

IGLOO2

DDR Controller and Serial High Speed Controller
 Standalone Initialization Methodology

Introduction

When creating a design using an IGLOO2 device, if you use any of the two DDR controllers (FDDR or
MDDR) or Serial High speed controller (SERDESIF) blocks, you must initialize the configuration
registers of these blocks at run-time before they can be used. For example, for the DDR controller, you
must set the DDR mode (DDR3/DDR2/LPDDR), PHY width, burst mode and ECC. Similarly, for the
SERDESIF block used as a PCIe endpoint, you must set the PCIE BAR to AXI (or AHB) window.
In this document, we describe all the steps necessary to create a Libero design that automatically
initializes the DDR controller and SERDESIF blocks at power up, with the Standalone Initialization
mode ON.
First we provide a detailed description of the theory of operation. We introduce the major components of
the Peripheral Initialization Solution and outline how they interact.
Unlike the normal flow (Standalone Initialization OFF) where the initialization solution is created by the
System Builder, in the case of Standalone Initialization mode ON, the initialization solution has to be
put together in SmartDesign using different soft IP cores (mentioned in the latter sections), whether you
choose to use System Builder or not. System Builder will not create any initialization logic for any of the
peripherals. You have to build the initialization logic that sits outside the System Builder block, should
you choose to use System Builder at all.
Note that as the name suggests, the standalone initialization logic has to be built separately for each of
the peripherals (DDR/SERDES) used.
Next, we describe how to build designs with the Standalone Initialization mode ON in cases where you
choose to use System Builder and in cases where you choose not to.
In this section we address:

• The creation of the configuration data for DDR controller and SERDESIF configuration registers
• The creation of the FPGA logic required to transfer the configuration data to the different ASIC

configuration registers
For complete details about the DDR controller and SERDESIF configuration registers please refer to the
Microsemi IGLOO2 High Speed Serial and DDR Interfaces User's Guide.

2

http://www.microsemi.com/products/fpga-soc/fpga/igloo2docs

1 – Theory of Operation

The Standalone Peripheral Initialization solution for each peripheral uses the following major components:
• The CoreABC soft IP core, which has to be loaded with a program to initialize the peripheral’s

configuration registers, so that it orchestrates the initialization process. The program contains the
registers specific to a peripheral that’s being initialized.

• The CoreConfigP soft IP core, whose function is to initialize the peripherals' configuration
registers.

• The CoreResetP soft IP core, whose function is to manage the reset sequence of the HPMS,
DDR controllers, and SERDESIF blocks.

One set of these 3 soft IP cores is dedicated to initialize a single peripheral, and similar logic involving these
cores should be built separately for each peripheral used in the design.

The peripheral initialization process works as follows:

1. Upon reset, the CoreABC runs the program it is loaded with.

2. The program starts writing to the registers of the peripheral being initialized. If the peripheral is
MDDR/FDDR, then the program writes configuration data to the DDR controllers, and if the
peripheral is SERDES, then the program writes the SERDESIF configuration registers, via the
CoreABC master BIF. This interface is connected to the soft CoreConfigP core instantiated in the
FPGA fabric.

3. After all the registers are configured, the CoreABC program writes to the CoreConfigP control

registers to indicate the completion of the register configuration phase; the CoreConfigP output
signal CONFIG1_DONE and CONIG2_DONE are then asserted.

There are two phases of register configuration (CONFIG1 and CONFIG2) depending upon the
peripherals used in the design.

4. If the peripheral being initialized is DDR (FDDR/MDDR), then both the signals CONFIG1_DONE
and CONFIG2_DONE are asserted at the same time.

5. If the peripheral being initialized is SERDESIF, then there are 2 phases of register configuration

depending upon whether SERDES is configured in PCIE mode or not.

• CONFIG1_DONE is asserted after the first phase of register configuration is complete.
SERDESIF system and lane registers are configured in this phase. If SERDES is configured
in a non-PCIE mode, then CONFIG2_DONE signal is also asserted immediately.

• The second phase of register configuration then follows (if SERDESIF is configured in PCIE
mode). The following are the different events that happen in this second phase:

o Once CoreResetP de-asserts PHY_RESET_N and CORE_RESET_N signals of the
SERDESIF blocks, it also asserts an output signal SDIF_RELEASED.

o Once the SDIF_RELEASED signal is asserted, the CoreABC program starts polling
for the assertion of PMA_READY on the appropriate SERDESIF lane. Once the
PMA_READY is asserted, the second set of SERDESIF registers (PCIE registers)
are configured/written by the CoreABC program.

o After all the PCIE registers are configured, the CoreABC program writes to the
CoreConfigP control registers to indicate the completion of the second phase of
register configuration; the CoreConfigP output signal CONIG2_DONE is then
asserted.

3

6. Apart from the above signal assertions/de-assertions, CoreResetP also manages the initialization
of the peripheral being initialized by performing the following functions (depending upon the
peripheral being initialized):
• De-asserting the MDDR/FDDR core reset
• De-asserting the SERDESIF blocks PHY and CORE resets
• Monitoring of the FDDR PLL (FPLL) lock signal. The FPLL must be locked to guarantee that

the FDDR AXI/AHBLite data interface and the FPGA fabric can communicate correctly.
• Monitoring of the SERDESIF block PLL (SPLL) lock signals. The SPLL must have locked to

guarantee that the SERDESIF blocks AXI/AHBLite interface (PCIe mode) or XAUI interface
can communicate properly with the FPGA fabric.

• Waiting for the external DDR memories to settle and be ready to be accessed by the DDR
controllers.

7. When the peripheral is initialized and is ready to communicate, CoreResetP asserts the
INIT_DONE signal; the CoreConfigP internal register INIT_DONE is then asserted.
• If the peripheral is MDDR/FDDR, and the DDR initialization time is reached, CoreResetP

output signal DDR_READY is asserted. Assertion of this signal DDR_READY can be
monitored as an indication that the DDR (MDDR/FDDR) is ready for communication.

• If the peripheral is SERDESIF, and the second phase of register configuration is successfully
completed, CoreResetP output signal SDIF_READY is asserted. Assertion of this signal
SDIF_READY can be monitored as an indication that this SERDESIF block is ready for
communication.

8. The CoreABC program which has been waiting for INIT_DONE to be asserted completes its
execution now.

Note: In case of an IGLOO2 design with fabric logic (say fabric master) waiting to communicate with the
peripheral, it should wait for the assertion of INIT_DONE (OR DDR_READY/SDIF_READY based on which
peripheral is being used) signal of the CoreResetP instance (that belongs to the initialization logic of the
peripheral) before it attempts to communicate with the peripheral.

The methodology described in this document relies on the CoreABC executing the initialization process as
part of its program (microcode). All the initialization logic is taken care by the CoreABC program and the soft
IP cores CoreConfigP and CoreResetP.

4

2 – Switching the Standalone Initialization Mode ON

You can turn the Standalone Initialization mode ON when you first create a project for IGLOO2 in the Design
Methodology section in the New Project dialog (Figure 1).

Figure 1 • Design Methodology – Use Standalone Initialization for MDDR/FDDR/SERDES

If you already have your project open you can turn the Standalone Initialization mode ON from the Project
Settings  Design Flow window (Figure 2).

Figure 2 • Standalone Initialization from Project Settings window

5

3 – Using System Builder to Create a Design
Using DDR blocks

The IGLOO2 System Builder is a powerful design tool that helps you capture your system-level
requirements and produces a design implementing those requirements. With the Standalone
Initialization mode ON, if you are building a design using FDDR, you can choose to use System Builder
which automatically instantiates and configures the FDDR block. Alternatively, without using System
Builder also, you can just instantiate and configure the FDDR block manually to build your design. If you
want to build a design using the MDDR block, then you must use System Builder. In any case, the
peripheral initialization logic using CoreABC, CoreConfigP and CoreResetP has to be built manually for
every peripheral you use. If you are building a design using SERDESIF and fabric logic only (that means
if you don’t want to use anything else in the HPMS), you don’t have to use System Builder at all. Build
everything using regular Smart Design. In "Using SmartDesign to Create a Design Using DDR and
SERDESIF Blocks" on page 29 we describe in detail how to create such a solution without the System
Builder.
If you are using System Builder, you must perform the following tasks to create a design that will
instantiate and configure your DDR blocks (MDDR/FDDR), and then create and interface the initialization
logic required to initialize the DDR blocks (MDDR/FDDR).

1. In the Device Features page (Figure 3), specify which DDR controllers are used in your design.
2. In the Memory page, specify the type of DDR (DDR2/DDR3/LPDDR) and the configuration data

for your external DDR memories. See the Memory Page section for details.
3. In the Peripherals page, add fabric masters configured as AHBLite/AXI to the Fabric DDR

Subsystem and/or HPMS DDR FIC Subsystem (optional).
4. In the Clock Settings page, specify the clock frequencies for the DDR sub-systems, and
configure the Chip Oscillator and Fabric CCC resources required to drive the fabric logic outside the
System Builder block.
5. Complete your design specification and click Finish. System Builder will then build the design

instantiating and configuring the HPMS(MDDR)/FDDR blocks.
6. Build CoreABC based standalone initialization logic required to initialize the DDR blocks

(MDDR/FDDR).
7. Interface the initialization logic with the System Builder block (which has MDDR/FDDR), and

continue with the design flow.

6

System Builder Device Features Page

In the Device Features page, specify which DDR controllers (MDDR and/or FDDR) are used in your
design (Figure 3). You can also choose to use HPDMA for memory transfers between MDDR and
eNVM / eSRAM / fabric logic via FIC0/1, in this page.

Figure 3 • System Builder Device Features Page

7

System Builder Memory Page

To use the HPMS DDR (MDDR) or Fabric DDR (FDDR), select the Memory Type from the dropdown list
(Figure 4).

You must:
1. Select the DDR type (DDR2, DDR3 or LPDDR).
2. Define the DDR memory settling time. Consult your external DDR Memory Specifications to

set the correct memory setting time. The DDR memory may fail to initialize correctly if the
memory settling time is not correctly set.

3. Either import the DDR register configuration data or set your DDR Memory Parameters. For
details, consult the DDR Interfaces User's Guide.

This data is used to generate the CoreABC program files corresponding to the DDR registers being
configured. For complete details on DDR controller configuration registers please refer to the Microsemi
IGLOO2 High Speed Serial and DDR Interfaces User's Guide.

An example of the configuration file syntax is shown in Figure 5. The register names used in this file
are the same as the ones described in the DDR Interfaces User's Guide.

Figure 4 • HPMS External Memory

8

http://www.actel.com/documents/SmartFusion2_Serial_DDR_UG.pdf
http://www.actel.com/documents/SmartFusion2_Serial_DDR_UG.pdf
http://www.actel.com/documents/SmartFusion2_Serial_DDR_UG.pdf

Figure 5 • Configuration File Syntax Example

System Builder Peripherals Page
In the Peripherals page, for each DDR controller a separate subsystem is created (Fabric DDR
Subsystem for FDDR and HPMS DDR FIC Subsystem for MDDR). You can add a Fabric AMBA
Master (configured as AXI/AHBLite) core to each of these subsystems to enable fabric master access
to the DDR controllers. Upon generation, System Builder automatically instantiates bus cores
(depending on the type of AMBA Master added) and exposes the master BIF of the bus core and the
clock and reset pins of the corresponding subsystems (FDDR/MDDR) under appropriate pin groups,
to the top. All you have to do is connect the BIFs to the appropriate Fabric Master cores that you
would instantiate in the design. In the case of MDDR, it is optional to add a Fabric AMBA Master core
to the HPMS DDR FIC Subsystem. Instead you could choose to have HPDMA transfer data between
MDDR and eNVM / eSRAM / fabric logic via FIC0/1; for that you must check the HPDMA checkbox in
the Device Features page.

9

Figure 6• System Builder Peripherals Page

System Builder Clock Settings Page

In the Clock Settings page, for each DDR controller you must specify the clock frequencies related to
each DDR (MDDR and/or FDDR) sub-system.
For MDDR, you must specify:

• MDDR_CLK - This clock determines the operating frequency of the DDR Controller and should
match the clock frequency you wish your external DDR memory to run at. Note that this clock is
defined as a multiple of the HPMS_CLK (HPMS Main Clock, Figure 7). The MDDR_CLK must
be less than 333 MHz.

• DDR_FIC_CLK - If you have chosen to also access the MDDR from the FPGA fabric, you
need to specify the DDR_FIC_CLK. This clock frequency is defined as a ratio of the
MDDR_CLK and it should match the frequency at which the FPGA fabric sub-system that
accesses the MDDR is running.

Figure 7 • HPMS Main Clock; MDDR Clocks

For FDDR you must specify:
• FDDR_CLK - Determines the operating frequency of the DDR Controller and should match

10

the clock frequency at which you wish your external DDR memory to run (Figure 7). The
FDDR_CLK must be within 20 MHz and 333 MHz.

• FDDR_SUBSYSTEM_CLK - This clock frequency is defined as a ratio of the FDDR_CLK
and should match the frequency at which the FPGA fabric sub-system that accesses the
FDDR is running.

Figure 8 • Fabric DDR Clocks

Chip Oscillators Tab – Clocks Page
In the Chip Oscillators tab of the System Builder Clocks page, check the ‘On-chip 25/50 MHz RC
Oscillator’ and the ‘Drives Fabric Logic’ checkboxes as shown in the Figure 9 below. This exposes
an output pin RCOSC_25_50MHZ_O2F under the CHIP_OSC_PINS group on the System Builder
block which can be used to drive the RCOSC_25_50MHZ input pin of the CoreResetP soft IP cores
used in the peripheral initialization. This helps in reusing the oscillator block that’s already
instantiated inside the System Builder block to drive the CoreResetP cores being used for the
peripherals, that sit outside the System Builder block. This is necessary if you are using System
Builder because there’s only 1 RCOSC per device.

Figure 9 • Chip Oscillators tab of System Builder

Generating your System Builder design

Once you are done configuring all the System Builder pages with your desired settings, click ‘Finish’ in the last

11

page. The System Builder component is generated to a SmartDesign, with all required top level pins and BIF
ports exposed on the System Builder block under appropriate pin groups. Next you need to build the
initialization logic for the DDR blocks (MDDR/FDDR) used in your design, interface it to the System Builder
block to initialize the DDR blocks, generate and then continue with the design flow.

Upon generating the System Builder component, separate text files containing the CoreABC program
corresponding to MDDR and FDDR register configuration are created to the disk under the
<project_location>/.../*_HPMS/ directory and the <project_location>/.../FABDDR_0/ directories respectively
with the names MDDR_init_abc.txt and FDDR_init_abc.txt. This CoreABC program generated for
MDDR/FDDR has to be loaded/copied to the CoreABC instance used for the initialization of the peripheral
(MDDR/FDDR). This will be discussed again in the following sections.

Building Standalone Initialization Logic for MDDR
In order to initialize the MDDR, you must create the initialization subsystem in the FPGA fabric. The
FPGA fabric initialization subsystem moves data from the CoreABC program to the DDR configuration
registers, manages the reset sequences required for the MDDR block to be operational and signals
when the MDDR block is ready to communicate with the rest of your design. To create the initialization
subsystem you must:

• Instantiate and configure CoreABC soft IP core.
• Load CoreABC with the initialization program generated to the MDDR_init_abc.txt file.
• Instantiate and configure the CoreConfigP and the CoreResetP cores
• Connect these components to the peripheral's (MDDR) configuration interfaces, clocks, resets
and PLL lock ports

CoreABC configuration

1. Create a new SmartDesign component (MDDR_INIT).
2. Instantiate CoreABC into your SmartDesign. This core can be found in the Libero

Catalog (under Processors).
3. Double-click the core to open the configurator.
4. Configure the core as shown in the depiction below (Figure 10).
 Configure the data bus width to be 16.
 Configure the maximum number of instructions to at least 256.
 Configure to use AND and OR operations as optional instructions.
 Configure Instruction Store to Hard (FPGA Tiles).
5. Copy the CoreABC program generated for MDDR from the MDDR_init_abc.txt file

created under the <project_location>/…/*_HPMS/ directory, to the CoreABC
Program tab. See the figure below.

12

Figure 10. CoreABC configuration

13

Figure X. CoreABC program for MDDR

CoreConfigP

1. Instantiate CoreConfigP into the same SmartDesign. This core can be found in the
Libero Catalog (under Peripherals).

2. Double-click the core to open the configurator.
3. Configure the core to specify which peripherals need to be initialized (Figure 11)

14

Figure 11 • CoreConfigP Dialog Box

CoreResetP

1 . Instantiate CoreResetP into the same SmartDesign. This core can be found in the
Libero Catalog, under Peripherals.

2. Double-click the core inside the SmartDesign Canvas to open the Configurator (Figure
12– CoreResetP Configurator)

3 . Configure the core to:
– Specify the external reset behavior (EXT_RESET_OUT asserted). Choose one of four options:

• EXT_RESET_OUT is never asserted
• EXT_RESET_OUT is asserted if power up reset (POWER_ON_RESET_N) is asserted
• EXT_RESET_OUT is asserted if FAB_RESET_N is asserted
• EXT_RESET_OUT is asserted if power up reset (POWER_ON_RESET_N) or

FAB_RESET_N is asserted
– Specify the Device Voltage. The selected value should match the voltage you selected in the

Libero Project Settings dialog.
– Check the appropriate checkboxes to indicate which peripherals you are using in your design..
– Specify the external DDR memory setting time. Refer to the external DDR memory vendor

datasheet to configure this parameter. 200us is a good default value for DDR2 and DDR3
memories running at 200MHz. This is a very important parameter to guarantee a working
simulation and a working system on silicon. Incorrect value for the settling time may result in

15

simulation errors.
Refer to the CoreResetP handbook for details on the options available to you in this configurator

Figure 12. CoreResetP Configurator

Overall Connectivity of the initialization logic (MDDR_INIT)
After you have instantiated and configured the 3 cores CoreABC, CoreConfigP and CoreResetP, appropriate
connections have to be made to make the initialization logic operational. See the depiction below in the Figure 13 to
understand how the connections are made.

The following is a list of signals that need to be promoted to the top which will be needed when interfacing this
initialization logic with the actual peripheral (MDDR).

• CoreConfigP:

16

o APB_S_PRESET_N
o APB_S_PCLK
o APB_S_INIT (APB BIF MDDR_APBmslave)

• CoreResetP:
o RCOSC_25_50MHZ
o FAB_RESET_N
o POWER_ON_RESET_N
o DDR_READY
o MDDR_DDR_AXI_S_CORE_RESET_N

• INIT_PCLK_25MHz connecting together the PCLK of CoreABC, the FIC_2_APB_M_PCLK of CoreConfigP
and the CLK_BASE of CoreResetP).

Figure 13. MDDR_INIT (MDDR Initialization Logic)

Interfacing MDDR with the Initialization Logic Built for it
In the same SmartDesign the System Builder block is present, instantiate the Smart Design containing the MDDR
initialization logic (MDDR_INIT), and do necessary interconnections to interface the System Builder block (containing
the MDDR) to the initialization logic. See the depiction below in the Figure 14 to understand how the connections are
made.

The following is a list of signal interconnections that need to be made to properly interface the System Builder block
(MDDR) to the initialization logic.

17

FROM
Port or Bus Interface (BIF)/ Component

TO
Port/Bus Interface (BIF)/Component

MDDR_APB_S_PCLK/ System Builder Block APB_S_PCLK/ initialization logic.

MDDR_APB_S_PRESET_N/ System Builder Block APB_S_PRESET_N/ initialization logic.

MDDR_APB_SLAVE BIF/ System Builder Block APB_S_INIT/ initialization logic

POWER_ON_RESET_N/ System Builder Block POWER_ON_RESET_N/ initialization logic

FAB_RESET_N / System Builder Block FAB_RESET_N / initialization logic

RCOSC_25_50MHZ/ System Builder Block RCOSC_25_50MHZ/ initialization logic

MDDR_CORE_RESET_N / System Builder Block
MDDR_DDR_AXI_S_CORE_RESET_N / initialization
logic

Apart from the above connections, do the following also:

• Promote the FAB_RESET_N pin the initialization logic (MDDR_INIT_0 instance) to the top level (this is the
warm reset).

• Promote the HPMS_DDR_FIC_SUBSYSTEM_PINS to the top to drive the fabric logic that belongs to the
HPMS_DDR_FIC_SUBSYSTEM.

• Promote the DDR_READY of the initialization logic to the top to monitor the status of the MDDR initialization.
• Drive the INIT_PCLK_25MHz input pin of the initialization logic with 25MHz clock. You can use the unused

GLx in the System Builder block from the ‘Fabric CCC’ tab of the ‘Clocks’ page to drive any clock in the fabric
logic.

18

Figure 14. Interfacing System Builder (MDDR) with the Initialization Logic

Building Standalone Initialization Logic for FDDR

In order to initialize the FDDR, you must create the initialization subsystem in the FPGA fabric. The
FPGA fabric initialization subsystem moves data from the CoreABC program to the DDR configuration
registers, manages the reset sequences required for the FDDR block to be operational and signals
when the FDDR block is ready to communicate with the rest of your design. To create the initialization
subsystem you must:

• Instantiate and configure CoreABC soft IP core.

19

• Load CoreABC with the initialization program generated to the FDDR_init_abc.txt file.
• Instantiate and configure the CoreConfigP and CoreResetP cores
• Connect these components to the peripheral's (FDDR) configuration interfaces, clocks, resets
and PLL lock ports

CoreABC configuration

1. Create a new SmartDesign component (FDDR_INIT).
2. Instantiate CoreABC into your SmartDesign. This core can be found in the Libero

Catalog (under Processors).
3. Double-click the core to open the configurator.
4. Configure the core as shown in the depiction below (Figure 15).
 Configure the data bus width to be 16.
 Configure the maximum number of instructions to at least 256.
 Configure to use AND and OR operations as optional instructions.
 Configure Instruction Store to Hard (FPGA Tiles).
5. Copy the CoreABC program generated for FDDR from the FDDR_init_abc.txt file created under
the <project_location>/.../FABDDR_0/ directory, to the CoreABC Program tab. See the figure below.

20

Figure 15. CoreABC configuration

21

Figure X. CoreABC program for FDDR

CoreConfigP

1. Instantiate CoreConfigP into the same SmartDesign. This core can be found in the
Libero Catalog (under Peripherals).

2. Double-click the core to open the configurator.
3. Configure the core to specify which peripherals need to be initialized (Figure 16)

22

Figure 16 • CoreConfigP Dialog Box

CoreResetP

1 . Instantiate CoreResetP into the same SmartDesign. This core can be found in the
Libero Catalog, under Peripherals.

2. Double-click the core inside the SmartDesign Canvas to open the Configurator (Figure
17 – CoreResetP Configurator)

3 . Configure the core to:
– Specify the external reset behavior (EXT_RESET_OUT asserted). Choose one of four options:

• EXT_RESET_OUT is never asserted
• EXT_RESET_OUT is asserted if power up reset (POWER_ON_RESET_N) is asserted
• EXT_RESET_OUT is asserted if FAB_RESET_N is asserted
• EXT_RESET_OUT is asserted if power up reset (POWER_ON_RESET_N) or

FAB_RESET_N is asserted
– Specify the Device Voltage. The selected value should match the voltage you selected in the

Libero Project Settings dialog.
– Check the appropriate checkboxes to indicate which peripherals you are using in your design.
– Specify the external DDR memory setting time. Refer to the external DDR memory vendor

datasheet to configure this parameter. 200us is a good default value for DDR2 and DDR3
memories running at 200MHz. This is a very important parameter to guarantee a working
simulation and a working system on silicon. Incorrect value for the settling time may result in

23

simulation errors.
Refer to the CoreResetP handbook for details on the options available to you in this configurator.

Figure 17. CoreResetP Configurator

Overall Connectivity of the initialization logic (FDDR_INIT)
After you have instantiated and configured the 3 cores CoreABC, CoreConfigP and CoreResetP, appropriate
connections have to be made to make the initialization logic operational. See the depiction below in the Figure 18 to
understand how the connections are made.

The following is a list of signals that need to be promoted to the top which will be needed when interfacing this
initialization logic with the actual peripheral (FDDR).

• CoreConfigP:

24

o APB_S_PRESET_N
o APB_S_PCLK
o APB_S_INIT (APB BIF FDDR_APBmslave)

• CoreResetP:
o RCOSC_25_50MHZ
o FAB_RESET_N
o POWER_ON_RESET_N
o DDR_READY
o FDDR_CORE_RESET_N
o FPLL_LOCK

• INIT_PCLK_25MHz (connecting together the PCLK of CoreABC, the FIC_2_APB_M_PCLK of CoreConfigP
and the CLK_BASE of CoreResetP).

Figure 18. FDDR_INIT (FDDR Initialization Logic)

Interfacing FDDR with the Initialization Logic Built for it
In the same SmartDesign the System Builder block is present, instantiate the Smart Design containing the FDDR
initialization logic (FDDR_INIT), and do necessary interconnections to interface the System Builder block containing
the FDDR, to the initialization logic. See the depiction below in the Figure 19 to understand how the connections are
made.

25

The following is a list of signal interconnections that need to be made to properly interface the FDDR to the
initialization logic.

FROM
Port or Bus Interface (BIF)/ Component

TO
Port/Bus Interface (BIF)/ Component

FDDR_APB_S_PCLK/ System Builder Block APB_S_PCLK/ initialization logic

FDDR_APB_S_PRESET_N/ System Builder Block APB_S_PRESET_N/ initialization logic

FDDR_APB_SLAVE BIF/ System Builder Block APB_S_INIT/ initialization logic

POWER_ON_RESET_N/ System Builder Block POWER_ON_RESET_N/ initialization logic

FAB_RESET_N / System Builder Block FAB_RESET_N / initialization logic

RCOSC_25_50MHZ/ System Builder Block RCOSC_25_50MHZ/ initialization logic

FDDR_CORE_RESET_N / System Builder Block FDDR_CORE_RESET_N / initialization logic

FDDR_FPLL_LOCK/ System Builder Block FPLL_LOCK/ initialization logic

Apart from the above connections, do the following also:
• Promote the FAB_RESET_N pin the initialization logic (FDDR_INIT_0 instance) to the top level (this is the

warm reset).
• Promote the DDR_READY of the initialization logic to the top to monitor the status of the FDDR initialization.
• Promote the FDDR_SUSBSYSTEM_RESET_N pin to the top or drive it appropriately from the fabric logic.
• Instantiate a FABCCC block and do the following connections:

o Drive the INIT_PCLK_25MHZ input pin of the initialization logic with the GLx of FABCCC block
configured to 25MHz frequency.

o Drive the FDDR_SUBSYSTEM_CLK input pin under the FDDR_SUBSYSTEM_PINS group of the
System Builder block with the GLx of FABCCC block (configured to appropriate frequency).

o Drive the FDDR_SUBSYSTEM_LOCK input pin under the FDDR_SUBSYSTEM_PINS group of the
System Builder block with the LOCK pin of the FABCCC block.

26

Figure 19. Interfacing System Builder (FDDR) with the Initialization Logic

27

Continuing with the Design Flow
Next step is to integrate any user logic that you might have with the System Builder block and the initialization logic.
Once you have done that, you can generate your top level SmartDesign. This will generate all files that are necessary
to implement and simulate your design. You can then proceed with the rest of the Design Flow.

28

4 – Using SmartDesign to Create a Design Using
SERDESIF and FDDR Blocks

In this section we describe how to put a complete 'initialization' solution together without using the IGLOO2
System Builder. The goal is to help you understand what you must do if you do not wish to use the System
Builder. In this section we describe how to:

• Input the configuration data for FDDR controller and SERDESIF configuration registers.
• Instantiate and connect the Fabric Cores required to transfer the configuration data to the FDDR
controller and SERDESIF configuration registers.

NOTE: If you want to use the MDDR block in your design, then you must use System Builder. In IGLOO2, it is
not possible to build a design using MDDR without using the System Builder.

Design using SERDESIF_n (n=0/1/2/3)

Building Standalone Initialization Logic for SERDESIF_n
In order to initialize the SERDESIF_n registers, you must create the initialization subsystem in the FPGA
fabric. The FPGA fabric initialization subsystem moves data from the CoreABC program to the
SERDESIF_n configuration registers, manages the reset sequences required for the SERDESIF_n block to
be operational and signals when the SERDESIF_n block is ready to communicate with the rest of your
design. To create the initialization subsystem you must:

• Instantiate and configure CoreABC soft IP core.
• Load CoreABC with the initialization program generated to the SERDESIF_n_init_abc.txt file.
• Instantiate and configure the CoreConfigP and CoreResetP cores.
• Instantiate and configure the on-chip 50MHz RC oscillator.
• Instantiate the System Reset (SYSRESET) macro.
• Connect these components to the peripheral's (SERDESIF_n) configuration interface, clocks, resets
and PLL lock ports.

CoreABC configuration

1. Create a new SmartDesign component (SERDESIF_n_INIT).
2. Instantiate CoreABC into your SmartDesign. This core can be found in the Libero Catalog

(under Processors).
3. Double-click the core to open the configurator.

4. Configure the core as shown in the depiction below (Figure 20).

Configure the data bus width to be 32 (as 32-bit data needs to be written to some of the SERDES
registers).

 Configure the maximum number of instructions to at least 256.
 Configure to use AND and OR operations as optional instructions.
 Configure Instruction Store to Hard (FPGA Tiles).

5. Copy the CoreABC program generated for SERDESIF_n from the
SERDESIF_n_init_abc.txt file created under the <project_location>/../SERDES_IF_n/
directory, to the CoreABC Program tab. See the figure below.

NOTE: The SERDESIF_n_init_abc.txt file will be generated only after you generate the Smart Design
containing the SERDESIF_n block. So after you’ve made all the connections and generated all the blocks

29

(including SERDESIF_n), you will need to copy the contents of the SERDESIF_n_init_abc.txt file to the
CoreABC Program tab and regenerate the initialization logic Smart Design component containing CoreABC.
You may defer doing this until you completely configure your SERDESIF_n block and generate the
SmartDesign component containing it.

Figure 20. CoreABC configuration

30

 Figure X. CoreABC program for SERDESIF_n

CoreConfigP

1. Instantiate CoreConfigP into the same SmartDesign. This core can be found in the
Libero Catalog (under Peripherals).

2. Double-click the core to open the configurator.

3. Check the appropriate checkboxes as shown in the figure below (Figure 21).

NOTE: Irrespective of the SERDESIF_n location (n=0/1/2/3) you want to configure using this
initialization logic, check only the “SDIF0 in use” and “SDIF0 used for PCIe” checkboxes. For
example, even if you are building this initialization logic for say, the SERDESIF_1/2/3 location, you
need to check the “SDIF0 in use” and “SDIF0 used for PCIe” checkboxes in the CoreConfigP
instance. Do not check the checkboxes corresponding to the SERDESIF_1/2/3 locations in the
CoreConfigP instance. This is a requirement for the Libero generated CoreABC code to work for all

31

the SERDESIF_n locations (n = 0/1/2/3). And this rule is applicable only when you are configuring the
CoreConfigP and CoreResetP instances as a part of building the initialization logic; you will have to
specify the exact SERDESIF_n location in the SERDESIF configurator later when you instantiate and
configure the SERDESIF block.

Figure 21• CoreConfigP Dialog Box

CoreResetP

1 . Instantiate CoreResetP into the same SmartDesign. This core can be found in the
Libero Catalog, under Peripherals.

2. Double-click the core inside the SmartDesign Canvas to open the Configurator
(Figure 22 – CoreResetP Configurator)

3. Configure the core to:
– Specify the external reset behavior (EXT_RESET_OUT asserted). Choose one of four options:

• EXT_RESET_OUT is never asserted
• EXT_RESET_OUT is asserted if power up reset (POWER_ON_RESET_N) is asserted
• EXT_RESET_OUT is asserted if FAB_RESET_N is asserted
• EXT_RESET_OUT is asserted if power up reset (POWER_ON_RESET_N) or

FAB_RESET_N is asserted
– Specify the Device Voltage. The selected value should match the voltage you selected in the

Libero Project Settings dialog.
– Check the appropriate checkboxes as shown in the figure below. Refer to the CoreResetP

32

handbook for details on the options available to you in this configurator.

NOTE: Irrespective of the SERDESIF_n location (n=0/1/2/3) you want to configure using this
initialization logic, check only the checkboxes under the “SERDES Interface 0”. For example, even if
you are building this initialization logic for say, the SERDESIF_1/2/3 location, you need to check the
checkboxes under the “SERDES Interface 0” in the CoreResetP instance. Do not check the
checkboxes corresponding to the SERDESIF_1/2/3 locations. This is a requirement for the Libero
generated CoreABC code to work for all the SERDESIF_n locations (n = 0/1/2/3). And this rule is
applicable only when you are configuring the CoreConfigP and CoreResetP instances as a part of
building the initialization logic; you will have to specify the exact SERDESIF_n location in the
SERDESIF configurator later when you instantiate and configure the SERDESIF block.

Figure 22. CoreResetP Configurator

33

Overall Connectivity of the initialization logic (SERDESIF_n_INIT)
After you have instantiated and configured the 3 cores CoreABC, CoreConfigP and CoreResetP, appropriate
connections have to be made to make the initialization logic operational. See the depiction below in the Figure
23 to understand how the connections are made.

The following is a list of signals that need to be promoted to the top which will be needed when interfacing this
initialization logic with the actual peripheral (SERDESIF_n).

o CoreConfigP:
 APB_S_PRESET_N
 APB_S_PCLK
 APB_S_INIT (APB BIF SDIF0_APBmslave)

o CoreResetP:
 RCOSC_25_50MHZ
 CLK_LTSSM (promoted as CLK_LTSSM_125MHZ)
 FAB_RESET_N
 POWER_ON_RESET_N
 SDIF_READY
 SDIFn_PHY_RESET_N
 SDIFn_CORE_RESET_N
 SDIFn_SPLL_LOCK
 SDIFn_PERST_N

o INIT_PCLK_25MHz (connecting together the PCLK of CoreABC, the FIC_2_APB_M_PCLK of
CoreConfigP and the CLK_BASE of CoreResetP).

Figure 23. SERDESIF_n_INIT (SERDESIF_n Initialization Logic)

Instantiating and Configuring the SERDESIF_n block
Create a Smart Design component and instantiate a SERDESIF block from the catalog window (from under
the Peripherals). Double-click the SERDESIF block in the SmartDesign canvas to open the
configurator to select a location (n= 0/1/2/3) and configure the SERDES. (Figure 24 -High Speed

34

Serial Interface Configurator). Similar to the DDR configuration registers, each SERDES block also has
configuration registers that must be loaded at runtime. You can either import these register values or use
the High Speed Serial Interface Configurator (Figure 24 SERDES Configurator) to enter your PCIe or
EPCS parameters and the register values will automatically be computed for you. Consult the SERDES
Configurator User’s Guide for details.

Figure 24. High Speed Serial Interface Configurator

Interfacing SERDESIF_n with the Initialization Logic Built for
it
In the same SmartDesign the SERDESIF_n block is present, instantiate the Smart Design containing the
SERDESIF_n initialization logic (SERDESIF_n_INIT), and do necessary interconnections to interface the
SERDESIF_n block to the initialization logic. See the depiction below in the Figure 27 to understand how the
connections are made.

The following is a list of signal interconnections that need to be made to properly interface the SERDESIF_n to
the initialization logic.

35

FROM Port or Bus Interface (BIF)/ Component TO Port/Bus Interface (BIF)/ Component

APB_S_PCLK/ SERDESIF_n APB_S_PCLK/ initialization logic

APB_S_PRESET_N/ SERDESIF_n APB_S_PRESET_N/ initialization logic

APB_SLAVE BIF/ SERDESIF_n APB_S_INIT/ initialization logic

PHY_RESET_N/ SERDESIF_n SDIFn_PHY_RESET_N/ initialization logic

CORE_RESET_N/ SERDESIF_n SDIFn_CORE_RESET_N/ initialization logic

SPLL_LOCK/ SERDESIF_n SDIFn_SPLL_LOCK/ initialization logic

50MHz Oscillator Instantiation
CoreResetP needs to be clocked by the on-chip 50MHz RC oscillator. You must instantiate a 50MHz
Oscillator for this purpose.

1. Instantiate the Chip Oscillators core into the same SmartDesign the SERDESIF_n block is
present. This core can be found in the Libero Catalog under Clock & Management.

2. Configure this core such that the oscillator drives the FPGA fabric, as shown in Figure 25.
3. Click “OK”.
4. Connect the RCOSC_25_50MHz_O2F output of the Oscillator to the RCOSC_25_50MHz input

of SERDESIF_n_INIT block (SERDESIF_n initialization logic).

Figure 25 • Chip Oscillators Configurator

System Reset (SYSRESET) Instantiation

The SYSRESET macro provides device level reset functionality to your design. The POWER_ON_RESET_N
output signal is asserted/de-asserted whenever the chip is powered up or the external pin DEVRST_N is
asserted/de-asserted (Figure 26). Instantiate the SYSRESET macro into the same SmartDesign the
SERDESIF_n block is present. This macro can be found in the Libero Catalog under Macro Library. No

36

configuration of this macro is necessary. Drive the POWER_ON_RESET_N input of SERDESIF_n_INIT
block (SERDESIF_n initialization logic with the POWER_ON_RESET_N output signal of this SYSRESET
macro.

Figure 26 • SYSRESET Macro

Apart from the above connections, do the following also:

• Promote the FAB_RESET_N pin of the initialization logic (SERDESIF_n_INIT_0 instance) to the top
level (this is the warm reset).

• Promote the SDIFn_READY pin of the initialization logic to the top to monitor the status of the
SERDESIF_n initialization.

• Promote the SDIFn_PERST_N pin of the initialization logic to the top or tie it high.
• Instantiate a FABCCC block and do the following connections:

o Drive the INIT_PCLK_25MHZ input pin of the initialization logic with the GLx of FABCCC
block configured to 25MHz frequency.

o Drive the CLK_BASE input pin of the SERDESIF_n block with the GLx of FABCCC block
(configured to appropriate frequency).

o Drive the CLK_LTSSM_125MHZ input pin of the initialization logic with the GLx of FABCCC
block configured to 125MHz frequency.

NOTE: If more than 1 SERDESIF blocks are used in a design then you should put together separate
initialization logic (using the CoreABC, CoreConfigP, and CoreResetP) for each one of them and do
appropriate connections with the SERDESIF_n blocks.

Figure 27. Interfacing SERDESIF_n with the Initialization Logic

37

Continuing with the Design Flow
Next step is to integrate any user logic that you might have with the SERDESIF_n block and the initialization
logic. Once you have done that, you can generate your top level SmartDesign. This will generate all files that
are necessary to implement and simulate your design. You can then proceed with the rest of the Design Flow.

NOTE: After configuring all the desired SERDESIF_n registers in the SERDESIF configurator and upon
generating the Smart Design component containing the SERDESIF_n block , the SERDESIF_n_init_abc.txt
file will be generated to the disk. You will need to copy the contents of the SERDESIF_n_init_abc.txt file to the
CoreABC Program tab and regenerate the initialization logic Smart Design component containing CoreABC.

38

.

Design using FDDR block

Building Standalone Initialization Logic for FDDR
In order to initialize the FDDR, you must create the initialization subsystem in the FPGA fabric. The FPGA
fabric initialization subsystem moves data from the CoreABC program to the DDR configuration registers,
manages the reset sequences required for the FDDR block to be operational and signals when the FDDR
block is ready to communicate with the rest of your design. To create the initialization subsystem you must:

• Instantiate and configure CoreABC soft IP core.
• Load CoreABC with the initialization program generated to the FDDR_init_abc.txt file.
• Instantiate and configure the CoreConfigP and CoreResetP cores.
• Instantiate and configure the on-chip 50MHz RC oscillator.
• Instantiate the System Reset (SYSRESET) macro.
• Connect these components to the peripheral's (FDDR) configuration interface, clocks, resets and PLL
lock ports.

CoreABC configuration

1. Create a new SmartDesign component (FDDR_INIT).
2. Instantiate CoreABC into your SmartDesign. This core can be found in the Libero Catalog

(under Processors).
3. Double-click the core to open the configurator.

4. Configure the core as shown in the depiction below (Figure 28).

 Configure the data bus width to be 16.
 Configure the maximum number of instructions to at least 256.
 Configure to use AND and OR operations as optional instructions.
 Configure Instruction Store to Hard (FPGA Tiles).
5. Copy the CoreABC program generated for FDDR from the FDDR_init_abc.txt file created

under the <project_location>/../FABDDR_0/ directory, to the CoreABC Program tab. See
the figure below.

NOTE: The FDDR_init_abc.txt file will be generated only when you generate the Smart Design containing the
FDDR block. So after you’ve made all the connections and generated all the blocks (including FDDR), you will
need to copy the contents of the FDDR_init_abc.txt file to the CoreABC Program tab and regenerate the
initialization logic Smart Design component containing CoreABC. You may defer doing this until you completely
configure your FDDR block and generate the SmartDesign component containing it.

39

Figure 28. CoreABC configuration

40

Figure X. CoreABC program for FDDR

CoreConfigP

1. Instantiate CoreConfigP into the same SmartDesign. This core can be found in the Libero
Catalog (under Peripherals).

2. Double-click the core to open the configurator.
3. Configure the core to specify which peripherals need to be initialized (Figure 29)

41

Figure 29 • CoreConfigP Dialog Box

CoreResetP

1 . Instantiate CoreResetP into the same SmartDesign. This core can be found in the
Libero Catalog, under Peripherals.

2. Double-click the core inside the SmartDesign Canvas to open the Configurator
(Figure 30 – CoreResetP Configurator)

3. Configure the core to:
– Specify the external reset behavior (EXT_RESET_OUT asserted). Choose one of four options:

• EXT_RESET_OUT is never asserted
• EXT_RESET_OUT is asserted if power up reset (POWER_ON_RESET_N) is asserted
• EXT_RESET_OUT is asserted if FAB_RESET_N is asserted
• EXT_RESET_OUT is asserted if power up reset (POWER_ON_RESET_N) or

FAB_RESET_N is asserted
– Specify the Device Voltage. The selected value should match the voltage you selected in the

Libero Project Settings dialog.
– Check the appropriate checkboxes to indicate which peripherals you are using in your design.
– Specify the external DDR memory setting time. Refer to the external DDR memory vendor

datasheet to configure this parameter. 200us is a good default value for DDR2 and DDR3
memories running at 200MHz. This is a very important parameter to guarantee a working
simulation and a working system on silicon. Incorrect value for the settling time may result in

42

simulation errors.
Refer to the CoreResetP handbook for details on the options available to you in this configurator.

Figure 30. CoreResetP Configurator

Overall Connectivity of the initialization logic (FDDR_INIT)
After you have instantiated and configured the 3 cores CoreABC, CoreConfigP and CoreResetP, appropriate
connections have to be made to make the initialization logic operational. See the depiction below in the Figure
31 to understand how the connections are made.

The following is a list of signals that need to be promoted to the top which will be needed when interfacing this

43

initialization logic with the actual peripheral (FDDR).
• CoreConfigP:

o APB_S_PRESET_N
o APB_S_PCLK
o APB_S_INIT (APB BIF FDDR_APBmslave)

• CoreResetP:
o RCOSC_25_50MHZ
o FAB_RESET_N
o POWER_ON_RESET_N
o DDR_READY
o FDDR_CORE_RESET_N
o FPLL_LOCK

• INIT_PCLK_25MHz (connecting together the PCLK of CoreABC, the FIC_2_APB_M_PCLK of
CoreConfigP and the CLK_BASE of CoreResetP).

Figure 31. FDDR_INIT (FDDR Initialization Logic)

Instantiating and configuring the FDDR block
Create a Smart Design component and instantiate the FDDR block from the catalog window (from under the
Memory and Controllers). Double-click the FDDR block in the SmartDesign canvas to open the configurator
and configure the FDDR. (Figure 32). The Fabric DDR (FDDR) controller must be configured dynamically (at
runtime) to match the external DDR memory configuration requirements (DDR mode, PHY width, burst mode,

44

ECC, etc.). Data entered in the FDDR configurator is written to the DDR controller configuration registers by
the CoreABC program. The Configurator has three different tabs for entering different types of configuration
data:

• General data (DDR mode, Data Width, Clock Frequency, ECC, Fabric Interface, Drive Strength)
• Memory Initialization data (Burst Length, Burst Order, Timing Mode, Latency etc)
• Memory Timing data

Consult the specifications of your external DDR memory and configure the DDR Controller to match the
requirements of your external DDR memory.

For details on DDR Configuration, refer to the IGLOO2 HPMS DDR Configuration User Guide.

Figure 32. Fabric DDR configurator

45

http://coredocs.s3.amazonaws.com/Libero/SmartFusion2MSS/HPMS_DDRB/igl2_hpms_ddrb_config_ug_1.pdf

Interfacing the FDDR with the Initialization Logic Built for it
In the same SmartDesign the FDDR block is present, instantiate the Smart Design containing the FDDR
initialization logic (FDDR_INIT), and do necessary interconnections to interface the FDDR block to the
initialization logic. See the depiction below in the Figure 35 to understand how the connections are made.

The following is a list of signal interconnections that need to be made to properly interface the FDDR to the
initialization logic.

FROM Port or Bus Interface (BIF)/ Component TO Port/Bus Interface (BIF)/ Component

APB_S_PCLK/ FDDR APB_S_PCLK/ initialization logic.

APB_S_PRESET_N/ FDDR APB_S_PRESET_N/ initialization logic.

APB_SLAVE BIF/ FDDR APB_S_INIT/ initialization logic

FPLL_LOCK/ FDDR FPLL_LOCK/ initialization logic

CORE_RESET_N / FDDR FDDR_CORE_RESET_N / initialization logic

50MHz Oscillator Instantiation
CoreResetP needs to be clocked by the on-chip 50MHz RC oscillator. You must instantiate a 50MHz
Oscillator for this purpose.

1. Instantiate the Chip Oscillators core into the same SmartDesign the FDDR block is present.
This core can be found in the Libero Catalog under Clock & Management.

2. Configure this core such that the oscillator drives the FPGA fabric, as shown in Figure 33 below.
3. Click “OK”.
4. Connect the RCOSC_25_50MHz_O2F output of the Oscillator to the RCOSC_25_50MHz input

of FDDR_INIT block (FDDR initialization logic).

Figure 33 • Chip Oscillators Configurator

System Reset (SYSRESET) Instantiation

The SYSRESET macro provides device level reset functionality to your design. The POWER_ON_RESET_N
output signal is asserted/de-asserted whenever the chip is powered up or the external pin DEVRST_N is
asserted/de-asserted (Figure 34).Instantiate the SYSRESET macro into the same SmartDesign the
FDDR block is present. This macro can be found in the Libero Catalog under Macro Library. No
configuration of this macro is necessary. Drive the POWER_ON_RESET_N input of FDDR_INIT block
(FDDR initialization logic with the POWER_ON_RESET_N output signal of this SYSRESET macro.

Figure 34 • SYSRESET Macro

Apart from the above connections, do the following also:

• Promote the FAB_RESET_N pin the initialization logic (FDDR_INIT_0 instance) to the top level (this
is the warm reset).

• Promote the DDR_READY of the initialization logic to the top to monitor the status of the FDDR
initialization.

• Instantiate a FABCCC block and do the following connections:
o Drive the INIT_PCLK_25MHZ input pin of the initialization logic with the GLx of FABCCC

block configured to 25MHz frequency.
o Drive the CLK_BASE input pin of the FDDR block with the GLx of FABCCC block

(configured to appropriate frequency).
o Drive the CLK_BASE_PLL_LOCK input pin of the FDDR block with the LOCK pin of the

FABCCC block.

Figure 35. Interfacing FDDR with the Initialization Logic

Continuing with the Design Flow
Next step is to integrate any user logic that you might have with the FDDR block and the initialization logic.
Once you have done that, you can generate your top level SmartDesign. This will generate all files that are
necessary to implement and simulate your design. You can then proceed with the rest of the Design Flow.

NOTE: After configuring all the desired FDDR registers in the FDDR configurator and upon generating the
Smart Design component containing the FDDR block , the FDDR_init_abc.txt file will be generated to the disk.
You will need to copy the contents of the FDDR_init_abc.txt file to the CoreABC Program tab and regenerate
the initialization logic Smart Design component containing CoreABC.

49

6 – Simulating the Design

Unlike the normal flow (Standalone Initialization OFF) where the peripheral initialization involves
various *_init.reg files to mimic the initialization in simulations, no such files are required in case of
the Standalone Initialization mode ON.

NOTE: Unlike the normal flow, ENVM_init.mem file that’s created upon invoking simulations
doesn’t have any peripheral’s register configuration information in case of the Standalone
Initialization mode ON. It only has the data corresponding to the ENVM clients specified in the
design.

The CoreABC program is solely responsible for the peripheral initialization both in simulations and
on board (device).

When you generate a Smart Design component containing SERDESIF_n (configured in PCIe mode),
then the following files are generated in the <project dir>/simulation directory:

• SERDESIF_n_user.bfm - Contains the user commands. Edit this file to enter your BFM
commands that would exercise the SERDESIF_n PCIe.

50

A – Product Support

Microsemi SoC Products Group backs its products with various support services, including Customer
Service, Customer Technical Support Center, a website, electronic mail, and worldwide sales offices.
This appendix contains information about contacting Microsemi SoC Products Group and using these
support services.

Customer Service

Contact Customer Service for non-technical product support, such as product pricing, product upgrades,
update information, order status, and authorization.

From North America, call 800.262.1060
From the rest of the world, call 650.318.4460
Fax, from anywhere in the world, 408.643.6913

Customer Technical Support Center

Microsemi SoC Products Group staffs its Customer Technical Support Center with highly skilled
engineers who can help answer your hardware, software, and design questions about Microsemi SoC
Products. The Customer Technical Support Center spends a great deal of time creating application
notes, answers to common design cycle questions, documentation of known issues, and various FAQs.
So, before you contact us, please visit our online resources. It is very likely we have already answered
your questions.

Technical Support

Visit the Customer Support website (www.microsemi.com/soc/support/search/default.aspx) for more
information and support. Many answers available on the searchable web resource include diagrams,
illustrations, and links to other resources on the website.

Website

You can browse a variety of technical and non-technical information on the SoC home page, at
www.microsemi.com/soc.

Contacting the Customer Technical Support Center

Highly skilled engineers staff the Technical Support Center. The Technical Support Center can be
contacted by email or through the Microsemi SoC Products Group website.

Email

You can communicate your technical questions to our email address and receive answers back by email,
fax, or phone. Also, if you have design problems, you can email your design files to receive assistance.
We constantly monitor the email account throughout the day. When sending your request to us, please
be sure to include your full name, company name, and your contact information for efficient processing of
your request.
The technical support email address is soc_tech@microsemi.com.

http://www.microsemi.com/soc/support/search/default.aspx
http://www.microsemi.com/soc
mailto:soc_tech@microsemi.com

My Cases

Microsemi SoC Products Group customers may submit and track technical cases online by going to My
Cases.

Outside the U.S.

Customers needing assistance outside the US time zones can either contact technical support via email
(soc_tech@microsemi.com) or contact a local sales office. Sales office listings can be found at
www.microsemi.com/soc/company/contact/default.aspx.

ITAR Technical Support

For technical support on RH and RT FPGAs that are regulated by International Traffic in Arms Regulations
(ITAR), contact us via soc_tech_itar@microsemi.com. Alternatively, within My Cases, select Yes in the ITAR
drop-down list. For a complete list of ITAR-regulated Microsemi FPGAs, visit the ITAR web page.

Microsemi Corporate Headquarters
One Enterprise, Aliso Viejo CA 92656 USA
Within the USA: +1 (949) 380-6100
Sales: +1 (949) 380-6136
Fax: +1 (949) 215-4996

Microsemi Corporation (NASDAQ: MSCC) offers a comprehensive portfolio of semiconductor
solutions for: aerospace, defense and security; enterprise and communications; and industrial
and alternative energy markets. Products include high-performance, high-reliability analog
and RF devices, mixed signal and RF integrated circuits, customizable SoCs, FPGAs, and
complete subsystems. Microsemi is headquartered in Aliso Viejo, Calif. Learn more at
www.microsemi.com.

© 2014 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of
Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.

5-02-00384-1/09.14

http://www.microsemi.com/soc/mycases/
http://www.microsemi.com/soc/mycases/
mailto:tech@microsemi.com
http://www.microsemi.com/soc/company/contact/default.aspx
http://www.microsemi.com/soc/company/contact/default.aspx
http://www.microsemi.com/soc/company/contact/default.aspx%23itartechsupport
mailto:soc_tech_itar@microsemi.com
http://www.microsemi.com/soc/mycases/
http://www.microsemi.com/soc/ITAR/
http://www.microsemi.com/

