
Application Note AC431

Timing Optimization for CorePCIF in the
SmartFusion2 and IGLOO2 Devices

Table of Contents

Purpose
This application note describes the timing optimization challenges on implementing CorePCIF in
SmartFusion®2 and IGLOO®2 devices and provides detailed information to overcome these challenges.
It also provides implementation hints to follow in different stages of FPGA design, including I/O
placement, synthesis, and place and route guidelines.

Note: It is recommended to have a basic understanding about CorePCIF and to be familiar with the
Libero® System-on-Chip (SoC) v11.3 software tools and design flow when reading this application
note.

Introduction
CorePCIF is a Microsemi® supported intellectual property (IP) that provides a simple and flexible
interface to the PCI bus. The CorePCIF, as a DirectCore, is designed, verified, supported, and
maintained by Microsemi for Microsemi FPGA devices. It supports several Microsemi FPGA device
families such as SmartFusion2, and IGLOO2. Refer to the CorePCIF Handbook for more information
about device support and utilization.

Purpose . 1
Introduction . 1

References . 2

CorePCIF Overview . 2

CorePCIF Design Implementation . 12

Recommendations for 33 MHz CorePCIF Design (32-bit and 64-bit) 14
Recommendation for 66 MHz CorePCIF Design (32-bit and 64-bit) 15
Conclusion . 16

Appendix A: SDC Constraint and SmartTime Timing Analysis for 32-bit 33 MHz PCI Design 17

Appendix B: SDC Constraint and SmartTime Timing Analysis for 64-bit 66 MHz PCI Design 19

Appendix C: CorePCIF Sample PDC Constraint File for SmartFusion2 and IGLOO2 21

List of Changes . 22
October 2014 1

© 2014 Microsemi Corporation

http://www.actel.com/ipdocs/CorePCIF_HB.pdf

Timing Optimization for CorePCIF in the SmartFusion2 and IGLOO2 Devices
References
The following is the reference used:

• CorePCIF Handbook

CorePCIF Overview
Microsemi CorePCIF allows to connect a memory, a FIFO, and a processor subsystem resources to the
main system PCI bus. The CorePCIF is used with a variety of peripherals where high-performance data
transactions are required. Figure 1 shows the CorePCIF System Block Diagram.

The CorePCIF enables implementing the PCI target and/or master functions and can be customized
through parameters in the code. Several parameters are provided to easily change the following
features:

• PCI vendor and device IDs

• BAR mapping

• Memory depth

• I/O space

The CorePCIF has the below three major functional blocks:

• Target Controller

• Master Controller

• Datapath

Figure 1 • CorePCIF System Block Diagram
2 Revision 1

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132008
http://www.actel.com/ipdocs/CorePCIF_HB.pdf

CorePCIF Overview
Refer to the CorePCIF Handbook for more information. For a Target and Master, all the three blocks are
required. Otherwise, only the Datapath and either the Target or Master function are required.The
CorePCIF supports both 32-bit and 64-bit PCI implementations and also supports both 33 MHz and 66
MHz operations. The back-end interface of CorePCIF can be directly used to interface the memory,
registers, or peripherals with the user fabric design.

Microsemi also provides another variation of CorePCIF DirectCore IP, called CorePCIF_AHB. The
CorePCIF_AHB allows an AHB bus system to be connected to a PCI bus. It allows both the AHB bus and
PCI bus to initiate data transfers between the two buses. It is built on top of the CorePCIF core.

Refer to the CorePCIF_AHB Handbook for more information. This application note mainly focuses on
timing optimization of CorePCIF IP, but can also be used for CorePCIF_AHB DirectCore IP.

Table 1 lists the PCI specification timing requirements. While implementing the CorePCIF IP, apply these
requirements as timing constraints by following the guidelines from this application note.

Because of the tight timing margins for the external setup and clock to out timing checks, most of the

timing critical paths are through the Datapath block. Assigning the PCI pins carefully reduces the
workload for the place and route algorithms and makes it easier to achieve timing closure for these
timing paths, especially in the larger SmartFusion2 and IGLOO2 devices.

Table 1 • PCI Specification Timing Requirements

PCI Ports 33 MHz 66 MHz

Setup

(ns)

Hold

(ns)

Clock to output

(ns)

Setup

(ns)

Hold

(ns)

Clock to output

(ns)

AD

CBEN

DEVSELN

FRAMEN

IRDYN

TRDYN

PAR

PERRN

SERRN

STOPN

TRDYN

PAR64

ACK64N

REQ64N

7 0 11 3 0 6

IDSEL

GNTN

10 0 - 5 0 -

INTAN

REQN

- - 11 - - 6
Revision 1 3

www.actel.com/ipdocs/COREPCIF_AHB_HB.pdf
http://www.actel.com/ipdocs/CorePCIF_HB.pdf

Timing Optimization for CorePCIF in the SmartFusion2 and IGLOO2 Devices
Figure 2 shows the datapath for the 32-bit mode.

Figure 2 • Datapath Block Showing Critical Path for clk-out and External Setup
4 Revision 1

CorePCIF Overview
The following sections describe the design implementation guidelines for CorePCIF in the SmartFusion2
and IGLOO2 devices:

• SmartFusion2 and IGLOO2 Families- PCI I/O Assignments

• Bank Assignments - 33 MHz PCI Design

• Bank Assignments - 66 MHz PCI Design

• Bank and PCI I/O Assignment in Libero SoC

• Guidelines for Assigning the Special PCI I/O Signals

• Guidelines for RESET, TRDYn, and IRDYn Signals

SmartFusion2 and IGLOO2 Families- PCI I/O Assignments
In the SmartFusion2 and IGLOO2 devices, I/Os are grouped into I/O banks. Each I/O bank has its own
voltage supply. For the signals, the compatible voltage supply can only be assigned to the same bank.
Following are the three types of I/O banks in the SmartFusion2 and IGLOO2 families:

• MSIO

• MSIOD

• DDRIO

The MSIOD and DDRIO types can only operate at voltages up to 2.5V and do not support direct
connection to the PCI bus. The MSIO banks, which operate at 3.3V, can be configured to the PCI I/O
standard. So, when implementing a specific core variation of CorePCIF, ensure that the target device has
a sufficient number of MSIO available. Table 2 shows the I/O count requirements for different CorePCIF
variations. For example, implementing a 32-bit target only version of CorePCIF, requires 48 PCI I/Os.
Implementing a 64-bit master and target version of CorePCIF requires 89 PCI I/Os.

Table 2 • PCI I/O Requirements for CorePCIF

CorePCIF Variation Number of PCI I/O

32-bit Target 48

64-bit Target 88

32-bit Target and Master 50

64-bit Target and Master 89
Revision 1 5

Timing Optimization for CorePCIF in the SmartFusion2 and IGLOO2 Devices
Bank Assignments - 33 MHz PCI Design
Achieving timing closure for a 33 MHz PCI design for the SmartFusion2 and IGLOO2 devices is easy as
long as the I/O locations are selected that are in adjacent banks. An exception is when a JTAG bank
appears between the MSIO banks. The MSIO banks can be selected that have a JTAG bank between
them.

For example, on the M2S050T-FG896 device, assign the PCI I/Os to banks 1, 2, and 3 only, as shown in
Figure 3. Though, the bank 8 is available for PCI I/O assignment, it is recommended not to use it with
banks 1, 2, and 3. Assigning the bank 8 for the PCI I/O signals causes the design placement to spread
out on both the sides, which makes the die making timing closure more difficult to achieve.

Bank Assignments - 66 MHz PCI Design
Achieving the timing closure for 66 MHz design for the SmartFusion2 and IGLOO2 devices is difficult.
Select the PCI I/O locations and banks more carefully. Selecting the adjacent I/O banks is the first step.
An exception is when a JTAG bank appears between the MSIO banks, and to select the MSIO banks that
have a JTAG bank between them. Table 3 lists the recommended bank assignments for PCI I/Os for
SmartFusion2 and IGLOO2 devices. It also lists the number of I/Os available in those banks.

Figure 3 • PCI I/O Assignment in M2S050T Device for 33 MHz PCI Design
6 Revision 1

CorePCIF Overview

Table 3 • Recommended Bank Assignments for SmartFusion2 and IGLOO2 Devices

PCI
Variatio
n

Required
PCI I/Os FC1152 FG896 FG676 FG484

M2S150T

M2GL150
T

M2S050T

M2GL050T

M2S090T

M2GL090T

M2S090T

M2GL090T

M2S050T

M2GL050T

M2S025T

M2GL025T

M2S010T

M2GL010T

M2S005T

M2GL005

32-bit
Target

48 Bank3,4,5,
8

(174)

Or

Bank17,18

(82)

Bank1,2,3

(92)

Bank2,3,5

(198)

Or

Bank0,8

(110)

Bank2,3,5

(116)

Bank1,3

(64)

Bank1,2,4

(116)

Bank1,2,4

(82)

Bank1,2,4

(56)

64-bit
Target

88 Bank3,4,5,
8

(174)

Bank1,2,3

(92)

Bank2,3,5

(198)

Or

Bank0,8

(110))

Bank2,3,5

(116)

- Bank1,2,4

(116)

- -

32-bit
Target
and
Master

50 Bank3,4,5,
8

(174)

Or

Bank17,18

(41 pairs)

Bank1,2,3

(92)

Bank2,3,5

(198)

Or

Bank0,8

(110)

Bank2,3,5

(116)

Bank1,3

(64)

Bank1,2,4

(116)

Bank1,2,4

(82)

Bank1,2,4

(56)

64-bit
Target
and
Master

89 Bank3,4,5,
8

(174)

Bank1,2,3

(92)

Bank2,3,5

(198)

Or

Bank0,8

(110)

Bank2,3,5

(116)

- Bank1,2,4

(116)

- -

Table 4 • Recommended Bank Assignments for SmartFsuion2 and IGLOO2 Devices

PCI
Variation

Required
PCI I/Os VF400 FC325

M2S050T

M2GL050T

M2S025T

M2GL025T

M2S010T

M2GL010T

M2S005T

M2GL005T

M2S090T

M2GL090T

M2S050T

M2GL050T

M2S025T

M2GL025T

32-bit
Target

48 Bank1,3

(64)

Bank1,2,4

(88)

Bank1,2,4

(82)

Bank1,2,4

(56)

Bank2,3

(54)

Bank1,2,3

(54)

Bank1,2,4

(66)

64-bit
Target

88 - Bank1,2,4

(88)

- - - - -

32-bit
Target and
Master

50 Bank1,3

(64)

Bank1,2,4

(88)

Bank1,2,4

(82)

Bank1,2,4

(56)

Bank2,3

(54)

Bank1,2,3

(54)

Bank1,2,4

(66)

64-bit
Target and
Master

89 - - - - - - -
Revision 1 7

Timing Optimization for CorePCIF in the SmartFusion2 and IGLOO2 Devices
Bank and PCI I/O Assignment in Libero SoC
In the Libero SoC software, the multiview navigator (MVN) GUI can be used to configure the MSIO banks
for PCI I/O standard, and assign the PCI I/Os to the selected I/O banks. The same task can be achieved
by using a placement constraints (PDC) file. The following PDC constraint example shows assigning the
AD[0] I/O to bank 3:

Set Bank3 with a 3.3V setting (3.3V setting is required for the PCI IO standard)
set_iobank Bank3 -vcci 3.30 -fixed yes
Set AD[0] signal to Bank3 and enables IO register combining
set_io {AD[0]} -iostd PCI -IN_DELAY Off -OUT_LOAD 10 -REGISTER Yes -OUT_REG Yes -
DIRECTION INOUT

Refer to the "Appendix C: CorePCIF Sample PDC Constraint File for SmartFusion2 and IGLOO2" on
page 21 for many examples of PDC file constraints for PCI I/O assignments.

Guidelines for Assigning the Special PCI I/O Signals
The following sections describe the guidelines for assigning the PCI clock, reset, irdyn, and trdyn signals:

PCI CLK Assignment for 33MHz Design
To meet the PCI setup, hold, and clock-to-out timing requirements for a 33 MHz operating frequency, the
PCI CLK must be placed at a chip global I/O location. But one of the dedicated global clock pins should
be used for a direct access to a global clock buffer, called GBx.Refer to the SmartFusion2 and IGLOO2
FPGA Clocking Resources User Guide for more information. Alternatively, this can be done by setting
the parameter USE_GLOBAL_CLK=1in the CorePCIF configurator. This setting uses a CLKBUF macro
for the PCI CLK signal, and the layout software automatically places the PCI CLK at a global I/O location.

PCI CLK Assignment for 66 MHz Design
To meet the PCI setup, hold, and clock-to-out timing requirements for a 66 MHz operating frequency, the
clocking scheme must be modified. The CorePCIF PCI CLK input signal must be driven by a fabric CCC
(FCCC) with a negative programmable delay to meet the 6ns clock-to-out timing requirement.
8 Revision 1

CorePCIF Overview
Figure 4 shows the approximate worst-case timing delay for clock-to-out path in the SmartFusion2 and
IGLOO2 devices with and without the FCCC macro.

Ensure that the FCCC is instantiated in the design and uses the PCI CLK input as a reference clock.
Configure the FCCC feedback option to CCC Internal and apply a negative delay on the programmable
delay element path as shown in Figure 5. This FCCC configuration allows the clock to be shifted earlier,

Figure 4 • Clock-to-out Delay in SmartFusion2 With and Without FCCC
Revision 1 9

Timing Optimization for CorePCIF in the SmartFusion2 and IGLOO2 Devices
which increases the available margin on the clk-to-out path. Either the FCCC output clock (GL0) or the
CLK_OUT signal from CorePCIF can be used to drive the back end logic.

Perform the following steps for a 66 MHz operating frequency:

1. Use a FCCC to de-skew the PCI clock.

2. Apply a negative delay (For example, -20 steps) on the programmable delay element path. Refer
to the SmartFusion2 and IGLOO2 Datasheet for more information on the delay settings.

3. Connect the PCI CLK to the reference clock input of FCCC (CLK0_PAD).

4. Connect the GL0 output of FCCC to the CLK input port of CorePCIF.

Figure 5 • FCCC Configuration in SmartFusion2
10 Revision 1

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132042

CorePCIF Overview
5. Use GL0 or CLK_OUT signal from CorePCIF to drive the back end logic.

Guidelines for RESET, TRDYn, and IRDYn Signals
The CorePCIF configurable parameters use the regular or global networks for routing the PCI reset,
TRDYn, and IDRYn signals. Follow the guidelines listed in Table 5 for the PCI reset, TRDYn, and IDRYn
signals.

Figure 6 • FCCC Configuration in SmartFusion2

Table 5 • PCI Reset, TRDYn, and IDRYn Signal Guideline

PCI Signal Parameter Value Description

PCI reset USE_GLOBAL_RESET 0,1 0: Normal routing resources are used for PCI reset.
However, due to the high fanout of the reset network, a
buffer tree is created by synthesis.

1: A global buffer is used for PCI reset.

Microsemi recommends to set this parameter as 1.

TRDYn USE_GLOBAL_TRDY 0,1 0: Normal routing resources are used for TRDYn.

1: When MASTER = 1, a global buffer is used to drive the
internal TRDY network in the core.

Microsemi recommends to set this parameter as 0 for 66
MHz master or target and master version of CoerPCIF.

IRDYn USE_GLOBAL_IRDY 0,1 0: Normal routing resources are used for IRDYn.

1: When MASTER = 1, a global buffer is used to drive the
internal IRDY network in the core.

Microsemi recommends to set this parameter as 0 for 66
MHz master or target and master version of CoerPCIF.
Revision 1 11

Timing Optimization for CorePCIF in the SmartFusion2 and IGLOO2 Devices
CorePCIF Design Implementation
This section describes the guidelines that must be followed for the synthesis and layout (place and route)
software of the CorePCIF design.

Synthesis Recommendations for CorePCIF Design
CorePCIF includes the synthesis timing requirements in the timing constraint file. Four timing constraints
files are made available during synthesis such as 33 MHz, 66 MHz, 32-bit, and 64-bit operation.

Note: The same timing constraint files are used for target, master, or master and target core.

• pcitiming32_33_synplicity.sdc: 32-bit 33 MHz timing constraint

• pcitiming32_66_synplicity.sdc: 32-bit 66MHz timing constraint

• pcitiming64_33_synplicity.sdc: 64-bit 33 MHz timing constraint

• pcitiming64_66_synplicity.sdc: 64-bit 66 MHz timing constraint

The constraint files can be found under
<Libero_prj>\component\Actel\DirectCore\COREPCIF\4.0.135\constraints folder. Note that the supplied
timing constraints files assume a typical configuration for the core. So, some configurations may cause
the timing constraint files to cause an error during compile operation in Libero SoC. For example, the
ONCHIP_IDSEL function is enabled, but the IDSEL input is not used in the configuration. The synthesis
does remove the IDSEL input during configuration. In this case, the timing constraints for the IDSEL input
should be manually removed from the SDC files using a text editor. During synthesis, import the
appropriate timing constraint files and associate them with the synthesis project.

For 66 MHz PCI design, add the following synthesis constraints in the generated SDC file. The
constraints impose a maximum fanout limit of 1 for output registers.

define_attribute
{{i:UCORE.MAKE_TARGET.DATAPATHE64.MAKE_DATAPATH_REGISTERS.AD_REGS[31:0]}}{syn_prese
rve} {1}
define_attribute {{i:UCORE.MAKE\.UDMA.CBEN_PAD[7:0]}} {syn_replicate} {1}
define_attribute {{i:UCORE.MAKE\.UDMA.CBEN_PAD[7:0]}} {syn_maxfan} {1}
define_attribute
{{i:UCORE.MAKE_TARGET.DATAPATHE.MAKE_DATAPATH_REGISTERS.AD_REGS[31:0]}}
{syn_preserve}{1}
define_attribute{{i:UCORE.MAKE_TARGET.BurstE.UA1\.MAKE_ACK64_OUT.Q_INT}}
{syn_replicate} {1}
define_attribute {{i:UCORE.MAKE\.UDMA.MAKE_REQ64N1.Q_INT}} {syn_replicate} {1}
define_attribute {{i:UCORE.MAKE\.UDMA.MAKE_REQ64N1.Q_INT}} {syn_maxfan} {1}
define_attribute {{i:UCORE.MAKE_TARGET.BurstE.UA1\.MAKE_ACK64_OUT.Q_INT}}
{syn_maxfan} {1}
define_attribute{{i:UCORE.MAKE_TARGET.BurstE.UM1\.MAKE_IRDY_OUT.Q_INT}}
{syn_replicate} {1}
define_attribute {{i:UCORE.MAKE_TARGET.BurstE.UM1\.MAKE_IRDY_OUT.Q_INT}}
{syn_maxfan} {1}

The instance names used in this example must match with the names in the design. These constraints
required to be applied as Synplify FPGA design constraint (FDC) file. Refer to the Synopsys FPGA
Synthesis Pro ME I-2013.09M SP1 User Guide for more information.
12 Revision 1

http://soc.microsemi.com/download/rsc/?f=Synplify_Pro_ME_v2013.09M_SP1_UG
http://soc.microsemi.com/download/rsc/?f=Synplify_Pro_ME_v2013.09M_SP1_UG

CorePCIF Design Implementation
Figure 7 shows the synthesis GUI with the required timing constraints for 66 MHz PCI design. The
pcitiming64_66_synplicity.sdc is the 64-bit 66 MHz SDC timing constraint and PCISYSTEM_syn.fdc
is the Synplify FDC file that imposes the fanout limit.

Layout (Place and Route) Recommendations for CorePCIF Design
This section describes the place and route recommendations for meeting the setup and hold timing
requirements for external input, register-to-register, and clock-to-out paths. CorePCIF generates the
SDC timing constraints for the place and route tool. Ensure that the timing constraint files are associated
with the place and route tool. Following are the multiple timing constraint and physical constraint files
made available for the various PCI versions:

• 33 MHz operation

• 66 MHz operation

• 32-bit operation

• 64-bit operation

Table 6 lists the CorePCIF generated SDC files. These files can be found under
<Libero_prj>\component\Actel\DirectCore\COREPCIF\4.0.135\constraints folder.

Figure 7 • Synthesis GUI with Constraint

Table 6 • CorePCIF Generated SDC File Information

SDC File Description

T_pcitiming32_33_designer.sdc 32-bit 33 MHz target only pci design

T_pcitiming32_66_designer.sdc 32-bit 66 MHz target only pci design
Revision 1 13

Timing Optimization for CorePCIF in the SmartFusion2 and IGLOO2 Devices
Ensure that the correct timing constraint files are used during the place and route operation. The
following steps describe how to import the timing constraint files:

1. Double-click the Timing Constraints to open the Import Files dialog box.

2. Browse to the Libero_prj>\component\Actel\DirectCore\COREPCIF\4.0.135\constraints
folder and import the timing constraint (*.sdc) files.

3. Right-click the selected constraint file and select Use for Compile. The selected constraint file is
used during compilation for checking and passed on to the layout for timing driven place and
route (TDPR).

To meet the timing for 33 MHz and 66 MHz PCI design, it is required to run a layout by selecting the High
Effort Layout option.

Recommendations for 33 MHz CorePCIF Design (32-bit and
64-bit)

This section provides guideline for the following 33 MHz CorePCIF design:

• Core Configuration

• I/O Assignment

• Design Implementation

Note: The timing constraints are easily met for 33 MHz design using standard FPGA design flow, but for
66 MHz design it is recommended to follow the special guidelines.

Core Configuration
For RESET, TRDYn, and IRDYn signals assignment, Refer to the "Guidelines for RESET, TRDYn, and
IRDYn Signals" section on page 11.

I/O Assignment
• Assign 3.3V to MSIO banks.

– This ensures that PCI I/Os can be assigned to the MSIO bank. Use the MSIO bank as
suggested in Figure 3 and Figure 4. Here is an example of PDC command:

set_iobank Bank1 -vcci 3.30 -fixed yes

• Use the PDC command to enable I/O register combining wherever possible.

T_pcitiming64_33_designer.sdc 64-bit 33 MHz target only pci design

T_pcitiming64_66_designer.sdc 66-bit 66 MHz target only pci design

TM_pcitiming32_33_designer.sdc 32-bit 33 MHz target and master pci design

TM_pcitiming32_66_designer.sdc 32-bit 66 MHz target and master pci design

TM_pcitiming64_33_designer.sdc 64-bit 33 MHz target and master pci design

TM_pcitiming64_66_designer.sdc 64-bit 66 MHz target and master pci design

M_pcitiming32_33_designer.sdc 32-bit 33 MHz master only pci design

M_pcitiming32_66_designer.sdc 32-bit 66 MHz master only pci design

M_pcitiming64_33_designer.sdc 64 bit 33 MHz master only pci design

M_pcitiming64_66_designer.sdc 64-bit 66 MHz master only pci design

Table 6 • CorePCIF Generated SDC File Information (continued)

SDC File Description
14 Revision 1

Recommendation for 66 MHz CorePCIF Design (32-bit and 64-bit)
– Use the -REGISTER Yes switch and the -OUT_REG Yes or -IN_REG Yes depending on
whether the register resides in the input or output path for a particular I/O. If both Master and
Target modes are enabled, they can function as both. Here is an example of PDC command:

set_io {AD[0]} -iostd PCI -IN_DELAY Off -OUT_LOAD 10 -REGISTER Yes\
-OUT_REG Yes -DIRECTION INOUT

• Do not pre-assign the PCI I/Os to any pin locations.

– It is recommended to let the Place and Route tool perform the I/O placement. In some cases,
where the boad-level schematic must be completed before FPGA progresses to the point of
layout. Refer to "Appendix C: CorePCIF Sample PDC Constraint File for SmartFusion2 and
IGLOO2" section on page 21.

Design Implementation
1. Enable the PCI timing SDC files for synthesis and layout steps. Refer to "Synthesis

Recommendations for CorePCIF Design" section on page 12 and "Layout (Place and Route)
Recommendations for CorePCIF Design" section on page 13.

2. Run Layout by selecting the High Effort Layout option.

3. Open SmartTime and perform static timing analysis for both MAX and MIN corners to verify that
both setup and hold time requirements are met.

Recommendation for 66 MHz CorePCIF Design (32-bit and 64-
bit)

This section provides guideline for 66 MHz CorePCIF design. For 66 MHz design, it is required to apply
the PCI timing constraints during synthesis and run layout with high-effort level option. It is also required
to apply the additional maximum delay constraints to the input-register paths during layout. Here are the
guidelines:

• Core Configuration

• I/O Assignment

• Design Implementation

Core Configuration
• Use global buffer for RESET. Use regular buffer for TRDYn and IRDYn signals to reduce the

global network insertion delay. Refer to the "Guidelines for RESET, TRDYn, and IRDYn Signals"
section on page 11.

I/O Assignment
• Assign 3.3V to MSIO banks.

– This ensures that PCI I/Os can be assigned to MSIO bank. Use the MSIO bank suggested in
Figure 3 and Figure 4. Here is an example of PDC command:

set_iobank Bank1 -vcci 3.30 -fixed yes

• Use PDC command to enable I/O register combining wherever possible.

– Use the -REGISTER Yes switch and the -OUT_REG Yes or -IN_REG Yes depending on
whether the register resides in the input or output path for a particular I/O. If both Master and
Target modes are enabled, they can function as both. Here is an example of PDC command:

set_io {AD[0]} -iostd PCI -IN_DELAY Off -OUT_LOAD 10 -REGISTER Yes\
-OUT_REG Yes -DIRECTION INOUT
Revision 1 15

Timing Optimization for CorePCIF in the SmartFusion2 and IGLOO2 Devices
• Do not pre-assign PCI I/Os to any pin locations.

– It is recommended to let the Place and Route tool perform the I/O placement. In some cases
where the boad-level schematic must be completed before FPGA progresses to the point of
layout. It is recommended to use the suggested PCI pinout available in "Appendix C:
CorePCIF Sample PDC Constraint File for SmartFusion2 and IGLOO2" section on page 21.

Design Implementation
1. Apply the PCI SDC and FDC constraints during synthesis and SDC constraints for layout.

Refer to the "Synthesis Recommendations for CorePCIF Design" section on page 12 and "Layout
(Place and Route) Recommendations for CorePCIF Design" section on page 13.

2. Run the layout by selecting the High Effort Layout option.

3. Run SmartTime to perform static timing analysis to check setup and hold time.

The setup and clk-to-out path are displayed as cross clock domain path due to the addition of
FCCC as shown in "Appendix C: CorePCIF Sample PDC Constraint File for SmartFusion2 and
IGLOO2" section on page 21.

4. Apply a 4.00 ns maximum delay constraint from PCI input to registers if the timing is not meet.

set_max_delay 4.000 -from [get_ports { ACK64N AD[*] CBEN[*] CBEN[7] \
DEVSELN FRAMEN GNTN IDSEL IRDYN PAR PAR64 PERRN REQ64N RSTN STOPN TRDYN }] \
-to [get_cells { * }]

5. Run the layout again by selecting the High Effort Level option.

6. Open SmartTime and perform the static timing analysis at MAX and MIN corners to verify that
both setup and hold time requirements are met.

7. If timing is not met, run Layout with multi-pass option using the tighter max delay constraint.

Conclusion
This application note describes how to implement the CorePCIF IP for SmartFusion2 and IGLOO2
families. It also provides the guidelines and recommendations to meet the PCI timing requirements,
especially for external setup and clock-to-out paths. The standard FPGA tool can be used if the operating
frequency is 33 MHz. It is required to follow the specific guidelines and recommendations mentioned in
this application note for 66 MHz operating frequency. The techniques mentioned in this application note
for design optimization can be applied to other critical timing designs where meeting the I/O interface
timing is a challenge.
16 Revision 1

Appendix A: SDC Constraint and SmartTime Timing Analysis for 32-bit 33 MHz PCI Design
Appendix A: SDC Constraint and SmartTime Timing Analysis
for 32-bit 33 MHz PCI Design

The following section shows SDC for 32-bit 33 MHz design and SmartTime analysis GUI.

SDC for 32-bit 33 MHz:

set period 30.0
set setup 23.0
set setupPP 20.0
set hold 0.0
set clkout 19.0

create_clock -period $period { CLK }
##
set_input_delay -max $setup -clock {CLK} { PAR }
set_input_delay -max $setup -clock {CLK} { PERRN }
set_input_delay -max $setup -clock {CLK} { FRAMEN }
set_input_delay -max $setup -clock {CLK} { IDSEL }
set_input_delay -max $setup -clock {CLK} { STOPN }
set_input_delay -max $setup -clock {CLK} { DEVSELN }
set_input_delay -max $setup -clock {CLK} { IRDYN }
set_input_delay -max $setup -clock {CLK} { TRDYN }
set_input_delay -max $setupPP -clock {CLK} { GNTN }
set_input_delay -max $setup -clock {CLK} { CBEN* }
set_input_delay -max $setup -clock {CLK} { AD* }
##
set_input_delay -min $hold -clock {CLK} { PAR }
set_input_delay -min $hold -clock {CLK} { PERRN }
set_input_delay -min $hold -clock {CLK} { FRAMEN }
set_input_delay -min $hold -clock {CLK} { IDSEL }
set_input_delay -min $hold -clock {CLK} { STOPN }
set_input_delay -min $hold -clock {CLK} { DEVSELN }
set_input_delay -min $hold -clock {CLK} { IRDYN }
set_input_delay -min $hold -clock {CLK} { TRDYN }
set_input_delay -min $hold -clock {CLK} { GNTN }
set_input_delay -min $hold -clock {CLK} { CBEN* }
set_input_delay -min $hold -clock {CLK} { AD* }
##
set_output_delay -max $clkout -clock {CLK} { FRAMEN }
set_output_delay -max $clkout -clock {CLK} { IRDYN }
set_output_delay -max $clkout -clock {CLK} { TRDYN }
set_output_delay -max $clkout -clock {CLK} { STOPN }
set_output_delay -max $clkout -clock {CLK} { DEVSELN }
set_output_delay -max $clkout -clock {CLK} { PERRN }
set_output_delay -max $clkout -clock {CLK} { SERRN }
set_output_delay -max $clkout -clock {CLK} { REQN }
set_output_delay -max $clkout -clock {CLK} { PAR }
set_output_delay -max $clkout -clock {CLK} { INTAN }
set_output_delay -max $clkout -clock {CLK} { CBEN* }
set_output_delay -max $clkout -clock {CLK} { AD* }
##
#set_false_path -through { *UPAD*:E* }
set_false_path -through { *iobuf*:E*}
set_false_path -through { *obuft*:E*}
Revision 1 17

Timing Optimization for CorePCIF in the SmartFusion2 and IGLOO2 Devices
Figure 8 shows the SmartTime timing analysis GUI for 32-bit 33 MHz PCI design.

Figure 8 • SmartTime Timing Analysis GUI for 32-bit 33 MHz PCI Design
18 Revision 1

Appendix B: SDC Constraint and SmartTime Timing Analysis for 64-bit 66 MHz PCI Design
Appendix B: SDC Constraint and SmartTime Timing Analysis
for 64-bit 66 MHz PCI Design

The following section shows SDC for 64-bit 66 MHz design and SmartTime analysis GUI.

SDC for 64-bit 66 MHz:

set period 15.0
set setup 12.0
set setupPP 10.0
set hold 0.0
set clkout 9.0

create_clock -period $period { CLK }
##
set_input_delay -max $setup -clock {CLK} { PAR }
set_input_delay -max $setup -clock {CLK} { PERRN }
set_input_delay -max $setup -clock {CLK} { FRAMEN }
set_input_delay -max $setup -clock {CLK} { IDSEL }
set_input_delay -max $setup -clock {CLK} { STOPN }
set_input_delay -max $setup -clock {CLK} { DEVSELN }
set_input_delay -max $setup -clock {CLK} { IRDYN }
set_input_delay -max $setup -clock {CLK} { TRDYN }
set_input_delay -max $setupPP -clock {CLK} { GNTN }
set_input_delay -max $setup -clock {CLK} { CBEN* }
set_input_delay -max $setup -clock {CLK} { AD* }
##
set_input_delay -min $hold -clock {CLK} { PAR }
set_input_delay -min $hold -clock {CLK} { PERRN }
set_input_delay -min $hold -clock {CLK} { FRAMEN }
set_input_delay -min $hold -clock {CLK} { IDSEL }
set_input_delay -min $hold -clock {CLK} { STOPN }
set_input_delay -min $hold -clock {CLK} { DEVSELN }
set_input_delay -min $hold -clock {CLK} { IRDYN }
set_input_delay -min $hold -clock {CLK} { TRDYN }
set_input_delay -min $hold -clock {CLK} { GNTN }
set_input_delay -min $hold -clock {CLK} { CBEN* }
set_input_delay -min $hold -clock {CLK} { AD* }
##
set_output_delay -max $clkout -clock {CLK} { FRAMEN }
set_output_delay -max $clkout -clock {CLK} { IRDYN }
set_output_delay -max $clkout -clock {CLK} { TRDYN }
set_output_delay -max $clkout -clock {CLK} { STOPN }
set_output_delay -max $clkout -clock {CLK} { DEVSELN }
set_output_delay -max $clkout -clock {CLK} { PERRN }
set_output_delay -max $clkout -clock {CLK} { SERRN }
set_output_delay -max $clkout -clock {CLK} { REQN }
set_output_delay -max $clkout -clock {CLK} { PAR }
set_output_delay -max $clkout -clock {CLK} { INTAN }
set_output_delay -max $clkout -clock {CLK} { CBEN* }
set_output_delay -max $clkout -clock {CLK} { AD* }
##
#set_false_path -through { *UPAD*:E* }
set_false_path -through { *iobuf*:E*}
set_false_path -through { *obuft*:E*}
Revision 1 19

Timing Optimization for CorePCIF in the SmartFusion2 and IGLOO2 Devices
Figure 9 shows the SmartTime timing analysis GUI.

Figure 10 shows the clock-to-out (Reg-Io) path and Figure 11 shows the input to register (Io-Reg) path
for a typical 66-bit 66 MHz design in M2S150-FC1152 device.

Figure 9 • SmartTime Timing Analysis GUI for 64-bit 66 MHz PCI Design

Figure 10 • SmartTime Timing Analysis GUI- clock-to-out Path for a 64-bit 66 MHz PCI Design
20 Revision 1

Appendix C: CorePCIF Sample PDC Constraint File for SmartFusion2 and IGLOO2
Appendix C: CorePCIF Sample PDC Constraint File for
SmartFusion2 and IGLOO2

You can download the sample SmartFusion2 PDC file design files from

http://soc.microsemi.com/download/rsc/?f=SF2_IGL2_COREPCIF_PDC

The zipped file has the sample PDC files for the device package combination listed in Table 7. Refer to
the Readme.txt file included in the zipped file for the directory structure and description. The bank
assignment for SmartFusion2 and IGLOO2 are similar, so the same PDC file can be used for IGLOO2
also.

Figure 11 • SmartTime Timing Analysis GUI- in-register Path for a 64-bit 66 MHz PCI Design

Table 7 • PDC Files and Device Package Combinations

PDC Files Descriptions

M2S025_FC325_PCI_66_32_ios.pdc M2S025-FC325 32-bit 66 MHz target and master pci design

M2S025_FG484_PCI_66_64_ios.pdc M2S025-FG484 64-bit 66 MHz target and master pci design

M2S050_FG896_PCI_66_64_ios.pdc M2S050-FG896 64-bit 66 MHz target and master pci design

M2S090_FG676_PCI_66_64_ios.pdc M2S090-FG676 64-bit 66 MHz target and master pci design

M2S090_FG896_PCI_66_64_ios.pdc M2S090-FG896 64-bit 66 MHz target and master pci design

M2S150_FC1152_PCI_33_32_ios.pdc M2S150-FC1152 32-bit 33 MHz target and master pci design

M2S150_FC1152_PCI_33_64_ios.pdc M2S150-FC1152 64-bit 33 MHz target and master pci design

M2S150_FC1152_PCI_66_64_ios.pdc M2S150-FC1152 64-bit 66 MHz target and master pci design
Revision 1 21

http://soc.microsemi.com/download/rsc/?f=SF2_IGL2_COREPCIF_PDC

Timing Optimization for CorePCIF in the SmartFusion2 and IGLOO2 Devices
List of Changes
The following table lists the critical changes that are made in the current version:

Date Changes Page

 Revision 1
(October, 2014)

First Release. NA
22 Revision 1

51900299-1/10.14

© 2014 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of
Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.

Microsemi Corporate Headquarters
One Enterprise, Aliso Viejo CA 92656 USA
Within the USA: +1 (800) 713-4113
Outside the USA: +1 (949) 380-6100
Sales: +1 (949) 380-6136
Fax: +1 (949) 215-4996
E-mail: sales.support@microsemi.com

Microsemi Corporation (Nasdaq: MSCC) offers a comprehensive portfolio of semiconductor
and system solutions for communications, defense and security, aerospace, and industrial
markets. Products include high-performance and radiation-hardened analog mixed-signal
integrated circuits, FPGAs, SoCs, and ASICs; power management products; timing and
synchronization devices and precise time solutions, setting the world's standard for time; voice
processing devices; RF solutions; discrete components; security technologies and scalable
anti-tamper products; Power-over-Ethernet ICs and midspans; as well as custom design
capabilities and services. Microsemi is headquartered in Aliso Viejo, Calif. and has
approximately 3,400 employees globally. Learn more at www.microsemi.com.

mailto:sales.support@microsemi.com
www.microsemi.com

	Timing Optimization for CorePCIF in the SmartFusion2 and IGLOO2 Devices
	Purpose
	Introduction
	References
	CorePCIF Overview
	SmartFusion2 and IGLOO2 Families- PCI I/O Assignments
	Bank Assignments - 33 MHz PCI Design
	Bank Assignments - 66 MHz PCI Design
	Bank and PCI I/O Assignment in Libero SoC
	Guidelines for Assigning the Special PCI I/O Signals
	Guidelines for RESET, TRDYn, and IRDYn Signals

	CorePCIF Design Implementation
	Synthesis Recommendations for CorePCIF Design
	Layout (Place and Route) Recommendations for CorePCIF Design

	Recommendations for 33 MHz CorePCIF Design (32-bit and 64-bit)
	Core Configuration
	I/O Assignment
	Design Implementation

	Recommendation for 66 MHz CorePCIF Design (32-bit and 64- bit)
	Core Configuration
	I/O Assignment
	Design Implementation

	Conclusion
	Appendix A: SDC Constraint and SmartTime Timing Analysis for 32-bit 33 MHz PCI Design
	Appendix B: SDC Constraint and SmartTime Timing Analysis for 64-bit 66 MHz PCI Design
	Appendix C: CorePCIF Sample PDC Constraint File for SmartFusion2 and IGLOO2
	List of Changes

