SmartFusion2 and IGLOO2 SmartDebug
Hardware Design Debug Tools

Libero SoC v11.4SP1 Tutorial

& Microsemi

& Microsemi

SmartFusion2 and IGLOO2 SmartDebug Hardware Design Debug Tools

Table of Contents

SmartFusion2 and IGLOO2 SmartDebug Hardware Design Debug Tools 3
INtrOdUCHON . . 3
Tutorial RequiremMents 4

Associated Project Files 4
DESIGN OVEIVIEW . . o oottt e e 4
Programming the DeviCe e 6
Launching SmartDebug 8
Debugging the Design e 9

View Device Statuso e 9

View Flash Memory (eNVM) Content e e e 10

Debug FPGA AITayt e e e 11

Forcing a Design Modification e 19

SERDES DebUgo 21

Far-End Loop Back SUpport e 31

TCl SUPPO I .« ..ot 33

Executing SERDES Debug from SmartDebug Tcl e 35
CONCIUSION . . o e 37

A APPENdIX . oo 38

Tel Script EXampPIes oo e 38
Example 1: Change M/N/F registers for Lane1 and Lane2 of SERDESIF_ 0 38
Example 2: Change RX LEQ registers Lane2 of SERDESIF_0 38
Example 3: Change TX De-emphasis registers Lane2 of SERDESIF_0 39

B Listof Changes 40

C Product SUPPOIt 41
CUSIOMEr SeIVICEo e o e 41
Customer Technical Support Center 41
Technical SUPPOIo i e 41
VDSt . L 41
Contacting the Customer Technical Support Center e 41

Email .. 41

MY CaSES . . o ot 42

Outside the U.S. 42
ITAR Technical SUPPOIto e e e e e e e e e 42

Revision 5 2

& Microsemi

SmartFusion2 and IGLOO2 SmartDebug Hardware
Design Debug Tools

Introduction

Design debug is a critical phase of the FPGA design flow. Microsemi™~'s multiple design debug tools and
features compliment design simulations by allowing verification and troubleshooting at the hardware
level. Having successfully passed functional and post-layout simulations, Microsemi's design debug tools
can help provide the designer with a pre-system level implementation early warning of other design
issues. Microsemi's design debug tools can provide the peace of mind, that intended design goals and
functionality are maintained by performing various analysis in the actual programmed FPGA. Microsemi
design debug focuses the designer on analysis of the key elements of a flash design, such as the
embedded non-volatile memory (eNVM) data, SRAM data, and probes capabilities. Microsemi
SmartFusion®2 and IGLOO®?2 field programmable gate array (FPGA) devices have built-in probe points
that greatly enhance the ability to debug logic elements within the device. The enhanced debug features
implemented into the SmartFusion2 and IGLOO2 devices give access to any logic element and enable
designers to check the state of inputs and outputs in real-time, without any re-layout of the design
through Live Probe and Active Probe features:

®

+ With Live Probe, two dedicated probes can be configured to observe a probe point; which is any
output of a register. The probe data can then be sent to two dedicated pins (PROBE_A and
PROBE_B), then to an oscilloscope, or even redirected back to the FPGA fabric to drive a
software logic analyzer.

» Active Probe allows dynamic asynchronous read and write to a flip-flop or probe point. This will
enable a user to quickly observe the output of the logic internally, or to quickly experiment on how
the logic will be affected by writing to a probe point.

* SmartDebug includes SERDES control and test capabilities that can also access SRAM and
eNVM to assist with debugging high speed serial designs, with no extra steps. The SmartDebug
JTAG interface extends access to configure, control, and observe SERDES operations and is
accessible in every SERDES design. Users simply implement their design with the
Libero® System Builder to incorporate the SERDESIF block enabling SERDES access from the
SmartDebug toolset.

This quickly enables designers to explore configuration options without going through FPGA
recompilation or making changes to the board. The SERDES Debug GUI displays real-time system and
lane status information. SERDES configurations are supported with Tcl scripting, allowing access to the
entire SERDES register map for real-time customized tuning.

Upon completing this tutorial you will be familiar with the following:
» Accessing SmartDebug from Libero SoC on a design
* Checking the device status
* Checking the flash memory (eNVM) content

- Debugging FPGA array (setting Live Probes, Active Probes, and reading/modifying fabric SRAM
content)

» Debugging SERDES designs

Revision 5 3

& Microsemi

SmartFusion2 and IGLOO2 SmartDebug Hardware Design Debug Tools

Tutorial Requirements

Table 1+ Design Requirements

Design Requirements

Description

Hardware Requirements

SMA Male-to-SMA Male Precision Cables, such as Pasternack
Industries part number PE39429-12 (or equivalent)

Optionally recommended for evaluation board
SERDES testing.

IGLOO2 Evaluation Kit
or
SmartFusion2 Evaluation Kit

Rev C or later

Software Requirements

Libero® System-on-Chip (SoC)

v11.4SP1

FlashPro programming software

v11.4SP1

One of the following serial terminal emulation programs:
* HyperTerminal

» TeraTerm

« PuTTY

Set the following SmartDebug definition variable before launching
Libero SoC v11.4SP1:

« SMART_DEBUG_DISABLE_JTAG_RESET =1

Refer to the following KB for more information:

http.//soc.microsemi.com/kb/article.aspx?id=KI89
56

Associated Project Files

Extract the
http://soc.microsemi.com/download/rsc/?f=m2s_m2gl_smartdebug_liberov11p4sp1_tu_df

Libero SoC project along with the ReadMe and programming (.stp) file to a folder on the HDD of your PC
(for example: C:\Microsemiprj). Confirm that the following two design files are extracted from the
downloaded folder:

* m2gl_SmartDebug_Tutorial—For IGLOO2 Evaluation Kit (M2GL010T)
* m2s_SmartDebug_Tutorial—For SmartFusion2 Evaluation Kit (M2S090T)

Design Overview

The design consists of two main blocks: the SERDES debug block (SERDES_Debug) and the fabric
debug block (Fabric_Debug), as shown in Figure 1.

The SERDES_Debug block is used to demonstrate the SmartDebug capabilities that can be used to
perform SERDES real-time signal integrity testing and debugging. The design consists of a System
Builder block (SD_DEMO) and an instance of SERDES Interface block (SERDES_IF), as shown in
Figure 2 on page 6. Within the System Builder, a Data Storage client is stored in the flash memory
(eNVM). SmartDebug provides the capabilities to view the eNVM content by reading the content real-
time from the device.

The Fabric_Debug block demonstrates the way to use SmartDebug to do FPGA array debugging. To
demonstrate this, the Fabric_Debug uses a counter to load a counting pattern into the LSRAM instance
(DPSRAM). The data stored is the same as the address. On the read side of the LSRAM, there is a count
checker (count_chk) to ensure that the count is progressing as expected. If there is an error, the output
(error) is latched high, as shown in Figure 3 on page 6. This Fabric_Debug block design is used to
demonstrate the different silicon built-in capabilities, such as setting Live Probes to monitor in real-time
an internal user-selected point on the device. In addition, users can set Active Probes which provides the

Revision 5

http://www.pasternack.com/sma-male-sma-male-pe-sr405flj-cable-assembly-pe39429-12-p.aspx
http://www.pasternack.com/sma-male-sma-male-pe-sr405flj-cable-assembly-pe39429-12-p.aspx
http://www.microsemi.com/products/fpga-soc/design-resources/dev-kits/igloo2/igloo2-evaluation-kit
http://www.microsemi.com/products/fpga-soc/design-resources/dev-kits/smartfusion2/sf2-evaluation-kit
http://soc.microsemi.com/download/rsc/?f=m2s_m2gl_smartdebug_liberov11p4sp1_tu_df
http://soc.microsemi.com/kb/article.aspx?id=KI8956

& Microsemi

SmartFusion2 and IGLOO2 SmartDebug Hardware Design Debug Tools

capabilities for dynamic asynchronous read and write to a flip-flop or probe point. This will enable users
to quickly observe the output of the logic internally or to quickly experiment on how the logic will be
affected by writing to a probe point. Finally, the Fabric_Debug design block will be used to demonstrate
the SmartDebug capabilities where users can read and modify in real-time the fabric SRAM content.

SERDES_Debug_0

DEVRST N DEVRST_N FIC_0_CLK
PADs NH@------==-- EPADs_IN PADs_OUTEH

-------- EPADs_OUT

CLK
@ rst_n

B_DOUT(7:0] ——— B_DOUTI70L |
F3

Figure 1 » SmartDebug Top Level Blocks

Revision 5

& Microsemi

SmartFusion2 and IGLOO2 SmartDebug Hardware Design Debug Tools

SERDES_IF_0
H APB_S_PRESET_N REFCLK1_OUT B X
: T ﬁ APB_S_PCLK PADs_OUTEI@ ~@HPADs OUT |

[PADs NEI@®-- i @ [EPADs_IN TXDO_P

= < RXDO_P TXDON
< ! RXDO_N TXD1_P
= Z‘ RXD1_P THDI_N
14 o RXD1_N TXDZ_P
o) = RXD2_P T2 N
2 @ RXD2_N TXD3_P
bl RXD3_P TXD3_N
< RXD3_N EPCS_0_OUTEI®
o REFCLK1_P EPCS_0_READY X
REFCLK1_N EPCS_0_RX_DATA[19:0] X
ﬁ EEPCS_0_iN EPCS_0_RX_VAL X
EPCS_0_PWRDN EPCS 0 RX_DLE X
SD_DEMO_0 EPCS_0_TX_VAL EPCS_0_TX_CLK_STABLE [p—
- - EPCS_0_TX_OOB EPCS_0_RAX_RESET_N X
4B FAB_RESET_N POWER_ON_RESET_N X EPCS_D_RX_ERR EPCS_O_TX_RESET N X
DEVRST B DEVRST_N - READY I X EPCS_0_RESH
PEISDIF0_PINS HPMS_READY B X EPCS_0_T_ nATA[m-u]
4B SDIFO_PERST_N SD_DEMO_HPHWS_0_PNSEI@ BEPCS_1_IN
D¢ @ SDIFO_PHY_RESET_N COMM_BLE_INT 3¢ EPCS_1_PWRDN
p¢ @ SDIFO_CORE_RESET_N HPMS_INT_m2F[i5:0] B X EPCS_1_TX_VAL
L@ sDIF0_SPLLLOCK INT_PNSEI@ EPCS_1_TX_DOB
INIT_APB_S_PCLIK EPCS_1_RX_ERR
INIT_APH_S_PRESET_N EPCS_1_RESET_N
INT_DONE X EPCS_1_TX_DATA[19:0]
FIC_0_PNSE1@ BEPCS_2_IN EPCS_ﬂ_RX_CLK 4
FIC_0_CLK EPCS_2_PWRDN EPCS_1_T CLK B X
FIC_0_LocK b EPCS_2_TX_VAL EPCS_1_RX_DATAfio:0] IpX
FAB_CCC_PNSEI@ EPCS_2_TX_DOB EPCS_2_OUTEI®
FAE_CCC_GL3 BPX EPCS_2_RX_ERR EPCS_2 READY [BX
EPCS_2_RESET_N EPCS 2 RX_VAL X
EPCS_2_TX_DATA[19:0] EPCS 2 RX_DLE [X
EEPCS_3_IN EPCS_2_TX_CLK_STAELE [
EPCS_3_PWRDN EPCS 2 AX_RESET N X
EPCS_3_TX_VAL EPCS_Z TX_RESET N X
EPCS_3_TX_DOB EPCS_2 RN CIK X
EPCS_3_RI_ERR EPCS 2 T _CLK B X
EPCS_3_RESET_N EPCS_2 RX_DATA[1S:0] X
EPCS_3_TX_DATA[19:0] EPCS_3_OUTEI®
EFCS 3 READY [BPX
EPCS 3 X VAL X
EPCS 3 RN _DLE X
EPCS_3 TX_CLK STABLE X
EPCS 3 AX _RESET N BX
EPCS 3 I RESET N X
EPCS 3 RN _CLK X
EPCS 3 T CLK BX
EPCS_3_RX_DATA[19:0] BpX
=
<
A
mI
o
? @Fw»
]

Figure 2 - SERDES_Debug Overall Design Blocks (M2GL Design Block)

LEDA
a8 (e
count _chk_0
'S
clic coutA[33: D]I
rst_n rst_n coutB[33: B _DOUT[7-0]

Figure 3 * Fabric_Debug Overall Design Blocks

Programming the Device
This section lists the step-by-step instructions on how to program the IGLOO2 or SmartFusion2
Evaluation Board:

1. Connect the FlashPro4 programmer to the J5 connector on the IGLOO2 or SmartFusion2
Evaluation Kit.

2. Connect the power supply to the J6 connector

6 Revision 5

& Microsemi

SmartFusion2 and IGLOO2 SmartDebug Hardware Design Debug Tools

3. Switch the power supply (SW7) to the ON position. Refer to the IGLOO2 FPGA Evaluation Kit
Board or SmartFusion2 Evaluation Kit Board for more details.

4. Launch Libero SoC v11.4SP1.

5. From the Project menu, select Open Project. Browse to the folder where the design files were

extracted. Refer to the "Associated Project Files" section on page 4. Depending on the selected
Evaluation Kit, select the folder and click Open.

6. In the Design Flow window, select Run PROGRAM Action. This will program the design into the
device, as shown in Figure 4.

Design Flow g X

SmartDebug_top

Tool

» Create Design

Create Constraints

Implement Design

Edit Design Hardware Configuration
Configure Security and Programming Options

v W W W WFT

Program Design
@‘ Configure Bitstrearn

V Generate Bitstream
v BE: Run PROGRAM Action

> b Debug Design

> b Handoff Design for Production

Diesign Flow Design Hierarchy Catalog I Files |

Figure 4 » Programming the Device

Revision 5 7

http://www.microsemi.com/products/fpga-soc/design-resources/dev-kits/smartfusion2/sf2-evaluation-kit
http://www.microsemi.com/products/fpga-soc/design-resources/dev-kits/igloo2/igloo2-evaluation-kit
http://www.microsemi.com/products/fpga-soc/design-resources/dev-kits/igloo2/igloo2-evaluation-kit

& Microsemi

SmartFusion2 and IGLOO2 SmartDebug Hardware Design Debug Tools

Launching SmartDebug

Launch SmartDebug by selecting the SmartDebug Design option from the Design Flow window, as
shown in Figure 5.

Design Flow g X

SmartDebug_top

Tool

Create Design

Create Constraints

Implement Design

Edit Dlesign Hardware Configuration
Configure Security and Programming Options

b

<

Program Design

@‘ Configure Bitstream
@‘ Generate Bitstream
BE: Run PROGRAM Action
4 » Debug Design

{3 Identify Debug Design
&) SmartDebug Design

> F Handoff Elesign for Production

s

Desig... | Design Hier. .. Stimulus Hie... Catalog I Files |

Figure 5 » Launching SmartDebug Design Tools

8 Revision 5

& Microsemi

SmartFusion2 and IGLOO2 SmartDebug Hardware Design Debug Tools

This will open the SmartDebug window, as shown in Figure 6.

| SmartDebug [= ﬂh,l

Devices | M2GLO10T (M2GLO10T) Programmer: | 87570 (usha7570) v]

ID code read from device: FE031CF

[View Device Status | [Debug FPGA Array]

[View Flash Memaory Content] [Debug SERDES |

" 3 —

Figure 6 » SmartDebug Window Debug Options

Debugging the Design

View Device Status

The View Device Status option provides the device status report. It is a summary of your device
information, programmer information, user information, factory serial number, and security information if
any are set. Figure 7 shows a sample of the device status information.

- - e h
W] Device Status Report &lﬂj

Device: M2GLO10T (M2GL010T) Programmer: 87570 (ush&7570) [[save][& Print]

Device Status:
IDCaode (read from the device) (HEX): ofa031cf

e

Figure 7 * Device Status Report Sample

Revision 5 9

& Microsemi

SmartFusion2 and IGLOO2 SmartDebug Hardware Design Debug Tools

View Flash Memory (eNVM) Content

The View Flash Memory Content can be accessed from the SmartDebug window, as previously shown
in Figure 6 on page 9. This option provides the capabilities to retrieve the eNVM content from the device
using the Memories pages of the System Builder under the SERDES_Debug block. To demonstrate how
to read back the content of the eNVM, the data to be programmed into the eNVM was defined first. One
way to do this is by defining an eNVM data storage client using the eNVM configurator. The client can be
stored into any page of the eNVM. Page 64 was used here for demonstration purposes. Figure 8 shows
an excerpt of the data storage client content that was defined in the eNVM.

[=] sram_envm mem

01010011 -
11111111
01010101
11100010
10101010
11110000
01010011
11111111
01010011
11111111
01010101
11100010
10101010
11110000
01010011
1111113111
01010011
111131131
01010101
11100010

SO WS % T

m

I
1 oy LN

=t =t =t = b b b ek
[T % T s T W s O s |

1 &y LN s

“
[T

Dos\Win AMSI INS

b -

Figure 8 » Memory File Content Saved into the eNVM

The content of eNVM is retrieved from the device, displayed, and is equivalent to what is shown in
Figure 8.

10

Revision 5

& Microsemi

SmartFusion2 and IGLOO2 SmartDebug Hardware Design Debug Tools

The eNVM content can be read in real-time from the device as follows:

1. Using the SmartDebug window, select the View Flash Memory Content option. The Flash
Memory window opens, as shown in Figure 9.

2. Since the data storage client is stored into page 64, specify the Start Page and End Page as
page number 64. Page 64 is used here for demonstration purposes.

3. Select the Read from Device option.

Note: When targeting the M2S090 device, SmartDebug does not support Flash Memory content read at
present.
.| Flash Memory)

Retrieve Flash Memory Content from Device:

From black |0 - <no efc>

Select | <Page Range> ¥ 2] Read from Device *

StartPage: 64 (#ddress 0x2000)
EndPage: 64 (| page, 128 bytes)
Latest Content Retrieved from Device: Sun Oct 12 13:42:34 2014

Retrieved Content: at Page 64, 128 bytes starting from address 0x2000

Go to Address (hex):

Page Mumber | Address

View Detailed Status

Content
0 lila2alslalslelzlsalaslalelclolelsr

64

0200053 FF 55 E2 AA FD 53 FF 33 F 55 EZ AA FO 53 FF o

64

02010153 FF 55 EZ AMA FD 3 F 53 F 35 EI AA FO 53 FF

m

02020(53 FF 55 E2 AA FO 53 FF 33 FF 55 EZ AA FO 53 FF

02030(53 FF 55 E2 AA FO 53 FF 33 F 55 EZ AA FO 53 00 |—

02040000 0O 0O OO 0O OO OO OQO OO OO OO QO 0O OO OO OO

ks

Figure 9 » Flash Memory (eNVM) Content Read from the Device

Debug FPGA Array

SmartFusion2 and IGLOO2 devices have built-in probe points that greatly enhance the ability to debug
logic elements within the device through the Live Probes and Active Probes features. The enhanced
debug features implemented into the devices give access to any logic element and enable users to
check the state of inputs and outputs in real-time, without re-layout of the design.

In addition to the ability to specify probe points, SmartDebug also provides the capability to read, modify,
and write into the fabric SRAM block. This step demonstrates the abilities of setting Live Probes, Active
Probes, and reading/writing from/to the fabric SRAM.

Revision 5 1

& Microsemi

SmartFusion2 and IGLOO2 SmartDebug Hardware Design Debug Tools

The Debug FPGA Array can be accessed from the SmartDebug window, as previously shown in Figure 6
on page 9. Selecting the Debug FPGA Array option opens the Debug FPGA Array window, as shown
below in Figure 10.

F A
| #.| Debug FPGA Array I.El_lﬂ

Debug File: || Browse...
FPGA Array Debug Data
Live Probes | Active Probes I Memaory Blocks
Filter Search
Name Type
ChannelA -
Se
ChannelB -

e

Figure 10 * Debug FPAG Array Window

Libero SoC generates the Debug File, <projectName>_debug.txt, during Place and Route and stores the
file into the <project path>\designer folder. The Debug File contains information used by SmartDebug
mainly for mapping the user design names to their respective physical addresses on the device. It also
contains other information used during the debug process.

Before starting the FPGA Array Debug, the Debug File must be specified.

Select the Browse button and then select the SmartDebug_top_debug.txt file: Debug File = <project
root>\designer\SmartDebug_top_debug.txt.

12 Revision 5

& Microsemi

SmartFusion2 and IGLOO2 SmartDebug Hardware Design Debug Tools

Once the file has been selected, the window will populate the Live Probes tab with the available debug
points, as shown in Figure 11.

(57 Debug FPGA
Debug File: D:Microsemiprj/SmartDebug_Tutorial /designer [SmartDebug_top/SmartDebug_top_debug. bt

FPGA Array Debug Data

Live Probes | Active Probes | Memory Blocks |

o

! Name : i Type |' -

Fabric_Debug_0/DPSRAM_0fFabric_Debug_DPSRAM_0_DPSRAM_ROCOLL... SRAM m
Fabric_Debug_0/DPSRAM_0/Fabric_Debug_DPSRAM_0_DFSRAM_ROCO/T... SRAM
*Fabric_Debug_0/DPSRAM_0/Fabric_Debug_DPSRAM_0_DPSRAM_ROCO/T... SRAM
iFabric_Debug_0/DPSRAM_0/Fabric_Debug_DPSRAM_0_DPSRAM_ROCO/L... SRAM
*Fabric_Debug_0/DPSRAM_0/Fabric_Debug_DPSRAM_0_DPSRAM_ROCOT... SRAM il
< | i | 3

Figure 11 « Specify Debug File Location

In the next few steps, this tutorial demonstrates how to use the Live Probes, Active Probes, and the
Memory Block debugging features.

Revision 5 13

& Microsemi

SmartFusion2 and IGLOO2 SmartDebug Hardware Design Debug Tools

1. Specifying Live Probe Points

With Live Probe, two dedicated probes can be configured to observe a probe point, which is any output
of a register. The probe data can then be sent to the two dedicated probe pins (PROBE_A and
PROBE_B), then to the oscilloscope or even redirected back to the FPGA fabric. The probe points
location can be changed without having to recompile or reprogram the design. The probes can capture
data at a speed of up to 100MHz.

The PROBE_A and PROBE_B pins are dedicated dual-purpose pins. These pins are regular I/Os, if not
used by the Live Probes channels. The pins can be reserved for probing by selecting the option Reserve
Pins for Probes in the Project Settings window, as shown in Figure 12.

(?‘ Project Settings L

Device
| Device [0 Settings
Preferred HDL Type
Design Flow
4 Simulation Options
DO File

| Reserve Pins for Probes

Default If0 Technology: i

Figure 12 » Reserving Probe Pin for Probes

Furthermore, you can identify the probe pin on your package by looking at the pin description document
for that particular package. Another option is to check the Function column in the Package Viewer of the
I/0 Editor in the Libero SoC software, as shown in Figure 13.

M2GLO10T or M2S090T has two dedicated 484 FBGA pin numbers (Y10 and W10), which can be used
for probing, as shown in Figure 13.

Ports Package Pins I Package Viewer

381
382
383
384

385
<

Pin Murnber |+ Port Mame |+ Macro Cell |« Function 4 Locked =
AALD Unassigned MSIO122PB4 O
AB10 Unassigned MSI0122MB4]
W10 - MSIO121PB4/PROBE_A]

I Y10 - MSIO121NB4/PROBE_B I [l
W9 Unassigned MSIO120PB4 | -
1m P

Figure 13 « Identifying Probe Pins using Package Viewer Inside 1/O Editor

Note: The probe pins, PROBE_A/PROBE_B, are not exposed and not accessible on the IGLOO2
Evaluation Kit Rev C Board. These pins are accessible on the IGLOO2 Evaluation Kit Board Rev D
and SmartFusion2 M2S090T Evaluation Kit Rev Don J29 jumpers.

The Live Probes tab (Figure 14) shows the probe point name and pin type (SRAM, Logic, or I/0). Once a
point is selected it can be assigned to either ChannelA (PROBE_A) or ChannelB (PROBE_B) as follows:

1. Select the point that you want to probe
2. Select the channel on which you want to probe the selected point
3. Select Set

14

Revision 5

& Microsemi

SmartFusion2 and IGLOO2 SmartDebug Hardware Design Debug Tools

Figure 14 shows an example of setting two probe points: coutA[23]:Q and coutA[24]:Q to be probed on
ChannelA and ChannelB respectively.

A message will be printed in the Log window of the Libero SoC indicating which signals were assigned to
be probed—as follows:

Live probe has been set:

PROBE_A:

Channel A: Fabric_Debug_0/count_0/coutA[23]:Fabric_Debug_0/count_0/coutA[23]:Q

PROBE_B:

Channel B: LED1_c:Fabric_Debug_0/count_0/coutA[24]:Q.

After the channels have been set, SmartDebug configures the ChannelA and ChannelB I/Os to monitor
the desired probe points. On the IGLOO2 Evaluation Kit Rev D Board, the PROBE_A and PROBE_B
pins are exposed on the J29 connector. You can connect an oscilloscope to these probe points and
monitor the signals that are assigned to be probed. The maximum number of simultaneous probes is two
internal signals. There is also a Filter box to filter through the Net Names. As you begin typing in the Filter
box, the Net Name table only shows results for the queried names.

Note: The Active Probes WRITE will overwrite the settings of the Live Probe channels (if any).

i Debug FPGA Array o [
Debug File: F:Microsemi_pri/m2gl_SmartDebug_Tutorial /designer /SmartDebug_top/SmartDebug_top_debug. txt Browse...

FPGA Array Debug Data

Live Probes | Active Probes | Memory Blocks |

e e

Name Type

LED1_c:Fabric_Debug_0/count_0/coutA[24]:Q Logic

Channela == Jfcount_0/coutA[23]:Fabric_Debug_0/count_0fcouta[23]:Q
ChannelB -3 LED1 c:Fabric_Debug_0fcount_0fcouta[24]:Q

Seit

Figure 14 « Live Probes Channels Assignments

2. Active Probes

Active Probe allows dynamic asynchronous read and write to a flip-flop or probe point. This will enable a
user to quickly observe the output of the logic internally or to quickly experiment on how the logic will be
affected by writing to a probe point. The following steps will demonstrate how to select a specific set of
probe pins reading the current value and then writing different values.

Revision 5 15

& Microsemi

SmartFusion2 and IGLOO2 SmartDebug Hardware Design Debug Tools

Selecting Active Probes
1. Select the Active Probes tab from the Debug FPGA Array window.

2. Once inside the Active Probes tab, click on the Select Active Probes button to define the internal
points to monitor, as shown in Figure 15.

i

7| Debug FPGA Array o B | [E-]
Debug File: nartDebug_Tutorial /designer fSmartDebug_top/SmartDebug_top_debug. bt

FPGA Array Debug Data

Active Probes Memory Blocks

Active Probe Data

Mame Type ;.'5’ Value

Select Active Probes

Read Active Probes

Write Active Probes

Figure 15 « Selecting Active Probes From the Design

3. Select Active Probes opens a window that shows all the available probe points in the design. For
this tutorial we are going to monitor the following points:

« Three bits of the counter output coutA.

+ The monitoring signal “error”, which is also connected to the LED (H5) on the board. If the LED is
ON, it indicates that it does not have any error in the count.

* Aninternal register “sync”

To find these points in the list of available probe points use the Filter control, as shown in Figure 16

on page 17.

Note: Since Active Probe only deals with individual signals, the coutA bus segment will be broken up into

three separate probe lines.

16 Revision 5

& Microsemi

SmartFusion2 and IGLOO2 SmartDebug Hardware Design Debug Tools

4. Select the desired points and click on Add to move to the Selected Probe Points window and
click OK, as shown in Figure 16.

5| Select Active Probe Points (=
Available Probe Points Selected Probe Points
Filter cout Filter
MName e Mame Ty
Fabnc_Uebug_Ujcouts_net_uls]:Fabric_Uebug_U/count_Ujcouts|5]:0)
Add All - Fabric_Debug_0count_chk_0fsync:Fabric_Debug_0/fcount_chk_0/sync:Q L..
Fabric_Debug_0/coutB_net_0[6]:Fabric_Debug_0fcount_0/coutB[6]:Q
LED1_c:Fabric_Debug_0fcount_0fcoutA[24]:Q L.
Fabric_Debug_0/coutB_net_0[7]:Fabric_Debug_0/fcount_0/coutB[7]:Q
LED2_c:Fabric_Debug_0/count_0/coutA[25]:Q L.
LED 1_c:Fabric_Debug_0 fcount)0/coutA[24]:Q
<-Remave Al LED3_c:Fabric_Debug_0fcount_0/fcoutA[258]:Q L.
LED2_c:Fabric_Debug_0 fcount) 0/coutA[25]:Q
error_c:Fabric_Debug_0fcount_chk_0/error:Q L.
LED 3_c:Fabric_Debug_0/count)0jcoutA[25]:Q i
4 L [2 B4 L 3
OK] [Cancel]

Figure 16 * Selecting Desired Points to Read

Reading Active Probes

Once all of the probes points have been specified, select Read Active Probes to gather the current
values of the internal signals. Figure 17 shows the results similar to a first read of the design.

] Debug FPGA Array [ESHEE >

Debug File: P1/m2s_m2gl_smartdebug_tu_dffm2s_SmartDebug_Tutorial/m2s_SmartDebug_dfdesigner/SmartDebug_top/SmartDebug_top_debug. txt
FPGA Array Debug Data

Active Probes Memoary Blocks

Select Active Probes LED1_c:Fabric_Debug_0/count_0/couta[24]:Q Logic High o |
Read Active Probes LED2_c:Fabric_Debug_0/fcount_0/coutA[25]:Q Logic Low O 7

Active Probe Data

Name Type Fig Value

Fabric_Debug_0/count_chk_0/sync:Fabric_Debug_0jcount_chk_0/sync:Q Logic Low L

Write Active Probes
LED3_c:Fabric_Debug_0/count_0/couta[26]:Q Logic High O T

error_c:Fabric_Debug_0fcount_chk_0/error:Q Logic Low L |

Figure 17 * Active Probe Readings

Note: To toggle the states between High and Low, press O , and to reset the value, press 1 .

The coutA bus will be constantly counting therefore, the value may be different than what is seen on the
target platform. The value of sync should be High indicating that the checker on the read side of the
DPSRAM has latched onto the count pattern.

Also, the error signal should be Low indicating that there have been no errors in the counting pattern.

When the design is held in reset the sync signal goes Low and waits for a specific pattern from the
DPSRAM to sync up the counters. To watch this happen, hold SW2(rst_n) down and select Read Active

Revision 5 17

& Microsemi

SmartFusion2 and IGLOO2 SmartDebug Hardware Design Debug Tools

Probes. The sync signal will be Low as the design is now held in reset. Release SW2 and read again,
the sync is now High.

3. Fabric SRAM Memory Debug

To view the contents of the Large SRAM in this design select the Memory Blocks tab, as shown in

Figure 18.
X Debug FRGA Array EII =] I@
Debug File: D:Microsemiprj/SmartDebug_Tutorial (designer SmartDebug_top/SmartDebug_top_debug. txt
FPGA Array Debug Data

| Live Probes | Active Probes | Memory Blocks |

[FEbric_DEbL.Ig_DfDPSR.AM_UIFEbrir__DEbug_DPSRAM_O_DPSRAM_RDCDﬂNST_RAM K18 IP =] Read Block Wirite Blodk
Memory Block Data

Figure 18 » Memory Blocks Tab

This design contains a single Large SRAM, named DPSRAM _0, and it is the only one available in the
drop-down list. Select this block and select Read Block.

18 Revision 5

& Microsemi

SmartFusion2 and IGLOO2 SmartDebug Hardware Design Debug Tools

The contents of the DPSRAM_O will be displayed, as shown in Figure 19. See the counting pattern that is
loaded into the RAM.

5| Debug FPGA Array EI = @
Debug File: D:/Microsemiprj/SmartDebug_Tutorial /designer /SmartDebug_top/SmartDebug_top_debug. bt

FPGA Array Debug Data

| Live Probes I Active Probes | Memory Blocks

[Fabric_Debug_UfDPSRAM_UfFabric_Debug_DPSRAM_U_DPSR.AM_F‘.UCUHNST_F‘.AM K18 IP - Read Block Wilrite Block
Memary Block Data

0000 000 001 002 QO3 004 005 006 OO7 003 009 O0A OOB OOC OOD OOE OOF

0010 010 011 012 013 014 015 016 017 018 019 OlA O1B O1C 01D OIE O

0020 020 021 022 023 024 025 026 027 028 029 02A 02B 02C 020 O2ZE OXF

0030 030 031 032 033 034 035 036 037 038 039 03A 038 03C 030 03E O03F

0040 040 041 042 043 049 045 046 047 048 049 044 048 04C 04D 04E O4F

0050 050 051 052 053 054 055 056 057 058 059 05A 058 05C 050 OSE O5F

0060 080 061 062 063 064 065 066 067 068 069 06A 0GB 06C 06D OGE OG&F

0070 070 071 072 073 074 075 076 077 078 079 07A O7B O7C 07D OFE OFF

0080 O8N NR1 NR? 0R3 NA4 NRS N8R NR7 NRR NA9 NRA NRR NRC N8N ORF 08F " |

Figure 19 « DPSRAM_0 Contents

Forcing a Design Modification

The design reads the contents of the DPSRAM and compares it to a synchronized counter in the checker
which is looking for errors. If the contents of the DPSRAM is modified it will break the count pattern and
cause an error in the checker.

Modify the contents of the DPSRAM and force an error as follows:
1. Read the memory content, as shown in Figure 19
2. In the Active Probe tab, read the probes
3. Power cycle the board (turn off and on the board power)

Note: Since SmartDebug is accessing the SRAM at the same time the counter is writing to the SRAM
(due to a known issue) the error LED will go off. To work around this current issue, turn off and on
the board power before proceeding. There is no need to restart SmartDebug.

4. Once the board comes back up, read the active probe again. There will be an error, which can be
ignored.

5. Read the active probes the second time. On the second read there will be no errors and the LED
should come on indicating no errors.

6. Go to the Memory Blocks tab, select an entry and double-click. Each entry is 9-bits wide.

Revision 5 19

& Microsemi

SmartFusion2 and IGLOO2 SmartDebug Hardware Design Debug Tools

7. Modify the value from the current value to break the count pattern, as shown in Figure 20.
8. Select Write Block to write the modified value to the SRAM.
9. The error LED light should go off, indicating an error in the counting pattern.

| Debug FPGA Array

Debug File: D:Microsemipri/SmartDebug_Tutorial /designer /SmartDebug_top/SmartDebug_top_debug. txt

FPGA Array Debug Data

|Li\reProbes | Active Probes | Memary Blocks |

[Fabric_Debug_O.fDPSRAM_OIFabric_Debug_DPSRAM_O_DPSRAM_ROCO.’INST_RAM:LKIB_IP '] [Read Block Write Block] ‘
Memory Block Data

0000 (000 001 002 003 004 1BE 006 OO7 003 009 OOA OOB OOC MDDE ooF = ’

0010 010 011 012 013 014 015 016 017 013 019 01A O1B 01C 01D O1E OIF
0020 020 021 022 023 024 025 026 027 023 029 024 026 02C 02D 02ZE OZF
0030 030 031 032 033 034 035 036 037 038 039 03A 038 03C 03D 03E 03F
0040 040 041 042 043 044 045 046 047 043 049 04A 048 04C 04D 04E 04F
0050 050 051 052 053 054 055 056 057 058 059 O5A 0SB OSC 05D OSE OSF

0060 080 061 062 063 064 065 066 067 063 069 O06A 0SB 06C 06D OGE O6F

Figure 20 » Modifying DPSRAM Contents

In the Active Probes tab, perform a read and you can see that the error signal is now High, refer to
Figure 21.

Active Probes Memory Blocks |

Active Probe Data

Namie Type > Value

Fabric_Debug_0/count_chk_0/sync:Fabric_... Logic High L

ot ActiveProhes LED1_c:Fabric_Debug_0/fcount_0fcoutA[24... Logic Low L&
Read Active Probes | LED2_c:Fabric_Debug_0/count_0fcoutA[25. . Logic Low a7

Write Active Probes
LED3_c:Fabric_Debug_0 count_0fcoutA[26... Logic Low L

error_c:Fabric_Debug_0/count_chk_0ferro ... Logic High L

Figure 21 + High Error Signal after Forcing an Error

20 Revision 5

& Microsemi

SmartFusion2 and IGLOO2 SmartDebug Hardware Design Debug Tools

SERDES Debug
This SmartDebug SERDES tutorial will assist FPGA and the board designers to perform SERDES real-
time signal integrity testing and tuning in a system including:

* Real-time access to SERDESIF Block control and status registers

* Provide testing functions with pseudo-random binary sequence (PRBS) or constant pattern
generators and checkers

* Run link tests with various loop back options

* Provide overview for tuning many combinations of physical medium attachment (PMA) analog
settings to find the optimal set for a particular SERDES channel

1. Select Debug SERDES from the SmartDebug Graphical User Interface, as depicted in Figure 22.

7 SmartDebug = -5

Device: (M2GLO10T (M2GLO10T) Programmer: | 87570 (usb87570) vl

ID code read from device: FBO31CF

[View Device Status | l Debug FPGA Array |

[View Flash Memary Caontent] [Debug SERDES]

b

Figure 22 - Debug SERDES Operation Selection

2. The Configuration tab will auto-identify and populate which SERDESIF is used in the design and
the lanes and how they are programmed and powered-up. The status of each lane is shown as
well as the programmed lane mode. This example demonstrates the use of SERDESIF_0 block,
as well as the lock status of the TXPLL and RXCDR. This window can be updated through the
Refresh Report button, refer to Figure 23.

Revision 5 21

& Microsemi

SmartFusion2 and IGLOO2 SmartDebug Hardware Design Debug Tools

7| Debug SERDES

Debug SERDES

4 fests
PRBS Test
Loopback Test

SERDES Blot:kl SERDESIF_0 h |

Configuration Report:

-
Serdes Block SERDESIF_O : F
Lane 0 :
Lane mode EPCS (2.5 GHz)
PMA Ready : True
TxPLL status : Locked =
RxCOR status : Locked
Lane 1:
Lane mode : EPCS (2.5 GHz)
PMA Ready : True
TxPLL status : Locked m
RxCOR status : Locked
Lane 2:
Lane mode : EPCS (2.5 GHz)
FMA Ready : True
TxPLL status : Locked
R¥COR stats : L ocked i

SERDES Register Read or Write:

Script:

Refresh Report

Close

Figure 23 » SERDES Configuration Tab

22

Revision 5

& Microsemi

SmartFusion2 and IGLOO2 SmartDebug Hardware Design Debug Tools

3. The PRBS Test tab provides several capabilities for each Lane of the SERDES Block. The
information is provided per-channel, based on the SERDES Lane selected within the GUI. For
example, select Lane 0, select the Near-end Serial Loopback test type, and select PRBS7
Pattern. This test will generate and check PRBS7 data without going off-chip, as shown in

Figure 24.

7| Debug SERDES

Debug SERDES
Configuration
4 Tests
Locphback Test

SERDES Block ISERDESIF_U -

SERDES Lanes:) Lane 1 @) Lane 2 @) Lane 3

Lane O status: TxPLL RxCDR.

Test Type:

E- Mear End Serial Loopback {On-Die) I () Serial Data (Off-Die)

Pattern:
) Al Zeros (0000....00)
) PRBS11) Al Ones { 1111....11)
) PRBS 23 () Alternated (101010..10)
") PRBS 31 (7 Dual Alternated (1100 ... 1100)
(7 User Defined

Error Count:

0

Start

Stop

Close

Figure 24 « SERDES Test Tab

Revision 5

23

& Microsemi

SmartFusion2 and IGLOO2 SmartDebug Hardware Design Debug Tools

As shown in Figure 25, the Lane 0 status is indicated after Starting the test. The green LEDs indicate the
lock status of the TXPLL and RXCDR for the selected Lane.

In this example setup, the datastream is expected to see zero errors as the datapath does not go off-chip
while using the Near-end Serial Loopback. The Error Count will increment up to 255. The Reset button
will clear the count and the counter will continue to count while the test continues to run.

Error Count:

) &=

7| Debug SERDES -7 |3
SERDES Block | SERDESIF_0
Debug SERDES SERDES Lanes: (@ Lane 0 Lane 1 Lane 2 Lane 3
Configuration I Lane O status: TxPLL @ RxCDR @ I
4 Tests
PRES Test Test Type:
Loopback Test _
P (@) Mear End Serial Loopbadk (On-Die) Serial Data (Qff-Die)
Pattern:
(@ PREST All Zeros (0000....00
Start
PRBS11 All Ones (1111....11)
PRBS 23 Alternated (101010,.10) ke
PRES 31 Dual Alternated (1100 ,.. 1100)
User Defined

Close

Figure 25 « SERDES Link Status

Note: Lane 0 is the PCIe® lane. This Lane is

connected to the PCle edge fingers of the Evaluation Board.

24

Revision 5

& Microsemi

SmartFusion2 and IGLOO2 SmartDebug Hardware Design Debug Tools

4. Stop the test and change the Test Type to Serial Data (Off-Die). Restart and observe the Lane 0
error counter. This is due to the fact that the data is no longer looping between Tx and Rx. Lane 0
is not looped together on the PCB. In this case, the error count will increment up to the maximum
255, as shown in Figure 26.

7| Debug SERDES

Debug SERDES
Configuration
4 Tests
PRBS Test
Loopback Test

SERDES Block | SERDESIF_0

SERDES Lanes: (@) Lane 0

Lane 0 status: TxPLL @

Test Type:

Mear End Serial Loopback

Pattern:
3 PREST
PRBES11
PRBS 23
PRBS 31
User Defined

Error Count:

Lane 1

RxCOR. @

Lane 2

{On-Die) [Serial Data :Of‘f-Dieﬂ

All Zeros (000Q....
All Omes (1111....11

Alternated (101010..10)

Dual Altermated (1100 ... 1100}

Close

Figure 26 Sending Serial Tx Data Off-Die

Revision 5

25

& Microsemi

SmartFusion2 and IGLOO2 SmartDebug Hardware Design Debug Tools

5. The Evaluation Kit board connects Lane 1 on the PCB to loop back Tx and Rx. This loopback
demonstrates a complete path with data being transmitted and received intact. The example
demonstrates this, select Lane 1, select the Serial Data test type, and select PRBS7 Pattern.
This test will generate and check PRBS7 data going off-chip and folded back on the PCB to the

receiver, refer to Figure 27.

7| Debug SERDES

Debug SERDES
Configuration
4 Tests
PRBS Test
Locphback Test

SERDES Block |SERDESIF_0

SERDES Lanes: Lane 0 Lane 2 Lane 3

Lane 1status: TwPLL @ RxCDR. @

Test Type:

Mear End Serial Loopback {On-Die) [Serial Data :Off-Die}:I

Pattern:
3) PREST All Zeros { 0000....00)
PRBS11 All Omes 1111....11)
FRES 23 Alternated (101010..10)
PRBS 31 Dual Alternated ([1100... 2100)
User Defined

Error Count:

) =

Start

Close

Figure 27 + Lane 1 Transmitting Data Through On-Board Loopback

26

Revision 5

& Microsemi

SmartFusion2 and IGLOO2 SmartDebug Hardware Design Debug Tools

6. The Tx and Rx channels of Lane 2 can be interconnected in a loop-back configuration using coax
cables. In this example, as shown in Figure 28 and Figure 29, after connecting a pair of high-
quality 50-Ohm SMA cables to the SMA connections on the Evaluation Kit board, the SERDES
debug can be used to send data off-board and check for errors. This requires selection of Lane 2
and Serial Data (Off-Die). A PRBS7 pattern is chosen in the example test.

7| Debug SERDES

Debug SERDES
Configuration
4 Tests
PRBS Test
Locphback Test

SERDES Block |SERDESIF_0

SERDES Lanes: Lane 0

Lane 2status: TwPLL @

Test Type:

Mear End Serial Loopbadk (

Pattern:
PRES11
PRBS 23
PRBS 31
User Defined

Error Count:

) G=0

RxCOR @

On-Dig) I: Serial Data :off-Die;-J

All Zeros { 0000....00)
All Omes 1111....11)

Alternated (101010..10)

Dual Alternated

[=

Start

Close

Figure 28 « External Cable Loopback

Revision 5

27

& Microsemi

SmartFusion2 and IGLOO2 SmartDebug Hardware Design Debug Tools

1GLO02/

1GLO02/

Figure 29 - Evaluation Kit Board with External Coax Loopback Setup

28

Revision 5

& Microsemi

SmartFusion2 and IGLOO2 SmartDebug Hardware Design Debug Tools

7. The Lane 2 SMA test connections can be used for interconnecting with high-speed coax cables to
test equipment or other test fixtures like test backplanes. In the example shown in Figure 30,
when the Lane 2 test is started without any means to connect the Tx and Rx together, the Error
Count will increment; as the link is broken between the pattern generator and the checker. This
setup will send a data pattern of the board for analysis on the test equipment, such as a high
speed oscilloscope does

Note: SMA Male-to-SMA Male Precision Cables, such as Pasternack Industries part number PE39429-
12 (or equivalent), are recommended.

| Debug SERDES 7 =

SERDES Block | SERDESIF_0

Debug SERDES SERDES Lanes: Lane 0 Lane 1 Lane 3
Configuration Lane 2 status: TxPLL @ RxCDR. @
4 Tests
PRES Test Test Type:
Loopback Test . B
P Mear End Serial Loopbadk {On-Die) [Serial Data 'Z'.'-Die;]
Pattern:
@ PRBST All Zeros (0000,
Start
PRES11 All Ones (1111....11}
FRES 23 Alternated { 101010..10)
PREBS 31 Dual Alternated (11001100)
User Defined

Error Count:

Figure 30 * Lane 2 Transmitting Data Off-Board

Revision 5 29

http://www.pasternack.com/sma-male-sma-male-pe-sr405flj-cable-assembly-pe39429-12-p.aspx
http://www.pasternack.com/sma-male-sma-male-pe-sr405flj-cable-assembly-pe39429-12-p.aspx

& Microsemi

SmartFusion2 and IGLOO2 SmartDebug Hardware Design Debug Tools

Figure 31 » Connecting Lane 2 to the Test Equipment

30 Revision 5

& Microsemi

SmartFusion2 and IGLOO2 SmartDebug Hardware Design Debug Tools

Several test patterns are available from the test pattern generator. They include several PRBS and
constant patterns. Not all patterns are suited for all applications. For instance, all ones or all zeros will not
be useful with AC-coupled channels; as the DC-offset is removed producing a signal that is at-ground. If
using the generator to send data to the test equipment, some test equipment cannot tolerate the long
run-lengths of some of the PRBS patterns. PRBS7 is a very typical pattern for testing signal integrity in
communication applications.

Bit Error Rate (BER) is simply counting the number of errors over time to provide a level of confidence of

a high speed link. For a 2.5 Gbps test, it takes about three minutes with zero errors to achieve a BER of
10e-12. The SmartDebug SERDES GUI provides an error counter allowing the user to do any BER test.

An online calculator can determine how long to run a pattern test based on the target BER.

Far-End Loop Back Support

Far-end loopback is supported from the Loopback Test tab. From this tab, users can receive data from a
far-end source and fold the received data (Rx) back out of the transmitter (Tx).

In the example below, Figure 32 on page 32 and Figure 33 on page 32, by using the Evaluation Board
traffic is received from a far-end transmit source, such as another device or test equipment. It is received
into Lane 2 and looped back out the transmitter.

This is accomplished by selecting SERDES Lane 2, selecting the PCS Far End PMS Rx to Tx Test Type,
and Start to complete the setup.

Traffic entering the SMA connectors on Lane 2 of the Evaluation board will be observed coming off the
board on the Tx SMA connectors.

Note: In this test, the IGLOO2 Evaluation board must use the same SERDES reference clock as the far-
end. The data path through the SERDEIF goes through the CDR and reclocks the data to the local
REFCLK. This requires Oppm difference between the far-end clock source and the Eval-Kit clock
source. For this, use the SMA inputs [designators J17 & J21] of the board rather than the local on-
board oscillator, as the input of the SERDES REFCLK.

Revision 5 31

http://www.jittertime.com/resources/bercalc.shtml

& Microsemi

SmartFusion2 and IGLOO2 SmartDebug Hardware Design Debug Tools

[=

Start

| Debug SERDES
SERDES Block | SERDESIF_0 -
: @
Debug SERDES SERDES Lanes Lane 0 Lane 1 @) Lane 2 Lane 3
Configuration Lane 2status: TxPLL @ RxCDR @
4 Tests
PEES Jest Test Type:
Loopback Test
p PCle Far End PCS Rx to Tx Loopback (PCIe only)
Parallel loopback (PCle only)
I @ PCS Far End PMA Rx to Tx Loopback I @
Help

Figure 32 » PCS Far-End Rx to Tx Loopback

Figure 33 * Far-End Loopback on the Evaluation Board

32

Revision 5

& Microsemi

SmartFusion2 and IGLOO2 SmartDebug Hardware Design Debug Tools

Tcl Support

The SERDES Debug tool set permits execution of Tcl scripts. This scripting capability allows customized
writes and reads of the entire SERDES register base. Tcl can be used to update or check status of the
SERDES system, PCle system, and SERDES lane registers.

Tcl command syntax is:

read register -addr <RegisterAddress >
write register -addr <RegisterAddress> -value <RegisterValue>

where RegisterAddress is 8 hex character (with optional Ox prefix) example: 0x4002200C

RegisterValue is 1-8 hex character (with optional Ox prefix) example: 0xl, Ox1F

Example:

read register -addr 0x4002200C
write register -addr 0x4002E008 -value 0x3

Address for the SERDES blocks are as follows:

SERDESIF 0 0x40028000 - O0x4002A3FF
SERDESIF 1 0x4002C000 - 0x4002E3FF
SERDESIF 2 0x40030000 - 0x400323FF
SERDESIF 3 0x40034000 - 0x400363FF

Within each SERDES block, the memory map is as follows:

Name — Offset from the base address (example, for SERDESIF_0 the base address will be
0x40028000).

PCle Core register map 0x0000 — OxOFFF
Lane O registers 0x1000 — Ox13FF
Lane 1 registers 0x1400 — Ox17FF
Lane 2 registers 0x1800 — Ox1BFF
Lane 3 registers 0x1C00 — Ox1FFF
SERDESIF system register map 0x2000 — 0x23FF

Example Tcl applications:

1. To access the Tx Impedance Ratio register for lane 2 in SERDESIF_1, the address will be
0x4002C000 (SERDESIF_1 base) + 0x1800 (lane 2 offset) + 0x0C (register offset) =
0x4002D80C

2. To access the PRBS Control register for lane 0 in SERDESIF_0, the address will be 0x40028000
(SERDESIF_0 base) + 0x1000 (lane 0 offset) + 0x190 (register offset) = 0x40029190
Reference the IGLOO2 High-Speed Serial Users Guide or SmartFusion2 High Speed Serial User Guide
for register map details.

Attempt only to read the lanes which are programmed by the design. Also, read the PCle registers only if
any of the lanes have PCle protocol.

Example:

The Tcl script below is used to alter the TX_PST (Transmit Post Emphasis) setting of Lane 0 of
SERDESIF_0.

Serdes block 0

Set the config phy mode 1 value by separately running the following Tcl command "" in
separate script and write the value without '0x' prefix

set config phy mode 1 80f
set config phy mode 1

scan S$config phy mode 1 %x phyModelVal

Revision 5 33

http://www.microsemi.com/document-portal/doc_download/132011-igloo2-fpga-high-speed-serial-interfaces-user-s-guide
http://www.microsemi.com/document-portal/doc_download/130922-smartfusion2-soc-fpga-high-speed-serial-interfaces-user

& Microsemi

SmartFusion2 and IGLOO2 SmartDebug Hardware Design Debug Tools

set CONFIG REG LANE SEL for this lane

set laneOPhyMode [expr { ($phyModelvVal & 255) | 256 }]
scan [format %x $laneOPhyMode] %s laneOPhyMode

write register -addr 0x4002a028 -val $laneOPhyMode
puts "Serdes laneO registers"

write register -addr 0x40029028 -val Oxla
puts "TX PST RATIO"
read register -addr 0x40029028

#Reset the config phy mode 1 value to original value
write register -addr 0x4002a028 -val $config phy mode 1

The value of the CONFIG_PHY_MODE_1 register must be known in the example shown above. This
register contains the value of the CONFIG_REG_LANE_SEL which defines which lanes are accessed in
the design. In this example, simply reading the CONFIG_PHY_MODE_1 register and passing its value
and the associated offset will target the correct lane.

Note: Some SERDES PMA register settings will only be updated after assertion of a PHY_RESET or
writing to the UPDATE_SETTINGS register.

Tcl commands and syntax are found in the SmartFusion2 FPGAs and IGLOO2 FPGAs Tcl for SoC — Tcl
Documentation.

From the Configuration Tab GUI, there is a dialogue box to import an executable Tcl script. The script will
contain commands to write/read registers in using a flattened top for most address mapping. Simply
browse to the Tcl script file and Execute, refer to Figure 34.

7 Debug SERDES [~ 5| =]

SERDES Block |SERDESIF 0 -

Debug SERDES Configuration Report:
Configuration * | | Refresh Report
4 Tests Serdes Block SERDESIF_0
Lane 0
PRBS Test Lane mode : EPCS (2.5 GHz)
Loopback Test PMA Ready : True
THPLL status : Locked =
RxCOR status : Locked
Lane 1:
Lane mode : EPCS (2.5 GHz)
PMA Ready : True
THPLL status Locked
RxCDR status : Locked
Lane 2:
Lane mode : EPCS (2.5 GHz)
PMA Ready : True
THPLL status Locked il
ExCOR statisg @ Locked

’ ES Register Read or Write:

Script: C:Workfserdes0_config. td [:] Execils

Figure 34 « Tcl Script Execution User Interface

34

Revision 5

& Microsemi

SmartFusion2 and IGLOO2 SmartDebug Hardware Design Debug Tools

Upon execution of the Tcl SERDES access, log of the access is displayed in the Libero SoC Console Log
pane, as shown in Figure 35.

S
nﬂl!i!!!) Errors i, Wamings i Info

The 'write regiscer® command succesded.
Serdea lanel regiscers

Register Address: Oxd0025%000, Walue: O0x80
The "read regiscer’ command succesded.
CRO

Register Address: Owd002%004, Walus: 0x20
The "read regiscer’ command succssded,
ERRCWI_DEC

Register Address: Oxd0025008, Value: Oxf£R
The ':ead_:equ:er' command succesded.
FXIDLE_ MARX_ERRCHI_THR

Register Address: Owd002500c, Walue: O0xB0
The “"read regiscer’ command sucoseded.
IMFED BATIO

Register Addressr Omd0023010; Value: 0x0
The "read pegiseer’ command succssded.
FLL F_FCLK BRTIO

Register Address: Owd0025014, Value: Ox13
= The "read regiscer’ command succesdsd.
FLL M H

Figure 35 « SERDES Access Log

Refer to the Appendix for more Tcl examples.

Executing SERDES Debug from SmartDebug Tcl
PRBS:

prbs_test [-deviceName <device name>] -start -serdes <num> -lane <num> [-near] -pattern
<PatternType> [-value <PatternValue>]

prbs_test [-deviceName <device name>] -stop -serdes <num> -lane <num>
prbs_test [-deviceName <device name>] -reset_counter -serdes <num> -lane <num>

prbs _test [-deviceName <device name>] -read counter -serdes <num> -lane <num>

User-level command: Used in PRBS test to start, stop, reset the error counter, and read the error counter
value.

-deviceName <device_name>: Parameter is optional, if only one device is available in the current
configuration or set for debug (see the SmartDebug User Guide for details).

-start: To start PRBS test.

-stop: To stop PRBS test.

-reset_counter: To reset the PRBS error count value to 0.

-read_counter: To read and print the error count value.

-serdes <num>: SERDES block number. Should be between 0 and 4 and varies between dies.
-lane <num>: SERDES lane number. Should be between 0 and 4.

-near: Corresponds to near-end (on-die) option for PRBS test. Not specifying implies off-die.

Revision 5 35

& Microsemi

SmartFusion2 and IGLOO2 SmartDebug Hardware Design Debug Tools

-pattern <PatternType>: The pattern sequence to use for PRBS test. It can be one of the following:
1. prbs7 or prbs11 or prbs23 or prbs31

2. custom

3. user

-value <PatternValue>: Specifies the pattern type value for cases other than PRBS* sequences. It
can be one of the following:

1. If custom is selected above, then it should be one of all_zeros, all_ones, alternated, or
dual_alternated.

2. If user is selected above, then it should be 20 hexadecimal characters.
Example:

prbs test -start -serdes 1 -lane 0 -near -pattern prbsll
prbs_test -start -serdes 2 -lane 2 -pattern custom -value all zeros
prbs test -start -serdes 0 -lane 1 -near -pattern user -value 0x0123456789ABCDEF0123

Loopback:
loopback test [-deviceName <device name>] -start -serdes <num> -lane <num> -type

<LoopbackType>

loopback test [-deviceName <device name>] -stop -serdes <num> -lane <num>

User level command: Used to start and stop the loopback tests.
— deviceName <device_name>: Parameter is optional, if only one device is available in the
current configuration or set for debug (see the SmartDebug User Guide for details).
— start: To start loopback test.
— stop: To stop loopback test
— serdes <num>: SERDES block number. Should be between 0 and 4 and varies between dies.
— lane <num>: SERDES lane number. Should be between 0 and 4.
— type <LoopbackType>: Specifies the loopback test type. Should be one of the following:
1. plesio (PCS Far End PMA Rx to Tx Loopback)
2. parallel
3. meso (PCS Far End PMA Rx to Tx Loopback)

Example:

loopback test —-start —-serdes 1 -lane 1 -type meso
loopback test -start -serdes 0 -lane 0 -type plesio
loopback test -start -serdes 1 -lane 2 -type parallel
loopback test -stop -serdes 1 -lane 2

Tcl scripting for SERDES SmartDebug can be used in batch mode without launching SmartDebug from
the GUI. Below is an example batch script:

open project -project {D:/my serdes design/my serdes.pro}

set debug device -name {M2S/M2GLOS0(T|S|TS)}

read id code

set programming file -name {M2S/M2GL050 (T|S|TS)} -file

{./SERDES1 REFCLK1 EPCS MODE SF2 DEV KIT/SERDES1 REFCLKl EPCS MODE/designer/SERDES_LOO
PBACK_ top/export/SERDES LOOPBACK top.stp}

run_selected_actions
set debug device -name {M2S/M2GL0O50 (T|S|TS) }
//Place serdes tcl commands after here

36

Revision 5

& Microsemi

SmartFusion2 and IGLOO2 SmartDebug Hardware Design Debug Tools

Conclusion

This tutorial demonstrated the capabilities of SmartDebug. SmartDebug provides the capabilities to
observe and analyze many embedded device features. LiveProbe gives real-time access to device test
points. While internal logic states can be easily accessed using ActiveProbes. The SmartDebug
SERDES utility assists FPGA and board designers to validate signal integrity of high speed serial links in
a system and improve board bring-up time. This is completed in real-time without any design
modifications. Adjustments and tuning the PMA analog settings for optimal link performance is easily
accomplished to match the design to the system. Using the SmartDebug utility with the Evaluation Kit
board provides designers a good understanding of its features and capabilities.

Revision 5 37

& Microsemi

A — Appendix

Tcl Script Examples

Example 1: Change M/N/F registers for Lane1 and Lane2 of
SERDESIF_0

set CONFIG_REG_LANE_SEL
write register -addr 0x4002a028 -val 20F
read register -addr 0x4002a028

write register -addr 0x40029410 -val 0x0
puts "PLL F PCLK_RATIO Lanel"

write register -addr 0x40029414 -val 0x13
puts "PLL M N Lanel"

write register -addr 0x40029600 -val Ox1
puts "UPDATE SETTINGS Lanel"

puts "Serdes lanel registers"

set CONFIG_REG_LANE_SEL
write register -addr 0x4002a028 -val 40F

write register -addr 0x40029810 -val 0x0
puts "PLL F PCLK RATIO Lane2"
write register -addr 0x40029814 -val 0x13
puts "PLL M N Lane2"

write register -addr 0x40029a00 -val Ox1
puts "UPDATE SETTINGS Lane2"

puts "Serdes lane2 registers"

Example 2: Change RX LEQ registers Lane2 of SERDESIF_0

set CONFIG _REG LANE SEL
write register -addr 0x4002a028 -val 40F

write register -addr 0x4002981c -val 0x00
puts "RE AMP RATIO Lane2"

write register -addr 0x40029820 -val 0x00
puts "RE_CUT RATIO Lane2"

write register -addr 0x40029a00 -val Ox1
puts "UPDATE SETTINGS Lane2"

Revision 5

38

& Microsemi

Appendix

Example 3: Change TX De-emphasis registers Lane2 of
SERDESIF_0

set CONFIG REG LANE SEL
write register -addr 0x4002a028 -val 40F

write register -addr 0x40029828 -val Oxa
puts "TX PST RATIO Lane2"

write register -addr 0x4002982c -val 0x0
puts "TX_ PRE_RATIO Lane2"

write register -addr 0x40029%9a00 -val Ox1
puts "UPDATE SETTINGS Lane2"

39 Revision 5

& Microsemi

B — List of Changes

Date Version Changes
October 2014 5 Updated the document for SERDES core change (SAR 61612).
September 2014 4 Updated the document for Libero v11.4 software release (SAR 59069).
Updated the document for M2S025 Evaluation Kit Board details (SAR
59069).
Updated the document for M2GL010 Evaluation Kit Board details
(SAR 59069).
April 2014 3 Added Note in "1. Specifying Live Probe Points" section (SAR 56593).
March 2014 2 Updated the software version from 11.2SP1 to 11.3 (SAR 56012).
Updated design files using the latest 11.3 SERDES core (SAR 56012).
January 2014 1 Initial release.

Revision 5 40

& Microsemi
C — Product Support

Microsemi SoC Products Group backs its products with various support services, including Customer
Service, Customer Technical Support Center, a website, electronic mail, and worldwide sales offices.
This appendix contains information about contacting Microsemi SoC Products Group and using these
support services.

Customer Service

Contact Customer Service for non-technical product support, such as product pricing, product upgrades,
update information, order status, and authorization.

From North America, call 800.262.1060

From the rest of the world, call 650.318.4460
Fax, from anywhere in the world, 408.643.6913

Customer Technical Support Center

Microsemi SoC Products Group staffs its Customer Technical Support Center with highly skilled
engineers who can help answer your hardware, software, and design questions about Microsemi SoC
Products. The Customer Technical Support Center spends a great deal of time creating application
notes, answers to common design cycle questions, documentation of known issues, and various FAQs.
So, before you contact us, please visit our online resources. It is very likely we have already answered
your questions.

Technical Support

Visit the Customer Support website for more information and support. Many answers available on the
searchable web resource include diagrams, illustrations, and links to other resources on the website.

Website

You can browse a variety of technical and non-technical information on the Microsemi SoC home page.

Contacting the Customer Technical Support Center

Highly skilled engineers staff the Technical Support Center. The Technical Support Center can be
contacted by email or through the Microsemi SoC Products Group website.

Email

You can communicate your technical questions to our email address and receive answers back by email,
fax, or phone. Also, if you have design problems, you can email your design files to receive assistance.
We constantly monitor the email account throughout the day. When sending your request to us, please
be sure to include your full name, company name, and your contact information for efficient processing of
your request:

Technical support email address: soc_tech@microsemi.com

Revision 5 41

(www.microsemi.com/soc/support/search/default.aspx)
www.microsemi.com/soc
mailto:soc_tech@microsemi.com

& Microsemi

Product Support

My Cases

Microsemi SoC Products Group customers may submit and track technical cases online by going to My
Cases.

Outside the U.S.

Customers needing assistance outside the US time zones can either contact technical support via email
at: soc_tech@microsemi.com or contact a local Sales office listing at Sales.Support@Microsemi.com.

ITAR Technical Support

Contact technical support at: soc_tech_itar@microsemi.com for RH and RT FPGAs that are regulated by
International Traffic in Arms Regulations (ITAR). Alternatively, within My Cases, select Yes in the ITAR
drop-down list. For a complete list of ITAR-regulated Microsemi FPGAs, visit the ITAR web page.

42

Revision 5

soc_tech@microsemi.com
soc_tech_itar@microsemi.com
http://www.microsemi.com/soc/mycases/
http://www.microsemi.com/soc/mycases/
soc_tech_itar@microsemi.com
mailto:tech@microsemi.com
mailto:tech@microsemi.com
www.microsemi.com/soc/company/contact/default.aspx.
http://www.microsemi.com/soc/company/contact/default.aspx#itartechsupport
http://www.microsemi.com/soc/mycases/
http://www.microsemi.com/soc/ITAR/
redir.aspx?C=OjTQfdQ6KEmPVW2fNOkwWdOTXVCj9dAIw7gPiiohnPg2AVrLN1lT9u8_IH-NpsHvjzB9CtkpMZ8.&URL=mailto%3aSales.Support%40Microsemi.com

Microsemi Corporation (NASDAQ: MSCC) offers a comprehensive portfolio of semiconductor
and system solutions for communications, defense and security, aerospace and industrial
markets. Products include high-performance and radiation-hardened analog mixed-signal
integrated circuits, FPGAs, SoCs and ASICs; power management products; timing and
synchronization devices and precise time solutions, setting the world’s standard for time; voice

M' - processing devices; RF solutions; discrete components; security technologies and scalable
'croseml@ anti-tamper products; Power-over-Ethernet ICs and midspans; as well as custom design
Microsemi Corporate Headquarters capabilities and services. Microsemi is headquartered in Aliso Viejo, Calif. and has

One Enterprise, Aliso Viejo CA 92656 USA i P H
Within the USA +1 (800) 7134113 approximately 3,400 employees globally. Learn more at www.microsemi.com.

Outside the USA: +1 (949) 380-6100 © 2014 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of

Sales: +1 (949) 380-6136 Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.
Fax: +1 (949) 215-4996

E-mail: sales.support@microsemi.com 50200530-5/10.14

http://www.microsemi.com
mailto:%20sales.support@microsemi.com

	SmartFusion2 and IGLOO2 SmartDebug Hardware Design Debug Tools
	Introduction
	Tutorial Requirements
	Associated Project Files

	Design Overview
	Programming the Device
	Launching SmartDebug
	Debugging the Design
	View Device Status
	View Flash Memory (eNVM) Content
	Debug FPGA Array
	Forcing a Design Modification
	SERDES Debug
	Far-End Loop Back Support
	Tcl Support
	Executing SERDES Debug from SmartDebug Tcl

	Conclusion

	A – Appendix
	Tcl Script Examples
	Example 1: Change M/N/F registers for Lane1 and Lane2 of SERDESIF_0
	Example 2: Change RX LEQ registers Lane2 of SERDESIF_0
	Example 3: Change TX De-emphasis registers Lane2 of SERDESIF_0

	B – List of Changes
	C – Product Support
	Customer Service
	Customer Technical Support Center
	Technical Support
	Website
	Contacting the Customer Technical Support Center
	Email
	My Cases
	Outside the U.S.

	ITAR Technical Support

