
UG0602
User Guide

RTG4 FPGA Programming

50200602. 9.0 11/21

Microsemi Headquarters
One Enterprise, Aliso Viejo,
CA 92656 USA
Within the USA: +1 (800) 713-4113
Outside the USA: +1 (949) 380-6100
Sales: +1 (949) 380-6136
Fax: +1 (949) 215-4996
Email: sales.support@microsemi.com
www.microsemi.com

©2021 Microsemi, a wholly owned
subsidiary of Microchip Technology Inc. All
rights reserved. Microsemi and the
Microsemi logo are registered trademarks of
Microsemi Corporation. All other trademarks
and service marks are the property of their
respective owners.

Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of
its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the
application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have
been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any
performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all
performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not
rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer’s responsibility to
independently determine suitability of any products and to test and verify the same. The information provided by Microsemi
hereunder is provided “as is, where is” and with all faults, and the entire risk associated with such information is entirely
with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP
rights, whether with regard to such information itself or anything described by such information. Information provided in this
document is proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this
document or to any products and services at any time without notice.

About Microsemi
Microsemi, a wholly owned subsidiary of Microchip Technology Inc. (Nasdaq: MCHP), offers a comprehensive portfolio of
semiconductor and system solutions for aerospace & defense, communications, data center and industrial markets.
Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and
ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world's
standard for time; voice processing devices; RF solutions; discrete components; enterprise storage and communication
solutions, security technologies and scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs and
midspans; as well as custom design capabilities and services. Learn more at www.microsemi.com.

mailto:sales.support@microsemi.com
http://www.microsemi.com

 UG0602 Revision 9.0 iii

Content

1 Revision History . 1
1.1 Revision 9.0 . 1
1.2 Revision 8.0 . 1
1.3 Revision 7.0 . 1
1.4 Revision 6.0 . 1
1.5 Revision 5.0 . 1
1.6 Revision 4.0 . 1
1.7 Revision 3.0 . 1
1.8 Revision 2.0 . 2
1.9 Revision 1.0 . 2

2 RTG4 FPGA Programming . 3
2.1 Bitstream Generation . 4

2.1.1 Libero SoC Programming Bitstream Generation Flow . 4
2.1.2 Programming File Size . 5

2.2 Programming Flow . 5
2.3 JTAG Programming . 6

2.3.1 JTAG Timing . 6
2.3.2 JTAG Programming Architecture . 7
2.3.3 Design Implementation . 7
2.3.4 Programming Using an External Programmer . 8
2.3.5 JTAG Programming Using External Microprocessor . 9
2.3.6 JTAG Programming Using ChipPro Solution . 9

2.4 State of RTG4 Components During Programming . 10
2.5 Digest . 11

2.5.1 Digest Check – VERIFY_DIGEST . 11
2.5.2 Digest Check – DEVICE_INFO . 15

2.6 In-Flight Reprogramming . 16
2.6.1 In-Flight Reprogramming Guidance . 16
2.6.2 In-Flight Reprogramming Sequence . 16
2.6.3 In-Flight Reprogramming Solutions . 16

 UG0602 Revision 9.0 iv

Figures

Figure 1 Libero SoC Programming Bitstream Generation Flow . 4
Figure 2 Programming Flow . 5
Figure 3 JTAG Signals Timing Diagram . 6
Figure 4 JTAG Programming Mode . 7
Figure 5 Device Programming in JTAG Chain . 7
Figure 6 JTAG Programming using External Programmer . 8
Figure 7 JTAG Programming of a Single RTG4 Device . 9
Figure 8 I/O States During Programming . 10
Figure 9 Configuring the Digest Check . 12
Figure 10 Verifying Digest . 12
Figure 11 Verifying Digest – Log Details . 13
Figure 12 Configuring Programming Options . 13
Figure 13 Disabling Digest Check . 14
Figure 14 DEVICE_INFO – Log Details . 15

 UG0602 Revision 9.0 v

Tables

Table 1 RTG4 Programming Modes . 3
Table 2 Programming Bitstream Size . 5
Table 3 JTAG Pins . 6
Table 4 ASIC Block and I/O State During Programming . 10

Revision History

 UG0602 Revision 9.0 1

1 Revision History

The revision history describes the changes that were implemented in the document. The changes are
listed by revision, starting with the current publication.

1.1 Revision 9.0
The following is a summary of changes made in revision 9.0 of this document:

• Updated Table 1, page 3 to add DirectC and ChipPro Solution.
• Added In-Flight Reprogramming, page 16.

1.2 Revision 8.0
The following is a summary of changes made in revision 8.0 of this document:

• Updated Note below Table 1, page 3.
• Updated section Programming File Size, page 5.
• Updated section JTAG Power Supply Requirements, page 8.
• Updated section State of RTG4 Components During Programming, page 10.

1.3 Revision 7.0
The following is a summary of changes made in revision 7.0 of this document:

• Updated the information about FlashPro Express. For more information, see Digest, page 11.
• Update the information about power interruption during programming. For more information see,

Programming Flow, page 5.

1.4 Revision 6.0
Information about Digest check was updated. See Digest, page 11.

1.5 Revision 5.0
The following is a summary of changes made in revision 5.0 of this document:

• Information about the silicon sculptor was removed. Silicon sculptor programming is not supported
for RTG4 devices.

• Information about JTAG_TCK was updated. See JTAG Programming, page 6.

1.6 Revision 4.0
The following is a summary of changes made in revision 4.0 of this document:

• Added a note about standalone erase in the introduction chapter. For more information, see RTG4
FPGA Programming, page 3.

• Deleted the SPI Slave Programming section and all the related information about SPI slave
programming in this document.

• Added the Digest Checks section. For more information, see Digest, page 11.
• Replaced the pin name VDDJ with VDDI3 in the RTG4 FPGA Programming chapter. For more

information, see RTG4 FPGA Programming, page 3.

1.7 Revision 3.0
The following is a summary of the changes in revision 3.0 of this document.

• Information about RTG4 programming modes was updated. For more information, see Table 1,
page 3.

• The RTG4 programming flow was updated. For more information, see Programming Flow, page 5.
• The Programming Using an External Microprocessor section was removed.
• Information about the SPI master was updated.

Revision History

 UG0602 Revision 9.0 2

• The document was changed to the new template.

1.8 Revision 2.0
Removed references of security throughout the document (SAR 66946).

1.9 Revision 1.0
Revision 1.0 was the first publication of this document.

RTG4 FPGA Programming

 UG0602 Revision 9.0 3

2 RTG4 FPGA Programming

RTG4™ FPGAs offer a variety of programming options to cater to diverse end-user applications. The
device supports programming of the following components:

• FPGA fabric
• µPROM
RTG4 devices can be programmed by JTAG. In JTAG programming, the device is programmed using an
external master such as Microchip FlashPro4/5/6 programmer, an external microprocessor or ChipPro
solution. The following table lists different programming modes and interfaces. In the following sections,
these programming methods are discussed in detail.

Note:

• Erase has no adverse effects and no reliability concerns when performed as part of a full
programming cycle or as a standalone operation. Retention and endurance qualification of
non-volatile cells were performed using full programming cycles.

• Each programming operation will increment the cycle count by one. Each standalone erase
operation will increment the cycle count by two. Ensure that the cycle count never exceeds the
maximum number of programming or erase cycles specified in the datasheet (200 cycles).

• Microchip documentation discourages customers from performing standalone erase operations on
flight units so that the cycle count always reports the exact number of programming cycles
performed on these units. For example, if ten programming operations and two standalone erase
operations are performed on a unit, its cycle count will report 14. It could be interpreted as 14
programming operations or seven standalone erase operations or any combinations leading to a
cycle count of 14. There is no dedicated hardware to count standalone erase operations and
Programming operations separately.

Table 1 • RTG4 Programming Modes

Mode Interface Master Software Bitstream Format
JTAG
Programming

System Controller
dedicated JTAG port

External
FlashPro4/5/6
Programmer

Libero® SoC/FlashPro Libero SoC default
file/STAPL

External
Microprocessor

DirectC DAT

ChipPro solution
using FlashPro6

ChipPro Solution STAPL

https://www.microsemi.com/existing-parts/parts/152642#overview
https://www.microsemi.com/existing-parts/parts/152642#overview

RTG4 FPGA Programming

 UG0602 Revision 9.0 4

2.1 Bitstream Generation
Libero SoC generates the programming bitstream required to support the different programming modes.

2.1.1 Libero SoC Programming Bitstream Generation Flow
Libero SoC is used to generate the programming bitstream formats needed for different programming
modes. The following figure shows the Libero SoC programming bitstream generation flow.

After implementation of the design, the programming bitstream is generated by clicking the Generate
Bitstream option in Libero. As programming is integrated into the Libero SoC software design flow, you
can program the device directly by clicking Program Design > Run PROGRAM Action.

You can also program the device using standalone programming tool FlashPro Express. Export *.job file
from Libero SoC (Export FlashPro Express Job menu). For more information, see FlashPro Express
User Guide.

Figure 1 • Libero SoC Programming Bitstream Generation Flow

Generate Bitstream

Run Program

Pre-Compile Constraint Editor
-I/O Constraint and Floorplan Constraint files are
separated
- Enables you to import Timing Constraint (SDC) files
Pre-Conpile

Post-Compile I/O Editor
- Assign pins and attributes
- Check rules
- State Management on Modifications

Post-Compile PDC file
-Post-Compile I/O PDC file is generated
automatically if you explicitly add/modify your
I/O constraints after compilation

Export FlashPro Express Job
/Export Bitstream

Create Design

Create Constraints

Compile

Place-and-Route

Synthesis

FlashPro Express/
All other Programming Methods

https://www.microsemi.com/document-portal/doc_download/1243954-flashpro-express-v12-0-user-guide-for-all-the-families
https://www.microsemi.com/document-portal/doc_download/1243954-flashpro-express-v12-0-user-guide-for-all-the-families

RTG4 FPGA Programming

 UG0602 Revision 9.0 5

2.1.2 Programming File Size
The µPROM is part of the fabric. When the fabric is programmed, the µPROM will also be programmed if
bitstream contains the µPROM (partial or full content) data. The following table lists the typical bitstream
size and format for RTG4 devices.

2.2 Programming Flow
The programming flow starts when the system controller initiates the device programming start
command, and ends when the bitstream data is fully transferred and verified. Verification of the
programmed contents are part of the programming flow. It is recommended not to interrupt the
programming flow. If the programming flow is interrupted or fails before completion, the device will not be
enabled. The FPGA is enabled only after the entire bitstream is successfully programmed. Interrupt
during programming may damage the device. The following figure summarizes the RTG4 programming
flow.

Note: Power interruption is not supported during programming.

Figure 2 • Programming Flow

Table 2 • Programming Bitstream Size

Device File Type Fabric + µPROM Full
RT4G150 STAPL 8 MB

Program start command

Device gets programming data

Device processes the bitstream

End of device programming

According to the bitstream device programs and verifies the
fabric and μPROM

Display error
message

Device erases the fabric and μPROM according to
the bitstream

End of bitstream?

Yes

No

Authenticate the
Bitstream

Pass

Fail

RTG4 FPGA Programming

 UG0602 Revision 9.0 6

2.3 JTAG Programming
RTG4 devices have a built-in JTAG controller that is compliant with IEEE 1149.1 and compatible with
IEEE 1532. An external programmer, such as FlashPro4/5/6, is used to program the device. The devices
can be programmed in both single and chain modes.

The RTG4 devices have JTAG pins in a dedicated bank, which varies depending on the package. For
more information about banks and their locations, see RTG4 FPGA Pin Descriptions.

JTAG banks can be operated at 1.8 V, 2.5 V, or 3.3 V.

The logic level of the JTAG signals depends on the JTAG bank voltage. The following table lists the JTAG
pin names and descriptions.

The JTAG interface is used for device programming and testing or for debugging instantiated soft
processor firmware, as listed in the following table. JTAG I/Os are powered by the VDDI3 supply
associated with the bank where the I/O reside.

For more information about JTAG, see AC439: Board Design Guidelines for RTG4 FPGA Application
Note.

2.3.1 JTAG Timing
Proper operation of JTAG programming depends on the timing relationship between JTAG pins as shown
in the following figure. For the recommended timing values, see the 1532 timing characteristics table of
the DS0131: RTG4 FPGA Datasheet.

Figure 3 • JTAG Signals Timing Diagram

Table 3 • JTAG Pins

Pin Name Direction Weak Pull-up Description
JTAG_TMS Input Yes JTAG test mode select. Do not connect (DNC) in unused condition.

JTAG_TRSTB Input Yes JTAG test reset. Must be held low during device operation. In unused
condition, pull down to VSS through 1 k resistor for upset immunity.

JTAG_TDI Input Yes JTAG test data in. DNC in unused condition.

JTAG_TCK Input No JTAG test clock. When unused, TCK be tied to VSS or VDDI3 through
200 to 1 k resistor on the board as per IEEE 1532 requirements. This
prevents totem pole current on the input buffer.

JTAG_TDO Output No JTAG test data out. DNC in unused condition.

tDISU tDIHD

tTMSSU tTMSHD

TCK

TMS

TDI

TDO
tTCK2Q

Tristate

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=134410
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=135384
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=135384
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=135193

RTG4 FPGA Programming

 UG0602 Revision 9.0 7

2.3.2 JTAG Programming Architecture
The system controller implements the functionality of a JTAG slave and complies to IEEE 1532 and IEEE
1149.1 standards. The JTAG port communicates with the system controller using:

• a command register that sends the JTAG instruction to be executed.
• a 128-bit data buffer that transfers any associated data.

2.3.3 Design Implementation
The FPGA fabric and the µPROM can be programmed using JTAG programming mode.

• An USB-based FlashPro4/5/6 programmer can be used to program the RTG4 device using the
dedicated JTAG interface. Libero SoC (or standalone FlashPro Express) executes the programming
from a PC connected to the programmer.

The following figure shows the FlashPro4/5/6 programmer connected to the JTAG ports of a RTG4
device. Only this programming mode is supported by the current version of the Libero SoC software.

Figure 4 • JTAG Programming Mode

A single FlashPro4/5/6 programmer can also program multiple Microchip FPGAs from the same family or
from different families in a single JTAG chain.The TDO pin of the JTAG header represents the beginning
of the chain. The TDI pin of the last device is connected back to the JTAG header, thus completing the
chain.

A non-Microchip FPGA can also be included in the chain as shown in the Figure 5, page 7. When a
Microchip FPGA within a chain is programmed, all non-Microchip FPGAs in the chain are placed in
bypass mode. When a device is in bypass mode, the device’s data register length is automatically set to
1 and the device stops responding to any programming instructions.

 For more information about JTAG chain programming, see the FlashPro Express User Guide.

Figure 5 • Device Programming in JTAG Chain

RTG4

System Controller FlashPro4/5/6*

PC

USB
JTAG I/Os

* The FlashPro3 programmer can be used in JTAG programming mode but it has been discontinued.

FlashPro
Programmer

JTAG
Header

TDI

TDO

Non-Microsemi
SoC FPGA

IR = 4

RTG4 FPGA
 IR = 8

Non-Microsemi
Soc FPGA

IR = 6

Non-Microsemi
Soc FPGA

IR = 4

Non-Microsemi
Soc FPGA

IR = 4

ProASIC3 FPGA
IR = 4

Device #6

Device #1

Device #5

Device #2 Device #3

Device #4

TDI TDO

TDITDO

TDI TDO TDI TDO

TDITDOTDO TDI

https://www.microsemi.com/document-portal/doc_download/1243954-flashpro-express-v12-0-user-guide-for-all-the-families

RTG4 FPGA Programming

 UG0602 Revision 9.0 8

2.3.4 Programming Using an External Programmer
RTG4 devices can be programmed using an external programmer through the dedicated JTAG port.
When programming with the Libero SoC or standalone FlashPro Express software, FlashPro4/5/6 cable
must be connected to the JTAG pins of the device through a 10-pin programming header, as shown in
the following figure. The target board must provide power to the VPP, VDD, and VDDI3 pins.

Figure 6 • JTAG Programming using External Programmer

2.3.4.1 JTAG Power Supply Requirements
The power supplies must conform to the specification as defined in the DS0131: RTG4 FPGA Datasheet.
Measures must be taken to ensure signal integrity, so that power supplies and JTAG signals are free
from noise.

Before programming, the FPGA needs to be powered up. The power supply to the JTAG bank must be
turned on.

RTG4 FPGAs require a single programming voltage to be applied at the VPP pin during programming.
This voltage must be supplied from the board. When the device is not programmed under normal
operating conditions, VPP must be connected to its supply range. The board must supply power to the
VPP, VDD, VDDI3 pins of the device, and the VJTAG pin of the programmer header. VDDI3 provides
power to the JTAG circuitry. For more information about voltage range, see the DS0131: RTG4 FPGA
Datasheet.

Kit Board

USB
10-Pin Ribbon

Cable

Programming Header
(Dedicated JTAG)

FlashPro4/5/6
External

Programmer

RTG4

System
Controller

JTAG
Controller

μPROM

FPGA Fabric

Device contents to be programmed

Host PC

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=135193
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=135193
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=135193

RTG4 FPGA Programming

 UG0602 Revision 9.0 9

Microchip recommends that VPP and JTAG power supply lines (VDDI3) are kept separate with
independent filtering capacitors. See the following figure for capacitor requirements. The bypass
capacitor must be placed within 2.5 cm of the device pins. The following figure shows the connections
between the programming header and the device.

Figure 7 • JTAG Programming of a Single RTG4 Device

Note: From Libero SoC v11.8 SP3 and later, FlashPro does not detect or drive VPUMP for SmartFusion2,
IGLOO2, and RTG4 devices. FlashPro detects and drives VPUMP only when
ProASIC3/IGLOO/Fusion/SmartFusion device is detected in the chain.

• FlashPro does not detect VPP on SmartFusion2, IGLOO2, and RTG4 devices. VPUMP pin on this
board can be left floating.

• If the board contains ProASIC3/IGLOO/Fusion/SmartFusion along with
SmartFusion2/IGLOO2/RTG4 in the JTAG chain, then connect VPUMP of the
ProASIC3/IGLOO/Fusion/SmartFusion to the JTAG header of the VPUMP pin.

2.3.5 JTAG Programming Using External Microprocessor
An external microprocessor can be used to program the device through the dedicated JTAG interface.
This type of programming requires that the external microprocessor run DirectC, a Microchip
programming solution for FPGAs, and the microprocessor’s GPIO ports drive the JTAG interface.

Note: The DirectC solution supports programming of the FPGA fabric and uPROM. DirectC is used by adding
the necessary APIs and compiling the source code to create a binary executable. The binary executable
is downloaded to the external microprocessor along with the programming data file. For more information
about DirectC, see Embedded Programming.

2.3.6 JTAG Programming Using ChipPro Solution
The ChipPro programmer baseboard with FlashPro6 can be used to program the device through the
dedicated JTAG interface. This can be done either using the Libero SoC or a standalone FlashPro
Express. For information about ChipPro, see CP-PROG-BASE.

JTAG_TCK

JTAG_TDO

JTAG_TMS

JTAG_TDI

JTAG_TRSTB

FlashPro4/5/6
JTAG Header

TCK

TDO

TMS

*VPUMP

TDI

GND

PROG_MODE

VJTAG

TRST

GND

VPP

VDDI30.1 F

Mfr. P/N: HTST-105-01-L-DV-A
Mfr.: Samtec Inc

0.1 F

1

3

5

7

9 10

8

6

4

2

RTG4

VPP

10 K

DEVRST_N

https://www.microsemi.com/existing-parts/parts/152642#overview
https://www.microsemi.com/product-directory/programming-and-debug/4980-embedded-programming#overview

RTG4 FPGA Programming

 UG0602 Revision 9.0 10

2.4 State of RTG4 Components During Programming
The following table lists the state of each ASIC block and I/O type during the programming mode
described in this user guide. You can configure the I/O state during JTAG programming in Libero SoC, as
shown in the following figure. For more information about device I/O states during programming, see the
Libero SoC User Guide.

Note: I/Os are tristated in the blank devices, that is, factory shipped unprogrammed devices.

The following figure shows the various I/O states of RTG4 components during programming.

Figure 8 • I/O States During Programming

If the RTG4 is the only driver on the line, and there are no external contentions or shorts, then there is no
reliability concern for RTG4. If this RTG4 output pair drives another RTG4 LVDS receiver, there is no
issue because the RTG4 input pins can tolerate the full voltage swing from GND to the VDDI for the
corresponding bank.

Table 4 • ASIC Block and I/O State During Programming

Programming Methodology
Components JTAG
Shared I/O (fabric/FDDR) Tristated by system controller

Dedicated Fabric I/O Tristated by system controller

SerDes I/O Unaffected by programming

FDDR Block Fabric interfaces gated off by a flash bit (so no transactions can occur at
config APB, AHB/AXI interfaces to fabric)

SerDes Block Fabric interfaces gated off by a flash bit (so no transactions can occur at
config APB, AHB/AXI interfaces to fabric)

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130850
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130850

RTG4 FPGA Programming

 UG0602 Revision 9.0 11

To prevent damage to the external LVDS receiver, it must be able to tolerate the full voltage swing from 0
V to VDDI on its inputs without reliability impact. If not, then the external LVDS receiver must have
failsafe support for either open or shorted inputs. If the receiver supports failsafe for open (floating)
differential inputs, then the user can configure both FPGA output pads to be the default tristate output
during programming. If the receiver supports failsafe for shorted and terminated inputs, then the user can
configure both FPGA output pads to be LOW during programming. Since the device is erased during
programming, the I/O standard does not matter.

2.5 Digest
Digest is a 32-bit Multiple Input Shift Register (MISR) CRC code generated by a hardware circuit in the
System controller. It is generated for Fabric/µPROM of the FPGA. Digest is used for protecting the data
integrity.

The digest is printed during bitstream generation and bitstream programming. When a user creates a
design in Libero and then exports the FlashPro Express job, the fabric digest is printed in the Libero log
window and saved in a digest file under the export folder. The digest file is a text file containing the 32-bit
digest value. The name of the digest file will match the name of the FlashPro Express job exported, and
will be appended with a “.digest” extension.

The digest is also printed at the end of programming operation in the Libero and FlashPro Express log.
The user can compare this printed digest with the same in the exported digest file to ensure the intended
programming of the FPGA.

2.5.1 Digest Check – VERIFY_DIGEST
During programming operation, the digest is calculated simultaneously and stored in the fabric user
segment. When VERIFY_DIGEST is performed, the digest is recalculated and compared against the
stored value in the fabric user segment. This compare ensures the image programmed in the device has
not changed since the last time the device was programmed.

There is no digest check on power-up, and a digest check (that is, VERIFY_DIGEST) has to be initiated
through Libero or FlashPro Express.

Note: It is recommended to keep the track of how many times VERIFY_DIGEST and/or verify are performed as
Libero SoC does not keep a track of the count (impacts the data retention limit). For more information
about maximum number of counts, see DS0131: RTG4 FPGA Datasheet.

2.5.1.1 Use Model
Use the VERIFY_DIGEST setting if there is any concern about bitstream modification. User may
consider disabling this function for security concerns. See Figure 13, page 14 on how to disable this
action in Libero.

To perform a VERIFY_DIGEST,

1. Launch FPExpress.
2. Click New or select New Job Project from FlashPro Express Job from Project menu to create a new

job project.
3. Enter the following in the New Job Project from FlashPro Express Job dialog box:

• Programming job file: Click Browse, and navigate to the location where the .job file is located
and select the file.

• FlashPro Express job project location: Click Browse and navigate to the location where you
want to save the project.

4. Click OK.

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=135193

RTG4 FPGA Programming

 UG0602 Revision 9.0 12

Figure 9 • Configuring the Digest Check

5. From the Drop Down select VERIFY_DIGEST from the list.
Figure 10 • Verifying Digest

RTG4 FPGA Programming

 UG0602 Revision 9.0 13

6. Click VERIFY_DIGEST. The log window displays the digest check status.
Figure 11 • Verifying Digest – Log Details

To disable a digest check:

1. In the Libero project Design Flow window, double-click Configure Programming Options or right-
click and click Configure Options.

Figure 12 • Configuring Programming Options

RTG4 FPGA Programming

 UG0602 Revision 9.0 14

2. Select the Disable Digest Check check box under Programming Bitstream Settings.
Figure 13 • Disabling Digest Check

Note: To disable the digest check, you need to first program the device with Disable Digest Check option
enabled and power cycle the device with TRSTB pin tied to LOW.

RTG4 FPGA Programming

 UG0602 Revision 9.0 15

2.5.2 Digest Check – DEVICE_INFO
DEVICE_INFO action is available in both Libero and FlashPro Express software. Design name, Design
checksum and Fabric digest are printed in the DEVICE_INFO log. These can be manually compared to
the checksum in the STAPL file and digest in the .digest file to ensure the device is programmed with the
intended design. There is no restriction on number of times DEVICE_INFO is performed (that is, no
impact on retention limit).

2.5.2.1 Use Model
DEVICE_INFO is a quick way to check the status of a programmed device and to ensure that the
intended design has been programmed into the device. DEVICE_INFO also prints Cycle Count in the log
file, which can be used to track the retention limit as shown in the following figure.

Figure 14 • DEVICE_INFO – Log Details

RTG4 FPGA Programming

 UG0602 Revision 9.0 16

2.6 In-Flight Reprogramming
Reprogramming on orbit is increasingly becoming a hard requirement for space payload electronics.
Satellite payload electronics' complexity have evolved so much that it is impossible to identify hardware
bugs until the satellite is launched. The ability to reprogram an FPGA in space can be used to fix critical
bugs. Furthermore, re-programmability in the FPGAs enables tuning of data processing algorithms to
give the optimum results for new science missions. When the primary mission of the satellite is
accomplished, the satellite hardware can be re-purposed to accomplish additional objectives if the
FPGAs can be reprogrammed.

2.6.1 In-Flight Reprogramming Guidance
Microchip has performed several sets of radiation tests on RTG4 FPGAs and determined that the FPGAs
can be programmed in space, with a greater-than-99% probability of success on orbit.

RTG4 reprogramming in space is supported with the following guidance:

• Single Event Effects (SEE) Impact
• Probability of first-time success for programming in GEO-synchronous orbit with Solar-Min

conditions is calculated to be greater than 99%. If radiation disrupts programming, it is highly
likely that the next programming attempt will succeed. Heavy ion test results can be found in
RTG4 PLL, POR and Inflight-Programming Heavy Ion SEE Report.

• Probability of programming success in LEO is very high. No programming or verify failure was
observed in accelerated ground testing. See RTG4 Proton Testing Report.

• In-beam reprogramming and verify is non-destructive as seen in accelerated ground testing.
• It is unlikely that an ion will disrupt programming, since the flux in space is many orders of

magnitude lower than the flux used during accelerated ground testing.
• Total Ionizing Dose (TID) Impact

• Reprogramming can be accomplished at TID levels up to 50 Krad, which is sufficient for 10
years of GEO and more than 20 years of LEO.

2.6.2 In-Flight Reprogramming Sequence
In the DirectC v2021.2 release, a new “Reprogram_InFlight” action will be introduced to take care of the
entire required sequence for RTG4 in-flight reprogramming. See DirectC v2021.2 User Guide for
information about "Reprogram_InFlight" action.

For information about timing requirements and interface to the RTG4 JTAG pins, see JTAG
Programming, page 6.

2.6.3 In-Flight Reprogramming Solutions
A programming controller is required to retrieve the new programming code from an external memory
and to upload the new code into the target RTG4 FPGA, which is to be programmed. Some of the viable
options for a programming controller includes (but not limited to):

• Standalone radiation-tolerant microcontroller such as Microchip's SAMRH71F20. A reference design
is available in GitHub. A demonstration video can be found here.

• Other possible solutions which include implementing a JTAG player in RTL or using a soft processor
in an FPGA. These solutions have not been tested by Microchip.

https://vimeo.com/578616331
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=1244793
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=1245517
https://github.com/MicrochipTech/adg_fpga_reconfiguration

	1 Revision History
	1.1 Revision 9.0
	1.2 Revision 8.0
	1.3 Revision 7.0
	1.4 Revision 6.0
	1.5 Revision 5.0
	1.6 Revision 4.0
	1.7 Revision 3.0
	1.8 Revision 2.0
	1.9 Revision 1.0

	2 RTG4 FPGA Programming
	2.1 Bitstream Generation
	2.1.1 Libero SoC Programming Bitstream Generation Flow
	2.1.2 Programming File Size

	2.2 Programming Flow
	2.3 JTAG Programming
	2.3.1 JTAG Timing
	2.3.2 JTAG Programming Architecture
	2.3.3 Design Implementation
	2.3.4 Programming Using an External Programmer
	2.3.4.1 JTAG Power Supply Requirements

	2.3.5 JTAG Programming Using External Microprocessor
	2.3.6 JTAG Programming Using ChipPro Solution

	2.4 State of RTG4 Components During Programming
	2.5 Digest
	2.5.1 Digest Check – VERIFY_DIGEST
	2.5.1.1 Use Model

	2.5.2 Digest Check – DEVICE_INFO
	2.5.2.1 Use Model

	2.6 In-Flight Reprogramming
	2.6.1 In-Flight Reprogramming Guidance
	2.6.2 In-Flight Reprogramming Sequence
	2.6.3 In-Flight Reprogramming Solutions

