
34 28 October 2014 www.newelectronics.co.uk34

T
he Linux OS is likely to

become even more popular

as 32bit computing

becomes a commodity and

projects like Yocto make it easier to

create, develop and maintain Linux

based systems for embedded

applications.

One of the advantages of Linux is

that it enables OEMs to become more

like startups, where agile hardware

development teams speed time to

market by using an OS to abstract the

underlying hardware details. However,

despite its benefits, a Linux system

can be vulnerable to rootkits unless its

embedded processor is booted

properly.

In general, rootkits try to access

privileged (root) modes while hiding

from system malware detection tools.

The malware may also try to install

itself into a persistent state by

modifying the system’s boot process.

If successful, the infection is

permanent or persists through power

cycles. From there, the malware will do

whatever its author wants; everything

from logging key strokes to enabling

unauthorised services. And if a system

is infected, a complete OS reinstall

may be required.

The problem starts at the

embedded processor (see ;g 1). The

on chip ROM will, on power up, fetch

the boot loader from an external

nonvolatile memory. The application

speci;c boot loader con;gures the

processor during its startup for the

speci;ed application requirements.

Clocks, caches, memory controllers

and peripherals are all con;gured

and once the processor has been

initialised, the application is fetched

from external non volatile memory

and started.

During the boot process, malware

has the opportunity to attempt

modi;cations to the boot loader of

the embedded system. Fig 2 shows a

simpli;ed and typical block diagram

of an embedded Linux system.

UBOOT, the Linux kernel and the

application layer are all stored in non

volatile memory.

The only way to protect the boot

process is to secure it with an entity

that can be trusted to always behave

in the expected manner. As a system

element, this root of trust supports

veri;cation of system, software and

data integrity and con;dentiality, as

well as the extension of trust to

internal and external entities. It is the

foundation upon which all further

security layers are created and it is

Preventing Linux rootkit threats through secure boot design using flash

based SoC FPGAs. By Tim Morin.

“The only way

to protect the

boot process is

to secure it

with an entity

that can be

trusted to

always behave

in the expected

manner.”

Tim Morin

Cutting malware
off at the root

essential that its keys remain secret

and the process it follows is

immutable.

In embedded systems, the root of

trust works in conjunction with other

system elements to ensure the

primary processor boots securely

using only authorised code. Using

cryptographic techniques, the trusted

zone can be extended to cover all

critical elements of the system or even

to tie multiple trusted systems

together over an intrinsically insecure

network.

Looking to address these issues,

Microsemi has launched a secure boot

reference design that can add security

to a processor that doesn’t have it

built in. In addition, it can prevent root

kit installations if used properly.

While many newer processors come

with special features to support

secure boot, this is far from universal

and often requires a multichip

solution. A better solution is a flash

based FPGA.

Microsemi’s reference design is

enabled by its SmartFusion2 SoC

FPGAs or IGLOO2 FPGAs, which offer a

number of advanced security features.

These flash based solutions are

inherently secure because once they

are programmed, critical information

never leaves the die. Amongst the

security features is at-speed serial

peripheral interface (SPI) flash memory

emulation to enable a secure boot of

an external processor. The devices

also feature strong design security and

differential power analysis (DPA)

resistant anti tamper measures. When

coupled with an embedded Linux CPU,

these FPGAs can be used to prevent

malware from attempting to modify the

boot loader of the embedded system.

Fig 1: The embedded boot process

Application
Boot

loader
On chip

ROM

www.newelectronics.co.uk 28 October 2014 35

SYSTEM DESIGN

REFERENCE DESIGNS

The reference design uses two

SmartFusion2 starter kits stacked on

top of each other. The SmartFusion

SoC FPGA development board serves

as the target processor, with the

SmartFusion SoC FPGA Cortex-M3

processor acting as the target.

Meanwhile, the SmartFusion2 SoC

FPGA development board acts as the

root of trust, implementing the secure

boot functions. Signals are passed

between the two boards using a GPIO

connector that carries the reset

signal and the SPI interface signals

between the target processor and the

root of trust.

Fig 3 provides an example of a

flash based SoC that can be used for

secure boot. The non volatile

memory in the SmartFusion2 SoC

stores UBOOT, while the FPGA fabric

emulates an SPI flash memory at

speed. The CPU is unaware that the

SoC sits between it and the SPI

flash. On power up, the SoC directs

the SPI read request for UBOOT from

the internal eNVM to the CPU. The

CPU then goes through the normal

UBOOT booting process and then

fetches the remainder of the

application image from the external

SPI flash, during this latter stage the

SoC is acting as a conduit to the

external memory and passes the

application image to the CPU.

The SoC and its internal eNVM can

only be programmed with an

authenticated encrypted bitstream

constructed by the SoC’s FPGA

development environment. The format

is proprietary and resistant to DPA

side channel attacks, thanks to

countermeasures licensed from

Cryptography Research (now Rambus).

In other words, the only way malware

can attempt to write to flash is to

have a bitstream designed for the SoC

with the proper encryption and user

de;ned keys.

To ensure secure multistage boot, it

is essential the code be validated prior

to delivery and execution. This ensures

that no compromise has occurred that

could subvert or damage the boot of

each phase, and can be done using

either symmetric or asymmetric key

cryptographic techniques. Preferably,

continual feedback to each prior stage

is used to con;rm that no tampering

has occurred during boot load. Each

phase can continue to execute if all

anti-tamper monitors con;rm a safe

environment.

After power up, the FPGA holds the

main MPU in reset until it completes

its integrity self-tests. When ready, it

releases the reset. The MPU can be

con;gured to boot from the interface

to the FPGA, which delivers the

requested Phase 0 boot code to the

MPU as it comes out of reset.

Assuming the MPU does not

inherently support secure boot, the

challenge is to load code into the

MPU with the con;dence that it

hasn’t been tampered with.

If everything checks, the boot

process continues by branching to the

trusted code in the MPU’s SRAM. This

contains the code needed to initiate

the next phase and could include an

RSA or ECC public key. Once the code

in the MPU SRAM is trusted,

additional security measures can be

employed.

Whether used as a self contained

processing element or in conjunction

with adjunct processors, the SoC

FPGA improves security for embedded

processing. While it is possible to

construct an embedded processor

module with specialty security

devices that perform monitoring and

static key storage, consolidation of

system critical functions along with

security features within an SoC FPGA

provides much greater security,

flexibility, and performance.

Author profile:

Tim Morin is

director of

product

marketing for

Microsemi.

Fig 2: An embedded Linux system

ROM

DDR
memory

SPI
fash

UBOOT
Linux image

application image

Memory
controllers

Peripherals

Local
SRAM

Instruction and
data cache

CPU

Linux host

SPI

Slave Master

Fig 3: Using a SmartFusion2 SoC FPGA to store UBOOT

SPI
fash

Linux and
application image

UBOOT

SmartFusion2 SoC FPGA Linux host

DDR

SPI

Slave Master

SPI

Slave Master

CPU

TRNG

PUF

FPGA

OSC

eSRAM

eNVM

Cortex-M3 MCU

Local SRAM

Peripherals

Memory
controllers

ROM

Instruction and
data caches

