synthesis) and many other files generated by the tools (not
managed by Libero SoC)

viewdraw directory - viewdraw.ini files

HDL Templates in the Libero SoC

Use the templates in the Libero SoC Project Manager to create HDL.

To use the templates included with the Project Manager, from the View menu, choose Windows > HDL
Templates. Find the template you want to use and double-click to add it to your HDL file.

Place the cursor where you want to add the template, browse the list of VHDL and Verilog templates, and
double-click the template to add it to your design.

The VHDL and Verilog templates are useful if you want to modify your netlist but are unfamiliar with the
language. The templates facilitate the writing of HDL files by inserting predefined language constructs. You
can also save your own template files to reuse in other designs (for example, if you wanted to add the same
header in all your files).

To create a user template:
e Import an HDL file as a template, or

e Save an open HDL file from the text editor as a template. To do so, right-click in the text editor and
choose Export as Template.

Help Menu - Libero SoC

The Help menu enables you to access the Libero SoC online help, reference manuals, check for updates,
and view your license and version information.

Command

Function

Help Topics

Opens the Libero Project Manager online help

Release Notes

Microsemi Techni
Support

cal Displays the Microsemi customer support web page in your
default browser

Microsemi SoC Web Site | Displays the Microsemi SoC page in your default browser

Check for Software Checks for updates to the Libero Project Manager software

Updates

License Details

Displays detailed license information for your version of
Libero SoC

246

& Microsemi

Table of Contents

Command

Function

About Libero

Displays version and release numbers for Libero SoC

Import Files Dialog Box (Project Manager)

Use the Import Files dialog box to add new files to your project in the Libero SoC Project Manager.

You can import schematics, VHDL or Verilog source files, stimulus files, SDC, PDC, VCD, and SAIF files,
cores, and even tool profiles (from other Libero SoC projects).

Browse to and select the file you wish to add and click Import, or click Cancel to return to the Project
Manager.

Import Files

ky Documents

Look in: [£ hl > &« ®cfE-
; E_ IvcmusSS_angElBDvS.v
by Recent
Docurnents
€
Desktop

9

ky Computer
My Metwark File name: | | Open |
Places
Files of type: |HDL Saource Files [*.vhd v " h) ﬂ Cancel

Look in

Specifies your current directory. Browse to find your file if it is not listed here. If you are in the correct
directory and your file is not listed here, select the File of type extension to match it.

File name

Type the file name, or browse to its location and select it.

File of type

Specify the file type displayed in the dialog box.

To access this dialog: from the File menu, choose Import Files.

Importing Schematics

You can import any schematic created with ViewDraw AE.

Libero SoC User'

s Guide 247

& Microsemi
Table of Contents

To import a schematic file:
1. From the File menu, choose Import Files.
2. In Files of type, choose Schematics.
3. InLook in, navigate to the drive/folder where the file is located.
4.

Select the file to import and click Open. The schematic is imported into your project and appears in the
Files tab, under Schematic files.

To open the schematic, click ViewDraw AE in the Design Flow window, or right-click the file in the File
Manager and select Open Schematic.

License Detalils

To display information about your license:

From the Help menu, choose License Details. The software displays your complete license configuration,
all Microsemi-installed software and versions, as well as your HostID and disk volume serial number.

Link Files

You can add or change links for individual files in your project, or change all the links in your files at once.
To add a link to an individual file, right-click the file in the Files list and choose Create Link From File.
Navigate to the file you wish to link to your project and click Create Link. The Project Manager adds the file

to your Files list; a small link icon &= indicates that the source file is not stored with the project.

If you have a single project file with a broken link =3 right-click the file and choose Change Link. This
opens the Change Link dialog box and enables you to specify a new file location.

You can update all the links in your project at once. This is useful when you are linking to shared network
folders that may have been renamed or moved. To change links for your entire project, from the File menu,
choose Change All Links. This opens the Change All Links dialog box. Enter (or browse) your old and new
paths to update the links for your project.

Change All Links
2ld Paths I | Browse. .. |
Mew Path; I Browse, ., |

Help | Ik I Zancel |

Figure 118 - Change All Links Dialog Box

To unlink a file, right-click the file in the Files tab and choose Unlink: copy file locally. This copies the file
to the directory in your project folder that corresponds to the file type.

To unlink all files and copy them to your local project, from the File menu choose Unlink All: Copy files
locally.

You can also change/remove links from the Design Explorer; to do so, right-click the file in the Design
Explorer > Modules defined in multiple files and choose Change Link.

Log Window

Colors and Symbols

The log window displays Messages, Errors, Warnings, and Information. Messages are represented by
symbols and color-coded. The default colors are:

248

& Microsemi

Table of Contents

Type Color
Error Red
Warning Blue
Information Black

The colors can be changed by using the Preferences dialog box.

Linked Messages

Error and warning messages that are dark blue and underlined are linked to online help to provide you with
more details or helpful workarounds. Click them to open online help.

New Project Creation Wizard — Project Details

Project

You can create a Libero SoC project using the New Project Creation Wizard. The pages in the wizard allow
you to:

e Specify the project name and location

e Select the device family and parts

e Set the I/O standards

e Use System Builder or MSS in your design project

e Import HDL source files and/or design constraint files into your project

Libefo)

yemaonChg

Proect o o e & P L g

Speafy Progect Detals

Project Details

Project Hame: I

e Prefet Lok bon Cxftemp Brimmia....
Descriplion

Device Settings l

Design Template Prefered MOL Type: |verlog »
Erualtile ok Creaton
Add HDL Sources

Add Constraints

Libero SoC New Project Creation Wizard

Project Name - Identifies your project name; do not use spaces or reserved Verilog or VHDL keywords.
Project Location — Identifies your project location on disk.

Description — A short description of the general information and features of your design and project. The
information entered appears in your Datasheet Report View.

Preferred HDL type - Sets your HDL type: Verilog or VHDL; Libero-generated files (SmartDesigns,
SmartGen cores, etc.) are created in your specified HDL type. Libero SoC supports mixed-HDL designs.

Libero SoC User's Guide 249

& Microsemi

Table of Contents

Enable Block Creation - Enables you to build blocks for your design; these blocks can be assembled in
other designs, and may have already completed Layout and been optimized for timing and power
performance for a specific Microsemi device. Once optimized the same block (or blocks) can be used in
multiple designs.

When you are done, click the Next button to proceed to the next page.

New Project Creation Wizard - Device Selection

[F=oyx
Project W% -r.L. " o » L ﬁ
Device Selection
Select part For o project o the Part Mube bt Sehected Part HIS150T-1FCI13IH
Part Finer
Famdy; | GmartFusond x Ot | A1 bt Pagiage: | Al Ll
Speed A = | Core Voltage: |A b Range: A -
Rutset Fitees
Search Part: '
Pt Plumbser Madrum Loge Ben Maseemues Logec Elen Tokal User LD uSRAMEK Blocks LERAM I Blocks Maith Blocks (LS8 Pllsar 4
MATS150-LFCS538 PR 1M =3 40 235 240] L
MAZE150-DFCSS38 14814 4814 =3 20 3% 240]
MAZE150-DFCWABL 18124 161N B 260 236 240]
MIRL0-RFCVAGH] 14514 4614 48 40 1% 240 L]
MES150-FC1152 148124 45124 L} 40 236 240]
MFS150-FC1150 14814 61 M 260 235 240]
MIR0-FOREH 14614 45124 =3 40 % 240 8
MZE150-FCS536 148124 145124 i) 240 236 240]
MIS1I50-FOME lagie 146124 48 2480 3% 240 L]
MS150-FOVARAL 148124 ML 48 20 b=} 240 1
I MES150T-1FC1152 14124 61N L} 280 36 240]
- ’ ‘ MIRLT-1FCI150 146104 451 M 18 1% 240 L]
leero MISISOT-1FCIISEM 146124 146124 (17 20 26 240]
teman Chip h— L
< Back Heut > Frrash Cancel

The Device Selection page allows you to specify the Microsemi device for your project. It contains filters and
drop-down menus for you to narrow your search for exactly the right part to use for your design.

This page contains a table of all the parts with associated FPGA resource details generated as a result of a
value entered in any filter.

When a value is selected for any filter:

e The parts table is updated to reflect the result of the new filtered value.

o All other filters are updated such that only relevant items are available in the filter drop-down.
For example, when SmartFusion2 is selected in the family filter:

e The parts table displays only SmartFusion2 parts.

e The Die filter cotnains only SmartFusion2 dies in the drop-down list for Die.

Figure 119 - New Project Creation Wizard - Device Selection Page

Device Selection Page

Family — A filter that allows you to specify the Microsemi device family. Only devices belonging to the family
are listed in the parts table.

Die / Package / Speed - Filters that allow you to set your device die / package / speed grade, respectively.
Only parts matching the filtering option are listed in the parts table.

Core Voltage - A filter that allows you to set the core voltage for your device. Wide range voltage for die
voltage (VCCA) and VCCI is available for ProASIC3L and 1.2V IGLOO devices. Two numbers separated by
a "~" are shown if a wide range voltage is supported. For example, 1.2~1.5 means that the device core
voltage can vary between 1.2 and 1.5 volts.

250

& Microsemi

Table of Contents

Range - This field enables you to define the voltage and temperature ranges a device may encounter in
your application. Tools such as SmartTime, SmartPower, timing-driven layout, power-driven layout, the
timing report, and back-annotated simulation are affected by operating conditions.

Supported ranges include:
e Commercial (COM) - Junction temperature is a function of ambient temperature, air flow, and power

consumption.

¢ Industrial (IND) - Junction temperature is a function of ambient temperature, air flow, and power
consumption.

e Military (MIL) - Junction temperature is a function of the case temperature, air flow, and power
consumption.

Note that supported operating condition ranges vary according to your device and package.
Consult your device datasheet to find your recommended temperature range.

Set your 1/O operating voltages in Project Settings > Device 1/O Settings.

Reset Filters — Resets all filters to the the default ALL option except Family.

Search Parts — Allows you to enter a character-by-character search for parts. Search results appear in the
parts table.

New Project Creation Wizard — Device Settings

The Device Settings page allows you to set the Device 1/O Technology, PLL Supply Voltage, Reserve pins
for Probes and activate the System Controller Suspended Mode.

R Proct Y .. YW . - L=y (0
Dewice Stk
L,mmesewwmw project Selected Part: M2S150T-1FC11521
10 Setungs
FRCiecEUMAY Defait 10 Technakogy: wemos 257 = | i) Please use the 10 Bditer to change indnachasl 1/ atirbutes.,
o Reperve Pid for Proded
Device Selection
Device Settings
Poweist Supbid I
PLL Supply Voltage (V) 5 - f
Design Template Mawimum Core Voitage Rl Ramp Up Time: | 100ms Sinmum, -
A HOL otireed Syt Comtroler Supended Mide
Add Constraints
Lib ol
SytemonChip i
L el <ok | [Chentz | [Foeh Cancal
_

Figure 120 - New Project Creation Wizard — Device Settings Page

Default I/O Technology - Sets all your I/Os to a default value. You can change the values for individual 1/0s
in the 1/O Attribute Editor. The I/O Technology available is family-dependent.

Reserve Pins for Probes (SmartFusion2 and IGLOO2 only) - Reserve your pins for probing if you intend to
debug using SmartDebug.

PLL Supply Voltage (V) (SmartFusion2 and IGLOO2 only) - Sets the voltage for the power supply that you
plan to connect to all the PLLs in your design, such as MDDR, FDDR, SERDES and FCCC.

Maximum Core Voltage Rail Ramp Up Time (SmartFusion2 and IGLOO2 only) - Power-up management
circuitry is designed into every SmartFusion2 and IGLOO2 SoC FPGA. These circuits ensure easy transition
from the powered-off state to powered-up state of the device. The SmartFusion2 and IGLOO2 system
controller is responsible for systematic power-on reset whenever the device is powered on or reset. All the

Libero SoC User's Guide 251

& Microsemi

Table of Contents

1/0s are held in a high-impedance state by the system controller until all power supplies are at their required
levels and the system controller has completed the reset sequence.

The power-on reset circuitry in SmartFusion2 and IGLOO2 devices requires the VDD and VPP supplies to
ramp monotonically from 0 V to the minimum recommended operating voltage within a predefined time.
There is no sequencing requirement on VDD and VPP. Four ramp rate options are available during design
generation: 50 s, 1 ms, 10 ms, and 100 ms. Each selection represents the maximum ramp rate to apply to
VDD and VPP.

Device information (such as Die, Package and Speed) can be modified later in the Project Settings dialog
box.

System Controller Suspended Mode (SmartFusion2 and IGLOO2 only) - Enables SmartFusion2 and
IGLOO2 designers to suspend operation of the System Controller. Enabling this bit instructs the System
Controller to place itself in a reset state once the device is powered up. This effectively suspends all system
services from being performed. For a list of system services, refer to the SmartFusion2 or IGLOO2 System
Controller user's guide for your device on the Microsemi website.

Device information (such as Die, Package and Speed) can be modified later in the Project Settings dialog
box.

New Project Creation Wizard — Design Template

The Design Template page allows you to use Libero SoC's built-in template to automate your design
process. The template involves the use of the System Builder tool for system-level design or the use of the
Microcontroller Subsystem (MSS) in your design. Both of them will speed up your design process.

Project @ B]

Design Template
Thoose a design template

Selected Part: M2S150T-1FCI1S3M

D Temrgalates and Creaters
Project Details e
Creste & System Bulder based desgn ‘
Device Selection Create a Moy oconiraler (MES) based desion
Device Settings Il
Design Template l
Diesign Meodology
Add HOL Sources Use Stardiaione Lrtisization for MODRFODR SERDES Perghersis
Add Constraints I
Libei%‘ |
rmemon iy
el < Back bt > Frsh Cancel

Figure 121 - New Project Creation Wizard — Design Template Page
None- Select this radio button if you do not want to use a design template.
Create a System Builder based design (SmartFusion2 and IGLOQO?2 only) — Select this radio button to use
System Builder to generate your top-level design.
Create a Microcontroller (MSS) based design (SmartFusion2 and IGLOO2 only) — Select this radio button
to instantiate a Microcontroller (MSS) in your design. The version of the MSS cores available in your vault is
displayed. Select the version you desire.
Use Standalone Initialization for MDDR/FDDR/SERDES Peripherals (SmartFusion2 and IGLOO2 only) —

Check this box if you want to create your own peripheral initialization logic in SmartDesign for each of your
design peripherals (MDDR/FDDR/SERDES). When checked, System Builder does not build the peripherals

252

http://www.microsemi.com/

& Microsemi

Table of Contents

initialization logic for you. Standalone initialization is useful if you want to make the initialization logic of each
peripheral separate from and independent of each other.

New Project Creation Wizard — Add HDL Source Files

The Add HDL Source Files page allows you to add HDL design source files into your Libero SoC project.
The HDL source files may be imported or linked to the Libero SoC Project.

-t e " » et
Sppecify HONL s b hek i your et Selected Part MIS150T-1FC1152M
IrportFie | [LnkFie Delete |
Fle Typt Fie e Filg Locason
i
Design Template [
|
Add HOL Sources |
[
Add Constraints
|
Libefo)
Yystemen Chip =
reb <ok | [(hewtz | [Fen | [conce

Figure 122 - New Project Creation Wizard - Add HDL Source Files Page
Import File — Click this button to navigate to the disk location of the HDL source. Select the HDL file and
click Open. The HDL file is copied to the Libero Project in the <prj_folder>/hdl folder.
Link File — Click this button to navigate to the disk location of the HDL source. Select the HDL file and click
Open. The HDL file is linked to the Libero Project. Use this option if the HDL source file is located and
maintained outside of the Libero project.
Delete - Click this button to delete to remove the selected HDL source file from your project. If the HDL
source file is linked to the Libero project, the link will be removed.

New Project Creation Wizard - Add Constraints

The Add Constraints page allows you to add Timing constraints and Physical Constraints files into your
Libero SoC project. The constraints file may be imported or linked to the Libero SoC Project.

Libero SoC User's Guide 253

& Microsemi

Table of Contents

Project

Add Constraints
Speafy constrant Skes for bming or physcal constrants. Selected Part: M2S150T-1FC1152M

Fie Typer Fille e File Lecasen

| vesign Template
| add Hot Sources

Add Constraints

Libefo)

SptemonChip

nep | <hack | | hes | Fsh || ol |

New Project Creation Wizard — Add Constraints Page

Import File — Click this button to navigate to the disk location of the constraints file. Select the constraints
file and click Open. The constraints file is copied to the Libero Project in the <prj_folder>/constraint folder.

Link File — Click this button to navigate to the disk location of the constraints file. Select the constraints file
and click Open. The constraints file is linked to the Libero Project. Use this option if the constraint file is
located and maintained outside of the Libero project.

Delete - Click this button to remove the selected constraints file from your project. If the constraints file is
linked to the Libero project, the link will be removed.

Click the Finish button to complete New Project Creation.
The Reports tab displays the result of the New Project creation.

Reports @ X StartPage & X

4 Project Summary I j a1 | € 0Gmors iy 0 warnings i 0 Info
testproject_1112Jog

4l

Project Name: testproject_1112
Lecacien: C:\cemp\tescproject_1112
Description:

Breferred HDL Type: Verileg

Part Humber : M2S150T-1FC1152M
Family : SmartFusion2
Die : M2S150T

Fackage : 1152 FC

Speed : -1

Core Voltage £ 1.2

Range : MIL

Figure 123 - Reports Tab

254

& Microsemi

Table of Contents

New File Dialog Box

The New File dialog box opens when you choose to create any of the following new files:

e SmartDesign

e SmartDesign Testbench - Use a SmartDesign to instantiate and connect stimulus cores or modules to
drive your Root design.

e HDL

e HDL Testbench - Creates a new HDL testbench in your project. You can use a testbench to apply
stimulus, analyze results or to compare the results of two different simulations.

To create a new file:
1. From the File menu, choose New > <file type>.
2. Set any additional options (if necessary) and enter a name.
3. Click OK. The saved file is added to your Libero SoC project.

Open Project Dialog Box

Use the Open Project dialog box to navigate to and open existing projects in the Project Manager. Browse to
your project and click Open, or click Cancel to return to the Project Manager.

Look: in: |lf}.-'-‘u:te|pri ﬂ ﬁ e

I andgate
|5 A% _test_design
by Recent [Chexample
Documents [hpase
¥ L) quickstart
I quickstart_g2
Desktop |Chez-02 sample files
_ [Cysample_dsns

’) gsarww?

test4

My Documents hi‘]test_‘i

[Ctest_compile

51)3 [TestyHDL_libsample

B

3

My Metwark File name: | | Open |
Places
Files of type: |Li|:ueru:| Project Files [*.pr] ﬂ Cancel

Look in

Specifies the directory that contains your project.

File name

Type the file name, or browse to its location and select it.

File of type

Specify the file type displayed in the dialog box.

To access this dialog: from the Project menu, select Open Project.

Libero SoC User's Guide 255

& Microsemi
Table of Contents

Opening your Libero SoC project

Libero SoC does not open your most recent project automatically. You can change your default startup
preferences in the Startup tab.
To open a project in Libero SoC:

From the File menu, choose Open Project or New Project. If you create a new project the Project Manager
opens the New Project Creation Wizard.

Tip: Recent saved projects are available from the Project menu. From the Project menu, choose Recent
Projects, and then select the project to open.

You can open an existing project by double-clicking the *.prj file or dragging the *.prj file over the Libero SoC
desktop icon.

See Also
open_project

Organize Constraint Files

The Organize Constraint Files dialog box enables you to set the constraint file and order in the Libero SoC.
Click the Use list of files organized by User radio button to add or remove Associated Constraint files.

To specify the constraint file order:

1. Inthe Design Flow window under Implement Design, right-click Compile and choose Organize Input
Files > Organize Constraint Files. The Organize Constraint Files dialog box appears.

2. Click the Use list of files organized by User radio button to Add/Remove source files for the selected
tool.

3. Select afile and click the Add or Remove buttons as necessary. Use the Up and Down arrows to
change the order.

4. Click OK.The files appear in the Design Flow window under Implement Design > Compile >
Constraints with a green check mark to indicate that they are being used in the project.

Il Organize Constraint files of alpha_proj2 for Compile kool

Click ko select a Constraint file in the project, and use the Add button to pass the file to the tool,
Use the Remove button to remove Constraint files.

Use the Up/Down arrow buttons to specify the arder of the Constraint files when they're passed ko the kool

Use list of files organized by
= Libern (default list)

o+ Lser il il

I Constraint files in the project I Origin Associated Constraint files Cigin

|1— sfsn_proj_c

sfsn_proji.pdc User

ol 2 | sfsn_proj3.pdc User

Remove

Figure 124 - Organize Constraint Files Dialog Box

Organize Simulation Files

The Organize Simulation files dialog box enables you to set the constraint file order in the Libero SoC.
Click the Use list of files organized by User radio button to add or remove Associated Simulation files.

256

& Microsemi
Table of Contents

To specify the simulation file order:

1. In the Design Flow window under Implement Design > Verify Post Layout Implementation, right-click
Simulate and choose Organize Input Files > Organize Simulation Files. The Organize Simulation
Files dialog box appears.
2. Click the Use list of files organized by User radio button to Add/Remove source files for the selected
tool.
3. Select a file and click the Add or Remove buttons as necessary. Use the Up and Down arrows to
change the order.
4. Click OK.
Il Organize Simulation files of alpha_proj2 for Simulate tool
Click ko select a Simulation file in the project, and use the Add button to pass the file ta the toal,
Use the Remove button to remave Simulation files,
Use the UpjDown arrow buttons to specify the order of the Simulation files when they're passed to the tool,
Use list of files organized by
= Libero (default list)
o+ User LI il
Simulation files in the project Crigin I Associated Simulation files Crigin
jalphajrn]?.vhd User
Add
Remowve
oK | Cancel |
Vi

Figure 125 - Organize Simulation Files Dialog Box

Organize Source Files

The

Organize Source Files dialog box enables you to set the source file order in the Libero SoC.

Click the Use list of files organized by User radio button to Add/Remove source files for the selected tool.

To specify the file order:

1.

In the Design Flow window under Implement Design, right-click Synthesize and choose Organize
Input Files > Organize Source Files. The Organize Source Files dialog box appears.

Click the Use list of files organized by User radio button to Add/Remove source files for the selected
tool.

Select a file and click the Add or Remove buttons as necessary. Use the Up and Down arrows to
change the order of the Associated Source files.

Click OK.

Libero SoC User's Guide 257

& Microsemi
Table of Contents

| Organize Source files of alpha_proj2 for Synthesize tool [7]

Click ko select & Source File in the project, and use the Add button ta pass the File to the taal.
Use the Remove button ba remove Source files,
Use the UpjDown arrow buttons to specify the arder of the Source files when they're passed to the toal.

Use list of files organized by
" Libero (default list)

o Lser LI LI

Source files in the project Qrigin Associated Source files Crigin

j hdl_w10_1.v User j custom_apb_peripheral v User

Add =+

" Remave

Figure 126 - Organize Source Files Dialog Box

Organize Stimulus Files Dialog Box

Il Organize Stimulus files of alpha_proj2 for Simulate tool H

The Organize Stimulus files dialog box enables you to set the stimulus file order in the Libero SoC.
Click the Use list of files organized by User radio button to add or remove Associated Stimulus files.

To specify the stimulus file order:

1. In the Design Flow window under Create Design > Verify Pre-Synthesized Design, right-click Simulate
and choose Organize Input Files > Organize Stimulus Files. The Organize Stimulus Files dialog box
appears.

2. Click the Use list of files organized by User radio button to Add/Remove source files for the selected
tool.

3. Select a file and click the Add or Remove buttons as necessary. Use the Up and Down arrows to
change the order.

4. Click OK.

Click o select & Stimulus file in the project, and use the Add button to pass the file to the tool,
Use the Remove button ko remave Stimulus files,
Use the UpjDown arrow buttons to specify the order of the Stimulus files when they're passed to the taal,

Use list of files organized by
" Libero {default list)

* User LI il

I Stimulus files in the project I Origin Associated Stimulus files Crigin

Add =+

custom_apb_peripheral v User

[N

hdl_w10_ 1. User

" Remove

Heo cancel |

Figure 127 - Organize Stimulus Files Dialog Box

258

& Microsemi

Table of Contents

Physical Synthesis and the Libero SoC

If you want to run physical synthesis on your design (such as with PALACE) you must run it manually.
Automatic physical synthesis is not supported from within the Libero SoC.

Libero SoC User's Guide 259

& Microsemi

Table of Contents

Preferences

Preferences Dialog Box

Use the Preferences dialog to customize the Libero SoC Project Manager.

To set your preferences:
1. From the Project menu, choose Preferences.
2. Specify your preferences.

Software update

Log window

Vault update

M (File association)
Text Editor

IP Cores

Proxy
PDF reader (Linux only)

Web browser (Linux only)

3. Click OK.
Note: These preferences are stored on a per-user basis; they are not project specific.

Project Menu - Libero SoC

Command Sub- | Icon Function
menu
New Project I’W Starts the New Project Wizard
Open Project .M | Opens the Open Project dialog box
Close <project Closes the current active project; the Project
name> Manager remains open
Save <project Saves the current project
name> [
Save <project Saves the current project in a new directory;
name> prompts you to enter a new project name
Project Settings Opens the Project Settings dialog box, enables
you to set your Device, HDL Type, Design Flow,

260

& Microsemi

Table of Contents

Command Sub- | Icon Function
menu
Simulation and Simulation Library options.
Tool Profiles Opens the Project Profile dialog box; enables

you to specify locations for your third-party
synthesis, stimulus, and simulation tools. Libero
SoC includes tools for synthesis, stimulus, and
simulation.

Vault/Repositories

Opens the Vault/Repositories Settings dialog

Settings box; enables you to view/change the location of
your vault and repositories.
Preferences Opens the Preferences dialog box

Execute Script

Opens Execute Script dialog box; enables you to
run Tcl script from the Project Manager

Export Script

Opens the Export Script dialog box; enables you
to export a Tcl script

Recent Projects

Opens list of recent projects.

Exit

Closes Libero SoC

Project Settings Dialog Box

The Project Settings dialog box enables you to modify your Device, HDL, and Design Flow settings and your
Simulation Options.

Dhevice Selection
Denvice SEmtings
Design Flow
Aralpes Dpera
o Lavaiiamen Opti...
DO File

Waelcems

VEm camima
@ Saredation Libea

SmartFusion

Curmendly Sebecied Dwvioe s AZFRRIMIE- ETH144
Pat Fiter

Famay
Spead |1

Fiad

Bart Mumber | T s (D-Flip-l Madmum Use Differential IE VersaMet Giod Integeated PL 4508-Bit Bloc Rl kibits (1€ FlashROM Bit On
A OBDME.. 1536 13 16 i (1] L} 36 1024 1

Device Selection

Figure 128 - Libero SoC Project Settings Dialog Box

Sets the device Family, Die and Package for your project. See the New Project Creation Wizard - Device
Settings page for a detailed description of the options.

Libero SoC User's Guide

261

& Microsemi

Table of Contents

Device Settings

Design Flow

Reserve Pins for Probes- Reserve your pins for probing if you intend to debug using SmartDebug.

Default I/O Technology - Sets all your I/Os to a default value. You can change the values for individual 1/0s
in the |/O Attribute Editor.

Preferred Language

Sets your HDL to VHDL or Verilog.

Block Flow

Enable Designer Block creation - Enables you to create Blocks in the Libero SoC. Blocks are useful if you
want to create a block and re-use it in several designs. See the Block help for more information.

Enable Synthesis - Option to enable or disable synthesis for your root file; useful if you wish to skip
synthesis on your root file by default.

ViewDraw

Click the checkbox to enable ViewDraw in the Design Flow window.
Generate HDL netlist after a Save&Check in ViewDraw - Useful if you wish to eliminate the manual step
of generating your HDL netlist after a Save&Check.

Update viewdraw.ini automatically - May be useful if the Project Manager does not create a valid
viewdraw.ini file. Click the checkbox to enable.

Root <Design>

Enable Synthesis - Set this option to run synthesis on your root (top-level) design. Uncheck this box if you
wish to skip synthesis on your root (top-level) design..

Synthesis Gate Level Netlist Format

Sets your gate level netlist format to Verilog or EDIF. For Secure IP design flow. You must set the format to
Verilog; see the Microsemi website for more information on the Secure IP flow.

Designh Methodology

Use Standalone Initialization for MDDR/FDDR/SERDES Peripherals — Enables you to create your own
peripheral initialization logic in SmartDesign for each of your design peripherals (MDDR/FDDR/SERDES).
When checked, System Builder does not build the peripherals initialization logic for you. Standalone
initialization is useful if you want to make the initialization logic of each peripheral separate from and
independent of each other.

For more information, refer to the Standalone Peripheral Initialization User Guide.

Analysis Operating Conditions (For SmartFusion2 and IGLOO2)

Sets the Operating Temperature Range (COM/IND/MIL/Custom), the Core Voltage Range
(COM/IND/MIL/Custom) and Default I/0 Voltage Range (COM/IND/MIL/Custom).

These settings are propagated to Verify Timing, Verify Power and Backannotated Netlsit for you to perform
Timing/Power Analysis.

NOTE: For SmartFusion, IGLOO, ProAsic3 and Fusion projects, The Temperature and Voltage Range
tables are disabled. To do Timing/Power analysis with different operating conditions, invoke Designer and
make the operating condition settings in the Project Settings page of Designer.

Simulation Options and Simulation Libraries

Sets your simulation options; see the Project Settings: Simulation Options topic for a full summary.

262

http://www.microsemi.com/products/fpga-soc/fpga-and-soc

& Microsemi

Table of Contents

Project Settings: Simulation

To access this dialog box, from the Project menu choose Project Settings and click Simulation Options >
DO File.

Use the Simulation tab to set your simulation values in your project. You can set change how Libero SoC
handles Do files in simulation, import your own Do files, set simulation run time, and change the resolution of
your simulation. You can also change your library mapping in this dialog box.

& Project Settings EJE|
Dervice .
Preferred HOL Type Use automatic DO file Gz
Diesign Flaw)
(= Simulation Cptions Simulation runkime: 1ms Restore Defaults
Waveforms Testbench module name: | testbench
Ysim commands
=- Simulation Libraries Tap level instance name: | dut
Eﬂrggrtg;;m&a [] Generate VCO file:
WD File name: powerved
Select Verilog Language Synkax
[Verilag 2001

[] system verilog
Seleck VHOL Language Syntax

[] vHDL zo08

User defined D0 File: [

[command parameters;

Figure 129 - Project Settings:
Figure 130 - - DO File

DO file

Use automatic DO file

Select if you want the Project Manager to automatically create a DO file that will enable you to simulate your
design.

Simulation Run Time - Specify how long the simulation should run. If the value is 0, or if the field is empty,
there will not be a run command included in the run.do file.

Testbench module name - Specify the name of your testbench entity name. Default is “testbench,” the
value used by WaveFormer Pro.

Top Level instance name - Default is <top_0>, the value used by WaveFormer Pro. The Project Manager
replaces <top> with the actual top level macro when you run ModelSim.

Generate VCD file - Click the checkbox to generate a VCD file.
VCD file name - Specifies the name of your generated VCD file. The default is power.vcd; click power.vcd
and type to change the name.
Select Verilog Language Syntax
Sets your DO file Verilog language syntax.

Select VHDL Language Syntax
VHDL 2008 - Select if you wish to use VHDL 2008 for your DO file.

User defined DO file - Enter the DO file name or click the browse button to navigate to it.
DO command parameters - Text in this field is added to the DO command.

Libero SoC User's Guide 263

& Microsemi

Table of Contents

Waveforms

Include DO file - Including a DO file enables you to customize the set of signal waveforms that will be
displayed in ModelSim.

Display waveforms for - You can display signal waveforms for either the top-level testbench or for the
design under test. If you select top-level testbench then Project Manager outputs the line 'add wave
/testbench/*' in the DO file run.do. If you select DUT then Project Manager outputs the line ‘add wave
/testbench/*" in the run.do file.

Log all signals in the design - Saves and logs all signals during simulation.

Vsim Commands

SDF timing delays - Select Minimum (Min), Typical (Typ), or Maximum (Max) timing delays in the back-
annotated SDF file.

Disable Pulse Filtering during SDF-based Simulations - When the check box is enabled the
+pulse_int_e/l +pulse_int_r/1 +transport_int_delays switch is included with the vsim command for post-
layout simulations; the checkbox is disabled by default.

Resolution

The default is family specific (review the dialog box for your default setting), but you can customize it to fit
your needs.

Additional options - Text entered in this field is added to the vsim command.

Simulation Libraries

Use default library path - Sets the library path to the default from your Libero SoC installation.

Library path - Enables you to change the mapping for your VHDL library. Type in the pathname or click the
Browse button to navigate to your library directory.

Project Sources

File Linking

Project sources are any design files that make up your design. These can include schematics, HDL files,
simulation files, testbenches, etc. Anything that describes your design or is needed to program the device is
a project source.
Source files appear in the Project Flow window. The Design Hierarchy tab displays the structure of the
design modules as they relate to each other, while the Files tab displays all the files that make up the
project.
The design description for a project is contained within the following types of sources:

e Schematics

e HDL Files (VHDL or Verilog)

e SmartDesign components

One source file in the project is the top-level source for the design. The top-level source defines the inputs
and outputs that will be mapped into the devices, and references the logic descriptions contained in lower-
level sources. The referencing of another source is called an instantiation. Lower-level sources can also
instantiate sources to build as many levels of logic as necessary to describe your design.

The Project Manager enables you to link to files not managed in your Libero project. Linked files are useful if
you want to preserve a file in an archive, or if more than one person is using a file and it is impractical to
store it on your local machine. If you link to external files and rename your project, the Project Manager asks
if you want to copy the external files into your project or continue using the link. Note that some files (such
as schematics) cannot be linked.

264

& Microsemi

Table of Contents

Some project sources can be imported.
Sources for your project can include:

Source File Extension

Schematic *1-9

Verilog Module *v

VHDL Entity *.vhd

SmartDesign Component *.vhd

Testbench *.vhd

Stimulus *.tim

Programming Files *.afm; *.prb

See Also
Creating HDL Sources

Generating a Bitstream file

Generating Programming files

Reserved Microsemi Keywords

See the online help for a complete list of reserved Microsemi keywords.

Right-Click (Shortcut) Menu Options in Libero SoC Design

Hierarchy

Right-click menu options vary depending on your design state.

The option in bold the right-click menu is the action performed when you double-click the tool. For example,
if you expand Implement Design and right-click Synthesize, Run is bold, indicating that it is the default
action when you double-click the tool in the Design Hierarchy.

Run - Runs the current tool. If any predecessor tools are required to be in the PASSED state, then
they will be run as well.

Clean and Run All- Clean all predecessor tools (deletes Report and output files) and run up to this
tool.

Clean - Delete report and output files of this tool. Subsequent tools become OUT OF DATE.
Open Interactively - Open the tool to set/change the tool options.

Update and Run -- Available if a tool is in the OUT OF DATE state; it cleans all predecessor tools that
are in the OUT OF DATE state and runs up to this tool.

Run Synthesize > Compile > Place and Route > Verify Timing > Generate Programming Data >
Program Device - Enables you to bypass the Fabric portion of the design flow.

For example, in SmartFusion you can go directly from MSS configuration to Program Device by just using the .EFC file. For

users who are not using any of the FPGA fabric, this is useful because you can skip the entire FPGA flow. In that instance you can

select Run MSS Configurator > Program Device.

Organize Input Files - Enables you to customize which project files are used by the tool.

Libero SoC User's Guide 265

& Microsemi

Table of Contents

e Import Files - Shortcut to import files that are relevant to that tool. For example, the relevant files for
the Compile tool are PDC and SDC files, so the dialog is pre-filtered to only allow importing of those

types
e Edit Profile - Shortcut to open the Tool Profiles dialog box.

e View Report - Opens the report of that tool in the Reports view.
e Configure Options- - Opens the Libero SoC tool options specific to that tool.

Save Project As Dialog Box

The Save Project As dialog box enables you to save your entire project with a new name and location.
Enter the name and location for your modified project and click OK to continue.

Q Save Project As

] archive.zip)

Project name:

Project location:

IC:'I,DDl:uments and Settingsiuser) Deskbop | []

Cantent

[] Copy links locally

Files: i,ﬁ.ll w .

K l [Zancel

Figure 131 - Save Project As Dialog Box

Archive (*.zip) - Creates a ZIP file of your project and saves it at the specified location. This is useful if you
want to create a quick zip of your project.

Project Name

Type the project name for your modified project.
Project Location

Accept the default location or Browse to the new location where you can save and store your project. All
files for your project are saved in this directory.

Content

Copy Links locally - Select this checkbox to copy the links from your current project into your new project.
If you do not select this checkbox, the links will not be copied and you must add them manually.

Files
e All - Includes all your project and source files; the state of the project is retained.

e Project files only - Copies only the project-related information required to retain the state of the
project.

266

& Microsemi

Table of Contents

e Source files only - Copies all the source files into the specified location. This means the configuration
of all the tools in the tool chain is retained but the states are not. Source files means constraint
information and component information available in the component, hdl and smartgen directories.

Files are saved as shown in the table below.

Folder Name Files
All Project Source

component All All Files All Files
Files

constraint All All Files All Files
Files

hdl All All Files All Files
Files

stimulus All All Files All Files
Files

viewdraw All All Files All Files
Files

smartgen All All Files All Files
Files

firmware All All Files All Files
Files

CoreConsole All All Files All Files
Files

SoftConsole/Keil/lAR | All All Files All Files
Files

Phy_Synthesis All All Files Not Copied
Files

simulation All *.ini, *.bfm, *.do., *.vec *.ini, *.bfm,
Files *.do., *.vec

synthesis All *.edn, *.sdc, *.s0, *.prj, *.sI1, *.V, *.prj files
Files | run_options.txt, synplify.log

Designer/impl1l All All Files *.ide_des files
Files

Designer/<root> All All Files Not Copied
Files

tooldata All All Files All Files
Files

To access this dialog, from the Project menu, choose Save Project As.

Libero SoC User's Guide 267

& Microsemi

Table of Contents

Saving Files

Files and projects are saved when you close them.

To save an active file:
e From the Project menu, choose Save or Save As.

e Click the Saven button in the toolbar.

Script Export Options Dialog Box

If you export a Tcl script in the Project Manager, the Script Export Options dialog box appears.

Script Export Options §|

[Include commands from current praject anly

Filename farmatting

+ Relative filenames [default)

" Qualified flenames [full path; including directary name)

Qk. | Cancel Help

Figure 132 - Script Export Options Dialog Box
Include commands from current project only - Select this option if you want to include all the commands
from your current project.

Filename Formatting - Choose Relative filenames if you do not intend to move the Tcl script from the
saved location, or Qualified filenames if you plan to move the Tcl script on your machine.

Search in Libero SoC

Search options vary depending on your search type.

To find a file:
1. Use CTRL + F to open the Search window.

2. Enter the name or part of name of the object you wish to find in the Find field. *" indicates a wildcard,
and [*-*] indicates a range, such as if you search for al, a2, ... a5 with the string a[1-5].

3. Set the Options for your search (see below for list); options vary depending on your search type.
Click Find All (or Next if searching Text).

Searching an open text file, Log window or Reports highlights search results in the file itself.
All other results appear in the Search Results window (as shown in the figure below).

Match case: Select to search for case-sensitive occurrences of a word or phrase. This limits the search so it
only locates text that matches the upper- and lowercase characters you enter.

Match whole word: Select to match the whole word only.

268

& Microsemi

Table of Contents

Search Results &
H 1 =
& B itest mmss MSS 0:MSS RESET M Pin
B test mss:MSS_RESET N Pin
MS5_RESET_N Met
3
4

Figure 133 - Search Results

Current Open SmartDesign

Searches your open SmartDesign, returns results in the Search window.
Type: Choose Instance, Net or Pin to narrow your search.
Query: Query options vary according to Type.

Type Query Option Function
Instance | Get Pins Search restricted to all pins
Get Nets Search restricted to all nets
Get Unconnected Pins Search restricted to all unconnected pins
Net Get Instances Searches all instances
Get Pins Search restricted to all pins
Pin Get Connected Pins Search restricted to all connected pins
Get Associated Net Search restricted to associated nets
Get All Unconnected Pins Search restricted to all unconnected pins

Current Open Text Editor

Searches the open text file. If you have more than one text file open you must place the cursor in it and click
CTRL + F to search it.

Find All: Highlights all finds in the text file.

Next: Proceed to next instance of found text.

Previous: Proceed to previous instance of found text.

Replace with: Replaces the text you searched with the contents of the field.
Replace: Replaces a single instance.

Replace All: Replaces all instances of the found text with the contents of the field.

Design Hierarchy

Searches your Design Hierarchy; results appear in the Search window.
Find All: Displays all finds in the Search window.

Libero SoC User's Guide 269

& Microsemi
Table of Contents

Stimulus Hierarchy
Searches your Stimulus Hierarchy; results appear in the Search window.
Find All: Displays all finds in the Search window.

Log Window

Searches your Log window; results are highlighted in the Log window - they do not appear in the Search
Results window.

Find All: Highlights all finds in the Log window.
Next: Proceed to next instance of found text.
Previous: Proceed to previous instance of found text.

Reports
Searches your Reports; returns results in the Reports window.
Find All: Highlights all finds in the Reports window.
Next: Proceed to next instance of found text.
Previous: Proceed to previous instance of found text.
Files

Searches your local project file names for the text in the Search field; returns results in the Search window.
Find All: Lists all search results in the Search window.

Files on disk

Searches the files' content in the specified directory and subdirectories for the text in the Search field;
returns results in the Search window.

Find All: Lists all finds in the Search window.

File type: Select a file type to limit your search to specific file extensions, or choose *.* to search all file
types.

Select a Workspace Dialog Box

This dialog box enables you to choose which processor you want to open when you have two or more
processors in your design.

It is only available if you have two or more processors and double-click Develop Firmware > Write
Application Code.

Ml Select a workspace EHE

‘Warkspaces at: multiprocesfSoftConsole

multiproces_CORES0S15_0
multiproces_MS5_MS5_CM3_0

Help I (6]4 | Cancel |

Figure 134 - Select a Workspace Dialog Box

Organize Source Files

The Organize Source Files dialog box enables you to set the source file order in the Libero SoC.
Click the Use list of files organized by User radio button to Add/Remove source files for the selected tool.

270

To specify the file order:

& Microsemi

Table of Contents

1. In the Design Flow window under Implement Design, right-click Synthesize and choose Organize
Input Files > Organize Source Files. The Organize Source Files dialog box appears.

2. Click the Use list of files organized by User radio button to Add/Remove source files for the selected
tool.

3. Select a file and click the Add or Remove buttons as necessary. Use the Up and Down arrows to
change the order of the Associated Source files.

4. Click OK.

Bl Organize Source files of alpha_projz for Synthesize tool

Click ko select & Source File in the project, and use the Add button ta pass the File to the taal.

Use the Remove button ta remove Source files,

Use the UpfDown arrow buttons to specify the order of the Source files when they're passed to the toal,

Use list of files organized by

= Libero (default list)

+ User

Source files in the project

Qrigin

j hdl_w10_1.v

User

Help

21

2]]

Associated Source files

2rigin

jcustnm_aphjeriphera\.v

User

Aidd =+

4= Remove

cot_|

Stimulus Hierarchy

To view the Stimulus Hierarchy, from the View menu choose Windows > Stimulus Hierarchy.

The Stimulus Hierarchy tab displays a hierarchical representation of the stimulus and simulation files in the
project. The software continuously analyzes and updates files and content. The tab (see figure below)
displays the structure of the modules and component stimulus files as they relate to each other.

Stimulus Hierarchy]

=] [
= E=ﬂ testbench (testbench.w)
=

=l

Figure 135 - Organize Source Files Dialog Box

Show: [Components

test_mss

kest_mss_M33
best_mss_M35

[] show Root Testbenches

.E=ﬂ testbench (testbench.w)

Figure 136 - Stimulus Hierarchy Dialog Box

Expand the hierarchy to view stimulus and simulation files. Right-click an individual component and choose
Show Module to view the module for only that component.

Libero SoC User's Guide

271

& Microsemi

Table of Contents

Seelct Components or Modules from the Show drop-down list to change the display mode. The
Components view displays the stimulus hierarchy; the modules view displays HDL modules and stimulus
files.

The file name (the file that defines the module or component) appears in parentheses.
Click Show Root Testbenches to view only the root-level testbenches in your design.

Right-click and choose Properties; the Properties dialog box displays the pathname, created date, and last
modified date.

All integrated source editors are linked with the SoC software; if you modify a stimulus file the Stimulus
Hierarchy automatically updates to reflect the change.

To open a stimulus file:

Double-click a stimulus file to open it in the HDL text editor.

Right-click and choose Delete from Project to delete the file from the project. Right-click and choose Delete
from Disk and Project to remove the file from your disk.

Icons in the Hierarchy indicate the type of component and the state, as shown in the table below.
Table 24 - Design Hierarchy Icons

Icon Description

B SmartDesign component

@z | SmartDesign component with HDL netlist not generated

] | SmartDesign testbench

€] | smartDesign testbench with HDL netlist not generated

IP core was instantiated into SmartDesign but the HDL netlist has not been
generated

B HDL netlist

Text Editor

You can use the Libero IDE HDL text editor or another text editor.

To set your text editor preferences:
1. From the Project menu, choose Preferences.
2. Click Text editor.
2. Set your options and click OK.
Libero SoC text editor options:
e Use Libero text editor: Select to use the Libero HDL text editor.
e Enable block folding: This option lets you fold (hide) portions of your text.
e Enable line numbers: This option enables you to see line numbers in the text editor.

e Open programming/debugging files as read-only:Select to specify read-only permission to .stp and
.prb files.

User defined text editor

e User defined text editor: Deselect Use Libero text editor to activate this area. Enter the location of the
the EXE for your alternative text editor.

e Additional parameters: Use to specify other settings to pass to the text editor. Typically, it is not
necessary to modify this field.

272

& Microsemi

Table of Contents

User Template Location - Sets the path where your user templates are exported.

Tool Profiles Dialog Box

The Tool Profiles dialog box enables you to add, edit, or delete your project tool profiles.
Each Libero SoC project can have a different profile, enabling you to integrate different tools with different

projects.

To set or change your tool profile:

1. From the Project menu, choose Tool Profiles. Select the type of tool you wish to add.

e To add atool: Select the tool type and click the Add button . Fill out the tool profile and click OK.

e To change atool profile: After selecting the tool, click the Edit button to select another tool, change
the tool name, or change the tool location.

e To remove atool from the project:After selecting a tool, click the Remove button.

2. When you are done, click OK.

Tool Profiles

EF- Tacls

- Software IDE Sirmulation profiles
nthesis

] 4] x|

rogramming Active I I

r:‘@.

Name

ModelSim AE

Path

modelsim, exe ‘

Export Profiles. .. | OF Cancel |
4

Figure 137 - Libero SoC Tool Profiles Dialog Box

Tools Menu - Libero SoC

Command

Function

SmartDesign

and click OK to open SmartDesign.

Opens the Create New SmartDesign dialog box. Enter a filename

HDL Opens the Create a new HDL file dialog box. Enter a filename and
click OK to open the editor.

ViewDraw Opens the New file dialog box and defaults to Schematic. Enter a
filename and click OK to open ViewDraw.

Synthesis Starts synthesis

Simulation Starts the simulation software and opens any existing simulation

files in your project

Libero SoC User's Guide

273

& Microsemi

Table of Contents

Command Function

FlashPro Starts the FlashPro programming tool

Identify Debugger | Opens the Identify Debugger (from Synplify)

Write Application | Enables you to use a third-party IDE tool, such as Keil or IAR.
Code

Vault/Repositories Settings Dialog Box

The Vault/Repositories Settings dialog box enables you to add, remove, or reset your repositories to default
settings.

Use Vault location to specify a new location for your local vault.

Ml ¥ault /Repositories Settings

Flepositories

L Add
4 vault location

v, ackel-ip, comfrepositories/SgCore S |
v, actel-ip, com/frepositories/DirectCore

v, ackel-ip, comfrepositories/Firmware

Defaults |
Help | OF I Cancel |

Figure 138 - Vault/Repositories Settings Dialog Box

Videos - Libero SoC

There are short videos available that explain a variety of elements in Libero SoC. The maximum video
length is 60 seconds, unless otherwise noted. See the SoC website for a complete list of the latest video
content, as well as tutorials and online training.

Video Links

SoC Work Area Description - The SoC Work Window displays the HDL Editor, Report view, and
SmartDesign Canvas.

Design Hierarchy Tab and Files Tab - Introduces the Design Hierarchy and Files tabs in the SoC GUI.
Design Flow Tab and Catalog - Introduces the Design Flow tab and the Catalog.

AutoConnect in SmartDesign - Demonstrates the Autoconnect feature in SmartDesign.

Connection Mode in SmartDesign - Demonstrates the manual Connection mode feature in SmartDesign.

View Design Datasheet/Report

The Design Datasheet/Report lists all the reports available for your design.

Reports are added automatically when you move through design development. For example, Timing reports
are added when you run timing analysis on your design. The reports are updated each time you run timing
analysis.

If a report is not listed you may have to open it manually. For example, you must double-click Export IBIS
Model to display the IBIS Model report in the Design Datasheet.

274

http://www.actel.com/support/training/tutorials.aspx
http://mscctraining.com/
http://media-content.s3.amazonaws.com/soc_work_area_description/soc_work_area_description.html
http://media-content.s3.amazonaws.com/dh_and_files_tabs/dh_and_files_tabs.html
http://media-content.s3.amazonaws.com/design_flow_and_catalog_tabs/design_flow_and_catalog_tabs.html
http://media-content.s3.amazonaws.com/sdesign_autoconnect_example/sdesign_autoconnect_example.html
http://media-content.s3.amazonaws.com/sdesign_connection_mode/sdesign_connection_mode.html

& Microsemi

Table of Contents

You can view the following reports from here:

e Analyze Timing - Lists the following delay reports:

¢ Timing violations report - Flat Slack report provides information about constraint

violations.
e Timing Report - Displays the timing information organized by clock domain.

e Compile - Summarizes your compile parameters and lists any related warnings, errors, PDC
commands, device utilization and net information.

e Synthesize - Lists the following synthesis reports:
o synplify.log - Outputs the Synplify log file output; identical to log file content in
Synplify Pro AE if you run synthesis manually.

o datasheet.srr - Lists the Pin Description, DC Electrical Characteristics, and AC

electrical characteristics.
e run_options.txt - Lists all the run options organized by category: project files;
implementation; device options; compile/mapping options; mapper options.

e Export Pin Report - Lists the pins in your device sorted by 1/O signal name and by package number.
e Place-and-Route - Lists the following reports:

e Place-and-Route - Lists Compile and netlist information.

e Global Net and Global Usage- Contains information about the net(s) that are assigned

or routed using Global or LocalClock resources

e 1/O bank reports - Provides information on the I/O functionality, I/O technologies,
1/0 banks and 1/O voltages.
e Export IBIS Model - Exports the IBIS model report, which provides a standard file format for recording

parameters like driver output impedance, rise/fall time, and input loading, which may then be used by
any software application.

e Programming - Lists the programming information for your design.

View Menu - Libero SoC

Command Sub-menu | Shortcut Function
Windows > Catalog Shows/hides the Catalog
Cores Shows/hides the list of cores used in your
design
Design Flow Shows/hides the Design Flow window
Design Shows/hides the Design Hierarchy
Hierarchy
Files Shows/hides the Files window
HDL Shows/hides the HDL Templates window
Templates

Libero SoC User's Guide 275

& Microsemi

Table of Contents

Command Sub-menu | Shortcut Function
Log Shows/hides the Log window
Search Shows/hides Search results
Results
Stimulus Shows/hides the Stimulus Hierarchy
Hierarchy
Start Page Displays the Welcome to Libero SoC page;

the page includes links to help and other
pages that may be helpful for new users.

Refresh F5 Updates the Hierarchy tab. Useful if you add
Design files to the project and the software does not
Hierarchy show them in the Hierarchy.

Maximize CTRL+W [Hides the Catalog, Log Window, and Design
Work Area Explorer windows (if open) and expands the

selected tab in the Project Flow or
SmartDesign work area.

Reset Layout Returns the Libero SoC window layout to
default.

VHDL Library - Add, Remove, or Rename
Libero SoC enables you to manage your VHDL libraries from within the Project Manager.
From the File menu, select VHDL Library and Add, Rename, or Remove to update your library.
When you add a library it appears in your Hierarchy.

276

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

& Microsemi

Product Support

The Microsemi SoC Products Group backs its products with various support services including a Customer
Technical Support Center and Non-Technical Customer Service. This appendix contains information about
contacting the SoC Products Group and using these support services.

Contacting the Customer Technical Support Center

Microsemi staffs its Customer Technical Support Center with highly skilled engineers who can help answer
your hardware, software, and design questions. The Customer Technical Support Center spends a great
deal of time creating application notes and answers to FAQs. So, before you contact us, please visit our
online resources. It is very likely we have already answered your questions.

Technical Support

Microsemi customers can receive technical support on Microsemi SoC products by calling Technical
Support Hotline anytime Monday through Friday. Customers also have the option to interactively submit and
track cases online at My Cases or submit questions through email anytime during the week.

Web: www.actel.com/mycases

Phone (North America): 1.800.262.1060
Phone (International): +1 650.318.4460
Email: soc_tech@microsemi.com

ITAR Technical Support

Microsemi customers can receive ITAR technical support on Microsemi SoC products by calling ITAR
Technical Support Hotline: Monday through Friday, from 9 AM to 6 PM Pacific Time. Customers also have
the option to interactively submit and track cases online at My Cases or submit questions through email
anytime during the week.

Web: www.actel.com/mycases

Phone (North America): 1.888.988.ITAR
Phone (International): +1 650.318.4900
Email: soc_tech_itar@microsemi.com

Non-Technical Customer Service

Contact Customer Service for non-technical product support, such as product pricing, product upgrades,
update information, order status, and authorization.

Microsemi's customer service representatives are available Monday through Friday, from 8 AM to 5 PM
Pacific Time, to answer non-technical questions.

Phone: +1 650.318.2470

Libero SoC User's Guide 277

Microsemi Corporation (Nasdaq: MSCC) offers a comprehensive portfolio of
semiconductor and system solutions for communications, defense and security,
aerospace, and industrial markets. Products include high-performance and radiation-
hardened analog mixed-signal integrated circuits, FPGAs, SoCs, and ASICs; power
management products; timing and synchronization devices and precise time
solutions, setting the world's standard for time; voice processing devices; RF

Micmsem" solutions; discrete components; security technologies and scalable anti-tamper
* products; Power-over-Ethernet ICs and midspans; as well as custom design
Microsemi Corporate Headquarters capabilities and services. Microsemi is headquartered in Aliso Viejo, Calif. and has

One Enterprise, Aliso Viejo CA 92656 USA i i i
Within the USA: +1 (800) 7134113 approximately 3,400 employees globally. Learn more at www.microsemi.com.

Outside the USA: +1 (949) 380-6100
Sales: +1 (949) 380-6136 © 2014 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of

Fax: +1 (949) 215-4996) Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.
E-mail: sales.support@microsemi.com

5-02-9120-33/11.14

mailto:sales.support@microsemi.com
http://www.microsemi.com/

	Table of Contents
	Welcome to Microsemi's Libero® SoC v11.5 5
	Firmware Cores Frequently Asked Questions 14
	General Questions 21
	Instantiating into your SmartDesign 22
	Working with Processor-Based Designs in SmartDesign 23
	VHDL Construct Support in SmartDesign 24
	Making your Design Look Nice 25
	Generating your Design 26
	General Questions 27
	Instantiating Into Your SmartDesign 28
	Working with Processor-Based Designs in SmartDesign 30
	VHDL Construct Support in SmartDesign 31
	Making your Design Look Nice 32
	VHDL Special Types - Examples and meta.out File Format 72
	SmartDesign Testbench 80
	Creating a Designer Block Component in Libero SoC 88
	Security Policy Manager (SPM) 124
	Program Device 134
	Generate a Programming File for Serialization Support in In House Programming (IHP) 155
	SPI Programming Tutorial Overview 178
	Auto Programming 179
	In Application Programming (IAP) Tutorial 180
	Programming Recovery Tutorial 181
	Security Policy Manager (SPM) 188
	Debug SERDES 222
	Live Probes 227
	Active Probes 228
	New IGLOO2 and SmartFusion2 Devices
	Timing and Power Updates
	Faster Project Conversion and System Builder
	Redesigned Project Wizard and New Device Selector
	Post-layout Probe Insertion for SmartFusion2 and IGLOO2
	Discontinued Parts– Update designs in progress using Libero SoC v11.4 SP1

	Design Flow - Libero SoC
	Libero SoC Design Flow - SmartFusion2 and IGLOO2 ONLY
	Design Flow Window Updates for SmartFusion2 and IGLOO2 Only
	File Types in Libero SoC
	Software Tools - Libero SoC
	Frequently Asked Questions - Libero SoC
	Software IDE Integration
	System Builder
	Instantiate a SmartFusion MSS in your Design
	Configure the SmartFusion MSS
	Generate SmartFusion MSS Files
	Instantiate a SmartFusion2 MSS in your Design
	Configure the SmartFusion2 MSS
	Generate SmartFusion2 MSS Files
	Create ViewDraw Schematic
	About SmartDesign
	SmartDesign Design Flow
	Using Existing Projects with SmartDesign
	SmartDesign Frequently Asked Questions
	Working in SmartDesign
	Working in SmartDesign
	Generating your Design
	Getting Started with SmartDesign
	Creating a New SmartDesign Component
	Opening an Existing SmartDesign Component
	Saving/Closing a SmartDesign Component
	Generating a SmartDesign Component
	Importing a SmartDesign Component
	Deleting a SmartDesign Component from the Libero SoC Project
	Memory Maps / Data Sheet
	Modify Memory Map Dialog Box
	Canvas View
	Canvas Overview
	See Also

	Displaying Connections on the Canvas
	Pin and Attribute Icons

	Making Connections Using the Canvas
	Promoting Ports to Top Level
	Tying Off Input Pins
	Tying to Constant
	Making Driver and Bus Interface Pins Unused
	See Also

	Simplifying the Display of Pins on an Instance using Pin Groups
	Bus Instances
	Adding Graphic Objects
	Adding and Deleting Lines and Shapes
	Adding Text

	Auto-Arranging Instances
	Locking Instance and Top Level Port Positions
	See Also

	Replace Component for Instance
	Replace Instance Version
	Slicing
	Rename Net
	Automatic Names of Nets

	Organizing Your Design on the Canvas
	Creating a SmartDesign
	Adding Components and Modules (Instantiating)
	Adding or Modifying Top Level Ports
	Add Prefixes to Bus Interface / Group Names on Top-level Ports:
	Adding/Renaming Ports
	See Also

	Connecting Instances
	Automatic Connections
	QuickConnect
	Manual Connections
	Deleting Connections
	Top-Level Connections
	Bus Interfaces
	About Bus Interfaces
	See Also:

	Using Bus Interfaces in SmartDesign
	Adding or Modifying Bus Interfaces in SmartDesign
	Bus Interfaces
	DirectCore Bus Interfaces
	AHB
	APB
	SysInterface
	DBGInterface
	CPInterface

	Show/Hide Bus Interface Pins
	Default Tie-offs with Bus Interfaces
	Tying Off (Disabling) Unused Bus Interfaces
	Required vs. Optional Bus Interfaces
	See Also

	Promoting Bus Interfaces to Top-level
	Incremental Design
	Reconfiguring a Component
	See Also

	Fixing an Out-of-Date Instance
	See Also

	Replacing Component Version
	Design State Management
	Design Rules Check
	Generating a SmartDesign Component
	Reference
	SmartDesign Menu
	SmartDesign Glossary
	Canvas Icons
	Create Core from HDL
	Create HDL
	Using the HDL Editor
	Importing HDL Source Files
	Mixed-HDL Support in Libero SoC
	HDL Testbench
	View/Configure Firmware Cores
	Designing with Designer Block Components
	Designer Block Advantages
	Designer Block Features
	Use Designer Blocks When

	Designer Blocks and Synthesis
	See Also

	Managing I/Os in a Designer Block Component
	Globals and Designer Block Components
	Local Clock
	Limitations

	Designer Block Compile Report
	Designer Block Component Limitations
	Creating a Designer Block Component in Libero SoC
	Instantiating a Designer Block in Libero SoC
	RTL Simulation
	Simulation Options
	Selecting a Stimulus File for Simulation
	Selecting Additional Modules for Simulation
	Performing Functional Simulation
	Performing DirectCore Functional Simulation
	I/O Constraints - SmartFusion2 and IGLOO2
	Timing Constraints - SmartFusion2 and IGLOO2
	Floorplan Constraints - SmartFusion2 and IGLOO2
	Constrain Design - Import I/O Constraints and Import Timing Constraints
	Synthesize
	Synplify Pro ME
	Precision RTL
	Identify Debug Design
	Verify Post-Synthesis Implementation - Simulate
	Compile - SmartFusion, IGLOO, ProASIC3, Fusion
	Compile - SmartFusion2 and IGLOO2
	Block Instantiation Compile Options
	Placement
	Routing

	Compile Options
	Block Instantiation
	Physical Design Constraints
	Checking the Physical Design Constraint (PDC)

	Globals Management
	Automatic Demotion/Promotion
	Local clocks

	Netlist Optimization
	Combining
	Buffer/Inverter Management

	Display of Results
	Compile Report

	Block Creation (Available only when creating Designer Blocks)
	See Also

	Configure Flash*Freeze
	Place and Route - SmartFusion2 and IGLOO2
	See Also

	Place and Route
	Power-Driven

	SmartFusion, IGLOO, ProASIC3 and Fusion Place and Route Advanced Options
	High Effort Layout Mode
	Sequential Optimization
	Router
	Repair Minimum Delay Violations
	Additional Factors

	Restore Defaults

	Simulate - Opens ModelSim AE
	Generate Back Annotated Files - SmartFusion2 and IGLOO2 Only
	Export Back Annotated Files
	Generate Bitstream - SmartFusion2 and IGLOO2 Only
	Device Programming
	See Also

	Programming Connectivity and Interface - SmartFusion2 and IGLOO2 Only
	Programmer Settings - SmartFusion2 and IGLOO2 Only
	FlashPro Programmer Settings
	FlashPro Lite Programmer Settings
	FlashPro5/4/3/3X Programmer Settings

	Device I/O States During Programming
	Configure User Programming Data
	Configure Programming Recovery
	Security Features Frequently Asked Questions
	Security Programming Files
	Update Policy
	Debug Security Policy
	Key Mode Policy
	Update eNVM Memory Content (SmartFusion2 and IGLOO2 Only)
	Modify Data Storage Client
	Modify Serialization Client

	Serialization Client Editor
	Configure Bitstream Dialog Box - SmartFusion2 and IGLOO2 Only
	Generate Bitstream - SmartFusion2 and IGLOO2 Only
	Run PROGRAM Action - SmartFusion2 and IGLOO2 Only
	SmartFusion2 and IGLOO2 Programming - Default Settings
	SmartFusion2 and IGLOO2 Programming - Custom Settings
	Exit Codes (SmartFusion2 and IGLOO2)
	SmartFusion2 and IGLOO2 Programming Authentication Error Codes (AUTHERRCODE)
	SmartFusion2 and IGLOO2 Programming Error Codes (ERRORCODE)
	Programming File Actions - SmartFusion2 and IGLOO2
	Options Available in Programming Actions

	Bitstream Encryption with Default Key in Security Policy Manager - SmartFusion2 and IGLOO2
	Enable Custom Security Options in the Security Policy Manager (SmartFusion2 and IGLOO2)
	Programming SmartFusion in the Libero SoC
	Generating Programming Files
	Generate a Programming File in FlashPoint
	Programming File Types
	Generate a Programming File for SmartFusion
	Programming FlashROM and FPGA Array

	Generate a Programming File for AFS Device Support - Designer Only
	AFS Programming
	Programming Security Settings, FlashROM, and FPGA Array

	Creating a Programming Database (PDB) File in Designer
	See Also

	Programming Embedded Flash Memory Block
	Programming the FlashROM
	Silicon Signature
	Programming Security Settings
	Custom Security Levels
	Reprogramming a Secured Device
	Custom Serialization Data for FlashROM Region
	Custom Serialization Data File Format
	Binary serialization data file example
	Decimal serialization data file example

	Specifying I/O States During Programming
	Custom I/O Settings and Boundary Scan Registers
	Specifying I/O States During Programming - I/O States and BSR Details
	I/O State (Output Only)
	Boundary Scan Registers - Enabled with Show BSR Details

	Specify I/O States During Programming Dialog Box
	Load from file
	Save to file
	Port Name
	Macro Cell
	Pin Number
	I/O State (Output Only)

	Generate a DAT file
	FlashLock®
	No Lock
	Permanent Lock
	Keyed Lock

	Generating Bitstream and STAPL files
	SmartFusion2 Programming Tutorial
	MSS Configuration - eNVM
	Generate Bitstream - SmartFusion2 and IGLOO2 Only
	Edit Design Hardware Configuration - Device I/O States During Programming
	Bitstream Configuration
	Update eNVM Memory Content (SmartFusion2 and IGLOO2 Only)
	Modify Data Storage Client
	Modify Serialization Client

	Program Design - Run PROGRAM Action
	Handoff Design for Production
	Identify Debug Design
	Device Debug
	Getting Started with Device Debug
	Using Device Debug
	Solutions to Common Issues Using Device Debug
	Embedded Flash Memory (NVM) - Failure when Programming/Verifying
	Analog System Not Working as Expected
	ADC Not Sampling the Correct Value
	Frequently Asked Questions
	How do I unlock the device security so I can debug?
	How do I export a report?
	How do I generate diagnostic reports for my target device?
	Where can I find files to compare my contents/settings?
	What is a UFC file? What is an EFC file?
	Is my FPGA fabric enabled?
	Embedded Flash Memory (NVM) Frequently Asked Questions
	Is my Embedded Flash Memory (NVM) programmed?
	How do I display Embedded Flash Memory (NVM) content in the Client partition?
	How do I know if I have Embedded Flash Memory (NVM) corruption?
	Why does Embedded Flash Memory (NVM) corruption happen?
	How do I recover from Embedded Flash Memory corruption?
	What is a JTAG IR-Capture value?
	What does the ECC1/ECC2 error mean?
	How can I tell if my FlashROM is programmed?
	Can I compare serialization data?
	Can I tell what security options are programmed in my device?
	Is my analog system configured?
	How do I interpret data in the Device Status report?
	IDCode

	Device Status Report: User Info
	Device Status Report: Device State
	Device Status Report: Analog Block
	Device Status Report: Factory Data
	Device Status Report: Security
	FPGA Array (Fabric)

	How do I interpret data in the Flash Memory (NVM) Status Report?
	Add Probes
	Deleting Probes

	Edit Probes
	Device Debug User Interface
	Inspect Device Dialog Box
	Device Status Report
	Analog Block Configuration Dialog Box (SmartFusion and Fusion Only)
	Embedded Flash Memory (NVM) Content
	Embedded Flash Memory: Browse Retrieved Data
	Embedded Flash Memory: Compare Memory Client
	FlashROM Content Dialog Box
	Device Debug Tcl Commands
	SmartDebug for SmartFusion2 and IGLOO2
	Using SmartDebug with SmartFusion2 and IGLOO2
	Device Status Report - SmartFusion2 and IGLOO2
	Debug SERDES- PRBS Test
	Test Type
	Pattern

	Debug SERDES - Loopback Test
	Debug FPGA Array
	Memory Blocks Tab
	Add Probes
	Deleting Probes

	SmartDebug Tcl Commands
	Export Pin Report
	Export BSDL File
	Export IBIS Model
	Exporting Firmware and the Software IDE Workspace (SmartFusion2)
	Running Libero SoC from your Software Tool Chain
	Application Notes
	Tutorials and Training Modules
	Catalog
	Viewing Cores in the Catalog
	Catalog Options
	See Also

	Catalog Options Dialog Box
	Vault/Repositories Settings
	View Settings

	Changing Device Information
	Compatible Die Change
	Changing Die Revisions
	Device Change Only
	Repackager Function

	Core Manager
	Deleting Files
	Design Hierarchy in the Design Explorer
	Design Menu - Libero SoC
	Designer in Libero SoC
	Edit Core Definition - Ports and Parameters Dialog Box
	Edit Menu - Libero SoC
	Execute Script Dialog box
	Export Script Dialog Box
	File Menu - Libero SoC
	Files Tab and File Types
	HDL Templates in the Libero SoC
	Help Menu - Libero SoC
	Import Files Dialog Box (Project Manager)
	Importing Schematics
	License Details
	Link Files
	Log Window
	Colors and Symbols
	Linked Messages

	New Project Creation Wizard – Project Details
	Project

	New Project Creation Wizard - Device Selection
	New Project Creation Wizard – Device Settings
	New Project Creation Wizard – Design Template
	New Project Creation Wizard – Add HDL Source Files
	New Project Creation Wizard - Add Constraints
	New File Dialog Box
	Open Project Dialog Box
	Opening your Libero SoC project
	See Also

	Organize Constraint Files
	Organize Simulation Files
	Organize Source Files
	Organize Stimulus Files Dialog Box
	Physical Synthesis and the Libero SoC
	Preferences
	Preferences Dialog Box
	Project Menu - Libero SoC
	Project Settings Dialog Box
	Design Methodology
	Analysis Operating Conditions (For SmartFusion2 and IGLOO2)

	Project Settings: Simulation
	Simulation Libraries

	Project Sources
	File Linking
	See Also

	Reserved Microsemi Keywords
	Right-Click (Shortcut) Menu Options in Libero SoC Design Hierarchy
	Save Project As Dialog Box
	Saving Files
	Script Export Options Dialog Box
	Search in Libero SoC
	Select a Workspace Dialog Box
	Organize Source Files
	Stimulus Hierarchy
	Text Editor
	Tool Profiles Dialog Box
	Tools Menu - Libero SoC
	Vault/Repositories Settings Dialog Box
	Videos - Libero SoC
	View Design Datasheet/Report
	View Menu - Libero SoC
	VHDL Library - Add, Remove, or Rename
	Product Support
	Contacting the Customer Technical Support Center
	Non-Technical Customer Service

