

SmartFusion2 and IGLOO2

Microsemi Design Separation Methodology

Table of Contents

Introduction .. 2

Overview ... 3

Design Methodology ... 7

Creating Blocks .. 7

Assigning I/Os to Block .. 8

Optional CoreSMIP Block .. 9

Creating a Top-level Design .. 10

Floor-planning with Design Separation Regions ... 11

Inter-Region Signal (IRS) Regions .. 14

Considerations for Global clock resources.. 15

Initialization of Hard ASIC blocks .. 16

Complete P&R ... 16

Configure Security Settings and Generate Programming file ... 16

Auditing by MSVT .. 16

Executing MSVT .. 17

EXAMPLE ... 18

Creating HDL subsystems .. 19

Creating Blocks .. 20

Publish Block ... 23

Creating a Top-level Design .. 25

Floorplanning Design with Separation Regions .. 30

Complete Place and Route .. 33

Configure Security Settings and Generate Programming file ... 33

Executing MSVT .. 34

Product Support .. 36

1

Introduction
This document describes the design separation methodology required to implement security and safety
critical applications. For a system to be secure and reliable, all critical subsystems in the design should
be independent of each other.

Traditionally such a system with security and safety critical requirements is built with each critical
subsystem implemented using multiple ICs. With each critical sub-system as an independent IC, fault
and reliability analysis is simplified. In a traditional FPGA design, netlists generated for place and route
are often flattened for efficient placement. Design functions from various parts of the design hierarchy
may share physical resources. To meet critical security and safety application requirements, critical sub-
systems within an FPGA design may need to be isolated, both to simplify failure analysis and as a
measure to prevent propagation of faults from one sub-system adversely affecting another.

The Microsemi Design Separation methodology provides a method for creating independent critical
subsystems on a single FPGA. Functional blocks that must be independent can be physically isolated
from other functional elements in the FPGA via place and route constraints within the Libero SoC
software. Figure 1 shows a top level view implementing a security and safety critical application in a
Microsemi FPGA.

2

Figure 1. Implementing Security and Safety Critical Applications in Microsemi FPGAs

Overview

The Microsemi design separation methodology is comprised of three components:

1. Ability to create independent subsystems

2. Ability to validate that isolation

3. Ability to monitor for faults

The design separation methodology leverages an existing design methodology, Block Flow, to achieve
isolated functions. The Block flow is a bottom-up design methodology that enables an incremental
design approach. In a Block flow Compile, component modules within a design are compiled and
optimized in independent stages from the rest of the project. After compile, the Component modules

Subsystem 1 Subsystem 2

Subsystem 3

Safety Critical System

Block 1 Block 2

Block 3

Microsemi FPGA Device

SMIP

IRS1-3 IRS2-3

IRS2-3

3

are published as a netlist (“Block” in Libero terminology), and then exported up to a top level project for
integration with other modules in the larger system design. A key component of the Block flow is
resource reservation, since the Block needs to be compiled with all physical resources it needs a priori.
Routing reservation and logic reservation are both constraint options that are available from the Block
flow methodology. Creating isolated sub-systems for the purposes of security and safety critical
applications, then, is an application of the Block flow. All critical sub-systems are assigned to an
exclusive region (a region with strict resource reservation) and floorplanned with a guard-band of
unused clusters away from all other logic.1 Signal connections to another module (known as “Inter-
Region Signals” within this flow) are assigned to another resource-reserved block region (“Inter-Region
Block”) that overlaps the source and sink regions. The Inter-Region Signals are thus members of the
source region, the sink region, as well as the Inter-Region Block. The Inter-Region Block acts as a
constrained routing channel.

A separate tool, known as the Microsemi Separation Verification tool, is used to check that a design
meets separation requirements, as defined by the system requirements of the design. Libero
automatically generates a parameter file (MSVT.param) that details Blocks that are present in the
design, and the number of signals entering and leaving a Block. MSVT checks the final design place and
route against the MSVT.param file and reports any violations based the separation requirement defined
by the user.

Anti-Tamper (AT) must be considered in addition to the isolation of critical design subsystems.
SmartFusion2 and IGLOO2 devices come standard with robust design security, a critical portion of which
is Anti-Tamper and fault detection. SmartFusion2 and IGLOO2 devices include mechanisms to allow an
FPGA design to monitor the integrity of the device during operation. As Fault detection is a critical part
of security and safety critical systems, CoreSMIP is a valuable element in this design flow. CoreSMIP is an
IP core that ties together the relevant AT hooks within SmartFusion2 and IGLOO2 devices.

The flow chart in Figure 2 shows the various steps of the design separation methodology. Below is a
brief description of each step mentioned in the flow-chart.

1 Width of guard-band dependent on individual project requirements.
4

Figure 2. Microsemi Design Separation Methodology

Create independent design subsystems.

Create a Block element for each subsystem

Define Inter-Region Signal regions between isolated Blocks.

Configure Security and Programming Options and extract
MSVT files.

Achieve timing closure on top-level design.

Assign Blocks to the isolated regions.

Create separation regions.

Write a top-level module instantiating and connecting all
Blocks.

Compile each Block element and publish Block.

Verify post-layout implementation.

Proceed to Programming

Execute MSVT.

MSVT

PASS

FAIL

5

1. Create independent design subsystems
Create an RTL description for each of the subsystems. Each subsystem should be independent
from the others with its own logic resources. The RTL module defining each subsystem should
be independent of other subsystems.

2. Create a Block element for each subsystem
Each independent subsystem should be defined as a Block. The Block design flow creates logical
partitions for the subsystems in question as a handle for place and route constraints in later
stages of the design separation methodology. All corresponding I/O ports of a subsystem should
be assigned to the respective block. In the design separation methodology, all logic must be a
member of an isolated block region.

3. Perform analysis on each Block element and publish the Block
For each Block, run Synthesis and Compile. Assess the size and shape of suitable regions based
on the types of I/Os, length of cascaded MACC, RAM count and fabric resource usage. Publish
the block without place and route.

4. Write a top-level module instantiating all Blocks
Write a top-level module that only instantiates and connects all the Blocks. Import each
published Block. Enable the Design Separation Methodology option in the Compile tool.

5. Create separation regions
For each Block in the design, create separation regions by specifying region constraints using
ChipPlanner or defining regions in a PDC file.

6. Assign Blocks to the isolated regions

7. Define Inter-Region Signal regions between isolated Blocks
If two Blocks interact with each other, create an overlapping Inter-region Signal (IRS) region
connecting the Blocks. These IRS regions should also be physically isolated from other IRS
regions. Assign IRS nets to each respective IRS region.

8. Achieve timing closure on top-level design
Enter the necessary Timing constraints. Perform design iterations to achieve timing closure.

9. Verify post-layout implementation
Verify all aspects of timing and power. Generate back-annotated files and perform post-layout
simulations.

10. Configure Security and Programming Options and extract MSVT files
Generate the programming file. This step will also export information for Microsemi Separation
Verification Tool (MSVT).

11. Execute MSVT
6

Run MSVT tool from the command line. If MSVT fails, re-examine the floorplan and iterate the
entire design flow with corrected region constraints.

Design Methodology

Creating Blocks
A security and safety critical application may consist of one or more independent subsystems. Each
subsystem should be defined using HDL in such a way as to have independence from the rest of the
system. Each subsystem should have its own resources, including I/O buffers for external FPGA signals. A
Block element is created for each such subsystem, which is then instantiated in a top-level design.

To create a Block element for each subsystem, set the module as a Root module. To mark a design
module as a root module, right-click the target module in the Design Hiearchy tab, and choose Set as
root. Enable Block Creation and Use Standalone Initialization for MDDR/FDDR/SERDES Peripherals from
Project Settings as shown in Figure 3.

Figure 3. Project Settings for Block Creation

Block Flow is a bottom-up design methodology. The Block attribute within the Block flow identifies
components within an HDL hierarchy to be re-usable within a team based design flow as a modular
resource. For more details on Block Flow refer to Microsemi Block Flow User Guide for SmartFusion2,
IGLOO2. For more details on Peripheral Initialization refer to SmartFusion2 DDR Controller and Serial
High Speed Controller Standalone Initialization Methodology or IGLOO2 DDR Controller and Serial High
Speed Controller Standalone Initialization Methodology.

7

If a Block uses physical I/O pins, then those physical resources should be defined as part of that block.
This requires explicit definition of I/O to be assigned to the Block using I/O pads. This can be achieved
through direct instantiation of an I/O buffer within the module in question, or through the Libero
SmartDesign tool. Please refer to “Assigning I/Os to Block” section below.

For each module with its I/Os defined, run Synthesis and Compile. Analyze the Compile report to assess
the size and shape of suitable regions based on types of I/O, length of cascaded MATH blocks (MACC),
number of RAM blocks, PLLs and CCC count and fabric resource usage.

Optionally, enter timing constraints and run place and route followed by timing analysis to achieve
timing closure for each individual Block. This exercise will give you an indication of the difficulty of
timing closure at the top level of the design.

Once these steps are completed, the Block is ready to be published.

Since we will be assigning these Blocks to isolated separation regions (explained in subsequent sections),
you need to publish the Block without placement and routing information. Configure Publish Block
options to exclude Placement and Routing information, as shown in Figure 4.

Figure 4. Configuring Publish Block Options

Libero exports the <block_name>.cxz file to <project_path>/designer/<block_name>/export directory
when a Block is published. The <block_name>.cxz file is the published Block. This is the file you import
into the top-level design when you want to instantiate the Block.

Assigning I/Os to Block
Signals that route to physical I/O pins within each module should belong to the corresponding
Block. For the purpose of design separation, physical I/O resources must be associated with an isolation
region. Enabling block flow disables automatic I/O insertion by the Synthesis tool. Hence, the design
separation methodology requires explicit instantiation of I/O buffers that are required per Block. These
I/O buffers can be inserted from the I/O configurator in the SgCore Catalog or the Macro Library Catalog.
8

Please refer to the SmartDesign sections in the Libero Online Help. These macros ensure that all design
ports assigned to them infer an I/O port assigned to the given Block. Do not insert any I/O buffer on
ports that will be used to interconnect with other blocks i.e. Inter-Region Signal (IRS) nets.

To insert I/Os in a Block, Microsemi recommends that you use Libero’s SmartDesign tool. Follow the
steps below to create a SmartDesign component of the subsystem.

i. Create a SmartDesign (SD) and instantiate the module in SD.
ii. Insert appropriate macros from the Macro library Catalog for each type of port. The relevant macros are:

INBUF, INBUF_DIFF, OUTBUF, OUTBUF_DIFF, TRIBUFF, TRIBUFF_DIFF, BIBUF, and BIBUF_DIFF.
iii. In case ports belong to a bus, use the I/O configurator with required width and type of buffer.
iv. Once required macros are instantiated in SD, connect the ports of the design with the respective macros.
v. Rename the I/O pads with names defined in the module. Generate SD.

vi. Set the generated SD as the root module and create a Block using this module as described above.

Figure 5 shows a SmartDesign component in which a subsystem, DCT_BUF12, has been instantiated, and

Top-Level ports are assigned to its I/Os using INBUF, OUTBUF macros and the I/O Configurator.

Figure 5. SmartDesign Instantiating Subsystem along with I/Os

As an alternative to SmartDesign, you can also instantiate the macros and connect them to the top-Level
ports of the design.

Since lower-level modules are compiled independently from the top level design, you must check to
ensure unique I/O pin names across the design are not used within the lower level project. Microsemi
recommends checking the I/O pin names across the project to ensure for uniqueness when building the
lower level project.

Optional CoreSMIP Block
The Security Monitor IP (CoreSMIP) is a core provided by Microsemi for Tamper detection, thus
enhancing the security of the system. More details on CoreSMIP can be found in the CoreSMIP User
Guide. CoreSMIP is present in the catalog under SC/Tamper section.

In the event your design includes CoreSMIP, and because the design separation methodology requires
each subsystem to be defined as a Block, you must create a CoreSMIP Block following the same steps as
the other Blocks.

9

Creating a Top-level Design
Once all Blocks are published, create a new Libero project for the top-level design. Write a top-level
module in whatever language you use for the Libero project. This top-level module should contain
instantiations of all Blocks along with interconnects between them, replicating a complete system.

Set this top-level module as the root module in Libero and disable Block Creation. Using the File 
Import  Blocks menu, import all published subsystem Blocks (<block_name>.cxz files) into this design.
Since all published Blocks have already completed Synthesis and have I/Os assigned to them, you do not
need to run Synthesis.

Figure 6 shows Project Settings required for top level design with Block Creation and Synthesis disabled.

Figure 6. Project Settings for Top-level Design

In addition, configure Compile and click the checkbox to Enable Design Separation Methodology. This
option facilitates the generation of files needed by MSVT while creating the Programming file later in

the flow. Figure 8 shows the values for Compile. Run Compile from Libero to compile the design.

10

Floor-planning with Design Separation Regions
Once the top-level design with subsystem Blocks has been created, floorplan the design by defining
separation regions and Inter-Region Signal (IRS) Regions. In a design that follows the Microsemi Design
Separation Methodology, all logic should be contained in a logic region with dedicated place and route
resources.

A logic region is a user-defined area on the device within which logic can be assigned. A Separation
region is a logic region with the following features:

 It is a resource reserved (place and route) region.
 May be a non-rectangular region (built from a union of multiple rectangular floorplan

regions)
 Regions are separated from each other by reserving a perimeter of unused clusters

You can use ChipPlanner to create regions or create them with PDC commands. ChipPlanner is the
floorplanning tool you use to create and edit regions on the chip and assign logic to these regions.

Create a Separation region for each Block present in the design. The size of and shape of the region
should depend on quantity of fabric resources, I/O types, RAM, MACC and CCC being used in each block.

Each Block region is a place and route constraint for logic elements that are associated with it. Physical
separation is achieved by allowing some unused logic clusters as a guard-band around each block region.
The unused cluster spacing between regions is dependent upon final system requirements. Floorplan

Figure 7. Enabling Design Separation Methodology before Compile

11

mk:@MSITStore:W:%5Cpc%5C11_3_0_111_curly%5CDesigner%5Chlp%5Clibero.chm::/mvn_files/about_floorplanning_.htm

according to the guard-band that is appropriate for the security and safety requirements of the target
design.

SmartFusion2 and IGLOO2 architecture is cluster-based. For SmartFusion2 and IGLOO2 devices, a cluster
is made up of 12 Logic Elements. A Logic Element includes a 4 input-LUT, a register, and a carry chain. In
the ChipPlanner coordinate system, each Logic Element component has a unique coordinate. As such,

each Cluster occupies an area of 12x3. Figure 8 shows a single cluster as shown in the ChipPlanner with

dimensions noted. The granularity of ChipPlanner region sizes is one cluster.

Figure 8. One Cluster of SmartFusion2/IGLOO2 FPGA

Regions may be defined for each Block using either the ChipPlanner or with a Physical Design
Constraints (PDC) file. The size of each such region should be able to accommodate all resources used by
a given block, including all embedded hard IP blocks such as I/Os, RAM, Math Blocks, and Clock
Conditioning Circuit blocks (CCCs).

Note that RAM, Math Blocks and CCCs take up a footprint of three clusters in the SmartFusion2 and
IGLOO2 floorplans. The makeup of embedded hard-IP blocks include the hard IP resource itself abutted
to a set of Interface Clusters. The Interface Clusters help route signals to and from the hard IP resource
to the rest of the fabric array. Figure 9 and Figure 10 detail the makeup of a hard IP block and its
corresponding visualization within the ChipPlanner floorplan, respectively.

Figure 9 : Interface cluster for a hard IP block.

12

Interface Cluster Logic

μSRAM Block

Figure 10 : uSRAM block as shown in Chip Planner

An isolated region constraint must include the entire embedded hardblock resource within its
boundaries for the resource to be usable within the target region. Use Non-rectangular regions to help
efficiently allocate a floorplan to include these hard IP blocks.

More information about the fabric architecture for SmartFusion2 and IGLOO2 devices can be found in
the SmartFusion2 fabric user guide and the IGLOO2 fabric user guides, respectively.

Figure 11 and Figure 12 provide an example floorplan from a sample design using a PDC file and the floorplan
as shown in the ChipPlanner, respectively. The granularity of placement units are logic modules in the
ChipPlanner coordinate system and the granularity of region sizes is clusters. Hence, regions must be a
multiple of 12 in the horizontal direction and a multiple of 3 in the vertical direction.

BLOCK 1
COMB 614
SEQ 406
IO (W/ clocks) 20
Differential IO 8
GLOBAL 2
RAM64x18 0
RAM1K18 0
MACC 2
CCC 1

BLOCK 2
COMB 846
SEQ 1020
IO (W/ clocks) 3
Differential IO 0
GLOBAL 2
RAM64x18 0
RAM1K18 0
MACC 0
CCC 1

BLOCK 3
COMB 708
SEQ 468
IO (W/ clocks) 3
Differential IO 0
GLOBAL 2
RAM64x18 0
RAM1K18 0
MACC 2
CCC 1

BLOCK 4
COMB 993
SEQ 1220
IO (W/ clocks) 28
Differential IO 12
GLOBAL 2
RAM64x18 0
RAM1K18 0
MACC 0
CCC 0

IR
S1

-2

IR
S3

-4

IRS2-3

13

// Define Separation and IRS Regions
define_region -name Block1_Region -route yes 156 6 263 71
define_region -name Block2_Region -route yes 324 78 443 143
define_region -name Block3_Region -route yes 480 90 599 128
define_region -name Block4_Region -route yes 156 84 275 143
define_region -name IRS_1_2_Region -route yes 156 84 443 143
define_region -name IRS_2_3_Region -route yes 240 102 371 143
define_region -name IRS_3_4_Region -route yes 420 99 515 125

// Assign Blocks to Respective Separation Regions
assign_region Block1_Region Block1
assign_region Block2_Region Block2
assign_region Block3_Region Block3
assign_region Block4_Region Block4

// Assign IRS Signals to respective IRS Regions
assign_net_macros IRS_1_2_Region rdy1 data1<*> -include_driver yes // Block 1 and Block 2
assign_net_macros IRS_2_3_Region rdy2 data1r<*> -include_driver yes // Block 2 and Block 3
assign_net_macros IRS_3_4_Region rdy3 data2<*> -include_driver yes // Block 3 and Block 4

Figure 11. Example floor-plan PDC file

For more information about floor planning with the Chip planner and PDC syntax refer to the MultiView
Navigator online help in Libero SoC.

Figure 12. Example Floor-Plan of Top-level Design

Inter-Region Signal (IRS) Regions
Since each Block is defined in an isolated region, we must ensure that a routing channel with valid inter-
Block communication interconnect exists that is separated from other unrelated regions. These inter-
Block interconnect channels are defined using IRS regions.

An IRS region is another routing region that overlaps with the isolated Block regions. All signals that have
a valid connection point between the source and destination Blocks are explicitly assigned to the IRS
routing region.

IRS regions have essentially the same requirements as separation regions mentioned above. IRS regions
should contain valid communication interconnect nets assigned to them. An IRS region overlaps with the
separation regions being connected.

14

Each IRS region should connect only one set of connected Blocks. Each set of IRS should also be
separated by a certain number of clusters from all other Blocks in all directions, both inside and outside
the connected Blocks. The amount of separation required will be dependent on your system
requirements.

The cells connected to IRS must be isolated from other IRS connected to a different set of Blocks. It is
best to insert a buffer or register (with only global clocks and resets) at the source and sinks of IRS.

Considerations for Global clock resources
The global clock network on SmartFusion2 and IGLOO2 devices provide a dedicated low skew, high
fanout network to all logic clusters within the fabric array. There are a number of global buffers per
device with the following potential inputs :

• Dedicated Global I/Os
• Clock Conditioning Circuits (inclusive of PLLs)
• On-Chip (hardened) oscillators
• FPGA Fabric routing

A detailed description of the clock distribution architecture and associated clocking resources can be
found in the SmartFusion2 Clocking Resources User Guide and the IGLOO2 Clocking Resources User’s
Guide.

The design separation flow only considers physical isolation of logic regions through the analysis of
routing elements on the programmable switch fabric in the FPGA. Global networks, as it is a dedicated
routing tree, are not analyzed as part of this flow. Hence, for the purposes of design separation, global
signals that are common to multiple regions (such as clock and reset) do not have to be separated from
any other signal.

However, note that high fanout-signals from the fabric array are often automatically promoted onto the
global network. In such cases, the designer may wish for high fanout signals that are meant for a region
to use local routing resources only. To understand which signals are promoted onto the global network,
inspect the Compile log and Global Net report to confirm which nets get assigned to GB and which nets
get implemented on Row Global Buffer (RGB) resources.

Note that promotion and demotion of signals can also be controlled via synthesis attributes. Refer to
the SynplifyPro User guide to explore directives to modify the threshold values where global promotion
occurs.

As MSVT only audits the programmable switch fabric, any hard macro resources (such as the CCC or an
RC oscillator) are not audited. Most inputs to the CCC are from hard blocks, such as from an dedicated
I/O pin or the RC oscillator are routed on dedicated metal traces. However, CCC inputs may also be
driven from the fabric. If an input or output of a CCC is routed, then design separation constraints will
apply. In such a case, the physical CCC resource must also be encapsulated within same region as the
source signal driving the CCC. The locations of the CCC may be restrictive for planning the regions – they
occur in pairs in each quadrant and some quadrants may not have any CCCs.

15

http://www.microsemi.com/document-portal/doc_download/130924-smartfusion2-clocking-resources-user
http://www.microsemi.com/document-portal/doc_download/132012-igloo2-fpga-clocking-resources-user-s-guide
http://www.microsemi.com/document-portal/doc_download/132012-igloo2-fpga-clocking-resources-user-s-guide

RGB resources (RCLKINT/RGCLKINT macros), if used, must be included in a design separation region.
Connectivity in the row served by a RGB is dictated by programmable switches, and therefore, is
analyzed by the MSVT. RGBs are present on every row and are distributed along a few columns across
the fabric array (locations are device dependent). You need to be aware of the location of the RGB
columns and the width of such regions is determined by the span of the RGB output.

Initialization of Hard ASIC blocks
SmartFusion2 and IGLOO2 devices contain a number of hardened peripherals, such as SERDES blocks,
and hardened memory controllers. These peripherals often rely on initialization routines, where
register values are configured to the desired operational parameters. In the standard Libero flow,
initialization of these hardened peripherals is controlled via a centralized initialization controller. Fabric
routing resources are used to connect with the centralized configuration controller, and in such cases
will cause a violation of design separation constraints. If hardened peripherals are used in the design,
then the standalone initialization flow must be used in conjunction with the design separation flow.

For more details about standalone initialization of peripheral blocks refer to the Standalone Peripheral
Initialization User Guide.

Complete P&R
Once a floorplan of the entire design is complete with separation regions and IRS regions defined, run
place and route and verify post-Layout implementation as per the regular Libero design flow.

Verify that timing closure can be achieved for the design. If the design does not meet timing, clone and
modify the timing constraints scenario for Timing-driven place and route (TDPR) and explore alternative
optimization through High-effort or Power-driven options. You could also change the floorplan and
iterate through the design. Standard FPGA design practices like Incremental flow are available. Care
should be taken that all criteria required for separation of design remains intact while changing the
design floorplan.

Configure Security Settings and Generate Programming file
You can use the Security Policy Manager(SPM) to set design security attributes after place and route is
complete, and before you generate programming files. This includes setting user encryption keys and
hardware access control policies. Configure the SPM as appropriate for the target system design. For
more information about design security and the options available in the Security Policy Manager refer to
the SmartFusion2 Security and Reliability Guide and the IGLOO2 Security and Reliability Guide.

Auditing by MSVT
Microsemi Separation Verification Tool (MSVT) is a standalone tool provided with the Libero installation.
It is used to verify that the design meets design separation requirements.

The tool takes as input the design database (the “.dtf” directory within the active project directory) and
a parameter file that is generated once per project. The parameter file describes the isolation regions in
the design as well as the inter-region signals between isolation regions. This file is created when the
Enable Design Separation Methodology checkbox in the Compile options dialog is enabled. This file is
exported to the following location:

16

http://sv-livelink-02/actel813/livelink.exe?func=LL.getlogin&NextURL=%2Factel813%2Flivelink%2Eexe%3Ffunc%3Dll%26objId%3D2629120%26objAction%3Ddownload%26viewType%3D1
http://www.microsemi.com/document-portal/doc_download/132037-igloo2-fpga-reliability-and-security-user-s-guide

<project_path>/designer/<Top_Level_Module>/msvt.param

The tool can work on any placed and routed design which has a Block that requires a separation from all
elements external to the block. The tool works iteratively on every Block to be verified. Internal signals
and IRS are verified separately. The tool checks whether the separation criteria is satisfied for each Block
and corresponding sets of IRS signals.

MSVT prints an exhaustive report on each Block and corresponding IRS regions being verified. If any of
the Block or IRS signal does not satisfy minimum separation criteria, the tool reports details of affected
instances. More details on the MSVT output report is defined in the MSVT User Guide.

An MSVT failure indicates that the design has not met the design separation criteria and one or more
sub-blocks (or signals) are not independent of rest of the system. In this case, identify instances that
cause violations in the MSVT output, and accordingly modify the design floor-plan. Recompile the design
to generate a new place and routed netlist. Verify the modified design using MSVT tool.

If the design satisfies separation criteria, then MVST output reports “MSVT Check succeeded”, indicating
that the required design separation has been achieved on the design.

Executing MSVT
MSVT is a stand-alone tool present in <Libero_path>/bin64/msvt_check. The tool is executed from the
command line. A required argument is –p along with the path to the msvt.param file that is generated
from Libero as described in the previous section.

The Msvt.param file contains the parameters required by MSVT to verify design separation. Figure 13
shows an example parameter file.

//**
//
// This is input parameters file for MSVT Check program
//
//**
DEVICE = M2S050T // Device Selected
DESIGN = DCT_AAN.msvt // Location of Files required for MSVT
VERIFY_BLOCKS = U_B1 U_B2 U_ST2 U_ST1 // List of blocks to be verified using MSVT
REQUIRED_SEPARATION = 1 // specifies the desired number of switch separation
MAX_VIOLATIONS_PER_REPORT_SECTION = 1 // maximum number of violations

// IRS Regions between each pair of blocks. This contains list of inter-block communicating signals.
IRS U_B1 U_ST2 = rdy2 data1r[0] data1r[1] data1r[2] data1r[3] data1r[4] data1r[5]
 data1r[6] data1r[7] data1r[8] data1r[9]

IRS U_ST1 U_B1 = rdy1 data1[0] data1[1] data1[2] data1[3] data1[4] data1[5] data1[6]
 data1[7] data1[8] data1[9]

IRS U_ST2 U_B2 = rdy3 data2[0] data2[1] data2[2] data2[3] data2[4] data2[5] data2[6]
 data2[7] data2[8] data2[9] data2[10] data2[11]

REGIONS_VERBOSITY = 0

Figure 13. Example MSVT parameter file

Inspect the generated MSVT parameter file. Edit the required separation parameter per guideline
requirements and adjust other parameters to refine the verification criteria. You can specify the blocks
you want to verify, the names of each IRS signal, and limit the maximum number of violations to be
reported. More description on each parameter can be found in the MSVT User Guide.

17

The command to execute to verify the design using MSVT is:

<Libero_path>/bin64/msvt_check –p <project_path>/designer/<Top_Level_Module>/msvt.param [–o msvt_check.log]

This command will print an exhaustive report into the filename given with the –o argument or to stdout
if –o is omitted.

On successful completion of this command, you will see a final message of either “MSVT Check failed”
indicating that the design has not met one or more of separation criteria or “MSVT Check succeeded”,
indicating the design has met all separation criteria.

EXAMPLE
This section implements a complete system using Microsemi Design Separation Methodology.

The example design is an open source soft core performing 8x8 point Discrete Cosine Transform (DCT).
The design is comprised of four subsystems defined in VHDL.

i. DCT8AAN1.vhd
ii. DCT_BUF10.vhd
iii. DCT8AAN2.vhd
iv. DCT_BUF12.vhd

Figure 14 shows a top level view of these subsystems with interconnects between them.

18

Figure 14. Top level view of DCT design

We will now implement this design using the design separation methodology steps defined above.
Note: Please refer to Libero SoC Design Flow and ChipPlanner help topics in Libero to understand the design
flow and floor-planning terminology followed in subsequent steps.

Creating HDL subsystems
The first step is to achieve logical separation of various subsystems. Create logically separate HDL
modules corresponding to the system.

In this example we have defined four such subsystems, DCT8AAN1.vhd, DCT_BUF10.vhd, DCT8AAN2.vhd
and DCT_BUF12.vhd, which are independent of each other. They communicate with each other using
interconnect signals as shown in Figure 14.

Once you have identified the subsystems to be implemented using design separation, import these
modules into a Libero project.

Create a new Libero project for the FPGA device chosen for the design. In this example, we are
implementing the design using a M2GL025, 484 FBGA device. Import the four HDL files using File 
Import  HDL Source file menu into the Libero Project.

19

Creating Blocks
The next step is to create a Block for each subsystem of this design.

To create a Block, select a module to be the root module. For example, select DCT8AAN1 as shown in
Figure 15.

Figure 15. Selecting a module as the root of a Block

Enable Block flow for this module, using Project  Project Settings  Design Flow  Enable Block
Creation as shown in Figure 16. Also, enable Use Standalone Initialization for MDDR/FDDR/SERDES
Peripherals.

20

Figure 16. Project Settings for Block Creation

The Publish Block option will now be enabled in the design flow, as shown in Figure 17.

Figure 17. Publish Block option enabled in the design

21

If a Block requires physical I/O resources you must specify explicit instantiation of I/O resources. All logic
within the Microsemi Design Separation methodology must be incorporated within an isolated region.
As such, all physical I/O resources must be associated with an isolated region. I/Os can be inserted
through direct instantiation or through insertion of I/O buffers through the SmartDesign feature.

In this example, we are going to use SmartDesign feature to insert I/Os to top level signals. DCT8AAN1
subsystem has following port list:

• CLK , RST , START , EN, DATA_IN :- Top-level Input Signals
• RDY , DATA_OUT :- IRS signals to DCT_BUF10 block

Since each block should have I/Os inserted for its top-level I/O signals, we need to insert I/O ports to the
top-Level signals of this subsystem.

Create a SmartDesign with name TOP_DCT8AAN1. Instantiate the DCT8AAN1 HDL component into
TOP_DCT8AAN1.

For each top-level Input signal assign an INBUF Macro. This will instantiate a single I/O port for each of
the signals. The input signal DATA_IN has a width of 8 Bits. To promote this signal bus to a top-Level
port, use the I/O Configurator from the catalog.

Figure 18 shows the location of the I/O Configurator in the catalog.

Figure 18. I/O Configurator in the Catalog

Once you instantiate all required I/O macros, rename them to a unique name and connect these I/O
pads to respective ports of DCT8AAN1 instance.

Since RDY_AAN1 and DATA_OUT_AAN1 are interconnect signals, right-click the ports and promote them
to the top.

Figure 19 shows the schematics of the TOP_DCT8AAN1 SmartDesign component.

22

Figure 19. SmartDesign Component for DCT8AAN1 subsystem along with I/Os

Generate TOP_DCT8AAN1, set this module as the root module, and Enable Block Creation for this
module as described in the previous section.

Publish Block
Once you have created the module with I/Os inserted, you can now publish the Block. Run Synthesis,
and Compile the subsystem (or its wrapper SD or HDL component). You can check for timing closure on
the Block. Publish the Block without place and route information.

In this example, for TOP_DCT8AAN1, we ran Synthesis and Compile. Study the Compile report generated
for this subsystem to estimate the area occupied and resources needed by this design.

Disable Placement and Routing information in Publish Block  Configure Options (as shown in Figure 20).
Publish the block. Placement and routing information is not needed until the Block is integrated with the
top level project. Enabling these options results in a longer Compile cycle.

23

Figure 20. Publishing the block without Placement and Routing information

Figure 21 shows the state of the completed design flow after you have published the Block.

Figure 21. Completed Block Flow along with Resource Usage from Compile

Publishing a Block creates a <block_name>.cxz file in the
<project_path>/designer/<block_name>/export directory.

24

For the above subsystem, Libero will create the TOP_DCT8AAN1.cxz file in the export directory under
the designer directory of the Project location as shown in Figure 22.

Figure 22. Published Block as .cxz file in export Directory

Repeat this step for the other three subsystems, and publish Blocks for each of them. Use the Block
names shown in the table below.

Subsystem Block Name

DCT_BUF10 TOP_BUF10
DCT8AAN2 TOP_DCT8AAN2
DCT_BUF12 TOP_BUF12

Creating a Top-level Design
Once you have published all the subsystem Blocks, create a new Libero project for the top-level design.
You must write a HDL module instantiating these Blocks with corresponding interconnects between
them defined.

In this example, we have written a top level module DCT_AAN.vhd, instantiating these Blocks along with
required interconnects. Figure 23 shows an example description of the top-level DCT_AAN module, with
the instance names of each Block highlighted.

25

entity DCT_AAN is

port(
CLK_AAN1 : in STD_LOGIC;
RST_AAN1 : in STD_LOGIC;
START_AAN1: in STD_LOGIC;
EN_AAN1: in STD_LOGIC
CLK_AAN2 : in STD_LOGIC;
RST_AAN2 : in STD_LOGIC;
EN_AAN2: in STD_LOGIC;
CLK_BUF10 : in STD_LOGIC;
RST_BUF10 : in STD_LOGIC;
EN_BUF10: in STD_LOGIC;
CLK_BUF12 : in STD_LOGIC;
RST_BUF12 : in STD_LOGIC;
EN_BUF12: in STD_LOGIC;
DATA_IN_AAN1 : in STD_LOGIC_VECTOR(7 downto 0);
RDY_BUF12 : out STD_LOGIC;
DATA_OUT_BUF12 : out STD_LOGIC_VECTOR(11 downto 0);
CLK_SMIP : in std_logic;
RESET_SMIP : in std_logic;
HEARTBEAT : out std_logic

);
end DCT_AAN;

architecture CONSTR of DCT_AAN is

component TOP_DCT8AAN1 is
port (

CLK_AAN1: in STD_LOGIC;
RST_AAN1: in STD_LOGIC;
START_AAN1: in STD_LOGIC;
EN_AAN1: in STD_LOGIC;
DATA_IN_AAN1: in STD_LOGIC_VECTOR (7 downto 0);
RDY_AAN1: out STD_LOGIC;
DATA_OUT_AAN1: out STD_LOGIC_VECTOR (9 downto 0)

);
end component ;

component TOP_DCT8AAN2 is

port (
CLK_AAN2: in STD_LOGIC;
RST_AAN2: in STD_LOGIC;
START: in STD_LOGIC;
EN_AAN2: in STD_LOGIC;
DATA_IN: in STD_LOGIC_VECTOR (9 downto 0);
RDY: out STD_LOGIC;
DATA_OUT: out STD_LOGIC_VECTOR (11 downto 0)

);
end component;

component TOP_BUF10 is

port (
CLK_BUF10: in STD_LOGIC;
RST_BUF10: in STD_LOGIC;
START_BUF: in STD_LOGIC;
EN_BUF10: in STD_LOGIC;
DATA_IN_BUF: in STD_LOGIC_VECTOR (9 downto 0);
RDY_BUF: out STD_LOGIC;
DATA_OUT_BUF: out STD_LOGIC_VECTOR (9 downto 0)

);
end component ;

component TOP_BUF12 is

port (
CLK_BUF12: in STD_LOGIC;
RST_BUF12: in STD_LOGIC;
START_BUF12: in STD_LOGIC;
EN_BUF12: in STD_LOGIC;
DATA_IN_BUF12: in STD_LOGIC_VECTOR (11 downto 0);
RDY_BUF12: out STD_LOGIC; -
DATA_OUT_BUF_12: out STD_LOGIC_VECTOR (11 downto 0)

26

);
end component ;

component TOP_coreSMIP is

-- Port list
port(

DEVRST_N : in std_logic;
ERASE_N : in std_logic;
ERASE_P : in std_logic;
RESET_WATCHDOG_N : in std_logic;
RESET_WATCHDOG_P : in std_logic;
DIGEST_ERROR : out std_logic;
HEARTBEAT : out std_logic;
JTAG_ACTIVE : out std_logic;
LOCK_TAMPER_DETECT : out std_logic;
MASTER_ALARM : out std_logic;
MESH_SHORT_ERROR : out std_logic;
PASSCODE_ERROR : out std_logic;
POWERUP_DIGEST_ERROR : out std_logic;
SC_ROM_DIGEST_ERROR : out std_logic

);
end component;

signal rdy1,rdy2,rdy3 : STD_LOGIC;
signal data1,data1r: STD_LOGIC_VECTOR (9 downto 0);
signal data2: STD_LOGIC_VECTOR (11 downto 0);

begin
U_ST1: TOP_DCT8AAN1

port map(CLK_AAN1 => CLK_AAN1, RST_AAN1 => RST_AAN1,
START_AAN1 =>START_AAN1, -- after this impulse the 0-th datum is sampled
EN_AAN1 =>EN_AAN1, -- operation enable to slow-down the calculations
DATA_IN_AAN1 =>DATA_IN_AAN1,
RDY_AAN1 =>rdy1, -- delayed START impulse, just after it the 0-th
DATA_OUT_AAN1=>data1 -- output data

);

U_B1:TOP_BUF10
port map(CLK_BUF10=>CLK_BUF10, RST_BUF10=>RST_BUF10,

START_BUF=>rdy1, -- after this impulse the 0-th datum is sampled
EN_BUF10=>EN_BUF10, -- operation enable to slow-down the calculations
DATA_IN_BUF=>data1,
RDY_BUF=>rdy2, -- delayed START impulse, after it the 0-th result
DATA_OUT_BUF=>data1r -- output data

);

U_ST2: TOP_DCT8AAN2
port map(CLK_AAN2=>CLK_AAN2, RST_AAN2=>RST_AAN2,

START =>rdy2, -- after this impulse the 0-th datum is sampled
EN_AAN2 =>EN_AAN2, -- operation enable to slow-down the calculations
DATA_IN =>data1r,
RDY =>rdy3, -- delayed START impulse, after it the 0-th result
DATA_OUT=>data2 -- output data

);

U_B2:TOP_BUF12
port map(CLK_BUF12=>CLK_BUF12, RST_BUF12=>RST_BUF12,

START_BUF12=>rdy3, -- after this impulse the 0-th datum is sampled
EN_BUF12=>EN_BUF12, -- operation enable to slow-down the calculations
DATA_IN_BUF12=>data2,
RDY_BUF12=>RDY_BUF12, -- delayed START impulse, after it the 0-th result
DATA_OUT_BUF_12=>DATA_OUT_BUF12 -- output data

);

SMIP_BLOCK:TOP_coreSMIP
port map(DEVRST_N=>DEVRST_N,

ERASE_N=>ERASE_N,
ERASE_P=>ERASE_P,
RESET_WATCHDOG_N=>RESET_WATCHDOG_N,
RESET_WATCHDOG_P=>RESET_WATCHDOG_P,
DIGEST_ERROR=>DIGEST_ERROR,
HEARTBEAT=>HEARTBEAT,
JTAG_ACTIVE=>JTAG_ACTIVE,
LOCK_TAMPER_DETECT=>LOCK_TAMPER_DETECT,

27

MASTER_ALARM=>MASTER_ALARM,
MESH_SHORT_ERROR=>MESH_SHORT_ERROR,
PASSCODE_ERROR=>PASSCODE_ERROR,
POWERUP_DIGEST_ERROR=>POWERUP_DIGEST_ERROR,
SC_ROM_DIGEST_ERROR=>SC_ROM_DIGEST_ERROR

);
end CONSTR;

Figure 23. Top-level Design description in VHDL

Set the top-level module as the root module, and import all Blocks (<block_name>.cxz files) using File 
Import  Blocks in Libero. Figure 24 shows the Design Hierarchy of the top-level DCT_AAN module with
all Blocks instantiated.

Figure 24. Top-level Design Hierarchy

Uncheck the boxes for Enable Block Creation and Enable Synthesis for this module (in Project Settings as
shown in Figure 25).

28

Figure 25. Project Settings for the Top-level Design

In addition, configure Compile to enable Design Separation Methodology. From Compile  Configure as
shown in Figure 27. Complete Compile for the top-level module (DCT_AAN in this example).

Figure 26. Enabling Design Separation Methodology before Compile

29

Floorplanning Design with Separation Regions
Each block of the design must be assigned to a separation region. You can define separation regions in
ChipPlanner or use a PDC file.

More information on floorplanning a design using ChipPlanner can be found in the Libero online help.

In this example we are going to define a separation region using ChipPlanner for instance U_ST1
(corresponding to the TOP_DCT8AAN1 block).

Invoke ChipPlanner from Implement Design  Edit Constraints  Floorplan Constraints in Design Flow
window, as shown in Figure 27. This opens ChipPlanner interactively.

Figure 27. Opening ChipPlanner

Create a separation region for each of the blocks according to the estimate obtained from the resource
usage reports described above.

Note: Refer to Creating routing regions in the ChipPlanner help topics in Libero for more information.

Figure 11 shows an example floorplan for the design. In this example, we will create an inclusive routing
region constraint for instance U_ST1, as shown in Figure 28.

30

Figure 28. Creating an Inclusive Routing Region

Create separation regions for all blocks of the design. Then assign Block instances to the respective
separation region. For this example, the floorplan would look like Figure 29.

Figure 29. Floor-plan of Design with Separation Regions defined

Once you create separation regions corresponding to the Blocks you must create IRS regions for each set
of connections between the Blocks. In the example, U_ST1 connects to U_B1, U_B1 connects to U_ST2
and U_ST2 connects to U_B2. Hence, we need to define three sets of IRS regions.

IRS region is an inclusive routing region that is created in a similar manner as the separation regions.
Figure 30 is an example of one such IRS region for instances U_ST1 to U_B1.

31

Figure 30. Creating IRS region between two blocks

Similarly, create IRS regions between U_B1 to U_ST2 and U_ST2 to U_B2 Blocks. Assign valid IRS net
macros to the respective IRS Regions.

A complete floorplan of the example design will look similar to Figure 31. The separation between each
region should be at least the required number of clusters to satisfy the separation criteria.

Figure 31. Complete Floor-plan of Design

Figure 32 shows an example PDC file that can be used to implement the above floorplan. Note that
separation regions are assigned by their highest level hierarchy name via the assign_region command.
IRS nets are assigned using wildcards through the assign_net_macros command.

define_region -name U_ST1_Region -route YES 0 0 275 68
define_region -name U_B1_Region -route YES 0 84 275 146
define_region -name U_ST2_Region -route YES 324 84 635 146
define_region -name U_B2_Region -route YES 324 0 563 68
define_region -name SMIP_Region -route YES 612 0 635 26

32

define_region -name IRS_B1_ST2 -route YES 190 84 443 146
define_region -name IRS_ST1_B1 -route YES 0 0 131 146
define_region -name IRS_ST2_B2 -route YES 492 0 563 146

assign_region U_ST1_Region U_ST1
assign_region U_B1_Region U_B1
assign_region U_ST2_Region U_ST2
assign_region U_B2_Region U_B2
assign_region SMIP_Region SMIP_BLOCK

assign_net_macros IRS_B1_ST2 rdy2 data1r<*> -include_driver yes
assign_net_macros IRS_ST1_B1 rdy1 data1<*> -include_driver yes
assign_net_macros IRS_ST2_B2 rdy3 data2<*> -include_driver yes

Figure 32. Example PDC file for floor-plan

Complete Place and Route
Once you have completed the floor plan, edit Timing constraints and run Place and Route until you
achieve timing closure on the design.

Configure Security Settings and Generate Programming file
Once you complete place and route, you must extract the design information so as to execute MSVT.

Configure the security and programming options per system requirements. Configure Security and
Programming Options  Security Policy Manager  Configure Options  Debug Policy as shown in
Figure 33.

Figure 33. Security Settings before Programming

Export the Programming file from the Program Design  Export Programming File menu.

33

This generates a programming file as well as files required for MSVT. Libero exports these files into the
<project_path>/designer/DCT_AAN/DCT_AAN.msvt.dtf directory and creates a parameter file in
<project_path>/designer/DCT_AAN/msvt.param file, as shown in Figure 34. The Msvt.param file contains a
list of parameters that you can adjust before executing MSVT.

Figure 34. Generated MSVT files

Executing MSVT
You can now run the Microsemi Separation Verification Tool (MSVT) to verify that the design adheres to
the required separation criteria.

MSVT is an independent tool provided as part of the Libero installation. It is invoked from
<Libero_Path>/bin64/msvt_check. The tool is executed from the command line. A required argument is
–p along with the path to the msvt.param file that has been generated from Libero.

The command you must execute to verify the design using MSVT is:

<Libero_path>/bin64/msvt_check –p <project_path>/designer/DCT_AAN/msvt.param [–o msvt_check.log]

This command prints an exhaustive report to msvt_check.log file given with the –o argument or to
stdout if –o is omitted.

On successful completion of this command, you will see a final message of either “MSVT Check failed”
indicating that the design has not met one or more of separation criteria or “MSVT Check succeeded”,
indicating the design has met all separation criteria.

Since we have followed the guidelines described in Microsemi Design Separation Methodology in the
example, Figure 35 shows the conclusion of MSVT output indicating that the design has been verified for
the given separation criteria.
34

Design has met 1 switches separation requirement

MSVT Check succeeded.
Number of errors: 0

Figure 35. Output Report of MSVT for Design

35

36

A – Product Support

Microsemi SoC Products Group backs its products with various support services, including Customer
Service, Customer Technical Support Center, a website, electronic mail, and worldwide sales offices.
This appendix contains information about contacting Microsemi SoC Products Group and using these
support services.

Customer Service
Contact Customer Service for non-technical product support, such as product pricing, product upgrades,
update information, order status, and authorization.

From North America, call 800.262.1060
From the rest of the world, call 650.318.4460
Fax, from anywhere in the world, 408.643.6913

Customer Technical Support Center
Microsemi SoC Products Group staffs its Customer Technical Support Center with highly skilled
engineers who can help answer your hardware, software, and design questions about Microsemi SoC
Products. The Customer Technical Support Center spends a great deal of time creating application
notes, answers to common design cycle questions, documentation of known issues, and various FAQs.
So, before you contact us, please visit our online resources. It is very likely we have already answered
your questions.

Technical Support
Visit the Customer Support website (www.microsemi.com/soc/support/search/default.aspx) for more
information and support. Many answers available on the searchable web resource include diagrams,
illustrations, and links to other resources on the website.

Website
You can browse a variety of technical and non-technical information on the SoC home page, at
www.microsemi.com/soc.

Contacting the Customer Technical Support Center
Highly skilled engineers staff the Technical Support Center. The Technical Support Center can be
contacted by email or through the Microsemi SoC Products Group website.

Email
You can communicate your technical questions to our email address and receive answers back by email,
fax, or phone. Also, if you have design problems, you can email your design files to receive assistance.
We constantly monitor the email account throughout the day. When sending your request to us, please
be sure to include your full name, company name, and your contact information for efficient processing of
your request.
The technical support email address is soc_tech@microsemi.com.

http://www.microsemi.com/soc/support/search/default.aspx
http://www.microsemi.com/soc
mailto:soc_tech@microsemi.com

My Cases
Microsemi SoC Products Group customers may submit and track technical cases online by going to My
Cases.

Outside the U.S.
Customers needing assistance outside the US time zones can either contact technical support via email
(soc_tech@microsemi.com) or contact a local sales office. Sales office listings can be found at
www.microsemi.com/soc/company/contact/default.aspx.

ITAR Technical Support
For technical support on RH and RT FPGAs that are regulated by International Traffic in Arms Regulations
(ITAR), contact us via soc_tech_itar@microsemi.com. Alternatively, within My Cases, select Yes in the ITAR
drop-down list. For a complete list of ITAR-regulated Microsemi FPGAs, visit the ITAR web page.

Microsemi Corporate Headquarters
One Enterprise, Aliso Viejo CA 92656 USA
Within the USA: +1 (949) 380-6100
Sales: +1 (949) 380-6136
Fax: +1 (949) 215-4996

Microsemi Corporation (NASDAQ: MSCC) offers a comprehensive portfolio of semiconductor
solutions for: aerospace, defense and security; enterprise and communications; and industrial
and alternative energy markets. Products include high-performance, high-reliability analog
and RF devices, mixed signal and RF integrated circuits, customizable SoCs, FPGAs, and
complete subsystems. Microsemi is headquartered in Aliso Viejo, Calif. Learn more at
www.microsemi.com.

© 2014 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of
Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.

5-02-00551-1/09.14

http://www.microsemi.com/soc/mycases/
http://www.microsemi.com/soc/mycases/
mailto:tech@microsemi.com
http://www.microsemi.com/soc/company/contact/default.aspx
http://www.microsemi.com/soc/company/contact/default.aspx
http://www.microsemi.com/soc/company/contact/default.aspx%23itartechsupport
mailto:soc_tech_itar@microsemi.com
http://www.microsemi.com/soc/mycases/
http://www.microsemi.com/soc/ITAR/
http://www.microsemi.com/

	Introduction
	Design Methodology
	Creating Blocks
	Assigning I/Os to Block
	Optional CoreSMIP Block
	Creating a Top-level Design
	Floor-planning with Design Separation Regions
	Inter-Region Signal (IRS) Regions
	Considerations for Global clock resources
	Initialization of Hard ASIC blocks
	Complete P&R
	Configure Security Settings and Generate Programming file
	Auditing by MSVT
	Executing MSVT

	EXAMPLE
	Creating HDL subsystems
	Creating Blocks
	Publish Block
	Creating a Top-level Design
	Floorplanning Design with Separation Regions
	Complete Place and Route
	Configure Security Settings and Generate Programming file
	Executing MSVT

