IGLOO2

DDR Controller and Serial High Speed Controller
Standalone Initialization Methodology

& Microsemi

Introduction

When creating a design using an IGLOQO?2 device, if you use any of the two DDR controllers (FDDR or
MDDR) or Serial High speed controller (SERDESIF) blocks, you must initialize the configuration
registers of these blocks at run-time before they can be used. For example, for the DDR controller, you
must set the DDR mode (DDR3/DDR2/LPDDR), PHY width, burst mode and ECC. Similarly, for the
SERDESIF block used as a PCle endpoint, you must set the PCIE BAR to AXI (or AHB) window.

In this document, we describe all the steps necessary to create a Libero design that automatically
initializes the DDR controller and SERDESIF blocks at power up, with the Standalone Initialization
mode ON.

First we provide a detailed description of the theory of operation. We introduce the major components of
the Peripheral Initialization Solution and outline how they interact.

Unlike the normal flow (Standalone Initialization OFF) where the initialization solution is created by the
System Builder, in the case of Standalone Initialization mode ON, the initialization solution has to be
put together in SmartDesign using different soft IP cores (mentioned in the latter sections), whether you
choose to use System Builder or not. System Builder will not create any initialization logic for any of the
peripherals. You have to build the initialization logic that sits outside the System Builder block, should
you choose to use System Builder at all.

Note that as the name suggests, the standalone initialization logic has to be built separately for each of
the peripherals (DDR/SERDES) used.

Next, we describe how to build designs with the Standalone Initialization mode ON in cases where you
choose to use System Builder and in cases where you choose not to.

In this section we address:
» The creation of the configuration data for DDR controller and SERDESIF configuration registers

« The creation of the FPGA logic required to transfer the configuration data to the different ASIC
configuration registers

For complete details about the DDR controller and SERDESIF configuration registers please refer to the
Microsemi IGLOO2 High Speed Serial and DDR Interfaces User's Guide.

http://www.microsemi.com/products/fpga-soc/fpga/igloo2docs

1 — Theory of Operation

The Standalone Peripheral Initialization solution for each peripheral uses the following major components:

» The CoreABC soft IP core, which has to be loaded with a program to initialize the peripheral’s
configuration registers, so that it orchestrates the initialization process. The program contains the
registers specific to a peripheral that's being initialized.

» The CoreConfigP soft IP core, whose function is to initialize the peripherals' configuration
registers.

» The CoreResetP soft IP core, whose function is to manage the reset sequence of the HPMS,
DDR controllers, and SERDESIF blocks.

One set of these 3 soft IP cores is dedicated to initialize a single peripheral, and similar logic involving these
cores should be built separately for each peripheral used in the design.

The peripheral initialization process works as follows:

1.

2.

Upon reset, the CoreABC runs the program it is loaded with.

The program starts writing to the registers of the peripheral being initialized. If the peripheral is
MDDR/FDDR, then the program writes configuration data to the DDR controllers, and if the
peripheral is SERDES, then the program writes the SERDESIF configuration registers, via the
CoreABC master BIF. This interface is connected to the soft CoreConfigP core instantiated in the
FPGA fabric.

After all the registers are configured, the CoreABC program writes to the CoreConfigP control
registers to indicate the completion of the register configuration phase; the CoreConfigP output
signal CONFIG1_DONE and CONIG2_DONE are then asserted.

There are two phases of register configuration (CONFIG1 and CONFIG2) depending upon the
peripherals used in the design.

If the peripheral being initialized is DDR (FDDR/MDDR), then both the signals CONFIG1_DONE
and CONFIG2_DONE are asserted at the same time.

If the peripheral being initialized is SERDESIF, then there are 2 phases of register configuration
depending upon whether SERDES is configured in PCIE mode or not.

e CONFIG1_DONE is asserted after the first phase of register configuration is complete.
SERDESIF system and lane registers are configured in this phase. If SERDES is configured
in a non-PCIE mode, then CONFIG2_DONE signal is also asserted immediately.

¢ The second phase of register configuration then follows (if SERDESIF is configured in PCIE
mode). The following are the different events that happen in this second phase:

0 Once CoreResetP de-asserts PHY_RESET_N and CORE_RESET_N signals of the
SERDESIF blocks, it also asserts an output signal SDIF_RELEASED.

0 Once the SDIF_RELEASED signal is asserted, the CoreABC program starts polling
for the assertion of PMA_READY on the appropriate SERDESIF lane. Once the
PMA_READY is asserted, the second set of SERDESIF registers (PCIE registers)
are configured/written by the CoreABC program.

o After all the PCIE registers are configured, the CoreABC program writes to the
CoreConfigP control registers to indicate the completion of the second phase of
register configuration; the CoreConfigP output signal CONIG2_DONE is then
asserted.

6. Apart from the above signal assertions/de-assertions, CoreResetP also manages the initialization
of the peripheral being initialized by performing the following functions (depending upon the
peripheral being initialized):

De-asserting the MDDR/FDDR core reset

De-asserting the SERDESIF blocks PHY and CORE resets

Monitoring of the FDDR PLL (FPLL) lock signal. The FPLL must be locked to guarantee that
the FDDR AXI/AHBLite data interface and the FPGA fabric can communicate correctly.
Monitoring of the SERDESIF block PLL (SPLL) lock signals. The SPLL must have locked to
guarantee that the SERDESIF blocks AXI/AHBLite interface (PCle mode) or XAUI interface
can communicate properly with the FPGA fabric.

Waiting for the external DDR memories to settle and be ready to be accessed by the DDR
controllers.

7. When the peripheral is initialized and is ready to communicate, CoreResetP asserts the
INIT_DONE signal; the CoreConfigP internal register INIT_DONE is then asserted.

If the peripheral is MDDR/FDDR, and the DDR initialization time is reached, CoreResetP
output signal DDR_READY is asserted. Assertion of this signal DDR_READY can be
monitored as an indication that the DDR (MDDR/FDDR) is ready for communication.

If the peripheral is SERDESIF, and the second phase of register configuration is successfully
completed, CoreResetP output signal SDIF_READY is asserted. Assertion of this signal
SDIF_READY can be monitored as an indication that this SERDESIF block is ready for
communication.

8. The CoreABC program which has been waiting for INIT_DONE to be asserted completes its
execution now.

Note: In case of an IGLOO2 design with fabric logic (say fabric master) waiting to communicate with the
peripheral, it should wait for the assertion of INIT_DONE (OR DDR_READY/SDIF_READY based on which
peripheral is being used) signal of the CoreResetP instance (that belongs to the initialization logic of the
peripheral) before it attempts to communicate with the peripheral.

The methodology described in this document relies on the CoreABC executing the initialization process as
part of its program (microcode). All the initialization logic is taken care by the CoreABC program and the soft
IP cores CoreConfigP and CoreResetP.

2 — Switching the Standalone Initialization Mode ON

You can turn the Standalone Initialization mode ON when you first create a project for IGLOO2 in the Design
Methodology section in the New Project dialog (Figure 1).

Design Methodology

[use Standalone Initialization for MDDR,FDDR,/SERDES Peripherals

Figure 1 « Design Methodology — Use Standalone Initialization for MDDR/FDDR/SERDES

If you already have your project open you can turn the Standalone Initialization mode ON from the Project
Settings - Design Flow window (Figure 2).

(®) Project Settings

Device
Device /O Settings
Preferred HOL Type
Design Flow
4 Simulation Opticns
DO File
Waveforms

Block Flow

[Enable Block Creation

Design Methodology

IUse Standalone Initialization for MODR,/FODR /SERDES Peripherals

Figure 2 « Standalone Initialization from Project Settings window

3 — Using System Builder to Create a Design
Using DDR blocks

The IGLOO2 System Builder is a powerful design tool that helps you capture your system-level
requirements and produces a design implementing those requirements. With the Standalone
Initialization mode ON, if you are building a design using FDDR, you can choose to use System Builder
which automatically instantiates and configures the FDDR block. Alternatively, without using System
Builder also, you can just instantiate and configure the FDDR block manually to build your design. If you
want to build a design using the MDDR block, then you must use System Builder. In any case, the
peripheral initialization logic using CoreABC, CoreConfigP and CoreResetP has to be built manually for
every peripheral you use. If you are building a design using SERDESIF and fabric logic only (that means
if you don’t want to use anything else in the HPMS), you don’t have to use System Builder at all. Build
everything using regular Smart Design. In "Using SmartDesign to Create a Design Using DDR and
SERDESIF Blocks" on page 29 we describe in detail how to create such a solution without the System
Builder.

If you are using System Builder, you must perform the following tasks to create a design that will
instantiate and configure your DDR blocks (MDDR/FDDR), and then create and interface the initialization
logic required to initialize the DDR blocks (MDDR/FDDR).

1. Inthe Device Features page (Figure 3), specify which DDR controllers are used in your design.
2. Inthe Memory page, specify the type of DDR (DDR2/DDR3/LPDDR) and the configuration data
for your external DDR memaories. See the Memory Page section for details.

3. Inthe Peripherals page, add fabric masters configured as AHBLite/AXI to the Fabric DDR
Subsystem and/or HPMS DDR FIC Subsystem (optional).

4. Inthe Clock Settings page, specify the clock frequencies for the DDR sub-systems, and

configure the Chip Oscillator and Fabric CCC resources required to drive the fabric logic outside the

System Builder block.

5. Complete your design specification and click Finish. System Builder will then build the design
instantiating and configuring the HPMS(MDDR)/FDDR blocks.

6. Build CoreABC based standalone initialization logic required to initialize the DDR blocks
(MDDR/FDDR).

7. Interface the initialization logic with the System Builder block (which has MDDR/FDDR), and
continue with the design flow.

System Builder Device Features Page

In the Device Features page, specify which DDR controllers (MDDR and/or FDDR) are used in your
design (Figure 3). You can also choose to use HPDMA for memory transfers between MDDR and
eNVM / eSRAM / fabric logic via FIC0/1, in this page.

8 St s D e D -]

> Device Features » > Memories > » Peripherals > > Clocks > > HPMS Options » > SECDED > 2 Security > > Memory Map >
Select the IGLO02 device features you will be using in your design

Memory

HPMS Excternal Memary

'Eiﬂ ocrerass || com ek [vsran “

S

() Soft Memory Controller (SMC)
[HPMS On-chip Flash Memory { eMvM)
[HPMS On-chip SRAM { 2SRAM)
HPMS High Performance DMA (HPDMA)
[7] HPMS Peripheral DMA (PDMA)
[] serial Peripheral Tnterface { SPT)
Fabric External DOR Memory { FDDR)

Fanric.

I CareUomghisatar | | Usenl]

High Speed Serial Interfaces FAR_COT

an

u3IN
u3IN

[T sERDESIF_0
[7] SERDESIF_1

Jsaris)

[WECETTERE

2475 ad

Aed73Ta,

System Services

PR SLAVE

[] HPMS System Services
ASRR PO

AP35 PRESST M

8
o
in
w
o
1T T A
95 Bdn

]
]
]
]
]
]
]
]
]
]
]
I
]
]
]
]
]
]
]
I
]
]
]
]
]
]
]
]
I
]
]
]
I
i

E

RAM a
]
]
I

Figure 3 » System Builder Device Features Page

System Builder Memory Page

To use the HPMS DDR (MDDR) or Fabric DDR (FDDR), select the Memory Type from the dropdown list
(Figure 4).

> Device Features » > Memories > > Peripherals » » Clocks > » HPMS Options) > SECDED > > Security > » Memory Map »

Configure your external and embedded memories

MDDR \/ FDDR_\

DDR memory settling time (us): 200

[Import Conﬁgurauon] [Export Conﬁgurauon] [Restore Defaults]

General | Memory Initialization | Memory Timing | T LT

Memory Settings

Memory Type [DDRZ -]

—

Data Width [-]
SECDED Enabled ECC []

Arbitration Scheme [Type~0 -]

| oonnc [Eweoen O swrcr]

Highest Priarity 1D 1]

|
|
|
|
Address Mapping {ROW,BANK, COLUMN} - :
|
IO Drive Strength | [Master |
|
@ Half Drive Strength (7 Full Drive Strength |
|
|
| [oet]
| FABRIC
|
|
e e e & 1
Register Description

Figure 4 « HPMS External Memory

You must:
1. Select the DDR type (DDR2, DDRS3 or LPDDR).

2. Define the DDR memory settling time. Consult your external DDR Memory Specifications to
set the correct memory setting time. The DDR memory may fail to initialize correctly if the
memory settling time is not correctly set.

3. Either import the DDR register configuration data or set your DDR Memory Parameters. For
details, consult the DDR Interfaces User's Guide.

This data is used to generate the CoreABC program files corresponding to the DDR registers being
configured. For complete details on DDR controller configuration registers please refer to the Microsemi
IGLOO2 High Speed Serial and DDR Interfaces User's Guide.

An example of the configuration file syntax is shown in Figure 5. The register names used in this file
are the same as the ones described in the DDR Interfaces User's Guide.

http://www.actel.com/documents/SmartFusion2_Serial_DDR_UG.pdf
http://www.actel.com/documents/SmartFusion2_Serial_DDR_UG.pdf
http://www.actel.com/documents/SmartFusion2_Serial_DDR_UG.pdf

PHY_16_DDR2_NO_ECC_BL8_INTER

ddrc_dfi_min_ctrlupd_timing_CR 0x0003 ;
ddrc_dfi_max_ctrlupd_timing_CR 0x0040 ;

ddrc_dyn_soft_reset_CR 0x00 ;
ddrc_dyn_refresh_1_cCR 0x27DE ;
ddrc_dyn_refresh_2_cCR 0x030F ;
ddrc_dyn_powerdown_CR 0x02 ;
ddrc_dyn_debug_CR 0x00 ;
ddrc_ecc_data_mask_CR 0x0000 ;
ddrc_addr_map_col_ 1 _CR 0x3333
ddrc_addr_map_col_3_CR 0x3300 ;
ddrc_init_1_CR 0x0001 ;
ddrc_cke_rstn_cycles_CR1 0x0100 ;
ddrc_cke_rstn_cycles_CR2 0x0008 ;
ddrc_init_emr2_CR 0x0000 ;
ddrc_init_emr3_CR 0x0000 ;
ddrc_dram_bank_act_timing_CR 0x1947;
ddrc_odt _param_1 CR 0x0010 ;
ddrc_odt_param_2_CR 0x0000 ;
ddrc_debug_CR 0x3300 ;
ddrc_mode_reg_rd_wr_CR 0x0000 ;
ddrc_mode_reg_data_CR 0x0000 ;
ddrc_pwr_save_2_CR 0x0000 ;
ddrc_hpr_queue_param_CR1 0x80F8 ;
ddrc_hpr_queue_param_CR2 0x0007 ;
ddrc_Tpr_queue_param_ CR1 0x80F8 ;
ddrc_Tpr_queue_param_CR2 0x0007 ;
ddrc_wr_queue_param_CR 0x0200 ;
ddrc_dfi_wr_Tv1_control_CR1 0x0000 ;
ddrc_dfi_wr_1vl_control_CR2 0x0000 ;
ddrc_dfi_rd_1vl_control_CR1 0x0000 ;
ddrc_dfi_rd_1vl_control_CR2 0x0000 ;
ddrc_dfi_ctrlupd_time_interval _CR 0x0309 ;
ddrc_perf_param_3_CR 0x0000 ;
ddrc_ecc_int_clr_reg 0x0000 ;

Figure 5 » Configuration File Syntax Example

System Builder Peripherals Page
In the Peripherals page, for each DDR controller a separate subsystem is created (Fabric DDR
Subsystem for FDDR and HPMS DDR FIC Subsystem for MDDR). You can add a Fabric AMBA
Master (configured as AXI/AHBLIite) core to each of these subsystems to enable fabric master access
to the DDR controllers. Upon generation, System Builder automatically instantiates bus cores
(depending on the type of AMBA Master added) and exposes the master BIF of the bus core and the
clock and reset pins of the corresponding subsystems (FDDR/MDDR) under appropriate pin groups,
to the top. All you have to do is connect the BIFs to the appropriate Fabric Master cores that you
would instantiate in the design. In the case of MDDR, it is optional to add a Fabric AMBA Master core
to the HPMS DDR FIC Subsystem. Instead you could choose to have HPDMA transfer data between
MDDR and eNVM / eSRAM / fabric logic via FIC0/1; for that you must check the HPDMA checkbox in
the Device Features page.

Device Features Memories Peripherals > > Clocks HPMS Options SECDED Security Memory Map >

Allocate and configure master and slave components for your subsystems

Fabric Slave Cores Subsystems

Care Version @ Fabnc DDR Subsystermn
1 Fabric AMBA Slave 0.0.102 Configure Quantity Name

#F [1 [ameamaster1
1 [Fabric DDR_RAM

@ HPMS FIC 0 - HPMS Master Subsystem
I drag and drop here to add to subsystem

@ HPMS FIC 0 - Fabric Master Subsystem
Canfigure Quantity Name
1 HPMS_FIC_0_HPDMA_CONTROLLER_MASTER

@ HPMS FIC 1 - HPMS Master Subsystem

s (i BT | drag and drop here to add to subsystem
; — ' — ® HEMS FIC 1 - Fabric Master Sub.
- Fabric Master Subsystem
1| Fabric AMBA Master 0.0.102 — 1L
| drag and drop here to add to subsystem
@ HPMS DDR FIC Subsystem
Configure Quantity Name Il
#* 1 |AMBA MASTER 0 I
1 |HPMs_DOR_RAM I
To move a peripheral from one subsystem to another, drag it from its present location and drop it onto the desired sushsystem.,
Masters are in bold and blue.

Figure 6+ System Builder Peripherals Page

System Builder Clock Settings Page

In the Clock Settings page, for each DDR controller you must specify the clock frequencies related to
each DDR (MDDR and/or FDDR) sub-system.

For MDDR, you must specify:
< MDDR_CLK - This clock determines the operating frequency of the DDR Controller and should
match the clock frequency you wish your external DDR memory to run at. Note that this clock is

defined as a multiple of the HPMS_CLK (HPMS Main Clock, Figure 7). The MDDR_CLK must
be less than 333 MHz.

« DDR_FIC_CLK - If you have chosen to also access the MDDR from the FPGA fabric, you
need to specify the DDR_FIC_CLK. This clock frequency is defined as a ratio of the
MDDR_CLK and it should match the frequency at which the FPGA fabric sub-system that
accesses the MDDR is running.

HPMS Clock

HPMS_CLK = 100.00 MHz 100.000
MDDR Clocks

MDDR_CLK = HPMS_CLK = 2 - | 200,000
DDR /SMC_FIC_CLK =MDDR_CLK / |4 x| 50,000

Figure 7 « HPMS Main Clock; MDDR Clocks

For FDDR you must specify:
« FDDR_CLK - Determines the operating frequency of the DDR Controller and should match

10

the clock frequency at which you wish your external DDR memory to run (Figure 7). The
FDDR_CLK must be within 20 MHz and 333 MHz.
« FDDR_SUBSYSTEM_CLK - This clock frequency is defined as a ratio of the FDDR_CLK

and should match the frequency at which the FPGA fabric sub-system that accesses the
FDDR is running.

Fabric DOR. Clocks
FDDR._CLE = 200 MHz 200
FDDR_SUBSYSTEM_CLK = FDDR_CLK/ [4 - 50,000

Figure 8 « Fabric DDR Clocks

Chip Oscillators Tab — Clocks Page
In the Chip Oscillators tab of the System Builder Clocks page, check the ‘On-chip 25/50 MHz RC
Oscillator’ and the ‘Drives Fabric Logic’ checkboxes as shown in the Figure 9 below. This exposes
an output pin RCOSC_25 50MHZ_O2F under the CHIP_OSC_PINS group on the System Builder
block which can be used to drive the RCOSC_25 50MHZ input pin of the CoreResetP soft IP cores
used in the peripheral initialization. This helps in reusing the oscillator block that's already
instantiated inside the System Builder block to drive the CoreResetP cores being used for the
peripherals, that sit outside the System Builder block. This is necessary if you are using System
Builder because there’s only 1 RCOSC per device.

| Clock | FabricccC | Chip Osillators

Chip Osdillataors

[[] External Main Crystal Czdllator
Source Crystal (32KHz-20MHz)
Frequency 0.0 MHz
Drives Fabric CCC(s)

Drives Fabric Logic

On-chip 25/50 MHz RC Oscillator
Drives Fabric CCCis) [
Drives Fabric Logic

[] on-chip 1 MHz RC Oscillator
Drrives Fabric CCC(s)

Drives Fabric Logic

Figure 9 « Chip Oscillators tab of System Builder

Generating your System Builder design

Once you are done configuring all the System Builder pages with your desired settings, click ‘Finish’ in the last

11

page. The System Builder component is generated to a SmartDesign, with all required top level pins and BIF
ports exposed on the System Builder block under appropriate pin groups. Next you need to build the
initialization logic for the DDR blocks (MDDR/FDDR) used in your design, interface it to the System Builder
block to initialize the DDR blocks, generate and then continue with the design flow.

Upon generating the System Builder component, separate text files containing the CoreABC program
corresponding to MDDR and FDDR register configuration are created to the disk under the
<project_location>/.../*_HPMS/ directory and the <project_location>/.../FABDDR_0/ directories respectively
with the names MDDR_init_abc.txt and FDDR_init_abc.txt. This CoreABC program generated for
MDDR/FDDR has to be loaded/copied to the CoreABC instance used for the initialization of the peripheral
(MDDR/FDDR). This will be discussed again in the following sections.

Building Standalone Initialization Logic for MDDR

In order to initialize the MDDR, you must create the initialization subsystem in the FPGA fabric. The
FPGA fabric initialization subsystem moves data from the CoreABC program to the DDR configuration
registers, manages the reset sequences required for the MDDR block to be operational and signals
when the MDDR block is ready to communicate with the rest of your design. To create the initialization
subsystem you must:

» Instantiate and configure CoreABC soft IP core.
* Load CoreABC with the initialization program generated to the MDDR_init_abc.txt file.
» Instantiate and configure the CoreConfigP and the CoreResetP cores

» Connect these components to the peripheral's (MDDR) configuration interfaces, clocks, resets
and PLL lock ports

CoreABC configuration

Create a new SmartDesign component (MDDR_INIT).

2. Instantiate CoreABC into your SmartDesign. This core can be found in the Libero
Catalog (under Processors).

3. Double-click the core to open the configurator.
Configure the core as shown in the depiction below (Figure 10).
Configure the data bus width to be 16.
Configure the maximum number of instructions to at least 256.
Configure to use AND and OR operations as optional instructions.
Configure Instruction Store to Hard (FPGA Tiles).

5. Copy the CoreABC program generated for MDDR from the MDDR_init_abc.txt file
created under the <project_location>/.../*_HPMS/ directory, to the CoreABC
Program tab. See the figure below.

12

.

i | Configuring COREABC_O (COREABC 3.4.101)

|l= @] = |

Parameters | Program | Analysis

Size Settings
Data Bus Width :
Mumber of APB Slots :
APE Slot Size :
Maximum Mumber of Instructions : [4096 -
Z Register Size (Bits) :
| Mumber of IO Inputs :
| Number of I/ Flags :

Number of IjO Qutputs :

Stack Size :

—
"

Init{Config Address Width :

Memory and Interrupt

g
=
2
1 4|4

Instruction Store : ’Hard (FPGA Tiles)

Instruction Store APB Access @ |Mone
Use Calibration MM :
Internal Data/Stack Memory :
ALL Operations from Memary : |:|
APE Indirect Addressing : [

Supported Data Sources : [Acmmulator and Immediate

Interrupt Support : ’Disabled

ISR Address @ |1

Optional Instructions

AND, BITCLR, BITTST : XOR, CMP
OR, BITSET : ADD, SUEB, DEC, CMPLEQ :
me: [0 SHL, ROL :
SHR, ROR : [[] CALL, RETURN, RETISR :
PUSH, POP @ [[] APBWRT ACM :
IOREAD : [IOWRT :
MULT : | Not Implemented -

License

Verbose Simulation Log :

QOther Settings

OoOoOoOoO

*

m

][Cancel

Figure 10. CoreABC configuration

13

Configuring INIT_COREABC_0 (COREABC 3.4.101) |l=|=] % |

Program | Analysis

Analyze program as [type

H---—-——
// CoreABC MDDR Initialization Sequence

[am | »

#/ Assert Soft Reset {(DDRC_DYHW _SOFT_RESET=8)
APBYWRT DAT16 A Ox0000 0=0

/7 DDRC_RESERUED®
APBYRT DAT16 B BxPOBY BxP

// DDRC_DYM_REFRESH_1_CR
APBYRT DAT16 B Bx0008 Ox27de
/7 DDRC_DYM_REFRESH 2 CR
APBYRT DAT16 O 0x000c Ox30F
// DDRC_DYH_POWERDOWM_CR
APBYRT DAT16 B 0x0010 Ox?

/7 DDRC_DYH_DEBUG_CR

APBYRT DAT16 B Bx0O14 BxA

/7 DDRC_MODE_CR

APBYRT DAT16 B 0x0018 Ox1

/7 DDRC_ADDR_MAP_BAMK_CR
APBYRT DAT16 B 0x001c Ox999
// DDRC_ECC_DATA_MASK_CR
APBYRT DAT16 B 0xP020 0x0

// DDRC_ADDR_MAP_COL_1_CR
APBYRT DAT16 B PxPP2L4 Px3333
/7 DDRC_ADDR_MAP_COL_2 CR
APBYRT DAT16 B Ox0028 OxFFFF
/7 DDRC_ADDR_MAP_COL_3 CR
APBYRT DAT16 O Ox0O78 Ox3300
// DDRC_ADDR_MAP_ROW 1_CR
APBYRT DAT16 B Ox002c OxB888
// DDRC_ADDR_MAP_ROW 2 CR il

AFMFmIIme Rawar A A o ARAAR A e

COK] [Cancel

Figure X. CoreABC program for MDDR

CoreConfigP

1.

Instantiate CoreConfigP into the same SmartDesign. This core can be found in the
Libero Catalog (under Peripherals).

Double-click the core to open the configurator.
Configure the core to specify which peripherals need to be initialized (Figure 11)

14

@ Configuring CoreConfigP_0 (CoreCenfigP - 7.0.105)

SRS

Configuration

Peripheral Blodk Usage

MDDR. in use
SDIFO inuse [|
SDIF1linuse [
SDIFZinuse [
SDIF3inuse [|

Soft Reset Outputs

Target Device

FDDR. in use

SOIFD used for PCle

SDIF1 used for PCIe

SDIF2 used for PCle

SDIF3 used for PCle

Enable soft reset outputs [

Target die size is 090 [

[l

QK

] [Cancel

Figure 11 - CoreConfigP Dialog Box

CoreResetP

1.

Instantiate CoreResetP into the same SmartDesign. This core can be found in the

Libero Catalog, under Peripherals.

Double-click the core inside the SmartDesign Canvas to open the Configurator (Figure

12— CoreResetP Configurator)

. Configure the core to:
Specify the external reset behavior (EXT_RESET_OUT asserted). Choose one of four options:

e EXT_RESET _OUT s never asserted
e EXT_RESET_OUTis asserted if power up reset (POWER_ON_RESET_N) is asserted
e EXT _RESET_OUT s asserted if FAB_RESET_N is asserted

e EXT_RESET_OUT is asserted if power up reset (POWER_ON_RESET_N) or

FAB_RESET N is asserted

— Specify the Device Voltage. The selected value should match the voltage you selected in the

Libero Project Settings dialog.

— Check the appropriate checkboxes to indicate which peripherals you are using in your design..

— Specify the external DDR memory setting time. Refer to the external DDR memory vendor
datasheet to configure this parameter. 200us is a good default value for DDR2 and DDR3
memories running at 200MHz. This is a very important parameter to guarantee a working
simulation and a working system on silicon. Incorrect value for the settling time may result in

15

simulation errors.
Refer to the CoreResetP handbook for details on the options available to you in this configurator

[, Configuring CoreResetP_0 (CareResetP - 7.0.104) = | B

Configuration -

External Reset

EXT_RESET_OUT asserted: |If POWER_ON_RESET_M or RESET_MN_M2F is asserted ~

Device Voltage

Lov @ 12v
DOR
MDDR in use FODR inuse [
DDR memory settling time (us): 200

SERDES Interface 0 |

In use [Used for PCIe

Indude PCIe HotReset support Include PCIe L2/P2 support

m

SERDES Interface 1

In use [l Used for PCIe
Indude PCIe HotReset support Include PCIe L2/P2 support

SERDES Interface 2

In use [l Used for PCIe
Indude PCIe HotReset support Include PCIe L2/P2 support

SERDES Interface 3

In use [l Used for PCIe
Indude PCIe HotReset support Indude PCIe L2/P2 support
Soft Reset Inputs

Enable soft resetinputs [

Target Device

Help = OK Cancel
[) |

Figure 12. CoreResetP Configurator

Overall Connectivity of the initialization logic (MDDR_INIT)

After you have instantiated and configured the 3 cores CoreABC, CoreConfigP and CoreResetP, appropriate
connections have to be made to make the initialization logic operational. See the depiction below in the Figure 13 to
understand how the connections are made.

The following is a list of signals that need to be promoted to the top which will be needed when interfacing this
initialization logic with the actual peripheral (MDDR).

e CoreConfigP:
16

o APB_S PRESET N
o APB_S PCLK

o0 APB_S_INIT (APB BIF MDDR_APBmslave)
e CoreResetP:

0 RCOSC_25 50MHZ

o FAB_RESET N

o POWER_ON_RESET_N

o DDR_READY

o MDDR_DDR_AX|_S_CORE_RESET N

e INIT_PCLK_25MHz connecting together the PCLK of CoreABC, the FIC_2_APB_M_PCLK of CoreConfigP
and the CLK_BASE of CoreResetP).

INIT_PCLK 25MHZ

COREABC_0

NSYSRESET PRESEIN
PCLK 10_OUT[0]
10_IN[0]

il

APB3master

POWER ON RESET N

CoreConfigP_0
g @ ;,é

APB S PRESET N
APB S FCLK

APB S INIT

FAB RESET N

RCOSC_25_50MHZ

|
g=
CLIE
=<
ey
L0
NILL
QI
w
CoreResetP_0
RESET_N_M2F MSS_HPMS_READY
FIC 2 APB_M_PRESET_N DDR_READY
POWER_ON_RESET_N RESET_N_F2M
FAB_RESET_N M3_RESET_N
RCOSC_25_50MHZ EXT_RESET_OUT
CLK_BASE MDDR_DDR_AXI_S_CORE_RESET_N
OONFIG1_DONE INIT_DONE
L CONFIG2_DONE
gwr

XXX

DDR _READY

Figure 13. MDDR_INIT (MDDR Initialization Logic)

| MDDR DDR AXI S CORE RESET N |

Interfacing MDDR with the Initialization Logic Built for it

In the same SmartDesign the System Builder block is present, instantiate the Smart Design containing the MDDR
initialization logic (MDDR_INIT), and do necessary interconnections to interface the System Builder block (containing

the MDDR) to the initialization logic. See the depiction below in the Figure 14 to understand how the connections are

made.

The following is a list of signal interconnections that need to be made to properly interface the System Builder block
(MDDR) to the initialization logic.

17

FROM
Port or Bus Interface (BIF)/ Component

TO
Port/Bus Interface (BIF)/Component

MDDR_APB_S_PCLK/ System Builder Block

APB_S PCLK/ initialization logic.

MDDR_APB_S PRESET N/ System Builder Block

APB_S PRESET N/ initialization logic.

MDDR_APB_SLAVE BIF/ System Builder Block

APB_S _INIT/ initialization logic

POWER ON RESET N/ System Builder Block

POWER ON RESET N/ initialization logic

FAB RESET N / System Builder Block

FAB_RESET N /initialization logic

RCOSC_25 50MHZ/ System Builder Block

RCOSC_25 50MHZ/ initialization logic

MDDR_CORE_RESET_ N/ System Builder Block

MDDR_DDR_AXI_S_CORE_RESET_N / initialization
logic

Apart from the above connections, do the following also:

e Promote the FAB_RESET_N pin the initialization logic (MDDR_INIT_O instance) to the top level (this is the

warm reset).

e Promote the HPMS_DDR_FIC_SUBSYSTEM_PINS to the top to drive the fabric logic that belongs to the

HPMS_DDR_FIC_SUBSYSTEM.

e Promote the DDR_READY of the initialization logic to the top to monitor the status of the MDDR initialization.

e Drive the INIT_PCLK_25MHz input pin of the initialization logic with 25MHz clock. You can use the unused

GLx in the System Builder block from the ‘Fabric CCC’ tab of the ‘Clocks’ page to drive any clock in the fabric

logic.

18

FAB RESET M

DEVRST N

HAWS_FIC_0_HPChA_CORNTROLLER_MASTER

AMBA_MASTER_O

FAB_RESET_N
MDOR_APB S5_PCLK

DEVRST_N
EIMDDR_PINS

— MODR_APB_S_PRESET_N

MDDR_CORE_RESET N

test 0
POWER_ON_RESET_N
HPMS_READY
MDOR_PADS
HPIS_DDR_FIC_SUBSYSTEM_PINSE
HPMS_DDF_FIC_SUBSYSTEM_CLK
HPMS DDR_FIC_SUBSYSTEM_LOCK
FC_0_PINSE
AC_0_CLK
FIC_0_LOCK
test_HPMS_0_PINSE
COMW_BLE_NT
HPMS_INT_M2F[15:0]
CHIP_OSC_PINSE
RCOSC_25_SOMHZ_O2F
FAB_CCC_PINS

HPI

S DDA FIC SUBSYSITEWM LOCK |

HER

5 DUR FIC SUBSYSITEM CLK |

RCOSC_25_SOMHZ
POWER_ON_RESET_N

FAB_CCC_GL1
w
E
-
w
1
S
s
L &
M
=
=
o,
i
=y
MDDR_INIT_0
FAB_RESET_N APB_S_PRESET_N
INT_PCLK APB_S_PCLK

DOR_READY

MOOR_DDR_AX| S CORE_RESET_N

Figure 14. Interfacing System Builder (MDDR) with the Initialization Logic

Building Standalone Initialization Logic for FDDR

In order to initialize the FDDR, you must create the initialization subsystem in the FPGA fabric. The
FPGA fabric initialization subsystem moves data from the CoreABC program to the DDR configuration
registers, manages the reset sequences required for the FDDR block to be operational and signals
when the FDDR block is ready to communicate with the rest of your design. To create the initialization
subsystem you must:

Instantiate and configure CoreABC soft IP core.

19

* Load CoreABC with the initialization program generated to the FDDR_init_abc.txt file.
« Instantiate and configure the CoreConfigP and CoreResetP cores

« Connect these components to the peripheral's (FDDR) configuration interfaces, clocks, resets
and PLL lock ports

CoreABC configuration

Create a new SmartDesign component (FDDR_INIT).

Instantiate CoreABC into your SmartDesign. This core can be found in the Libero
Catalog (under Processors).

3. Double-click the core to open the configurator.

Configure the core as shown in the depiction below (Figure 15).
Configure the data bus width to be 16.
Configure the maximum number of instructions to at least 256.
Configure to use AND and OR operations as optional instructions.
Configure Instruction Store to Hard (FPGA Tiles).

5. Copy the CoreABC program generated for FDDR from the FDDR_init_abc.txt file created under
the <project_location>/.../FABDDR_O0/ directory, to the CoreABC Program tab. See the figure below.

e

20

-

i | Configuring COREABC_D (COREABC 3.4.101)

|l=|@]| = |

Parameters | Program |Analvsis

Size Settings
Data Bus Width :
Mumber of APB Slots :
APE Slot Size :
Maximum Mumber of Instructions :
7 Register Size (Bits) :
| Number of IfO Inputs :
I Number of 1O Flags :
Mumber of IO Outputs ;
StackSize :
Init/Config Address Width ; | 11
Memory and Interrupt
Instruction Store : [Hard (FPGA Tiles) v]

Instruction Store APE Access @ | MNone
Use Calibration NVM :
Internal Data/Stack Memory :
ALU Operations from Memory : |:|

APB Indirect Addressing : [

Supported Data Sources ; [hm.lmt.llator and Immediate ']

Interrupt Support : [DisabJed v]

ISR Address : |1

Optional Instructions

AND, BITCLR, BITTST : XOR, CMP : [
OR, BITSET : ADD, SUB, DEC, CMPLEQ : [
INC : [] SHL, ROL: []
SHR, ROR: [CALL, RETURN, RETISR : [
PUSH, POP : [] APBWRT ACM : [
IOREAD : [IOWRT: []
MULT : | Not Implemented v

License

Verbose Simulation Log :

Other Settings

»

m

=

Figure 15. CoreABC configuration

21

i Configuring INIT_COREABC_0 (COREABC 3.4.101) o= S

Program | Analysis

H -
// CoreABC FDDR Initialization Sequence

[| »

£/ Assert Soft Reset {(DDRC_DYW SOFT_RESET=8)
APBYRT DAT16 @ Ox1060 620

// DDRC_RESERUED®
APBYRT DAT16 B Bx1084 AxA

// DDRC_DYM_REFRESH_1_CR
APBURT DAT16 B Bx1088 Bx27de
// DDRC_DYM_REFRESH 2 CR
APBURT DAT16 B Ox108c Bx30F
// DDRC_DYH_POWERDOWN_CR
APBYRT DAT16 B 0x1018 Bx2?

/# DDRC_DYH_DEBUG_CR

APBYRT DAT16 B Bx1814 AxA

// DDRC_MODE_CR

APBYRT DAT16 B Bx1018 Bx1

// DDRC_ADDR_MAP_BAMK_CR
APBURT DAT16 B Bx101c Bx999
// DDRC_ECC_DATA_MASK_CR
APBYRT DAT16 B 0x1028 AxA

// DDRC_ADDR_MAP_COL_1_CR
APBURT DAT16 B Bx1024 Bx3333
/7 DDRC_ADDR_MAP_COL_2 CR
APBURT DAT16 B 0x1028 BXFFFF
// DDRC_ADDR_MAP_COL_3 CR
APBURT DAT16 B 0x1078 0x3300
// DDRC_ADDR_MAP_ROW 1_CR
APBYRT DAT16 B 0x102c PxB8888
// DDRC_ADDR_MAP_ROW 2 CR il

AFMFmIIme Rawar A M o amAA A e

Analyze program as [type

QK] [Cancel

Figure X. CoreABC program for FDDR

CoreConfigP

1. Instantiate CoreConfigP into the same SmartDesign. This core can be found in the
Libero Catalog (under Peripherals).

2. Double-click the core to open the configurator.

3. Configure the core to specify which peripherals need to be initialized (Figure 16)

22

@ Configuring CoreConfigP_0 (CoreConfigP - 7.0.105) = = 22

o] [t

Configuration

Peripheral Blodk Usage

MODR inuse [| FODR. in use

SDIFOinuse [SDIFD used for PCle

SDIFlinuse [SDIF1 used for PCIe

SDIFZinuse [| SDIFZ used for PCle

SDIF3inuse [SDIF3 used for PCle
Soft Reset Outputs

Enable soft reset outputs [

Target Device

Target die size is 020 ||

Figure 16 « CoreConfigP Dialog Box

CoreResetP
1. Instantiate CoreResetP into the same SmartDesign. This core can be found in the
Libero Catalog, under Peripherals.
2. Double-click the core inside the SmartDesign Canvas to open the Configurator (Figure
17 — CoreResetP Configurator)
3. Configure the core to:

Specify the external reset behavior (EXT_RESET_OUT asserted). Choose one of four options:

EXT_RESET_OUT is never asserted

EXT_RESET_OUT is asserted if power up reset (POWER_ON_RESET_N) is asserted
EXT_RESET_OUT is asserted if FAB_RESET_N is asserted

EXT_RESET_OUT is asserted if power up reset (POWER_ON_RESET_N) or
FAB_RESET N is asserted

— Specify the Device Voltage. The selected value should match the voltage you selected in the
Libero Project Settings dialog.

— Check the appropriate checkboxes to indicate which peripherals you are using in your design.

— Specify the external DDR memory setting time. Refer to the external DDR memory vendor
datasheet to configure this parameter. 200us is a good default value for DDR2 and DDR3
memories running at 200MHz. This is a very important parameter to guarantee a working
simulation and a working system on silicon. Incorrect value for the settling time may result in

23

simulation errors.
Refer to the CoreResetP handbook for details on the options available to you in this configurator.

[l Configuring CoreResetP_0 (CareResetP - 7.0.104) g = B R

Configuration -

External Reset

EXT_RESET_OUT asserted: |If POWER_ON_RESET_M or RESET_M_MZF iz asserted +

Device Voltage

710V @ 1.2V

CDR

MDOR in use = FDDR in use

DOR memory settling time (us): 200

SERDES Interface 0
Inuse [l Used for PCIe
Include PCIe HotReset support Indude PCle L2/F2 support

SERDES Interface 1

m

Inuse [l Used for PCle
Include PCIe HotReset support Indude PCle L2/F2 support
SERDES Interface 2 |
Inuse [l Used for PCle
Include PCIe HotReset support Indude PCle L2/F2 support

SERDES Interface 3

Inuse (] Used for PCIe
Include PCIe HotReset support Indude PCIe L2/F2 support
Soft Reset Inputs

Enable soft reset inputs [

Target Device

Target die size is 090 [-

o) o

Figure 17. CoreResetP Configurator

Overall Connectivity of the initialization logic (FDDR_INIT)

After you have instantiated and configured the 3 cores CoreABC, CoreConfigP and CoreResetP, appropriate
connections have to be made to make the initialization logic operational. See the depiction below in the Figure 18 to
understand how the connections are made.

The following is a list of signals that need to be promoted to the top which will be needed when interfacing this
initialization logic with the actual peripheral (FDDR).

e CoreConfigP:
24

o APB_S PRESET N
o APB_S PCLK

o APB_S_INIT (APB BIF FDDR_APBmslave)

e CoreResetP:

o RCOSC_25 50MHz
FAB_RESET_N
POWER_ON_RESET_N
DDR_READY
FDDR_CORE_RESET N
FPLL_LOCK

O 0O O0OO0Oo

e INIT_PCLK_25MHz (connecting together the PCLK of CoreABC, the FIC_2_APB_M_PCLK of CoreConfigP

and the CLK_BASE of CoreResetP).

INT_PCLK 25MHZ —

COREABC_0

NSYSRESET PRESEIN
FCLK I0_OUTIO] I %
10_IN[O]

APB3master

CoreConfigP_0

AFE S PRESET N

LONFIG1_DONE

DONFIG2_DONY ﬁ,
]

POWER ON RESET N

FAB_RESET N

RCOSC_25_50MHZ

FALL_LCCK

=y
8\
=
b
ey
<0
(\IILL
9I
o
CoreResetP_0
RESET_N_M2F MSS_HPMS_READY
FIC_2 APB_M_PRESET_N DDR_READY
POWER_ON_RESET_N RESET_N_F2M
FAB_RESET_N M3_RESET_N
RCOSC_25 GOMHZ EXT_RESET_OUT
CLK BASE FDOR_CORE RESET_N
FPLL_LOCK INIT_DONE
CONFIG1_DONE
CONFIG2_DONE
GEw

APB S PRESET N |
AFB S FCLK
APB S INIT |
COR READY

XXX

I FDDR_CORE RESET_N |

Figure 18. FDDR_INIT (FDDR Initialization Logic)

Interfacing FDDR with the Initialization Logic Built for it

In the same SmartDesign the System Builder block is present, instantiate the Smart Design containing the FDDR
initialization logic (FDDR_INIT), and do necessary interconnections to interface the System Builder block containing

the FDDR, to the initialization logic. See the depiction below in the Figure 19 to understand how the connections are

made.

25

The following is a list of signal interconnections that need to be made to properly interface the FDDR to the

initialization logic.

FROM
Port or Bus Interface (BIF)/ Component

TO
Port/Bus Interface (BIF)/ Component

FDDR_APB_S PCLK/ System Builder Block

APB_S PCLK/ initialization logic

FDDR_APB S PRESET N/ System Builder Block

APB_S PRESET N/ initialization logic

FDDR_APB_SLAVE BIF/ System Builder Block

APB_S _INIT/ initialization logic

POWER _ON RESET_ N/ System Builder Block

POWER _ON RESET N/ initialization logic

FAB_RESET_ N/ System Builder Block

FAB_RESET N /initialization logic

RCOSC 25 50MHZ/ System Builder Block

RCOSC_25 50MHZ/ initialization logic

FDDR_CORE_RESET N / System Builder Block

FDDR_CORE_RESET N /initialization logic

FDDR_FPLL_LOCK/ System Builder Block

FPLL_LOCK!/ initialization logic

Apart from the above connections, do the following also:

e Promote the FAB_RESET _N pin the initialization logic (FDDR_INIT_O instance) to the top level (this is the

warm reset).

e Promote the DDR_READY of the initialization logic to the top to monitor the status of the FDDR initialization.

e Promote the FDDR_SUSBSYSTEM_RESET _N pin to the top or drive it appropriately from the fabric logic.

e Instantiate a FABCCC block and do the following connections:

0 Drive the INIT_PCLK_25MHZ input pin of the initialization logic with the GLx of FABCCC block

configured to 25MHz frequency.

0 Drive the FDDR_SUBSYSTEM_CLK input pin under the FDDR_SUBSYSTEM_PINS group of the

System Builder block with the GLx of FABCCC block (configured to appropriate frequency).

0 Drive the FDDR_SUBSYSTEM_LOCK input pin under the FDDR_SUBSYSTEM_PINS group of the
System Builder block with the LOCK pin of the FABCCC block.

26

FCCC_O
CLKO0_PAD GLO

LOCK

Fw

AhBA MASTER O

:

ANBA_MASTER_D‘J

test 0

FAB_RESET M
CLKD_PAD
FDDR_APB_S_PCLK
FDDR_APE_S_PRESET_N
DEVRET_N
EIFDOR_SUBSYSTEM_PINS
FDDR_SUBSYSTEM_CLK
FDDR_SUBSYSTEM_RESET_N
FDDR_SUBSYSTEM_LOCK
EIFDDR_FINS
FDDR_CORE_RESET_N
FDDR_FPALL_LOCK

FODR_APE SLAVE

POVVER_OM_RESET_N

CHIP_0SE_PINSH
RCOSC_25_SO0MHZ_02F

FAB_CCC_PINSH
FAH_CCC_GLO

test HPHS_0_PINSEl
COMM_BLE_INT
HPMS _INT_M2F[15:0]

| o

1

Figure 19. Interfacing System Builder (FDDR) with the Initialization Logic

APE S _IMT

FDDR_INIT_O

FAB_RESET_N
FPLLC_LOCK
NIT_PCLK

RCOSC_25 SOMHZ
POVWER_OH_RESET_N

FDDR_CORE_RESET_N
APB_S_PRESET_N

APB S PCLK
DDF_HEADY

— R HEMS READY |

P P]||‘-I|||

#*

27

Continuing with the Design Flow

Next step is to integrate any user logic that you might have with the System Builder block and the initialization logic.
Once you have done that, you can generate your top level SmartDesign. This will generate all files that are necessary
to implement and simulate your design. You can then proceed with the rest of the Design Flow.

28

4 — Using SmartDesign to Create a Design Using
SERDESIF and FDDR Blocks

In this section we describe how to put a complete 'initialization' solution together without using the IGLOO2

System Builder. The goal is to help you understand what you must do if you do not wish to use the System
Builder. In this section we describe how to:

« Input the configuration data for FDDR controller and SERDESIF configuration registers.
« Instantiate and connect the Fabric Cores required to transfer the configuration data to the FDDR
controller and SERDESIF configuration registers.

NOTE: If you want to use the MDDR block in your design, then you must use System Builder. In IGLOQ?2, it is
not possible to build a design using MDDR without using the System Builder.

Design using SERDESIF_n (n=0/1/2/3)

Building Standalone Initialization Logic for SERDESIF_n

In order to initialize the SERDESIF_n registers, you must create the initialization subsystem in the FPGA
fabric. The FPGA fabric initialization subsystem moves data from the CoreABC program to the
SERDESIF_n configuration registers, manages the reset sequences required for the SERDESIF_n block to
be operational and signals when the SERDESIF_n block is ready to communicate with the rest of your
design. To create the initialization subsystem you must:

¢ Instantiate and configure CoreABC soft IP core.

¢ Load CoreABC with the initialization program generated to the SERDESIF_n_init_abc.txt file.
» Instantiate and configure the CoreConfigP and CoreResetP cores.

¢ Instantiate and configure the on-chip 50MHz RC oscillator.

¢ Instantiate the System Reset (SYSRESET) macro.

» Connect these components to the peripheral's (SERDESIF_n) configuration interface, clocks, resets
and PLL lock ports.

CoreABC configuration

Create a new SmartDesign component (SERDESIF_n_INIT).

Instantiate CoreABC into your SmartDesign. This core can be found in the Libero Catalog
(under Processors).

3. Double-click the core to open the configurator.
4. Configure the core as shown in the depiction below (Figure 20).

Configure the data bus width to be 32 (as 32-bit data needs to be written to some of the SERDES
registers).

Configure the maximum number of instructions to at least 256.
Configure to use AND and OR operations as optional instructions.
Configure Instruction Store to Hard (FPGA Tiles).

5. Copy the CoreABC program generated for SERDESIF_n from the
SERDESIF_n_init_abc.txt file created under the <project_location>/../SERDES_IF_n/
directory, to the CoreABC Program tab. See the figure below.

NOTE: The SERDESIF_n_init_abc.txt file will be generated only after you generate the Smart Design
containing the SERDESIF_n block. So after you've made all the connections and generated all the blocks

29

(including SERDESIF_n), you will need to copy the contents of the SERDESIF_n_init_abc.txt file to the
CoreABC Program tab and regenerate the initialization logic Smart Design component containing CoreABC.
You may defer doing this until you completely configure your SERDESIF_n block and generate the
SmartDesign component containing it.

-

i ' Configuring COREAEC_0 (COREABC 3.4.101) (=] = |

Parameters | program IAnaIysis

Size Settings

»

Data Bus Width :
Number of APE Slots :

AFE Slot Size : |64k locations v

1

&
&
4

Maximum Mumber of Instructions
Z Register Size (Bits) : | Disabled

Mumber of IO Inputs :

Mumber of IfO Flags :

Mumber of 10 Outputs :

Stack Size :

—- —-
4 4 4

Init/Config Address Width :

-
[y

Memory and Interrupt

Instruction Store : [Hard (FPGA Tiles) v]

Instruction Store APB Access @ | Mone
Use Calibration NVM :
Internal Data/Stack Memory :
ALU Operations from Memory : |:|

m

APE Indirect Addressing : [

Supported Data Sources : [AmeuIator and Immediate v]

Interrupt Support : [Disabled v]

ISR Address : |1

Optional Instructions

AND, BITCLR, BITTST : XOR, CMP : [
OR, BITSET : ADD, SUB, DEC, CMPLEQ : [
NG : [SHL, ROL: [
SHR, ROR : [] CALL, RETURN, RETISR. : [
PUSH, POP : [] APBWRT ACM : [
IOREAD : [IOWRT : []
MULT : [Not Implemented v]

License

Verbose Simulation Log :

Other Settings

ok || Cancel

Figure 20. CoreABC configuration

% Configuring 0_INIT_COREABC_0 (COREABC 2.4.101) = B |

Program | Analysis

s -
// CoreABC SERDES Initialization Sequence

7/ SYSTEM DEBUE_MODE_KEY
APBWRT DAT B OxaBa8 OxAS

7/ SYSTEM_CONFIG_PHY_MODE_-1
APBWRT DAT B 0xa028 Ox11E

/7 LANE® _RXIDLE_MAX_ERRCNT_THR
APBYRT DAT B 09008 OxF8

/7 LANE® _TX PST_RATID_DEEMP®_FULL
APBWRT DAT B 0x9050 0x20

/7 LANE® TX PST_RATIOD DEEMP1_FULL
APBWRT DAT B 0x9058 0x15

/7 LANEB_TX_PST_RATIO_DEEMP®_HALF P
APBWRT DAT B 0x9090 0x20

/7 LANE®_TX_PST_RATIO_DEEMP1_HALF

APBYRT DAT B 0x9098 0x15

// LANE® _UPDATE_SETTINEGS

APBWRT DAT B 0x9200 Ox1

/7 SYSTEM CONFIG_PHY MODE_A

APBWRT DAT B 0xa028 OxF1E

m

£/ 3et CONFIGA_DOME to °1°
APBYWRT DAT @ B8x2888 8x1

/7 Wait for SDIF_RELEASE assertion
$WaitSdifRelease

APBREAD 8 BxZ@8h

AND @=a2

JUMP IF ZERD jYaitSdifRelease

oK] [Cancel

Figure X. CoreABC program for SERDESIF_n

CoreConfigP

1. Instantiate CoreConfigP into the same SmartDesign. This core can be found in the
Libero Catalog (under Peripherals).

2. Double-click the core to open the configurator.

3. Check the appropriate checkboxes as shown in the figure below (Figure 21).

NOTE: Irrespective of the SERDESIF_n location (n=0/1/2/3) you want to configure using this
initialization logic, check only the “SDIFO in use” and “SDIFO used for PCle” checkboxes. For
example, even if you are building this initialization logic for say, the SERDESIF_1/2/3 location, you
need to check the “SDIFO0 in use” and “SDIFO0 used for PCle” checkboxes in the CoreConfigP
instance. Do not check the checkboxes corresponding to the SERDESIF_1/2/3 locations in the
CoreConfigP instance. This is a requirement for the Libero generated CoreABC code to work for all

31

the SERDESIF_n locations (n = 0/1/2/3). And this rule is applicable only when you are configuring the
CoreConfigP and CoreResetP instances as a part of building the initialization logic; you will have to
specify the exact SERDESIF_n location in the SERDESIF configurator later when you instantiate and
configure the SERDESIF block.

@ Configuring CoreConfigP_0 (CoreConfigP - 7.0.105) =RNC! 28

Configuration

o] (oot]

Peripheral Block Usage

MDDR. inuse [FOCR in use =

SDIFO in use SDIFO used for PCIe

SDIF1linuse [SDIF1 used for PCIe

SDIFZinuse [SDIF2 used for PCIe

SDIF3inuse [SDIF3 used for PCle
Soft Reset Outputs

Enable soft reset outputs

Target Device

Target die size is 090 [

CoreResetP

1.

w

Figure 21. CoreConfigP Dialog Box

Instantiate CoreResetP into the same SmartDesign. This core can be found in the
Libero Catalog, under Peripherals.

Double-click the core inside the SmartDesign Canvas to open the Configurator
(Figure 22 — CoreResetP Configurator)

Configure the core to:

Specify the external reset behavior (EXT_RESET_OUT asserted). Choose one of four options:

EXT_RESET_OUT is never asserted

EXT_RESET_OUT is asserted if power up reset (POWER_ON_RESET_N) is asserted
EXT_RESET_OUT is asserted if FAB_RESET N is asserted

EXT_RESET_OUT is asserted if power up reset (POWER_ON_RESET_N) or
FAB_RESET N is asserted

Specify the Device Voltage. The selected value should match the voltage you selected in the
Libero Project Settings dialog.

Check the appropriate checkboxes as shown in the figure below. Refer to the CoreResetP

32

handbook for details on the options available to you in this configurator.

NOTE: Irrespective of the SERDESIF_n location (n=0/1/2/3) you want to configure using this

initialization logic, check only the checkboxes under the “SERDES Interface 0”. For example, even if
you are building this initialization logic for say, the SERDESIF_1/2/3 location, you need to check the

checkboxes under the “SERDES Interface 0” in the CoreResetP instance. Do not check the
checkboxes corresponding to the SERDESIF_1/2/3 locations. This is a requirement for the Libero
generated CoreABC code to work for all the SERDESIF_n locations (n = 0/1/2/3). And this rule is
applicable only when you are configuring the CoreConfigP and CoreResetP instances as a part of
building the initialization logic; you will have to specify the exact SERDESIF_n location in the
SERDESIF configurator later when you instantiate and configure the SERDESIF block.

| = 2 -4

-
@ Configuring CoreResetP_0 (CoreResetP - 7.0.104)

Configuration

External Reset

EXT_RESET_OQUT asserted: |If POWER_OMN_RESET_M or RESET_MN_M2F is asserted

Device Voltage

5 1.0V

DDR

MDDR in use |
DDR memory setting time (us): | 200

SERDES Interface 0

In use

Include PCIe HotReset support

SERDES Interface 1

In use |:|

Indude PCIe HotReset support

SERDES Interface 2

In use |:|

Indude PCIe HotReset support

SERDES Interface 3

In use |:|

Indude PCle HotReset support

Soft Reset Inputs

Target Device

@ 1.2v

FODR inuse [

Used for PCIe

Indude PCIe L2/P2 suppart

Used for PCIe

Include PCIe L2/P2 support

Used for PCle

Include PCIe L2/F2 support

Used for PCIe

Indude PCle L2/P2 support

Enable soft reset inputs

Target die size is 090 [

m

QK

l [Cancel

Figure 22. CoreResetP Configurator

33

Overall Connectivity of the initialization logic (SERDESIF_n_INIT)

After you have instantiated and configured the 3 cores CoreABC, CoreConfigP and CoreResetP, appropriate
connections have to be made to make the initialization logic operational. See the depiction below in the Figure
23 to understand how the connections are made.

The following is a list of signals that need to be promoted to the top which will be needed when interfacing this
initialization logic with the actual peripheral (SERDESIF_n).
o0 CoreConfigP:
= APB_S PRESET_N
= APB_S PCLK
= APB_S INIT (APB BIF SDIFO_APBmslave)
o CoreResetP:
= RCOSC_25 50MHZ
= CLK_LTSSM (promoted as CLK_LTSSM_125MHZ)
= FAB_RESET N
= POWER_ON_RESET_N
= SDIF_READY
= SDIFn_PHY_RESET_N
= SDIFn_CORE_RESET N
= SDIFn_SPLL_LOCK
= SDIFn_PERST_N
0 INIT_PCLK_25MHz (connecting together the PCLK of CoreABC, the FIC_2_APB_M_PCLK of
CoreConfigP and the CLK_BASE of CoreResetP).

COREABC_0

N
CoreResetP_0

b RESCT_N_WEF MSS_HAMS_READY
b FIC 2 AFR M FRESET N SOIF_READY i p SOFD REATH |
b POWER_OH_RESET_M RESET_N_FoMp % E@ =
b FAB_RESET_N M3_RESET_NIb X =

RCOSC 25 SOMHZ EXT_RESET_oiT - el weE

CLK_RASE SOIF)_CORE RESET N ! I;Ljﬁju_ i e
b CLELTSSM SOFD_PHY RESET N| = gB ol ,ﬁgé
b SOIH0_SALL_LOGK S0 _Itﬂ_mswi & 0, '@ i
b CONFIG1_DONE INT_DONE ‘r{‘jg Shnees

CONFIG2_DONE w3 ! 'Qlﬁﬁ

0 FOT W SOIF)_FERST N EEEEERRE

SOR)_PSA [oRriY o]
b SOIF0_PWRITE POHDH—
b SOFT_EXT_RESET_OUT

SOFT_RESET_FaM

SOFT_M3_RESET

SOFT_SOFD_PHY RESET

SOFT_SOF)_CORE_RESET

B SOIFC_PROATA31:0]
rdld

Figure 23. SERDESIF_n_INIT (SERDESIF_n Initialization Logic)

Instantiating and Configuring the SERDESIF_n block

Create a Smart Design component and instantiate a SERDESIF block from the catalog window (from under
the Peripherals). Double-click the SERDESIF block in the SmartDesign canvas to open the

configurator to select a location (n=0/1/2/3) and configure the SERDES. (Figure 24 -High Speed

34

Serial Interface Configurator). Similar to the DDR configuration registers, each SERDES block also has
configuration registers that must be loaded at runtime. You can either import these register values or use
the High Speed Serial Interface Configurator (Figure 24 SERDES Configurator) to enter your PCle or

EPCS parameters and the register values will automatically be computed for you. Consult the SERDES
Configurator User’s Guide for details.

1= High Speed Serial Intertace Commourao T B |
Identification

(@) SerDesIF 0 () SerDesIF 1 () SerDesIF 2 () SerDesIF 3 Simulation Level

Protocol Configuration

Protocol 1 Protocol 2

Type [PCIe -] Configure PCle Type MNone hd
Number of Lanes Number of Lanes -

Lane Configuration

Lane 0 Lanel Lane2 Lane3

Speed 2.5 Gbps{Genl) hd
Reference Clock Source REFCLKO (Differential) ~
PHY RefClk Frequency (MHz) 100
Data Rate (Mbps) N/A
Data Width N/A
FPGA Interface Frequency (MHz) N/A
VCO Rate (MHz) /A

PCle/XAUI Fabric SPLL Configuration

CLK_BASE Frequency 20 MHz

Edit Registers

Help - 0K] l Cancel

Figure 24. High Speed Seriél interface Configurator

Interfacing SERDESIF_n with the Initialization Logic Built for
it

In the same SmartDesign the SERDESIF_n block is present, instantiate the Smart Design containing the
SERDESIF_n initialization logic (SERDESIF_n_INIT), and do necessary interconnections to interface the

SERDESIF_n block to the initialization logic. See the depiction below in the Figure 27 to understand how the
connections are made.

The following is a list of signal interconnections that need to be made to properly interface the SERDESIF_n to
the initialization logic.

35

FROM Port or Bus Interface (BIF)/ Component TO Port/Bus Interface (BIF)/ Component
APB_S PCLK/ SERDESIF n APB_S PCLK/ initialization logic

APB_S PRESET N/ SERDESIF n APB_S PRESET N/ initialization logic
APB_SLAVE BIF/ SERDESIF n APB_S_INIT/ initialization logic

PHY _RESET N/ SERDESIF_n SDIFn_PHY_RESET_N/ initialization logic
CORE_RESET_N/ SERDESIF _n SDIFn_CORE_RESET N/ initialization logic
SPLL _LOCK/ SERDESIF n SDIFn_SPLL_LOCK!/ initialization logic

50MHz Oscillator Instantiation

CoreResetP needs to be clocked by the on-chip 50MHz RC oscillator. You must instantiate a 50MHz
Oscillator for this purpose.

1. Instantiate the Chip Oscillators core into the same SmartDesign the SERDESIF_n block is
present. This core can be found in the Libero Catalog under Clock & Management.

2. Configure this core such that the oscillator drives the FPGA fabric, as shown in Figure 25,

3. Click “OK”.

4. Connect the RCOSC_25_50MHz_O2F output of the Oscillator to the RCOSC_25_50MHz input
of SERDESIF_n_INIT block (SERDESIF_n initialization logic).

7 | Chip Oscillators Configurato

Configuration r
[External Main Crystal Oscilator

MSS_CCC

Source Crystal (32KHz-20MHz) -

Frequency 20.00 MHz
Drives Fabric CCC(s) RCOSC_S50MHZ

Drives Fabric Logic

Drives Fabric CCC(s) [}
Drives Fabric Logic

RCOSC_1MHZ

[on-chip 1 MHz RC Osdillator
Drives Fabric CCC(s)

Drives Fabric Logic

1
1
1
1
1
1
1
1
1
1
1
1
On-chip 25/50 MHz RC Osdillator :
1
1
1
1
1
1
1
1
1
1
1
1
1

&mo&c

User Logic

FPGA Fabric

Figure 25 « Chip Oscillators Configurator

System Reset (SYSRESET) Instantiation

The SYSRESET macro provides device level reset functionality to your design. The POWER_ON_RESET_N
output signal is asserted/de-asserted whenever the chip is powered up or the external pin DEVRST_N is

asserted/de-asserted (Figure 26). Instantiate the SYSRESET macro into the same SmartDesign the
SERDESIF_n block is present. This macro can be found in the Libero Catalog under Macro Library. No

36

configuration of this macro is necessary. Drive the POWER_ON_RESET_N input of SERDESIF_n_INIT
block (SERDESIF_n initialization logic with the POWER_ON_RESET_N output signal of this SYSRESET

macro.

DEVRST N 0

DEVRST_N

SYSRESET_0
POWER ON_RESET_N
<

Figure 26 « SYSRESET Macro

Apart from the above connections, do the following also:
Promote the FAB_RESET_N pin of the initialization logic (SERDESIF_n_INIT_O instance) to the top

level (this is the warm reset).

Promote the SDIFn_READY pin of the initialization logic to the top to monitor the status of the

SERDESIF_n initialization.

Promote the SDIFn_PERST_N pin of the initialization logic to the top or tie it high.
Instantiate a FABCCC block and do the following connections:
0 Drive the INIT_PCLK_25MHZ input pin of the initialization logic with the GLx of FABCCC
block configured to 25MHz frequency.

0 Drive the CLK_BASE input pin of the SERDESIF_n block with the GLx of FABCCC block
(configured to appropriate frequency).

0 Drive the CLK_LTSSM_125MHZ input pin of the initialization logic with the GLx of FABCCC
block configured to 125MHz frequency.

NOTE: If more than 1 SERDESIF blocks are used in a design then you should put together separate
initialization logic (using the CoreABC, CoreConfigP, and CoreResetP) for each one of them and do

appropriate connections with the SERDESIF_n blocks.

FAE FESET NI

OSC_0
RODSC,_25_S0MHZ_O2F

SERDES_IF_0
——— B CORE_RESET_N FOIE_SY STEM INTIB X
FHY _FESET_N FLL_LOGK INTIP X
p AFE_S_FRESET_N FLL_LOGRLOST_INT I X
LK BASE SALL_LOCK
AFE S FOLK FOE BV _ 1SR X
L | POE INTERRUPT[2.0] REFCLIO OUT X
----@BEFDs_IN AHE_MASTER I —
FAs_OUTE -
w
=
L 9
.ﬂl
P
. 2

EVREST NI

SYSRESET 0
CEVRST_N FOWER_ON RESET M
<

ROOSC_S0MHZ

FOWER_ON_RESET_N

i

=

=

(l']:

&

<

SERDESIF_0_INIT_0

FAB_RESET N AFE_5_PRESET N
INT, POLK_I5MHE AFE. 5 |=cu<i

4B SOFD FERST M
L CLIK_[TSSM T250MHZ

SOIFD_SPLL_LOCK

i 1 OF
PNER_ON RESET N

Figure 27. Interfacing SERDESIF_n with the Initialization Logic

37

Continuing with the Design Flow

Next step is to integrate any user logic that you might have with the SERDESIF_n block and the initialization
logic. Once you have done that, you can generate your top level SmartDesign. This will generate all files that
are necessary to implement and simulate your design. You can then proceed with the rest of the Design Flow.

NOTE: After configuring all the desired SERDESIF_n registers in the SERDESIF configurator and upon
generating the Smart Design component containing the SERDESIF_n block , the SERDESIF_n_init_abc.txt
file will be generated to the disk. You will need to copy the contents of the SERDESIF_n_init_abc.txt file to the
CoreABC Program tab and regenerate the initialization logic Smart Design component containing CoreABC.

38

& Microsemi

'Design using FDDR block

Building Standalone Initialization Logic for FDDR

In order to initialize the FDDR, you must create the initialization subsystem in the FPGA fabric. The FPGA
fabric initialization subsystem moves data from the CoreABC program to the DDR configuration registers,

manages the reset sequences required for the FDDR block to be operational and signals when the FDDR

block is ready to communicate with the rest of your design. To create the initialization subsystem you must:

Instantiate and configure CoreABC soft IP core.

Load CoreABC with the initialization program generated to the FDDR_init_abc.txt file.

Instantiate and configure the CoreConfigP and CoreResetP cores.

Instantiate and configure the on-chip 50MHz RC oscillator.

Instantiate the System Reset (SYSRESET) macro.

Connect these components to the peripheral's (FDDR) configuration interface, clocks, resets and PLL

lock ports.

CoreABC configuration

Create a new SmartDesign component (FDDR_INIT).

Instantiate CoreABC into your SmartDesign. This core can be found in the Libero Catalog
(under Processors).

Double-click the core to open the configurator.
Configure the core as shown in the depiction below (Figure 28).

Configure the data bus width to be 16.

Configure the maximum number of instructions to at least 256.
Configure to use AND and OR operations as optional instructions.
Configure Instruction Store to Hard (FPGA Tiles).

Copy the CoreABC program generated for FDDR from the FDDR_init_abc.txt file created
under the <project_location>/../FABDDR_0/ directory, to the CoreABC Program tab. See
the figure below.

NOTE: The FDDR_init_abc.txt file will be generated only when you generate the Smart Design containing the
FDDR block. So after you've made all the connections and generated all the blocks (including FDDR), you will
need to copy the contents of the FDDR_init_abc.txt file to the CoreABC Program tab and regenerate the
initialization logic Smart Design component containing CoreABC. You may defer doing this until you completely
configure your FDDR block and generate the SmartDesign component containing it.

39

|'\

[8 | Configuring COREABC_0 (COREABC 3.4.101) | = | = 2
Parameters | Program | Analysis
Size Settings =
Data Bus Width :
Number of APB Slots :
APE Slot Size ;
Maximum Number of Instructions : | 4096 hd
Z Register Size (Bits) : | Disabled -
I Mumber of IfQ Inputs :
. Mumber of 1/0 Flags :
Mumber of IfO Outputs :
Stack S :
Init/Config Address Width : | 11
Memory and Interrupt
Instruction Store : [Hard (FPGA Tiles) v]
Instruction Store APE Access @ | None
Use Calibration MVM :
Internal Data/Stack Memaory :
ALU Operations from Memary : |:|
APE Indirect Addressing : [=
Supported Data Sources : ’hmmu]ator and Immediate V]
Interrupt Support : [Disabled vl
ISR Address : |1
Optional Instructions
AMD, BITCLR, BITTST : XOR, CMP &[]
OR, BITSET : ADD, SUB, DEC, CMPLEQ : [
N : [SHL, ROL : [C]
SHR, ROR: [] CALL, RETURN, RETISR : [
PUSH, POP & [APBWRT ACM & [
IOREAD : [IOWRT : []
MULT : | Not Implemented -
License
License :
Other Settings
Testhench :
Verbose Simulation Log : :
|| cancel

Figure 28. CoreABC configuration

40

i ' Configunng INIT_COREABC 0 (COREABC 3.4.101)

£ Microsemi

Program | malys

APBYRT DAT16 @ OGx1868 B8x8

/7 DDRC_RESERVED®
APBYRT DAT16 B 0x1004 0x0

// DDRC_DYN_REFRESH_1_CR
APBYRT DAT16 B 0x1008 0x27de
// DDRC_DYN_REFRESH_2_CR
APBYRT DAT16 0 0x100c Ox30F
/7 DDRC_DYN_POWERDOUN CR
APBYRT DAT16 B Bx1018 0x2

// DDRC_DYN_DEBUE_CR

APBYRT DAT16 B Bx1014 0x0

// DDRC_MODE_CR

APBYRT DAT16 B Bx1018 Bx1

// DDRC_ADDR_MAP_BANK_CR
APBYRT DAT16 B Bx181c Bx999
/7 DDRC_ECC_DATA_MASK_CR
APBURT DAT16 8 0x1020 0x0

// DDRC_ADDR_MAP_COL_1_CR
APBYRT DAT16 B 0x1024 0x3333
// DDRC_ADDR_MAP_COL_2 CR
APBYRT DAT16 B 0x1028 OxFFFF
// DDRC_ADDR_MAP_COL_3 CR
APBURT DAT16 B Bx1878 Bx3300
// DDRC_ADDR_MAP_ROW 1 _CR
APBURT DAT16 B 0x102c OxXB888
// DDRC_ADDR_MAP_ROMW 2 CR

Analyze program as I type

H-—-—-—
/f CoreABC FDDR Initialization Sequence

// Assert Soft Reset (DDRC_DYH_SOFT_RESET=8)

[t | »

0K

] [Cancel

Figure X. CoreABC program for FDDR

CoreConfigP

1.

Instantiate CoreConfigP into the same SmartDesign. This core can be found in the Libero

Catalog (under Peripherals).
Double-click the core to open the configurator.

Configure the core to specify which peripherals need to be initialized (Figure 29)

41

[Configuring CareConfigP_0 (CareConfigP - 7.0.105) = B X

Configuration

Peripheral Block Usage

MCDR in use [| FODR. in uge

SDIFOin use [| SDIFO used for PCIe

SDIF1lin use [| SDIF1 used for PCIe

SDIF2inuse [SDIF2 used for PCle

SDIF3in use [| SDIF3 used for PCIe
Soft Reset Qutputs

Enable soft reset outputs [

Target Device

Target die size is 090 [

[Ok] [Cancel

Figure 29 « CoreConfigP Dialog Box

CoreResetP

1. Instantiate CoreResetP into the same SmartDesign. This core can be found in the
Libero Catalog, under Peripherals.

2. Double-click the core inside the SmartDesign Canvas to open the Configurator
(Figure 30 — CoreResetP Configurator)

3. Configure the core to:

— Specify the external reset behavior (EXT_RESET_OUT asserted). Choose one of four options:
e EXT_RESET_OUT is never asserted
e EXT _RESET _OUTis asserted if power up reset (POWER_ON_RESET_N) is asserted
e EXT _RESET_OUT s asserted if FAB_RESET_N is asserted
e EXT_RESET_OUT s asserted if power up reset (POWER_ON_RESET_N) or
FAB_RESET N is asserted

— Specify the Device Voltage. The selected value should match the voltage you selected in the
Libero Project Settings dialog.

— Check the appropriate checkboxes to indicate which peripherals you are using in your design.
— Specify the external DDR memory setting time. Refer to the external DDR memory vendor
datasheet to configure this parameter. 200us is a good default value for DDR2 and DDR3

memories running at 200MHz. This is a very important parameter to guarantee a working
simulation and a working system on silicon. Incorrect value for the settling time may result in

42

simulation errors.

Refer to the CoreResetP handbook for details on the options available to you in this configurator.

[, Configuring CoreResetP_0 (CareResetP - 7.0.104) . = B R
Configuration -
External Reset
EXT_RESET_OUT asserted: |If POWER_OMN_RESET_M or RESET_MN_M2F is asserted
Device Voltage
1.0V @ 1.2V
DDR
MDCR in use (| FODR. in use
DDR memory settling time (us): 200
SERDES Interface 0
In use (| Used for PCIe
Indude PCIe HotReset support Include PCIe L2/P2 support
SERDES Interface 1 L
In use | Used for PCIe |
Indude PCIe HotReset support Include PCIe L2/P2 support
SERDES Interface 2]
In use | Used for PCIe
Indude PCIe HotReset support Include PCIe L2/P2 support
SERDES Interface 3
In use (| Used for PCIe
Indude PCIe HotReset support Include PCIe L2/F2 support
Soft Reset Inputs
Enable soft reset inputs [~
Target Device b
Target die size is 090 [<
l [Cancel

Figure 30. CoreResetP Configurator

Overall Connectivity of the initialization logic (FDDR_INIT)
After you have instantiated and configured the 3 cores CoreABC, CoreConfigP and CoreResetP, appropriate
connections have to be made to make the initialization logic operational. See the depiction below in the Figure

31 to understand how the connections are made.

The following is a list of signals that need to be promoted to the top which will be needed when interfacing this

43

initialization logic with the actual peripheral (FDDR).
e CoreConfigP:

o
(0]
(0]

APB_S_PRESET_N
APB_S PCLK
APB_S_INIT (APB BIF FDDR_APBmslave)

e CoreResetP:

(0]

O o0 o0OO0oOo

RCOSC_25_50MHZ
FAB_RESET N
POWER_ON_RESET N
DDR_READY
FDDR_CORE_RESET_N
FPLL_LOCK

e INIT_PCLK_25MHz (connecting together the PCLK of CoreABC, the FIC_2_APB_M_PCLK of
CoreConfigP and the CLK_BASE of CoreResetP).

INT POLK 25MHZ

COREABC_0

NSYSRESET ~ PRESEIN
— FCLK 10_OUTIO] B X
I0_IN[0]

.\”-

APB3master

POWER _ON RESET N

APB_S_PRESET N

DONFIG1_DONH

DONFIGZ_DONH ﬁ
s

FAB RESET N

RCOSC 25 50MHZ

FRLL_LCCK

CoreConfigP_0
G| PZX =W
L2 || &
E: EI
=
Py
<O
N‘LL
9\
[T
CoreResetP_0
— RESET_N_M2F MSS_HPMS_READY
- FIC 2 APB_M PRESET N DDR_READY
FOWER_ON_RESET_N RESET_N_F2M
FAB RESET_N M3_RESET N
ROOSC 25 50MHZ EXT RESET OUT
CLK_BASE FDDR_CORE RESET N
FPLL_LCCK INIT_DONE
— CONFIG1_DCNE
CONFIGZ_DCNE
@' P

ABB S ET N |
AFB S K|
APB S INIT |
DOR READY

XXX

I FDDOR CORE RESET N |

Figure 31. FDDR_INIT (FDDR Initialization Logic)

Instantiating and configuring the FDDR block
Create a Smart Design component and instantiate the FDDR block from the catalog window (from under the
Memory and Controllers). Double-click the FDDR block in the SmartDesign canvas to open the configurator
and configure the FDDR. (Figure 32). The Fabric DDR (FDDR) controller must be configured dynamically (at
runtime) to match the external DDR memory configuration requirements (DDR mode, PHY width, burst mode,

44

ECC, etc.). Data entered in the FDDR configurator is written to the DDR controller configuration registers by
the CoreABC program. The Configurator has three different tabs for entering different types of configuration
data:

e General data (DDR mode, Data Width, Clock Frequency, ECC, Fabric Interface, Drive Strength)

e Memory Initialization data (Burst Length, Burst Order, Timing Mode, Latency etc)

e Memory Timing data

Consult the specifications of your external DDR memory and configure the DDR Controller to match the
requirements of your external DDR memory.

For details on DDR Configuration, refer to the IGLOO2 HPMS DDR Configuration User Guide.

1] Fabric External Memory DDR. Controller Configurator | = & %]
-
[I.rnport Conﬁgurah’on] [E)cport Conﬁgurah’on] [R.eshore Defaults] F
General | Memoary Initislization I Memory Timing | 1
| —t —
Memory Settings |
Memory Type DDR2 b4 |
Clock Frequency 200 MHz |
SECDED Enabled ECC [] : E'
Address Mapping {ROW,BANK, COLUMN} + | g =
e > =
| 2 £
Fabric Interface Settings | E L
| FPGA FABRIC =
FPGA Fabric Interface [Usmg an AXI Interface V] |
FODR CLOCK Divisor [/4 -] [
UUse Fabric PLL Lock :
: |
10 Drive Strength |
]) |
@ Half Drive Strength (2 Full Drive Strength - - |
Enable Interrupts [Reaqister Description
Fabric Memory Total
Clock Frequency Bandwidth Bandwidth
50 MHz 400 Mbps 1600 Mbps
| I | ;
o) (o] [t

Figure 32. Fabric DDR configurator

45

http://coredocs.s3.amazonaws.com/Libero/SmartFusion2MSS/HPMS_DDRB/igl2_hpms_ddrb_config_ug_1.pdf

Interfacing the FDDR with the Initialization Logic Built for it

In the same SmartDesign the FDDR block is present, instantiate the Smart Design containing the FDDR
initialization logic (FDDR_INIT), and do necessary interconnections to interface the FDDR block to the

initialization logic. See the depiction below in the Figure 35 to understand how the connections are made.

The following is a list of signal interconnections that need to be made to properly interface the FDDR to the
initialization logic.

FROM Port or Bus Interface (BIF)/ Component TO Port/Bus Interface (BIF)/ Component
APB_S PCLK/ FDDR APB_S PCLK/ initialization logic.

APB_S PRESET N/ FDDR APB_S PRESET_N/ initialization logic.
APB_SLAVE BIF/ FDDR APB_S_INIT/ initialization logic
FPLL_LOCK/ FDDR FPLL_LOCK!/ initialization logic
CORE_RESET N/FDDR FDDR_CORE_RESET N / initialization logic

50MHz Oscillator Instantiation

CoreResetP needs to be clocked by the on-chip 50MHz RC oscillator. You must instantiate a 50MHz
Oscillator for this purpose.

1. Instantiate the Chip Oscillators core into the same SmartDesign the FDDR block is present.
This core can be found in the Libero Catalog under Clock & Management.

2. Configure this core such that the oscillator drives the FPGA fabric, as shown in Figure 33 below.

3. Click “OK".

4. Connect the RCOSC_25 50MHz_O2F output of the Oscillator to the RCOSC_25 50MHz input
of FDDR_INIT block (FDDR initialization logic).

/| Chip Oscillators Configurate

Configuration

[External Main Crystal Osdillator

Source Crystal (32KHz-20MHz) - MSS_CCC

Frequency 20,00 MHz
Drives Fabric CCC(s) RCOSC_S0MHZ

Drives Fabric Logic

Drives Fabric CCC(s) =

Drives Fabric Logic
RCOSC_1MHZ

[7] on-chip 1 MHz RC Osdllator
Drives Fabric CCC(s)

Drives Fabric Logic

1
1
1
1
1
1
1
1
1
1
1
1
On-chip 25/50 MHz RC Oscillator :
1
1
1
1
1
1
1
1
1
1
1
1
1

g—mo&:

User Logic

FPGA Fabric

Figure 33 « Chip Oscillators Configurator

System Reset (SYSRESET) Instantiation

The SYSRESET macro provides device level reset functionality to your design. The POWER_ON_RESET_N
output signal is asserted/de-asserted whenever the chip is powered up or the external pin DEVRST_N is

asserted/de-asserted (Figure 34).Instantiate the SYSRESET macro into the same SmartDesign the

FDDR block is present. This macro can be found in the Libero Catalog under Macro Library. No

configuration of this macro is necessary. Drive the POWER_ON_RESET_N input of FDDR_INIT block
(FDDR initialization logic with the POWER_ON_RESET_N output signal of this SYSRESET macro.

DEVRST_N 0

DEVRST_N

SYSRESET_0

POWER_ON_RESET_N
<

Figure 34 « SYSRESET Macro

Apart from the above connections, do the following also:
Promote the FAB_RESET_N pin the initialization logic (FDDR_INIT_0 instance) to the top level (this

is the warm reset).

Promote the DDR_READY of the initialization logic to the top to monitor the status of the FDDR

initialization.

Instantiate a FABCCC block and do the following connections:
o0 Drive the INIT_PCLK_25MHZ input pin of the initialization logic with the GLx of FABCCC
block configured to 25MHz frequency.

0 Drive the CLK_BASE input pin of the FDDR block with the GLx of FABCCC block
(configured to appropriate frequency).

0 Drive the CLK_BASE_PLL_LOCK input pin of the FDDR block with the LOCK pin of the

FABCCC block.

[FAB RESET NP ‘

SYSRESET_0
DEVRST_N DEVRST_N POWER_ON_RESET_N
<

0sC_0
RCOSC,_25_50MNHZ_O2F|
Fw

AX| SLAVE

FDDR_INIT_O
FAB_RESET N FDDR_CORE RESET M
FPLL LOCK APB S_PRESET N
INT_PCLK_25MHZ PB_S_PCLK
ROOSC,_25_S0NHZ DOR_READY
POWER_ON_RESET_N
=
Z
w
< &
L4
o
-
1
g
<
FDDRC_0
AFB_S§_FCLK FPLL_LOCK
APB_S_PRESET_N FOOR_PADSE@----====nmnunen
AXLS_RMWWV
CLK_BASE_FLL_LOCK
CORE_RESET_N
CLK_BASE
AXL_SLAVE
gFw

Figure 35. Interfacing FDDR with the Initialization Logic

Continuing with the Design Flow

Next step is to integrate any user logic that you might have with the FDDR block and the initialization logic.
Once you have done that, you can generate your top level SmartDesign. This will generate all files that are
necessary to implement and simulate your design. You can then proceed with the rest of the Design Flow.

FDDR READY |
RCOSC 25 S0MHZ O2F

NOTE: After configuring all the desired FDDR registers in the FDDR configurator and upon generating the
Smart Design component containing the FDDR block , the FDDR _init_abc.txt file will be generated to the disk.
You will need to copy the contents of the FDDR_init_abc.txt file to the CoreABC Program tab and regenerate

the initialization logic Smart Design component containing CoreABC.

6 — Simulating the Design

Unlike the normal flow (Standalone Initialization OFF) where the peripheral initialization involves
various *_init.reg files to mimic the initialization in simulations, no such files are required in case of
the Standalone Initialization mode ON.

NOTE: Unlike the normal flow, ENVM_init.mem file that's created upon invoking simulations
doesn’t have any peripheral’s register configuration information in case of the Standalone
Initialization mode ON. It only has the data corresponding to the ENVM clients specified in the
design.

The CoreABC program is solely responsible for the peripheral initialization both in simulations and
on board (device).

When you generate a Smart Design component containing SERDESIF_n (configured in PCle mode),
then the following files are generated in the <project dir>/simulation directory:

e SERDESIF _n_user.bfm - Contains the user commands. Edit this file to enter your BFM
commands that would exercise the SERDESIF_n PCle.

49

& Microsemi

A — Product Support

Microsemi SoC Products Group backs its products with various support services, including Customer
Service, Customer Technical Support Center, a website, electronic mail, and worldwide sales offices.
This appendix contains information about contacting Microsemi SoC Products Group and using these
support services.

Customer Service

Contact Customer Service for non-technical product support, such as product pricing, product upgrades,
update information, order status, and authorization.

From North America, call 800.262.1060
From the rest of the world, call 650.318.4460
Fax, from anywhere in the world, 408.643.6913

Customer Technical Support Center

Microsemi SoC Products Group staffs its Customer Technical Support Center with highly skilled
engineers who can help answer your hardware, software, and design questions about Microsemi SoC
Products. The Customer Technical Support Center spends a great deal of time creating application
notes, answers to common design cycle questions, documentation of known issues, and various FAQs.
So, before you contact us, please visit our online resources. It is very likely we have already answered
your questions.

Technical Support

Visit the Customer Support website (www.microsemi.com/soc/support/search/default.aspx) for more
information and support. Many answers available on the searchable web resource include diagrams,
illustrations, and links to other resources on the website.

Website

You can browse a variety of technical and non-technical information on the SoC home page, at
WWW.microsemi.com/soc.

Contacting the Customer Technical Support Center

Highly skilled engineers staff the Technical Support Center. The Technical Support Center can be
contacted by email or through the Microsemi SoC Products Group website.

Email

You can communicate your technical questions to our email address and receive answers back by email,
fax, or phone. Also, if you have design problems, you can email your design files to receive assistance.
We constantly monitor the email account throughout the day. When sending your request to us, please
be sure to include your full name, company name, and your contact information for efficient processing of
your request.

The technical support email address is soc_tech@microsemi.com.

50

http://www.microsemi.com/soc/support/search/default.aspx
http://www.microsemi.com/soc
mailto:soc_tech@microsemi.com

My Cases

Microsemi SoC Products Group customers may submit and track technical cases online by going to My
Cases.

Outside the U.S.

Customers needing assistance outside the US time zones can either contact technical support via email
(soc_tech@microsemi.com) or contact a local sales office. Sales office listings can be found at
www.microsemi.com/soc/company/contact/default.aspx.

ITAR Technical Support

For technical support on RH and RT FPGAs that are regulated by International Traffic in Arms Regulations
(ITAR), contact us via soc_tech_itar@microsemi.com. Alternatively, within My Cases, select Yes in the ITAR
drop-down list. For a complete list of ITAR-regulated Microsemi FPGAs, visit the ITAR web page.

Microsemi Corporation (NASDAQ: MSCC) offers a comprehensive portfolio of semiconductor
solutions for: aerospace, defense and security; enterprise and communications; and industrial
and alternative energy markets. Products include high-performance, high-reliability analog
and RF devices, mixed signal and RF integrated circuits, customizable SoCs, FPGAs, and
complete subsystems. Microsemi is headquartered in Aliso Viejo, Calif. Learn more at

MinOSGmi@ www.microsemi.com.

Microsemi Corporate Headquarters

\?Vﬂi_En;eflUiSSz, Ags(%Xgi;?jga%Aei%g% USA © 2014 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of
ithin the T+ - f : : : : :

Sales: +1 (949) 380-6136 Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.

Fax: +1 (949) 215-4996

5-02-00384-1/09.14

http://www.microsemi.com/soc/mycases/
http://www.microsemi.com/soc/mycases/
mailto:tech@microsemi.com
http://www.microsemi.com/soc/company/contact/default.aspx
http://www.microsemi.com/soc/company/contact/default.aspx
http://www.microsemi.com/soc/company/contact/default.aspx%23itartechsupport
mailto:soc_tech_itar@microsemi.com
http://www.microsemi.com/soc/mycases/
http://www.microsemi.com/soc/ITAR/
http://www.microsemi.com/

